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1. FOREWORD

1. Motivation and main results

This book is based on the notes for the APΓOΣ (1) seminar of the winter semester

2003/2004 at the University of Bonn. Its aim was to go through the paper On the

intersection of modular correspondences by Gross and Keating [GK], and understand

it thoroughly. This subject was chosen for three reasons. First of all, it was felt that

the mathematics contained in this paper (and the papers on which Gross and Keating

base their article) is extremely interesting, and has become even more important

recently, due to the use that S. Kudla and others have made of these results. Secondly,

thanks to the elementary methods employed in the proofs of the main theorems,

the seminar provided a rapid access, even to a novice in the field, to a deep and

sophisticated topic in arithmetic algebraic geometry. Thirdly, it was felt from the

start that the literature on the subject was not easy to penetrate and that therefore

the effort made by all speakers to master this material should not be lost, and that a

written account of the seminar should be made available.

The origin of the topics treated in the seminar goes back to the 19th century. Let

j = j(τ) be the elliptic modular function on the upper half plane. For m ≥ 1 let

ϕm(j, j′) ∈ Z[j, j′] be the classical modular polynomial, defined by

(1.1) ϕm(j(τ), j(τ ′)) =
∏

A∈M2(Z)
det(A)=m

mod SL2(Z)

(j(τ)− j(Aτ ′)) .

Kronecker and Hurwitz established a number of important properties of these poly-

nomials, as for instance their factorization into irreducible factors. They also proved

(1)acronym for Arithmetische Geometrie Oberseminar
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degree formulas like

(1.2) deg fm =
∑

dd′=m

max(d, d′) ,

where fm(j) = ϕm(j, j), for m not a square.

From the point of view of the seminar, the interest in these results lies in the fact

that they can be interpreted as giving intersection numbers on the complex surface

SC = SpecC[j, j′]. Let Tm,C ⊆ SC be the divisor defined by ϕm = 0. Then (1.2) can

be interpreted as the intersection formula

(1.3) (Tm,C · T1,C) =
∑

dd′=m

max(d, d′) ,

if m is not a square. Here (Tm1,C · Tm2,C) is defined by

(1.4) (Tm1,C · Tm2,C) = dimC C[j, j′]/(ϕm1 , ϕm2) .

More generally, Hurwitz showed that the divisors Tm1,C and Tm2,C intersect properly

on SC if and only if m1m2 is not a perfect square and gave an explicit expression

for the intersection number (Tm1,C · Tm2,C). This in turn leads to the famous class

number relations of Kronecker and Hurwitz.

Gross and Keating took up this classical subject by adding an arithmetic dimension

to it. Instead of usual intersection numbers they consider arithmetic intersection

numbers. Let S = SpecZ[j, j′], which we consider as an arithmetic threefold. Let Tm

be the arithmetic divisor defined by ϕm = 0. The arithmetic intersection number is

defined for any triple of positive integers m1,m2,m3 by

(1.5) (Tm1 · Tm2 · Tm3) = log# Z[j, j′]/(ϕm1 , ϕm2 , ϕm3) .

Gross and Keating derive a criterion for when this number is finite and give in this

case an explicit expression for it (see below). This result is the main focus of the

present book. Let us state it from the point of view adopted in these notes. Let M
be the moduli space of elliptic curves over SpecZ (since we impose no level structure,

M is not a scheme, but a Deligne-Mumford stack). Put S = M×Spec Z M. For a

positive integer m, let Tm be the moduli space of isogenies of elliptic curves E → E ′

of degree m. Then Tm maps by a finite unramified morphism to M×M. From this

point of view, the intersection number above should be interpreted as
∑

p

log(p) ·
∑

x∈X (Fp)

1

#Aut(x)
lg ÔX ,x,

where we denote by X the triple fiber product of Tm1 , Tm2 , and Tm3 over M×M.

Here the weighting factor 1
#Aut(x) is due to the fact that X is a stack.

We now state the main results contained in this volume.

We denote by SC resp. by Tm,C the base change of S resp. Tm to SpecC. The first

result is Hurwitz’s theorem.
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Theorem 1.1. — The cycles Tm1,C and Tm2,C intersect properly on SC if and only

if the integer m = m1m2 is not a perfect square. In this case, the intersection

Tm1,C ×SC Tm2,C lies over the locus in SC corresponding to pairs (E,E ′) of elliptic

curves with complex multiplication by orders in the imaginary-quadratic field Q(
√
−m)

of discriminant ≥ −4m. The intersection number is equal to

(Tm1,C · Tm2,C) =
∑

t∈Z
t2<4m

∑

d|gcd(m1,m2,t)

d ·H
(
4m− t2

d2

)
.

Here H(n) denotes the Hurwitz class number (the number of SL2(Z)-equivalence
classes of positive definite binary quadratic forms over Z with determinant n).

The second result is the theorem of Gross and Keating.

Theorem 1.2. — The cycles Tm1 , Tm2 and Tm2 intersect properly on S if and only

if there is no positive definite binary quadratic form over Z which represents the three

integers m1,m2,m3. In this case the intersection Tm1 ×S Tm2 ×S Tm3 lies over the

locus in S corresponding to pairs (E,E ′) of elliptic curves which are supersingular

in some characteristic p with p < 4m1m2m3. The arithmetic intersection number is

equal to

(Tm1 · Tm2 · Tm3) =
∑

p<4m1m2m3

n(p) log p ,

where

n(p) =
1

2
·
∑

Q

(∏

`|∆,

`6=p

β`(Q)

)
· αp(Q) .

Here the sum is the taken over all positive definite integral ternary quadratic forms

Q with diagonal (m1,m2,m3) which are isotropic over Q` for all ` 6= p. Furthermore

∆ = 1
2 detQ and β`(Q) is a normalized representation density of Q by the Z`-lattice

M2(Z`) with its norm form. Finally, αp(Q) is the length of a certain local deformation

space of isogenies of formal groups in characteristic p. In [GK], Gross and Keating

give completely explicit expressions for the factors β`(Q) and αp(Q), comp. Chapters

5 and 13. This is especially striking in the cases when ` = 2 resp. p = 2, in which cases

they express these quantities in terms of new invariants of ternary quadratic forms

over Z2 which are defined by them for this purpose (the Gross-Keating invariant in

(Z≥0)
3 and the Gross-Keating epsilon factor in {±1}).

The invariant αp(Q) is probably the most interesting ingredient in the formula

above, and we now give a precise definition.

Let G be a formal group of dimension 1 and height 2 over F̄p. Let W = W (F̄p) be

the ring of Witt vectors. The universal deformation of G×G is then Γ× Γ′ over the

formal scheme Ŝ = Spf W [[t, t′]]. If now f1, f2, f3 : G→ G are three endomorphisms
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6= 0, we let Ii ⊂ W [[t, t′]] for i = 1, 2, 3 be the minimum ideal such that fi lifts to a

homomorphism f̃i : Γ→ Γ′ (mod Ii). Then Ii defines a divisor T̂i on Ŝ. Consider

(1.6) (T̂1 · T̂2 · T̂3) = lengthW W [[t, t′]]/(I1 + I2 + I3) .

On End(G) we have the usual quadratic form Nm with values in Zp (the norm form,

after identifying End(G) with the maximal order in the quaternion division algebra

over Qp). It turns out that (1.6) only depends on the quadratic form Q(f1, f2, f3) :

(x, y, z) 7→ Nm(xf1 + yf2 + zf3), and even only on its GL3(Zp)-equivalence class. We

then set

(1.7) αp(Q) = (T̂1 · T̂2 · T̂3) ,

for any triple f1, f2, f3 with Q(f1, f2, f3) = Q. The formula for αp(Q) in terms of the

Gross-Keating invariant (a1, a2, a3) ∈ (Z≥0)
3 with a1 ≤ a2 ≤ a3 is as follows. We

note that for p 6= 2, in which case Q can be diagonalized, the integers a1, a2, a3 are

simply the p-adic valuations of the diagonal entries.

αp(Q) =

a1−1∑

i=0

(i+ 1)(a1 + a2 + a3 − 3i)pi +

(a1+a2−2)/2∑

i=a1

(a1 + 1)(2a1 + a2 + a3 − 4i)pi

+
a1 + 1

2
(a3 − a2 + 1)p(a1+a2)/2, if a1 ≡ a2 (mod 2)

αp(Q) =

a1−1∑

i=0

(i+ 1)(a1 + a2 + a3 − 3i)pi +

(a1+a2−1)/2∑

i=a1

(a1 + 1)(2a1 + a2 + a3 − 4i)pi,

if a1 6≡ a2 (mod 2)

The above results are the main focus of these notes. In the last chapter we reformu-

late Theorem 1.2 as a relation between the arithmetic intersection numbers and the

Fourier coefficients of special values of derivatives of Siegel Eisenstein series, along

the lines sketched in the introduction to [GK]. The idea that this can be done is

attributed there to S. Kudla and D. Zagier; in the intervening years Kudla and oth-

ers have gone a long way towards proving such relations in much greater generality

[Ku2, Ku3]. Let

(1.8) E(τ, s) =
∑

det(cτ + d)−2 · det(y)
s
2

|det(cτ + d)|s

be the classical Siegel Eisenstein series of genus 3 and weight 2 for the full modular

group. Here τ = x + iy ∈ H3 and s ∈ C is a complex parameter with large real

part, and the sum is over representatives γ =

(
∗ ∗
c d

)
of the left cosets of the Siegel

parabolic in Sp3(Z). Then E(τ, s) has a meromorphic continuation to the entire s-

plane and vanishes at s = 0. The derivative E ′(τ, 0) = ∂E
∂s (τ, 0) is a non-holomorphic
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modular form of weight 2 for Sp3(Z) and has a Fourier expansion

(1.9) E′(τ, 0) =
∑

T∈Sym3(Z)∨

c′(T, y) · qT ,

where qT = exp(2πi tr(Tτ)), for any half-integral matrix T . It turns out that for

positive-definite T the coefficient c′(T, y) ≡ c′(T ) is independent of y = Im(τ).

Theorem 1.3. — Let m1,m2,m3 be a triple of positive integers such that there is

no positive definite binary quadratic form over Z which represents m1,m2 and m3.

There exists a constant κ independent of m1,m2,m3 such that

(Tm1 · Tm2 · Tm3) = κ ·
∑

T∈Sym3(Z)∨>0
diag(T )=(m1,m2,m3)

c′(T ) .

2. Content of this book

We now explain what is to be found in this book and what is not. Chapter 2

gives a review of classical results on modular polynomials. It is followed by the brief

Chapter 3, where a certain sum of representation numbers is computed. In Chapter

4 the first part of Theorem 1.2 is proved, which states under which conditions the

three divisors intersect in dimension 0, and it is explained how the formula for the

intersection number follows from the results of the later chapters. Chapter 5 then

investigates the quadratic space obtained as the space of homomorphisms between

two supersingular elliptic curves with the degree form.

Next we come to the local theory. We have made an effort to give all the necessary

background on formal groups, their deformations and the deformations of their endo-

morphisms. Chapter 6 gives a summary of Lubin-Tate theory for formal groups, cf.

[LT1]. Chapter 7 gives the construction of the formal moduli space of formal groups,

and more generally, formal A-modules, following Drinfeld [D]. Chapter 8 is devoted

to Gross’ theory of canonical and quasi-canonical lifts, cf. [G], and in Chapter 9 we

explain the analogy to the split case, expanding on a remark in [G].

Since we will be interested in lifting isogenies of elliptic curves rather than just

the curves themselves, we need to understand how endomorphisms of formal groups

can be lifted. This was analyzed in much detail by Keating, see [K2] (which is based

on Keating’s unpublished Harvard thesis [K1]). This theory is presented here in

Chapters 10 and 11. Another ingredient we need is the theory of quadratic forms

over Z`, including the delicate case ` = 2 treated in section 4 of [GK], comp. also the

account of Yang [Y1]. This is dealt with in Chapter 12. We come back to the theory

of quadratic forms, namely to the computation of certain representation densities, in

Chapter 15, where, however, we have merely quoted from Kitaoka [Ki] and Katsurada

[Ka] the facts that we use.
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We then come to the investigation of the invariants αp(Q), and to the proof of the

explicit formula for them. Here the case p = 2 causes additional complications. We

provide two different proofs of the formula in that case – one which relies on labori-

ous explicit computations (Chapter 13), and another one which is more conceptual

(Chapter 14). We feel that both are enlightening in their own way.

Whereas we have provided a lot of background information on the ingredients of

the results in [GK], with Theorem 1.3 we were less ambitious, contenting ourselves

with references to the appropriate papers (mostly of Kudla) to calculate the Fourier

coefficients of E′(τ, 0), see Chapter 16.

3. Perspective

We believe that Gross’ theory of canonical and quasi-canonical liftings is going to

have even more applications than have been found so far. We hope that our book can

serve as a basis of future research. At the end of this introduction there is a list of

references of which we are aware, where this theory is used. The theory was invented

originally by Gross in connection with the proof of the Gross-Zagier formula. We note

that in B. Conrad’s recent account of the geometric ingredients of this proof [Co] the

theory of quasi-canonical liftings is explicitly excluded; therefore our notes may also

be viewed as a complement to Conrad’s exposition. Also, Chapter III of [KRY] is

based on the present notes (in loc. cit., only the intersection numbers (T1 · Tm2 · Tm3)

are needed).

The main ingredient of the proof of Theorem 1.2 is the determination of the quan-

tity αp(Q). This may be viewed as a special case of the following general problem. Let

G and G′ be two p-divisible groups over F̄p. The universal deformation of G×G′ is

then Γ×Γ′ over the formal spectrum of a power series ring R over W . Let f : G→ G′

be an isogeny. The problem is to determine the minimal ideal I in R such that f lifts

to an isogeny f̃ : Γ→ Γ′ (mod I). Related to this question is the following problem:

Let I be the minimal ideal such that a given set of isogenies f1, . . . , fr : G→ G′ lifts

to a set of isogenies f̃1, . . . , f̃r : Γ → Γ′ (mod I). The problem is to determine when

I is of finite colength in R, and if so, to determine this colength explicitly.

To the sophisticated reader, it may seem curious that old-fashioned power series

methods are used here to solve these problems in the case of p-divisible formal groups

of dimension 1 and height 2. It is natural to ask whether more recent methods, like

Grothendieck-Messing lifting theory, Cartier theory, or the theory of displays can be

used to solve this problem. Indeed, as Zink [Z] has shown, the theory of displays

can be used in some instances to prove results in this direction. However, so far

these methods have not succeeded in obtaining these results. In view of the results in

[KR1, KR2], it is conceivable that the special case of the general problem studied

here is the only one where a reasonable uniform answer exists. This might also explain

the relative failure of the more generally applicable methods.
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NOTATION

We assemble some of the notation which is used more or less systematically

throughout the book.

For an integer m > 0, we denote by ϕm ∈ Z[X,Y ] the modular polynomial (see

[Vg]). We write S = SpecZ[X,Y ], and denote by Tm ⊆ S the divisor associated to

ϕm. By SC, Tm,C etc. we denote the base change to C, and by S, Tm we denote the

corresponding Deligne-Mumford stacks (see [Go2]).

In the chapters [Me1], [MZ], [Ww1], [Me2], [Mi], [Vl] dealing with the local

theory, the following situation is considered: K is a field, complete with respect to a

discrete valuation vK , with ring of integers OK . We denote by p the maximal ideal

of OK , and by π a uniformizer. The residue class field OK/p of K is assumed to

be finite, of cardinality q, and k is an extension field of OK/p, in fact in most cases

it is an algebraic closure of the residue class field. Furthermore, L is a quadratic

extension of K, with ring of integers OL, and M is the completion of the maximal

unramified extension of K (or in some places of L). By D we denote ‘the’ quaternion

division algebra over K. The maximal order of D is denoted by OD, and Π = πD is

a uniformizing element. In [R], [Ww2] the special case where the base field is Qp is

considered, and the notation is slightly different: there K/Qp is a quadratic extension

(and L denotes a quadratic space). Also, in [Wd1] D denotes a quaternion algebra

over Q.

The letters F , G, H, Γ usually denote formal groups (or formal OK-modules etc.).

Often, G denotes the special fibre of a deformation F . Whereas mostly Fr denotes a

quasi-canonical lifting of level r (and in particular F0 denotes the canonical lift), see

[Ww1], in [Mi] and [Vl] Fn denotes the base change F ⊗k[[t]] k[[t]]/t
n or F ⊗A A/π

n.

If R is a ring, and (L,Q) is a quadratic space over R, i. e. a free R-module L with a

quadratic form Q, we associate to it the bilinear form (x, y) = Q(x+y)−Q(x)−Q(y)

and—after fixing a basis ψ1, . . . , ψn—the matrix B = B(ψ) = ((ψi, ψj))i,j (in [B])

or the matrix T = ( 1
2 (ψi, ψj))i,j (in [R], [Wd2]). If Q′ is another quadratic form,
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on Rm, say, then we denote by RL(Q
′) the representation number of Q′ in L, i.e.

the number of isometries from (Rm, Q′) to (L,Q); see [Vg], [Go2] and in particular

[Wd2]. To a ternary quadratic form over Z` we attach its Gross-Keating invariants

a1, a2, a3 and ε, see [B]. Finally, the numbers αp(Q) ∈ Z, β`(Q) ∈ Z which appear

in the statement of the main theorem are defined in [R] and [Wd2], respectively.
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2. MODULAR POLYNOMIALS

by

Gunther Vogel

We introduce modular polynomials and prove some elementary properties. This

is classical and well-known, see e.g. [L, §5]. In the second part, we compute the
intersection numbers of the divisors defined by two modular polynomials in the 2-

dimensional complex plane. This computation, due to Gross and Keating ([GK]),

re-proves the class number relations of Kronecker (Corollary 2.2).

We only consider elliptic curves over C.

1. Modular Polynomials

Let m ∈ N. Consider the elliptic curve E = C/Γ with Γ = Z+Zτ for some τ ∈ H.

Theorem 1.1 ([L, §5.3,5.1]). — There are canonical bijections between the following

sets:

(i) isomorphism classes of isogenies f : E1 → E of degree m (as group schemes

over E),

(ii) subgroups Γ1 ⊆ Γ of index m,

(iii) SL2(Z)\{A ∈M2(Z) | detA = m}, and

(iv)

{(

a b

0 d

)

∈M2(Z)
∣

∣

∣

∣

ad = m, a ≥ 1 and 0 ≤ b < d

}

.

All of these sets have σ1(m) =
∑

d|m d elements.

Proof. — (i)→(ii): Set Γ1 := f∗π1(E1). (ii)→(i): Set E1 := C/Γ1.

(ii)↔(iii): Choose a basis
(

a b

c d

)(

1

τ

)

of Γ1 with A =

(

a b

c d

)

∈M2(Z).

(iii)↔(iv): Left multiplication by matrices from SL2(Z) corresponds to row operations.
The matrices in (iv) are obviously inequivalent (the columns must be stabilized).
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Now consider pairs (j, j′) of j-invariants of elliptic curves E,E ′ such that there is

an isogeny E → E′ of degree m. These pairs are described by the divisor of a certain

polynomial ϕm:

For j, j′ ∈ C choose elliptic curves E,E ′ having j-invariants j, j′, respectively. Set

ϕm(j, j
′) = ϕm(j(E), j(E

′)) :=
∏

E′
1
→E′

(j(E)− j(E′1));

the product is over isomorphism classes of isogenies E ′1 → E′ of degree m. ϕm does

not depend on the choices made and is a polynomial of degree σ1(m) in j. For elliptic

curves E,E′, the condition ϕm(j(E), j(E
′)) = 0 is equivalent to the existence of an

isogeny E → E′ of degree m.

Define ψm(j, j
′) by the same formula, but restrict the product to the isogenies which

do not factor over some multiplication-by-n map, n > 1. In the above correspondence,

these isogenies correspond to primitive matrices, i. e., matrices whose entries have no

common divisor. We have

ϕm =
∏

n2|m

ψm/n2 .

Obviously, ϕ1(X,Y ) = ψ1(X,Y ) = X − Y . As we will see below, ϕm and ψm are

polynomials; they are called modular polynomials.

Theorem 1.2 ([L, §5.2]). — (i) ϕm, ψm ∈ Z[X,Y ].
(ii) ψm(X, t) is irreducible over C(t).
(iii) For m > 1, we have ψm(X,Y ) = ψm(Y,X). Consequently, ϕm(X,Y ) =

±ϕm(Y,X) (“−” precisely if m is a square).

Proof. — (i) First notice that the coefficients ki of

ψm(X, j(τ
′)) =

∏

SL2(Z)\{A∈M2(Z)|detA = m, A primitive}

(X − j(Aτ ′)) ∈ OC[X]

are holomorphic in τ ′ and invariant under SL2(Z). From the formula

(∗) ψm(X, j(τ
′)) =

∏

a,b,d

(

X − j
(aτ ′ + b

d

))

=
∏

a,b,d

(

X − 1

(q′)a/dζabm
− 744− . . .

)

(a, b, d as in 1.1 (iv) and

(

a b

0 d

)

primitive, ζm := e
2πi/m) we see that the ki are mero-

morphic at infinity. Since the q-expansion of the j-function has integral coefficients,

we have

ki ∈ Z[ζm][[q′]]
[ 1

q′

]

.

Now there are polynomials pi ∈ Z[ζm, T ] such that ki − pi(j(q
′)) lies in q′Z[ζm][[q′]]

and therefore, being a modular function, must vanish identically. Hence, ψm ∈
Z[ζm][X,Y ].
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There are two operations of (Z/mZ)×: first, on matrices
(

a b

0 d

)

as in 1.1 (iv) by

σ

(

a b

0 d

)

:=

(

a σb

0 d

)

(via (Z/dZ)× on {0, . . . , d− 1} ∼= Z/dZ),

and the first product in (∗) is invariant under this operation. Second, (Z/mZ)×

operates in a compatible way on Z[ζm] by σζm = ζσm, and since the coefficients of ϕm

are invariant under this operation, we find that ψm ∈ Z[X,Y ].
(ii) By mapping t 7→ j, the field of meromorphic functions on H becomes an

extension field of C(t) carrying an operation of the group SL2(Z). By the elementary
divisors theorem, it permutes the zeroes of ψm(X, t) transitively, hence ψm(X, t) is

irreducible over C(t).
(iii) The condition ψm(j(E), j

′(E)) = 0 is equivalent to the existence of an

isogeny E → E′ of degree m which does not factor over a multiplication-by-n

map for some n > 1. This last property is also true for its dual isogeny, hence

ψm(j(E
′), j(E)) = 0. For a fixed j′0, the irreducible polynomial ψm(X, j

′
0) is therefore

a divisor of ψm(j
′
0, X), and conversely. It follows that ψm(j, j

′) = ±ψm(j
′, j). If

the “−” sign is correct, ψm(t, t) vanishes identically, so ψm(X, t) has a zero in C(t),
hence the degree of ψm(X, t) must be 1. This is true precisely for m = 1.

From the proof of (iii) we also see that fm(X) := ϕm(X,X) vanishes iff m is

a square. If m is not a square, the degree of fm can be read off the q-expansion

in (∗): set X = j(q′), then because of a 6= d, the pole order of one factor is equal

to max{1, a/d}, hence the pole order of the entire product is

deg fm =
∑

ad=m

dmax{1, a/d} =
∑

ad=m

max{a, d}.

One also sees that the leading coefficient of fm is ±1.

2. Intersections

We first need to fix some notation. A quadratic space (L,Q) over a ring R consists

of a free R-module L of finite rank and a quadratic form Q on L. The associated

bilinear form on L is defined by

(x, y) = Q(x+ y)−Q(x)−Q(y).

The determinant of Q is the element of R/(R×)2 given by the determinant of the

matrix ((bi, bj))ij for some basis {bi} of L. The diagonal of Q with respect to some
fixed basis {bi} is defined to be the n-tuple (Q(bi))i where n is the rank of L.
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For a quadratic form F on Rm, we define the representation number RL(F ) as the

cardinality of the set

{(fi) ∈ Lm | Q(x1f1 + · · ·+ xmfm) = F (x1, . . . , xm) for all x ∈ Rm}
= {isometries (Rm, F )→ (L,Q)}.

For R = Z and positive definite Q, this set is finite. (For each x = ei, i = 1, . . . ,m,

there are only finitely many possible values of x1f1 + · · ·+ xmfm = fi.)

For a positive integer D, let H(D) be the number of SL2(Z)-equivalence classes of
positive definite binary quadratic forms over Z with determinant D (which is well-

defined as an element of Z), counting the forms equivalent to ex2
1 + ex2

2 and ex
2
1 +

ex1x2 + ex
2
2 for some natural number e with multiplicities 1/2 and 1/3, respectively.

If the positive integer m is not a square, we define

G(m) :=
∑

t∈Z

t2≤4m

H(4m− t2).

Define Tm := V (ϕm) ⊂ A2
C
.

Theorem 2.1 ([GK, 2.4]). — The curves Tm1
and Tm2

intersect properly iff m =

m1m2 is not a square. In this case, their intersection is supported on pairs (E,E ′)

of elliptic curves with complex multiplication by orders whose discriminants satisfy

d(E), d(E′) ≥ −4m. The intersection number is

Tm1
· Tm2

=
∑

t∈Z

t2<4m

∑

d|gcd(m1,m2,t)

d ·H
(4m− t2

d2

)

=
∑

n|gcd(m1,m2)

n ·G(m/n2).

Proof. — If m = m1m2 is a square, Tm1
and Tm2

contain V (ψg), g = gcd(m1,m2),

as a common component (note that m1/g and m2/g are coprime, hence squares

themselves). Conversely, if Tm1
and Tm2

do not intersect properly, they must contain

some V (ψg) as a common component, but then g = m1/n
2
1 = m2/n

2
2, so m = g2n2

1n
2
2

is a square.

For a pair of elliptic curves (E,E′) corresponding to an intersection point of

Tm1
and Tm2

, there are isogenies f1, f2 : E → E′ of degrees m1 and m2, respec-

tively. Then, α := tf2f1 is an endomorphism of E of degree m. Since m is not a

square, E has complex multiplication, and Z + Zα is a sublattice of EndE. Hence,
its discriminant (Trα)2 − 4m < 0 is divisible by d(E), so

d(E) ≥ (Trα)2 − 4m ≥ −4m.

Similarly, considering β := f2
tf1, it follows that d(E

′) ≥ −4m.
Next, we compute the local intersection number at some point (j0, j

′
0) ∈ C2 cor-

responding to a pair of elliptic curves (E,E ′). Set uE :=
1
2#AutE, similarly for

E′. Choose τ ′0 ∈ H such that j(τ ′0) = j′0. Locally at τ
′
0, the map j : H → C is a
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branched covering of degree uE′ , so the local intersection number in the (j, j ′)-plane

is the intersection number in the (j, τ ′)-plane divided by uE′ .

In the (j, τ ′)-plane, the ϕmi
decompose into factors of the form

j − j(Aiτ
′) where Ai ∈M2(Z), detAi = mi.

Therefore, it suffices to compute the local intersection number of two such factors,

both vanishing at (j0, τ
′
0). This number is the zero order of

(∗∗) j(A1τ
′)− j(A2τ

′)

at τ ′ = τ ′0. Since A1τ
′
0 and A2τ

′
0 are SL2(Z)-equivalent, we may assume that A1τ

′
0 =

A2τ
′
0 =: τ0 and c2 = 0. Locally at τ0,

j(τ) = j(τ0) + s · (τ − τ0)uE + higher order terms

for some s 6= 0, hence (∗∗) is of the form

s
(a1τ

′ + b1
c1τ ′ + d1

− a1τ
′
0 + b1

c1τ ′0 + d1

)uE

− s
(a2τ

′ + b2
d2

− a2τ
′
0 + b2
d2

)uE

+ h. o. t.

= s
( detA1

(c1τ ′0 + d1)2
· (τ ′ − τ ′0)

)uE

− s
(detA2

d2
2

· (τ ′ − τ ′0)
)uE

+ h. o. t.

locally at τ ′0. We now claim that the two leading coefficients are different. (However,

they have the same absolute value.) Otherwise, from

s
( detA1

(c1τ ′0 + d1)2

)uE

= s
(detA2

d2
2

)uE

we get
c1τ

′
0 + d1√
m1

= ω · d2√
m2

for some 2uE-th root of unity ω, implying

(∗∗∗) c1τ
′
0 + d1 = ω ·

√
m1m2

a2
.

The left-hand side is imaginary-quadratic, so by our assumption that m = m1m2 is

not a square it follows that ω = ±i and uE = 2. But in this case, τ ′0 corresponds
to an elliptic curve isogenous to E ∼= C/〈1, i〉, hence τ ′0 ∈ Q(i), contradicting (∗∗∗).
Hence, the zero order of (∗∗) at τ ′0 equals uE .
Since the product decomposition of ϕmi

contains

1

2uE
·#{fi ∈ Hom(E,E′) | deg fi = mi}

factors vanishing at (j0, τ
′
0), the local intersection number in the (j, τ

′)-plane is

(Tm1
· Tm2

)(j
0
,τ ′

0
) =

1

4u2
E

·#{(f1, f2) ∈ Hom(E,E′) | deg fi = mi} · uE .

Hence, the local intersection number in the (j, j ′)-plane is

(Tm1
· Tm2

)(j
0
,j′

0
) =

1

4uEuE′

·#{(f1, f2) ∈ Hom(E,E′) | deg fi = mi}.
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Such pairs (f1, f2) correspond to representations of positive definite quadratic forms

Q(x1, x2) = deg(x1f1 + x2f2), hence

#{(f1, f2) ∈ Hom(E,E′) | deg fi = mi} =
∑

Q>0
diagQ=(m1,m2)

RHom(E,E′)(Q).

Therefore, the global intersection number is

Tm1
· Tm2

=
∑

E,E′

ell.curves/C

∑

Q>0
diagQ=(m1,m2)

RHom(E,E′)(Q)

4uEuE′

∑

Q>0
diagQ=(m1,m2)

∑

E,E′

RHom(E,E′)(Q)

4uEuE′

.

By Proposition 1.1 in [Go1], the inner sum equals

∑

d|e(Q)

d ·H
(detQ

d2

)

.

In our case, Q(x1, x2) = m1x
2
1 + tx1x2 +m2x

2
2 for some t ∈ Z satisfying t2 − 4m < 0

(as Q is positive definite), so the above sum is equal to

∑

d|gcd(m1,m2,t)

d ·H
(4m− t2

d2

)

.

Putting everything together yields

Tm1
· Tm2

=
∑

t∈Z

t2<4m

∑

d|gcd(m1,m2,t)

d ·H
(4m− t2

d2

)

.

As a corollary, we get the class number relations of Kronecker and Hurwitz:

Corollary 2.2. — If m is not a square,

G(m) =
∑

ad=m

max{a, d}.

Proof. — By the remarks at the end of the preceding section,

T1 · Tm = deg fm =
∑

ad=m

max{a, d}.

Actually, using the convention H(0) := ζ(−1) = −1/12, the above corollary is
valid for all m ([W, §116]).
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3. A SUM OF REPRESENTATION NUMBERS

by

Ulrich Görtz

1. Introduction

We prove a formula for a certain sum of representation numbers, stated in the

paper of Gross and Keating [GK] without proof, which is used in [Vg] in order to

compute the intersection product of two modular divisors in SC. Let Q be a positive

definite binary quadratic form over Z, say

Q(x1, x2) = m1x
2
1 + tx1x2 +m2x

2
2.

The determinant of Q is

det(Q) = 4m1m2 − t2(> 0),

and its content is

e(Q) = gcd(m1,m2, t).

Proposition 1.1. —

∑

E,E′

ell. curves /C

RHom(E,E′)(Q)

#Aut(E) ·#Aut(E′)
=

∑

d|e(Q)

d ·H(det(Q)/d2).

Our argument is inspired by Hirzebruch’s article [H], where the case m1 = 1 is

treated.

Acknowledgments. I am grateful to Gunther Vogel for a discussion of this problem,

and to Torsten Wedhorn for proof-reading.
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2. Proof of the proposition

The sum on the left hand side extends over isomorphism classes of elliptic curves,

and clearly the representation number RHom(E,E′)(Q) is 0 unless E and E′ have

complex multiplication and End(E) ⊗ Q ∼= End(E′) ⊗ Q. In particular, the sum is
finite.

As in [GK], we denote by H(D), D a positive integer, the number of SL2(Z)-
equivalence classes of positive definite binary quadratic forms over Z with determinant
D, where the forms equivalent to ex21 + ex22 and ex21 + ex1x2 + ex22 for some e ∈ Z
are counted with multiplicity 1/2 and 1/3, respectively. A quadratic form is called

primitive, if its content is 1. We denote by h(D) the number of primitive positive

definite binary quadratic forms of discriminant D if D > 4, and we set h(3) = 1
3 ,

h(4) = 1
2 . We can also interpret h(D) as the number of elliptic curves E with

complex multiplication, such that the endomorphism ring End(E) (which is an order

in some imaginary quadratic number field) has discriminant −D, where each such E

is counted with multiplicity 2/#Aut(E).

For a positive integer N we denote by σ1(N) the sum of all divisors of N . Since

clearly H(D) =
∑

d,d2|D h(D/d2), we can then rewrite the right hand side of the

formula as
∑

d,d2| det(Q)

σ1(gcd(m1,m2, t, d))h(det(Q)/d
2).

Fix an elliptic curve E with complex multiplication. We use the following notation:

Write E = C/Z⊕ Zτ with τ ∈ H, and let α, β, γ ∈ Z, such that ατ 2 + βτ + γ = 0,

gcd(α, β, γ) = 1, α > 0 (once τ is fixed, α, β and γ are uniquely determined by these

conditions).

If there exists an E′, such that RHom(E,E′)(Q) 6= 0, then there exists a natural

number d with

(2.1) 4m1m2 − t2 = det(Q) = d2(4αγ − β2).

Indeed, by assumption there exist fi ∈ Hom(E,E′), i = 1, 2, such that deg(fi) = mi

and deg(f1 + f2) − deg(f1) − deg(f2) = t. Let g = f∨1 ◦ f2. If we choose lattices

Λ,Λ′ such that E ∼= C/Λ, E′ ∼= C/Λ′, then we get inclusions Hom(E,E ′) ⊂ C,
End(E) ⊂ C, and have g = m1f

−1
1 f2 (although f1 and f2 as complex numbers

depend on the choice of Λ and Λ′, g is independent of these choices). Since g has

norm m1m2 and trace t, the quadratic space generated by 1 and g inside End(E)

has determinant 4m1m2 − t = det(Q). Since the determinant of the quadratic space

End(E) is 4αγ − β2, this implies the existence of d as above. In particular, (2.1)

implies that t−dβ
2 , t+dβ2 ∈ Z.

From now on, in addition to fixing E as above, we let g ∈ H be the (unique)

algebraic integer in H with norm NmC/R g = m1m2 and trace TrC/R g = t. We define

Di = {(E
′, f); E′ an elliptic curve, f ∈ Hom(E,E ′),deg(f) = mi,mi|gf}/ ∼=
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Here (and similarly below) two pairs (E ′1, f1), (E
′
2, f2) are called isomorphic if there

exists an isomorphism ϕ : E ′1 −→ E′2 such that f2 ◦ ϕ = f1. By definition of the sets

Di, the set

{(E′, f1, f2); E
′ ell. curve, fi ∈ Hom(E,E′),deg(fi) = mi,deg(f1+f2) = t+m1+m2}/ ∼=

maps bijectively to the disjoint union D1∪D2, by sending a triple (E
′, f1, f2) to f1 or

f2, respectively, depending on whether m1f
−1
1 f2 ∈ H or m2f

−1
2 f1 ∈ H, i. e. whether

m1f
−1
1 f2 = g or m2f

−1
2 f1 = g.

The key point in the proof of the proposition is the following lemma.

Lemma 2.1. — The set Di can be identified with the set of matrices

(

A B

0 D

)

∈

M2(Z), such that:

i) There exists Z| gcd(m1,m2, t, d) such that D = Zmi

gcd(dα, t−dβ2 ,mi)
, A = mi

D .

ii) 0 ≤ B < D, such that B satisfies a congruence of the form:

B ≡ b mod
D

Z
,

where b ∈ Z/DZ Z is an element depending on Z.

Proof. — To ease the notation a little bit, we assume that i = 1. Every matrix

M =

(

A B

0 D

)

with A,B,D ∈ Z≥0, AD = m1 and 0 ≤ B < D defines an isogeny

E = C/Z⊕ Zτ −→ E′ := C/Z⊕ Z(Mτ), x 7→ Ax.

and —up to isomorphism— all isogenies of degree m1 with source E arise in this way

(see [Vg].

We need to find out under which conditions the isogeny f corresponding to A,B,D

has the property that m1|gf . This is equivalent to

Ag

m1
Z⊕ Zτ ⊆ C/Z⊕ Z(Mτ),

hence to

g ∈ DZ⊕ Z(Aτ +B),

gτ ∈ DZ⊕ Z(Aτ +B).
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It is not hard to check that g = t+dβ
2 + dατ and that gτ = −dγ + t−dβ

2 τ , and we find

that the conditions above are equivalent to the following:

A|dα, A

∣

∣

∣

∣

t− dβ

2
,(2.2)

dα

A
B ≡

t+ dβ

2
mod D,(2.3)

t− dβ

2A
B ≡ −dγ mod D.(2.4)

These congruences for B are solvable if and only if

(2.5) gcd(
dα

A
,D)

∣

∣

∣

∣

t+ dβ

2
, and gcd(

t− dβ

2A
,D)

∣

∣

∣

∣

dγ,

respectively, and they are solvable simultaneously if ond only if in addition

dγ

gcd( t−dβ2A , D)
·

dα

A gcd(dαA , D)
≡

t+ dβ

2 gcd(dαA , D)
·

t− dβ

2A gcd( t−dβ2A , D)
mod

D

l
,

where

l = lcm(gcd(
dα

A
,D), gcd(

t− dβ

2A
,D)) =

gcd(dαA , D) gcd( t−dβ2A , D)

gcd(dαA , t−dβ2A , D)
,

and this condition is equivalent to

D

∣

∣

∣

∣

∣

d2αγ − (t+dβ)(t−dβ)
4

A gcd(dαA , t−dβ2A , D)
=

m1m2

gcd(dα, t−dβ2 ,m1)
.

From this we see that the above congruences for B are simultaneously solvable if and

only if

(2.6) Z :=
D gcd(dα, t−dβ2 ,m1)

m1

∣

∣

∣

∣

∣

m2,

(note that Z ∈ Z because A| gcd(dα, t−dβ2 ,m1)) and that in this case the set of

solutions is a residue class modulo D
Z Z, as condition ii) asserts.

So for A,D > 0 with AD = m1, there exists a B such that the triple (A,B,D)

gives rise to an element of D1 if and only if A, D satisfy (2.2), (2.5) and (2.6), and

what remains to show is that these conditions are equivalent to condition i) in the

lemma.

However, given (A,B,D), we have already defined the Z in the lemma, such that

D and A have got the desired form, so we only have to show that

1) if (A,B,D) defines an element of D1, and Z is defined as in (2.6), then Z|m1,

Z|t and Z|d (since we know already that Z|m2),

2) if we have Z| gcd(m1,m2, t, d) and define A and D as in i), then A,D ∈ Z, and
(2.2) and (2.5) automatically hold.

ad 1) Since Z is a divisor of D, it is clear that Z|m1. Note that Z =

gcd(dαA , t−dβ2A , D), so obviously Z|dα and Z| t−dβ2 . Furthermore, (2.2) implies
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that Z| t+dβ2 , Z|dγ. So for one thing, Z| t+dβ2 and Z| t−dβ2 , hence Z|t and Z|dβ. In

addition, we have seen that Z|dα, Z|dβ and Z|dγ, and since gcd(α, β, γ) = 1, we

conclude that Z|d.

ad 2) Given a divisor Z of gcd(m1,m2, t, d), we define D = Zm1

gcd(dα, t−dβ2 ,m1)
, A =

m1

D =
gcd(dα, t−dβ2 ,m1)

Z . It is obvious that D ∈ Z, and in order to prove that A ∈ Z, all
we need to show is that Z| t−dβ2 . However, it is clear that Z|t−dβ, Z|t+dβ, and from

(2.1) we get that Z2| (t−dβ)(t+dβ)4 . Since t− dβ ≡ t+ dβ mod 2, this implies Z| t−dβ2 .

It remains to show that the conditions in (2.2) and (2.5) hold: It is clear that A|dα

and A| t−dβ2 . Next, let us show that gcd( dαA , D)| t+dβ2 . Since we have

gcd(
dα

A
,D) =

Z gcd(dα,m1)

gcd(dα, t−dβ2 ,m1)
,

it suffices to show

gcd(m1,m2, t, d) gcd(dα,m1)

∣

∣

∣

∣

t+ dβ

2
gcd(dα,

t− dβ

2
,m1).

We use the following notation: for x ∈ Z such that gcd(m1,m2, t, d)|x, let x̃ =
x

gcd(m1,m2,t,d)
. From (2.1) we get

t̃− d̃β

2

t̃+ d̃β

2
= m̃1m̃2 − (d̃)

2αγ,

which implies

gcd(d̃α, m̃1)

∣

∣

∣

∣

∣

t̃+ d̃β

2
gcd(d̃α ,

t̃− d̃β

2
, m̃1).

Multiplying both sides by gcd(m1,m2, t, d)
2, we get the desired result.

Finally, in a similar way we can show that gcd( t−dβ2A , D)|dγ. Namely, it is enough

to show

gcd(m1,m2, t, d) gcd(
t− dβ

2
,m1)

∣

∣

∣

∣

dγ gcd(dα,
t− dβ

2
,m1) ,

and this follows from

m̃1m̃2 −
t̃− d̃β

2

t̃+ d̃β

2
= (d̃)2αγ.

This concludes the proof of 2), and hence the proof of the lemma.

Corollary 2.2. — We fix E as above, and use the same notation. Then

∑

E′

RHom(E,E′)(Q)

#Aut(E′)

=
∑

E′

#{(f1, f2) ∈ Hom(E,E′)2; deg(fi) = mi,deg(f1 + f2) = t+m1 +m2}

#Aut(E′)

= 2σ1(gcd(m1,m2, t, d)).

Proof. — This follows from the lemma and the remark preceding it.
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Proof of the proposition. — Using the corollary, we can now easily prove the propo-

sition:
∑

E,E′

RHom(E,E′)(Q)

#Aut(E) ·#Aut(E′)

=
∑

d
d2| det(Q)

∑

E
disc(End(E))=− det(Q)/d2

1

#Aut(E)

∑

E′

RHom(E,E′)(Q)

#Aut(E′)

=
∑

d
d2| det(Q)

∑

E
disc(End(E))=− det(Q)/d2

2σ1(gcd(m1,m2, t, d))

#Aut(E)

=
∑

d
d2| det(Q)

σ1(gcd(m1,m2, t, d))h(det(Q)/d
2).
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4. ARITHMETIC INTERSECTION NUMBERS

by

Ulrich Görtz

1. Introduction

Let us recall some notation: Let m ≥ 1 be an integer. In [Vg] we have defined
the modular polynomial ϕm ∈ Z[j, j′] (we regard j, j′ as indeterminates). We denote

by Tm ⊆ SpecZ[j, j′] the associated divisor. Write S = SpecZ[j, j ′], and SC =

SpecC[j, j′].
In this chapter, we will first prove a criterion for the intersection of three modular

divisors in SpecZ to be finite, which is analogous to the criterion of Hurwitz in the
complex situation (see [Vg]).

In the second part we will prove, following [GK] and using results of later chapters,

Gross’ and Keating’s explicit formula for the arithmetic intersection number: Fix

positive integersm1,m2 andm3. The arithmetic intersection number is, by definition,

(Tm1 · Tm2 · Tm3)S := log#Z[j, j′]/(ϕm1 , ϕm2 , ϕm3).

This number has a natural interpretation in the Arakelov theory for stacks (see below).

In the proof, we use the properties of the invariants αp(Q) and β`(Q) which will be

established in later chapters. Altogether, this yields the proof of Theorem 1.2 in the

introduction.

Acknowledgments. I am grateful to all the participants of the ARGOS seminar for

discussions and for feedback on these notes. In particular, I want to thank I. Bouw

for her comments. I also profited from discussions with S. Kudla.

2. Preliminaries, Notation

2.1. Quadratic forms and lattices in quadratic number fields. — There is a

dictionary between binary quadratic forms (over Z) and lattices in quadratic number
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fields (see [BS] II §7.5, in particular Satz 4). The exact statement we will use is the
following.

Let d < 0 be a square-free integer. Denote by L the set of Z-lattices in Q(
√
d) up

to homothety, and denote by F the set of positive definite primitive binary quadratic
forms over Z which split in Q(

√
d), up to proper equivalence. Then there is a bijection

L −→ F , L 7→ N(αx+ βy)

N(L)
,

where N : Q(
√
d) −→ Q denotes the norm, and α, β is a basis of L such that 1

i
(αβ −

αβ) > 0 (here · denotes conjugation).

2.2. Stacks. — We mostly work with the coarse moduli space of (pairs of) elliptic

curves, but in a few places it is more convenient to use the language of stacks. For

the convenience of the reader, in this section we give a few references to the literature

about the results that we need. A general reference is the book [LM] by Laumon

and Moret-Bailly. See also Deligne’s and Mumford’s article [DM]. For the stacks

that we are concerned with the main reference is the book [KM] of Katz and Mazur:

although superficially the language of stacks is not used there, it is obvious that their

results can be understood as results about stacks.

We denote by M the moduli stack (over Z) of elliptic curves; this is a Deligne–
Mumford stack.

We denote by [m-Isog] the moduli space of isogenies of elliptic curves of degree m.

This is a Deligne–Mumford stack, too, and furthermore, we have:

Proposition 2.1. — The morphism [m-Isog] −→ M is finite and flat, and is étale

over Z[ 1
m
]. The morphism [m-Isog] −→M×M is finite and unramified.

Proof. — The first assertion is just [KM] 6.8.1, and the second one follows immedi-

ately from the rigidity theorem, see [KM] 2.4.2.

By relating the divisor Tm (inside the coarse moduli space) defined by the modular

polynomials ϕm to the space [m-Isog], we get a description of the geometric points of

Tm.

Lemma 2.2. — Let m ≥ 1. A geometric point of Tm corresponds to a pair (E,E′)

of elliptic curves such that there exists an isogeny E −→ E ′ of degree m.

Proof. — In characteristic 0 this is basically the definition of Tm and ϕm. In positive

characteristic, we can prove this as follows: By mapping an isogeny to its source, we

get a finite flat map from [m-Isog] to the moduli stack (Ell) of elliptic curves (see

[KM] 6.8.1). In particular, [m-Isog] is flat over Z.
Now we have a map to the coarse moduli space S of pairs of elliptic curves:

F : [m-Isog] −→ S, (E → E′) 7→ (j(E), j(E′)),
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and we get a diagram

[m-Isog]Qp
//

²²

[m-Isog]Zp

²²

imFQp
//

∼=
²²

imFZp

zz

div(ϕm,Qp
) //

²²

div(ϕm,Zp
)

²²

SQp
// SZp

Since p 6 | ϕm(X,Y ), div(ϕm) is flat over Zp, and because imFZp
is flat over Zp, too,

we get imFZp
= div(ϕm). Obviously the geometric points of imT correspond to pairs

(E,E′) of elliptic curves such that there exists an isogeny E −→ E ′ of degree m, so

the lemma is proved.

We can express the arithmetic intersection number of three ‘divisors’ Tmi
in S :=

M×M in terms of the complete local rings of their ‘intersection’:

Proposition 2.3. — Let X := Tm1 ×S Tm2 ×S Tm3 . Then

(Tm1 · Tm2 · Tm3) := log #Z[j, j′]/(ϕm1 , ϕm2 , ϕm3)

=
∑

p

log(p) ·
∑

x∈X(Fp)

1

#Aut(x)
lg ÔX,x.

Proof. — This is an immediate consequence of the following: The complete local ring

of a geometric point inM×M is the universal deformation ring of the corresponding

pair of elliptic curves, and this ring is free of rank #Aut(E)#Aut(E′)
4 over the complete

local ring in the corresponding point in the coarse moduli space. See the remarks at

the beginning of section 4 for details.

2.3. Notation. — We recall the following notation from [Vg]. For an elliptic curve

E, we let uE :=
1
2#Aut(E).

Furthermore, given a ring R, and a quadratic space (L,D), for a quadratic form

Q on Rm we define the representation number RL(Q) as the number of isogenies

(Rm, Q) −→ (L,D).

3. When is Tm1 ∩ Tm2 ∩ Tm3 finite?

We start with a lemma which guarantees the existence of elliptic curves such that

the homomorphism module represents a given binary quadratic form.
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Lemma 3.1. — Let Q be a positive definite binary quadratic form over Z. Then

there exist elliptic curves E, E ′ (with complex multiplication) over C such that Q ∼=
(Hom(E,E′),deg).

Proof. — By the dictionary between quadratic forms and lattices in imaginary

quadratic number fields (see section 2), if Q is a positive definite binary quadratic

form over Z and Q′ = 1
r
Q is the associated primitive form, then there exists d < 0,

an order Rf = Z + fOQ(
√
d) ⊆ Q(

√
d) and an ideal a ⊆ Rf with Z-basis α, β, such

that

Q′(x, y) ∼= N(αx+ βy)

N(a)
.

For the elliptic curves C/Rfr and C/a we then have

Hom(C/Rfr,C/a) = {γ ∈ C; γRfr ⊆ a} = a,

and for γ ∈ Hom(C/Rfr,C/a),

deg γ = [a : γRfr] = r · [a : γRf ] = r · N(γ)
N(a)

= Q(γ).

It has been shown already by Hurwitz that on SC, two divisors Tm1 and Tm2
intersect in dimension 0 if and only if m1m2 is not a square; see [Vg]. In other

words, they intersect in dimension 0 if and only if there is no unary quadratic form Q

which represents both m1 and m2. The following proposition gives us a completely

analogous criterion for the intersection of three Tm’s on S.

Proposition 3.2. — The divisors Tm1 , Tm2 and Tm3 intersect in dimension 0 if and

only if there is no positive definite binary quadratic form over Z which represents m1,

m2 and m3.

In this case the support of Tm1 ∩ Tm2 ∩ Tm3 is contained in the zero cycle of pairs

of supersingular elliptic curves in characteristic p < 4m1m2m3.

Proof. — First suppose that m1, m2, m3 are represented by the positive definite

binary quadratic form F . Let E, E′ be elliptic curves in characteristic 0 (with complex

multiplication) such that Hom(E,E ′) ∼= F . Then (E,E′) corresponds to a point of

Tm1 ∩ Tm2 ∩ Tm3 , so this intersection must have dimension ≥ 1.
If, on the other hand, there is no positive definite binary quadratic form which

simultaneously represents m1, m2 and m3, then for all points (E,E′) of Tm1 ∩ Tm2 ∩
Tm3 we must have rkHom(E,E′) > 2, thus E and E′ are supersingular, and in

particular live in positive characteristic.

Now fix a point (E,E′) ∈ SFp
which lies in the intersection Tm1 ∩ Tm2 ∩ Tm3 . To

complete the proof of the proposition, we have to show that p ≤ 4m1m2m3. There

exist isogenies fi ∈ Hom(E,E′) of degree mi, i = 1, 2, 3.
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Now consider the ternary quadratic form

Q(x1, x2, x3) = deg(x1f1 + x2f2 + x3f3).

Since the matrix associated to Q is symmetric and positive definite, its determinant

is smaller or equal than the product of the diagonal entries (see [Be] ch. 8, Thm. 5),

i.e.

∆ :=
1

2
detQ ≤ 4m1m2m3.

Note that ∆ ∈ Z (see [B] Lemma 1.1).
Now the proposition follows from the following lemma.

Lemma 3.3. — With notation as above, we have

p|∆.

Proof. — Let us first assume that p > 2.

We recall the following theorem on quadratic forms over Qp, see [Se] III Thm. 1,

IV 2.1 and IV Thm. 6, for instance:

Theorem 3.4. — If F is an anisotropic quadratic form of rank 4 over Qp, then its

discriminant is a square, and its Hasse-Witt invariant εp is −1.

Here, if we write F =
∑4

i=1 aix
2
i , ai ∈ Qp, then

εp =
∏

i<j

(ai, aj) ∈ {1,−1}, where (x, y) is the Hilbert symbol,

(x, y) = (−1)αβ p−1
2

(
u

p

)β (
v

p

)α
, if x = pαu, y = pβv, u, v ∈ Z×p , p 6= 2.

Now Hom(E,E′) ⊗ Q is isomorphic, up to scaling the form, to End(E) ⊗ Q with

the quadratic form deg. But End(E) ⊗ Q is the quaternion algebra over Q ramified

exactly at p and∞, and the degree form corresponds to the reduced norm (see [Wd1]

2.2). Hence det(deg |Hom(E,E′)) is a square. We also see that the quadratic form deg

on Hom(E,E′) is anisotropic over Qp, so its Hasse-Witt invariant εp is −1.
Since the mi are not simultaneously represented by a binary quadratic form, the

fi are linearly independent over Z. Now Hom(E,E ′) has square determinant and

represents Q, so we have

Hom(E,E′)⊗Q ∼= Q ⊥ 〈∆〉,
where 〈∆〉 denotes the unary quadratic form x 7→ ∆x2. Over Zp we can diagonalize

Q:

Q(x1, x2, x3) = ax21 + bx22 + cx23, a, b, c ∈ Zp.

Then ∆ = 4abc and εp = −1 implies p|abc, by the formulas above.
For p = 2 the bound p ≤ 4m1m2m3 holds trivially, but the stronger assertion p|∆

is true in this case too. Namely, by [B] Prop. 4.7, the 2-adic valuation of ∆ is equal to
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the sum a1+a2+a3 of the Gross–Keating invariants of Q (see loc. cit.). Furthermore,

since Q is anisotropic, the ai cannot all be 0 (loc. cit. Lemma 5.3).

This concludes the proof of the lemma, and thus the proof of the proposition, as

well.

We conclude this section by the following proposition which reformulates the cri-

terion we obtained above in terms of ternary quadratic forms.

Proposition 3.5. — Let m1,m2,m3 be positive integers. The following are equiva-

lent:

(1) There exists no positive definite integral binary quadratic form Q which repre-

sents m1, m2, and m3.

(2) Every positive semi-definite half-integral symmetric matrix T with diagonal

entries m1, m2, m3 is non-degenerate, i. e. detT 6= 0.

(As usual, by half-integral we mean that the entries outside the diagonal lie in 1
2Z,

and the diagonal entries are integers. We denote the set of half-integral symmetric

n× n matrices by Sym(Z)∨.)

Proof. — Given a positive semi-definite T ∈ Sym(Z)∨ with detT = 0, we get a Q as
in (1) as follows: There exists an x ∈ Z3 such that txTx = 0, and we may assume

that x is not divisible, i. e. that it generates a direct summand in Z3. Choosing a

complement, we get a positive-semidefinite binary quadratic form which represents

the mi. It could happen that this form is degenerate, but then we can clearly find a

positive definite form which still represents all the three mi.

On the other hand, given a Q as in (1), choose xi, yi, such that Q(xi, yi) = mi,

i = 1, 2, 3. The matrix

(
x1 x2 x3
y1 y2 y3

)
defines a map Z3 −→ Z2, and expressing the

ternary quadratic form which we get as the composition of this map with Q, we obtain

a positive semi-definite half-integral symmetric matrix T with diagonal (m1,m2,m3)

which is obviously degenerate.

4. A formula for the intersection number

From now on, we assume that Tm1 , Tm2 and Tm3 intersect in dimension 0. We want

to explain the final formula which we get for the intersection number, see Theorem

4.3 below. The proofs of the main steps will follow in later chapters.

We write

(Tm1 · Tm2 · Tm3)S =
∑

p

n(p) log p,

with

n(p) = lgZp
Zp[j, j

′]/(ϕm1 , ϕm2 , ϕm3)

(and n(p) = 0 for p > 4m1m2m3).
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Furthermore, n(p) is the sum of the intersection multiplicities in points (E,E ′)

given by pairs of supersingular elliptic curves in characteristic p. Denote by j(E), j(E
′)

their j-invariants.

Let W = W (Fp) be the ring of Witt vectors of Fp, let j̃(E), j̃(E
′) ∈ W be lifts of

j(E), j(E
′), respectively, and let R0 be the completion of W [j, j

′] in the ideal m =

(p, j − j̃(E), j′ − j̃(E
′)). Then

R0
∼=W [[j − j̃(E), j′ − j̃(E

′)]].

On the other hand, if R denotes the universal deformation ring of the pair (E,E ′),

then R ∼= W [[t, t′]], and R0 is isomorphic to the ring RAut(E)×Aut(E′) of invariants

under the finite group Aut(E)× Aut(E ′) (cf. [KM] 8.2.3). Since R0 is regular, R is

free over R0 (see [Ma] Theorem 23.1) and since ± id are the only automorphisms of
the whole universal deformation, we have rkR0R = uEuE′ .

We denote by (E,E′) the universal pair of elliptic curves over Spf R.

Lemma 4.1. — In R, the modular polynomial ϕm factors as follows:

ϕm =
∏

f : E−→E′ isog. of
degree m, mod ±1

ϕm,f ,

such that for each f , (ϕm,f ) ⊆ R is the smallest ideal I ⊆ R such that f lifts to an

isogeny f̃ : E −→ E′ modulo I.

Proof. — Let f : E −→ E′ be an isogeny of degree m. Then its deformation functor

Deff is pro-represented by a closed subscheme of Spf R (by the rigidity theorem), and

this closed subscheme is a divisor, say div(ϕm,f ), ϕm,f ∈ R. (This is proved in [KM]

(6.8) if m is a power of p, but the proof given there works in general. If p does not

divide m, then Deff is actually smooth.)

Claim: If f and g are isogenies E −→ E ′ of degree m, then the elements ϕm,f and

ϕm,g are coprime unless f = ±g.
To prove the claim, suppose that f and g are given such that ϕm,f and ϕm,g are

not coprime. Then div(ϕm,f ) and div(ϕm,g) have a common component C. Now

C ⊗Q must have dimension 1, so End(E⊗Spf R C) = End(E′ ⊗Spf R C) = Z
By definition of C, we have isogenies f, g : E⊗Spf R C −→ E′⊗Spf R C of degree m.

Since tf ◦ f and tf ◦ g are elements in End(E ⊗Spf R C) = Z of the same degree, we
see that f = ±g. This proves the claim.
Thus we get for the scheme-theoretic union

⋃

f mod ±1
Deff = div(

∏

f mod ±1
ϕm,f ).

Since ⋃

f mod ±1
Deff (S) = div(ϕm)(S)
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for all S −→ Spf R, we obtain that (after possibly changing one of the ϕm,f ’s by a

unit)

ϕm =
∏

f mod ±1
ϕm,f .

Lemma 4.2. — Let A be a ring, B an A-algebra, and let x1, . . . , xn ∈ B. If none

of the xi is a zero-divisor, then

lgAB/(x1 · · ·xn) =
n∑

i=1

lgAB/(xi).

We can write

(Tm1 · Tm2 · Tm3) =
∑

p

∑

(E,E′)s.s. in char p

(Tm1 · Tm2 · Tm3)(E,E′),

and by applying lemma 4.1 to ϕmi
for i = 1, 2, 3, and applying lemma 4.2 successively,

we get that the local contribution in a point (E,E ′) is

(Tm1 · Tm2 · Tm3)(E,E′) = log lgWR0/(ϕm1 , ϕm2 , ϕm3)

= log
∑

f1

∑

f2

∑

f3

1

uEuE′
lgWR/(ϕm1,f1 , ϕm2,f2 , ϕm3,f3)

= log
∑

fi,i=1,2,3

1

uEuE′
lgWR/I,(4.1)

where the sums are over isogenies fi : E −→ E′ of degree mi, up to ±1, and where I
is the smallest ideal in R such that f1, f2 and f3 lift to isogenies f̃i : E −→ E′ mod I.

We write, using the notation of [R],

α(f1, f2, f3) =
1

uEuE′
lgWR/I.

From [R] Theorem 1.1 we get that α(f1, f2, f3) depends only on the Zp-

isomorphism class of the ternary quadratic form Q : (x1, x2, x3) 7→ deg(
∑

xifi).

We thus write αp(Q) instead of α(f1, f2, f3). Loc. cit. gives an explicit expression

for αp(Q) in terms of the coefficients of Q. The number of occurences of Q in (4.1)

is 1
8RHom(E,E′)(Q) (because we count the isogenies up to ±1, but the representa-

tion number counts each triple (f1, f2, f3)). Furthermore, for a positive definite

ternary form Q, RHom(E,E′)(Q) = 0 unless Q is isotropic over Q` for all ` 6= p,

and anisotropic over Qp. The reason is that Hom(E,E ′) ⊗ Q ∼= End(E) ⊗ Q, and
End(E)⊗Q`

∼=M2(Q`) for ` 6= p, and End(E)⊗Qp is a division algebra (see [Wd1],

2.2). On the other hand, in the latter case there exists a pair of supersingular elliptic

curves E, E′ in characteristic p, such that Q is represented by Hom(E,E ′) (see

[Wd1], Proposition 3.2).
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We have now

n(p) =
1

8

∑

(E,E′) supersingular


∑

Q

RHom(E,E′)(Q)

uEuE′
αp(Q)


 .

Further Corollary 4.4 in [Wd1] states that there are invariants β`(Q) ∈ Z≥1 which
depend only on the isomorphism class of the ternary form Q over Z`, such that

(4.2)
∑

(E,E′) s.s.

RHom(E,E′)(Q)

uEuE′
= 4

∏

`|∆
`6=p

β`(Q).

The invariants β` are computed explicitly in [Wd2], Proposition 2.1. Altogether, we

get

Theorem 4.3. — If Tm1 , Tm2 and Tm3 intersect in dimension 0, then

(Tm1 · Tm2 · Tm3)S = log#Z[j, j′]/(ϕm1 , ϕm2 , ϕm3) =
∑

p

n(p) log p

with

n(p) =
1

2

∑

Q



∏

`|∆
`6=p

β`(Q)


αp(Q),

where the sum runs over all positive definite ternary quadratic forms Q over Z with

diagonal (m1,m2,m3) which are isotropic over Q` for all ` 6= p.

In this way we get a very explicit formula for the intersection numbers.
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5. THE GENUS OF THE ENDOMORPHISMS OF A

SUPERSINGULAR ELLIPTIC CURVE

by

Torsten Wedhorn

Introduction

Let p > 0 be a prime and let D be the unique quaternion division algebra with

center Q which is ramified precisely at p and at infinity. The reduced norm Nrd is

a quadratic form on D. We will study lattices and maximal orders in D. Recall

that two lattices Λ and Λ′ are said to be in the same proper class if there exists a

g ∈ SO(D,Nrd) such that gΛ = Λ′.

We will relate the lattices and the maximal orders in D to supersingular elliptic

curves. Many of these results, although formulated somewhat differently, can already

be found in [Do] (see also [GZ]).

Fix a supersingular elliptic curve E0 over Fp set O = End(E0). Then O is a

maximal order in the quadratic space O ⊗Z Q, where the quadratic form is given by

the degree, and we can and will identify the rational quadratic spaces O ⊗Z Q with

D.

The first result is the following:

Theorem. — Consider isomorphism classes of pairs (E,ϕ) where E is a supersin-

gular elliptic curve over Fp and ϕ : E → E0 is a quasi-isogeny.

(1) The map (E,ϕ) 7→ ϕHom(E0, E) induces a bijection of the set of isomorphism

classes of supersingular elliptic curves over Fp and the set of right ideal classes

of O.

(2) The map (E,ϕ) 7→ ϕEnd(E)ϕ−1 induces a surjection of the set of isomorphism

classes of supersingular elliptic curves over Fp and the set of conjugacy classes

of maximal orders in D. Two supersingular elliptic curves E and E ′ are sent to

the same conjugacy class if and only if there exists a σ ∈ Gal(Fp/Fp) such that

E′ ∼= E(σ).
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For all pairs (E′, E) of supersingular elliptic curves it is possible to choose

quasi-isogenies ϕ : E → E0 and ϕ′ : E′ → E0 with deg(ϕ) = deg(ϕ′). Then

ϕHom(E′, E)ϕ′−1 is a lattice in D whose proper class is independent of the choice of

ϕ and ϕ′. In this way we can consider Hom(E ′, E) as a proper class of lattices in D.

The second theorem describes these proper classes.

Theorem. — Let Λ be a lattice in D. The restriction of Nrd to Λ is a Q-valued
quadratic form on Λ. Then the following assertions are equivalent:

(1) The order { d ∈ D | dΛ ⊂ Λ } is a maximal order of D.

(2) The quadratic space Λ⊗Z Z` is isomorphic to O ⊗Z Z` for all primes `.

(3) There exist supersingular elliptic curves E and E ′ over Fp and quasi-isogenies

ϕ : E → E0 and ϕ′ : E′ → E0 with deg(ϕ) = deg(ϕ′) such that Λ =

ϕHom(E′, E)ϕ′−1.

It follows that the map ((E,ϕ), (E ′, ϕ′)) 7→ ϕHom(E′, E)ϕ′−1 induces a surjection

(E,E′) 7→ [Hom(E′, E)] from the set of pairs of isomorphism classes of supersingu-

lar elliptic curves onto the set of proper classes of lattices in D which are locally

isomorphic to O. The next theorem describes the fibres of this map and number of

automorphisms of the quadratic space Hom(E,E ′).

Theorem. — (1) Two pairs (E,E′) and (F, F ′) are sent to the same proper class if

and only if there exists a σ ∈ Gal(Fp/Fp) such that F = E(σ) and F ′ = E′(σ).

(2) For all (E,E′)

#SO([Hom(E′, E)]) =

{
#Aut(E)#Aut(E′), E, E′ both defined over Fp;
1
2#Aut(E)#Aut(E′), otherwise.

Now fix a positive definite ternary quadratic form Q over Z. By the theorems

above we can consider the expression

2

(
∑

E

1

#Aut(E)

)−2 ∑

(E′,E)

RHom(E′,E)(Q)

#Aut(E′)#Aut(E)

as the mean value of the representation of Q by the genus of End(E0) (here E and

E′ run through all isomorphism classes of supersingular ellipticcurves over Fp, and
RHom(E′,E)(Q) denotes the number of isometries Q→ Hom(E ′, E)). Hence it can be

expressed as a product of local representation densities αl(Q,End(E0)) (see 4.3) by

the Minkowski-Siegel formula. We obtain:

Theorem. — The mean value is given by

∑

(E′,E)

RHom(E′,E)(Q)

#Aut(E′)#Aut(E)
= 2

(
p− 1

12

)2
π4

p3

∏

l

αl(Q,End(E0)),

where l runs through all prime numbers l.
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This article is organized as follows. In the first section some definitions and results

on quadratic spaces and quaternion algebras are recalled. The second section ad-

dresses the correspondence between supersingular elliptic curves, right ideal classes,

and conjugacy classes of maximal orders. In the third section the above results on the

quadratic spaces Hom(E′, E) are proved. The Minkowski-Siegel formula is applied in

the last section.

Acknowledgements. I am very grateful to S. Kudla for his helpful remarks and to

M. Rapoport for his comments.

1. Preliminaries on quadratic spaces and quaternion algebras

1.1. In this section we recall some definitions and results on quadratic spaces.

If R is a commutative ring, a quadratic space over R is a free R-module M together

with a map Q : M → R, such that

(a) Q(rm) = r2Q(m) for all r ∈ R and m ∈M .

(b) The form bQ(x, y) = Q(x + y) − Q(x) − Q(y) is R-bilinear and nondegenerate

(i.e. the R-linear map M →M∗ corresponding to bQ is injective).

The map Q is called the quadratic form of the quadratic space (M,Q).

Two quadratic spaces (M,Q) and (M ′, Q′) over R are said to be isomorphic if

there exists an R-linear isomorphism f : M →M ′ such that Q′(f(m)) = Q(m) for all

m ∈M . We then write (M,Q) ∼= (M ′, Q′).

The group of automorphisms of a quadratic space will be denoted by O(M,Q), the

subgroup of automorphisms g ∈ O(M,Q) with det(g) = 1 is denoted by SO(M,Q).

1.2. In the sequel we will only consider quadratic spaces (M,Q) over integral domains

R such that 2 6= 0 in R. Then we write Symn(R)∨ for the set of symmetric matrices

n by n matrices A = (aij) with coefficients in Quot(R) such that aii ∈ R for all i

and such that 2aij ∈ R for all i, j. Moreover, we denote by BQ the Quot(R)-valued

bilinear form

BQ : M ×M −→ Quot(R), (x, y) 7→
1

2
(Q(x+ y)−Q(x)−Q(y)).

Let B = (e1, . . . , en) be an R-basis of M . The matrix

SQ = (BQ(ei, ej)) ∈ Symn(R)∨

is called the matrix associated to (M,Q,B).

We denote by det(M) = det((M,Q)) the class of det(SQ) modulo (R×)2. This is

well defined.
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1.3. Very often we will consider quadratic spaces which arise as follows: Let (V,Q)

be a quadratic space over Q and let Λ be a Z-lattice of V (i.e. a finitely generated

Z-submodule Λ such that ΛQ = V ). If Q(Λ) ⊂ Z, the restriction of Q to Λ defines a

quadratic form on Λ over Z.
If l is a finite place of Q, Λl = Λ⊗ZZl is a lattice in the Ql-vector space Vl = V ⊗Ql.

Recall that to give a Z-lattice Λ in V is the same as to give a Zl-lattice Λl for all l

such that there exists a Z-lattice Γ of V with Λl = Γl for almost all l.

Denote by Af the ring of finite adeles of Q. An element g ∈ GL(V ⊗ Af ) is an

element (gl) ∈
∏

lGL(Vl) where l runs over all finite places of Q such that gl(Λl) = Λl
for almost all l (this condition is independent of Λ). Hence g = (gl) acts on the set of

lattices by setting

g(Λ) =
⋂

l

(V ∩ gl(Λl)).

We obtain an action of GL(V ⊗ Af ) on the set of lattices in V and in particular

an action of the subgroups O(V ⊗ Af ) and SO(V ⊗ Af ).

Definition 1.1. — We say that two quadratic spaces M and M ′ over Z are related if

M and M ′ are isomorphic over Zl for all places l of Q (with the convention Z∞ = R).

1.4. If M and M ′ are related, they are of course also isomorphic over Q l for all

places l and hence they are isomorphic over Q by the weak approximation theorem for

quadratic spaces. If we choose an isomorphism of rational quadratic spaces M ⊗Q ∼=
M ′ ⊗ Q, we can consider M and M ′ both as lattices in the same quadratic space V

over Q. Moreover, the fact that M and M ′ are related just means that there exists a

g ∈ O(V )(Af ) with g(M) = M ′. This leads us to the following definition:

Definition 1.2. — Let V be a quadratic space over Q. We say that two lattices Λ

and Λ′ in V are related if there exists a g ∈ O(V )(Af ) such that g(Λ) = Λ′.

An O(V )(Af )-orbit of lattices in V is called a genus.

Lemma 1.3. — Let l be a prime number and let (M,Q) be a quadratic space over

Zl. Then there exists a reflection in O(M,Q).

Proof. — Let x ∈ M be an element such that the l-adic valuation of Q(x) is mini-

mal among the elements in M . Then an easy calculation shows that the reflection

associated to x preserves M .

Corollary 1.4. — Let V be a quadratic space over Q. Two lattices Λ and Λ′ in V

are in the same genus if and only if there exists a g ∈ SO(V ⊗Af ) such that g(Λ) = Λ′.

Definition 1.5. — Let V be a quadratic space over Q. Two lattices Λ and Λ′ in V

are said to be in the same proper class or to be properly equivalent if there exists a

g ∈ SO(V ) such that g(Λ) = Λ′.
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They are in the same class or equivalent if there exists a g ∈ O(V ) such that

g(Λ) = Λ′.

Obviously, every genus of a lattice is the disjoint union of classes and every class is

the disjoint union of one or two proper classes. Moreover, it is well known (e.g. [Ki]

6.1.2) that in each genus there are only finitely many proper classes.

The class of a lattice Λ is equal to the proper class of Λ if and only if there exists

a g ∈ O(V ) with det(g) = −1 such that g(Λ) = Λ, i.e. if and only if SO(Λ) 6= O(Λ).

1.5. We will be mostly interested in quadratic spaces which arise from quaternion

algebras: By a quaternion algebra over a field F we mean a central simple algebra D

over F of dimension 4. We write Trd and Nrd for the reduced trace and the reduced

norm on D, respectively, and we denote by x 7→ x̄ := Trd(x) − x the canonical

involution on D.

Assume that F is the field of fractions of Dedekind domain A (e.g. A = Z or

A = Zl). Let Λ be some A-lattice of D. Then we set

Ol(Λ) = { d ∈ D | dΛ ⊂ Λ },(1.1)

Or(Λ) = { d ∈ D | Λd ⊂ Λ }.(1.2)

These are orders in D. We call them the left order (resp. right order) of Λ. We say

that Λ is normal if Ol(Λ) and Or(Λ) are maximal orders.

Lemma 1.6. — Let F be a field with char(F ) 6= 2 and let D be a quaternion algebra

over F . We set

S(D) := { (d, d′) ∈ D× ×D× | Nrd(d) = Nrd(d′) }.

Consider the group homomorphism

α : S(D)→ O(D,Nrd),

(d, d′) 7→ (δ 7→ dδd′−1).

Then we have

Im(α) = SO(D,Nrd) , Ker(α) = F×

where F× is embedded diagonally in D× ×D×.

Proof. — We give two proofs for this. The first is elementary: Clearly, we have

Ker(α) = F×. Let d ∈ D be an element with Nrd(d) 6= 0 and denote by τd : D → D

the reflection with respect d. Then we have for δ ∈ D:

(1.3) τdδ = δ −
Trd(δd̄)

Nrd(d)
d = −dδ̄d̄−1.

Every element in SO(D) is a product of elements of the form τdτd′ as char(F ) 6= 2.

It follows from (1.3) that for all δ ∈ D we have

τdτd′(δ) = dd′−1δd̄′d̄−1
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and this proves that SO(D) is contained in the image of α.

Conversely, let σ : δ 7→ dδd′−1 with Nrd(d) = Nrd(d′) be in the image of α. Using

(1.3) we see that

τ1σ(δ) = −d̄
′−1δ̄d′d′−1d̄ = τd̄′−1(δ)d′−1d̄.

Therefore det(τ1σ) = −Nrd(d′−1d̄)2 = −1. This implies σ ∈ SO(D).

The second proof is as follows. By Hilbert 90 we have H1(F,Gm) = 0 and therefore

it suffices to show that α induces an exact sequence of algebraic groups over F

1 −→ Gm,F −→ S(D)
α
−→ SO(D,Nrd) −→ 0.

We can replace F by its algebraic closure. Then it is clear that S(D) is a connected

algebraic group of dimension 7. This implies that Im(α) must be contained in the

conected component of 1 of O(D,Nrd) which is SO(D,Nrd). Again it is obvious that

Ker(α) = Gm. It follows that dim(Im(α)) = 6 = dim(SO(D,Nrd)) which shows

Im(α) = SO(D,Nrd).

Corollary 1.7. — Let D be a quaternion algebra over Q. And let Λ and Λ′ be Z-
lattices of D.

(1) They are in the same genus if and only if there exist d = (dl), d′ = (d′l) ∈

(D ⊗Q Af )
× with Nrd(dl) = Nrd(d′l) for all l such that dΛ = Λ′d′.

(2) They are in the same proper class if and only if there exist d, d′ ∈ D× with

Nrd(d) = Nrd(d′) such that dΛ = Λ′d′.

1.6. From now on, D will denote a quaternion algebra over Q. For every place v of

Q we set Dv = D⊗Q Qv. Then Dv is a quaternion algebra over Qv. For all v there are

up to isomorphism two quaternion algebras over Qv. One is isomorphic to the ring of

matrices M2(Qv) and the other one is a quaternion division algebra. If Dv
∼= M2(Qv)

we say that D is split at v otherwise D is said to be ramified at v.

We know that D is split at almost all places v and that the number of ramified

places is even. Conversely, for every set of places S of Q with an even number of

elements there exists a quaternion algebra D over Q such that D is ramified at v if

and only if v ∈ S.

1.7. Let l be a prime number and let D be a quaternion algebra over Q l. We recall

some well-known facts on maximal orders and ideals in D:

Assume first that D = End(V ) where V is a two-dimensional Q l-vector space. For

every Zl-lattice L in V the ring

End(L) = { d ∈ End(V ) | d(L) ⊂ L }

is a maximal order of End(V ). Conversely, every maximal order O is of this form. As

GL(V ) = D× acts transitively on the set of all lattices in V , we see that all maximal

orders of D are conjugate.
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If we choose a basis for L, the Cartan decomposition can be written as

GL2(Ql) = GL2(Zl) · T ·GL2(Zl)

where T consists of the diagonal matrices of the form diag(la, lb) for a, b ∈ Z. Using

this decomposition, an easy calculation shows that the normalizer of a maximal order

O = End(L) in D× is given by

(1.4) ND×(O) = lZO×.

A Zl-lattice Λ is normal (see 1.5) if and only if there exist lattices L and L′ in V

such that

Λ = Hom(L′, L) = { d ∈ D | d(L′) ⊂ L }.

Conversely, Hom(L′, L) is clearly a normal lattice of End(V ) for all lattices L, L′ of

V . We have

Ol(Hom(L′, L)) = End(L), Or(Hom(L′, L)) = End(L′)

and as a left End(L)-module (resp. as a right End(L′)-module) Hom(L′, L) is gener-

ated by any one element d such that d(L′) = L.

1.8. Now assume that D is a quaternion division algebra over Q l. Then there exists

a unique maximal order OD of D, namely

OD = { d ∈ D | Nrd(d) ∈ Zl }.

Moreover, OD has a unique maximal ideal m which is a principal ideal. Every nonzero

one-sided ideal of OD is a power of m, in particular it is a two-sided ideal.

As dODd−1 is again a maximal order of D for all d ∈ D×, we see that

(1.5) ND×(OD) = D×.

2. Supersingular elliptic curves

2.1. From now on we fix a prime number p. We consider supersingular elliptic curves

E over Fp. Note that any supersingular elliptic curve is already defined over Fp2 . For

two supersingular elliptic curves we denote by Hom(E ′, E) the set of homomorphism

E′ → E which are defined over Fp. We set End(E) = Hom(E,E).

We denote by W (Fp) the ring of Witt vectors of Fp and write σ for the Frobenius

on W (Fp).

2.2. For any prime l 6= p let Tl(E) be the Tate module. It is a free Zl-module of

rank 2. For l = p we denote by Tp(E) the (covariant) Dieudonné module of E. It as

a free W (Fp)-module of rank 2 with σ-linear operator Φ such that

pTp(E) ( Φ(Tp(E)) ( Tp(E)

where σ is the Frobenius in W (Fp). In fact, there exists a W (Fp)-basis (e, f) of Tp(E)

such that Φ(e) = f and Φ(f) = pe.
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We denote by Hom(Tp(E
′), Tp(E)) the Zp-module of W (Fp)-linear homomorphisms

Tp(E
′) → Tp(E) which commute with Φ. It is easily checked that this is a free Zp-

module of rank 4. Moreover, End(Tp(E))⊗Zp
Qp is “the” quaternion division algebra

over Qp and End(Tp(E)) is its maximal order.

We set T p(E) =
∏

l 6=p Tl(E), V p(E) = T p(E) ⊗Z Q, Vp(E) = Tp(E) ⊗Z Q and

V (E) = V p(E)× Vp(E).

These are free modules of rank 2 over the rings Zp =
∏

l 6=p Zl, Ap
f = Zp ⊗ Q, Qp,

and Af , respectively.

2.3. We fix a supersingular elliptic curve E0, set OD = End(E0) and D = OD ⊗Z Q.

It follows from 2.2 (see also 3.1 below) that D is a quaternion division algebra over

Q which is ramified precisely at p and ∞. As OD ⊗Z Zl is a maximal order in

Dl = D ⊗Q Ql for all primes l, OD is a maximal order in D.

The reduced norm Nrd is a positive definite quadratic form on D and the induced

homomorphism Nrd: D× → Q>0 is surjective.

2.4. Denote by Y p be the set of Ẑp-lattices in V p(E0) and by Yp the set of W (Fp)-
lattices L in Vp(E0) such that pL ( Φ(L) ( L. Then Y p×Yp describes quasi-isogenies

with target E0 as follows: Consider pairs (E,ϕ) where E is a supersingular elliptic

curve and ϕ : E → E0 a quasi-isogeny. We call two such pairs (E,ϕ) and (E ′, ϕ′)

equivalent if there exists a commutative diagram

E
ϕ

//

o

²²

E0

o

²²

E′
ϕ′

// E0,

where the vertical arrows are isomorphisms. Then Y p × Yp corresponds to the set

L of equivalence classes of such pairs (E,ϕ) as above (see [Mi] 6 for the general

description of an isogeny class of an abelian variety with endomorphisms).

The group GL(V p(E0)) acts transitively on the elements in Y p and therefore we

have a bijection

Y p ↔ GL(V p(E0))/GL(T p(E0)).

Moreover, if we denote by Aut(Vp(E0)) the automorphisms of Vp(E0)) which com-

mute with Φ, it follows from the existence of a normal form for lattices in Yp (see 2.2)

that Aut(Vp(E0)) acts transitively on Yp. Therefore we have a bijection

Yp ↔ Aut(Vp(E0))/Aut(Tp(E0)).

If we choose isomorphisms αl : End(Tl(E0))
∼
−→ OD ⊗Z Zl for all primes l, we

obtain a bijection

(2.1) L ↔ (D ⊗Q Af )
×/(OD ⊗Z Ẑ)
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which is independent of the choice of the αl by the theorem of Skolem-Noether.

Explicitly this bijection is given by the associating to d = (dl) ∈ (D ⊗Q Af )
× the

equivalence class of the pair (E,ϕ) such that Tl(ϕ)(Tl(E)) = dlTl(E0) for all primes

l.

2.5. Let d ∈ (D⊗Q Af )
× and let [(E,ϕ)] ∈ L be the associated quasi-isogeny. Then

we have

deg(ϕ) =
∏

l

lvl(Nrd(dl))

where l runs over all prime numbers.

2.6. For example, the relative Frobenius E
(p)
0 → E0 corresponds via the bijection

(2.1) to the class of an element Π in (D⊗Q Af )
× which has a unformizing element of

OD⊗Z Zp as p-th component and a unit of OD⊗Z Zl as l-th component for all primes

l 6= p.

More generally, if O is any maximal order of D, we call an element Π = (Πl)l ∈

D ⊗Q Af a Frobenius element in a quaternion algebra with respect to O if Πl ∈

(O ⊗Z Zl)
× for all l 6= p and Πp is a uniformizing element of ODp

.

2.7. Consider the natural map

L → I :=

{
isomorphism classes of

supersingular elliptic curves over Fp

}
,

[(E,ϕ)] 7→ E.

Using the identification (2.1), two elements d, d′ ∈ (D ⊗Q Af )
×/(OD ⊗Z Ẑ) have the

same image in I if and only if there exists a δ ∈ D× = (End(E0)⊗Z Q)× such that

δd = d′. Hence we get:

Theorem 2.1. — There is a natural identification

(2.2) D×\(D ⊗Q Af )
×/(OD ⊗Z Ẑ)↔





isomorphism classes of

supersingular elliptic

curves over Fp



 .

2.8. Let O be any order in D. A Z-lattice Λ of D is called a right ideal of O

if O ⊂ Or(Λ) (cf. 1.5). If O is a maximal order, this is of course equivalent to

O = Or(Λ). Two right ideals Λ and Λ′ of O are said to be in the same right ideal

class if there exists a d ∈ D× with dΛ = Λ′.

Let Λ be a lattice in D. It can be easily checked locally that Ol(Λ) is a maximal

order of D if and only if Or(Λ) is a maximal order. Hence all right ideals of our fixed

maximal order OD are normal lattices in the sense of 1.5.

By 1.7 and 1.8 we know that locally all right ideals of OD are principal ideals.

Hence it follows that for every right ideal Λ of OD there exists a d ∈ (D⊗Q Af )
× such

that Λ = dOD. Therefore (D ⊗Q Af )
× acts transitively on the set of all right ideals
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of OD. Moreover, an easy local calculation shows that the stabilizer of the right ideal

OD in (D ⊗Q Af )
× is equal to (OD ⊗Z Ẑ)×. Thus we have a natural bijection

(2.3) (D ⊗Q Af )
×/(OD ⊗Z Ẑ)× ↔ {right ideals of OD}.

Composing this bijection with (2.1) we get a bijection of L with the set of right

ideals of OD. Explicitly, this associates to each equivalence class [(E,ϕ)] the right

ideal ϕHom(E0, E) of OD = End(E0).

2.9. The bijection (2.3) induces a bijection of the set of right ideal classes of OD

with D×\(D ⊗Q Af )
×/(OD ⊗Z Ẑ). Composing this with (2.2) wo obtain:

Proposition 2.2. — There exist a natural bijection

(2.4)

{
right ideal classes

of OD

}
↔





isomorphism classes of

supersingular elliptic

curves over Fp



 .

2.10. By 1.7 and 1.8 we know that locally all maximal orders in D are conjugate

to each other. Therefore (D ⊗Q Af )
× acts transitively by conjugation on the set of

maximal orders in D. The stabilizer of the maximal order OD is the normalizer of

OD in (D ⊗Q Af )
×. It can be computed locally and by (1.4) and (1.5) we have

(2.5) N(D⊗QAf )×(OD) = Q×(D×p × (OD ⊗Z Ẑp)×).

2.11. Let O be a maximal order of D and d ∈ (D ⊗Q Af )
× such that O = dODd−1.

Then it follows at once from the definition of a Frobenius element in 2.6 that if

Π ∈ (D ⊗Q Af )
× is a Frobenius element with respect to OD, dΠd−1 is a Frobenius

element with respect to O.

2.12. For d ∈ (D ⊗Q Af )
× let [(E,ϕ)] be the associated element in L via the

bijection (2.1). Let Π be a Frobenius element with respect to OD. Then the pair

[(E′, ϕ′)] associated to dΠ is given by E ′ = E(p−1)(= E(p)) and ϕ′ = FE0
◦ ϕ(p−1)

where FE0
: E

(p−1)
0 → E0 is the relative Frobenius.

Moreover, if Λ = dOD is the right ideal of OD corresponding to [(E,ϕ)] via the

bijection (2.3), the right ideal corresponding to [(E ′, ϕ′)] is given by dΠOD = Π̃dOD =

Π̃Λ where Π̃ = dΠd−1 is a Frobenius element with respect to O = Ol(Λ).

2.13. Let mp ⊂ ODp
be the maximal ideal. For a maximal orderO ofD let p = O∩mp

be the unique prime ideal of O which lies over p. Let Λ be any left ideal of O and let

Π be a Frobenius element with respect to O. Then arguing locally one sees that

ΠΛ = pΛ.
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2.14. It is easy to check that the canonical projection

(2.6) {right ideals of OD} = (D ⊗Q Af )
×/(OD ⊗Z Ẑ)×

→ (D ⊗Q Af )
×/N(D⊗QAf )×(OD) = {maximal orders of D}

is given by

Λ 7→ Ol(Λ).

The projection (2.6) induces a map from the set of right ideal classes of OD to

the set of D×-conjugacy classes of maximal orders in D whose adelic version is the

projection

(2.7) D×\(D ⊗Q Af )
×/(OD ⊗Z Ẑ)×

→ D×\(D ⊗Q Af )
×/N(D⊗QAf )×(OD)

= D×\(D ⊗Q Af )
×/(D×p × (OD ⊗Z Ẑp)×).

Lemma 2.3. — Let {O} be a conjugacy class of maximal orders in D. Let R({O})

be the set of classes of right ideals of OD which are sent to {O} under the map (2.7).

Then R({O}) consists either of one or two elements. It consists of one element if

and only if O contains an element d with Nrd(d) = p for one (or equivalently for all)

O ∈ {O}.

Proof. — We consider the map (2.7). Hence we are in the following situation: Let

G be a group, H and G2 be subgroups, and let G1 be a normal subgroup of G2.

Consider the canonical projection

$ : H\G/G1 → H\G/G2.

Let g0 ∈ G und set Fg0 = $−1($(Hg0G1)). Then G1\G2 acts transitively from the

right on Fg0 and the stabilizer of Hg0G1 is (g−10 Hg0 ∩G2)G1/G1.

In the special case of (2.7) we have H = D×, G = (D⊗Q Af )
×, G1 = (OD ⊗Z Ẑ)×

and G2 = D×p × (OD ⊗Z Ẑp)×. Therefore G2/G1 is the free cyclic group generated by

a Frobenius element Π (cf. 2.6). Moreover, Π2G1 ⊂ Q×G1 ⊂ (g−10 Hg0 ∩ G2)G1/G1

for all g0 ∈ G. Therefore the fibres of (2.7) consist of at most two elements.

Now fix g0 and let O = g0ODg−10 be the associated maximal order of D. A fibre Fg0
consists of one element if and only if there exists in g−10 D×g0 a Frobenius element. If

there exists a d ∈ D× such that g−10 dg0 is a Frobenius element (and hence an element

of OD⊗Z Ẑ), we necessarily have d ∈ g0ODg−10 = O. Moreover, g−10 dg0 is a Frobenius

element if and only if

Nrd(g−10 dg0)l ∈

{
Z×l , if l 6= p;

pZp, if l = p.

Hence we see that Fg0 consists of one element if and only if there exists an element

d ∈ O such that Nrd(d) = p (the case Nrd(d) = −p can of course not occur).
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2.15. In 2.8 we have seen that every right ideal of OD is of the form ϕHom(E0, E)

for some quasi-isogeny ϕ : E → E0. As we have

Ol(ϕHom(E0, E)) = ϕEnd(E)ϕ−1

we see that every maximal order of D is of the form ϕEnd(E)ϕ−1. Moreover, the

D×-conjugacy class of ϕEnd(E)ϕ−1 depends only on E. We denote it by {End(E)}.

Proposition 2.4. — Let O be a maximal order and let E be a supersingular elliptic

curve such that O is in the conjugacy class {End(E)}. Let p be the unique (two-sided)

prime ideal of O which lies over p.

(1) The following assertions are equivalent:

(a) The elliptic curve E is defined over Fp.
(b) Up to isomorphism there exists a unique supersingular elliptic curve E such

that the conjugacy class of O is equal to {End(E)}.

(c) The prime ideal p is a principal ideal.

(d) The subgroup Q×O× of the normalizer ND×(O) is of index 2.

(2) If these equivalent conditions do not hold, we have:

(a) Up to isomorphism there are precisely two elliptic curves E and E ′ such that

{O} = {End(E)} = {End(E′)} and for them E′ ∼= E(p).

(b) ND×(O) = Q×O×.

Proof. — It follows from Proposition 2.2 and Lemma 2.3 that (1)(b) is equivalent to

the existence of a d ∈ O such that Nrd(d) = p. As p = mp ∩ O such an element

generates p. Conversely, for every generator d of p we have Nrd(d) = p. This proves

the equivalence of (1)(b) and (1)(c).

An easy calculation shows that d ∈ ND×(O) implies d ∈ lZ(O⊗Z Zl)
× for all primes

l 6= p. Therefore we have an injective homomorphism

ν : ND×(O)/(Q×O×) ↪→ (D ⊗Q Qp)
×/Q×(O ⊗Z Zp)

× ∼= Z/2Z

where the isomorphism is given by vp ◦Nrd. In particular, we see that if (1)(d) does

not hold, (2)(b) holds.

The homomorphism ν is surjective if and only if there exists an element d ∈

ND×(O) such that vp(Nrd(d)) = 1. For all d ∈ ND×(O) we have vl(Nrd(d)) ∈ 2Z for

all l 6= p. Therefore, if d ∈ ND×(O) staisfies vp(Nrd(d)) = 1, we can find a λ ∈ Q×

such that Nrd(dλ) = p. As dλ ∈ ND×(O), we can write dλ = lma for all l 6= p where

m ∈ Z and a ∈ (O⊗Z Zl)
×. As vl(Nrd(dλ)) = 0, we have dλ ∈ (O⊗Z Zl)

×. Moreover,

Nrd(dλ) = p also implies that dλ ∈ O ⊗Z Zp = ODp
. Hence dλ ∈ O. Altogether

we have seen that ν is surjective if and only if there exists a d ∈ O ∩ ND×(O) with

Nrd(d) = p. Such an element generates p and thus (1)(d) implies (1)(c).

Conversely, for every d ∈ O with Nrd(d) ∈ pZ we have d(O⊗Z Zl)d
−1 = (O⊗Z Zl)

for all primes l and hence d ∈ ND×(O). Therefore the converse implication does also

hold.
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Next we show that for any supersingular elliptic curve E we have

{End(E)} = {End(E(p−1))}.

Choose a quasi-isogeny ϕ : E → E0 and let I = ϕHom(E0, E) be the corresponding

right ideal of OD. The right ideal corresponding to the quasi-isogeny E
(p−1)
0 →

E0 −→
ϕ E (where the first arrow is the relative Frobenius) is the right ideal ΠI

where Π ∈ (D⊗QAf )
× is a Frobenius element with respect to the maximal order Ol(I)

(cf. 2.6). Using a local calculation it follows at once that Ol(ΠI) = ΠOl(I)Π
−1 =

Ol(I).

We have already seen in the proof of Lemma 2.3 that if I = dOD and I ′ = d′OD

(with d, d′ ∈ (D ⊗Q Af )
×) are two right ideals of OD with {Ol(I)} = {Ol(I

′)} then

there exists a Frobenius element Π with respect to OD and an integer n such that

the right ideal class of d′OD is equal to the right ideal class of dΠnOD. Writing

dΠ = Π̃d for a Frobenius element Π̃ with respect to Ol(I) (see 2.11), we see that

the right ideal classes of I ′ and Π̃nI are equal. Let E be the supersingular elliptic

curve corresponding to the class of I and let E ′ be the supersingular elliptic curve

corresponding to the class of I ′. Then this implies that there exists an integer n such

that E′ ∼= E(pn) and this completes the proof.

2.16. Note that the proof of Proposition 2.4 also shows that every supersingular

elliptic curve is already defined over Fp2 .

Moreover we have seen:

Corollary 2.5. — Let O be a maximal order of D and set N := ND×(O). Consider

the subgroups O× ⊂ Q×O× ⊂ N . Then

O× = { d ∈ N | Nrd(d) = 1 },

Q×O× = { d ∈ N | Nrd(d) ∈ (Q×)2 }.

3. The genus of the quadratic space Hom(E ′, E)

3.1. For any two supersingular elliptic curves E and E ′ we will consider the free

Z-module Hom(E′, E) together with the quadratic form given by the degree.

As E and E′ are supersingular, Hom(E′, E) has rank 4 as a Z-module. Further it

is easy to see that the canonical map of Zl-modules

α : Hom(E′, E)⊗Z Zl −→ Hom(Tl(E
′), Tl(E))

is injective with torsionfree cokernel for all primes l (l = p included). As both sides

have rank 4, it follows that α is an isomorphism. Choosing an identification Tl(E
′) ∼=

Tl(E), we can consider the right hand side as a lattice in the quaternion algebra

End(Tl(E))⊗Zl
Ql and the quadratic form given by the degree on the left hand side

corresponds via α to the reduced norm on the right hand side.
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Therefore the isomorphism class of the quadratic space Hom(E ′, E) ⊗Z Zl is in-

dependent of E and E′ for all l. In other words (Definition 1.1), Hom(E ′, E) and

Hom(F ′, F ) are related for all supersingular elliptic curves E, E ′, F , and F ′.

Lemma 3.1. — Let E and E′ be two supersingular elliptic curves over Fp. Then

there exists a quasi-isogeny ϕ : E ′ → E of degree 1.

Proof. — As Hom(E′, E) and End(E) are related, we can choose an isomorphism of

quadratic spaces Hom(E′, E)⊗Z Q ∼= End(E)⊗Z Q. Via this isomorphism we identify

Hom(E′, E) with a sublattice of End(E) ⊗Z Q. Choose an integer N ≥ 1 such that

N End(E) ⊂ Hom(E′, E). Then N idE corresponds to an isogeny ϕ′ : E′ → E of

degree N2 and ϕ = (1/N)ϕ′ is a quasi-isogeny of degree 1.

3.2. If E and E′ are two supersingular elliptic curves, we can choose quasi-isogenies

ϕ : E → E0 and ϕ′ : E′ → E0 such that deg(ϕ) = deg(ϕ′) by Lemma 3.1. Then

ιϕ,ϕ′ : Hom(E′, E)→ D, α 7→ ϕ ◦ α ◦ ϕ′−1

is an isometry. If we choose another pair (ϕ1, ϕ
′
1) as above, we have

ιϕ,ϕ′(Hom(E′, E)) = dιϕ1,ϕ′1
(Hom(E′, E))d′−1

for d, d′ ∈ D with Nrd(d) = Nrd(d′). Hence it follows from Corollary 1.7 that the

proper class of ιϕ,ϕ′(Hom(E′, E)) is independent of the choice of (ϕ,ϕ′). We denote

this class by [Hom(E′, E)].

Proposition 3.2. — Every proper class in the genus of End(E0) ⊂ D is of the form

[Hom(E′, E)] for two supersingular elliptic curves E and E ′.

Proof. — Let Λ ⊂ D be a lattice in the genus of OD. By Corollary 1.7 there exist

d, d′ ∈ (D ⊗Q Af )
× with Nrd(dl) = Nrd(d′l) for all primes l such that Λ = dODd′−1.

Denote by [(E,ϕ)], [(E′, ϕ′)] ∈ L the quasi-isogenies associated to d, d′, respectively,

via bijection 2.1. Then ϕHom(E ′, E)ϕ′−1 ⊂ D depends only on the classes of (E,ϕ)

and (E′, ϕ′) in L . Recall that Hom(E′, E)⊗ Zl = Hom(Tl(E
′), Tl(E)) for all primes

l (see 3.1). Therefore we have by 2.4:

ϕHom(E′, E)ϕ′−1 =
⋂

l

(
(ϕHom(Tl(E

′), Tl(E))ϕ′−1)⊗Z Zl ∩D
)

=
⋂

l

(Tl(ϕ)Hom(Tl(E
′), Tl(E))Tl(ϕ

′)−1 ∩D)

=
⋂

l

(dlHom(Tl(E0), Tl(E0))d
′−1
l ∩D)

= dODd′−1 = Λ.

Moreover, it follows from 2.5 that the condition Nrd(dl) = Nrd(d′l) implies deg(ϕ) =

deg(ϕ′). Thus Λ lies in the proper class [Hom(E ′, E)].
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Proposition 3.3. — Let E, E ′, E1 and E′1 be supersingular elliptic curves. Then

we have [Hom(E′, E)] = [Hom(E′1, E1)] if and only if there exists an integer n such

that E′1
∼= E′(p

n) and E1
∼= E(pn).

Proof. — Choose quasi-isogenies ϕ : E → E0, ϕ′ : E′ → E0, ϕ1 : E1 → E0 and

ϕ′1 : E
′
1 → E0 such that deg(ϕ) = deg(ϕ′) and deg(ϕ1) = deg(ϕ′1). We set Λ =

ιϕ,ϕ′(Hom(E′, E)) and Λ1 = ιϕ1,ϕ′1
(Hom(E′1, E1)). Let d, d′, d1, d′1 ∈ (D ⊗Q Af )

×

be elements such that the associated pairs in L via the bijection (2.1) are equal to

[(E,ϕ)], [(E′, ϕ′)], [(E1, ϕ1)], [(E
′
1, ϕ

′
1)] respectively. Then

Λ = dODd′−1, Λ1 = d1ODd′−11 .

We set Ô×D := (O ⊗Z Ẑ)×. If E′1
∼= E′(p

−n) and E1
∼= E(p−n), we can choose

ϕ′1 = Fn
E0
◦ ϕ′(p

n) and ϕ1 = Fn
E0
◦ ϕ(pn) where Fn

E0
: E

(p−n)
0 → E0 is the relative

Frobenius. Then we have d′1Ô
×
D = d′ΠnÔ×D and d1Ô

×
D = dΠnÔ×D for a Frobenius

element Π with respect to OD. Note that ΠnÔ×D = Ô×DΠ
n and εOD = OD = ODε for

ε ∈ Ô×D. Therefore

Λ1 = d1ODd′−11 = dΠnODΠ
−nd′−1 = dODd′−1 = Λ.

Conversely, assume that Λ and Λ1 are in the same proper class. By Corollary 1.7

there exist δ, δ′ ∈ D× with Nrd(δ) = Nrd(δ′) such that δΛ = Λ1δ
′. Then the

maximal orders Ol(Λ) and Ol(Λ1) are in the same conjugacy class. Hence we see that

{End(E)} = {End(E1)} and then Proposition 2.4 implies that there exists an integer

n such that E1
∼= E(pn). Considering Or(Λ) and Or(Λ1) we see that there also exists

an integer n′ such that E′1
∼= E′(p

n′ ).

It remains to show that we can choose n = n′. As all supersingular elliptic curves

are defined over Fp2 , we can assume that n, n′ ∈ {0, 1}. If one elliptic curve X is

defined over Fp we have X = X(p) and therefore we can assume that all four elliptic

curves are not defined over Fp. Then we have to show that the following case cannot

occur: E′1
∼= E′ and E1 6∼= E. Note that we know already that E1 6∼= E implies

E1
∼= E(p).

We can assume that Or(Λ) = Or(Λ1) =: O. Then δΛ = Λ1δ
′ implies that

δ′ ∈ ND×(O). As E′ = E′1 is not defined over Fp we have ND×(O) = Q×O× by

Proposition 2.4. Thus there exists a δ1 ∈ D× with Nrd(δ1) = 1 such that δ1Λ = Λ1.

Now E1 = E(p) implies by 2.13 that there exists a δ′1 ∈ D× such that Λ1 = δ′1pΛ

where p is the prime ideal of Ol(Λ) which lies over (p). But this implies

δ1O = Λ1Λ
−1 = δ′1p

and this is a contradiction as p is not a principal ideal by Proposition 2.4.
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3.3. Let E and E′ be two supersingular elliptic curves over Fp. Consider the natural
map

α : Aut(E)×Aut(E′)→ O(Hom(E′, E))

(ϕ,ϕ′) 7→ (x 7→ ϕxϕ′−1)

Proposition 3.4. — The image of α lies in SO(Hom(E ′, E)) and the kernel of α

consists of {±1} (diagonally embedded in Aut(E) × Aut(E ′)). The image of α is

equal to SO(Hom(E′, E)) if and only if E or E′ is not defined over Fp. If both curves
are defined over Fp the image of α has index 2 in SO(Hom(E ′, E)).

Proof. — We choose quasi-isogenies ϕ : E → E0 and ϕ′ : E′ → E0 of the same degree.

Set Λ = ϕHom(E′, E)ϕ′−1 ⊂ D, Ol := Ol(Λ) and Or = Or(Λ). By Lemma 1.6 we

know

SO(Λ) = { (d, d′) ∈ D× ×D× | dΛ = Λd′, Nrd(d) = Nrd(d′) }/Q×

where Q× is embedded diagonally. Note that the condition dΛ = Λd′ already implies

Nrd(d) = Nrd(d′). Moreover, dΛ = Λd′ implies Ol = Ol(dΛ) and hence d ∈ ND×(Ol).

Similarly d′ ∈ ND×(Or). Thus we see

SO(Λ) = { (d, d′) ∈ ND×(Ol)×ND×(Or) | dΛ = Λd′ }/Q×.

For (d, d′) ∈ SO(Λ) we have by Corollary 2.5:

(3.1) d ∈ Q×O×l ⇐⇒ d′ ∈ Q×O×r .

Further Q× ∩O×l = Q× ∩O×r = {±1}.

Now consider the case where E is not defined over Fp. By Proposition 2.4 this is

equivalent to ND×(Ol) = Q×O×l . Therefore

SO(Λ) = { (d, d′) ∈ Q×O×l ×Q×O×r | dΛ = Λd′ }/Q×

= { (d, d′) ∈ O×l ×O×r }/{±1}

which proves the proposition in this case. The case that E ′ is not defined over Fp is

proved by the same argument.

It remains to consider the case that E and E ′ are both defined over Fp. Then

Q×O×l ⊂ ND×(Ol) and Q×O×r ⊂ ND×(Or) are subgroups of index 2 by Proposi-

tion 2.4. Moreover it follows from (3.1) that { (d, d′) ∈ O×l ×O×r }/{±1} is a subgroup

of index 2 of SO(Λ). This finishes the proof.

Corollary 3.5. — Let E and E ′ be two supersingular elliptic curves over Fp. Then
we have

#SO(Hom(E′, E)) =

{
#Aut(E)#Aut(E′), if E, E′ both defined over Fp;
1
2#Aut(E)#Aut(E′), otherwise.
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4. Local densities

4.1. Recall that for two quadratic spaces Q and L over Z we write RL(Q) for the

number of isometries Q→ L. Note that RL(Q) depends only on the classes of L and

Q. In this section we are going to express

(4.1)
∑

(E′,E)

RHom(E′,E)(Q)

uEuE′

in terms of local densities. Here the (E ′, E) runs through all pairs of isomorphism

classes of supersingular elliptic curves over Fp, Q is a fixed ternary positive definite

quadratic form over Z, and uE = 1
2#Aut(E).

Proposition 4.1. — Fix a supersingular elliptic curve E0. Then we have

(4.2)
∑

(E′,E)

RHom(E′,E)(Q)

uEuE′
= 4

∑

L

RL(Q)

#SO(L)
.

Here on the right hand side, L runs through the proper classes of the genus of End(E0).

Proof. — By Proposition 3.2 we know that the proper classes [Hom(E ′, E)] exhaust

the genus of End(E0) if (E
′, E) runs through all pairs of supersingular elliptic curves.

If E and E′ are both defined over Fp, the class L of Hom(E′, E) occurs once in the

sum on the left hand side of (4.2) by Proposition 3.3, and we have #SO(L) = 4uEuE′

by Corollary 3.5. Otherwise, the class L of Hom(E ′, E) occurs twice in the sum

on the left hand side of (4.2) and we have #SO(L) = 2uEuE′ . This proves the

proposition.

4.2. Let M be a quadratic space over Zp. We denote by QM : M → Zp its quadratic

form and let BM the bilinear form given by

BM (x, y) =
1

2
(QM (x+ y)−QM (x)−QM (y)).

4.3. Let M and N be two quadratic spaces over Zp of ranks m and n, respectively.

We choose bases (µi) and (νi) of M , N respectively and let T = (BM (µi, µj)) ∈

Symm(Zp)
∨ and S = (BN (νi, νj)) ∈ Symn(Zp)

∨ be the corresponding matrices. For

r ≥ 0 we define Apr (M,N) = Apr (T, S) as

#{X ∈Mn,m(Zp/p
rZp) |

tXSX − T ∈ pr Symm(Zp)
∨ }

=#{σ : M/prM → N/prN | QN (σ(x)) ≡ QM (x) mod pr }.

For r À 0 we set

αp(M,N) = αp(T, S) = 2−δmn(pr)m(m+1)/2−mnApr (M,N).

It is shown in [Ki] 5.6 that this is independent of r if r is sufficiently big. We call

αp(T, S) the local representation density. Note that for p = 2 our representation

density is 2m(m−1)/2-times the representation density αp defined in [Ki].
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4.4. For any class N of lattices in a positive definite quadratic space over Q we set

o(N) = #O(N), so(N) = #SO(N).

Moreover, we set

w(N) :=
∑

N ′ class
in gen(N)

1

o(N ′)

where N ′ runs through all classes within the genus of N . We call w(N) the weight of

N .

Then we have o(N) = so(N) if and only if there exist two proper classes in N .

Therefore

(4.3) w(N) =
1

2

∑

N ′ proper class
in gen(N)

1

so(N ′)
.

Let M and N be lattices in positive definite quadratic spaces over Q. By the mean

value of the representation of M by N we mean

m(M,N) = w(N)−1
∑

N ′ class
in gen(N)

RN ′(M)

o(N ′)
.

Note that m(M,N) does not change if we let N ′ run in the sums through the proper

classes in the genus of L and replace o(N ′) by so(N ′). Clearly, m(M,N) depends

only on the genus of N .

4.5. We recall the Minkowski-Siegel formula (cf. [Ki] 6.8): Let M and N be lattices

in positive definite quadratic spaces over Q. For any prime l we define αl(M,N) :=

αl(M ⊗Z Zl, N ⊗Z Zl). Put m := rank(M) and n := rank(N). Set

εm,n :=

{
1
2 , if either n = m+ 1 or n = m > 1;

1, otherwise.

We also define

α∞(M,N) := πm(2n−m+1)/4

(
m−1∏

i=0

Γ
(
(n− i)/2

)−1
)

×
(
det(N)

)−m/2(
det(M)

)(n−m−1)/2
.

Here Γ denotes the gamma function.

Theorem 4.2 (Minkowski, Siegel). —

(4.4) m(M,N) = εm,n2
−m(m−1)/2α∞(M,N)

∏

l

αl(M,N)

where l runs through all prime numbers.
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Theorem 4.3. — Let M be a positive definite ternary quadratic space over Z and

let N be the genus of End(E0) for a supersingular elliptic curve over Fp. Then

∑

(E′,E)

RHom(E′,E)(M)

uEuE′
= 8

(
p− 1

12

)2
π4

p3

∏

l

αl(M,N)

where l runs through all prime numbers l.

Proof. — We apply the Minkowski-Siegel formula: We have m = 3 and n = 4. We

first compute det(N). As N is positive definite, it suffices to compute ordl(N⊗Zl) for

every prime l. For l 6= p the quadratic Zl-space N ⊗Zl is isomorphic to (M2(Zl),det)

and with respect to the basis ( 1 0
0 0 ), (

0 0
0 1 ), (

0 1
0 0 ),

(
0 0
−1 0

)
the associated matrix is equal

to

(4.5) Sl =
1

2




0 1

1 0

0 1

1 0


 .

For l = p we have N ⊗ Zl
∼= (ODp

,Nrd) and hence there exists a basis such that the

associated matrix is equal to

(4.6) Sp =





diag(1,−δ, p,−δp), if p 6= 2,


1 1/2

1/2 1

2 1

1 2




, if p = 2,

where δ is some element in Z×p \ (Z×p )2 (see [Ki] 5.2).

If follows that det(N) is equal to 2−4p2 and hence we get

α∞(M,N) =
π9/2

Γ(1)Γ(3/2)Γ(2)
(2−4p2)−3/2 = 27

π4

p3
.

By (4.3) we can calculate the weight of N as

w(N) =
1

2

∑

N ′ proper class
in gen(N)

1

so(N ′)
.
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Using Proposition 3.3 and Corollary 3.5, it follows that

w(N) =
1

2

∑

(E′,E)

1

#Aut(E)#Aut(E′)

=
1

2

(
∑

E

1

#Aut(E)

)2

=
1

2

(
p− 1

24

)2

where in the last equality we used Eichler’s mass formula.

Now using Proposition 4.1, the Minkowski-Siegel formula tells us

∑

(E′,E)

RHom(E′,E)(M)

uEuE′
= 4

∑

N ′ in proper class
of gen(N)

RN ′(M)

#SO(N ′)

= 8w(N)m(M,N)

= 4

(
p− 1

24

)2

ε3,42
−3α∞(M,N)

∏

l

αl(M,N)

= 8

(
p− 1

12

)2
π4

p3

∏

l

αl(M,N).

4.6. In [Wd2] we will give explicit expressions for the local representation densities

αl(M,N) for arbitrary positive definite ternary quadratic spaces M and all primes l.

We deduce (cf. [GK] 6.23):

Corollary 4.4. — Define βl(M) = (1 − l−2)−2αl(M,N) and ∆(M) = 4 det(M).

Assume that M is a positive definite ternary quadratic space over Z which is isotropic

over Ql for all l 6= p. Then M is anisotropic over Qp and

∑

(E′,E)

RHom(E′,E)(M)

uEuE′
= 4

∏

l|∆(M),l 6=p

βl(M).

Proof. — We have αp(M,N) = 2(p + 1)2p−1 by [Wd2], Theorem 1.1, and hence

βp(M) = 2p3/(p− 1)2. Moreover we know by [Wd2], Corollary 2.2, that βl(M) = 1

for all l 6= p which do not divide ∆(M). Therefore we have

∏

l

αl(M,N) =
2p3

(p− 1)2

∏

l

(1− l−2)2
∏

l|∆(M),l 6=p

βl(M)

=
2p3

(p− 1)2
ζ(2)−2

∏

l|∆(M),l 6=p

βl(M).

As ζ(2) = π2/6, the corollary follows from Theorem 4.3.
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6. LUBIN-TATE FORMAL GROUPS

by

Volker Meusers

The following is an exposition of the theory of formal complex multiplication in
local fields after Lubin and Tate. We recall the construction of Lubin-Tate modules,
the structure of torsion points of their generic fibre and explicit local class field theory.
We follow the original exposition [LT], which can hardly be improved upon, and the
exposition of Neukirch in [N].

1. Construction of Lubin-Tate Modules

Let K be a field complete with respect to some discrete valuation. Let OK be its
ring of integers, p its maximal ideal. Assume the residue field OK/p to be finite and
let N(p) = q be the number of its elements. Prime elements of OK are denoted by π
or π. Let k be an algebraic closure of OK/p. Let Ksep be a fixed separable closure
of K and Knr ⊆ Ksep the maximal unramified extension of K. Let M and C denote
the completions of Knr and Ksep. Denote by OM (resp. OC) the ring of integers of

M (resp. C). Let Ĉ be the category of complete local noetherian OK-algebras with
residue field k.

Definition 1.1. — Let i : OK → R be an OK-algebra, e.g. OK , OM or k. A for-
mal OK-module over R is a pair (H, γH) consisting of a (one-dimensional commu-
tative) formal group law H(X,Y ) ∈ R[[X,Y ]] together with a ring homomorphism
γH : OK → EndR(H) ⊂ R[[T ]] given by sending an element a ∈ OK to the endomor-
phism γH(a)(T ) ∈ R[[T ]] of H(X,Y ). As a normalization condition we require that
the OK-algebra structure on R induced by the isomorphism

OK

∼=
→ Lie(H), a 7→

∂γH(a)(T )

∂T

∣∣∣∣
T=0

.

agrees with the structure given by i : OK → R, in other words we require γH(a)(T )
to be of the form

γH(a)(T ) = i(a)T + . . . ∈ R[[T ]].
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We write [a](T ) for γH(a)(T ) and a = i(a) ∈ R if no confusion is possible.

For R ∈ Ĉ write H(R) for the abelian group (mR,+H) where we have set
x +H y = H(x, y) for x, y ∈ mR. This converges since R is assumed to be complete.
This group is also an (ordinary) OK-module by setting ax = a·H x = [a](x). Note that

unless (H, γH) is the formal additive group, i.e (Ĝa(X,Y ) = X+Y, γĜa(a)(T ) = aT ),
this OK-module structure is not the standard structure on mR as an ideal of R. For
a finite extension L|K with ring of integers OL ∈ Ĉ and maximal ideal mL ⊂ OL we
set H(L) = H(mL). Similarly for infinite extensions after completion.

The goal of this section is to construct, as for ordinary complex multiplication (see
Remark 3.5 below), a formal OK-module (G, γG) over OM such that

G[p] =
⋂

a∈p

Ker(a) = G[π]

is isomorphic to the kernel of the Frobenius G⊗k → (G⊗k)(q) when reduced modulo
the maximal ideal of OM . Lubin and Tate construct G as a base change G = Hπ⊗OK

OM of a formal OK-module Hπ over OK , the so called Lubin-Tate module associated
to the prime element π ∈ OK . As we will see Hπ depends on the chosen π while G
will be independent of it.
By our normalization condition γG(π)(T ) is of the form

γG(π)(T ) = πT + . . . ∈ OK [[T ]].

The condition on the Frobenius requires that

γG(π)(T ) ≡ T q mod π.

This justifies the following definition:

Definition 1.2. — A power series f(T ) = πT + . . . ∈ OK [[T ]] such that

f(T ) ≡ T q mod π

is called a Lubin-Tate series associated to π. The set of Lubin-Tate series for π is
denoted by Fπ. A formal OK-module (H, γH) over OK with γH(π)(T ) ∈ Fπ is called
Lubin-Tate module.

Example 1.3 (Examples). — (1) The simplest example of a Lubin-Tate-series is

f(T ) = πT + T q ∈ Fπ.

(2) In the cyclotomic case, i.e. for K = Qp, OK = Zp and π = p ∈ Zp the
polynomial

f(T ) = (T + 1)p − 1 = pT + p(. . .) + T p ∈ Fπ.

is a Lubin-Tate-series associated to π = p. One easily checks that in this case the
formal multiplicative group

Ĝm(X,Y ) = (1 +X)(1 + Y )− 1

is a Lubin-Tate module associated to f(T ).
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The construction of Lubin-Tate-modules is based on the following lemma.

Lemma 1.4. — Let π, π be two prime elements of M and f(T ) ∈ Fπ resp. g(T ) ∈
Fπ. Let L(X1, . . . , Xn) =

∑n
i=1 aiXi be a linear form with coefficients in OM such

that

πL(X1, . . . , Xn) = πLσ(X1, . . . , Xn)

where σ is the continuous extension of the Frobenius in Gal(Knr|K) to M . Then
there exists a unique power series F (X1, . . . , Xn) ∈ OM [[X1, . . . , Xn]] such that

F (X1, . . . , Xn) ≡ L(X1, . . . , Xn) mod (X1, . . . , Xn)
2

and

f(F (X1, . . . , Xn)) = F σ(g(X1), . . . , g(Xn)).

where (X1, . . . , Xn) denotes the ideal generated by X1, . . . , Xn. If the coefficients of
f, g, L lie in OK then F also has coefficients in OK .

See [N] for a proof.

We use the lemma to construct Lubin-Tate modules as follows:
For f(T ) ∈ Fπ let Hf (X,Y ) be the unique solution of the equations

Hf (X,Y ) ≡ X + Y mod (X,Y )2

and

f(Hf (X,Y )) ≡ Hf (f(X), f(Y )) mod (X,Y )2.

For each a ∈ OK and f(T ), g(T ) ∈ Fπ let [a]f,g(T ) be the unique solution of

[a]f,g(T ) ≡ aT mod (X,Y )2

and

f([a]f,g(T )) ≡ [a]f,g(g(T )) mod (X,Y )2.

To simplify notations we shall write [a]f instead of [a]f,f . The following theorem shows
that the series Hf (X,Y ) together with γHf

(a)(T ) = [a]f (T ) is in fact a Lubin-Tate
module associated to f(T ).

Theorem 1.5. — For any f(T ) ∈ Fπ the series Hf (X,Y ) is a formal group law
over OK , i.e. the following identities hold:

Hf (X,Y ) = Hf (Y,X)

Hf (Hf (X,Y ), Z) = Hf (X,Hf (Y,Z))

Hf (X, 0) = X

Hf (0, Y ) = Y

Hf (X, [−1]f (X)) = 0.
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For g, h ∈ Fπ and a, b ∈ OK we have

Hf ([a]f,g(X), [a]f,g(Y )) = [a]f,g(Hg(X,Y ))

[a]f,g([b]g,h(T )) = [ab]f,h(T )

[a+ b]f,g(T ) = Hf ([a]f,g(T ), [b]f,g(T ))

[π]f (T ) = f(T )

[1]f (T ) = T.

In particular (Hf (X,Y ), γHf
) with γHf

(a)(T ) = [a]f (T ) is a Lubin-Tate-module such
that γHf

(π)(T ) = f(T ). For two series f(T ), g(T ) ∈ Fπ we have the canonical iso-
morphism

[1]f,g(T ) : Hg

∼=
→ Hf

of formal OK-modules over OK .

For a proof see [N], proof of Theorem V.4.6.

Remark 1.6. — Although Hf does not depend on the particular choice f ∈ Fπ it
does depend on the particular choice of the uniformizing element π ∈ OK . They
become isomorphic over OM because of the following lemma.

Lemma 1.7. — Let π and π be two prime elements of OK with π = uπ for some unit
u ∈ O

×
K . Let σ be the Frobenius of M as above. There exists some ε ∈ O

×
M such that

u = εσ−1. Let f(T ) ∈ Fπ and g(T ) ∈ Fπ be Lubin-Tate series. Then there exists a
unique power series θ(X) ∈ OM [[X]] such θ(X) = εX modulo (X)2 and f ◦θ = θσ ◦g.
Furthermore θ(X) induces an isomorphism Hf

∼= Hg of Lubin-Tate modules (defined
over OM ).

For a proof see [N], Corollary V.2.3, and also [LT], Lemma 2.

2. Torsion points of the Generic Fibre

Now fix some f ∈ Fπ. We want to describe the structure of torsion points of the
generic fibre of Hf (C) as a Galois module. Recall that for every separable algebraic

extension K ⊂ L ⊂ C we set Hf (L) = Hf (ÔL). If L1 ⊂ L then Hf (L1) ⊂ Hf (L). If
L|L1 is Galois then Gal(L|L1) operates naturally on Hf (L) in a manner compatible
with the OK-module stucture. This results from the fact that the Galois group oper-

ates continuously on ÔL and that Hf is defined over OK ⊆ OL1
. In this way Hf (L)

becomes a Gal(L|L1) × OK-module. For another g ∈ Fπ the canonical map induced
by [1]f,g(T ) is an isomorphism of Gal(L|L1) × OK-modules. It commutes with the
inclusions Hf (L1) ⊂ Hf (L).

Set
Λf =

⋃

m≥0

Hf (C)[p
m] ⊂ Hf (C)

Then Λf is a torsion OK-module, i.e. the union over its sub-modules Λf,m = Λf [p
m].

It is clear that the Galois extension K ⊂ Lπ,m = K(Λf [m]) does not depend on
f ∈ Fπ. Let us denote its Galois group by Gπ,m = Gal(Lπ,m|K).
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Theorem 2.1. — Let π be a prime element of OK and f ∈ Fπ.
(1) The OK-module Λf is divisible.
(2) For each m, the OK-module Λf,m is isomorphic to OK/pm.
(3) The OK-module Λf is isomorphic to K/OK .
(4) For each τ ∈ Gπ there exists a unique uτ ∈ O

×
K such that τλ = [uτ ]f (λ) for every

λ in Λf .
(5) The map τ 7→ uτ is an isomorphism of Gπ onto the group O

×
K , under which the

quotients Gπ,m of Gπ correspond to the quotients O
×
K/(1 + pm) of O

×
K .

See [LT] for a proof.

Example 2.2. — In the cyclotomic case we get 1 + Λf,m = µpm , 1 + Λf = µp∞ .

We have Ĝm(Qp) = pZp with addition given by the identification with 1 + pZp ⊂ Z×p
as a multiplicative(!) subgroup. In this case the multiplicative structure is given by
exponentiating(!), i.e.

[a]f (T ) =
∞∑

n=1

(
a

n

)
Tn = (1 + T )a − 1

for a ∈ Zp.

3. Local Class Field Theory

Let π ∈ OK be a fixed prime element. Since Lπ is totally ramified over K, it is
linearly disjoint from Knr over K, and the Galois group Gal(LπK

nr|K) is the product
of Gπ = Gal(Lπ|K) and Gal(Knr|K). For each prime π in OK , we can therefore define
a homomorphism

ρπ : K
× → Gal(LπK

nr|K)

such that
(1) For each unit u ∈ O

×
K , the automorphism ρπ(u) is the identity on Knr, and on Lπ

the reciprocal τ−1
u of the element τu ∈ Gπ corresponding to u by the isomorphism of

the theorem; and
(2) ρπ(π) is the identity on Lπ and is the Frobenius automorphism σ on Knr.

Thus for an arbitrary element a = uπm ∈ K× we have, by definition:

ρπ(a) = σm on Knr

and

λρπ(a) = [u−1]f (λ) for λ ∈ Λf .

Theorem 3.1. — The field LπK
nr and the homomorphism ρπ are independent of π.

See [LT] for a proof.

Corollary 3.2. — The field LπK
nr is the maximal abelian extension of K, and ρπ

is the reciprocity law homomorphism for it, i.e.

ρπ(a) = (a, LπK
nr|K)
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for every a ∈ K×.

See [LT] for a proof.

Remark 3.3. — Note that while both the field Lπ and the reciprocity map ρπ can
be defined in terms of a Lubin-Tate series alone, the proofs depend heavily on the
extra structure given by the associated Lubin-Tate module.

Example 3.4. — In the cyclotomic case we get for a = upvp(a) ∈ Q×p that

(a,Qp(ζ)|Qp)(ζ − 1) = [u−1]f (ζ − 1)

or
(a,Qp(ζ)|Qp)ζ = ζu

−1

if ζ = 1 + λ is a primitive pm-th root of unity or in other words λ = ζ − 1 ∈ Λf,m.

Remark 3.5. — There are strong analogies with the classical theory of complex
multiplication and explicit reciprocity laws for imaginary quadratic fields. In fact for
every single statement presented here, there is an analogous one if one replaces the
Lubin-Tate modules by elliptic curves with complex multiplication. See for example
[L].
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7. FORMAL MODULI OF FORMAL OK-MODULES

by

Eva Mierendorff & Konstantin Ziegler

We define formal OK-modules and their heights. To describe their universal de-
formations we introduce a formal cohomology group. Most of the results presented
in this paper are due to Drinfel’d (compare [D]§§1,4).
Except in the proof of Lemma 2.1, all constant coefficients of power series are

assumed to be 0.
Acknowledgements. During the preparation of Section 3 we profited from the talk

given by S. Wewers in the ARGOS seminar. We thank I. Vollaard for helpful com-
ments on a preliminary version.

1. Formal modules

Let A,R be commutative rings with 1 and i : A → R a homomorphism. We also
write a instead of i(a) for the image of a under i.

Definition 1.1. — 1. A formal A-module over R is a commutative formal group
law F (X,Y ) = X + Y + · · · ∈ R[[X,Y ]] together with a ring homomorphism
γ : A→ EndR(F ) such that the induced map A→ EndR(LieF ) ∼= R is equal to
the structure map i.

2. For a ∈ A we write γ(a)(X) = [a]F (X) = aX + . . . ∈ R[[X]] for the corre-
sponding endomorphism of F . We will also use the notation X +F Y instead of
F (X,Y ).

3. A homomorphism of formal A-modules over R is a homomorphism ϕ(X) :
F (X,Y ) → G(X,Y ) of formal group laws F (X,Y ), G(X,Y ) over R such that
ϕ ◦ γF (a) = γG(a) ◦ ϕ for all a ∈ A. Denote by HomR(F,G) the set of homo-
morphisms from F to G.

Definition 1.2. — For r ≥ 2 let νr = p, if r is a power of a prime p, and νr = 1
else. Denote by

Cr(X,Y ) =
1

νr
((X + Y )r −Xr − Y r)
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the modified binomial form of degree r.

Consider the functor which assigns to every A-Algebra R the set of formal A-
modules over R. It is represented by an algebra ΛA which is generated by the inde-
terminate coefficients of the series F and γ(a) and whose relations are those which
are required by the condition that (F, γ) is a formal module. It has a natural grading:
the degree of a coefficient is one less than the degree of the corresponding monomial
in X,Y . This grading is compatible with concatenation of power series. The elements
of the form ab with deg a,deg b ≥ 1 generate a homogeneous ideal. Let Λ̃A be the
quotient with induced grading Λ̃A =

⊕

Λ̃nA.
Denote by Ga,R the additive formal group law over R. With the canonical R-action

γ(a) = aX, it becomes an R-module over R.

Lemma 1.3. — If A is an infinite field, then for each formal A-module over A there

exists a unique isomorphism with Ga,A whose derivative at zero equals 1. In this case

ΛA ∼= A[c1, c2, . . . ] as graded algebras where deg ci = i.

To prove this lemma, one explicitly computes the desired isomorphism, compare
[D], Prop. 1.2.
From now on let K be a complete discretely valued field with finite residue field

Fq, where q = pl for some prime p. Denote by OK the ring of integers of K. Let π
be a uniformizer.

Theorem 1.4. — ΛOK
∼= OK [g1, g2, . . . ] as graded algebras where deg gi = i.

Proof. — First we show that Λ̃n−1OK

∼= OK as OK-modules for all n ≥ 2. For each i
let Fi and [a]i denote the polynomials of degree i obtained from the universal formal
module by leaving out all summands of higher degree. We write

Fn(X,Y ) = Fn−1(X,Y ) +

n−1
∑

i=1

ciX
iY n−i

and
[a]n = [a]n−1 + h(a)X

n.

Then the ci and h(a) generate Λ̃n−1OK
. As F is a formal group law, we obtain

∑n−1
i=1 ciX

iY n−i = αCn(X,Y ) (compare [H], Lemma 1.6.6). In particular, Λ̃
n−1
OK

is
generated by α and h(a). The condition that γ : OK → End(F ) is a homomorphism
implies that modulo (X,Y )n+1 we have

[ab]n−1(X) + h(ab)X
n = [a]n−1([b]n−1(X) + h(b)X

n) + h(a)(bX)n,

Fn−1([a]n−1(X) + h(a)X
n, [b]n−1(X) + h(b)X

n) + αCn(aX, bX)

= [a+ b]n−1(X) + h(a+ b)X
n,

and

[a]n−1(Fn−1(X,Y ) + αCn(X,Y )) + h(a)(X + Y )
n

= Fn−1([a]n−1(X) + h(a)X
n, [a]n−1(Y ) + h(a)Y

n) + αCn(aX, aY ).
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In Λ̃n−1OK
this leads to the relations

ah(b) + bnh(a) = h(ab)(1.1)

h(a+ b)− h(a)− h(b) = αCn(a, b)(1.2)

(an − a)α =

{

h(a) if n is not a power of a prime

h(a)p′ if n = p′l,
(1.3)

and these are all relations between the generators α, h(a) of Λ̃n−1OK
. If n is not a power

of a prime, then (1.3) shows that each h(a) is a multiple of α. If n is a power of a prime
but not of q, then there exists an a ∈ OK with a

n − a /∈ (π). From (1.1) we obtain
(an−a)h(b) = (bn−b)h(a), thus h(b) is a multiple of h(a). Finally (1.2) shows that α
is also a multiple of h(a). Now let n be a power of q. By choosing h(a) 7→ (an− a)/π

and α 7→ p/π we define an epimorphism of OK-modules Λ̃
n−1
OK

→ OK . It is well

defined as (1.1)-(1.3) are the only relations of Λ̃n−1OK
. It remains to prove that Λ̃n−1OK

is generated by h(π). Let M = Λ̃n−1OK
/(h(π)), and denote by x ∈ M the image of

x ∈ Λ̃n−1OK
. Then (1.1) shows that πh(b) = h(πb) = πnh(b), thus h(πb) = 0 for all

b ∈ OK . Besides, (1.3) shows (π
n − π)α = h(π)p = 0, hence πα = 0, and M is an

Fq-vector space. As n is a power of q, (1.1) reduces to ah(b) + bh(a) = h(ab). This
shows

h(a) = h(an) = nan−1h(a) = 0

for all a. Then (1.2) implies that Cn(a, b)α = 0 for all a, b ∈ Fq. By [H], Lemma
21.3.2 there is an x ∈ Fp with Cn(x, 1) 6= 0 in Fp. Thus α = 0 and M = 0.

Hence in all cases Λ̃n−1OK

∼= OK , and we have an epimorphism of graded algebras

OK [g1, g2, . . . ] → ΛOK
. Here gi is a lift of a generator of Λ̃

i
OK
. Lemma 1.3 implies

that ΛOK
⊗K ∼= K[c1, c2, . . . ]. Comparing dimensions one sees that the epimorphism

is an isomorphism.

2. Heights

Let OK be as above and let R be a local OK-algebra of characteristic p with residue
field k.

Lemma 2.1. — Let F,G be formal OK-modules over R and let α ∈ HomR(F,G) \
{0}. Then there is a unique integer h = ht(α) ≥ 0 and β ∈ R[[X]] with α(X) =

β(Xqh

) and β′(0) 6= 0. The integer h is called the height ht(α) of α.

This lemma is analogous to the corresponding result over a field, compare [H],
18.3.1. For α = 0 we set ht(α) =∞.

Proof. — We first show that α(X) = β(Xpn

) for some β with β′(0) 6= 0. To do this
we assume α(X) 6= 0 with (∂α/∂X)(0) = 0 and show that α(X) = β(Xp) for some
homomorphism β of (not necessarily the same) formal group laws. The claim then
follows by induction.
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Partial differentiation of α(F (X,Y )) = G(α(X), α(Y )) with respect to Y gives

∂α

∂X
(F (X,Y ))

∂F

∂Y
(X,Y ) =

∂G

∂Y
(α(X), α(Y ))

∂α

∂X
(Y ).

Substituting Y = 0 and using (∂α/∂X)(0) = 0 we obtain

∂α

∂X
(X)

∂F

∂Y
(X, 0) = 0.

As (∂F/∂Y )(X, 0) = 1+ a1X + · · · ∈ R[[X]]
×, we obtain ∂α

∂X
(X) = 0. Hence α(X) =

β(Xp) for some β ∈ R[[X]]. Let σ∗F be the formal group law obtained from F by
raising each coefficient to the pth power. Then an easy calculation shows that β is a
homomorphism from σ∗F to G.
We now have to show that pn is a power of q. Let a ∈ OK . Then

[a]G(α(X)) = α([a]F (X)) = β′(0)i(a)p
n

Xpn

+ · · ·

and on the other hand

[a]G(α(X)) = β′(0)i(a)Xpn

+ · · · .

This implies β′(0)(i(a)− i(ap
n

)) = 0 with β′(0) 6= 0, hence i(a)− i(ap
n

) = i(a− ap
n

)
maps to 0 in k. Thus ap

n

= a for all a ∈ Fq and pn is a power of q.

Definition 2.2. — The height of a formal OK-module F over R is

ht(F ) =

{

h if [π]F has height h

∞ if [π]F = 0.

Remark 2.3. — This definition is different from the definition of height of a formal
module given in [H], where it is defined as the height of the reduction of the module
over the residue field.

Lemma 2.4. — Let R be as above and let (F, γF ) be the formal OK-module corre-

sponding to a homomorphism ϕ : ΛOK
→ R. Then ht(F ) = min{i|ϕ(gqi−1) 6= 0}.

Proof. — In the proof of Theorem 1.4 we identified the generator gqi−1 of Λ̃
qi
−1

OK
with

the coefficient of Xqi

of [π](X).

The following lemma reduces the examination of formal modules over fields and
of their defomations to formal modules of an especially simple form. For a proof see
[D], Prop. 1.7.

Lemma 2.5. — Let (F, γ) be a formal OK-module of height h <∞ over a separably

closed field k of characteristic p > 0. Then F is isomorphic to a formal module

(F ′, γ′) over k with

F ′(X,Y ) ≡ X + Y (mod deg qh),
[a]F ′(X) ≡ aX (mod deg qh),

[π]F ′(X) = Xqh

.

Such modules are called normal modules.
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Fix an integer h > 1 and let F0 be a formal OK-module of height h over k. Assume
that R is a local artinian OK-algebra with maximal ideal m and residue field k. Let
I CR be an ideal. We set R = R/I. If F is a lift of F0 over R, we set F := F ⊗R R.

Lemma 2.6. — Let F,G be lifts of F0 over R. Then the reduction map

(2.1) HomR(F,G)→ HomR(F ,G)

is injective.

Proof. — The reduction map in (2.1) is the composition of finitely many maps

HomRn+1
(F ⊗Rn+1, G⊗Rn+1)→ HomRn

(F ⊗Rn, G⊗Rn),

where Rn = R/In with In = I∩mn. We may therefore assume that m·I = 0. Then I is
a finite dimensional k-vector space, and we have I2 = 0. Let α(X) = a1X+a2X

2+. . .
be a homomorphism from F to G such that α(X) ≡ 0 (mod I). We get

α([π]F (X)) = [π]G(α(X)) = 0.

Since ht(F0) < ∞, we have [π]F (X) 6= 0 (mod m), thus α = 0 which proves the
lemma.

From now on we may consider HomR(F,G) as a subset of HomR(F ,G).

3. Deformations of modules, formal cohomology

Let F be a formal OK-module of height h < ∞ over k, and let M be a finite
dimensional k-vector space. A symmetric 2-cocycle of F with coefficients in M is a
collection of power series ∆(X,Y ) ∈M [[X,Y ]] and {δa(X) ∈M [[X]]}a∈OK

satisfying

∆(X,Y ) = ∆(Y,X)(3.1)

∆(X,Y ) + ∆(F (X,Y ), Z) = ∆(Y,Z) + ∆(X,F (Y,Z))(3.2)

δa(X) + δa(Y ) + ∆([a]F (X), [a]F (Y )) = i(a)∆(X,Y ) + δa(F (X,Y ))(3.3)

δa(x) + δb(X) + ∆([a]F (X), [b]F (X)) = δa+b(X)(3.4)

i(a)δb(X) + δa([b]F (X)) = δab(X).(3.5)

For any Ψ ∈M [[X]], the coboundary of Ψ is the symmetric 2-cocycle (∆Ψ, {δΨa }) with

∆Ψ(X,Y ) = Ψ(F (X,Y ))−Ψ(X)−Ψ(Y )(3.6)

δΨa (X) = Ψ([a]F (X))− i(a)Ψ(X).(3.7)

The coboundaries form a subspace of the vector space Z2(F,M) of symmetric 2-
cocycles. The quotient of the symmetric 2-cocycles by the coboundaries is a k-vector
space denoted H2(F,M).
The following lemma is due to Keating, see [K2], Lemma 2.1.

Lemma 3.1. — A cocycle (∆; {δa}) ∈ Z
2(F,M) is zero if and only if δπ(X) = 0.
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Proof. — If the cocyle is zero, then clearly δπ(X) = 0. Assume conversely that
δπ(X) = 0. Substituting a = π in (3.3) gives

∆([π]F (X), [π]F (Y )) = 0,

since δπ(X) = 0 and i(π) = 0. As [π]F (X) 6= 0, this implies ∆(X,Y ) = 0. Condition
(3.5) with a = π together with δπ(X) = 0 shows δπb(X) = 0. The same formula with
b = π and a arbitrary gives δa([π]F (X)) = 0. This implies that δa(X) = 0, so all
components of the cocycle are zero.

In the following let R denote a local artinian OK-algebra with maximal ideal m

and residue field k. Let I ⊆ m be an ideal with mI = 0. Then I is a k-vector space.
We set R = R/I. If F0 is a formal module over k and F is a lift of F0 over R, denote
by F = F ⊗R R the reduction modulo I. The reduction modulo m of power series
over R is denoted by ·∗.

Proposition 3.2. — In the setting above let F0 be a formal OK-module over k and

let F,G ∈ R[[X,Y ]] be formal OK-modules with F
∗ = G∗ = F0. For ϕ(X) ∈ R[[X]]

let ϕ ∈ R[[X]] be the image. Assume that ϕ is a homomorphism from F to G. Then

1. There is an element of Z2(F0, I) defined by

∆ = ϕ(F (X,Y ))−G ϕ(X)−G ϕ(Y )

δa = ϕ([a]F (X))−G [a]G(ϕ(X)).

2. (∆; {δa}a) = 0 if and only if ϕ(X) ∈ HomR(F,G).
3. The class of (∆; {δa}a) in H

2(F0, I) is independent of the choice of the lift ϕ of

ϕ. It vanishes if and only if ϕ ∈ HomR(F,G) ⊆ HomR(F ,G). If (∆; {δa}) is
the coboundary of ψ, the lift of ϕ to a homomorphism over R is given by ϕ−Gψ.

Proof. — Applying ϕ to the left hand side of the associativity law for F

(3.8) (X +F Y ) +F Z = X +F (Y +F Z)

and using the definition of ∆, we get

(3.9) ϕ(X) +G ϕ(Y ) +G ϕ(Z) +G ∆(X,Y ) +G ∆(X +F Y,Z).

Applying ϕ to the right hand side of (3.8), we get

(3.10) ϕ(X) +G ϕ(Y ) +G ϕ(Z) +G ∆(X,Y +F Z) +G ∆(Y,Z).

From (3.10) and (3.9) we obtain

(3.11) ∆(X,Y ) +G ∆(X +F Y,Z) = ∆(X,Y +F Z) +G ∆(Y,Z).

Using the assumption m · I = 0, we see that (3.11) implies the second cocycle rule

(3.12) ∆(X,Y ) + ∆(X +F0 Y,Z) = ∆(X,Y +F0 Z) + ∆(Y,Z).

The other cocycle rules are proved in a similar manner, replacing (3.8) by the com-
mutativity resp. the distributivity law of F . This proves 1.
Part 2 of the proposition is a straightforward consequence of the definition of

(∆; {δa}). To prove 3., we continue with the notation used in the proof of 1. Let
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ϕ′(X) be another lift of ϕ, and let (∆′; {δ′a}) be the cocycle it defines. We can write
ϕ′ = ϕ+G ψ, with ψ ∈ I[[X]]. Then

ϕ′([π]F (X)) = [π]G(ϕ(X)) +G δπ(X) +G ψ([π]F (X))

= [π]G(ϕ
′(X)) +G (δπ(X) +G ψ([π]F (X))).

For the second equality we have used that Im = 0. We conclude that δ′π(X)−δπ(X) =
ψ([π]F (X)) is the π-component of the coboundary of ψ. Then Lemma 3.1 implies that
the two cocycles differ by the coboundary of ψ. Hence (∆; {δa}) and (∆

′; {δ′a}) lie in
the same class in H2(F0, I). It follows from 2. that this class vanishes if and only if
ϕ ∈ HomR(F,G). This completes the proof of 3. and the proposition.

Lemma 3.3. — In the setting of Proposition 3.2 let (F, γ) be a lift of F0 to R and

let F be the reduction to R.

1. Proposition 3.2 defines a bijection between deformations of F to R and cocycles

in Z2(F0, I). Its inverse is given by assigning to (∆; {δa}) the deformation

F∆(X,Y ) = X +F Y +F ∆(X,Y ) and γδ(a) = γ(a) +F δa.
2. Two cocycles are in the same cohomology class if and only if the corresponding

deformations are isomorphic via an isomorphism which lifts the identity of F .

Proof. — For the first assertion we have to check that (F∆, γδ) is a formal module.
From I2 = 0 we obtain that the equations (3.1) to (3.5) also hold with F replaced by
F∆. These equations immediately imply that (F∆, γδ) is a formal module. For F∆, F
and ϕ = X we obtain the cocycle (∆, {δa}). Then the second assertion follows from
Proposition 3.2, 3.

Corollary 3.4. — Let F0, R, and I be as above with char(R) = p, ht(F0) = h, and
(∆; {δa}) ∈ Z

2(F0, I).

1. Let g ≤ h. Then δπ(X) ≡ 0 (mod X
qg−1

+1) if and only if δπ ∈ I[[X
qg

]].
2. The following are equivalent:

(a) The cocycle (∆; {δa}) is the coboundary of some ψ(X) ∈ I[[X]].

(b) δπ ∈ I[[X
qh

]].
(c) Let (F, γ) be a lift of F0 to a formal OK-module over R. Then the identity

of F lifts to an isomorphism between (F, γ) and (F∆, γδ).
If these conditions are satisfied, (∆; {δa}) is the coboundary of ψ = d ◦ β−1

where d(Xqh

) = δπ(X) and β(X
qh

) = [π]F0(X).

Proof. — If δπ(X) ≡ 0 (mod X
qg−1

+1) then

[π]F∆(X) = δπ(X) +F [π]F (X) ≡ 0 (mod (Xqg−1
+1)),

thus ht(F∆) > g − 1. This shows that δπ(X) = [π]F∆(X) −F [π]F (X) is a power
series in Xqg

. The other assertion of 1. is trivial. The equivalence of (a) and (c) of
2. follows from Lemma 3.3. From Lemma 3.1 we see that (∆; {δa}) = (∆

ψ; {δψa }) for
some ψ if and only if δπ(X) = δψπ (X) = ψ([π]F (X)) = ψ([π]F0(X)). Here the last two
equations follow from Im = 0. As ht(F0) = h, this implies (b). On the other hand
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assume (b) and let d(Xqh

) = δπ(X) and β(X
qh

) = [π]F0(X). Then the π-component
of the coboundary of ψ = d ◦ β−1 is δπ.

Let ÔnrK be the completion of the maximal unramified extension of OK . Denote

by ÔnrK [[t]] = Ô
nr
K [[t1, . . . , th−1]] the power series ring over Ô

nr
K in h− 1 variables. Let

k = ÔnrK /(π).

Lemma 3.5. — Let (F, γF ) be a normal OK-module over k of height h <∞. Then

there exists a formal OK-module (Γ, γ) over ÔnrK [[t]] which over k reduces to F
with the following property: For 1 ≤ i ≤ h − 1 denote by (Γi, γi) the reduction to

ÔnrK [[t]]/(t1, . . . , ti−1). Then

(3.13) γi(π)(X) ≡ tiX
qi

(mod deg(qi + 1)).

Proof. — The module F corresponds to a map ϕ : ΛOK
∼= OK [g1, g2, . . . ] → k with

gi 7→ 0 for all i < qh − 1. Let ϕ : ΛOK
→ ÔnrK be a lift with the same property. We

choose

fi =

{

tj if i = qj − 1 with 1 ≤ j < h− 1

ϕ(gi) else.

Let Γ be the formal OK-module corresponding to the map ΛOK
→ ÔnrK [[t]] which

maps gi to fi. Then for (Γi, γi) we see that gqi−1 is the first generator which is

mapped to a nonzero element in ÔnrK [[t]]/(t1, . . . , ti−1). From the description of Λ̃
qi
−1

OK

in the proof of Theorem 1.4 we see that γi(π)(X) has the desired form.

Let (F, γF ) be a normal formal OK-module of height h <∞ over k. Let (Γ, γ) be

the deformation over ÔnrK [[t]] defined in Lemma 3.5. Let (Γ
i, γi) be the reduction of

(Γ, γ) to k[[ti]]/(ti)
2 = Ri and let (F, γF )Ri

be the base change of (F, γF ) to Ri.

Proposition 3.6. — For F as above we have dimkH
2(F, k) = h − 1. The cocycles

(∆i; {δia}) associated to the pairs of deformations (F, γF )Ri
and (Γi, γi) with values

in tiRi ∼= k satisfy

(3.14) δiπ ≡ tiX
qi

mod deg qi + 1.

Their classes form a basis for H2(F, k).

Proof. — Equation (3.14) immediately follows from (3.13). Corollary 3.4, 2. shows

that the π-components of coboundaries are power series in Xqh

. Thus (3.14) implies
that the classes of the cocycles (∆i; {δia}) are linearly independent in H

2(F, k). Let
(∆; {δa}) ∈ H2(F, k). Then by Corollary 3.4, 1., δπ is of the form β(Xqg

) with
β′(0) 6= 0. If g < h we subtract a suitable multiple of (∆g; {δga}) to annulate the
coefficient of Xqg

. In this way we can inductively represent the cocycle (∆; {δa}) as a
linear combination of the (∆i; {δia}) plus a cocycle whose π-component is congruent

to 0 modulo Xqh−1
+1. Hence by Corollary 3.4, the cohomology class is a linear

combination of the classes of the (∆i; {δia}).
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Definition 3.7. — Let R be a local ring with maximal ideal m. For a power series
f with coefficients in R let f∗ be the reduction modulo m. A ∗-isomorphism between
OK-modules F,G over R is an isomorphism ϕ ∈ HomR(F,G) with ϕ

∗(X) = X.

Let F be a fixed OK-module of height h < ∞ over k = ÔnrK /(π). We consider

the functor DF which assigns to each complete local noetherian Ô
nr
K -algebra R with

residue field k and maximal ideal m the set of ∗-isomorphism classes of formal OK-
modules over R that modulo m reduce to F .

Theorem 3.8 (Universal deformation). — Let (F, γF ) be an OK-module over k

of height h <∞. Then DF is represented by ÔnrK [[t]].

Proof. — As k is separably closed, Lemma 2.5 shows that we may assume (F, γF ) to

be normal. Let (Γ, γ) be the deformation over ÔnrK [[t]] of Lemma 3.5. Let (Φ, γΦ) ∈

DF (R) for some complete local noetherian Ô
nr
K -algebra R with residue field k and

maximal ideal m. As R is complete, it is enough to show that for each r ∈ N the
following holds: If the projection Φr of Φ to R/m

r corresponds to a homomorphism

ϕr : Ô
nr
K [[t]] → R/mr, then there is a unique lift ϕr+1 : Ô

nr
K [[t]] → R/mr+1 of ϕr

corresponding to Φr+1.
Let ψ be any lift of ϕr to R/m

r+1[[X]]. Then the pair of deformations ψ(Γ, γ),
(Φr+1, γΦr+1

) corresponds to an element of H2(F,mr/mr+1), hence to a uniquely

defined linear combination of the ∆i with coefficients ai in mr/mr+1. Let ϕr+1(ti) =
ψ(ti) + ai. Then by Corollary 3.4, the deformations Φr+1 and ϕr+1(Γ, γ) of F over
R/mr+1 are isomorphic via an isomorphism which lifts the given isomorphism over
R/mr. As the classes of the ∆i are linearly independent, ϕr+1 is unique.
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8. CANONICAL AND QUASI-CANONICAL LIFTINGS

by

Stefan Wewers

The present note gives a detailed account of Gross’ paper [G] on canonical and

quasi-canonical liftings. We make heavy use of results of Lubin and Tate [LT2] and

Drinfeld [D] which are reviewed in [MZ]. All the results presented here have been

generalized to the case of arbitrary finite height by J. K. Yu [Yu].

I thank Eva Mierendorff, Inken Vollaard and Michael Rapoport for careful proof-

reading and helpful discussions.

1. Canonical lifts

In this section we study canonical lifts of a formal OK-module of height two with

respect to a quadratic extension L/K. In particular, we prove the first main result

of [G] which computes the endomorphism ring of the reduction of a canonical lift

modulo some power of the prime ideal of OK .

1.1. Throughout this note, K denotes a field which is complete with respect to a

discrete valuation v, and whose residue class field is finite, with q = pf elements. We

denote by OK the ring of integers of K. We fix a prime element π of K, and we

assume that v(π) = 1.

Let i : OK → R be an OK-algebra. Recall that a formal OK-module over R

is given by a commutative formal group law F (X,Y ) = X + Y + . . . ∈ R[[X,Y ]]

together with a ring homomorphism γ : OK → EndR(F ) such that the induced map

OK → EndR(LieF ) ∼= R is equal to the structure map i. Whenever this is not

likely to be confusing, we will omit the maps i and γ from the notation. Given an

element a ∈ OK , we write [a]F (X) = i(a)X + . . . ∈ R[[X]] for the corresponding

endomorphism of F .
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If F1, F2 are two formal OK-modules over R, we write HomR(F1, F2) for the

group of homomorphisms α : F1 → F2 of formal OK-modules, i.e. OK-linear ho-

momorphisms of formal groups. Similarly, EndR(F ) denotes the (in general non-

commutative) ring of OK-linear endomorphisms of F . Note that EndR(F ) is an

OK-algebra.

1.2. Let k be an algebraic closure of the residue class field of OK . We regard k as

an OK-algebra, and write ā ∈ k for the image of an element a ∈ OK .

Let G be a formal OK-module over k and let α ∈ k[[X]] be an endomorphism of

G, with α 6= 0. By [MZ], Lemma 2.1, there exists an integer h = ht(α) ≥ 0, called

the height of α, such that α(X) = β(Xqh), with β′(0) 6= 0. It is easy to check that

the function ht : Endk(G) → Z≥0 ∪ {∞} (we set ht(0) := ∞) is a valuation on the

OK-algebra Endk(G). We say that the formal OK-module G has height h, if the

endomorphism [π]G has height h. In other words, the restriction of the valuation ht

via the structure map OK → Endk(G) is equal to h
−1 · v.

We recall the following fundamental result.

Theorem 1.1. — For each natural number h, there exists a formal OK-module G

over k of height h. It is unique up to isomorphism. The ring Endk(G) is isomorphic to

the maximal order OD of a division algebra D of dimension h2 over K, with invariant

inv(D) = 1/h.

Proof. — (Compare with [D], Proposition 1.7.) The existence of G follows from

Lubin-Tate theory, as follows. Let L/K be the unramified extension of degree h.

Extend the algebra map OK → k to OL, which gives k the structure of an OL-

algebra. Let F be the Lubin-Tate module of OL with respect to the prime element π,

i.e. the (unique) formal OL-module over OL such that [π]F = πX +Xqh , see [LT1].

By restriction, we may regard F as a formal OK-module. Then G := F ⊗k is a formal

OK-module of height h over k.

The uniqueness of G is more difficult. See e.g. [H], Theorem 21.9.1.

Let us sketch a proof of the last statement of Theorem 1.1. Set H := Endk(G).

We may assume that G is the reduction to k of the Lubin–Tate module for OL,

where L/K is unramified of degree h. Since the natural map OL = End(F ) → H is

injective (see [MZ], Lemma 2.6), we have OL ⊂ H. By construction, the group law

G(X,Y ) = X +Y + . . . and the endomorphisms [a]G(X) = āX + . . ., for a ∈ OK , are

power series with coefficients in Fq. Moreover, we have [π]G(X) = Xqh . Hence the

polynomial Π(X) := Xq defines an element Π ∈ H with Πh = π. One checks that

Π([a]G(X)) = [aσ]G(Π(X)),

where σ ∈ Gal(L/K) is the Frobenius. From there, it is easy to see that the subalgebra

OD := OL[Π] of H is the maximal order of a division algebra D of dimension h2 over

K, with invariant 1/h. It remains to be shown that OD = H.
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Let α(X) = āX+ . . . be an element of H. Since α commutes with [π]G(X) = Xqh ,

the coefficients of α lie in Fqh = OL/πOL. Let a ∈ OL be a lift of ā. Then α − [a]G
is an endomorphism of G with positive height, and therefore lies in the left ideal

H ·Π ⊂ H. We have shown that the natural map

OD −→ H/(H ·Π)

is surjective. Now the desired equality OD = H follows from the fact (which is easy

to prove) that H is complete with respect to the Π-adic topology.

1.3. For the rest of this note, we fix a formal OK-module G of height two over k.

By Theorem 1.1, G is uniquely determined, up to isomorphism, and OD := Endk(G)

is the maximal order in a quaternion division algebra D over K with invariant 1/2.

Let L/K be a quadratic extension. Let πL denote a prime element of L. By [S],

§XIII.3, Corollaire 3, there exists a K-linear embedding κ : L ↪→ D. It is unique

up to conjugation by elements of D×. We choose one such embedding and consider

L, from now on, as a subfield of D. Note that OL ⊂ OD. Via this last embedding,

we may regard G as a formal OL-module over k. In particular, we obtain a map

OL → End(LieG) = k, which extends the canonical morphism OK → k.

Let A be the strict completion of OL with respect to k. In other words, A is the

completion of the maximal unramified extension of OL, together with a morphism

A→ k extending the morphism OL → k.

Definition 1.2. — A canonical lift of G with respect to the embedding κ : L ↪→ D

is a lift F of G over A in the category of OL-modules.

In more detail, a canonical lift is a formal OK-module F over A, together with

an isomorphism of OK-modules λ : F ⊗ k
∼
→ G and an isomorphism of OK-algebras

γ : OL
∼
→ End(F ), such that the following holds. First, the composition of γ with the

regular representation End(F )→ End(LieF ) = A is the canonical inclusion OL ⊂ A.

Second, the composition of γ with the inclusion End(F ) ↪→ End(G) = OD induced

by λ is equal to κ. Note that γ is uniquely determined by the lift F and the first

condition. We will omit it from our notation and simply write [a]F : F → F for the

endomorphism γ(a). Also, the fixed embedding κ will mostly be understood, and we

write [a]G : G→ G for the endomorphism κ(a).

Since G has height one as an OL-module, it follows from [MZ], Theorem 3.8, that

a canonical lift F is uniquely determined, up to ∗-isomorphism, by the embedding

κ. On the other hand, using Lubin-Tate theory and the uniqueness statement of

Theorem 1.1, we also conclude that a canonical lift F exists, for any choice of κ. So

it is justified to speak about the canonical lift F of G, with respect to κ. By choosing

a suitable parameter X for F , we may always assume that

[πL]F (X) = πLX +Xq2/e ,

where e is the ramification index of the extension L/K.
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1.4. Let F be the canonical lift of G over A, with respect to a fixed embedding

κ : L ↪→ D. For any positive integer n, we set

An := A/πn+1
L A, Fn := F ⊗A An, Hn := EndAn(Fn).

Since OL ⊂ Hn for all n, we may consider the rings Hn as left OL-modules. We have

a sequence of OL-linear maps, which are injective by [MZ], Lemma 2.6:

Hn ↪→ Hn−1 ↪→ . . . ↪→ H0 = OD.

We shall consider Hn as an OL-submodules of OD. Since A is complete, we have

∩n≥0Hn = OL.

By [MZ], Proposition 3.2, we have an injective map

Hn−1/Hn ↪→ H1(G,Mn),

where Mn := (πnL)/(π
n+1
L ).

Lemma 1.3. — Fix n ≥ 1 and let α be an element of Hn−1−Hn. Then [πL]G ◦α ∈

Hn − Hn+1. In other words, multiplication with πL induces an injective homomor-

phism of OL-modules

Hn−1/Hn ↪→ Hn/Hn+1.

Proof. — We may represent α by a power series α(X) ∈ A[[X]], without constant

coefficient, whose reduction modulo πnL is an endomorphism of Fn−1. We write αn
for the reduction of α modulo πn+1

L . Set

ε := α ◦ [π]F −F [π]F ◦ α.

Since αn−1 is an endomorphism of Fn−1, we have ε ≡ 0 (mod πnL). Moreover, if

(∆, {δa}) ∈ Z2(G,Mn) denotes the cocycle associated to αn by [MZ], Proposition

3.2, then we have

ε ≡ δπ (mod πn+1
L ).

By assumption, the endomorphism αn−1 of Fn−1 cannot be lifted to an endomorphism

of Fn. Therefore, Corollary 3.4 of [MZ] shows that ε(X) = cXq + . . ., with c ∈

(πnL)− (πn+1
L ).

Set

ε′ := [πL]F ◦ α ◦ [π]F −F [π]F ◦ [πL]F ◦ α.

Since [πL]F is an endomorphism of F , we actually have ε′ = [πL]F ◦ ε. Using our

assumption [πL]F (X) = πLX + Xq2/e and the congruence ε ≡ 0 (mod πnL), we see

that

ε′ = πLcX
q + . . . ≡ 0 (mod πn+1

L ).

By [MZ], Corollary 3.4, this implies that [πL]F ◦ αn is an endomorphism of Fn, i.e.

[πL] ◦ α ∈ Hn. Moreover, if (∆′, {δ′a}) ∈ Z
2(G,Mn+1) denotes the cocycle associated

to [πL] ◦ αn+1, then we have

ε′ ≡ δ′π (mod πn+2
L ).



8. CANONICAL AND QUASI-CANONICAL LIFTINGS 79

Since πLc ∈ (πn+1
L )− (πn+2

L ), Corollary 3.4 of [MZ] shows that [πL]F ◦ αn cannot be

lifted to an endomorphism of Fn. This means that [πL] ◦ α 6∈ Hn+1.

We can now prove the main result of this section (Proposition 3.3 in [G]).

Theorem 1.4. — For n ≥ 1 we have Hn = OL + πnLOD.

Proof. — Each group Hn is a submodule of the free rank-two OL-module OD and

contains the direct factor OL ⊂ OD. Therefore, the quotients Hn−1/Hn are cyclic

OL-modules. By Lemma 1.3, these quotients are killed by πL. Hence Hn−1/Hn is

either 0 or isomorphic to OL/πLOL. We claim that only the second case occurs. The

case n = 1 is dealt with in the following lemma.

Lemma 1.5. — We have H1 6= H0 = OD.

We will prove this lemma in the next subsection. Lemma 1.3 says that left multi-

plication with πL induces an injective map Hn−1/Hn ↪→ Hn/Hn+1. So by induction

on n, Lemma 1.5 and the arguments preceding it show that Hn/Hn+1
∼= OL/πLOL

for all n and that OD/Hn is an OL-module of length n, killed by πnL. The theorem

follows immediately.

1.5. We are now going to prove Lemma 1.5. We distinguish two cases.

Case 1: L/K is unramified. In this case, we may assume that πL = π and hence

[π]F = πX +Xq2 . Then

OD = OL ⊕OL ·Π,

where Π = Xq, see the proof of Theorem 1.1. Let α =
∑

i≥q aiX
i ∈ A1[[X]] be a lift

of Π with leading term Xq. Let (∆, {δa}) ∈ Z
2(G,M1) be the cocycle associated to

α. Using Taylor expansion, we see that

δπ(X) = α([π]F1
(X))−F1

[π]F1
(α(X))

=
(
α(Xq2) + π · α′(Xq2)X

)
−F1

(
πα(X) + α(X)q

2 )

= −πXq + . . . 6= 0.

(Here we use the notation α′ := ∂α/∂X.) Therefore, by [MZ], Corollary 3.4, we have

Π 6∈ H1.

Case 2: L/K is ramified. Then πL satisfies an Eisenstein equation over OK , which

we may normalize to

π2L + aπL + π = 0,

with a ∈ πOK . Assuming, as usual, that [πL]F = πLX + Xq, a short computation

yields the congruence

(1.1) [π]F (X) ≡ −πLX
q −Xq2 + . . . (mod π).

Let j ∈ OD be an element which generates an unramified quadratic extension of K.

We may assume that j(X) = ūX+ . . ., where ū ∈ k generates the quadratic extension

of the residue class field of OK . Lift j to a power series α(X) = uX + . . . ∈ A1[[X]]
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modulo π, and let (∆, {δa}) ∈ Z2(G,M1) be the associated cocycle. Then uq 6≡ u

(mod πL). Using the congruence (1.1), we compute

δπ(X) = α([π]F1
(X))−F1

[π]F1
(α(X))

=
(
u(−πLX

q −Xq2) + . . .
)
−F1

(
− πLα(X)q − α(X)q

2 )

= πL(u
q − u)Xq + . . .

As in Case 1, we use [MZ], Corollary 3.4, to conclude that j 6∈ H1.

2. Isogenies and Tate modules

In this section we review the connection between the endomorphism ring and the

isogeny classes of a formal OK-module on the one hand, and lattices inside the Tate

module on the other hand. These results will be used in the following section on

quasi-canonical lifts.

2.1. As in the previous sections, K denotes a field which is complete with respect to

a discrete valuation and has a finite residue field of order q = pf . We let k denote an

algebraic closure of the residue field of K. Furthermore, A is a flat local OK-algebra

which is a complete discrete valuation ring with residue field k, and M is the fraction

field of A. We fix an algebraic closure M̄ of M .

Let F be a formal OK-module of finite height h over A (not necessarily a canonical

lift). We write

Λ(F ) := F (M̄)tor = ∪nF [π
n]

for the torsion subgroup of F and

T (F ) := lim
←−
n

F [πn]

for the Tate module of F . These are OK-modules with a continuous, OK-linear action

of Gal(M̄/M). As OK-modules, we have non-canonical isomorphisms

Λ(F ) ∼= (K/OK)h, T (F ) ∼= OhK .

Set V (F ) := T (F ) ⊗OK K; then we have a canonical short exact sequence of

Gal(M̄/M)-OK-modules

(2.1) 0→ T (F ) −→ V (F ) −→ Λ(F )→ 0.

Let A′ be a finite extension of A, and let F ′ be a formal OK-module over A′. An

isogeny between F and F ′ defined over A′ is a nonzero homomorphism α : F ⊗AA
′ →

F ′ of formal OK-modules. If such an isogeny exists, then we say that F ′ is isogenous

to F (over A′). For simplicity, we shall write α : F → F ′, and consider α as a power

series in OM̄ [[X]] whose coefficients generate a finite extension of A. We say that α

is defined over A′ if α ∈ A′[[X]].
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Given an isogeny α : F → F ′, we obtain a diagram

(2.2) 0

²²

0

²²

N

²²

0 // T (F ) //

T (α)

²²

V (F ) //

V (α)∼=

²²

Λ(F ) //

Λ(α)

²²

0

0 // T (F ′) //

²²

V (F ′) //

²²

Λ(F ′) //

²²

0

KokerT (α) 0 0

with exact rows and columns. Note that N is equal to the kernel of α; it is a finite

OK-submodule. A trivial version of the snake lemma shows that we have a canonical

isomorphism N ∼= KokerT (α).

The following theorem states that every finite OK-submodule of Λ(F ) arises as the

kernel of an isogeny. More precisely:

Theorem 2.1. — Let N ⊂ Λ(F ) be a finite OK-submodule, Γ
′ ⊂ Γ the stabilizer of

N , M ′ ⊂ M̄ the fixed field of Γ′ and A′ the valuation ring of M ′. Then the formula

α(X) :=
∏

z∈N

(X −F z) ∈ A
′[[X]]

defines an isogeny α : F → F ′ over A′. It has the following properties.

1. Ker(α) = N .

2. Let β : F → F ′′ be an isogeny with N ⊂ Ker(β). Then there exists a unique

isogeny γ : F ′ → F ′′ with β = γ ◦ α.

Proof. — See [H], §35.2.

2.2. It will be more convenient for us to reformulate Theorem 2.1 in terms of lattices

T ′ ⊂ V (F ) (instead of finite subgroups N ⊂ Λ(F )). Let F be a formal OK-module

of finite height over A. Set T := T (F ) and V := V (F ).

Corollary 2.2. — 1. Let T ′ ⊂ V be an OK-lattice containing the lattice T (a

superlattice). Then there exists an isogeny α : F → F ′ such that T ′ =

V (α)−1(T (F ′)). If T ′′ is a superlattice of T ′ and β : F → F ′′ an isogeny

with T ′′ = V (β)−1(T (F ′′)), then there exists a unique isogeny γ : F ′ → F ′′ such

that β = γ ◦ α.

2. Let T ′ ⊂ T be an OK-sublattice. Then there exists an isogeny α : F ′ → F

such that T ′ = Im(T (α)). If T ′′ ⊂ T ′ is another sublattice, and β : F ′′ → F

is an isogeny such that T ′′ = Im(T (β)), then there exists a unique isogeny

γ : F ′′ → F ′ with β = α ◦ γ.
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Proof. — Given T ′ as in Part 1, we set N := T ′/T . Via the short exact sequence

(2.1), we consider N as a (finite) OK-submodule of V . Let α : F → F ′ be the isogeny

with kernel N , which exists by Theorem 2.1.1. Then the diagram (2.2) shows that

T ′ = V (α)−1(T (F ′)). This proves the first assertion in Part 1. The second assertion

follows from Theorem 2.1.2.

We are now going to prove Part 2 of the corollary. Let T ′ ⊂ T be a sublattice.

Choose an integer n such that πnT ⊂ T ′. By Part 1 of the corollary, there exists an

isogeny β : F → F ′ such that V (β)−1(T (F ′)) = π−nT ′. The kernel of β is isomorphic

to π−nT ′/T , which is an OK-module killed by πn. Therefore, Theorem 2.1.2 shows

that there exists an isogeny α : F ′ → F with α◦β = [πn]F . By construction, we have

Im(T (α)) = πn · V (β)−1(T (F ′)) = T ′.

This proves the first assertion of Part 2. The proof of the second assertion is left to

the reader.

2.3. Let F , T and V be as before. The faithful representation of End(F ) on V

extends to a faithful representation

End0(F ) := End(F )⊗OK K ↪→ EndK(V ).

We will from now on consider elements of End0(F ) as elements of EndK(V ).

Let T ′, T ′′ be OK-superlattices of T inside V . Let α : F → F ′ and β : F → F ′′

be the corresponding isogenies, as in Corollary 2.2.1. We identify V (F ′) and V (F ′′)

with V , via the isomorphisms V (α) and V (β). Then T ′ = T (F ′) and T ′′ = T (F ′′).

Corollary 2.3. — The map which sends a homomorphism ψ : F ′ → F ′′ to the

induced endomorphism ψ̃ : V ∼= V (F ′)→ V (F ′′) ∼= V is a bijection

Hom(F ′, F ′′)
∼
−→ { ψ̃ ∈ End0(F ) | ψ̃(T ′) ⊂ T ′′ }.

Proof. — Let ψ : F ′ → F ′′ be a homomorphism and ψ̃ ∈ EndK(V ) the induced

endomorphism of V . By definition, we have ψ̃(T ′) ⊂ T ′′. We have to show that

ψ̃ ∈ End0(F ). Set γ := ψ ◦ α : F → F ′′. The isogeny γ corresponds, via Corollary

2.2.2, to the sublattice ψ̃(T ) ⊂ T ′′. From the same point of view, the isogeny β :

F → F ′′ corresponds to the sublattice T ⊂ T ′′. Choose an integer n such that

πnψ̃(T ) ⊂ T . Then by Corollary 2.2.2, there exists an endomorphism φ : F → F such

that β ◦ φ = γ ◦ [πn]F . One checks that φ = πnψ̃, as elements of EndK(V ), which

shows that ψ̃ ∈ End0(F ).

Conversely, let ψ̃ be an element of End0(F ) ⊂ EndK(V ) with ψ̃(T ′) ⊂ T ′′. By

definition, we can write ψ̃ = π−nφ for some endomorphism φ : F → F . The isogeny

α◦ [πn]F : F → F ′ (resp. the isogeny β◦φ : F → F ′′) corresponds, via Corollary 2.2.1,

to the superlattice π−nT ′ ⊃ T (resp. the superlattice φ−1(T ′′) ⊃ T ). The assumption

ψ̃(T ′) ⊂ T ′′ together with ψ̃ = π−nφ implies π−nT ′ ⊂ φ−1(T ′′). Therefore, by

Corollary 2.2.1, there exists an isogeny ψ : F ′ → F ′′ with ψ ◦ α ◦ [πn]F = β ◦ φ. By



8. CANONICAL AND QUASI-CANONICAL LIFTINGS 83

construction, ψ̃ is the image of ψ under the embedding Hom(F ′, F ′′) ↪→ EndK(V ).

This concludes the proof of the corollary.

3. Quasi-canonical lifts

A quasi-canonical lift is a lift whose endomorphism ring is an order in a quadratic

extension L/K. In this section we show that every quasi-canonical lift is isogenous to

a canonical lift, and we determine the set of isomorphism classes of all quasi-canonical

lifts together with its natural Galois action.

3.1. We now come back to the situation of Section 1. In particular, G is the (unique)

formal OK-module of height two over k. We fix a quadratic extension L/K, an OK-

linear embedding κ : OL ↪→ OD := Endk(G). We denote by F the canonical lift of G

with respect to κ. Recall that F is defined over A, the strict completion of OL with

respect to the map OK → k induced by the OL-action on Lie(G).

Let M denote the fraction field of A, M̄ an algebraic closure of M and Γ :=

Gal(M̄/M). We let T := T (F ) denote the Tate-module of F and V := T⊗OKK. Note

that T has the structure of a free OL-module of rank one, and that the Γ-action on

T is continuous and OL-linear. By Lubin–Tate theory, the resulting homomorphism

(3.1) ρ : Γ = Gal(M̄/M) −→ O×L

yields an isomorphism Γab ∼
→ O×L . Identifying Γ with the inertia subgroup

of Gal(L̄/L), the homomorphism (3.1) is the inverse of the reciprocity map

L× → Gal(L̄/L)ab of local class field theory, restricted to O×L . See [LT1].

Fix an integer s ≥ 0. Let

Os := OK +OL · π
s

denote the order of OL generated by OK and the ideal OL · π
s. It is easy to see

that every order of OL containing OK is equal to Os, for some s. Let Ms/M be the

ring class field of O×s , i.e. the fixed field of the subgroup Γs ⊂ Γ, where Γs is the

inverse image of O×s ⊂ O
×
L under the inverse reciprocity homomorphism (3.1). In

other words, we have

Gal(Ms/M) ∼= O×L /O
×
s .

An easy computation shows that, for s ≥ 1,

[Ms :M ] = |O×L /O
×
s | =

{
qs−1(q + 1), if L/K is unramified,

qs, if L/K is ramified.

Definition 3.1. — A quasi-canonical lift of G of level s (with respect to the embed-

ding κ : OL ↪→ OD) is a lift F of G, defined over some finite extension A′/A, together

with an OK-algebra isomorphism γ : Os
∼
→ End(F ′), such that the following holds.

1. The composition of γ with the representation End(F ′) ↪→ End(LieF ′) = A′ is

the canonical embedding Os ↪→ A′.
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2. The composition of γ with the embedding End(F ′) ↪→ OD is equal to the

restriction of κ to Os ⊂ OL.

To ease the notation, we will usually omit the isomorphism γ and the embedding

κ from our notation. Note that a quasi-canonical lift of level 0 is the same thing as a

canonical lift (which exists and is unique). For general s, we have the following result.

Theorem 3.2. — Let As denote the ring of integers of Ms.

1. Let F ′ be a quasi-canonical lift of level s. Then there exists an isogeny

α : F → F ′

of degree qs, defined over As. It is unique up to composing α with an element

of Aut(F ) = O×L . In particular, F ′ can be defined over As.

2. The set of ∗-isomorphism classes of all quasi-canonical lifts of level s is a prin-

cipal homogeneous space under the action of Gal(Ms/M).

Remark 3.3. — The proof of this theorem will show that the action of Gal(Ms/M)

on the set of ∗-isomorphism classes can be described as follows. Let (F ′, λ) be a

quasi-canonical lift of level s (with λ : F ′⊗ k
∼
→ G), and σ ∈ Γ. Then the lift (F ′, λ)σ

is ∗-isomorphic to the lift (F ′, [ρ(σ)−1]G ◦λ). Therefore, by Theorem 3.2.2, two quasi-

canonical lifts of the same level are always isomorphic as formal OK-modules.

3.2. Let α : F → F ′ and β : F → F ′′ be two isogenies with source F . We say

that α and β are isomorphic if there exists an isomorphism of formal OK-modules

γ : F ′
∼
→ F ′′ with β = γ ◦ α.

Fix an isogeny α : F → F ′. To simplify the notation, we will identify V (F ′)

with V via the isomorphism V (α). Then, by Corollary 2.2.1, α corresponds, up to

isomorphism, to an OK-superlattice T ′ ⊃ T in V . Moreover, by Corollary 2.3, α

induces an isomorphism of OK-algebras

(3.2) End(F ′)
∼
−→ {φ ∈ L = End0(F ) | φ(T ′) ⊂ T ′ }.

This exhibits End(F ′) as an order of OL.

Lemma 3.4. — Let T be a free OL-module of rank one, V := T ⊗OK K. Let T ′ ⊃ T

be an OK-superlattice in V . Then there exists a generator t of T (i.e. T = OL · t)

and integers n, s ≥ 0 such that

πnL · T
′ = (OK · π

−s +OL) · t.

Moreover, the multiplicator OT ′ of T
′ is equal to the order Os ⊂ OL.

Proof. — For T ′ ⊃ T as in Part 1, define

n := max{n′ | πn
′

L T
′ ⊃ T }, s := min{ s′ | πs

′

πnLT
′ ⊂ T }.

Then πnLT
′/T is a cyclic OK-module, generated by an element of the form π−st.

Moreover, any t with this property is a generator of T . It follows that πnLT
′ =
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(OK ·π
−s+OL) · t. The proof of the fact that Os is the multiplicator of T ′ is standard

and left to the reader.

A superlattice T ′ ⊃ T is calledminimal of level s if T ′ = (OK ·π
−s+OL)·t, for some

generator t of T . The corresponding isogenies α : F → F ′ are also called minimal of

level s. We let Xs denote the set of isomorphism classes of minimal isogenies of level

s. The Galois group Γ acts on Xs, in a natural way. There is also an action of O×L
on Xs, given by composing α : F → F ′ with the automorphism [a]F : F

∼
→ F , for

a ∈ O×L .

Proposition 3.5. — The actions of Γ and O×L on Xs are anti-compatible via the

reciprocity homomorphism ρ : Γ → O×L , i.e. for σ ∈ Γ there exists an isomorphism

γσ : (F ′)σ
∼
→ F ′ such that the diagram

F
ασ

//

[ρ(σ)−1]F

²²

(F ′)σ

γσ

²²

F
α

// F ′

commutes. Furthermore, Xs is a principal homogeneous space under the induced

action of Gal(Ms/M) ∼= O×L /O
×
s .

Proof. — If the isogeny α : F → F ′ corresponds to the lattice T ′, then α ◦ [a]F :

F → F ′, for a ∈ OL, corresponds to the lattice a−1 · T ′. Therefore, it follows

immediately from Lemma 3.4 that the action of O×L on Xs is transitive, and the

stabilizer of each element is equal to O×s . To see that this action is compatible with

the Galois action, fix an element σ ∈ Γ. Clearly, the kernel of ασ can be identified

with (T ′/T )σ = ρ(σ) ·T ′/T . Since this is also the kernel of α◦ [ρ(σ)−1]F , the existence

of γσ follows from Theorem 2.1. The proposition is proved.

Proof of Theorem 3.2. — We first prove Part 1 of the theorem. Let F ′ be a quasi-

canonical lift of level s. Set T ′ := T (F ′) and V ′ := T ′⊗OKK. The isomorphism Os
∼
→

End(F ′) extends to an isomorphism L
∼
→ End0(F ′), which gives V ′ the structure of

an L-vectorspace of dimension one and identifies Os with the multiplicator of the

lattice T ′ ⊂ V ′.

Let T ′′ ⊂ T ′ be a maximal OL-submodule of rank one. Then T ′ = (OK ·π
−s+OL)·t

for some generator t of T ′′, by Lemma 3.4. Let α : F ′′ → F ′ be an isogeny with

Im(T (α)) = T ′′, see Corollary 2.2.2. By Corollary 2.3, α induces an isomorphism

End(F ′′) ∼= {φ ∈ End0(F ′) = L | φ(T ′′) = T ′′ } ∼= OL.

Therefore, F ′′ ∼= F as formal OK-modules. Choosing an arbitrary isomorphism F ′′ ∼=

F , we can regard α : F ∼= F ′′ → F ′ as an element of Xs. Since O×L acts transitively

on Xs, by Proposition 3.5, we have proved Part 1 of Theorem 3.2.
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Now we prove Part 2 of the theorem. In view of Part 1 and Proposition 3.5, we

only need to show the following. For every minimal isogeny α : F → F ′ of level s,

there exists an isomorphism λ : F ′ ⊗ k
∼
→ G which makes F ′ a quasi-canonical lift.

For this, we may assume that the isogeny α is given, as a power series with coefficients

in As, by the formula of Theorem 2.1:

α(X) :=
∏

γ∈Ker(α)

(X −F γ).

Here Ker(α) is simply considered as a subset of the maximal ideal of the ring of

integers of M̄ . Therefore, the reduction of α to k is ᾱ(X) = Xqs . By the proof of

Theorem 1.1, we may assume that Π(X) := Xq is an endomorphism of G and lies in

the normalizer of OL = End(F ) ⊂ OD. In particular, ᾱ = Πs is an endomorphism of

G. Therefore, F ′⊗k is actually equal to G. We define the isomorphism λ : F ′⊗k
∼
→ G

as the identity and claim that (F ′, λ) is a quasi-canonical lift.

By construction, we have an isomorphism

(3.3) End(F ′) ∼= {φ ∈ L = End0(F ) | φ(T ′) = T ′ } ∼= Os.

Hence the image of the natural injection End(F ′) ↪→ End(LieF ′) = As is an OK-

algebra isomorphic to Os. It must therefore be equal to Os. Let γ : Os
∼
→ End(F ′) be

the resulting isomorphism. Then Condition 1 of Definition 3.1 holds by construction.

Let κ′ : Os ↪→ OD be the composition of γ with the embedding End(F ′) ↪→ OD
induced by the identification F ′ ⊗ k = G. We have to show that κ′ is equal to

the restriction of κ to Os (see Condition 2 of Definition 3.1). Tracing back the

definitions, we see that κ′ = (κ|Os)
ᾱ is the conjugate of κ|Os by ᾱ = Πs ∈ OD. Since

we assumed Π to lie in the normalizer of the image of κ, we have already proved

that κ′ and κ|Os have the same image and are equal up to composition with an

element of Gal(L/K) ∼= Z/2. However, if L/K is ramified, then the assumption that

Π normalizes OL already implies that Π ∈ OL, and we get κ′ = κ|Os as desired.

Now assume that L/K is unramified. Then it suffices to show that κ′ and κ|Os
agree modulo the maximal ideal OD ·Π. But this is a consequence of Condition 1 of

Definition 3.1. This concludes the proof of Theorem 3.2.

4. Canonical subgroups

The main result of this section is Proposition 4.6 which computes the valuation of

the formal modulus of a quasi-canonical lift. The heart of the proof of this proposition

is the study of canonical subgroups and their behavior under isogenies. The relevance

of canonical subgroups was first pointed out in [L].

4.1. We continue with the notation used in the last section. In particular, A is the

completion of the maximal unramified extension of OL and M the fraction field of
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A. We choose an algebraic closure M̄ of M and let v : M̄ → Q ∪ {∞} denote the

exponential rank-one valuation with v(π) = 1.

Let M ′/M be some finite extension, and let A′ denote the valuation ring of M ′.

Throughout this section, we will implicitly assume that the extension M ′/M is ‘suf-

ficiently large’. In practice this will mean that sometimes we have to enlarge M ′ in

order to make certain torsion points M ′-rational.

For the moment, we fix an arbitrary lift F of the formal OK-module G, defined

over A′ (not necessarily the canonical lift). By [MZ], Theorem 3.8, F is isomorphic to

the pullback of the universal deformation F̃ of G via a unique Ônr
K -algebra morphism

Runiv → A. Moreover, Runiv can be written as a power series algebra Ônr
K [[u]]. There

is no natural choice for the parameter u; we fix one suitable u once and for all.

Definition 4.1. — The image of the parameter u under the morphism Runiv → A′

corresponding to F is denoted by u(F ) and is called the formal modulus of the lift F .

The rational number v(F ) := min{v(u(F )), 1} is called the valuation of F .

Remark 4.2. — It is clear that the valuation v(F ) is actually independent of the

choice of the parameter u. Therefore, v(F ) depends only on the isomorphism class

of F as a formal OK-module, and not on the chosen isomorphism λ : F ⊗ k
∼
→ G.

Indeed, a unit γ ∈ O×D induces an automorphism γ̃ of the universal deformation space

of G (which sends the pair (F, λ) to the pair (F, γ ◦ λ)). Applying the automorphism

γ̃ amounts to replacing the parameter u by u′ := γ̃∗u.

Definition 4.3. — A sub-OK-module H ⊂ F [π] of length one is called a canonical

subgroup if

v(x) > v(y)

for all x ∈ H and y ∈ F [π]−H.

Note that a canonical subgroup, if it exists, is unique. We may therefore speak

about the canonical subgroup of F . The two last definitions are related to each other

in the following manner.

Proposition 4.4. —

1. Write [π]F =
∑

i≥1 aiX
i, with ai ∈ A

′. Then v(F ) = min{v(aq), 1}.

2. The lift F has a canonical subgroup if and only if

v(F ) <
q

q + 1
.

Proof. — It follows from the proof of [MZ], Theorem 3.8, that we can choose for the

parameter u defining the isomorphism Runiv ∼= Ônr
K [[u]] the qth coefficient of [π]F̃ ,

where F̃ is the universal deformation of G. Therefore, Part 1 of the proposition is

a direct consequence of the definition of v(F ). Now Part 2 is easily seen by looking

at the Newton polygon of [π]F . Indeed, the slope filtration on the set F [π] − {0} is

also a filtration of OK-modules. But as an OK-module, F [π] has length two, so there
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can be at most two finite negative slopes. Also, breaks occur only at i = 1, q2 and

possibly at i = q. Since v(a1) = 1 and v(aq2) = 0, we have a break at i = q if and

only if v(F ) < q/(q + 1).

4.2. Fix a lift F of G defined over A′ and a sub-OK-module H ⊂ F [π] of length one.

Let α : F → F ′ be the isogeny with kernel H, defined by Theorem 2.1. Recall that α

is given by the power series

(4.1) α(X) :=
∏

x∈H

(X −F x).

Let us choose an isomorphism λ′ : F ′ ⊗ k
∼
→ G. We will use λ′ as an identification,

i.e. we will regard F ′ as a lift of G. As in Section 3.2, one can choose λ′ in such a

way that α ⊗ k gets identified with the isogeny Π = Xq : G → G. However, this

choice is not at all canonical. In what follows, we are mainly interested in relating

the two valuations v(F ) and v(F ′). By Remark 4.2, the choice that we have made is

irrelevant for this problem.

Let β : F → F ′ be the unique isogeny such that [π]F = β ◦ α. Then H ′ := ker(β)

is equal to the image of F [π] under the isogeny α. Clearly, H ′ is an OK-module of

length one.

Proposition 4.5. — 1. Suppose that H is the canonical subgroup of F . There

are two cases:

(a) If v(F ) ≤ 1
q
then v(F ′) = q · v(F ) and H ′ is not canonical.

(b) If 1
q
< v(F ) < q

q+1 then v(F
′) = 1−v(F ) and H ′ is the canonical subgroup

of F ′.

2. Suppose that H is not the canonical subgroup of F . Again we have two cases:

(a) If v(F ) ≤ q
q+1 then v(F ′) = q−1 · v(F ).

(b) If v(F ) ≥ q
q+1 then v(F ′) = 1/(q + 1).

In both cases, H ′ is the canonical subgroup of F ′.

Proof. — Suppose that H is canonical. By Proposition 4.4, we have v(F ) < q/(q+1).

Moreover, the proof of this proposition shows that the Newton polygon of [π]F has

exactly two finite negative slopes, namely

s1 = −
1− v(F )

q − 1
, s2 = −

v(F )

q2 − q
.

Here s1 is the slope above the interval [1, q] and corresponds to the canonical subgroup,

whereas s2 is the slope above [q, q2].

Pick an element y ∈ F [π] −H; then v(y) = −s2 = v(F )/(q2 − q). It follows from

(4.1) that the element z := α(y) ∈ H ′ has valuation

v(z) =
∑

x∈H

v(y −F x) = q · v(y) =
v(F )

q − 1
.
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Now if v(F ) ≤ 1/q then v(z) ≤ 1/(q2 − q). This means that −v(z) is equal to the

slope of the Newton polygon of [π]F ′ above the interval [q, q2]. We conclude that

v(F ′) = (q2 − q) · v(z) = q · v(F )

and that H ′ is not the canonical subgroup of F ′. On the other hand, if v(F ) > 1/q

then v(z) > 1/(q2 − q). Therefore, v(z) is equal to the slope above the interval [1, q].

We conclude that

v(F ′) = 1 − (q − 1) · v(F ) = 1− v(F )

and that H ′ is the canonical subgroup of F ′. This finishes the proof of Case 1. The

proof of Case 2 is similar and left to the reader.

4.3. Let us now assume that the lift F is the canonical lift of G with respect to some

fixed embedding κ : L ↪→ D. Note that we have v(F ) = 1 if L/K is unramified and

v(F ) = 1/2 if L/K is ramified. In the former case, F has no canonical subgroup,

whereas in the latter case the canonical subgroup of F is the kernel of [πL]F .

For s = 1, 2, . . ., we define isogenies αs : F → Fs inductively, as follows. First,

choose a non-canonical OK-submodule H ⊂ F [π] of height one. Set F1 := F/H and

let α1 : F → F1 be the natural projection. For s ≥ 1, choose a non-canonical OK-

submodule Hs ⊂ Fs[π] of height one, set Fs+1 := Fs/Hs and let αs+1 : F → Fs+1 be

the composition of αs with the natural projection Fs → Fs+1. As we have seen in the

last section, we can see Fs as a lift of G in such a way that the isogeny αs reduces to

the endomorphism Πs : G→ G modulo the maximal ideal of A′. This choice is by no

means canonical; however, for the statement of the next proposition, the choice that

we have made is irrelevant, see Remark 3.3 and Remark 4.2.

Proposition 4.6. — The lift Fs is quasi-canonical of level s, and we have

v(Fs) =





1

qs−1(q + 1)
, if L/K is unramified and s ≥ 1,

1

2qs
, if L/K is ramified.

Proof. — We proceed by induction over s. We start the induction at s = 1 if L/K is

unramified and at s = 0 in the ramified case (one has to be careful with the notation:

plugging in s = 0 into Fs should be understood as F ). If L/K is unramified, then

v(F ) = 1 > q/(q + 1), and Proposition 4.5, Case 2(b), shows that v(F1) = 1/(q + 1).

This is indeed as in the statement of the proposition. The statement of the proposition

is also true for s = 0 if L/K is ramified.

Suppose now that s ≥ 1 or that L/K is ramified. Then v(Fs) ≤ q/(q + 1), so

Proposition 4.5, Case 2(a), shows that

v(Fs+1) =
v(Fs)

q
.

We see that the formula for v(Fs) follows by induction.
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Since Fs is isogenous to F , it is a quasi-canonical lift of some level. By construction,

the isogeny αs : F → Fs has degree qs. Let n be the maximal integer such that αs
factors over [πnL] : F → F . The proof of Theorem 3.2 shows that Fs is quasi-canonical

of level s′ := s− 2n/e.

Suppose n > 0. By the induction hypothesis, Fs′ is quasi-isogenous of level s′.

Therefore, by Remark 3.3, Fs′ and Fs are isomorphic as formal OK-modules. But

then we have v(Fs) = v(Fs′). This gives a contradiction with the formula for v(Fs)

which we have already proved. We conclude that n = 0, i.e. that Fs is quasi-canonical

of level s.

Corollary 4.7. — Let Fs be a quasi-canonical lift of level s and As/A be the smallest

extension over which it can be defined. Then the formal modulus u(Fs) ∈ As of Fs is

a uniformizer for the valuation ring As.

Proof. — It follows from Theorem 3.2 that As is the ring of integers of the extension

Ms/M , the ring class field of O×s . Moreover, we may assume that Fs is the lift

constructed before Proposition 4.5. Therefore, the formula for v(Fs) in Proposition

4.5 shows that the valuation of u(Fs) is equal to the reciprocal of the degree [Ms :M ].

This concludes the proof.

Corollary 4.8. — Let Fs and Fs+1 be quasi-canonical lifts of level s and s + 1,

respectively. Let β : Fs → Fs+1 be an isogeny of height one. Then H := ker(β) is not

the canonical subgroup, and

v(Lie(β)) = v(Fs+1).

Proof. — We note that β identifies Fs+1 with the quotient Fs/H. It follows from the

proof of Proposition 4.6 that H is not the canonical subgroup of Fs and that therefore

the nonzero elements x ∈ H have valuation

v(x) =
v(Fs)

q2 − q
.

Set b := Lie(β). The formula for β in terms of H (see Theorem 2.1) shows that

v(b) =
∑

x∈H−{0}

v(x) =
v(Fs)

q
.

By Corollary 4.7, this is equal to v(Fs+1).

5. Some complements

We prove some technical results which are needed in [R].
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5.1. Let K and k be as before. Let G be the formal OK-module of height two over

k, with endomorphism ring OD. We have seen in [MZ] that the formal cohomology

group H2(G, k) has dimension h−1 = 1. Therefore, the universal deformation ring of

G is W [[t]] (where W = Ônr
K is the completion of the maximal unramified extension

of OK).

Let A be a complete local OK-algebra with residue field k and I C A an ideal

with mA · I = 0. Set Ā := A/I. Let F, F ′ be two deformations of G over A and

ᾱ : F⊗Ā→ F ′⊗Ā a homomorphism which is defined modulo I. Then the obstruction

for lifting ᾱ to a homomorphism α : F → F ′ is an element of the k-vectorspace

H2(G, I) ∼= H2(G, k)⊗k I.

Indeed, as in [MZ], Section 3, a lift α(X) ∈ A[[X]] of ᾱ as a power series defines a

cocycle (∆; δa),

∆(X,Y ) := α(X +F y)−F ′ α(X)−F ′ α(Y ),

δa(X) := α([a]F (X))−F ′ [a]F ′(α(X)).

The cohomology class of this cocycle is independent of the chosen lift α. It vanishes

if and only if there exists some lift α which is a homomorphism F → F ′. If this is

the case, then the lift which is a homomorphism is unique.

Let F be the universal deformation of G overW [[t]], and let F ′ be another universal

deformation over W [[t′]]. Hence the pair (F, F ′) is defined over the formal scheme

S = Spf R, where R :=W [[t, t′]].

Proposition 5.1. — Let α : G→ G be an isogeny, i.e. α 6= 0. Let J be the minimal

ideal of R such that α lifts to an isogeny F → F ′ modulo J . Then the closed formal

subscheme T of S defined by J is a relative divisor over SpfW .

Proof. — We have to show that J is generated by one element which is neither a unit

nor divisible by p. Suppose, for the moment, that α 6∈ OK and set L = K(α) ⊂ D. Let

M be the completion of the maximal unramified extension of L and F1 the canonical

lift of G with respect to OL ⊂ OD (which is defined over OM ). There is a unique

homomorphism of OK-algebras ϕ : W [[t, t′]] → OM which induces the identity on k,

such that the pair (F1, F1) is ∗-isomorphic to the pullback of the pair (F, F ′) via ϕ.

By construction, J is contained in the kernel of ϕ. This shows J 6= R, at least if

α 6∈ K. The case α ∈ K is handled in a similar way.

Suppose that J ⊂ (π). This means that α lifts to an isogeny F → F ′ over k[[t, t′]].

Setting t′ = 0, the isogeny α would then induce an isogeny between F ⊗W [[t]] k((t))

and G⊗k k((t)). But F ⊗W [[t]] k((t)) has height h− 1 = 1 (see [MZ]) and is therefore

not isogenous to the height-two module G ⊗k k((t)). This gives a contradiction and

shows that J 6⊂ (p).

Let m denote the maximal ideal of R. Set A := R/mJ and I := J/mJ . Then

m · I = 0, and Ā = A/I ∼= R/J . Clearly, α lifts to a homomorphism F ⊗ Ā→ F ′ ⊗ Ā
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but not to a homomorphism F⊗A→ F ′⊗A. The responsible obstruction is a nonzero

element in

H2(G, I) ∼= H2(G, k)⊗k I ∼= I.

Let f be the image of this obstruction in I. The element f depends on the choice of

an isomorphism H2(G, k) ∼= k, but the ideal (f) C A does not. Clearly, α lifts to a

homomorphism F ⊗ A′ → F ′ ⊗ A′ over the ring A′ = A/(f). This implies I = (f).

Now Nakayama’s Lemma shows that J is generated by one element. The proposition

is proved.

5.2. Let A be the ring of integers of a finite extension of the fraction field of W . Let

λ denote a uniformizer of A. For each positive integer n, we set An := A/(λn+1) and

Mn := (λn)/(λn+1).

Let F1, F2, F3 be three lifts of G over A. We define

Hn := Hom(F1 ⊗An, F2 ⊗An), H ′n := Hom(F1 ⊗An, F3 ⊗An).

As for endomorphisms, the natural reduction maps Hn, H
′
n → End(G) = OD are

injective. We will consider Hn and H ′n as subsets of OD. Note that Hn and H ′n are in

fact sub-OK-modules of OD. The obstruction theory reviewed above gives injective

maps

κn : Hn−1/Hn ↪→ H2(G,Mn), κ′n : H ′n−1/H
′
n ↪→ H2(G,Mn).

Proposition 5.2. — Let α : G → G be an isogeny defined over k which does not

lift to a homomorphism F1 → F2. Let n be the unique positive integer such that

α ∈ Hn−1 −Hn. Let β : F2 → F3 be an isogeny defined over A, and let m denote the

valuation of b := Lie(β) ∈ A. We make the following assumptions:

1. β has height one.

2. m ≤ (q − 1)n.

Then β ◦ α ∈ H ′n+m−1 −H
′
n+m.

Proof. — (compare with the proof of Lemma 1.3) We may represent α as a power

series with coefficients in A without constant coefficient such that αn−1, the reduction

of α modulo λn, is a homomorphism F1 ⊗An−1 → F2 ⊗An−1. We define

ε := α ◦ [π]F1
−F2

[π]F2
◦ α.

Then ε ≡ 0 (mod λn). Moreover, we have ε ≡ δπ (mod λn+1), where (∆, {δa})

denotes the cocycle associated to αn. The assumption α 6∈ Hn implies ε(X) = cXq +

. . ., with ordλ(c) = n. Similarly, define

ε′ := β ◦ α ◦ [π]F1
−F3

[π]F3
◦ β ◦ α.

Then ε′ = β ◦ ε. Write β(X) =
∑

i biX
i. It follows from Assumption 1 that the

Newton polygon of β has slope −m/(q − 1) over [1, . . . , q]. This means that

ordλ(bi) ≥
q − i

q − 1
·m, i = 1, . . . , q
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(with equality for i = 1, q). Now Assumption 2, together with an easy calculation,

shows that

ε′ = β ◦ ε = b1cX
q + . . . ≡ 0 (λn+m).

Since ordλ(b1c) = n + m, we conclude as in the proof of Lemma 1.3 that β ◦ α ∈

H ′n+m−1 −H
′
n+m.

Corollary 5.3. — Suppose that F1, F2, F3 are quasi-canonical liftings of G of level

r, s, s+ 1 (with respect to some embedding κ : L ↪→ D). Suppose that r ≤ s. Suppose,

moreover, that A is the minimal OK-algebra over which the lifts F1, F2, F3 can be

defined. (By Theorem 3.2 and Corollary 4.7, A is the ring of integers of the ring

class extension of Os+1.)

Let α : G → G be an element of OD and β : F2 → F3 an isogeny of height one,

defined over A. We assume that α does not lift to a homomorphism F1 → F2. Let n

be the maximal integer such that α can be lifted to a homomorphism F1 → F2 modulo

λn. Then β ◦ α can be lifted to a homomorphism F1 → F3 modulo λn+1, but not

modulo λn+2.

Proof. — It follows from Corollary 4.8 that ordλ(Lie(β)) = 1. Hence we can apply

Proposition 5.2, which proves the corollary.

References

[D] V. G. Drinfel’d: Elliptic modules, Math. USSR Sbornik 23 (1974), No. 4, 561–592.

[G] B. H. Gross: On canonical and quasi-canonical liftings, Invent. math. 84 (1986), 321–
326.

[H] M. Hazewinkel: Formal groups and Applications, Academic Press (1978).

[L] J. Lubin: Canonical subgroups of formal groups, Trans. Amer. Math. Soc. 251 (1979),
103–127.

[LT1] J. Lubin, J. Tate: Formal complex multiplication in local fields, Ann. Math. 81 (1965),
380–387.

[LT2] J. Lubin, J. Tate: Formal moduli for one-parameter formal Lie groups, Bull. Soc.
math. France 94 (1966), 49–60.

[MZ] E. Mierendorff, K. Ziegler: Formal moduli of formal OK-modules, this volume, 65–73.

[R] M. Rapoport: Deformations of isogenies of formal groups, this volume, 147–175.

[S] J. P. Serre: Corps locaux, Hermann (1968).

[Yu] J. K. Yu: On the moduli of quasi-canonical liftings, Compositio Math. 96 (1995), No.
3, 293–321.

Stefan Wewers, Mathematisches Institut der Universität Bonn, Beringstr. 1, 53115 Bonn, Germany

E-mail : wewers@math.uni-bonn.de





9. CANONICAL AND QUASI-CANONICAL LIFTINGS IN

THE SPLIT CASE

by

Volker Meusers

Following Gross [G] we sketch a theory of quasi-canonical liftings when the formal
OK-module of height two and dimension one considered in [W] is replaced by a
divisible OK-module of height one and dimension one in the sense of Drinfel’d [D]. In
this situation the statements analogous to those in [G], [W] are easy consequences of
Lubin-Tate theory and of a slight modification of the Serre-Tate theorem for ordinary
elliptic curves, as discussed in the appendix to [Mes].

1. Formal moduli of divisible OK-modules

Let K be a field complete with respect to some discrete valuation. Let OK be its
ring of integers, p = (π) its maximal ideal. We assume the residue field OK/p to be
finite and let q denote the number of its elements. For any non-zero ideal a ⊂ OK we
set N(a) = |OK/a|, i.e. N(p

s) = qs. Let k be an algebraic closure of OK/p. Let M
be the completion of the maximal unramified extension of K in some fixed separable
closure Ksep. Denote the completion of Ksep by C. Let OM and OC be the rings of
integers in M and C respectively.

Following [D, §4] a formal group is a group object in the category of formal schemes.
For example any group scheme or any discrete group is a formal group in this sense.

For a formal group F let us denote by F ◦ its connected component. Let Ĉ be the
category of complete local noetherian OM -algebras with residue field k.

Definition 1.1. — Let R ∈ Ĉ. A divisible OK-module over R is a pair (F, γF ),
where F is a formal group over R and γF : OK → EndR(F ) is a homomorphism such
that F ◦ is a formal OK-module of height h <∞ in the sense of [MZ], and such that

F/F ◦ ∼= (K/OK)
j

Spf(R)

for some j <∞. The pair (h, j) will be called type of (F, γF ).
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To ease the notation, we will often suppress the structure map γF of an OK-module
(F, γF ).

Drinfel’d shows that a divisible OK-module over k is up to isomorphism given by
its type (h, j) (see [D, §4]).

Example 1.2. — For K = Qp, OK = Zp the product group G = Ĝm,R × (Qp/Zp)R
is an example of a divisible module of type (h, j) = (1, 1) over R.

If R ∈ Ĉ is artinian then the category of fppf-abelian sheaves on R with OK-
structure is an abelian category, the category of OK-modules over R. It is useful
to view the category of divisible OK-modules over R as a full sub-category of this
category.

Definition 1.3. — Fix a divisible OK-module (G, γG) over k. A deformation of

(G, γG) to R ∈ Ĉ is a pair ((F, γF ), ψ) consisting of a divisible OK-module (F, γF )

over R together with an isomorphism ψ : F ⊗R k
∼=
→ G such that the diagram

OK
γF

//

γG

²²

EndR(F )

reduction

²²

Endk(G)
ψ

// Endk(F ⊗R k)

commutes.

The deformations of (G, γG) to R ∈ Ĉ form a category in a natural way. One checks
that it is a groupoid and moreover that no object of this groupoid has non-trivial
automorphisms. The last point is due to the fact that for a deformation (F, γF ) the
isomorphism ψ is part(!) of the data. Nevertheless we often omit ψ from the notation.

Definition 1.4. — For any R ∈ Ĉ let us denote by D(G,γG)(R) the set of isomor-
phism classes of the groupoid of deformations of (G, γG) to R. Then D(G,γG) becomes

a set-valued functor on Ĉ.

Fix a formal OK-module (H0, γH0
) of height h = 1 over k. It has a trivial defor-

mation space, i.e. D(H0,γH0
)(R) = {point} for any R ∈ Ĉ. More precisely D(H0,γH0

) is
representable by OM . This follows easily from the uniqueness of Lubin-Tate modules
(see [Me1]; see also Remark 1.14(ii) for a far more general result of Drinfel’d). Let
us denote by (H, γH) the unique lift of (H0, γH0

) to OM . We assume, as we may, that
(H, γH) is given as the base change

(H, γH) = (Hf , γHf
)⊗OK

OM ,

where (Hf , γHf
) is the Lubin-Tate module over OK corresponding to some fixed

prime element π ∈ OK and some fixed Lubin-Tate series f ∈ Fπ. Recall from [Me1],
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Lemma 1.7 that the isomorphism class of (H, γH) does not depend on these choices.

Recall further that for any R ∈ Ĉ we have H(R) = mR as a set. The OK-module
structure is given as follows: For q, q′ ∈ H(R) and z ∈ OK we have q+H q

′ = H(q, q′)
and z ·H q = [z]f (q). We often omit the subscript H from the notation.

Now fix some divisible OK-module (G, γG) over k of height h = 1 such that there
is an isomorphism G/G◦ ∼= (K/OK)k. Fix an isomorphism of divisible O-modules

r : G
∼=
→ H0 × (K/OK)k

where (H, γH) is the unique lift of (G
◦, γ◦G) to OM as above. Two such isomorphisms

differ by an element of the automorphism group of the right hand side. This group is
described by the following easy but important lemma.

Lemma 1.5. — (1) We have

HomOK ,k((K/OK)k, H0) = {0} = HomOK ,k(H0, (K/OK)k)

and
EndOK ,k(H0) = OK = EndOK ,k((K/OK)k).

(2) In particular there is a canonical ismorphism

OK × OK → EndOK ,k(H0 × (K/OK)k).

It induces an isomorphism

O
×
K × O

×
K → AutOK ,k(H0 × (K/OK)k).

Proof. — It clearly suffices to prove the first point. We have

HomOK ,k((K/OK)k, H0) = HomOK
(K/OK , H0(k)) = {0}

by adjunction and because H0(k) = {0}. We have

HomOK ,k(H0, (K/OK)k) = HomOK ,k(H0, (K/OK)
◦
k) = {0}

because H0 is connected and (K/OK)
◦ = {0} . We have

EndOK ,k(H0) = OK

because by Lubin-Tate theory every endomorphism of H0 is uniquely given by its
differential at zero. We have

EndOK ,k((K/OK)k) = EndOK
(K/OK)

by adjunction. The natural map OK → EndOK
(K/OK) is injective since

⋂
n≥0 pn =

{0}. Conversely let ϕ be any OK-endomorphism of K/O. Let π be some prime
element of OK . Then there exists for every n ≥ 0 an an ∈ OK/p

n such that

ϕ(
1

πn
) =

ãn
πn
mod OK

where ãn ∈ OK is some lift of an. One checks that an is the image of an+1 under the
natural projection OK/p

n+1 ³ OK/p
n. Since OK is complete this defines an element

a = (a0, a1, a2, . . .) ∈ lim←− OK/p
n = OK .
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By construction we have ϕ = a as endomorphisms.

We want to sketch a proof of the following theorem (compare the analogous state-
ment in [MZ], Theorem 3.8):

Theorem 1.6 (Universal deformation). — For any R ∈ Ĉ and fixed isomor-
phism r there is a natural isomorphism

ηR : D(G,γG)(R)
∼=
→ H(R).

In particular D(G,γG) can be given the structure of an OK-module (depending on
r of course). Since we assume H = Hf ⊗OK

OM , the OK-module structure is given
by Lubin-Tate theory as recalled above.
The proof will take up the rest of this section. One proceeds as in [Mes, appendix]:

In the course of the proof we will identify both, D(G,γG)(R) and H(R) for R ∈ Ĉ

artinian, with a certain Ext-group. So let us briefly recall the definition and some ba-
sic properties of these groups. A careful discussion can be found in [Mt, chapter VII].

Definition 1.7. — Let A be any abelian category. Fix objects M ′,M ′′ ∈ A. An
extension of M ′′ by M ′ is a short exact sequence

(M,p, i) : M ′ i
↪→M

p
³M ′′

of objects of A. These extensions form a category if we define morphisms to be
commutative diagrams of the form

M ′ //
i1

// M1
p1

// //

²²

M ′′

M ′ //

i2

// M2 p2
// // M ′′

Denote this category by ExtA(M
′′,M ′).

Recall the following basic facts about extensions:

Proposition 1.8. — Let A,M ′,M ′′ be as before.
1) Every morphism in ExtA(M

′′,M ′) is an isomorphism, i.e. the category of exten-
sions of two objects of A forms in fact a groupoid.
2) For some fixed extension (M,p, i) ∈ ExtA(M

′′,M ′) the map

expM ′,M ′′ : HomA(M
′′,M ′) → AutExtA(M ′′,M ′)((M,p, i))

ϕ 7→ idM +i ◦ ϕ ◦ p

is an isomorphism of groups. In particular the automorphism group of any extension
(M,p, i) is trivial iff HomA(M

′′,M ′) is trivial.
3) From now on assume that the class of isomorphism classes of ExtA(M

′′,M ′) is a
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set(1) for any M ′,M ′′ ∈ A. Denote this set by ExtA(M
′′,M ′). Using Baer-addition

ExtA(M
′′,M ′) becomes an abelian group in a natural way. The neutral element is

given by the class of the split extension (M,p, i) = (M ′×M ′′, pr2, in1). It is functorial
in M ′′ and M ′.

4) For any short exact sequence M ′ i
↪→M

p
³M ′′ and any N ′ in A there is a natural

homomorphism

δ(M,p,i),N ′ : HomA(M
′, N ′)→ ExtA(M

′′, N ′).

such that the sequence of abelian groups

0→ HomA(M
′′, N ′)→ HomA(M,N ′)→ HomA(M

′, N ′)
δ(M,p,i),N′

→ . . .

. . .
δ(M,p,i),N′

→ ExtA(M
′′, N ′)→ ExtA(M,N ′)→ ExtA(M

′, N ′)

is exact. The ”boundary” map δ(M,p,i),N ′ is defined as follows: For a homomorphism
ϕ ∈ HomA(M

′, N ′), form the pushout of the extension M ′ ↪→M ³M ′′ along ϕ, i.e.
form the diagram

M ′ // i
//

ϕ

²²

¤

M
p

// //

in2

²²

M ′′

N ′
in1

// N ′ ⊕M
′,ϕ,iM 0+p

// M ′′

Then N ′ → N ′ ⊕M
′,ϕ,iM →M ′′ is again an extension. Now set:

δ(M,p,i),N ′(ϕ) = isomorphism class of (N ′ ⊕M
′,ϕ,iM, in1, 0 + p).

Sometimes we will not distinguish carefully an extension from its isomorphism class.

Apply this in the case that A is the category of OK-modules on some fixed artinian

R ∈ Ĉ. In this case one knows A to have a generator, Ext-groups can be defined and
are in fact OK-modules by functoriality.

Definition 1.9. — Let R ∈ Ĉ be artinian. For any two OK-modules M
′ and M ′′

over R let

ExtOK ,R(M
′′,M ′)

denote the OK-module of extension classes of M
′′ by M ′ constructed above.

Recall that we view the category of divisible OK-modules on artinian R as a full
sub-category of the category of all OK-modules.

Lemma 1.10 (compare [Mes, I.2.4.3]). — Let R ∈ Ĉ be artinian. Given an exten-
sion of the form

HR

i
↪→ F

p
³ (K/OK)R

(1)There are examples of very big abelian categories where this class is not a set. However, if for

example A has a generator, this problem does not arrise.
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of OK-modules over R, then F is a divisible OK-module such that F ◦ ∼= HR and

F/F ◦ ∼= (K/OK)R. If one uses the isomorphism r : G
∼=
→ H0 × (K/OK)k then F

becomes a deformation of (G, γG) to R. This association yields a functor between the
groupoid of extensions of (K/OK)R by (HR, γH) and the groupoid of deformations of
(G, γG) to R.

Proof. — Since (K/OK)R is totally disconnected and HR is connected it follows that

i : HR

∼=
→ F ◦. The snake lemma implies that p induces an isomorphism p′ : F/F ◦

∼=
→

(K/OK)R. It follows that F is divisible. Since HR(k) = {0} the extension HR ↪→
F ³ (K/OK)R yields an injective map F (k) ↪→ (K/OK)R(k) = K/OK . Since k
is algebraically closed it is an isomorphism. This isomorphism gives us a canonical
splitting map (K/OK)k ↪→ F ⊗ k. Thus the extension is canonically split over k.

Together with the identification r : G
∼=
→ H0×(K/OK)k we get an isomorphism ψ : F⊗

k
∼=
→ G such that the pair ((F, γF ), ψ) is a deformation of (G, γG). One checks that it
is functorial.

Lemma 1.11 (compare [Mes, appendix Prop.2.1]). — The functor of the preceed-
ing lemma is an equivalence of groupoids.

Proof. — fully faithful: It is enough to see that every object in either groupoid has
a trivial automorphism group. For deformations, this was noted above. For ex-
tensions, recall that by Proposition 1.8 the automorphism group is isomorphic to
HomOK ,R((K/OK)R, HR) = {0}.
essentially surjective: Let F be a deformation of G to R. We need to define

homomorphisms i : HR ↪→ F and p : F ³ (K/OK)R such that p ◦ i = 0. For this we
let p on R-valued points be defined as follows :

F (R)³ F (k) = F ⊗ k(k)
∼=
→
r◦ψ

H0(k)× (K/OK)k(k) ³
pr2

K/OK = (K/OK)R(R).

Since K/OK is discrete the kernel of p equals F
◦. Because R is artinian local it follows

that F ◦ ⊗ k = (F ⊗ k)◦ ∼= G◦ ∼= H0. Since HR is the unique lift of H0 to R it follows
that F ◦ is isomorphic to HR and we get the map i : HR

∼= F ◦ ↪→ F .

Passing to isomorphism classes in Lemma 1.11 we obtain:

Proposition 1.12. — Assume R ∈ Ĉ to be artinian. Then there is a natural iso-
morphism

εR : D(G,γG)(R)
∼=
→ ExtOK ,R((K/OK)R, HR).

To calculate the Ext-group, we use

Proposition 1.13. — For any artinian R ∈ Ĉ there is a natural isomorphism

δR : H(R) = HomOK ,R(OK , HR)
∼=
→ ExtOK ,R((K/OK)R, HR).

Proof. — Assume mn+1
R = 0 for some n >> 0. Then H is killed by pn (compare [K,

Lemma 1.1.2]). Associated to the short exact sequence

(OK)R
i
↪→ KR

p
³ (K/OK)R
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and HR we constructed in Proposition 1.8 a boundary map

δ(KR,p,i),HR
: HomOK ,R(OK , HR)→ ExtOK ,R((K/OK)R, HR).

If we identifyH(R) with HomOK ,R(OK , HR) this gives us the desired map δR. Because
the prime element π ∈ OK acts invertibly on K and nilpotently on H one sees easily
that

HomOK ,R(K,H) = {0} = ExtOK ,R(K,H).

By the exactness of the Hom-Ext-sequence of Proposition 1.8, it follows that δR is an
isomorphism.

Proof of Theorem 1.6. — Combining Proposition 1.12 and Proposition 1.13 we get

the desired isomorphism for artinian R ∈ Ĉ as

ηR = δ−1
R ◦ εR.

For general R we can pass to the limit over its artinian quotients.

Remark 1.14. — (i) How does one calculate the inverse of δR? For R = k both sides
are trivial and so is δk. In the general case δ

−1
R can be computed by an approximation

process with respect to the ”p-adic topology” on both ExtOK ,R(OK , HR) and H(R).
For details we refer to [K, page 151f],[Mes, appendix].
(ii) In particular it follows from this theorem that the formal moduli space of the
divisible module G = H0× (K/OK)k is representable by a formal power series ring in
one variable over OM . More generally, Drinfel’d shows that the formal moduli space
of a divisible module of type (h, j) over k is representable by a power series ring in
h+ j − 1 variables (compare [D, Prop.4.5]).

Definition 1.15. — For R ∈ Ĉ and fixed r, let (F, γF ) be a lift of (G, γG) to R. Let
us set

q((F, γF ), r) = ηR( isom. class of (F, γF )) ∈ H(R).

We simply write q(F ) if γF and r are understood. As in [W], Definition 4.1 we refer
to the element q(F ) ∈ H(R) = mR as the formal modulus or coordinate of the lift
(F, γF ).

Example 1.16. — If K = Qp, OK = Zp, and H = Ĝm we are in the situation of
[Mes], Appendix. As in Lubin-Tate theory (see [Me1]) we use an additive and not

a multiplicative notation for the formal Zp-module Ĝm,R. Because of this we get a
slightly different notion of formal modulus q(F ) when compared to that in [Mes]. If

we let qTate(F ) ∈ 1 + Ĝm(R) denote the coordinate introduced in [Mes], then the
relations are simply

qTate(F ) = 1 + q(F ) ∈ 1 + Ĝm(R).

and

qTate(F )
z = (1 + q(F ))z = 1 + z ·Ĝm q(F ).
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2. Lifting endomorphisms

Let F and F ′ be deformations of G to R with coordinates q = q(F ), q′ = q(F ′) ∈
H(R). We want to describe in terms of our chosen coordinates which endomorphisms
ρ0 ∈ EndOK ,R(G) lift to homomorphisms ρ : F → F ′.

Proposition 2.1 (compare [Mes], Appendix Prop.3.3). — Let ρ0 : F0 → F ′0 be
given by multiplication by z1 on (K/OK)R and by multiplication by z0 on H(R).
Then ρ0 lifts to a (necessarily unique) homomorphism ρ : F → F ′ iff we have the
equality

z1q − z0q
′ = 0 ∈ H(R),

where the last expression is more precisely written as (z1 ·H q)−H (z0 ·H q′).

Sketch of proof. — This follows from rigidity (see [MZ], Lemma 2.6, for formal OK-
modules), the description of lifts in terms of extensions and the following well-known
and simple lemma applied to M ′ = N ′ = H, M ′′ = N ′′ = K/OK and ϕ = z1 and
ψ = z0.

Lemma 2.2 (compare [CE, chap.XIV, exercise 18]). — Let

M ′ // i
//

ϕ

²²

M
p

// // M ′′

ψ

²²

N ′ //

i′
// N

p′
// // N ′′

be a commutative diagram in an arbitrary abelian category. Then it can be completed
by a homomorphism ρ : M → N if and only if the extension obtained by pushing out
the upper sequence along ϕ is isomorphic to the extension obtained by pulling back
the lower sequence along ψ.

Example 2.3. — For reasons explained above, the analogous formula of [Mes], Ap-
pendix reads:

(qTate)
z1(q′Tate)

−z0 = (1 + q)z1(1 + q′)−z0 = 1 + (z1q −Ĝm z0q
′) = 1.

Specialize to R = OC . As a consequence of proposition (1.12) we can describe the
ring of endomorphisms of a lift F of F0 to OC .

Corollary 2.4. — Let F be a lift (F, γF ) of (G, γG) to OC with q = q(F, r) ∈ H(OC).
Then there are two cases:

(i) If the annihilator of q in OK is zero then the endomorphism ring of (F, γF )
equals OK .

(ii) If the annihilator of q in OK is ps for some 0 ≤ s <∞ then the endomorphism
ring of F , as a subring of the ring of endomorphisms of (G, γG), is strictly bigger
then OK and is isomorphic to

EndOK ,OC
((F, γF )) ∼= {(z0, z1) ∈ OK × OK |z0 − z1 ∈ ps} ⊆ OK × OK .

The isomorphism depends on the fixed isomorphism r.
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Proof. — This follows directly from the proposition with q = q′. Note that in this
case

(z1 ·H q)−H (z0 ·H q) = (z1 − z0) ·H q = 0 ∈ H(R).

3. Quasi-canonical lifts in the split case

We now show that the results on canonical and quasi-canonical liftings in [W] and
[G] have analogues in the present case. To bring out this analogy we introduce the
following definitions:

Definition 3.1. — (i) Set L = K × K and OL = OK × OK . Embed K resp. OK

diagonally into L resp. OL.
(ii) From Lemma 1.5 we get an OK-linear isomorphism

κ : OL
∼=
→ EndOK ,k(G).

It depends on r.
(iii) The ”completion of the maximal unramified extension” of L is given by ML =

M ×M whose ”separable closure” is M sep
L =M sep ×M sep.

(iv) Set

ΓL = Gal(M
sep
L |ML) = Gal(M

sep|M)×Gal(M sep|M).

By Lubin-Tate theory we have a reciprocity isomorphism

ρab
K : Gal(M

sep|M)ab
∼=
→ O

×
K .

It induces a reciprocity isomorphism

ρab
L = (ρ

ab
K , ρ

ab
K ) : Γ

ab
L

∼=
→ O

×
L .

(v) For any integer s ≥ 0 let

Os = OK + psOL = {(z0, z1) ∈ OL|z0 − z1 ∈ ps}

be the ”order” containing OK of conductor cs = ps or level s in OL.
(vi) For s ≥ 1 let Ms|M be the fixed field in M sep of the inverse image under

the reciprocity isomorphism ρab
K of (1 + ps) ⊂ O

×
K in Gal(M

sep|M)), i.e. such that
reciprocity gives an isomorphism

ρab
K : Gal(Ms|M)

∼=
→ O

×
K/(1 + ps).

Remark 3.2. — One easily sees that the map O
×
L → O

×
K given by sending (x, y) ∈

O
×
L to the quotient xy

−1 ∈ O
×
K induces an isomorphism

O
×
L/O

×
s

∼=
→ O

×
K/(1 + ps).
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If we let Γs ⊂ Γ
ab
L be the inverse image of O×s in Γ

ab
L under ρab

L , then we have the
following commutative diagram

Γab
L

ρabL

∼=
//

²²
²²

O
×
L

²²
²²

Γab
L /Γs

∼=
//

∼=(σ,τ)7→στ−1

²²

O
×
L/O

×
s

∼= (x,y)7→xy−1

²²

Gal(Ms|M) ∼=
// O
×
K/(1 + ps)

where ”∼=” denotes isomorphisms. In this sense we may consider Ms|M to be the
”ring class field” of the ”order” Os ⊆ OL.

Definition 3.3. — A quasi-canonical lift of (G, γG) of level s ≥ 0 ( with respect to κ)
is a lift (F, γF ) of (G, γG) to OC already defined over the ring of integers of some finite

extension of M , together with an OK-algebra isomorphism Os
∼=
→ EndOK ,OC

(F ′). A
quasi-canonical lift of level s = 0 is also called canonical.

Proposition 3.4 (compare [W], §1.3). — Let (F, γF ) be a lift of (G, γG). Then the
following statements are equivalent:

(1) The lift (F, γF ) is canonical, i.e. defined over some finite extension of M and
such that EndOK ,OC

((F, γF )) = EndOK ,k((G, γG))
∼= OK × OK .

(2) The lift (F, γF ) is isomorphic to HOM
× (K/OK)OM

.
In particular there exists a canonical lift and it is unique up to unique isomorphism.

The formal modulus of a canonical lift Fcan is q(Fcan) = 0 and thus independent of
the chosen isomorphism r.

Proof. — Clearly, the lift F = HOM
× (K/OK)OM

is canonical. To show that any
canonical lift is isomorphic to the product, note that the endomorphism ring of a
canonical lift contains the images einf and eet of (1, 0) ∈ OL and (0, 1) ∈ OL. They
satisfy e2inf = e2et = 1 and einf + eet = 1 and hence define a splitting

F ∼= Im(einf)× Im(eet)

as claimed. Given two canonical lifts, the element (1, 1) ∈ OL induces a canonical
isomorphism. For the last claim simply observe that the split extension is the image
of 0 ∈ H(OC) under δOC

by construction.

Proposition 3.5 (compare [W], §3, and [G], Prop.5.3). — (1) Quasi-canonical
liftings Fs exist for all levels s ≥ 0.

(2) Liftings of level s are rational over the ring of integers OMs
of Ms. Their

isomorphism classes are permuted simply transitively under the action of the Galois
group

Gal(Ms|M) ∼= O
×
L/O

×
s
∼= (OL/csOL)

×/(OK/cs)
×
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which has order

|Gal(Ms|M)| =

{
qs
(
1− 1

q

)
: s ≥ 1

1 : s = 0

In particular Ms is the smallest extension of M over which a quasi-canonical lift can
be defined.

(3) The formal modulus q(Fs) ∈ H(OMs
) = H(OC) of a quasi-canonical lift of level

s is a uniformizing element of OMs
. In particular, for s ≥ 1 the OK-modules Fs and

Fcan are not isomorphic over OMs
/m2

Ms
.

Proof. — For the first point recall that it follows from Lubin-Tate theory that
H(OC)torsion ∼= K/OK as OK-modules. Thus there are elements qs ∈ H(OC) with
annihilator ps for any given s ≥ 0. This implies the existence of a lift Fs/OC with
formal modulus qs. By Corollary 2.4 the endomorphism ring of Fs is isomorphic
to Os. If s = 0 then Fcan = H × K/OK is a canonical lift and it is clearly defined
over M . If s ≥ 1 then the stabilizer of the formal modulus qs, i.e. 1 + Ann(qs),
equals 1+ ps ⊂ O

×
K . Thus again by Lubin-Tate theory its isomorphism class is stable

under the Galois group Gal(M sep|Ms) since the identification of D(F0,f0)(OC) with
H(OC) is compatible with the action of Gal(M

sep|M). Since deformations have no
non-trivial automorphisms, this induces a Galois action on the chosen lift Fs/OC
itself. It follows that Fs descends to a formal OK-module over OMs

= OC ∩Ms.
For the second point note that the first isomorphism follows from Remark 3.2. One

checks easily that the natural map

O
×
L/O

×
s → (OL/csOL)

×/(OK/cs)
×

is an isomorphism. For s ≥ 1 it follows from Lubin-Tate theory that

|O×K/1 + ps| = N(p)s−1(N(p)− 1) = |Gal(Ms|M)|

as claimed .
The last point also follows from Lubin-Tate theory (see [Me1]), for one knows that

NMs|M (−qs) = π and hence

vMs|M (qs) =
1

[Ms :M ]
vM (NMs|M (qs)) =

1

[Ms :M ]

as claimed. Therefore qs ∈ mMs
\m2

Ms
for s ≥ 1. But the canonical lift has formal

modulus qcan = 0 ∈ m2
Ms
. It follows that qs 6≡ qcan mod m2

Ms
.

Remark 3.6. — (i) The degree formula in the proposition can be written in a uni-
form way as

|Gal(Ms|M)| = N(cs)
∏

l|cs

(
1−

(
L

l

)
1

N(l)

)

where one formally sets (
L

l

)
= +1,−1, 0

according as l = p is split (our case), inert or ramified (the cases treated in [W]) in
the extension L|K.
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(ii) Let E0 be an ordinary elliptic curve over Fp. Then one knows that its endo-
morphism ring is isomorphic to some order O ⊂ L in some imaginary quadratic field
L. Let c0 ∈ Z be the conductor of O. It is known that p does not divide c0. Set
cs = psc0 and Os = Z + psO. Let Ms|L be the ring class field of the order Os. For
example if c0 = 1 and s = 0 then Ms = M is the Hilbert class field of L, i.e. the
maximal unramified abelian extension of L. In this situation one has Deuring’s lifting
theorem (compare [L, chap.13,§4,§5]). It guarantees the existence of an elliptic curve
Es over Ms with complex multiplication by Os and such that the reduction of Es
at some prime of degree one over p is isomorphic to E0 (same notational conflict as
in the local case). The j-invariants of the different curves Es are permuted simply
transitively by the Galois group Gal(Ms|M). By the well-known formula for the class
numbers of orders in imaginary quadratic fields (see [S, exercise 4.12]) the Galois
group has order

|Gal(Ms|M)| =
h(Os)

h(O)
=
|O×s |

|O×|
·
cs
c0

∏

l| cs
c0

(
1−

(
L

l

)
1

l

)
.

where the symbol
(
L
l

)
is defined as in (i). The extra factor

|O×s |
|O×| is due to the presence

of nontrivial automorphisms in this situation. It is trivial for L 6= Q(i),Q(e
2πi
3 ). This

statement of a global nature is thus completely analogous to the local statement of
Proposition 3.5.
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10. LIFTING ENDOMORPHISMS OF FORMAL

OK-MODULES

by

Eva Mierendorff

We present Keating’s results on lifts of endomorphisms of formal OK-modules over
a power series ring, compare [K2].

1. Results

Let K be a complete discretely valued field of arbitrary characteristic with finite
residue field Fq, where q = pl for some prime p. Denote by OK the ring of integers in
K and let π be a uniformizer.
Let 1 < h <∞ and let (F0, γ0) be a formal OK-module of height h over a field k of

characteristic p with OK-algebra structure i : OK → k. The discrete valuation ring
R = k[[t]] has a canonical OK-algebra structure given by OK → k ↪→ k[[t]] = R. Let
(F, γ) be a deformation of F0 of height g = h− 1 over R, that is a formal OK-module
F over R with F ≡ F0 (mod (t)). For a ∈ OK let [a]F = γ(a) ∈ EndR(F ). Let
Rn = R/(tn+1), Mn = (t

nRn), and Fn = F ⊗R Rn. As F is an OK-module of height
g < h, Lemma 2.1 of [MZ] shows that

(1.1) [π]F (X) = a0X
qg

+ · · · ∈ R[[Xqg

]]

with a0 ∈ R \ {0} and vt(a0) ≥ 1.
The aim is to compute the endomorphism ring

Hn = EndRn
(Fn) = EndR(Fn)

for every n. Lemma 2.6 of [MZ] implies that the reduction maps Rn → Rn−1 induce
injections Hn ↪→ Hn−1. By [Ww1], Theorem 1.1 we have H0 = Endk(F0) = OD,
where OD is the maximal order in a division algebra D of degree h

2 and invariant 1
h

over K. Hence the rings Hn can be identified with OK-subalgebras of OD. Obviously
OK ⊆

⋂

nHn. Let πD be a uniformizer of OD.
For m ≥ 0 we define

a(gm) =
(qh − 1)(qgm − 1)

(qg − 1)(q − 1)
.
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Theorem 1.1. — Let F0, F , and a0 be as above, vt(a0) = 1, k separably closed, and

f0 ∈ (OK + πlDOD) \ (OK + πl+1
D OD) ⊆ OD

for some l ≥ 0. Write l = hm + b with integers m, b and 0 ≤ b < h. Then f0 ∈
Hn−1 \Hn for

n = a(gm) + qgm
qb − 1

q − 1
+ 1.

Using this result, we can easily calculate Hn:

Theorem 1.2. — In the setting of Theorem 1.1 we have

Hn = OK + π
j(n)
D OD

with j(n) = hm+ b, where m and b are the uniquely defined integers with 0 ≤ b < h
and

a(gm)− qgm + 1 ≤ n < a(gm) + 1 if b = 0

a(gm) + qgm
qb−1 − 1

q − 1
+ 1 ≤ n < a(gm) + qgm

qb − 1

q − 1
+ 1 if 0 < b < h.

Keating ([K2], Thm. 3.4) also calculates Hn without making the assumptions
vt(a0) = 1 and k separably closed.
To prove Theorem 1.1 we need the following two propositions.

Proposition 1.3. — Let f0 be as in Theorem 1.1 with 0 ≤ l ≤ h. Then f0 ∈

Hn−1 \Hn where n = ql
−1

q−1 + 1.

Proposition 1.4. — Let f0 ∈ OK + πDOD and n > 1 such that f0 ∈ Hn−1 \ Hn.

Then [π]F0
◦ f0 ∈ Hn′−1 \Hn′ where n

′ = qgn+ qg
−1

q−1 + 1.

The first proposition says that the theorem holds for l ≤ h. The second calculates
the maximal lifting of [π]F0

◦ f0 given the maximal lifting of f0. As the elements of
OK lift to all levels, an inductive argument shows that the two propositions imply
Theorem 1.1.

2. Proof of the Lifting Theorem

We use the notation of the preceding section. Without further mention we assume
that the constant coefficients of all power series in this section are 0.
Let fn+1 ∈ Rn+1[[X]] be a lift of fn ∈ Hn. We recall the definition of the associated

symmetric 2-cocycle with coefficients in (tn+1)k[[t]]/(tn+2) from [MZ], Prop. 3.2:

∆(X,Y ) = fn+1(X +Fn+1
Y )−Fn+1

fn+1(X)−Fn+1
fn+1(Y )

δa(X) = fn+1 ◦ [a]Fn+1
(X)−Fn+1

[a]Fn+1
◦ fn+1(X) (a ∈ A)

The cocycle vanishes if and only if fn+1 ∈ Hn+1 = EndRn+1
(F ).

Corollary 2.1. — Let fn(X) ∈ Rn[[X]] be a lift of f0(X) ∈ H0. Then fn ∈ Hn if

and only if fn commutes with [π]Fn
.
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Proof. — This follows by induction on i ∈ [0, n] from [MZ], Prop. 3.2, 2. and Lemma
3.1.

Lemma 2.2. — Let fn ∈ Hn with fn(X) ∈ Rn[[X
qr

]] of the form fn(X) =
b0X

qr

+ · · · for some r > 0 and b0 ∈ Rn \ {0}.

1. There exists a lift fn+1 ∈ Hn+1 of fn.
2. If the degree of the leading term of δπ is greater than qr+g, the leading term of

fn+1 has degree qr.
3. Otherwise the degree of the leading term of δπ is qr+g and the leading term of

fn+1 has degree qr−1.

Proof. — Let f ′n+1 ∈ Rn+1[[X
qr

]] be an arbitrary lift of fn and let (∆; {δa}) be the

corresponding cocycle. As [π]Fn+1
(X) ∈ Rn+1[[X

qg

]], the degree of the leading term
of δπ is at least q

r+g. The assumption r > 0 together with [MZ], Cor. 3.4, 1. implies

that δπ(X) ∈ Mn+1[[X
qh

]]. Hence by [MZ], Cor. 3.4, 2. and Prop. 3.2, 3. we get a
lift fn+1 = f ′n+1 −Fn+1

ε. If the degree of the leading term of δπ is q
r+g, the leading

term of ε = d ◦ p−1 has degree qr+g−h = qr−1. Otherwise the leading term of ε has
degree greater than qr−1. Thus the degree of the leading term of fn+1 is greater than
qr−1. As it is a lift of fn, its degree is at most q

r. But the degree has to be a power
of q, as fn+1 ∈ Hn+1 = EndRn+1

(Fn+1) (compare [MZ], Lemma 2.1). Hence it has
to be qr.

Let F, F0, a0 as in Theorem 1.1. Let f0 ∈ H0 and let fn−1 ∈ Hn−1 be a lift, i.e.
fn−1 ≡ f0 (mod (t)). We can write fn−1(X) = b0X

qr

+ · · · for some r ≥ 0 and
b0 ∈ Rn−1 \ {0}. Let m = vt(b0). As b0 6= 0 in Rn−1, we have m < n.

Lemma 2.3. — Suppose that in the above situation m+ qr < qgm+ 1. Then

1. m+ qr ≥ n.
2. If m+ qr > n, then fn−1 lifts to f ′n ∈ Hn of the form f ′n(X) = b′0X

qr

+ · · · with
vt(b

′
0) = m.

3. If m + qr = n and r > 0, then fn−1 lifts to f ′n ∈ Hn of the form f ′n(X) =

b′0X
qr−1

+ · · · with vt(b
′
0) = n = m+ qr.

4. A lift of fn−1 to Hn again satisfies the assumption of the lemma.

5. If m+ qr = n and r = 0, then fn−1 does not lift to an element of Hn.

6. fn−1 lifts to Hn′−1 with n′ = m+ qr+1
−1

q−1 but not to Hn′ .

Proof. — We assumed vt(a0) = 1, where a0 is as in (1.1). By the assumption of the
lemma the valuation of the leading coefficient of δπ is

vt(b0a
qr

0 − a0b
qg

0 ) = m+ qr.

As fn−1 ∈ Hn−1, this coefficient is in (t
n) and 1. follows. Since fn−1 ∈ Hn−1 has

leading term of degree qr, it has to be a power series in Xqr

. Let fn ∈ Rn[[X
qr

]] be
a lifting with

fn(X) = b̃0X
qr

+ · · · .
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For the corresponding 2-cocycle we have

δπ(X) = (b̃0a
qr

0 − a0b̃
qg

0 )X
qr+g

+ · · · .

Ifm+qr > n, the first term vanishes modulo (tn+1), so the degree of δπ is greater than
qr+g. Besides, r has to be positive, thus 2. follows from Lemma 2.2, 2. If m+ qr = n,
the leading term of δπ has degree q

r+g, hence 3. follows from Lemma 2.2, 3. The
values of m and r for a lift of fn−1 to Hn are either the same as for fn−1 or they
change to n and r − 1. In both cases the assumption of the lemma is satisfied. This
shows 4. for the case r > 0. If r = 0, the statement is trivial. To show 5., we assume
that there exists a lift. By 4. it satisfies the assumption of the lemma with r = 0 and
m = n − 1. Thus 1. implies n − 1 + 1 ≥ n + 1 which is a contradiction. The last
assertion follows by applying 2.-4. until the assumption of 5. holds.

Proof of Proposition 1.4. — We write f0 = a + f ′0 with a ∈ OK and f ′0 ∈ πDOD.
Since OK ⊆ Hn for every n, we may assume f0 = f ′0 ∈ πDOD. We assumed that f0

lifts to fn−1 ∈ Hn−1 with fn−1(X) = b0X
qr

+ · · · for some b0 ∈ Rn−1 \ {0} but not
to Hn. Lemma 2.2 implies r = 0. We have fn−1 ≡ f0 (mod (t)) and f0 ∈ πDOD.
Hence m = vt(b0) > 0 and the assumption of Lemma 2.3 is satisfied. As fn−1 does
not lift to Hn, the lemma shows that vt(b0) = n− 1.
We lift fn−1 arbitrarily to f(X) ∈ R[[X]]. This lift is unique modulo (tn), so

[π]F ◦ f is unique modulo (t
qgn+1). Here we use that [π]F (X) = a0X

qg

+ · · · with
vt(a0) = 1. We next show that the reduction φqgn of [π]F ◦ f modulo (t

qgn+1) is in
Hqgn. By Lemma 2.1, 2. it suffices to verify that

[π]F ◦ ([π]F ◦ f) ≡ ([π]F ◦ f) ◦ [π]F (mod (tq
gn+1))

which follows from [π]F ◦ f ≡ f ◦ [π]F (mod (t
n)). Now we determine the maximal

lifting of φqgn. We have

φqgn ≡ [π]F ◦ f(X)

≡ a0b
qg

0 Xqg

+ · · · (mod (tq
gn+1))

and vt(a0b
qg

0 ) = 1 + qg(n− 1). The assumption of Lemma 2.3 applied to φqgn reads

(1 + qg(n− 1)) + qg < qg (1 + qg(n− 1)) + 1.

It is satisfied because n > 1 and g ≥ 1. We get that φqgn lifts to Hn′−1 but not to

Hn′ where n
′ = qgn+ qg

−1
q−1 + 1.

For the proof of Proposition 1.3 we need the following lemma.

Lemma 2.4. — Let fn−1 ∈ Hn−1 with fn−1(X) = b0X
qr

+ · · · and m = vt(b0) as
before. Assume m + qr > qgm + 1 = n. Then fn−1 lifts to f ′n ∈ Hn of the form

f ′n(X) = b′0X
qr−1

+ · · · with vt(b
′
0) = qgm+ 1.

Proof. — We lift fn−1 arbitrarily to fn(X) ∈ Rn[[X
qr

]] with fn(X) = b̃0X
qr

+ · · · .
As before let (∆, {δa}) be the corresponding cocycle with coefficients inMn. We have

δπ(X) = fn ◦ [π]Fn
(X)−Fn

[π]Fn
◦ fn(X)

= (b̃0a
qr

0 − a0b̃
qg

0 )X
qr+g

+ · · · .
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The assumptions imply vt(b̃0a
qr

0 − a0b̃
qg

0 ) = qgm + 1 = n. Therefore the first nonva-
nishing term of δπ has degree q

r+g. As m < n, the assumption m + qr > n implies
r > 0, and by Lemma 2.2, 3., fn−1 lifts to f

′
n ∈ Hn with leading term of degree

qr−1.

Proof of Proposition 1.3. — Case 1: l = 0. In this case f0 ∈ OD \ (OK + πDOD)
has the form f0(X) = b0X + · · · with b0 ∈ Fqh \ Fq. Let f1(X) ∈ R1[[X]] with
f1(X) = b0X + · · · be an arbitrary lift of f0. We have to show that f1 /∈ H1. For the

corresponding cocycle with coefficients inM1 we have δπ(X) = (b0a0−a0b
qg

0 )X
qg

+· · · .

Since b0 ∈ Fqh \Fq, we have vt(b0 − bq
g

0 ) = 0. Thus b0a0 − a0b
qg

0 is nonzero in R1 and
δπ(X) 6= 0, which shows f1 /∈ H1.

Case 2: 0 < l < h. Here

(OK + πlDOD) \ (OK + πl+1
D OD) ⊆ OK + (π

l
DOD \ π

l+1
D OD).

As elements of OK lift to all levels, it is enough to consider f0 ∈ πlDOD \ π
l+1
D OD.

Then f0 is of the form f0(X) = b0X
ql

+ · · · with b0 ∈ k×. As m = 0, Lemma 2.4

shows that f0 lifts to f
′
1 ∈ H1 of the form f ′1(X) = b′0X

ql−1

+ · · · with vt(b
′
0) = 1. For

f ′1 the assumption of Lemma 2.3 is satisfied, so f0 lifts to Hn−1 but not to Hn with

n = ql
−1

q−1 + 1.

Case 3: l = h. Here

(OK + πhDOD) \ (OK + πh+1
D OD) ⊆ OK + πhD(OD \ (OK + πDOD)).

Similarly to the second case it suffices to consider f0 ∈ πhD(OD \ (OK + πDOD)),
that is f0 = πg0 for some g0 ∈ OD \ (OK + πDOD). Then g0(X) = b0X + · · · with
b0 ∈ Fqh \ Fq. Let g(X) ∈ R[[X]] be an arbitrary lift of g0. From

[π]F ◦ g ≡ g ◦ [π]F (mod (t))

we get
[π]F ◦ ([π]F ◦ g) ≡ ([π]F ◦ g) ◦ [π]F (mod (tq

g+1)).

Lemma 2.1 shows that

fqg (X) ≡ [π]F ◦ g(X)

≡ a0b
qg

0 Xqg

+ · · · (mod (tq
g+1))

is in Hqg . Let fqg+1 ∈ Rqg+1[[X
qg

]] with fqg+1(X) = c0X
qg

+ · · · and c0 ≡ a0b
qg

0

(mod (tq
g+1)) be a lift of fqg . The corresponding cocycle satisfies

δπ(X) = fqg+1 ◦ [π]Fqg+1
(X)−Fqg+1

[π]Fqg+1
◦ fqg+1(X)

= (c0a
qg

0 − a0c
qg

0 )X
q2g

+ · · ·

≡ aq
g+1

0 (bq
g

0 − bq
2g

0 )Xq2g

+ · · · (mod (tq
g+2)).

Since b0 ∈ Fqh \ Fq, we have b
qg

0 6= bq
2g

0 in Fqh . Hence aq
g+1

0 (bq
g

0 − bq
2g

0 ) is nonzero in

Mqg+1 and δπ has leading term of degree q
2g = qr+g. So Lemma 2.2, 3. shows that

fqg lifts to f ′qg+1 ∈ Hqg+1 with leading term of degree q
g−1. As f ′qg+1 satisfies the

assumption of Lemma 2.3, it lifts to Hn−1 but not to Hn where n =
qh
−1

q−1 + 1.
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11. ENDOMORPHISMS OF QUASI-CANONICAL LIFTS

by

Inken Vollaard

In this paper we prove a lifting theorem for endomorphisms of a formal OK-module

to a quasi-canonical lift. For the canonical lift, a similar lifting theorem is proved in

[Ww1]. This work is due to K. Keating ([K1]).

I thank S. Wewers for helpful comments on this manuscript.

1. Notation

Let K be a complete discretely valued field, let OK be its ring of integers and let

π be a uniformizing element of OK . We will assume that the residue field of OK is

equal to the field Fq of characteristic p. Denote by k an algebraic closure of Fq. Let
L be a quadratic extension of K and let A = Ôur

L be the completion of the maximal

unramified extension of OL. Denote by M the quotient field of A.

Let F0 be a formal OK-module of height 2 over k. By [Ww1] Theorem 1.1, the

ring of OK-linear endomorphisms Endk F0 is isomorphic to the maximal order OD in

a division algebra D of dimension 4 over K and invariant 1/2. We identify Endk F0

with OD. Let F be the canonical lift of F0 over A with respect to an embedding

OL ↪→ OD.

We consider a quasi-canonical lift F ′ of F0 of level s ([Ww1] Def. 3.1). By definition,

EndA′ F
′ is an order Os := OK + πsOL in OL. Note that a quasi-canonical lift of

level 0 is a canonical lift and therefore can be defined over A. A quasi-canonical lift

of level s ≥ 1 can be defined over a totally ramified Galois extension M ′/M of degree

[M ′ :M ] =

{
qs + qs−1 if L/K is unramified

qs if L/K is ramified
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([Ww1] Thm. 3.2). Denote by A′ the ring of integers of M ′ and denote by π′ a

uniformizing element of A′. If s is equal to 0, the ring A′ is equal to A. Let es =

e(A′/OK) be the ramification index of A
′ over OK , i.e.,

es =





2qs if L/K is ramified.

qs + qs−1 if L/K is unramified and s 6= 0.

1 if L/K is unramified and s = 0.

By [Ww1] Proposition 4.4 and Proposition 4.6, the endomorphism [π]F ′ is given by

a power series

[π]F ′ = πX + . . .+ uXq + . . .+ vXq2 + . . . ∈ A′[[X]](1.1)

with vπ′(u) = 1 and vπ′(v) = 0.

Denote by A′n = A′/(π′)n+1 the reduction of A′ modulo (π′)n+1 and by F ′n =

F ′ ⊗A′ A
′
n the reduction of F

′ to A′n. We obtain

Os = EndA′ F
′ ⊂ . . . ⊂ EndA′n F

′
n ⊂ . . . ⊂ Endk F0 = OD

([MZ] Lem. 2.6), hence we will consider EndA′n F
′
n as a subring of Endk F0 = OD.

We write EndF ′n instead of EndA′n F
′
n.

For n ≤ es the ring A
′/(π′)n is of characteristic p and one can define the height of

the module F ′n ([MZ] Def. 2.2). By construction, F ′n is of height 1 if 0 < n ≤ es and

F0 is of height 2. Denote by ai the coefficients of [π]F ′ . Then vπ′(ai) ≥ es if q - i, and
vπ′(ai) ≥ es if q | i and q

2 - i.

2. Results

The goal of this paper is to compute the endomorphism rings EndF ′n as subrings

of OD. In the case of the canonical lift, these rings are calculated in [Ww1]. Denote

by a(k) the rational number

a(k) =
(qk − 1)(q + 1)

q − 1

for every integer k. We have a(0) = 0 and a(k) = (q + 1)(
∑k−1

i=0 q
i) for k ≥ 1.

Theorem 2.1. — Let F ′ be a quasi-canonical lift of F0 of level s. Let l ≥ 0 be an

integer and let

f0 ∈ (Os + π
l
DOD) \ (Os + π

l+1
D OD).

Then f0 lifts to EndF ′nl−1 and not to EndF ′nl
with

nl =





a( l2 ) + 1 if l ≤ 2s and l even.

a( l−1
2 ) + q

l−1
2 + 1 if l ≤ 2s and l odd.

a(s− 1) + qs−1 + ( l+1
2 − s)es + 1 if l ≥ 2s− 1.
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Remark 2.2. — The rational number nl of the theorem is an integer. Indeed, if

L/K is ramified, the ramification index es is even. If L/K is unramified and l ≥ 2s,

then l is odd as

Os + π
l−1
D OD = Os + π

l
DOD.

Theorem 2.3. — Consider the same situation as in Theorem 2.1. Then EndF ′n =

Os + π
j(n)
D OD where

j(n) =





2k if n ∈]a(k − 1) + qk−1; a(k)] for k < s.

2k + 1 if n ∈]a(k); a(k) + qk] for k < s.

k if n ∈]a(s− 1) + qs−1 + (k2 − s)es; a(s− 1) + q
s−1 + (k+1

2 − s)es]

for k ≥ 2s.

Note that the above intervals form a disjoint cover of the set of positive integers. The

integer j(n) is uniquely determined unless L/K is unramified and j(n) ≥ 2s. In this

case we have Os + π
j(n)
D OD = Os + π

j(n)+1
D OD for every even j(n).

Proof. — This theorem follows from Theorem 2.1.

Remark 2.4. — If F ′ is the canonical lift of F0, i.e., if s = 0, Theorem 2.1 and

Theorem 2.3 have already been proved in [Ww1] Theorem 1.4. We obtain in this

case

EndFn = OL + π
n
LOD

and

nl =

{
l + 1 if L/K is ramified.
l+1
2 if L/K is unramified.

3. Proofs

We will assume in the following that s is greater or equal than 1. We will split

the proof of Theorem 2.1 into two propositions similar to the proof of Theorem 1.1

in [Mi].

Proposition 3.1. — Let l ≤ 2s+ 1 and let s ≥ 1. Let

f0 ∈ (Os + π
l
DOD) \ (Os + π

l+1
D OD).

Then f0 lifts to EndF ′nl−1 \ EndF
′
nl

with

nl =





a( l2 ) + 1 if l ≤ 2s and l even.

a( l−1
2 ) + q

l−1
2 + 1 if l ≤ 2s and l odd.

a(s− 1) + qs−1 + es + 1 if l = 2s+ 1.

Proposition 3.2. — Let s ≥ 1 and let f0 ∈ EndF
′
n−1 \EndF

′
n with n ≥ es−1

q−1 . Then

[π] ◦ f0 lifts to EndF ′n′−1 \ EndF
′
n′ with n

′ = n+ es.
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Proof of Theorem 2.1. — Theorem 2.1 follows by induction from Proposition 3.1 and

Proposition 3.2. Let l > 2s + 1 and let f0 ∈ (Os + πlDOD) \ (Os + πl+1
D OD). Write

f0 = c + [π]F0
◦ g0 with c ∈ Os and g0 ∈ π

l−2
D OD \ (Os + π

l−1
D OD). By induction g0

lifts to EndF ′nl−2−1 \ EndF
′
nl−2

with

nl−2 = a(s− 1) + qs−1 + (
l − 1

2
− s)es + 1

=
2qs − 2

q − 1
+ (

l − 1

2
− s)es ≥

es − 1

q − 1
.

By Proposition 3.2 the endomorphism [π]F0
◦g0, hence f0, lifts to EndF

′
n′−1 \EndF

′
n′

with n′ = nl−2 + es = nl.

Remark 3.3. — We now split the proof of Proposition 3.1 into two cases. As we

will see below, we can use the results of [Mi] in the case nl + 1 ≤ es. Note that nl is

a strictly increasing sequence.

An easy computation shows that there exists an integer l0 such that nl0+1 ≤ es <

nl0+1. We obtain

– l0 = 2s if L/K is ramified and q ≥ 3.

– l0 = 2s− 1 if





L/K is unramified and q ≥ 3.

L/K is unramified, q = 2 and s = 1.

L/K is ramified and q = 2.

– l0 = 2s− 2 if L/K is unramified, q = 2 and s 6= 1.

Proof of Proposition 3.1 in the case of nl + 1 ≤ es. — Since A′/ÔK is a totally ram-

ified extension of ramification index es, we obtain for n ≤ es an isomorphism of

OK-algebras

A′/(π′)n ∼= (ÔK/(π))[π
′]/(π′)n

∼= k[t]/(t)n.

Let f0 ∈ (Os+ π
l
DOD) \ (Os+ π

l+1
D OD) with nl+1 ≤ es, i.e., with l ≤ l0 (Rem. 3.3).

Then F ′nl
is a lift of F0 of height 1 over k[t]/(t)

nl+1 and we will prove the proposition

by using the results of [Mi].

We have Os + πlDOD = OK + πlDOD for l ≤ 2s and by an easy computation

Os+ π
2s+1
D OD = OK + π

2s+1
D OD if L/K is ramified. Hence [Mi] Theorem 1.1, shows

that f0 lifts to EndF
′
nl−1 \ EndF

′
nl
. This proves the proposition in this case.

3.1. Let f0 be an element of EndF
′
n−1. By fn−1 ∈ A

′
n−1[[X]] we always denote the

unique lift of f0 as an endomorphism of F
′
n−1. Let f ∈ A

′[[X]] be a lift of fn−1 as a

power series without constant coefficient. As we are interested in endomorphisms of

formal groups, we make the general assumption that all power series in this article
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have no constant coefficient. We write fk for the residue class of the power series f

in A′k[[X]]. Denote by ε the commutator

ε = f ◦ [π]F ′ −F ′ [π]F ′ ◦ f ∈ A
′[[X]]

using the additive operation on A′[[X]] induced by F ′. Then ε has coefficients in (π′)n

because fn−1 is an endomorphism of F
′
n−1.

The main technique to prove the lifting theorem is the cohomology theory as in

[MZ]. Denote by In the 1-dimensional k-vector space (π
′)n/(π′)n+1. Consider the

cohomology group H2(F0, In) as in [MZ] Chapter 3. For fn−1 ∈ EndF
′
n−1 one

can define a cocycle (∆, {δa}) ∈ H
2(F0, In). Then fn−1 lifts to EndF

′
n if and only if

(∆, {δa}) 6≡ 0, i.e., if and only if δπ is a power series in X
q2 ([MZ] Prop. 3.2, Cor. 3.4).

We have

δπ = ε mod (π′)n+1.

Lemma 3.4. — The cohomology group H2(F0, In) is a k-vector space of dimension

1. For a cocycle (∆, {δa}) ∈ H
2(F0, In), the element δπ = β(Xq) is a power series in

Xq and (∆, {δa}) 6≡ 0 if and only if β′(0) 6= 0.

Proof. — By [MZ] Lemma 2.5, every formal module over k is isomorphic to a normal

module. Then [MZ] Proposition 3.6, shows that H2(F0, k) is a k-vector space of

dimension 1. A basis is given by a cocycle (∆, {δa}) such that δπ = β(Xq) is a power

series in Xq with β′(0) 6= 0. This proves the lemma.

Remark 3.5. — Let f0 ∈ EndF
′
n−1. By Lemma 3.4 the power series ε is a power

series in Xq modulo (π′)n+1,

ε ≡ aXq + . . . mod (π′)n+1.(3.1)

Furthermore, vπ′(a) ≥ n and vπ′(a) = n if and only if f0 6∈ EndF
′
n.

Lemma 3.6. — Let f0 ∈ EndF
′
n−1 and let k = min{n+ es, 1+ qn}. Then [π]F0

◦ f0
lifts to EndF ′k−1.

(i) If 1 + qn < n+ es, the endomorphism [π]F0
◦ f0 lifts to EndF ′k.

(ii) If k = n + es and f0 6∈ EndF
′
n, the endomorphism [π]F0

◦ f0 does not lift to

EndF ′k.

Proof. — We use the notations of 3.1. By equation (1.1) we obtain

[π]F ′ ◦ f ◦ [π]F ′ −F ′ [π]
2
F ′ ◦ f = [π]F ′ ◦ ε

= πε+ . . .+ uεq + . . .+ vεq
2

+ . . .(3.2)

Since ε has coefficients in (π′)n, we have

[π]F ′ ◦ ε ≡ 0 mod (π
′)k.
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Thus [π]F ′
k−1
◦fk−1 commutes with [π]F ′

k−1
, hence it is an element of EndF ′k−1 ([MZ]

Cor. 3.1). We obtain by (3.2)

δπ([π]F ′
k−1

◦ fk−1) ≡ πε+ . . .+ uεq + . . .+ vεq
2

+ . . . mod (π′)k+1.(3.3)

If 1 + qn < n + es, the power series (3.3) is a power series in X
q2 as ε is a power

series in Xq modulo (π′)n+1. Hence [π]F0
◦ f0 lifts to EndF

′
k.

If k = n+ es, we obtain

δπ([π]F ′
k−1

◦ fk−1) ≡ πaXq + . . . mod (π′)k+1

with vπ′(πa) = n+ es. Hence [π]F ′
n′−1

◦ fn′−1 does not lift to EndF
′
k.

Proof of Proposition 3.2. — Since n ≥ es−1
q−1 , we obtain min{n+es, 1+qn} = n+es =

n′. The proposition follows from Lemma 3.6.

Proof of Proposition 3.1 in the case of n ≥ es. — By Remark 3.3 we have to prove

the following cases.

1. L/K unramified and l = 2s+ 1.

2. L/K ramified and l = 2s+ 1.

3. L/K ramified, q = 2 and l = 2s.

4. L/K unramified, q = 2, l = 2s− 1 and s 6= 1.

Note that l ≥ 2. Let f0 be an element of (Os + πlDOD) \ (Os + πl+1
D OD). Write

f0 = c+ [π]F0
◦ g0 with c ∈ Os and g0 ∈ π

l−2
D OD \ (Os + π

l−1
D OD). Since elements of

Os lift to EndF
′, it is enough to show that [π]F0

◦ g0 satisfies the claim. As g0 is an

element of π2s−1
D OD \ (Os+π

2s
DOD), it lifts to EndF

′
n−1 \EndF

′
n with n = nl−2. We

have

n = a(s− 1) + qs−1 + 1 =
2qs − 2

q − 1
.(3.4)

In the first case, we obtain nl−2 ≥
es−1
q−1 and the claim follows from the case l = 2s−1

from Proposition 3.2.

Now consider the other cases. Note that in these cases n + 1 ≤ es (Rem. 3.3).

Let n′ = nl. We have to show that [π]F0
◦ g0 lifts to EndF

′
n′−1 \ EndF

′
n′ . An easy

calculation shows that in each case n′ = qn + 2. By equation (3.4) we see that

es + n = qn in the second case, and es + n > qn + 2 in the other cases. Now we

can use Lemma 3.6 (ii) to see that π ◦ g0 lifts to EndF
′
n′−1. Let hn′−1 ∈ EndF

′
n′−1

be a lift of [π]F ′0 ◦ g0. It remains to show that hn′−1 does not lift to EndF
′
n′ , i.e.,

δπ(hn′−1) ∈ A
′
n′ [[X]] is not equal to zero modulo (X)

q2 .
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Let hn′ ∈ A
′
n′ [[X]] be a lift of hn′−1 as a power series. Then hn′ = [π]F ′

n′
◦gn′+F ′

n′
ψ

with a power series ψ = bX+ . . . ∈ (π′)n
′
−1[[X]]. Using the notation of 3.1, we obtain

δπ(hn′−1) = δπ(πF ′
n′−1

◦ gn′−1) +F ′
n′
ψ ◦ [π]F ′

n′
−F ′

n′
[π]F ′

n′
◦ ψ

≡ [π]F ′
n′
◦ ε+F ′

n′
ψ ◦ [π]F ′

n′
mod (π′)n

′+1.(3.5)

By (3.1) we obtain from equation (3.5)

δπ(hn′−1) ≡ (πa+ bu)X
q + . . . mod (π′)n

′+1.

It is sufficient to prove the following claim.

Claim: We have

πa+ bu 6≡ 0 mod (π′)n
′+1.

Indeed, we have δπ(hn′−1) ≡ 0 mod (π
′)n

′

since hn′−1 is an endomorphism. We

obtain from equation (3.5) that

δπ(hn′−1) ≡ (uε
q + . . .+ vεq

2

+ . . .) +F ′
n′
(bvXq2 + . . .) mod (π′)n

′

≡ (uaq + bv)Xq2 + . . . mod (π′)n
′

,

hence we have

uaq + bv ≡ 0 mod (π′)n
′

.(3.6)

Since vπ′(a) = n (Rem. 3.5) and n′ = qn+ 2, we obtain that vπ′(b) = n′ − 1.

We first consider the last two cases. In these cases, we have es+n > n′. Therefore,

πa ≡ 0 mod (π′)n
′+1 and the claim is satisfied. Thus the proposition is proved in

these cases.

Now consider the second case. Let

g = αX + . . . ∈ A′[[X]].

Since n+ 1 ≤ es, we obtain from the definition of ε

ε ≡ u(α− αq)Xq + . . . mod (π′)n+1,

hence

a = u(α− αq).

As vπ′(a) = n, we have vπ′(α) = n− 1.

Using equation (3.6), we obtain

πa+ bu ≡ πa− v−1u2a ≡ πuα− v−1uq+2αq mod (π′)n
′+1.

The idea is to analyze the solutions of the equation

πα− v−1uq+1αq ≡ 0 mod (π′)n
′

.(3.7)
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There are q different solutions of this equation for α ∈ (π′)n−1/(π′)n. We will identify

these solutions as first coefficients of endomorphisms corresponding to elements of Os.

Consider the following general situation. Let f0 and f
′
0 be two elements of π

2s+1
D OD

which are not equivalent modulo π2s+2
D OD. As before, we write f0 = [π]F ′0 ◦ g0 and

f ′0 = [π]F ′0 ◦ g
′
0. We obtain

g0 − g
′
0 ∈ π

2s−1
D OD \ π

2s
DOD = π2s−1

D OD \ (Os + π
2s
DOD).

Hence the endomorphism g0− g
′
0 lifts to EndF

′
n−1 \EndF

′
n. Write g = αX + . . . and

g′ = α′X + . . . as before. We obtain vπ′(α − α′) = n − 1, hence α and α′ are not

equivalent modulo (π′)n. Thus different equivalence classes of endomorphisms belong

to different equivalence classes of coefficients. As L/K is a ramified extension in the

division algebra D, we have

(Os ∩ π
2s+1
D OD)/π

2s+2
D OD = ((OK + π

sOL) ∩ π
2s+1
D OD)/π

2s+2
D OD

= πs+1OL/(π
2s+2
D OD ∩ π

s+1OL)

= OL/πLOL
∼= Fq.

Thus the q different solutions of (3.7) correspond to the equivalence classes of endo-

morphisms of Os in EndF
′
n′ . By our assumption [π]F ′0 ◦ g0 6∈ Os + π2s+2

D OD, hence

equation (3.7) is not satisfied which proves the claim.
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12. INVARIANTS OF TERNARY QUADRATIC FORMS

by

Irene I. Bouw

This note provides details on [GK, Section 4]. The main goal is to define and

compute the Gross–Keating invariants a1, a2, a3 of ternary quadratic forms over Z`
(Definition 1.2). If a1 ≡ a2 mod 2 and a3 > a2 we define an additional invariant

ε ∈ {±1} (Definition 2.7, Definition 4.8). If ` 6= 2 every quadratic form over Z` is
diagonalizable, and it is easy to determine these invariants from the diagonal form

(Section 2). If ` = 2 not every quadratic form is diagonalizable. We determine a

normal form in Section 3 and compute the invariants in terms of this normal form

(Section 4). In Section 5 we determine explicitly when a ternary quadratic form is

anisotropic. A complete table can be found in Proposition 5.2 (non diagonalizable

case) and Theorem 5.7 (diagonalizable case). In Section 6, we give an alternative

definition of the Gross–Keating invariants for anisotropic quadratic forms. The results

of Section 6 are due to Stefan Wewers, following a hint in [GK, Section 4].

Our main reference on quadratic forms over Z` is [C, Chapter 8]. Most of the of
the result of this paper can also be found in the work of Yang, in a somewhat different

form. The Gross–Keating invariants are computed in [Y1, Appendix B]. The question

whether a given form over Z2 is isotropic or not (Section 5) is discussed in [Y2].

I would like to thank M. Rapoport for comments on an earlier version.

1. Definition of the invariants ai

In this section we give the general definition of the Gross–Keating invariants ai of

quadratic forms over Z` which are used in [GK].
Let L be a free Z`-module of rank n and choose a (for the moment) arbitrary basis

ψ = {ψ1, ψ2, . . . , ψn}. For the application to [GK] we are only interested in the case

n = 3 of ternary quadratic forms. Let (L,Q) be an integral quadratic form over Z`,
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that is,

Q(x) = Q(
∑

xiψi) =
∑

i≤j

bijxixj , with bij ∈ Z`.

Put bji = bij for j > i. If we want to stress the dependence of the bij on the basis, we

write bij(ψ) for bij . We write (x, y) = Q(x+ y)−Q(x)−Q(y) for the corresponding

symmetric bilinear form and B = ((ψi, ψj)) for the corresponding matrix. Note that

B =
(

Bij
)

, where Bij =

{

bij , if i < j,

2bij , if i = j.

In the rest of the paper we only use the bij and not the Bij , for simplicity. We denote

by ord the `-adic valuation on Z`. We always suppose that Q is regular, that is,

det(B) 6= 0.

Changing the basis multiplies the determinant of B by an element of (Z×` )2. There-
fore the determinant is a well defined element of Z`/(Z×` )2.

Lemma 1.1. — Suppose that either ` 6= 2 or n is odd. Define

∆ = ∆(Q) =
1

2
det(B).

Then ∆ ∈ Z`.

Proof. — The lemma is obvious if ` 6= 2. Suppose that ` = 2 and n odd. Write

∆ =
∑

σ∈Sn
2δ(σ)d(σ), where d(σ) = (−1)sgn(σ)

∏n
i=1 biσ(i) and δ(σ)+1 is the number

of i ∈ {1, 2, . . . , n} which are fixed by σ. The only problematic terms are those with

δ(σ) = −1. Suppose that σ acts without fixed points on {1, 2, . . . , n}. Then σ−1 6= σ,

since n is odd. The matrix ((ψi, ψj)) is symmetric. It follows that d(σ) = d(σ−1),

hence 2δ(σ)d(σ) + 2δ(σ
−1)d(σ−1) ∈ Z`.

We now come to the definition of the Gross–Keating invariants of a quadratic

form. Let ψ = (ψ1, ψ2, . . . , ψn) be a basis of L. We write S(ψ) for the set of tuples

y = (y1, y2, . . . , yn) ∈ Zn such that

(1.1) y1 ≤ y2 ≤ . . . ≤ yn,
yi + yj
2

≤ ord(bij(ψ)) for 1 ≤ i ≤ j ≤ n.

Let S = ∪S(ψ). We order tuples (y1, . . . , yn) ∈ S lexicographically, as follows. For

given (y1, . . . , yn), (z1, . . . , zn) ∈ S, let j be the largest integer such that yi = zi for

all i < j. Then (y1, . . . , yn) > (z1, . . . , zn) if yj > zj .

Definition 1.2. — The Gross–Keating invariants a1, . . . , an are the maximum of

(y1, . . . , yn) ∈ S. A basis ψ is called optimal if (a1, . . . , an) ∈ S(ψ).

If ψ is optimal, then

(1.2) ai + aj ≤ 2 ord(bij(ψ)) for 1 ≤ i ≤ j ≤ n, and a1 ≤ a2 ≤ · · · ≤ an.

Since ∆ is well defined up to (Z×` )2, the integer ord(∆) is well defined. The following
lemma will be useful in computing the Gross–Keating invariants.
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Lemma 1.3. — (a) Suppose that n is odd, then

ord(∆) ≥ a1 + a2 + · · ·+ an.

(b) We have

a1 = min
x,y∈L

ord (x, y) .

(c) Define ρ := minA ord(det(A)), where A runs through the 2 by 2 minors of B.

Then

a1 + a2 ≤ ρ.

Proof. — This lemma is proved in [Y1, Lemma B.1, Lemma B.2]. Note that the

matrix T in [Y1] differs by a factor 2 from our matrix B. Let ϕ be an optimal basis.

We use the notation of the proof of Lemma 1.1.

First suppose that ` = 2. Write S for the set of equivalence classes in Sn un-
der the equivalence relation σ ∼ σ−1. The proof of Lemma 1.1 shows that ∆ =
∑

σ∈S(−1)
sgn(σ)2δ

′(σ)d(σ), where δ′(σ) ≥ 0. The choice of ϕ implies that

ord(2δ
′(σ)d(σ)) = δ′(σ) + ord(

∏

i

biσ(i)) ≥
n
∑

i=1

ai + aσ(i)

2
=

n
∑

i=1

ai.

This proves (a) in this case.

If ` 6= 2, define δ′(σ) = 0 for all σ ∈ Sn. Then the proof works also in this case.

Since a1 ≤ a2 ≤ · · · ≤ an, it follows from (1.2) that ord(bij(ϕ)) ≥ a1 for all i ≤ j.

On the other hand, it is obvious that a1 ≥ minx,y∈L ord (x, y). This implies (b).

Part (c) is similar to (a), compare to Lemma B1.ii in [Y1]. Let i1, i2, j1, j2 ∈

{1, 2, . . . , n} be integers such that i1 6= i2 and j1 6= j2. Write B(i1, i2; j1, j2) for

the corresponding minor of B. After renumbering, we may suppose that i1 6= j2
and i2 6= j1. Then det(B(i1, i2; j1, j2)) = ±(2αbi1,j1bi2,j2 − bi1,j2bi2j1), where α ∈

{0, 1, 2} is the number of equalities i1 = j1, i2 = j2 that hold. We conclude that

ord(det(B(i1, i2; j1, j2)) ≥ (ai1 + ai2 + aj1 + aj2)/2 ≥ a1 + a2. (Here we use that

a1 ≤ a2 ≤ · · · ≤ an and i1 6= i2 and j1 6= j2.) This proves (c).

2. Definition of the Gross–Keating invariants for ` 6= 2

We start this section with an elementary lemma which holds without assumption

on `.

Lemma 2.1. — Choose a basis ψ = (ψ1, . . . , ψn) of L. Let γ1, . . . , γm ∈ L be linearly

independent. The following are equivalent.

(a) There exists γm+1, . . . , γn ∈ L such that the (γi) form a basis.

(b) The matrix (γ1, . . . , γm), expressing the γi in terms of the basis ψ, contains a

m×m minor whose determinant is a p-adic unit.

(c) If
∑n
i=1 viγi ∈ L for some vi ∈ Q`, then vi ∈ Z`.
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Proof. — This is straightforward. See also [C, Chapter 8, Lemma 2.1].

In particular, a vector α =
∑

i αiψi ∈ L is part of a basis of L if and only if

minj ord(αj) = 0. We call such vectors primitive.

We have that

(2.1) 2 (x, y) = 2[Q(x+ y)−Q(x)−Q(y)] = (x+ y, x+ y)− (x, x)− (y, y) .

If ` 6= 2, this implies that

(2.2) min
x,y∈L

ord (x, y) = min
x∈L

ord (x, x) .

In the rest of this section, we suppose that ` 6= 2. There is a x ∈ L for which the

minimum in (2.2) is attained. This vector x is primitive. Lemma 2.1 implies that x

can be extended to a basis of L. We will see in Section 4 that (2.2) does not hold for

` = 2; this is the main reason why things are more difficult for ` = 2.

Proposition 2.2. — Suppose that ` 6= 2. Then there exists a basis ψ of L such that

Q(x) = Q(
∑

xiψi) =
∑

i

biix
2
i , where ord(b11) ≤ ord(b22) ≤ . . . ≤ ord(bnn).

Proof. — Our proof follows [C, Chapter 8, Theorem 3.1].

The discussion before the statement of the theorem shows that we may choose ϕ1

such that

ord(Q(ϕ1)) = ord (ϕ1, ϕ1) = min
x,y∈L

ord (x, y) .

Here we use the equality (2.2).

Choose ϕ2, . . . , ϕn ∈ L such that ϕ = {ϕ1, ϕ2 . . . , ϕn} is a basis of L. As before

we write Q(
∑

i xiϕi) =
∑

1≤i≤j≤n bij(ϕ)xixj . Then

Q(x) = b11

(

x1 +
b12
2b11

x2 + · · ·
b1n
2b11

xn

)2

+ Q̃(x2, . . . , xn),

for some integral quadratic form Q̃ in n− 1 variables.

We define a new basis by ψ1 = ϕ1, and ψi = ϕi − (b1i/2b11)ϕ1 for i 6= 1. The

choice of ψ1 ensures that ψi ∈ L, since e = ord(2b11) ≤ ord(b1i). With respect to this

new basis, the quadratic form is

Q(x) = b11(ψ)x
2
1 + Q̃(

∑

i≥2

xiψi).

The proposition follows by induction.

Remark 2.3. — Cassels ([C, Chapter 8, Theorem 3.1]) proves a stronger statement

than Proposition 2.2. Namely, he gives a list of pairwise nonisomorphic quadratic

forms such that every integral quadratic form is isomorphic to one of these. This

stronger statement implies that the definition of the invariants ai of Proposition 2.6

does not depend of the choice of the orthogonal basis.
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We can give a simpler definition of the invariants ai in terms of a basis ψ as in

Proposition 2.2. If γ ∈ L is an element such that Q(γ) 6= 0, we may define a reflection

τγ by

τγ(x) = x−
2 (x, γ)

(γ, γ)
γ.

This is the reflection in the orthogonal complement of γ. Clearly, τγ is defined over

Z` if and only if ord (γ, γ) = minx∈L ord (x, x) . (In fact, this also holds for ` = 2.)
Since τγ is a reflection, it is clearly invertible. The following lemma is a partial analog

of Witt’s Lemma ([C, Corollary to Theorem 2.4.1]) which holds for quadratic forms

over fields.

Lemma 2.4. — Suppose that ψ,ϕ ∈ L satisfy

Q(ψ) = Q(ϕ), ord(Q(ψ)) = ord(Q(ϕ)) = min
x∈L

ord(Q(x)).

Then there exists an integral isometry σ of (L,Q) such that σ(ψ) = ϕ. Moreover, σ

may be taken as a product of reflections τγ .

Proof. — This is [C, Lemma 8.3.3]. Our assumptions on ψ and ϕ imply that

Q(ψ + ϕ) + Q(ψ − ϕ) = 2Q(ψ) + 2Q(ϕ) = 4Q(ψ). Since ord(Q(ψ)) = ord (ψ,ψ) =

minx∈L ord (x, x) =: e, it follows that one of the following holds:

(a) ordQ(ψ + ϕ) = e,

(b) ordQ(ψ − ϕ) = e.

Since ` 6= 2, it is also possible that both hold. If (a) holds, then τψ+ϕ is integral and

sends ψ to ϕ. If (b) holds, define σ = τψ−ϕ ◦ τψ.

Lemma 2.5. — Suppose u, v ∈ Z×` . Then ux2
1 + vx

2
2 ∼Z`

x2
1 + uvx

2
2.

Proof. — This is proved in the second corollary to [C, Lemma 8.3.3]. We give the

idea. Since ` 6= 2, there exists a, c ∈ Z` such that a2u + c2v = 1. We may assume

that a is a unit. Then

C =

(

a −cv

c au

)

defines the equivalence of the lemma.

Proposition 2.6. — (a) Let ψ = (ψ1, ψ2, . . . , ψn) be an orthogonal basis of L as

in Proposition 2.2 Write Q(x) =
∑

i bix
2
i . Then the invariants ai (Definition

1.2) satisfy

ai = ord(bi).

In particular, ψ is optimal.

(b) Suppose that n is odd. Then

ord(∆) = a1 + · · ·+ an.
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Proof. — Let ϕ be a basis such that the inequalities (1.2) hold. We claim that

ord (ϕ1, ϕ1) = a1. Part (b) of Lemma 1.3 implies that a1 = minx∈L ord (x, x). The

choice of ϕ implies moreover that ord (ϕ1, ϕ1) = minx∈L ord (x, x). The definition of

a1 implies therefore that a1 = ord (ϕ1, ϕ1).

We apply the diagonalization process of the proof of Proposition 2.2 to the basis

ϕ. Define ψ1 = ϕ1 and ψi = ϕi − (b1i/2b11)ϕ1 for i 6= 1. One computes that

(ψj , ψ1) = 0, (ψj , ψj) =
b21j
2b11

+ 2bjj , (ψi, ψj) = −
b1ib1j
2b11

+ bij ,

for j 6= 1 and i 6= 1, j. The inequalities (1.2) imply that ord (ψj , ψj) ≥ aj and

2 ord (ψi, ψj) ≥ ai + aj . Therefore the new basis also satisfies the inequalities (1.2).

This implies that there exists an orthogonal basis ψ which satisfies (1.2). It follows

that the Gross–Keating invariants (a1, . . . , an) are the maximum of ∪S(ψ), where the

union is taken over the orthogonal bases and ∪S(ψ) is as in (1.1).

Let ϕ and ψ be two orthogonal bases. Write Q(x) = b1x
2
2+ b2x

2
2+ · · ·+ bnx

2
n with

respect to the basis ψ and Q(x) = d1x
2
1+ d2x

2
2+ · · ·+ dnx

2
n with respect to the basis

ϕ. We suppose that ord(b1) ≤ ord(b2) ≤ · · · ≤ ord(bn) and ord(d1) ≤ ord(d2) ≤ · · · ≤

ord(dn). We suppose moreover that ϕ satisfies (1.2). (Such ϕ exists by the above

argument.) We have to show that ψ satisfies (1.2), also. Write C = (cij) for the

change of basis matrix expressing ϕ in terms ψ. As before, Lemma 1.3.(b) implies

that ord(b1) = ord(d1) = a1. Write b1 = ud1, for some unit u.

Suppose that ord(b2) > ord(b1). Then

d1 =
n
∑

j=1

c2j1bj ≡ c211b1 mod `
a1+1.

This implies that u is a quadratic residue. To prove the claim, we may therefore

assume that Q(ψ1) = Q(ϕ1) in this case.

Suppose that ord(b1) = ord(b2). Then Lemma 2.5 implies thatQ is Z`-equivalent to
d1x

2
1+ub2x

2
2+b3x

2
3+· · · . Hence also in this case we may assume that Q(ψ1) = Q(ϕ1).

Lemma 2.4 implies that there exists an isometry σ of Q which sends ψ1 to ϕ1.

Then D := σ−1C fixes ψ1. Write

D =

(

1 D1

0 D2

)

, B :=







2b1 0
. . .

0 2bn







where D2 is an (n− 1)× (n− 1) matrix. One computes that

DtBD =

(

2γ2b1 2γD1

2γDt
1 ∗

)

.
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Our assumption implies that DtBD is a diagonal matrix, with diagonal entries 2di.

This implies that D1 = (0, . . . , 0). We conclude that D restricts to an integral and in-

vertible map from the sublattice of L spanned by ψ2, . . . , ψn to the sublattice spanned

by ϕ2, . . . , ϕn. This implies (a).

Part (b) follows immediately from (a).

Definition 2.7. — Suppose that n = 3 and ` 6= 2. Assume a1 ≡ a2 mod 2, and

a3 > a2. Choose a basis ψ = (ψ1, ψ2, ψ3) of L as in Proposition 2.2. Write bii = `aiui.

We define an invariant ε = ε(ψ) by the Legendre symbol

(2.3) ε =

(

−u1u2

`

)

.

Lemma 2.8. — Assumptions and notations are as in Definition 2.7.

(a) The invariant ε(ψ) does not depend on the choice of the orthogonal basis ψ.

(b) We have that ε = 1 if and only if the subspace of L ⊗Z`
Q` spanned by ψ1 and

ψ2 is isotropic.

Proof. — Let ψ = (ψ1, ψ2, ψ3) be a basis of L as in Proposition 2.6, in particular ψ

is orthogonal and the valuation of bi = (ψi, ψi) /2 is equal to ai, for i = 1, 2, 3.

Suppose that a2 ≡ a1 mod 2 and a3 > a2. Write a2 = a1 + 2γ. Write Q
′ for the

restriction of Q to the sublattice of L spanned by ψ1 and ψ2. Then Q
′(x) = b1x

2
1+b2x

2
2

is equivalent to `a1(x2
1 + u1u2`

2γx2
2) (Lemma 2.5). It follows that Q

′ is isotropic if

ε = 1 and anisotropic if ε = −1. This proves (b).

Let ϕ be another orthogonal basis and write Q(
∑

i xiϕi) = d1x
2
1+d2x

2
2+d3x

2
3. We

assume that ord(di) = ai. Write C for the matrix expressing ϕ in terms of ψ. The

argument of the proof of Proposition 2.6 together with the assumption that a2 < a3

implies that there exists an isometry σ such that

σ−1C =





v1 0 0

0 v2 0

0 0 v3



 ,

where the vi are units. This shows that di = v2
i bi. The lemma follows.

3. A normal form for quadratic forms over Z2

Not every quadratic form over Z2 is diagonalizable. In this section we give a normal

form for ternary quadratic forms over Z2, following [C, Section 8.4]. Cassels uses a

slightly stronger notion of integrality, namely he supposes that bij/2 ∈ Z`, for all
i 6= j. However, this does not make any difference.

Lemma 3.1. — Suppose ` = 2. Let Q be a regular quadratic form over Z2. Then Q

is Z2-equivalent to a sum of quadratic forms of the form

(3.1) 2eux2,
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for e ∈ Z≥0 and u ∈ Z×2 , and

(3.2) 2e(b1x
2
1 + ux1x2 + b2x

2
2),

with e ∈ Z≥0, and u ∈ Z×2 .

The equality (2.1) holds for ` = 2, but (2.2) does not. However, (2.1) implies that

min
x,y∈L

ord (x, y) + 1 ≥ min
x∈L

ord (x, x) .

Therefore minx,y∈L ord (x, y) equals either minx∈L ord (x, x) or minx∈L ord (x, x)− 1.

Proof. — Let e = minx,y∈L ord (x, y). We distinguish two cases.

(a) There exists a γ ∈ L such that ord (γ, γ) = e.

(b) For all γ ∈ L we have that ord (γ, γ) > e.

Suppose we are in case (a). Then ord (ψ1, ψi) ≥ e, by definition. We can now

proceed as in the proof of Proposition 2.2. Namely, 2b11 = 2Q(ψ1) = (ψ1, ψ1).

Therefore b11 has valuation e− 1. For i 6= 1, we have that ord(b1i) = ord (ψ1, ψi) ≥ e.

Therefore

ϕi = ψi −

(

b1i
2b11

)

ψ1.

is an element of L and ψ1, ϕ2, . . . , ϕn form a basis. With respect to this basis the

quadratic form Q becomes Q(x) = b11x
2
1 + Q̃(x2, . . . , xn), for some quadratic form Q̃

in n− 1 variables.

Suppose we are in case (b). Then ord (γ, γ) > e for all γ ∈ L. We may choose

ψ1, ψ2 ∈ L such that ord (ψ1, ψ2) = e. The definition of e implies that (ψ1+ψ2)/2 6∈ L.

Lemma 2.1 implies therefore that ψ1, ψ2 can be extended to a basis ψ1, . . . , ψn of L.

The choice of ψ1 and ψ2 implies that the determinant of the matrix
(

2b112
−e b122

−e

b122
−e 2b222

−e

)

is a unit in Z`. Therefore we can find λj1, λ
j
2 such that

−2λj1b11 − λ
j
2b12 + b1j = 0, −2λj2b22 − λ

j
1b12 + b2j = 0,

for j = 3, . . . , n. Define ϕj = ψj − λj1ψ1 − λj2ψ2. The choice of the λ
j
i implies that

(ϕj , ψ1) = (ϕj , ψ2) = 0, for j = 3, . . . , n.

With respect to the basis (ψ1, ψ2, ϕ3, . . . , ϕn) the quadratic form Q becomes

Q(x) = 2e(b11x
2
1 + b12x1x2 + b22x

2
2) + Q̃(x3, . . . , xn).

This proves the lemma.

Lemma 3.2. — Let Q2(x) = b11x
2
1 + b12x1x2 + b22x

2
2 be a binary quadratic form

over Z2 and L2 the corresponding free Z2-lattice of rank two.

(a) If min(ord(b11), ord(b22)) < ord(b12) then Q2 is diagonalizable.



12. INVARIANTS OF TERNARY QUADRATIC FORMS 129

(b) Suppose that Q2 is not diagonalizable. Then Q2 is anisotropic if and only if

ord(b12) = ord(b11) = ord(b22).

(c) Suppose Q2 is anisotropic and not diagonalizable. Then Q2 is equivalent to

2e(x2
1 + x1x2 + x

2
2),

for some e.

(d) Suppose that Q2 is isotropic and not diagonalizable. Then Q2 is equivalent to

2ex1x2,

for some e.

Proof. — Part (a) follows from the proof of Lemma 3.1.

Suppose that Q2 is not diagonalizable. Then ord(b12) ≤ min(ord(b11), ord(b22)),

by (a). Part (b) is an elementary Hilbert-symbol computation using [S, Theorem

IV.6].

Suppose that Q2 is anisotropic and not diagonalizable. Then (b) implies that e :=

ord(b12) = ord(b11) = ord(b22). Part (c) now follows from an elementary computation.

Suppose that Q2 is isotropic and not diagonalizable. There exists a primitive vector

ψ1 such that Q(ψ1) = 0. Lemma 2.1 together with the fact that the quadratic form

is nondegenerate, implies that there exists a vector ψ2 ∈ L2 such that ψ1, ψ2 form a

basis of L2 and (ψ1, ψ2) 6= 0. After multiplying ψ2 with a unit, we may suppose that

(ψ1, ψ2) = 2
e, for some e ≥ 0.

We claim that ord (ψ2, ψ2) > ord (ψ1, ψ2). Namely, if ord (ψ2, ψ2) ≤ ord (ψ1, ψ2)

then Q2 is diagonalizable by (a), but this contradicts our assumptions. Therefore

ψ′2 := ψ2 −
(ψ2, ψ2)

2 (ψ1, ψ2)
ψ1 ∈ L2.

Now ψ1, ψ
′
2 form a basis of L and (ψ

′
2, ψ

′
2) = 0. This proves (d).

Proposition 3.3. — Let (L,Q) be a ternary quadratic form over Z2. One of the

following two possibilities occurs.

(a) The form Q is diagonalizable; there exists a basis such that

Q(x) = b1x
2
1 + b2x

2
2 + b3x

3
3, with 0 ≤ ord(b1) ≤ ord(b2) ≤ ord(b3).

(b) The form Q is not diagonalizable; there exists a basis such that

Q(x) = u12
µ1x2

1+2
µ2(vx2

2+x2x3+vx
2
3), with v ∈ {0, 1}, µi ≥ 0 and u1 ∈ Z×2 .

Proof. — This follows immediately from Lemma 3.1 and Lemma 3.2.

This classification is the same as the classification used (but not explicitly stated)

in [Y1, Appendix B]. Note that Yang’s matrix T differs by a factor 2 from the matrix

B we use. In particular, the invariant β used in [Y1, Proposition B.4] satisfies β ≥ −1

rather than β ≥ 0.
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4. The Gross–Keating invariants for ` = 2

In this section we compute the Gross–Keating invariants of ternary quadratic forms

(L,Q) over Z2 in terms of the normal form of Proposition 3.3. The computation of

the ai can be found in Proposition 4.1 (non-diagonalizable case) and Proposition 4.2

(diagonalizable case). The computation of ε can be found in Proposition 4.9. This

section is based on [Y1, Appendix B].

We start by considering quadratic forms which are not diagonalizable. Recall from

Proposition 3.3 that if Q is not diagonalizable then there exists a basis ψ of L with

respect to which we have

(4.1) Q(x) = u12
µ1x2

1 + 2
µ2(vx2

2 + x2x3 + vx
2
3), with v ∈ {0, 1}, u1 ∈ Z×2 .

We do not suppose that µ1 ≤ µ2.

Proposition 4.1. — Suppose that Q is given by (4.1). Then

(a1, a2, a3) =

{

(µ1, µ2, µ2), if µ1 ≤ µ2,

(µ2, µ2, µ1), if µ1 > µ2.

Proof. — Lemma 1.3.(b) implies that a1 = min(µ1, µ2). We distinguish two cases.

Suppose that µ1 ≤ µ2. Then a1 = µ1 and ord(∆) = µ1 + 2µ2 ≥ a1 + a2 + a3

(Lemma 1.3.(a)). Therefore a2 ≤ (a2 + a3)/2 ≤ µ2. The existence of a basis ψ as in

(4.1) implies that (µ1, µ2, µ2) ∈ S(ψ). We conclude that a2 = a3 = µ2.

Suppose that µ1 > µ2. In this case we have that a1 = µ2. Recall that we defined

ρ as the minimum of the valuation of the determinant of the 2 × 2-minors of B.

One computes that ρ = min(2µ2, 1 + µ1 + µ2) = 2µ2, since we assumed that µ1 ≥

µ2 + 1. Lemma 1.3.(c) implies that ρ ≥ a1 + a2, hence a2 ≤ µ2. The existence of a

basis ψ as in (4.1) implies that (µ2, µ2, µ1) ∈ S(ψ). We conclude that (a1, a2, a3) =

(µ2, µ2, µ1).

We now consider diagonalizable quadratic forms Q. Contrary to the situation for

` 6= 2, a basis ψ which diagonalizes Q is not optimal (Definition 1.2).

Proposition 4.2. — Suppose that Q is diagonalizable. Let ψ be a basis of L such

that

(4.2)

Q(x) = b1x
2
1 + b2x

2
2 + b3x

2
3, with bi = ui2

µi , ui ∈ Z×2 and µ1 ≤ µ2 ≤ µ3.

(a) Suppose that µ1 6≡ µ2 mod 2. Then (a1, a2, a3) = (µ1, µ2, µ3 + 2).

(b) Suppose that µ1 ≡ µ2 mod 2.

(i) If u1+u2 ≡ 2 mod 4 or µ3 ≤ µ2+1, then (a1, a2, a3) = (µ1, µ2+1, µ3+1).

(ii) Otherwise, (a1, a2, a3) = (µ1, µ2 + 2, µ3).

The proof of this proposition is divided in several lemmas. We use the notation of

Proposition 4.2. In particular, ψ is a basis of L with respect to which Q is as in (4.2).

Let ϕ be an optimal basis, i.e. suppose that the inequalities (1.2) hold. We write
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C = (cij) for the change of basis matrix expressing ϕ in terms of ψ. We write the

quadratic form Q in terms of the basis ϕ as Q(x) =
∑

i≤j dijxixj . In other words,

the dij are the coefficients of the matrix obtained by dividing the diagonal elements

of CtBC by two. One computes that

(4.3) dii = c21ib1 + c
2
2ib2 + c

2
3ib3.

Lemma 4.3. — Suppose that Q is diagonal and µ1 6≡ µ2 mod 2. Then (a1, a2, a3) =

(µ1, µ2, µ3 + 2).

Proof. — We have already seen that a1 = µ1. Therefore it follows from the definition

of the ai that a2 ≥ µ2. We claim that a2 = µ2. Suppose that a2 > µ2.

Write µ2 = µ1 + 2γ + 1. The inequalities (1.2) imply that ord(d22) ≥ a2 ≥ µ2 + 1

and ord(d33) ≥ a3 ≥ a2 ≥ µ2 + 1. Since µ1 6≡ µ2 mod 2, it follows from (4.3) that

ord(c12) ≥ γ + 1 and ord(c13) ≥ γ + 1.

We first suppose that µ3 > µ2. Then ord(c22) ≥ 1 and ord(c33) ≥ 1. But this

implies that det(C) ≡ 0 mod 2. This gives a contradiction.

If µ2 = µ3, we proceed similarly. In this case c22 ≡ c32 mod 2 and c23 ≡ c33 mod 2.

This implies again that det(C) ≡ 0 mod 2. We conclude that a2 = µ2.

Since ord(∆) = ord(det(B)) + 2 = µ1+ µ2+ µ3+2, it follows from Lemma 1.3.(a)

that a3 ≤ µ3 + 2. To show that a3 = µ3 + 2 it suffices to find a basis ϕ such that

(µ1, µ2, µ3 + 2) ∈ S(ϕ). We now construct such a basis.

Our assumptions imply that µ3 is congruent to µ1 or µ2 (modulo 2). We suppose

that µ3 ≡ µ1 mod 2. (The case µ3 ≡ µ2 mod 2 is similar.) Write µ2 = µ1 + 2γ + 1

and µ3 = µ1 + 2λ. We distinguish two cases:

– u1 + u3 ≡ 0 mod 4,

– u1 + u3 ≡ 2 mod 4.

In the first case define

C =





1 0 2λ

0 1 0

0 0 1



 .

With respect to the new basis we haveQ(x) = b1x
2
1+b2x

2
2+2

λ+1b1x1x3+(b3+2
2λb1)x

2
3.

In the second case we define

C =





1 0 2λ

0 1 2λ−γ

0 0 1



 .

With respect to the new basis we have Q(x) = b1x
2
1+b2x

2
2+2

λ+1b1x1x3+(b3+2
2λb1+

22(λ−γ)b2)x
2
3+2

λ−γ+1b2x2x3. It is easy to check that the basis ϕ corresponding to C

satisfies (1.2) for a1 = µ1, a2 = µ2 and a3 = µ3 + 2. This proves the lemma.

The proof of Lemmas 4.4, 4.5 and 4.6 follows the same pattern as the proof of

Lemma 4.3.
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Lemma 4.4. — Suppose that Q is diagonalizable, µ1 ≡ µ2 mod 2 and µ3 ≤ µ2 + 1.

Then (a1, a2, a3) = (µ1, µ2 + 1, µ3 + 1).

Proof. — Since a1 = µ1 and ord(∆) = µ1 + µ2 + µ3 + 2 it follows from Lemma 1.3

that a1 + 2a2 ≤ a1 + a2 + a3 ≤ µ1 + µ2 + µ3 + 2 ≤ µ1 + 2µ2 + 3. This implies that

a2 ≤ µ2 + 1.

We now construct a basis ϕ such that (µ1, µ2+1, µ3+1) ∈ S(ϕ). The lemma follows

from this. Let C be the corresponding change of basis matrix. Write µ2 = µ1 + 2γ.

If µ2 = µ3 define

C =





1 2γ 2γ

0 1 0

0 0 1



 .

With respect to the new basis we have Q(x) = b1x
2
1+(2

2γb1+ b2)x
2
2+2

γ+1b1(x1x2+

x1x3) + (b3 + 2
2γb1)x

2
3 + 2

1+2γb1x2x3.

If µ3 = µ2 + 1 and u1 + u2 ≡ 2 mod 4 define

C =





1 2γ 2γ

0 1 1

0 0 1



 .

With respect to the new basis we have Q(x) = b1x
2
1+(b2+2

2γb1)x
2
2+2

γ+1b1(x1x2+

x1x3) + (b3 + 2
2γb1 + b2)x

2
3 + (2

2γ+1b1 + 2b2)x2x3.

If µ3 = µ2 + 1 and u1 + u2 ≡ 0 mod 4 define

C =





1 2γ 2γ

0 1 1

0 1 2



 .

With respect to the new basis we haveQ(x) = b1x
2
1+(2

2γb1+b2+b3)x
2
2+2

γ+1b1(x1x2+

x1x3) + (4b3 + 2
2γb1 + b2)x

2
3 + (2

2γ+1b1 + 2b2 + 4b3)x2x3.

In each of these cases one checks that (µ1, µ2 + 1, µ3 + 1) ∈ S(ϕ).

Lemma 4.5. — Suppose that Q is diagonal, µ1 ≡ µ2 mod 2 and u1 + u2 ≡ 2 mod 4.

Then (a1, a2, a3) = (µ1, µ2 + 1, µ3 + 1).

Proof. — By Lemma 4.4 we may assume that µ3 ≥ µ2+2. We claim that a2 ≤ µ2+1.

Suppose that a2 ≥ µ2 + 2. As before, we suppose that ϕ is an optimal basis. As

before, we write C = (cij) for the change of basis matrix and D = CtBC = (dij) for

the matrix corresponding to the new basis. Write µ2 = µ1 + 2γ.

The assumption a2 ≥ µ2 + 2 implies that ord(d22) ≥ a2 ≥ µ2 + 2 and ord(d33) ≥

a3 ≥ a2 ≥ µ2 + 2. It follows from (4.3) that ord(c12) ≥ γ and ord(c13) ≥ γ. Suppose

that ord(c12) = γ. Then ord(c22) = 1 and d22 ≡ 2
µ2(u1 + u2) 6≡ 0 mod 2

µ2+2. This

gives a contradiction. Similarly, we obtain a contradiction if ord(c13) = γ. Therefore

ord(c1j) > γ for j = 2, 3 and d22 ≡ c222b2 mod 2
µ2+2. Since ord(d22) ≥ µ2 + 2 and

ord(b2) = µ2, we conclude that ord(c22) > 0. Similarly, d33 ≡ c223b2 mod 2
µ2+2; this
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implies that ord(c23) > 0. But then det(C) ≡ 0 mod 2. This gives a contradiction.

We conclude that a2 ≤ µ2 + 1.

To prove the lemma, we construct a basis ϕ such that (µ1, µ2 + 1, µ3 + 1) ∈ S(ϕ).

We distinguish two subcases:

– µ3 ≡ µ1 mod 2,

– µ3 6≡ µ1 mod 2.

Suppose that µ3 ≡ µ1 mod 2. Write µ2 = µ1 + 2γ and µ3 = µ1 + 2λ. Let ϕ be the

basis of L corresponding to the change of basis matrix

C =





1 2γ 2λ

0 1 0

0 0 1



 .

With respect to the new basis we have Q(x) = b1x
2
1 + (2

2γb1 + b2)x
2
2 + 2

γ+1b1x1x2 +

2λ+1b1x1x3 + (b3 + 2
2λb1)x

2
3 + 2

γ+λ+1b1x2x3.

Suppose that µ3 6≡ µ1 mod 2. Write µ2 = µ1 + 2γ and µ3 = µ1 + 2λ+ 1. Let ϕ be

the basis of L corresponding to the change of basis matrix

C =





1 2γ 2λ

0 1 2λ−γ

0 0 1



 .

With respect to the new basis we have Q(x) = b1x
2
1 + (2

2γb1 + b2)x
2
2 + 2

γ+1b1x1x2 +

2λ+1b1x1x3 + (b3 + 2
2λb1 + 2

2(λ−γ)b2)x
2
3 + (2

γ+λ+1b1 + 2
λ−γ+1b2)x2x3.

In each of these cases one checks that (µ1, µ2 + 1, µ3 + 1) ∈ S(ϕ).

Lemma 4.6. — Suppose that Q is diagonal, µ1 ≡ µ2 mod 2, µ3 ≥ µ2 + 2 and u1 +

u2 ≡ 0 mod 4. Then (a1, a2, a3) = (µ1, µ2 + 2, µ3).

Proof. — Write µ2 = µ1 + 2γ. We already know that a1 = µ1. We claim that

a2 ≤ µ2 + 2. Suppose a2 ≥ µ2 + 3. The same reasoning as in the beginning of the

proof of Lemma 4.4 shows that we may assume that µ3 ≥ µ2 + 4. If c22 ≡ c23 ≡ 0

mod 2, we conclude as in the proof of Lemma 4.5 that det(C) ≡ 0 mod 2. This gives

a contradiction, hence either c22 or c23 is a unit.

Suppose that c22 is a unit. (The argument in the case that c23 is a unit is similar,

and we omit it.) Then ord(c12) = γ. One computes that

(4.4) d12 ≡ 2c12c11b1 + 2c21c22b2 mod 2
µ2+3.

It follows from (1.2) that 2 ord(d12) ≥ a1 + a2 ≥ µ1 + µ2 + 3 = 2µ1 + 2γ + 3. Hence

(4.5) ord(d12) ≥ µ1 + γ + 2.

Recall that Lemma 1.3.(b) implies that ord(d11) = a1.

First suppose that µ1 < µ2, that is γ 6= 0. Since d11 has valuation a1, c11 is a unit.

It follows from (4.4) that ord(d12) = µ1 + γ + 1. This contradicts (4.5).
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Now suppose that µ1 = µ2. Since d11 ≡ c212b1 + c221b2 mod 2
µ1+1. Since d11 has

valuation a1 = µ1, it follows that either

(i) c12 ≡ 1 mod 2 and c21 ≡ 0 mod 2, or

(ii) c12 ≡ 0 mod 2 and c21 ≡ 1 mod 2.

Since ord(d12) ≥ µ1 + 2, it follows from (4.4) that (i) holds and that c11 ≡ 0 mod 2.

One computes that

d23 ≡ 2c12c13b1 + 2c22c23b2 ≡ 2c13b1 + 2c23b2 mod 2
µ1+2,

since c12 and c22 are units. It follows that c13 ≡ c23 mod 2. But this implies that

det(C) ≡ 0 mod 2. (In case u1 + u2 ≡ 4 mod 8 one could alternatively argue as in the

proof of Lemma 4.5.)

Let ϕ be the basis of L corresponding to the change of basis matrix

C =





1 2γ 0

0 1 0

0 0 1



 .

Then b22(ϕ) ≡ 0 mod 2
µ2+2. With respect to the new basis we have Q(x) = b1x

2
1 +

(22γb1 + b2)x
2
2 + 2

γ+1b1x1x2 + b3x
2
3. Therefore (µ1, µ2 + 1, µ3) ∈ S(ϕ). This proves

the lemma.

The following proposition is an immediate consequence of the computation of the

invariants ai. It illustrates that the ai satisfy similar properties for ` = 2 and ` 6= 2,

which is not so clear from the definition.

Proposition 4.7. — Let Q be a ternary quadratic form over Z` for ` ≥ 2. Then

ord(∆) = a1 + a2 + a3.

Proof. — For ` 6= 2 this is Proposition 2.6.(b). For ` = 2 the theorem follows from

the Propositions 4.1 and 4.2.

In the rest of this section we define the Gross–Keating invariant ε for ` = 2 and

show that it is well defined (compare to Lemma 2.8).

Definition 4.8. — Suppose that a1 ≡ a2 mod 2 and a3 > a2. Let ϕ be an optimal

basis. We define ε = ε(ϕ) by ε = 1 if the subspace of L ⊗Z2
Q2 spanned by ϕ1 and

ϕ2 is isotropic, and ε = −1, otherwise.

Proposition 4.9. — Suppose that a1 ≡ a2 mod 2 and a3 > a2.

(a) The invariant ε does not depend on the choice of the basis.

(b) (i) If Q is not diagonalizable we may write Q(x) = u12
µ1x2

1 + 2
µ2(vx2

2 +

x2x3 + vx
2
3) with v ∈ {0, 1} and µ1 > µ2. In this case

ε = (−1)v.
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(ii) If Q is diagonalizable we may write Q(x) = u12
µ1x2

1+u22
µ2x2

2+u32
µ3x2

3

with u1 + u2 ≡ 0 mod 4, µ1 ≡ µ2 mod 2 and µ3 ≥ µ2 + 2. We have that

ε = (−1)(u1+u2)/4.

Proof. — The fact that one of the two cases of (b) holds follows immediately from

Propositions 4.1 and 4.2.

Suppose that Q is not diagonalizable. Write Q(x) = u12
µ1x2

1 + 2
µ2(vx2

2 + x2x3 +

vx2
3), as in the statement of the proposition, and let ψ be the corresponding basis.

Write Q2 for the restriction of Q to the sublattice spanned by the basis vectors

ψ2, ψ3. Lemma 3.2 implies that Q2 is isotropic if and only v = 0. This implies that

ε(ψ) = (−1)v.

We now show that ε is well defined in this case. It suffices to show that ε(ϕ) =

ε(ψ) for optimal bases ϕ and ψ with respect to which Q is in a normal form as

in Proposition 3.3. By assumption, Q is not diagonalizable. (In fact, it follows

from Proposition 4.2 that no quadratic form Q(x) = u12
µ1x2

1 + 2
µ2(vx2

2 + x2x3 +

vx2
3) with v ∈ {0, 1} and µ1 > µ2 is diagonalizable. Hence we could have dropped

this assumption from the statement of the proposition.) Write Q′(x) = u′12
µ1x2

1 +

2µ2(v′x2
2 + x2x3 + v

′x2
3) for Q expressed with respect to the basis ϕ. Since ∆(Q) =

∆(Q′) we have that u1(4v
2−1) = u′1(4(v

′)2−1), therefore v = v′ implies that u1 = u′1.

Hence, to show that ε(ϕ) = ε(ψ), it suffices to show that v = v′. We assume that

v = 1 and v′ = 0, and derive a contradiction.

The basis vector ϕ2 is isotropic. Write ϕ2 = c1ψ1 + c2ψ2 + c3ψ3. The fact that

Q(ϕ2) = 0 implies that µ1 ≡ µ2 mod 2. Moreover, it follows that ord(cj) ≥ (µ1 −

µ2)/2 > 0 for j = 2, 3. Since ϕ2 is primitive, it follows that c1 ≡ 1 mod 2. An easy

computation shows that ord (ϕ2, ψi) > µ2 for i = 1, 2, 3. In particular ord (ϕ2, ϕ3) >

µ2. But this contradicts the assumption that ord (ϕ2, ϕ3) = µ2.

Next we assume that Q is diagonalizable, and let Q(x) be as in the statement of

(b.ii). Write ψ for the corresponding basis of L. Let Q2 be the restriction of Q to the

subspace spanned by ψ1, ψ2. Then Q2 is isotropic if and only if −det(Q) is a square

([S, Theorem IV.6]). It is easy to see that this happens if and only if u1 + u2 ≡ 0

mod 8.

We now show that ε is independent of the choice of the optimal basis in this case.

Let ϕ be an optimal basis. Let C = (cij) be the corresponding change of basis matrix

expressing ϕ in terms of ψ. Write µ1 = µ2 + 2γ.

We suppose that µ2 > µ1, that is γ > 0. (The case µ1 = µ2 is analogous and left

to the reader.) We use the notation of the proof of Lemma 4.6. In particular, we

write Q(x) =
∑

i≤j dijxixj for the representation of Q in terms of the basis ϕ.

We showed in the proof of Lemma 4.6 that either c22 or c23 is a unit. Suppose

that c22 ≡ 0 mod 2 and c23 ≡ 1 mod 2. It follows that ord(d33) ≥ a3 = µ3 ≥ µ2 + 3.

Therefore (4.3) implies that ord(c13) = γ. We showed in the proof of Lemma 4.6

that c11 is a unit. Since d13 ≡ 2c11c13b1 + 2c21c23b2 mod 2
µ3+1, we conclude that
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2 ord(d13) = 2 + 2γ + 2µ1 = µ1 + µ2 + 2. (Here we use that γ > 0.) But this

contradicts 2 ord(d13) ≥ a1 + a3 = µ1 + µ3 ≥ µ1 + µ2 + 3. We conclude that c22 is a

unit. Recall from the proof of Lemma 4.6 that this implies that c12 ≡ 1 mod 2 and

c21 ≡ 0 mod 2. Therefore the determinant of the submatrix

C̃ =

(

c11 c12
c21 c22

)

of C is a unit. We may define

D =

(

C̃−1 0

0 1

)

.

With respect to the basis corresponding to CD, the quadratic form Q becomes Q(x) =

(b1 + δ
2
1b3)x

2
1 + (b2 + δ

2
2b3)x

2
2 + 2δ1b3x1x2 + x3(other terms), for certain δ1, δ2 ∈ Z2.

Since ord(b3) ≥ ord(b2) + 3 this implies that the subspace spanned by ϕ1 and ϕ2 is

isotropic if and only if the space spanned by ψ1 and ψ2 is isotropic.

5. Anisotropic quadratic forms

The goal is to classify all anisotropic ternary quadratic forms over Z2, starting from

the normal form of Proposition 3.3. We will see that for anisotropic forms we may

choose an optimal basis ϕ so that ord(Q(ϕi)) = ai, similar to what we had for ` 6= 2

(Corollary 5.8).

Proposition 5.1. — Let Q be a ternary quadratic form over Q`. Write Q(x) =

b1x
2
1 + b2x

2
2 + b3x

2
3. We denote by det(Q) = b1b2b3 the determinant of Q. Then Q is

isotropic if and only if

(−1,−det(Q)) =
∏

i<j

(bi, bj).

Here (·, ·) denotes the Hilbert symbol.

Proof. — This is [S, Theorem IV.6.ii].

Proposition 5.2. — Let Q be a ternary quadratic form over Z2 which is not diago-

nalizable. Let ψ be an optimal basis such that Q(x) = u12
µ1x2

1+2
µ2(vx2

2+x2x3+vx
2
3)

with v ∈ {0, 1}. Then Q is isotropic if and only if v = 0 or µ1 ≡ µ2 mod 2.

Proof. — If v = 0 then Q is obviously isotropic. Therefore suppose that v = 1. To

decide whether Q is isotropic, we may consider Q as quadratic form over Q2. We have

Q(x) ∼Q2
u12

µ1x2
1 + 2

µ2(x2
2 + 3x

2
3). The proposition follows from Proposition 5.1 by

direct verification using the formula for the Hilbert symbol [S, Theorem III.1].

Lemma 5.3. — Let Q be a ternary quadratic form over Z`. We do not assume that

` = 2. Suppose that a1 ≡ a2 ≡ a3 mod 2. Then Q is isotropic.
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Proof. — If Q is not diagonalizable then the lemma follows from Proposition 5.2,

since (a1, a2, a3) ∈ {(µ1, µ2, µ2), (µ2, µ2, µ1)}.

Suppose that Q is diagonalizable. Write Q(x) = u1`
µ1x2

1 + u2`
µ2x2

2 + u3`
µ3x2

3. If

` 6= 2 we have that µi = ai hence µ1 ≡ µ2 ≡ µ3 mod 2. To show that Q is isotropic,

it suffices to consider Q over Q`. After multiplying the basis vectors by a suitable

constant, we may assume that µ1 = µ2 = µ3 = 0. The lemma now follows immediately

from Proposition 5.1, since the Hilbert symbol is trivial on units for ` 6= 2.

Suppose that ` = 2 and Q is diagonalizable. Proposition 4.2 implies that µ1 ≡

µ2 ≡ µ3 mod 2 and u1+u2 ≡ 0 mod 4. As for ` 6= 2, it is no restriction to suppose that

Q(x) = u1x
2
2 + u2x

2
2 + u3x

2
3. One computes that this quadratic form is anisotropic if

and only if u1 ≡ u2 ≡ u3 mod 4. Hence in our case Q is isotropic.

For future reference we record from the proof of Lemma 5.3 when a diagonal ternary

form over Z2 is anisotropic.

Lemma 5.4. — Let Q(x) = u12
µ1x2

1 + u22
µ2x2

2 + u32
µ3x2

3 be a diagonal, ternary

quadratic form over Z2. Suppose that µ1 ≡ µ2 ≡ µ3 mod 2. Then Q is anisotropic if

and only if u1 ≡ u2 ≡ u3 mod 4.

Lemma 5.5. — Let Q(x) = u12
µ1x2

1 + u22
µ2x2

2 + u32
µ3x2

3 be a diagonal, ternary

quadratic form over Z2. Suppose that µ1 ≡ µ2 mod 2 and µ3 6≡ µ1 mod 2.

(a) Suppose that u1 ≡ u2 ≡ u3 mod 4. Then Q is anisotropic if and only if u2 ≡ ±u1

mod 8.

(b) Suppose that the ui are not all equivalent modulo 4. Then Q is anisotropic if

and only if u2 ≡ ±3u1 mod 8.

Proof. — The proof is similar to the proof of Lemma 5.3 and is left to the reader.

Notation 5.6. — Let Q be a ternary quadratic form with Gross–Keating invariants

(a1, a2, a3). For every 1 ≤ i < j ≤ 3 we define

δij = d
ai + aj
2

e,

where dae is the smallest integer greater than or equal to a.

Theorem 5.7. — Let Q(x) = u12
µ1x2

1+u22
µ2x2

2+u32
µ3x2

3 be a diagonal anisotropic

quadratic form over Z2 with µ1 ≤ µ2 ≤ µ3. Then one of the following cases occurs.

(a) Suppose µ1 ≡ µ3 6≡ µ2 mod 2 and u1 ≡ 3u3 mod 8. Then (a1, a2, a3) =

(µ1, µ2, µ3 + 2) and a1 6≡ a2 mod 2. There exists an optimal basis with respect

to which

Q(x) = 2a1u1x
2
1 + 2

a2u2x
2
2 + 2

δ13u1x1x3 + 2
a3u1x

2
3.
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(b) Suppose µ1 ≡ µ3 6≡ µ2 mod 2 and u1 ≡ u3 mod 4. Then (a1, a2, a3) =

(µ1, µ2, µ3 + 2) and a1 6≡ a2 mod 2. Moreover, u2 ≡ u1 mod 4 if u3 ≡ u1 mod 8

and u2 ≡ −u1 mod 4 if u3 ≡ 5u1 mod 8. There exists an optimal basis with

respect to which

Q(x) = 2a1u1x
2
1 + 2

a2u2x
2
2 + 2

δ13u1x1x3 + 2
δ23u2x2x3 + 2

a3u1vx
2
3.

Here v = (u1+u2)/2 if u2 ≡ u1 mod 4 and v = (3u1+u2)/2 if u2 ≡ −u1 mod 4.

(c) Suppose µ1 6≡ µ2 ≡ µ3 mod 2. Then (a1, a2, a3) = (µ1, µ2, µ3 + 2) and a2 6≡ a1

mod 2. The quadratic form with respect to an optimal basis is as in (a) and (b)

with the role of x1 and x2 reversed.

(d) Suppose µ1 ≡ µ2 mod 2 and µ2 = µ3. Then (a1, a2, a3) = (µ1, µ2 + 1, µ3 + 1)

and a1 6≡ a2 mod 2. Moreover, u1 ≡ u2 ≡ u3 mod 4. There exists an optimal

basis with respect to which

Q(x) = 2a1u1x
2
1 + 2

a2v2x
2
2 + 2

δ13u1(x1x2 + x1x3) + 2
δ23u1x2x3 + 2

a3v3x
2
3.

Here vi = (u1 + ui)/2 for i = 2, 3.

(e) Suppose µ1 ≡ µ2 mod 2, µ3 = µ2 + 1 and u1 ≡ u2 mod 4. Then (a1, a2, a3) =

(µ1, µ2 + 1, µ3 + 1) and a2 6≡ a1 mod 2. Moreover, u2 ≡ u1 mod 8 if u3 ≡ u1

mod 4 and u2 ≡ 5u1 mod 8 if u3 ≡ −u1 mod 4. There exists an optimal basis

with respect to which

Q(x) = 2a1u1x
2
1 + 2

a2v2x
2
2 + 2

δ13u1(x1x2 + x1x3) + 2
δ23v2x2x3 + 2

a3v3x
2
3.

Here v2 = (u1 + u2)/2 and v3 = (u1 + u3)/2 (resp. (3u1 + u3)/2) depending on

whether u3 ≡ u1 mod 4 or not.

(f) Suppose µ1 ≡ µ2 mod 2, µ3 = µ2 + 1 and u1 ≡ −u2 mod 4. Then (a1, a2, a3) =

(µ1, µ2+1, µ3+1) and a1 ≡ a2 mod 2. Moreover, u2 ≡ 3u1 mod 8. There exists

an optimal basis with respect to which

Q(x) = 2a1u1x
2
1 + 2

a2v2x
2
2 + 2

δ13u1(x1x2 + x1x3) + 2
δ23v23x2x3 + 2

a3v3x
2
3.

Here v2 = (u1 + u2 + 2u3)/2, v23 = (u1 + u2 + 4u3)/2 and v3 = u1 + 2u3.

(g) Suppose µ1 ≡ µ2 ≡ µ3 mod 2 and u1 ≡ u2 mod 4 and µ3 ≥ µ2 + 2. Then

(a1, a2, a3) = (µ1, µ2 + 1, µ3 + 1) and a2 6≡ a1 mod 2. Moreover, u3 ≡ u1 mod 4.

There exists an optimal basis with respect to which

Q(x) = 2a1u1x
2
1 + 2

a2v2x
2
2 + 2

δ12u1x1x2 + 2
δ13u1x1x3 + 2

δ23u1x2x3 + 2
a3v3x

2
3.

Here vi = (u1 + ui)/2 for i = 2, 3.

(h) Suppose µ1 ≡ µ2 6≡ µ3 mod 2 and u1 ≡ u2 mod 4 and µ3 ≥ µ2 + 2. Then

(a1, a2, a3) = (µ1, µ2 + 1, µ3 + 1) and a2 6≡ a1 mod 2. One of the following two

cases holds:
{

u2 ≡ u1 mod 8 and u3 ≡ u1 mod 4,

u2 ≡ 5u1 mod 8 and u3 ≡ −u1 mod 4.
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There exists an optimal basis with respect to which

Q(x) = 2a1u1x
2
1 + 2

a2v2x
2
2 + 2

δ12u1x1x2 + 2
δ13u1x1x3 + 2

δ23v2x2x3 + 2
a3v3x

2
3.

Here v2 = (u1+u2)/2 and v3 = (u1+u3)/2 (resp. v3 = (3u1+u3)/2) depending

on whether u1 ≡ u3 mod 4 or not.

(i) Suppose µ1 ≡ µ2 6≡ µ3 mod 2, µ3 ≥ µ2 + 2 and u2 ≡ 3u1 mod 8. Then

(a1, a2, a3) = (µ1, µ2 + 2, µ3) and a1 ≡ a2 mod 2. There exists an optimal basis

with respect to which

Q(x) = 2a1u1x
2
1 + 2

a2v2x
2
2 + 2

δ12u1x1x2 + 2
a3u3x

2
3.

Here v2 = (u1 + u2)/2.

Proof. — This follows from the results of Section 4 together with the Lemmas 5.4,

5.5.

Corollary 5.8. — Suppose that Q is anisotropic. Then there exists an optimal basis

ϕ such that

ord(bii(ϕ)) = ai

for i = 1, 2, 3.

Proof. — This follows immediately from Theorem 5.7 (diagonal case) and Proposition

5.2 (non-diagonal case).

In Section 6, we give a more conceptual proof of Corollary 5.8. In fact, we prove

that any optimal basis has the property in Corollary 5.8. The following lemma gives

a list of the small cases.

Lemma 5.9. — Let Q be an anisotropic ternary quadratic form over Z2 and suppose

that a3 ≤ 1. Then one of the following possibilities occurs.

(a) We have (a1, a2, a3) = (0, 0, 1). In this case Q is not diagonalizable; it is of the

form

Q(x) = x2
1 + x1x2 + x

2
2 + u32x

2
3.

(b) We have (a1, a2, a3) = (0, 1, 1) and Q is not diagonalizable. Then Q is of the

form

Q(x) = u1x
2
1 + 2(x

2
2 + x2x3 + x

2
3).

(c) We have (a1, a2, a3) = (0, 1, 1) and Q is diagonalizable. Then Q is as in Theorem

5.7.(d) with a1 = δ13 = 0 and a2 = a3 = δ23 = 1.
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6. Alternative version of the Gross–Keating invariants for anisotropic

forms

We fix an arbitrary prime number ` and a free quadratic module (L,Q) over Z` of
rank n. We assume that (L,Q) is anisotropic, i.e. that Q(ψ) = 0 implies ψ = 0. Under

this assumption, there is an alternative definition of the Gross–Keating invariants and

a very useful characterization of optimal bases; see the remark at the end of section

4 in [?]. In this section we do not suppose that n = 3 to streamline some arguments.

Recall that n ≥ 5 implies that (L,Q) is isotropic ([S, Theorem IV.6]). Therefore the

only additional case is anisotropic quadratic forms in four variables.

We define a function v : L→ Z ∪ {∞} by the rule

v(ψ) := ord`Q(ψ).

For ψ ∈ L and x ∈ Zp we have

(6.1) v(xψ) = 2 ord`(x) + v(ψ).

Lemma 6.1. — The function v satisfies the triangle inequality

(6.2) v(ψ + ψ′) ≥ min(v(ψ), v(ψ′)).

Moreover, if the inequality in (6.2) is strict we have v(ψ) = v(ψ′).

Proof. — If ψ and ψ′ are linearly dependent the claim is obvious. We may hence

assume that they are linearly independent. For x, y ∈ Z` we write

Q(xψ + yψ′) = ax2 + y2b+ cxy.

Suppose that v(ψ + ψ′) < v(ψ), v(ψ′). Then ord`(a + b + c) < ord`(a), ord`(b). The

usual triangle inequality for ord` implies

ord`(c) = ord`(a+ b+ c) < ord`(a), ord`(b).

Lemma 3.2.(b) implies that (L,Q) is isotropic. This and proves (6.2). The second

assertion of the lemma follows from (6.2), applied to a suitable combination of the

vectors ±ψ, ±ψ′ and ψ + ψ′.

Remark 6.2. — If n ≤ 3, one gets an alternative proof of Lemma 6.1 by noting that

(L,Q) is represented by the quaternion division algebra D over Q`, equipped with its

norm form. The function v is then the restriction of the standard valuation of D.

Let ψ = (ψi) be a basis of L. For i = 1, . . . , n, let Li−1 ⊂ L be the subspace (of

rank i− 1) spanned by ψ1, . . . , ψi−1. We define a function ṽi : L/Li−1 → Z≥0 ∪ {∞}

by the rule

ṽi(ψ + Li−1) := max(v(ψ
′)|ψ′ ∈ ψ + Li−1).

Note that ṽi(ψ) =∞ if and only of ψ ∈ Li−1.
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Definition 6.3. — A basis ψ = (ψi) of L is called ideal, if

v(ψi) = ṽi(ψi + Li−1) = min
ψ∈L
(ṽi(ψ + Li−1))

holds for i = 1, . . . , n.

It is clear that there exists an ideal basis of L. The next lemma gives a useful

characterization of an ideal basis.

Lemma 6.4. — A basis ψ = (ψi) of L is ideal if and only if

(6.3) v(ψi) ≤ v(ψj) for i ≤ j,

and for all (xi) ∈ Zn` we have

(6.4) v(
∑

i

xiψi) = min
i
v(xiψi).

Proof. — Let ψ = (ψi) be a basis of L. If (6.3) and (6.4) hold, then one easily checks

from Definition 6.3 that ψ is ideal.

Conversely, suppose that ψ is ideal. The inequality (6.3) follows directly from

Definition 6.3. It remains to prove (6.4). Fix (xi) ∈ Zn` and k with 1 ≤ k ≤ n. Set

ϕk :=
∑

i<k xiψi. We claim that

(6.5) v(ϕk + xkψk) = min(v(ϕk), v(xkψk)).

From this claim, (6.4) follows by induction.

For k = 1, the claim is obvious. To prove it for k > 1 we may assume that it holds

for k′ = k − 1. Also, by the triangle inequality (6.2), the left hand side of (6.5) is

greater than or equal to the right hand side. Suppose that the left hand side is strictly

greater than the right hand side. Then we have v(ϕk) = v(xkψk). Using (6.1), (6.3)

and the claim for k′ = k − 1, we find that ord`(xk) ≤ ord`(xi) for all i ≤ k. After

dividing by xk, we may therefore assume that xk = 1. However, by the definition of

an ideal basis we have

v(ϕk) = v(ψk) ≥ v(ϕk + ψk).

This contradicts our assumption and proves the claim.

Let us fix an ideal basis ψ = (ψ1, . . . , ψn) of L, and set

ai := v(ψi), i = 1, . . . , n.

We want to show that the ai are the Gross–Keating invariants of (L,Q). We first

check that (ai) lies in the set S (Section 1). For this we write the quadratic form Q

as follows:

Q(
∑

i

xiψi) =
∑

i≤j

bijxixj .

We set aij := ord`(bij). Note that ai = aii.
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Proposition 6.5. — For 1 ≤ i ≤ j ≤ n we have

aij ≥
ai + aj
2

.

Proof. — The case i = j being trivial, we may assume that i < j. Our proof is by

contradiction. First we assume that 2aij+1 < ai+aj . We set c := max(aij−ai+1, 0)

and look at the right hand side of

Q(`cψi + ψj) = bii`
2c + bjj + bij`

c.

The three terms of this sum have `-valuation ai +2c, aj and aij + c, respectively. By

our choice of c we have

aij + c < min(ai + 2c, aj).

It follows that

v(`cψi + ψj) = aij + c < min(v(`
cψi), v(ψj)).

This contradicts the triangle inequality and excludes the case 2aij + 1 < ai + aj .

It remains to exclude the case 2aij + 1 = ai + aj . Since ai ≤ aj we have c :=

aij − ai ≥ 0. Let x ∈ Z×` be a `-adic unit. Then

(6.6) Q(`cxψi + ψj) = bii`
2cx2 + bjj + bij`

cx.

By our choice of c we have

ai + 2c = aj − 1 = aij + c.

We see that on the right hand side of (6.6), the first and the last term have the

minimal valuation aj − 1, while the middle term has valuation aj . Therefore, for an

appropriate choice of x, we get

v(`cxψi + ψj) ≥ aj > min(v(`
cxψi), v(ψj)).

But this contradicts Lemma 6.4, (6.4). The proposition follows.

Proposition 6.6. — An ideal basis is also optimal (Definition 1.2). Moreover, if

ψ = (ψi) is an ideal basis of L, then (ai := v(ψi)) are the Gross–Keating invariants

of (L,Q).

Proof. — The previous proposition says that (ai) is an element of S. It remains to

show that (ai) is a maximal element, with respect to the lexicographical ordering.

Let ψ′ = (ψ′i) be an arbitrary basis of L, and let (a
′
i) be an element of S(ψ

′)

(Section 1). We will show that a′k ≤ ak for k = 1, . . . , n, which proves the proposition.

Write

ψ′i =
∑

j

xijψj , with (xij) ∈ GLn(Z`).

The condition (a′i) ∈ S(ψ
′) together with Lemma 6.4 shows that

(6.7) a′i ≤ v(ψ′i) = min
j
(aj + 2ord`(xij)).
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Using that (xij) is invertible, one shows that there exists at least one pair of indices

(ij) with k ≤ i and j ≤ k such that xij is a unit. Applying (6.7) and (6.3) we get

a′k ≤ a′i ≤ aj ≤ ak.

This is what we had to prove.

Corollary 6.7. — Let ψ = (ψi) be an ideal basis of L and (yi) ∈ Qn
` with yi 6= 0.

Set ψ′ := (ψ′i), where ψ
′
i := yiψi ∈ L⊗Z`

Q`, and let L
′ denote the Z`-lattice spanned

by ψ′. Let (ai) be the Gross–Keating invariants of L.

(a) The basis ψ′ of L′ is ideal.

(b) The Gross–Keating invariants of L′ are the numbers

a′i := ai + 2ord`(yi),

in some order.

Proof. — Choose an integer r such that `ryi ∈ Z`, for all i. For (xi) ∈ Zn` , Lemma
6.4 shows that

v(
∑

i

xiψ
′
i) = v(

∑

i

`rxiyiψi)− 2r

= min
i
(v(`rxiyiψi))− 2r

= min
i
(v(xiψ

′
i)).

Again by Lemma 6.4 we conclude that ψ′ (in some order) is an ideal basis of L′. This

proves (a). Part (a) of the corollary follows now from the previous proposition.

Remark 6.8. — Corollary 6.7 (a) is false without the assumption that (L,Q) is

anisotropic. Consider, for instance, the (isotropic) quadratic formQ(x) = x2
1−x

2
2+4x

2
3

over Z2. Dividing the last vector of the standard basis by 2 we obtain the quadratic

form Q′(x) = x2
1 − x2

2 + x2
3. According to Proposition 4.2(b), the Gross–Keating

invariants of Q are (0, 2, 2), while the invariants of Q′ are (0, 1, 1).

Proposition 6.9. — Let (L,Q) be an anisotropic free quadratic module over Z`.
Then every optimal basis is an ideal basis.

The proof of this proposition uses the following lemma.

Lemma 6.10. — Let (a1, . . . , an) be the Gross–Keating invariants of (L,Q), and let

ψ be an optimal basis. Then v(ψi) = ai.

Proof. — Let ψ be an optimal basis and suppose that v(ψi) > ai, for some i. It

follows from the definition of the Gross–Keating invariants (Definition 1.2) that there

exists a j 6= i such that

ord(bij) = (ai + aj)/2.
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In particular, we have that ai ≡ aj mod 2. Lemma 5.3 implies therefore that ak 6≡

ai mod 2 for all k 6= i, j, since (L,Q) is anisotropic. (The case that n = 4 easily

reduces to the case that n = 3 by using the existence of an ideal basis.)

Consider the restriction Q1 of Q to L1 = 〈ψi, ψj〉. We distinguish three cases. First

suppose that ai = aj . Then (L1, Q1) is isotropic by Lemma 3.2.(b).

Next we suppose that ai < aj . Then i < j. We have already seen that ak 6≡

ai mod 2 for all k 6= i, j. Renumbering the indices, if necessary, we may assume that

ai < ai+1 and aj−1 < aj . Define (ãi) by ãi = ai + 1 and ãj = aj − 1, and ãk = ak for

all k 6= i, j. Then (ãk) ∈ S(ψ). This contradicts the definition of the Gross–Keating

invariants.

Finally, we suppose that ai > aj . Then i > j. If v(ψj) > aj , we interchange i

and j and obtain a contradiction by the previous case. Therefore v(ψj) = aj . Since

ai ≡ aj mod 2, Lemma 3.2.(b) implies that L1 is isotropic. This gives a contradiction.

We conclude that v(ψi) = ai for all i.

Proof of Proposition 6.9. — Let ψ be an optimal basis which is not ideal. Lemma

6.10 implies that v(ψi) = ai for all i. Let k be minimal such that there exists a

ϕ =
∑k
i=1 xiψi ∈ L with v(ϕ) 6= mini(xiψi). Lemma 6.4 implies that k exists. It

follows from the triangle inequality that v(ϕ) > mini(xiψi). Write ϕ̃ =
∑k−1
i=1 xiψi.

The choice of k implies that v(ϕ̃) = mini<k v(xiψi). Since v(ϕ) = v(ϕ̃ + xkψk), we

conclude from Lemma 6.1 that v(ϕ̃) = v(xkψk). This implies that

(6.8) 2 ord(xi) + ai ≥ 2 ord(xk) + ak.

In particular, ord(xi) ≥ ord(xk), for all i. Therefore it is no restriction to assume

that xk is a unit.

We define a new basis ϕ = (ϕi) by ϕi = ψi if i 6= k and ϕk = ϕ. Write

Q̃(
∑

i

yiϕi) =
∑

i≤j

b̃ijyiyj .

One computes that

b̃jk =

{

2xjbjj +
∑

i6=j bijxi for j < k,
∑

i bijxi for j > k.

Equation (6.8) implies that ord(b̃jk) ≥ (aj + ak)/2. Therefore ϕ is again an optimal

basis. But v(ϕk) = v(ϕ) > mini v(xiψi) = v(xkψk) = ak. This contradicts Lemma

6.10.

Lemma 6.11. — Let M ⊂ L be a sublattice, i.e. a sub-Z`-module of rank n. Let

b1, . . . , bn be the Gross–Keating invariants of (M,Q|M ). Then bi ≥ ai.

Proof. — We choose ideal bases (ψ1, . . . , ψn) for L and (ϕ1, . . . , ϕn) for M . Then

ai = v(ψi) and bi = v(ϕi). Let us fix an index i ∈ {1, . . . , n} and show bi ≥ ai. For

an element ψ =
∑

j xjψj of L, we set ψ
′ :=

∑

j<i xjψj and ψ
′′ :=

∑

j≥i xjψj . Then
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ψ = ψ′ + ψ′′ and v(ψ′′) ≥ ai. Since the vectors ϕ
′
1, . . . , ϕ

′
i lie in a subspace of rank

i− 1, there exist x1, . . . , xi ∈ Z`, not all zero, such that
∑

j≤i xjϕ
′
j = 0. Then

∑

j≤i

xjϕj =
∑

j≤i

xjϕ
′′
j .

Applying Lemma 6.4 (6.4) to the left hand side and the triangle inequality (6.2) to

the right hand side, we conclude that

min
j≤i
(bj + 2ord`(xj)) ≥ min

j≤i
(v(ϕ′′j ) + ord`(xj)) ≥ min

j≤i
(ai + 2ord`(xj)).

For the index j for which ord`(xj) takes its minimal value we get ai ≤ bj ≤ bi. This

proves the lemma.
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Düsseldorf • E-mail : bouw@math.uni-duesseldorf.de





13. DEFORMATIONS OF ISOGENIES OF FORMAL GROUPS

by

Michael Rapoport

Let A and A′ be abelian varieties of the same dimension n over Fp. The universal
deformation spaceM of the pair A,A′ is the formal spectrum of a power series ring in
2n2 variables over W (Fp). Given an isogeny f : A→ A′ one may pose the problem of
determining the maximal locus inside M, where f can be deformed. More generally,
given an r-tuple f1, ..., fr of isogenies from A to A′, one may ask for the maximal
locus inside M where f1, ..., fr deform. And, one may ask when this maximal locus
is the spectrum of a local Artin ring, and if so, to give a formula for its length.

These questions are very difficult and it even seems likely that no systematic an-
swers exist in general. In this chapter we consider the case n = 1, i.e., when A and A′

are elliptic curves. More precisely, we present the solution due to Gross and Keating
[GK] to this problem when A and A′ are supersingular elliptic curves. Their proof is
a clever application of results on quasi-canonical liftings and their endomorphismus.
Unfortunately, some parts of their proof are not so easy to implement in the case
p = 2, which requires special attention. In fact, I only managed to deal with the case
p = 2 by making use of the classification of quadratic forms over Z2, comp. [B], and
using a case-by-case analysis. Fortunately, S. Wewers afterwards found a uniform ar-
gument for this part of the proof which makes use of deeper properties of anisotropic
quadratic forms over Z2. This proof is presented in the next chapter. We decided to
present both proofs because the more pedestrian approach here gives insight into the
subtleties of the Gross-Keating invariants in the case p = 2.

Let us comment on the general problem above in another example, the case of
ordinary elliptic curves, comp. [Me2]. The case when A and A′ are ordinary elliptic
curves has been known for a long time and is part of the Serre-Tate theory of canonical
coordinates, comp. [Mes], Appendix. Let A and A′ be ordinary elliptic curves and
fix isomorphisms

A[p∞]et ∼= Qp/Zp, A
′[p∞]et ∼= Qp/Zp,

which then induce, via the canonical principal polarization, isomorphisms

A[p∞]0 = Ĝm, A
′[p∞]0 = Ĝm.
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The isogeny f : A→ A′ determines

(z0, z1) ∈ Z2p
where f is given by multiplication by z1 on the étale part and by multiplication by
z0 on the connected part of A[p∞]. On the other hand, we have

M = Spf W (Fp)[[t, t
′]]

(Serre-Tate canonical coordinates). Then setting q = 1+t, q′ = 1+t′, the locus inside
M where f deforms is defined by the equation

qz1 = q′z0 ,

cf. [Mes], Appendix, 3.3, comp. also [Me2], Example 2.3. On the other hand, it
is easy to see that, for any r-tuple of isogenies f1, ..., fr : A → A′, the locus where
f1, ..., fr deform is never of finite length, comp. [Go2], proof of Prop. 3.2. These
remarks show that already the case n = 1 in the above-mentioned general problem
defies a uniform solution.

I wish to thank I. Bouw, U. Görtz, Ch. Kaiser, S. Kudla, S. Wewers and Th. Zink
for their help in the preparation of this manuscript.

1. Statement of the result

Let E and E′ be supersingular elliptic curves over F̄p. Denoting by W the ring of
Witt vectors of F̄p, the ring

R =W [[t, t′]]

is the universal deformation ring of the pair E,E ′. Let E,E′ be the universal defor-
mation of E,E′ over R. Let f1, f2, f3 : E → E′ be a triple of isogenies. The locus
inside Spf R to which f1, f2, f3 deform is a closed formal subscheme. Let

I = minimal ideal in R such that f1, f2, f3 : E → E′ lift to isogenies E → E′ (mod I).

The problem in this chapter is: Determine

α(f1, f2, f3) = lgW R/I

(in particular, determine when this length is finite).

This problem reduces to a problem on formal groups, as follows. Let Γ = Ê resp.
Γ′ = Ê′ be the formal group over R corresponding to E resp. E′. By the Serre-Tate
theorem we have

I = minimal ideal in R such that f̂1, f̂2, f̂3 : Ê → Ê′ lift to isogenies Γ→ Γ′ (mod I).

Now Ê and Ê′ can both be identified with the formal group G of dimension 1 and

height 2 over F̄p (which is unique up to isomorphism). In this way f̂1, f̂2, f̂3 become
non-zero elements of End(G) = OD. Here D denotes the quaternion division algebra
over Qp.

On Hom(E,E′) we have the quadratic form induced by the canonical principal
polarization,

Q(f) = tf ◦ f = deg f .
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This Z-valued quadratic form is induced by the Zp-valued quadratic form

Q(x) = x · ιx

under the inclusion Hom(E,E ′) ⊂ End(G). Here x 7→ ιx denotes the main involution
on D characterized by (reduced trace)

tr(x) = x+ ιx .

We also write Q(x) = Nm(x) (reduced norm).

Let L = Zpf̂1 +Zpf̂2+Zpf̂3 be the Zp-submodule of OD, with the quadratic form
Q obtained by restriction. Then

I = minimal ideal in R such that L ⊂ HomR/I(Γ,Γ
′).

Assume that (L,Q) is non-degenerate, i.e. L is of rank 3. Then to (L,Q) are associated
integers 0 ≤ a1 ≤ a2 ≤ a3, the Gross-Keating invariants. Recall ([B], section 2) that
if p 6= 2 these invariants are characterized by the fact that in a suitable basis e1, e2, e3
of L the matrix T = 1

2 ((ei, ej))i,j is equal to

(1.1) T = diag(u1p
a1 , u2p

a2 , u3p
a3) with u1, u2, u3 ∈ Z×p .

Here (x, y) = Q(x+ y)−Q(x)−Q(y) is the associated bilinear form to the quadratic
form Q.

Theorem 1.1. — The length of R/I is finite if and only if (L,Q) is non-degenerate.
In this case, lgW R/I only depends on the Gross-Keating invariants (a1, a2, a3) and
equals α(Q) where

α(Q) =

a1−1∑

i=0

(i+ 1)(a1 + a2 + a3 − 3i)pi +

(a1+a2−2)/2∑

i=a1

(a1 + 1)(2a1 + a2 + a3 − 4i)pi

+
a1 + 1

2
(a3 − a2 + 1)p(a1+a2)/2, if a1 ≡ a2 (mod 2)

α(Q) =

a1−1∑

i=0

(i+ 1)(a1 + a2 + a3 − 3i)pi +

(a1+a2−1)/2∑

i=a1

(a1 + 1)(2a1 + a2 + a3 − 4i)pi,

if a1 6≡ a2 (mod 2)

Remark 1.2. — Recall from [B], Lemma 5.3 that, since (L,Q) is anisotropic, not
all a1, a2, a3 have the same parity. Hence the RHS of the formulas above is an integer
in all cases.

We first recall the following proposition.

Proposition 1.3. — Let ψ ∈ End(G) be an isogeny, i.e. ψ 6= 0. Let J be the minimal
ideal in R =W [[t, t′]] such that ψ lifts to an isogeny Γ→ Γ′ (mod J). Then the closed
formal subscheme T of S = Spf R is a relative divisor over Spf W . In other words,
J is generated by an element which is neither a unit nor divisible by p.
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Proof. — This is the special case of [Ww1], Prop. 5.1, where (in the notation used
there) K = Qp. A different proof that T is a divisor is (at least implicitly) contained
in [Z], section 2.5.

Let us prove the first statement of Theorem 1.1. If (L,Q) is degenerate, then
L is generated by two elements. Hence the deformation locus is by Proposition 1.3
the intersection of two divisors on a regular 3-dimensional formal scheme and there-
fore cannot be of finite length. Now assume that (L,Q) is non-degenerate. Now
Hom(E,E′) ⊗ Zp = End(G), so we find isogenies f1, f2, f3 : E → E′ with Zp-span
equal to L. Let T = SpecW [[t, t′]]/J . Then f1, f2, f3 deform to isogenies from ET to
E′T . Hence at any point t of T we have rg Hom(Et,E′t) > 2, hence the elliptic curves
Et and E′t are supersingular. Since supersingular points are isolated in the moduli
scheme, it follows that T is an Artin scheme, as was to be shown.

From now on we assume that (L,Q) is non-degenerate. Let ψ1, ψ2, ψ3 be an optimal
basis of L. If p 6= 2, this means that the matrix of the bilinear form Q in terms of
this basis is diagonal as in (1.1).

Corollary 1.4. — Let Ti ⊂ S be the locus, defined by the ideal Ii in R, where ψi

lifts to an isogeny Γ→ Γ′(mod Ii). Then

lgW R/I = (T1 · T2 · T3)S .

Here on the RHS there appears the intersection product of divisors on a regular
scheme, defined by the Samuel multiplicity or via the Koszul complex of the equations
gi of Ii,

χ((g1, g2, g3)) =
∑

(−1)i lg(Hi(K•(g1, g2, g3)))

(comp. [F], Ex. 7.1.2).

Proof. — By our non-degeneracy assumption, the gi form a regular sequence in a
regular local ring.

The corollary allows us to apply the intersection calculus of divisors on a regular
scheme. In particular, the RHS is multilinear in all three entries.

Theorem 1.1 will be proved by induction on a1 + a2 + a3. It will follow from the
following three propositions.

Proposition 1.5. — Let a3 ≤ 1. Then

α(Q) =

{
1 a2 = 0

2 a2 = 1.

Hence Theorem 1.1 holds true in this case.

Proposition 1.6. — Let ψ3 = p · ψ′3 with ψ′3 ∈ End(G). Then

(T1 · T2 · T3)S = (T1 · T2 · T ′3 )S + (T1 · T2 · S(p))S .

Here Ti (i = 1, 2, 3) resp. T ′3 denotes the deformation locus for ψi resp. ψ
′
3 and S(p) =

S ×Spf W Spf F̄p is the special fiber of S.
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Proposition 1.7. — If a1 ≡ a2(mod 2) then

(T1 · T2 · S(p))S =

a1−1∑

i=0

2(i+ 1)pi +

(a1+a2−2)/2∑

i=a1

2(a1 + 1)pi + (a1 + 1)p(a1+a2)/2 .

If a1 6≡ a2(mod2) then

(T1 · T2 · S(p))S =

a1−1∑

i=0

2(i+ 1)pi +

(a1+a2−1)/2∑

i=a1

2(a1 + 1)pi .

These propositions indeed imply Theorem 1.1. For this recall ([B], Cor. 5.8) that
we can (and do) choose ψ3 such that v(ψ3) = a3. Here, as elsewhere, we denote by
v the valuation function on D. Now, if a3 > 1, then there exists ψ′3 ∈ End(G) with
ψ3 = pψ′3.

Lemma 1.8. — Let (ψ1, ψ2, ψ3) be an optimal basis of the lattice L. Let ψ3 = pψ′3
with ψ′3 ∈ L and denote by L′ the lattice generated by ψ1, ψ2, ψ

′
3. Then the invariants

of L′ are given in terms of the invariants (a1, a2, a3) of L by

(a1, a2, a3 − 2)

(in some order so that they form a weakly increasing sequence).

This is obvious for p 6= 2 from the characterization in (1.1). For p = 2, the proof
is given in the appendix, using the classification of quadratic forms over Z2. An
alternative, more conceptual proof can be found in [B], Cor. 6.7.

Using this lemma, the above propositions give an inductive procedure for calculat-
ing (T1 · T2 · T3)S . The formula in Theorem 1.1 follows from this calculation.

We now devote one section each to the proof of these three propositions. For
Propositions 1.5 and 1.6 the case p = 2 presents additional problems. In order not to
obscure the argument, the problems arising for p = 2 are relegated to the appendix to
this chapter. In the chapter following this one, a variant of the proofs of Propositions
1.5 and 1.6 is given which avoids any case-by-case considerations.

2. The induction start: Proposition 1.5

Since not all ai have the same parity, we have a1 = 0. Hence ψ1 is an automorphism
of G. Since Γ′ is a universal deformation of G, the ideal I1 in W [[t, t′]] defining the
deformation locus of ψ1 is of the form I1 = (t′−h(t)), for some h ∈W [[t]]. For I ⊃ I1,
it follows that ψi lifts to an isogeny Γ→ Γ′ (mod I) if and only if ιψ1 ◦ ψi lifts to an
endomorphism of Γ (mod I ∩W [[t]]). Let

ϕ2 =
ιψ1 ◦ ψ2 , ϕ3 = ιψ1 ◦ ψ3 in End(G) .

We see that

T1 ∩ T2 ∩ T3 = locus in Spf W [[t]] where ϕ2 and ϕ3

lift to endomorphisms of Γ.
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More precisely, for i = 2 or i = 3, let Ji be the minimal ideal in W [[t]] such that ϕi

lifts to an endomorphism of Γ(mod Ji). Then T1 ∩T2 ∩T3 is isomorphic to the closed
formal subscheme of Spf W [[t]] defined by J2 + J3.

Now let p 6= 2. Then we have from the definition of an optimal basis

(2.1)
ιϕi =− ϕi and Nm(ϕi) = u1uip

ai , i = 2, 3 .

ϕ2ϕ3 =− ϕ3ϕ2 .

Let K = Qp(
√−u1u2pa2). Since a2 ≤ 1, we deduce from (2.1) that ϕ2 generates the

ring of integers OK . Hence Γ(mod J2) is the canonical lifting of G relative to the
quadratic extension K of Qp, comp. [Ww1], Def. 3.1. Applying the following lemma,
we obtain

ϕ3 ∈ Πa3OD \ (OK +Πa3+1OD) ,

with a3 = 1. Now applying [Ww1], Thm. 1.4, or [Vl], Thm. 2.1, we have

lg W [[t]]/(J2 + J3)

{
a3+1
2 = 1 if a2 = 0

a3 + 1 = 2 if a2 = 1.

Remark 2.1. — The proof shows more generally Theorem 1.1 in the case where
p 6= 2 and a1 = 0: one appeals to [Vl], Thm. 2.1.

Lemma 2.2. — We allow p = 2. Let K be a quadratic extension of Qp contained in
D, which is unramified or tamely ramified. Let x ∈ OD which anticommutes with K,
i.e. such that conjugation by x induces on K the non-trivial automorphism of K. Let
r = v(x). Then

x ∈ ΠrOD \ (OK +Πr+1OD) .

Here Π denotes a uniformizer of OD.

Proof. — We distinguish cases.
Case: K/Qp unramified. In this case we can choose a uniformizer Π of OD with
Π2 = p and anticommuting with K. Then

OD = OK ⊕OK ·Π
where the first summand commutes with K, and the second summand anticommutes
with K. Then

OK +ΠsOD = OK ⊕ p[
s
2 ]OK ·Π .

Now if x anticommutes withK, then r = v(x) = 2t+1 is odd and x 6∈ OK+Πr+1OD =
OK ⊕ pt+1OK ·Π.
Case: K/Qp tamely ramified. In this case we can write OK = Zp[π] with π

2 = u · p,
for u ∈ Z×p . Then

OD = OK ⊕OK · j , j2 = u′ ∈ Z×p \ Z×,2
p ,

where the first summand commutes with K and the second summand anticommutes
with K. Then

OK +ΠsOD = OK ⊕ πsOK · j .
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If x anticommutes with K, it lies in πrOK · j but not in πr+1OK · j, hence x 6∈
OK +Πr+1OD = OK ⊕ πr+1OK · j.

Remark 2.3. — In the case of wild ramification (p = 2) it can happen that x can
be corrected by an element of OK to have higher valuation than r = v(x).

3. The induction step: Proposition 1.6.

It suffices to prove

(C · T3)S = (C · T ′3 )S + (C · S(p))S ,

for every irreducible component C of T1 ∩ T2. Let
J = minimal ideal in W [[t]] such that ιψ1 ◦ ψ2 lifts to

an isogeny Γ→ Γ (mod J)

J ′ = minimal ideal in W [[t′]] such that ψ2 ◦ ιψ1 lifts to

an isogeny Γ′ → Γ′ (mod J ′).

We have an obvious inclusion

T1 ∩ T2 ↪→ X =
Df.

Spf (W [[t]]/J)⊗̂W (W [[t′]]/J ′) .

The proof of [Ww1], Prop. 5.1 shows that J is generated by one element. Now
ιψ1◦ψ2 is not scalar. Hence the generator of J is not divisible by p, because otherwise
ιψ1 ◦ ψ2 would extend to the universal deformation of G over F̄p[[t]], contradicting
[Mi], Thm. 1.1. The same argument applies to J ′ instead of J . Hence all irreducible
components of X have dimension 1, and each irreducible component of T1 ∩T2 is also
an irreducible component of X . We now determine the irreducible components of X .

The endomorphisms ϕ = ιψ1 ◦ ψ2 and ϕ′ = ψ2 ◦ ιψ1 generate quadratic extensions
K = Qp(ϕ) resp. K

′ = Qp(ϕ
′) which are conjugate inside D.

Lemma 3.1. — The order Zp[ϕ] in K has conductor [(a1 + a2)/2].

Proof for p 6= 2. — In this case the fact that the ψi form an optimal basis, i.e., diag-
onalize the bilinear form as in (1.1), implies that

tr(ϕ) = 0 , ϕ2 = −u1u2pa1+a2 .

Hence Zp[ϕ] = Zp + prOK , with r = [(a1 + a2)/2].

We therefore obtain an equality of divisors on Spf W [[t]],

Spf W [[t]]/J =

[(a1+a2)/2]∑

s=0

Ws(ϕ) .

HereWs(ϕ) is the quasicanonical locus of level s, with respect to the embedding of K
in D defined by ϕ. HenceWs(ϕ) is a reduced irreducible regular divisor such that the
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pullback of Γ to Ws(ϕ) has as its endomorphism algebra the order Os = Zp + psOK

of conductor(1) s in K. We may choose an identification

Ws(ϕ) = Spf Ws ,

where Ws is the ring of integers in the ray class field extension Ms of the completion
M of the maximal unramified extension of K with norm group O×s .

Analogously we have

Spf W [[t′]]/J ′ =

[(a1+a2)/2]∑

s=0

Ws(ϕ
′) .

We apply the following simple observation.

Lemma 3.2. — Let M be a discretely valued field. Let M ⊂ K ⊂ L be finite field
extensions such that K ⊗M L = L|K:M | (e.g. K/M Galois). For each field embedding
τ : K → L with τ |M = id, let Γτ be the graph of the corresponding morphism
SpecOL → SpecOK . Then

SpecOK ⊗OM
OL =

⋃

τ

Γτ .

Proof. — Obviously, the RHS is a closed subscheme of the LHS with identical generic
fibers. But the LHS is flat over OM , hence is the closure of its generic fiber.

Note that Wr ⊂ Ws whenever r ≤ s. The lemma implies that each irreducible
component of Wr(ϕ) ∩ Ws(ϕ

′) is isomorphic to Spf Wm, where m = max{r, s}.
Hence each irreducible component of T1 ∩T2 is isomorphic to Spf Ws for some s with
0 ≤ s ≤ [(a1 + a2)/2].

Proposition 3.3. — Let Fr, Fs be quasi-canonical liftings of G of level r, s (with
respect to the quadratic extension K of Qp) defined over the ring of integers O of a
finite extension of Frac W . Assume that ψ1, ψ2 lift to isogenies Fr → Fs over O. Let
I resp. I ′ be the minimal ideal in O such that ψ3 = pψ′3, resp. ψ

′
3 lifts to an isogeny

Fr → Fs( mod I) resp. Fr → Fs( mod I ′). Then I = pI ′.

Proof. — Perhaps replacing the isogenies by their duals, we may assume r ≤ s. First
assume r = s. All quasi-canonical liftings of level r are conjugate under Gal(Mr/M).
By [Ww1], Remark 3.3, there exists an isomorphism of the underlying formal groups

γ : Fs −→ Fr

such that

ϕ ◦ γ = γ ◦ ϕ′ .
However, γ is in general not an isomorphism of deformations of G, since γ conjugates
the subfield K = Qp(ϕ) of D into the subfield K ′ = Qp(ϕ

′), hence γ may be a
non-central element of D. Let

(3.1) u = Nm(γ) ∈ Z×p .

(1)It is more traditional to attribute the conductor ps to this order.
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We set

ϕi = γ ◦ ψi ∈ End(Fr) , i = 1, 2, 3 .

Then

ϕ ◦ ϕi = ϕi ◦ ϕ , i = 1, 2 .

Lemma 3.4. — We have 2r ≤ a2 and 2r < a3.

Proof for p 6= 2. — Since Fr is a quasi-canonical lifting of level r, it suffices for the
first statement to show that the conductor of one of the orders Zp[ϕ1] resp. Zp[ϕ2] is
at most a2/2. Now v(ϕi) = ai. But ϕi is not traceless. Set

ϕ0i = ϕi −
1

2
tr(ϕi) , i = 1, 2 .

Then ϕ0i is traceless and hence the conductor of Zp[ϕi] = Zp[ϕ
0
i ] is equal to [v(ϕ0i )/2].

Hence it suffices to show

(3.2) v(ϕ0i ) ≤ a2 for i = 1 or i = 2 .

We distinguish cases.
Case K/Qp unramified: Then a1 and a2 are even and

ϕi = λip
ai/2 , λi ∈ O×K , i = 1, 2 .

Then tr(ϕi) = (λi +
ιλi)p

ai/2 and

ϕ0i =
1

2
(λi − ιλi) · pai/2 .

Hence v(ϕ0i ) = ai unless the residue class [λi] of λi lies in Fp. But since the ψi

diagonalize the bilinear form, we have

(3.3) ιϕ1 ◦ ϕ2 = −ιϕ2 ◦ ϕ1 .

Hence not both [λ1] and [λ2] can lie in Fp whence the claim (3.2). Now if a3 = 2r,
then 2r = a2 = a3. Hence a1 would have to be odd, which is impossible.
Case K/Qp ramified: Let π ∈ OK be a uniformizer with ιπ = −π. Let

ϕi = λiπ
ai , λi ∈ O×K , i = 1, 2 .

Then

ϕ0i =
1

2
(λi − (−1)ai · ιλi) · πai .

Hence v(ϕ0i ) = ai if ai is odd. Now the identity (3.3) implies

(−1)a1 · ιλ1λ2 = −(−1)a2 · λ1ιλ2 .

Hence a1 and a2 have to have different parities which shows (3.2) in this case. Now if
a3 = 2r, then a1 < 2r would have to be odd which contradicts 2r ≤ v(ϕ01) = a1.

Lemma 3.5. — We have ϕ3 ∈ Πa3OD \ (OK +Πa3+1OD).
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Proof for p 6= 2. — Again using that the ψi diagonalize the bilinear form, we have

ϕ3ϕ = ιϕϕ3 .

Since v(ϕ3) = a3, an application of Lemma 2.2 gives the result.

We now apply [Vl], Thm. 2.1. Since a3 ≥ 2r − 1, we are in the “stable range” of
that result. Hence I is the n-th power of the maximal ideal of O, where

n = 2 · p
r − 1

p− 1
· |O :Wr|+

(
a3 + 1

2
− r
)
· |O :W | .

Now v(ϕ′3) = a3 − 2. Since a3 − 2 ≥ 2r − 1, we are again in the stable range and the
ideal I ′ is the n′-th power of the maximal ideal of O, where n′ is given by (3) with
a3 replaced by a3 − 2. Hence n − n′ = |O : W |. This proves the proposition in the
case r = s.

To prove the general case, we use the following lemma. For the proof we refer to
[Ww1], Cor. 5.3. Note that the element π1 appearing in the statement below has the
same valuation as a uniformizer of Ws+1, by Cor. 4.8 of [Ww1].

Lemma 3.6. — Let r ≤ s and let Fr, Fs and Fs+1 be quasi-canonical liftings of level
r, s, and s+1, all defined over O. Let π : Fs → Fs+1 be an isogeny of degree p defined
over O and write π in terms of a formal parameter

π(X) = π1X + π2X
2 + . . . , πi ∈ O .

Let ψ ∈ End(G) \ {0} and let I(r, s) be the minimal ideal in O, such that ψ lifts to an
isogeny Fr → Fs (mod I(r, s)). Let I(r, s + 1) be the minimal ideal in O, such that
π ◦ ψ lifts to an isogeny Fr → Fs+1 (mod I(r, s+ 1)). Then

I(r, s+ 1) = π1I(r, s) .

The lemma shows that if the assertion of Proposition 3.3 holds for ψ1, ψ2, ψ3, ψ
′
3 :

Fr −→ Fs, it holds for π ◦ ψ1, π ◦ ψ2, π ◦ ψ3, π ◦ ψ′3 : Fr −→ Fs+1 as well (note that
(ψ1, ψ2, ψ3) is an optimal basis of their Zp-span if and only if (π ◦ ψ1, π ◦ ψ2, π ◦ ψ3)
is an optimal basis of their Zp-span). We note the following lemma.

Lemma 3.7. — Let r ≤ s and let Fr, Fs+1 be quasi-canonical liftings of level r, s+1
defined over O. Then all isogenies ψ : Fr −→ Fs+1 factor through an isogeny Fs −→
Fs+1 of degree p, where Fs is a quasi-canonical lifting of level s.

Proof. — This follows from the proof of Prop. 1.1 in [Ww2]. After choosing suitable
isogenies from the canonical lifting to Fr and to Fs+1, we may assume that the Tate
modules of Fr and Fs+1 are of the form

Tr = (Zp · p−r +OK) · t, Ts+1 = (Zp · p−(s+1) +OK) · t.
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Let Fs be defined by Ts = (Zp · p−s +OK) · t. Then (loc. cit),

Hom(Fr, Fs+1) = { α ∈ OK | αTr ⊂ Ts+1}
= { α ∈ OK | αTr ⊂ Tr }
= { α ∈ OK | αTr ⊂ Ts } .

Therefore all isogenies Fr −→ Fs+1 factor through Fr −→ Fs.

Using the previous two lemmas we now prove Proposition 3.3 by induction on the
difference s− r. Indeed, the induction step from (r, s) to (r, s+ 1) is obvious, except

in the case (2) when the result ψ̃3 : Fr −→ Fs of dividing ψ3 : Fr −→ Fs+1 by π is

not of the form ψ̃3 = pψ̃′3, for a suitable ψ̃′3 : Fr −→ Fs. However, in this case we
have a3 = v(ψ3) = 2 and hence r = s = 0 and v(ψ′3) = 0. In this case the ideal I ′

describes the locus where the quasi-canonical lifting F1 is isomorphic to the canonical
lifting F0. By [Ww1], Cor. 4.7, the ideal I ′ is equal to the n-th power of the maximal
ideal of O, where n = e/e1 with e the absolute ramification index of O, and e1 the
absolute ramification index of W1. By [Vl], Thm. 2.1, the ideal I(0, 0) is equal to the
e-th power of the maximal ideal of O. On the other hand, the element π1 occurring
in Lemma 3 has valuation e/e1 in O, cf. [Ww1], Cor. 4.8. Hence I(0, 1) = pI ′, as
required.

4. Intersection with S(p): Proposition 1.7.

For the proof of Proposition 1.7 we will make use of the Kummer congruence
([KM], 13.4.6). We first recall the statement.

We denote byM the moduli stack of elliptic curves over Spec Fp. For integers a, b
with a ≥ 0, b ≥ 0 and a+ b = n, we form the fiber product stack Ma,b,

M×M −→ M×Mx x∆
Ma,b −→ M

Here ∆ denotes the diagonal morphism and the upper horizontal morphism sends

(E,E′) to (E(p
a), E′(p

b)). Here we denoted by E(p
a) the pullback of E under the

ath power of the Frobenius morphism. Then Ma,b classifies pairs (E,E′) with an

isomorphism α : E(p
a) ∼−→ E′(p

b).
We consider the moduli stack M(pn) over Spec Fp classifying isogenies E → E′ of

degree pn (in [Go2], this stack is denoted by [pn − Isog]Fp). We obtain a morphism

ϕa,b :Ma,b −→M(pn) .

It sends (E,E′, α) to the composition isogeny

E
Fa

−→ E(p
a) ∼−→

α
E′(p

b)
tF b

−→ E′ .

(2)I thank S. Wewers for pointing out this possibility, which I had overlooked.
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Letting a, b vary we obtain a morphism

ϕ :
∐

a+b=n
a≥0,b≥0

Ma,b −→M(pn) .

Theorem 4.1. — The morphism ϕ is an isomorphism outside the supersingular lo-
cus. The inverse image of a supersingular geometric point x ∈ M(F̄p) in M(pn)(F̄p)
consists of precisely one point x̃ and the completed local ring of x̃ is isomorphic to

F̄p[[X,Y ]]/
∏

a+b=n
a≥0,b≥0

(Xpa − Y pb)

in such a way that Ma,b is defined by the equation Xpa − Y pb = 0.

Recall the ideal Ii in W [[t]] defining the divisors Ti, for i = 1, 2. By the Kummer
congruence there exist for i = 1 and 2 uniformizers ti of F̄p[[t]] and t

′
i of F̄p[[t

′]] and
generators gi of Ii such that

gi ≡ (ti − (t′i)
pai ) · (tpi − (t′i)

pai−1

) · . . . · (tp
ai

i − t′i) (mod p) .

Hence Ti ∩ S(p) is the union of irreducible components Viµ (µ = 0, 1, . . . , ai), where

Viµ is the divisor in S(p) = Spf F̄p[[t, t
′]] defined by tp

µ

i − (t′i)
pai−µ . Hence

(4.1) (T1 · T2 · S(p))S =

a1∑

µ=0

a2∑

ν=0

(V1µ · V2ν)S .

We write

t2 = u · t1 , u ∈ F̄p[[t]]
×

t′2 = u′ · t′1 , u′ ∈ F̄p[[t
′]]× .

Lemma 4.2. — Let a1 ≡ a2(mod 2). Then u(0), u′(0) ∈ Fp2 and u(0) 6= u′(0)p
a2
.

Lemma 4.3. — We have

(V1µ · V2ν) = pn ,

with n = min{a1 − µ+ ν, a2 − ν + µ}.

It is an elementary matter to use Lemma 4.3 to calculate the sum on the RHS of
(4.1). The result is Proposition 1.7.

Proof of Lemma 4.3 (assuming Lemma 4.2). — We must show

(4.2) lg F̄p[[t, t
′]]/(tp

µ − (t′)p
a1−µ

, (ut)p
ν − (u′ · t′)pa2−ν

) = pn .

By symmetry it suffices to consider the following two cases.
Case 1: µ ≤ a1 − µ, ν ≤ a2 − ν
Case 2: µ ≤ a1 − µ, a2 − ν ≤ ν.
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In case 1 the LHS of (4.2) is equal to

lg F̄p[[t, t
′]]/(t− t′pa1−2µ

)p
µ

, (ut− (u′t′)p
a2−2ν

)p
ν (1)
=

pµ+ν · lg F̄p[[t
′]]/(u · t′pa1−2µ − (u′t′)p

a2−2ν

)
(2)
= pµ+ν+min{a1−2µ,a2−2ν} = pn.

Here in (1) we used the formula ([Go2], Lemma 4.2)

lgAB/x1 . . . xn =
∑

i

lgAB/xi ,

valid for any A-algebra B and non zero divisors x1, . . . , xn in B. In (2) we used Lemma

4.2 which implies that if a1 − 2µ = a2 − 2ν, then u(0) 6= u′(0)p
a2−2ν

= u′(0)p
a2
.

In case 2, the LHS of (4.2) is equal to

lg F̄p[[t, t
′]]/((t− t′pa1−2µ

)p
µ

, (u′t′ − (ut)p
2ν−a2

)p
a2−ν

) =

pµ · pa2−ν · lg Fp[[t, t
′]]/(t− t′pa1−2µ

, u′t′ − (ut)p
2ν−a2

) =

pa2−ν+µ · lg F̄p[[t
′]]/(u′t′ − up2ν−a2 · t′pa1−2µ+2ν−a2

)
(3)
= pa2−ν+µ = pn.

Here in (3) we used Lemma 4.2: if a1 − 2µ+ 2ν − a2 = 0, then a1 = 2µ and a2 = 2ν

are both even and u′(0) 6= u(0)p
2ν−a2

= u(0).

Proof of Lemma 4.2. — Let ` = (a2 − a1)/2. Let
I ′1 = minimal ideal in W [[t, t′]] such that p`ψ1 lifts to

an isogeny Γ→ Γ′(mod I ′1).

By the Kummer congruence we can choose uniformizers t1 of F̄p[[t]] and t
′
1 of F̄p[[t

′]]
and a generator g′1 of I

′
1 with

g′1 ≡ (t1 − t′p
a2

1 ) · (tp1 − t′p
a2−1

1 ) · . . . · (tp
a2

1 − t′1)(mod p) .

Now ψ2 = α ◦ (p`ψ1), where α ∈ Aut(G). By the universal property of Γ there
exists a unique W -algebra homomorphism h : W [[t]]→ W [[t]] such that α lifts to an
isomorphism

α̃ : Γ −→ h∗(Γ) .

Hence I2 is generated by g′2 with

(4.3) g′2 ≡ (h(t1)− t′p
a2

1 ) · (h(t1)p − t′p
a2−1

1 ) · . . . · (h(t1)p
a2 − t′1)(mod p) .

The two elements g′2 and g2 differ by a unit and

(4.4) g2 ≡ (ut1 − (u′t′1)
pa2

) · ((u · t1)p − (u′t′1)
pa2−1

) · . . . · ((ut1)p
a2 − u′t′1)(mod p) .

The first factor on the RHS of (4.4) is irreducible and can only divide the first factor
of the RHS of (4.3). Hence the first factors differ by a unit. Let

(4.5) h(t1) ≡ v · t1 (mod p) with v ∈ F̄p[[t1]]
× ,

and put c = v(0). Comparing coefficients we obtain

c = u(0)/u′(0)p
a2

.
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The remaining factors on the RHS of (4.4) are not irreducible: (ut1)
pµ − (u′t′1)

pa2−µ

is the pν-th power of an irreducible element, where ν = min{µ, a2−µ}. An analogous
comparison of coefficients gives

c = u(0)/u′(0)p
a2−2µ

, µ = 0, . . . , a2 .

It follows that u′(0) ∈ Fp2 and by symmetry u(0) ∈ Fp2 . It remains to show c 6= 1.
Now c is the induced action of α on the tangent space of the universal deformation
of G over F̄p. And α is given in terms of the formal group law by

α(X) = α1X + α2X
2 + . . . , αi ∈ F̄p .

Then α1 ∈ Fp2 = OD/ΠOD is the residue class of α. By the lemma below, the action
of α on the tangent space of the universal deformation space is by multiplication by
α1/ᾱ1. Hence c = α1/ᾱ1. But α1 6∈ Fp and hence c 6= 1. Indeed, otherwise for any
a ∈ Zp with residue class α1 modulo p, we would have

(4.6) v(ψ2 − ap`ψ1) > v(ψ2) .

But the optimal basis ψ1, ψ2, ψ3 may be chosen so that ψ2 has maximal valuation in
its residue class modulo Zpψ1. Indeed, if p 6= 2, any optimal basis has this property
(otherwise an easy application of Hensel’s lemma would imply that L is isotropic).
If p = 2, we take the optimal basis constructed in table 1 of the appendix. By
assumption a1 ≡ a2(mod 2). Going through all cases in table 1, we see that this can
only happen in cases A2 and B3 a). In the case A2, we have v(ψ1) > v(ψ2) which
contradicts (4.6). In the case B3 a), we get

(ψ2 − ap`ψ1, ψ2 − ap`ψ1) = 2β2 (u1 + u2 + 4 (a2 − a) u1),

which has valuation a2 = v(ψ2) = β2 + 2, since in this case u1 + u2 ≡ 4(mod 8).

Remark 4.4. — In fact, even for p = 2, it is true that any optimal basis has the
property that ψ2 has maximal valuation in its residue class modulo Zpψ1. This follows
from [B], Prop. 6.9.

Lemma 4.5. — Let α ∈ O×D = Aut(G), with action on Lie G given by (multipli-
cation by) α1 ∈ Fp2 . The induced action of α on the tangent space of the universal
deformation space of G over F̄p is by multiplication by α1/ᾱ1.

Here we denote by x 7→ x̄ the non-trivial automorphism of Fp2 .

Proof. — (comp. [Z], Lemma 7.8) The tangent space can be canonically identified
with

Hom(Lie tG, Lie G) .

For ϕ ∈ Hom(Lie tG, Lie G) we have

α∗(ϕ) = α1 ◦ ϕ ◦ tα−11 .

Identifying tG with G replaces tα1 by the residue class of ια, i.e. by ᾱ1.
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A. Appendix: The case p = 2

In sections 2 and 3 we made the assumption p > 2. In this appendix we treat the
case p = 2. In this case one has to take into account the delicate theory of quadratic
forms over Z2. We will proceed according to the following table. The table gives

– the normal form of the quadratic space (L,Q) in terms of a suitable basis
e1, e2, e3 (we give the matrix T = ( 12 (ei, ej)),

– an optimal basis ψ1, ψ2, ψ3,
– the Gross-Keating invariants (a1, a2, a3) of (L,Q).

We go through all cases of anisotropic ternary lattices, according to the table in [Y1],
appendix B, comp. also [B], Thm. 5.7.

Table 1

A) T = diag
(
u12

α, 2β
(
2 1
1 2

))
, α ≥ 0, β ≥ −1, α ≡ β mod 2

(the condition α ≡ β mod 2 is due to the anisotropy of T , comp. [B], section
5).

1) α ≤ β + 1. Then ψ1 = e1, ψ2 = e2, ψ3 = e3 and

GK(T ) = (α, β + 1, β + 1)

2) α > β + 1. Then ψ1 = e2, ψ2 = e3, ψ3 = e1 and

GK(T ) = (β + 1, β + 1, α)

B) T = diag(u12
β1 , u22

β2 , u32
β3) with 0 ≤ β1 ≤ β2 ≤ β3

This matrix is anisotropic if and only if

(−1, u2u3) = (u1u2, u1u3) · (2, u1u2)β1+β3 · (2, u1u3)β1+β2 ,

cf. [Y2], or [B], section 5.
1) β2 6≡ β1 mod 2. Then ψ1 = e1, ψ2 = e2, ψ3 = c1e1+ c2e2+ e3 for suitable

c1, c2 ∈ Z2, and
GK(T ) = (β1, β2, β3 + 2)

2) β2 ≡ β1 mod 2 and β3 ≤ β2 + 1.

a) β3 = β2. Then ψ1 = e1, ψ2 = 2
β2−β1

2 · e1 + e2, ψ3 = 2
β2−β1

2 · e1 + e3
and

GK(T ) = (β1, β2 + 1, β3 + 1)

b) β3 = β2+1 and u1 ≡ u2 mod 4. Then ψ1 = e1, ψ2 = 2
β2−β1

2 ·e1+e2,
ψ3 = 2

β2−β1
2 · e1 + e2 + e3 and

GK(T ) = (β1, β2 + 1, β3 + 1)

c) β3 = β2+1 and u1 ≡ −u2 mod 4. Then ψ1 = e1, ψ2 = 2
β2−β1

2 · e1+
e2 + e3, ψ3 = 2

β2−β1
2 · e1 + e2 + 2e3 and

GK(T ) = (β1, β2 + 1, β3 + 1)

3) β2 ≡ β1 mod 2 and β3 ≥ β2 + 2.
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a) u1 ≡ −u2 mod 4. Then ψ1 = e1, ψ2 = 2
β2−β1

2 · e1+ e2, ψ3 = e3 and

GK(T ) = (β1, β2 + 2, β3)

b) u1 ≡ u2 mod 4. Then ψ1 = e1, ψ2 = 2
β2−β1

2 ·e1+e2, ψ3c1e1+c2e2+e3
for suitable c1, c2 ∈ Z2, and

GK(T ) = (β1, β2 + 1, β3 + 1) .

A.1. The induction start. — Let a3 ≤ 1, i.e. a1 = 0 and a3 = 1. We follow the
proof of Proposition 1.5 in each of the following cases.

• T = diag
(
u12, 2

−1

(
2 1
1 2

))
, hence GK(T ) = (0, 0, 1) .

Then ϕ2 =
ιψ1 ◦ ψ2 = ιe2 ◦ e3 and

tr(ϕ2) = (e2, e3) = 1 and Nm(ϕ2) = 1 .

Hence K = Q2(ϕ2) = Q2[X]/(X2 − X + 1) is an unramified extension of Q2, and
OK = Z2[ϕ2]. Therefore Γ(mod J2) is a canonical lifting relative to K.

Now ϕ3 =
ιψ1 ◦ ψ3 = ιe2 ◦ e1 and

tr(ϕ3) = 0 and Nm(ϕ3) = u1 · 2 .

Furthermore

tr(ϕ2 ◦ ιϕ3) = tr(ιe3 ◦ e2 ◦ ιe2 ◦ e1) = Q(e2) · tr(ιe3 ◦ e1) = (e1, e3) = 0 .

Hence −ϕ2◦ϕ3+ϕ3◦ιϕ2 = 0, i.e. ϕ3 anticommutes withK. SinceK/Q2 is unramified,
an application of Lemma 2.2 gives

ϕ3 ∈ ΠOD \ (OK +Π2OD) .

Hence, applying [Ww1], Thm. 1.4,

lg W [[t]]/(J2 + J3) =
1 + 1

2
= 1 =

a3 + 1

2
,

which proves the claim in this case.

• T = diag
(
u1,

(
2 1
1 2

))
, hence GK = (0, 1, 1) .

Then ϕ2 =
ιψ1 ◦ ψ2 = ιe1 ◦ e2 and

tr(ϕ2) = (e1, e2) = 0 and Nm(ϕ2) = u1 · 2 .

Hence K = Q2(ϕ2) = Q2[X]/(X2 + u12) is a ramified extension of Q2, and OK =
Z2[ϕ2]. Therefore Γ(mod J2) is a canonical lifting relative to K.

Now ϕ3 =
ιψ1 ◦ ψ3 = ιe1 ◦ e3 and

tr(ϕ3) = 0 and Nm(ϕ3) = u1 · 2 .

Furthermore

tr(ϕ2 ◦ ιϕ3) = tr(ιe2 ◦ e1 ◦ ιe1 ◦ e3) = u1 · (e2, e3) = u1 · 2 .

Hence

(A.1.1) ϕ2 ◦ ϕ3 + ϕ3 ◦ ϕ2 = −u1 · 2 .
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We use the presentation of D resp. OD from [G], Prop. 4.3. Namely, assume that
the different D of K/Q2 has valuation equal to e. Then

(A.1.2) D = K ⊕K · j ,

where j anticommutes with K and where j2 ∈ Z×2 satisfies v(j2 − 1) = 2(e− 1). Let
π be a uniformizer in K. Then α := π−2(1 + j) ∈ O×D and

(A.1.3) OD = OK ⊕OK · α .

In the case at hand the extensionK/Q2 is wildly ramified, with differentD of valuation
e = 3. Hence v(j2 − 1) = 4. As uniformizer π we take ϕ2.

Write ϕ3 = a+ bα. Then

ϕ2 ◦ ϕ3 + ϕ3 ◦ ϕ2 = (aπ + bπα) + (aπ + bαπ)

= (aπ + bπ−1 + bπ−1j) + (aπ + bπ−1 − bπ−1j)
= 2 · (aπ + bπ−1) .

Comparing with (A.1.1) we get

aπ + bπ−1 = −u1 .

Hence v(b) = 1, i.e. ϕ3 ∈ ΠOD \ (OK + Π2OD). Applying [Ww1], Thm. 1.4, we
obtain

lg W [[t]]/(J2 + J3) = 1 + 1 = 2 = a2 + a3 ,

which proves the claim in this case.

• T = diag(u1, u2, u3) , hence GK(T ) = (0, 1, 1) .

Then ϕ2 =
ιψ1 ◦ ψ2 = ιe1 ◦ (e1 + e2) =

ιe1 ◦ e2 + u1 · 1, hence
tr(ϕ2) = u1 · 2 , Nm(ϕ2) = u1 · (u2 + u1) .

Hence K = Q2(ϕ2) = Q2[X]/(X2 − 2u1X + u1 · (u2 + u1)). Since T is anisotropic we
have u2 + u1 ≡ 2 mod 4. Hence we are dealing with an Eisenstein polynomial and
OK = Z2[ϕ2].

Now ϕ3 =
ιψ1◦ψ3 = ιe1◦(e1+e3) = ιe1◦e3+u1 ·1. At this point it is advantageous

to consider instead of ϕ3 the endomorphism ϕ′3 =
ιe1 ◦e3. It is obvious that the locus

where ϕ2 and ϕ3 deform is the same as the locus where ϕ2 and ϕ
′
3 deform. Now

tr(ϕ′3) = (e1, e3) = 0 and Nm(ϕ′3) = u1u3 .

Furthermore

tr(ιϕ2 ◦ ϕ′3) = tr(ι(e1 + e2) ◦ e1 ◦ ιe1 ◦ e3)
= u1 · ((e1, e3) + (e2, e3))

= 0 .

Hence
ιϕ2 ◦ ϕ′3 − ϕ′3 ◦ ϕ2 = 0 .

Hence ϕ′3 anticommutes with K. Writing, as in the previous case, D = K ⊕K · j we
have

OD = OK ⊕OK · α
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Here α = π−1(1 + j) ∈ OD. Indeed, π = ϕ2 is a uniformizer for K and the different
D has valuation e = 2. Writing ϕ′3 = a+ bα we get

a+ bα = (a+ bπ−1) + bπ−1 · j .

Hence a + bπ−1 = 0. Since ϕ′3 ∈ O×D it follows that the valuation of b is equal to 1,
hence

ϕ′3 ∈ ΠOD \ (OK +Π2OD) .

Applying now [Ww1], Thm. 1.4, we get

lg W [[t]]/(J2 + J3) = 1 + 1 = a2 + a3 ,

which proves the claim in this case. The induction start is now complete.

A.2. The induction step: Lemma 3.1. — In this section we prove Lemma 3.1.
We go through all cases of the table.

Case A1: Here tr(ϕ) = 0 and Nm(ϕ) = u1 · 2α+β+1.
Since α+ β + 1 is odd, we get K = Q2(

√
−u12) and OK = Z2[

√
−u12] and, since

ϕ = 2
α+β

2 · π, where π =
√
−u12 is a uniformizer, Z2[ϕ]Z2 + 2

α+β
2 · OK . Hence the

conductor of Z2[ϕ] is equal to α+β
2 =

[
α+(β+1)

2

]
=
[
a1+a2

2

]
.

Case A2: Here tr(ϕ) = 2β+1 and Nm(ϕ) = 22(β+1).
Hence K = Q2[X]/(X2 − X + 1) is an unramified extension and OK = Z2[ξ],

where ξ is the residue class of X. Then ϕ = 2β+1 · ξ and Z2[ϕ] = Z2 + 2β+1 · OK has

conductor β + 1 =
[
(β+1)+(β+1)

2

] [
a1+a2

2

]
.

Case B1: Here tr(ϕ) = 0 and Nm(ϕ) = u1u2 · 2β1+β2 .
Since β1 + β2 is odd, we have K = Q2(

√
−u1u22) and OK = Z2[

√
−u1u22]. Now

Z2[ϕ] = Z2 + 2
β1+β2−1

2 · OK has conductor β1+β2−1
2 =

[
β1+β2

2

]
=
[
a1+a2

2

]
.

Case B2 a): Here tr(ϕ) = u1 · 2
β1+β2

2
+1 and Nm(ϕ)u1 · 2β1+β2(u1 + u2).

Now by the anisotropy condition on T we have u1 + u2 ≡ 2 mod 4, hence K =
Q2[X]/(X2 − 2u1X + u1(u1 + u2)) is defined by an Eisenstein polynomial and OK =

Z2[π], where π denotes the residue class of X. Then ϕ2
β1+β2

2 · π and Z2[ϕ] = Z2 +
2
β1+β2

2 · OK has conductor β1+β2

2 =
[
β1+(β2+1)

2

]
=
[
a1+a2

2

]
.

Case B2 b): This is identical with the previous case.

Case B2 c): Here tr(ϕ) = u1 · 2
β1+β2

2
+1 and Nm(ϕ)u21 · 2β1+β2 + u1u2 · 2β1+β2 + u1u3 ·

2β1+β3u12
β1+β2(2u3 + u2 + u1).

Hence K = Q2[X]/(X2 − 2u1X + u1 · (2u3 + u2 + u1)), which is defined by an
Eisenstein equation since u1 + u2 ≡ 0 mod 4. Hence OK = Z2[π], where π is the

residue class of X and ϕ = 2
β1+β2

2 · π and Z2[ϕ] = Z2 + 2
β1+β2

2 · OK has conductor
β1+β2

2

[
β1+β2+1

2

]
=
[
a1+a2

2

]
.

Case B3 a): Here tr(ϕ) = 2
β1+β2

2
+1 · u1 and Nmϕ = 2β1+β2 · u1(u1 + u2).
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Hence K = Q2[X]/(X2 − 2u1X + u1 · (u1 + u2)). Now since T is anisotropic, it
follows that u1 + u2 ≡ 4 mod 8. Hence writing u1 + u2 = 4η with η ∈ Z×2 , we have
K = Q2[X1]/(X21 −u1X1+u1η). Hence K/Q2 is unramified and OK = Z2[ξ], where ξ
denotes the residue class of X1. Now ϕ = 2

β1+β2
2

+1 ·ξ and Z2[ϕ] = Z2+2
β1+β2

2
+1 ·OK

has conductor β1+β2

2 + 1β1+(β2+2)
2 =

[
a1+a2

2

]
.

Case B3 b): Here the trace and norm are as in the previous case, but this time
K = Q2[X]/(X2 − 2u1X + u1 · (u1 + u2)) is defined by an Eisenstein polynomial.

Hence OK = Z2[π] where π is the residue class of X and ϕ = 2
β1+β2

2 · π and Z2[ϕ] =
Z2 + 2

β1+β2
2 · OK has conductor β1+β2

2
β1+(β2+1)

2 =
[
a1+a2

2

]
.

This proves the assertion in all cases.

By symmetry we also obtain that ϕ′ = ψ2 ◦ ιψ1 generates an order of conductor[
a1+a2

2

]
in K ′.

A.3. The induction step: Lemmas 3.4 and 3.5. — We first prove Lemma 3.4.
We go through all cases, making use of the results in section A.2. Again we wish to
bound the conductors of the orders Z2[ϕ1] resp. Z2[ϕ2].

Case A1: Here K = Q2(
√
−u12) and OK = Z2[π] with π =

√
−u12. Then ιπ = −π

and thereby this case is like the ramified case for p 6= 2. We have

OK = Z2 ⊕ Z2π ,

the decomposition into traceful and traceless elements. In particular, tr(OK) ⊂ 2 ·Z2.
Let

ϕ◦i = ϕi −
1

2
tr(ϕi) , i = 1, 2 .

Then Z2[ϕi] = Z2[ϕ◦i ] has conductor 12 (v(ϕ
◦
i )− 1). Let

ϕi = λi · πai , λi ∈ O×K .

Then

ϕ◦i =
1

2
(λi − (−1)ai · ιλi) · πai , i = 1, 2 .

Writing λi = a+ bπ we have a ∈ Z×p and

λi +
ιλi = 2a

λi − ιλi = 2bπ .

Hence v(ϕ◦i ) = ai if ai is odd and v(ϕ◦i ) > ai if ai is even. Now according to our
table, a1 and a2 have different parity which implies that r ≤ (a2 − 1)/2. This shows
the result in this case.

Case A2: Here K = Q2[X]/(X2 −X + 1) and OKZ2[ξ], where ξ is the residue class
of X. In this case, Z2[ϕi] = OK or tr(ϕi) ∈ 2Z2. In the first case r = 0 and the claim
is obvious. Now let tr(ϕi) ∈ 2Z2 for i = 1 and i = 2, and consider

ϕ◦i = ϕi −
1

2
tr(ϕi) .
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Then writing ϕ◦i = a + bξ we have 0 = tr(ϕ◦i ) = 2a + b. Hence ϕ◦i = a · (1 − 2ξ)
and v(ϕ◦i ) = v(a) = v(b) − 2. The conductor of Z2[ϕi] = Z2[ϕ◦i ] is equal to 1

2v(b) =
1
2v(ϕ

◦
i ) + 1. Now

ϕi = λi · 2ai/2 , λi ∈ O×K .

ϕ◦i =
1

2
(λi − ιλi) · 2ai/2 .

Hence v(ϕ◦i ) = ai−2 if the residue class [λi] of λi lies in F4\F2, and is larger otherwise.
Hence if [λi] ∈ F4 \ F2, then r ≤ ai

2 , hence 2r ≤ a2.
But not both [λ1], [λ2] can lie in F2. Indeed,

ϕ1 ◦ ϕ2 = ιλ1 · λ2 · 2(a1+a2)/2 = ιλ1λ2 · 2β+1 .

On the other hand ιϕ1 ◦ ϕ2 = u · ϕ, where u ∈ Z×2 is as in (3.1), and where ϕ is as
in the previous section. Now ϕ = 2β+1ξ. Taking the residues modulo 2β+1, we prove
the claim.

Now assume 2r = a2 = a3. Then a1 < 2r has to be odd, which contradicts the fact
that a1 = a2 = β + 1.

Case B1: Here K = Q2(
√
−u1u22) and OK = Z2[π], with π =

√
−u1u22. This case

is completely analogous to case A1.

Case B2 a): Here K = Q2[X]/(X2 − 2u1X + u1 · (u1 + u2)) and OK = Z2[π] where
π denotes the residue class of X. Then π is a uniformizer satisfying an Eisenstein
equation. Hence tr(OK) ⊂ 2Z2. We again consider ϕ◦i = ϕi − 1

2 tr(ϕi). Then writing
ϕ◦i = a+ bπ we have 0 = tr(ϕ◦i ) = 2a+ 2bu1 = 2(a+ bu1). Hence ϕ◦i = b · (−u1 + π)
and v(ϕ◦i ) = v(b). The conductor of Z2[ϕi] = Z2[ϕ◦i ] is equal to 12v(b) =

1
2v(ϕ

◦
i ). Now

ϕi = λi · πai , λi ∈ O×K .

Let us write

2u1 − π = η · π , η ∈ O×K .

Then η = 1 + η1 · π with η1 ∈ O×K . We have

tr(ϕi) = λi · πai + ιλi · (ηπ)ai
= (λi +

ιλiη
ai) · πai .

Hence

ϕ◦i =
1

2
· (λi − ιλiη

ai) · πai .

Let λi ≡ 1 + [λi] · π (mod π2). Then ιλi ≡ 1− [λi]π (mod π2). If ai is odd, we get

λi − ιλiη
ai ≡ (1 + [λi]π)− (1− [λi]π) · (1 + η1π)(mod π2)

≡ η1 · π (mod π2) .

Hence in this case v(ϕ◦i ) = ai − 1. We get r ≤ 1
2 (ai − 1). Since a1 or a2 are odd, we

obtain the assertion.

Cases B2 b) and c): These cases are identical to the previous one.

Case B3 a): In this case K = Q2[X]/(X2 − u1X + u1η), for some η ∈ Z×2 . Hence
K/Q2 is unramified and OK = Z2[ξ], where ξ is the residue class of X. This case
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is similar and almost identical to case A2). If tr(ϕi) 6∈ 2Z2, then Z2[ϕi] = OK and
r = 0 and the claim is obvious. If tr(ϕi) ∈ 2Z2 for i = 1 and i = 2, we consider
again ϕ◦i = ϕi − 1

2 tr(ϕi). Writing ϕ◦i = a+ bξ we get 0 = tr(ϕ◦i ) = 2a+ bu1. Hence

ϕ◦i = a(1− 2u−1i ξ) and v(ϕ◦i ) = v(a) = v(b)− 2. The conductor of Z2[ϕi] = Z2[ϕ◦i ] is
equal to 1

2v(b) =
1
2v(ϕ

◦
i ) + 1. Now

ϕi = λi · 2ai/2 , λi ∈ O×K
ϕ◦i =

1

2
(λi − ιλi) · 2ai/2 .

Hence v(ϕ◦i ) = ai−2 if the residue class [λi] of λi lies in F4\F2, and is larger otherwise.
If [λi] ∈ F4 \ F2, then r ≤ ai/2, hence 2r ≤ a2. But not both [λ1], [λ2] can lie in F2.
Indeed,

ιϕ1 ◦ ϕ2 = ιλ1λ2 · 2(a1+a2)/2 = ιλ1λ2 · 2
β1+β2

2
+1 = u · ϕ2 = u · 2

β1+β2
2

+1 · ξ .

Taking the residue modulo 2
β1+β2

2
+1, we get the claim.

Now assume 2r = a2 = a3. Then a1 < 2r has to be odd which contradicts the
condition that a1 = β1 has to have the same parity as β2 + 2 = a2 = 2r.

Case B3 b): This is again identical to cases B2 a)–c).

The Lemma 3.4 is proved.

We now turn to the proof of Lemma 3.5. Again we inspect the various cases.

Case A1: We write D = K⊕K · j as in (A.1.2) in section A.1, where j anticommutes
with K and where j2 ∈ Z×2 satisfies v(j2 − 1) = 2(e − 1), where the different D has

valuation e. Then OD = OK ⊕OK · δα, where α = π−(e−1) · (1+ j) ∈ O×D, cf. (A.1.3).
In the case at hand e = 3, hence α = π−2(1 + j). Now

(A.3.1) ϕ ◦ ιϕ3 +
ιϕ3 ◦ ϕ2β+1 · ιẽ1 ,

where ẽ1 = γ ◦ e1. This follows from ϕ = ιψ1 ◦ ψ2 and the definitions ψ1e1, ψ2 = e2,
ψ3 = e3. Now writing ιϕ3 = a+ bα for suitable a, b ∈ OK and writing ϕ = 2δ ·π with
δ = 1

2 (α+ β), we get from (A.3.1)

2δ · π(a+ bα) + (a+ bα) · 2δπ2β+1 · ιẽ1 ,

i.e., 2δ+1(aπ + bπ−1) = 2β+1 · ιẽ1, hence

(A.3.2) b = 2
β−α

2 · ιẽ1π − aπ2 .

Now v(ιẽ1) = α, hence the first summand of the RHS of (A.3.2) has valuation β + 1.
Since v(ϕ3) = β+1, it follows v(b) = β+1 = a3, which proves the claim in this case.

Case A2: Here we write OD = OK⊕OK ·Π where Π2 = 2 and where Π anticommutes
with K. In this case we have

ϕ ◦ ιϕ3 +
ιϕ3 ◦ ϕ2β+1 · ιẽ1 .

Writing ιϕ3 = a+ bΠ and ϕ2β+1 · ξ we obtain

2β+1(2aξ + b(ξ + ιξ) ·Π) = 2β+1 · ιẽ1 ,
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i.e.,

2aξ + bΠ = ιẽ1 .

Now v(ιẽ1) = v(ιϕ3) = α. This implies v(bΠ) = α, hence ϕ3 ∈ Πa3OD \ (OK +
Πa3+1OD), since a3 = α.

Case B1: This case is similar to case A1, except that the identity (A.3.1) is replaced
by

ϕ ◦ ιϕ3 +
ιϕ3 ◦ ϕ2 · ιẽ3 ◦ ϕ .

Now ϕ = 2δπ with δ = (β1 + β2)/2. Writing as in case A1) ιϕ3 = a + bα, where
α = π−2(1 + j), we get

2δ+1 · (aπ + bπ−1) = 2δ+1 · ιẽ3 · π ,

i.e.,

b = ιẽ3π
2 − aπ2 .

Now the first summand of the RHS has valuation β3 + 2 and v(ψ̃3) = β3 + 2. Hence
v(b) = β3 + 2, which proves the claim, since β3 + 2 = a3.

Case B2 a): In this case the valuation of the different is equal to 2 and hence α =
π−1 · (1 + j). Now

ϕ ◦ ιϕ3 − ιϕ3 ◦ ϕ2 · ιe2e3ιẽ1 .

Writing ιϕ3 = a+ bα and ϕ = 2δπ with δ = (β1 + β2)/2, we get

(A.3.3) 2δ(((πa+ b) + bj)− ((πa+ b) + bπ−1 · ιπj)) = 2 · ιe2e3ιẽ1 .

Therefore, since ιπ = 2u1 − π,
2δ+1j · b · (1− u1π−1) = 2 · ιe2e3ιẽ1 .

Comparing valuations we obtain v(b) = β3 + 1 = a3, which proves the assertion in
this case.

Case B2 b): Here again α = π−1(1 + j), and the same equation (A.3.3) holds. The
case is identical with the previous case.

Case B2 c): The same again.

Case B3 a): This case is similar to case A2. We write OD = OK ⊕OK ·Π as in that
case. Now

ϕ ◦ ιϕ3 − ιϕ3 ◦ ϕ = −2 · ιe3e2ιẽ1 .

We write ιϕ3 = a+bΠ and ϕ = 2δ ·ξ where δ = β1+β2

2 +1 and ξ satisfies ξ2−u1ξ+u1η =

0 for some η ∈ Z×2 . Then

2δ · ((aξ + bξΠ)− (aξ + b · ιξΠ))− 2 · ιe3e2ιẽ1 .

Now ξ − ιξ = 2ξ − u1, hence
2δ · b ·Π · (2ξ − u1) = −2 · ιe3e2ιẽ1 .

Comparing valuations we get v(b) = β3 − 1 = a3 − 1. Hence ϕ3 ∈ Πa3OD \ (OK +
Πa3+1 OD), as claimed.
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Case B3 b): This case is similar to cases B2 a)–c). Again the valuation of the different
is equal to 2 and α = π−1(1 + j). Now

ϕ ◦ ιϕ3 − ιϕ3 ◦ ϕ2 · ιe2e3ιẽ1 .

Writing ιϕ3 = a+ bα and ϕ2δ · π with δ = (β1 + β2)/2 as in case B2 a), we get just
as in that case

2δ+1 · j · b(1− u1π−1) = 2ιe2e3
ιẽ1 .

Comparing valuations we get v(b) = β3 + 1 = a3, which proves the assertion in this
case.

A.4. Lemma 1.8. — The proof of Lemma 1.8 for p 6= 2 was very easy. By contrast,
the case p = 2 is quite elaborate and uses more information than used so far on the
construction of an optimal basis. We go through all cases of the table 1. It turns out
that in the passage from the type T of L to the type T ′ of L′ a number of things can
happen, as can be read off from the following table.



170 MICHAEL RAPOPORT

Table 2

Type T Type T ′

A1 α 6= β
α = β

B1
B2 b)

A2 A2

B1 β2 ≤ β3 − 2
β2 = β3 − 1
β2 = β3

B1
B2 b) or c)
A1 or B2 a)

B2 a) β1 < β2
β1 = β2

B3 b)
B2 b) or c)

B2 b) β1 < β2
β1 = β2

B3 a)
A2

B2 c) β1 < β2
β1 = β2

B3 a)
A2

B3 a) β3 ≥ β2 + 4
β3 < β2 + 4

B3 a)
B2 c)

B3 b) β3 ≥ β2 + 4
β3 = β2 + 3
β3 = β2 + 2

B3 b)
B2 b)
B2 a)

The calculations exhibit in fact not only the type of T ′ but also the precise normal
form of T ′ from which one can then read off the Gross-Keating invariants of T ′. In
all cases, the assertion of Lemma 1.8 is confirmed.

Since these calculations in the 16 cases are quite tedious, we will sometimes be
brief.
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Case A1: Here GK = (α, β + 1, β + 1), and (ψ1, ψ2, ψ3) = (e1, e2, e3). Hence ψ′3
1
2e3,

so

T ′ = diag(u12
α, 2β−1

(
4 1
1 1

)
) .

Since

2β−1
(
4 1
1 1

)
∼ diag(3 · 2β−1, 3 · 2β−1)

we obtain

T ′ ∼
{
diag(u1 · 2α, 3 · 2β−1, 3 · 2β−1) if α 6= β

diag(3 · 2α−1, 3 · 2α−1, u1 · 2α) if α = β.

Hence if α 6= β, and since α ≡ β mod 2, then T ′ is of type B1 and GK(T ′) = (α, β −
1, β+1) as asserted. If α = β, then T ′ is of type B2 b) and GK(T ′) = (α−1, α, α+1),
as asserted.

The case A2 is entirely similar.

Case B1: In this case GK(T ) = (β1, β2, β3 + 2) and (ψ1, ψ2, ψ3) = (e1, e2, c1e1 +
c2e2 + e3) for suitable c1, c2 ∈ Z2. If β2 < β3, then by [Y1], proof of Lemma B.6,
both coefficients c1 and c2 are divisible by 2. Hence L′ is generated by (e1, e2,

1
2e3).

Hence the matrix of L′ in terms of this basis is

T ′ = diag(u12
β1 , u22

β2 , u32
β3−2) .

So if β2 ≤ β3 − 2, the type of T ′ is B1 and GK(T ′) = (β1, β2, β3) as asserted. If
β2 = β3 − 1, then T ′ is of type B2 b) or c) and GK(T ′) = (β1, β2, β3) as asserted.

If β2 = β3, then by [Y1], proof of Lemma B.6, we have 2 | c1. On the other hand,
we have 2 6 | c2 in this case, because otherwise the valuation of 12 (ψ3, ψ3) would be

β2 < a3 = β2 + 2 which is impossible. Hence L′ is generated by e1, e2,
1
2 (e2 + e3).

Consider the matrix defined by the basis e2,
1
2 (e2 + e3) of the lattice L̃′ of rank 2

generated by e2 and
1
2 (e2 + e3),

T̃ ′
(
u22

β2 c2u22
β2−1

∗ (c22u2 + u3)2
β2−2

)
.

We determine when T̃ ′ is diagonalizable by determining the valuations of the ideals
in Z2,

s(L̃′) =
1

2
(L̃′, L̃′), resp. n(L̃′) = (Q(x), x ∈ L̃′) .

Now

ord s(L) = min{β2, β2 − 1, ord(c22u2 + u3) + β2 − 2} = β2 − 1 .

And

ord n(L) = min{β2, β2, ord(c22u2 + u3) + β2 − 2}

=

{
β2 − 1 if u2 ≡ u3 mod 4

β2 if u2 ≡ −u3 mod 4.
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Hence, by [Y1], Prop. B.3,

T̃ ′ ∼





diag(η12
β2−1, η22

β2−1) if u2 ≡ u3 mod 4

2β2−1 ·
(
2 1

1 2

)
if u2 ≡ −u3 mod 4.

Here η1, η2 ∈ Z×. For the total matrix T ′ we get that if u2 ≡ u3 mod 4, then
T ′ ∼ diag(u12

β1 , η12
β2−1, η22

β2−1) is of type B2 a) and GK(T ′) = (β1, β2, β2) as

asserted. If u2 ≡ −u3 mod 4, then T ′ ∼ diag(u12
β1 , 2β2−1

(
2 1
1 2

)
) is of type A1 and

GK(T ′) = (β1, β2, β2) as asserted.

Case B2 a): In this case GK(T ) = (β1, β2+1, β2+1) and (ψ1, ψ2, ψ3) = (e1, 2
γe1+

e2, 2
γe1 + e3), where γ = 1

2 (β2 − β1).
If γ > 0, then L′ is generated by the elements e1, e2,

1
2e3 and it follows that

T ′ = diag(u12
β1 , u32

β2−2, u22
β2). Now by the anisotropy condition we have

(−1, u2u3) = (u1u2, u1u3) ,

hence u1 ≡ u3 mod 4. Therefore T ′ is of type B3 b) and GK(T ′) = (β1, β2−1, β2+1),
as asserted.

If γ = 0, i.e. β1 = β2 = β3 =: β, then L′ is generated by e1, e2,
1
2 (e1 + e3) and has

matrix with respect to this basis equal to

T ′ =



u12

β 0 u22
β−1

∗ u22
β 0

∗ ∗ (u1 + u3)2
β−2


 .

Now u1 ≡ u3 mod 4, hence by an argument similar to the one used in the case
B1 when β2 = β3, the lattice generated by e1,

1
2 (e1 + e3) is diagonalizable to

diag(η12
β−1, η22

β−1). Hence T ′ ∼ diag(η12
β−1, η22

β−1, u22
β) is of type B2 b) or c)

and GK(T ′) = (β − 1, β, β + 1), as asserted.

Case B2 b): In this case GK(T ) = (β1, β2 + 1, β2 + 2) and (ψ1, ψ2, ψ3) = (e1, 2
γe1 +

e2, 2
γe1 + e2 + e3), with γ = 1

2 (β2 − β1).
If γ > 0, then L′ is generated by e1, e2,

1
2 (e2 + e3), and has matrix with respect to

this basis equal to

T ′ =



u12

β1 0 0
∗ u22

β2 u22
β2−1

∗ ∗ (u2 + 2u3)2
β2−2


 .

By an argument similar to the one used in the case B1 when β2 = β3, we see that
T ′ ∼ diag(u12

β1 , η12
β2−2, η22

β2+1), hence T ′ is of type B3. We claim that T ′ is of
type B3 a), so that GK(T ′) = (β1, β2, β2 + 1), as asserted. But η1 ≡ −u2 ≡ −u1
mod 4, whence the assertion.

There still remains the case when γ = 0, i.e., β1 = β2 =: β and β3 = β + 1.
Then L′ is generated by e1, e2,

1
2 (e1 + e2 + e3). Let L̃

′ be the sublattice generated by
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f2 =
1
2 (e1 + e2 + e3) and f3 =

1
2 (e2 − e1 + e3). Then

1

2
(f2, f2) =

1

2
(f3, f3) = u12

β−2 + u22
β−2 + u32

β−1

= (u1 + u2 + 2u3)2
β−2

= η · 2β .

Now η ∈ Z×. Indeed, by the anisotropy condition we have

(−1, u1u3)(2, u1u2) .

It follows that if u1 ≡ ±u2 mod 8, then u1 ≡ u3 mod 4 and if u1 ≡ ±3u2 mod 8, then
u1 ≡ −u3 mod 4. In either case u1 + u2 + 2u3 6≡ 0 mod 8. Similarly,

1

2
(f2, f3) = −u12β−2 + u22

β−2 + u32
β−1 = (u2 − u1 + 2u3)2

β−2

= κ · 2β−1 , with κ ∈ Z×2 .

Now an argument similar to the one used previously shows that the quadratic space

L̃′ is equivalent to 2β−1
(
2 1
1 2

)
. The orthogonal complement of L̃′ in L⊗Z2

Q2 is the

line

(L̃′)⊥ = Q2 · (−2
u3
u2
e2 + e3) .

Now L′ is generated by e1 + e2 and f2 and f3. Hence one easily calculates that

(L̃′)⊥ ∩ L′ = Z2 · f ,

where f = −2u3

u2
e2 + e3. Now

1

2
(f, f) =

(
u3
u2

)2
2β+2 + u32

β+1 = λ · 2β+1 , λ ∈ Z×2 .

Hence Z2 · f + L̃′ has valuation (β + 1) + 2(β − 1), equal to the valuation of L′.

Hence L′ = Z2f + L̃′ is equivalent to diag(λ · 2β+1, 2β−1
(
2 1
1 2

)
), is of type A2 and

GK(T ′) = (β, β, β + 1), as asserted.

Case B2 c): Here GK(T ) = (β1, β2 + 1, β2 + 2) and (ψ1, ψ2, ψ3) = (e1, 2
γe1 + e2 +

e3, 2
γe1 + e2 + 2e3), where γ = 1

2 (β2 − β1).
When γ > 0, this is similar to previous cases with L′ generated by e1,

1
2e2, e3. In

this case T ′ = diag(u12
β1 , u22

β2−2, u32
β2+1) is of type B3 a) and GK(T ′)(β1, β2, β2+

1), as asserted.
When γ = 0, i.e. β1 = β2 =: β and β3 = β + 1, then L′ is generated by e1,

1
2 (e1 +

e2), e3. Now the quadratic space generated by e1 and
1
2 (e1 + e2) has matrix

T̃ ′ =

(
u12

β u12
β−1

∗ (u1 + u2)2
β−2

)
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Now (u1 + u2)2
β−2 = η · 2β with η ∈ Z2. By the usual argument T̃ ′ ∼ 2β−1

(
2 1
1 2

)

and hence T ′ ∼ diag(u32
β+1, 2β−1

(
2 1
1 2

)
) is of type A2 with GK(T ′) = (β, β, β+1),

as asserted.

Case B3 a): In this case GK(T ) = (β1, β2+2, β3) and (ψ1, ψ2, ψ3) = (e1, 2
γe1+e2, e3)

with γ = 1
2 (β2 − β1).

Now L′ is generated by e1, e2,
1
2e3 and has matrix T ′ = diag(u12

β1 , u22
β2 , u32

β3−2).
If β2 + 2 ≤ β3 − 2, then T ′ is of type B3 a) and GK(T ′) = (β1, β2 + 2, β3 − 2), as
asserted. Let β3 − 2 < β2 + 2. Since not all GK-invariants can have the same parity,
we have β1 6≡ β2 mod 2. Hence β3 = β2 + 3, and T ′ = diag(u12

β1 , u22
β2 , u32

β2+1) is
of type B2 c) and GK(T ′) = (β1, β2 + 1, β2 + 2), as asserted.

Case B3 b): In this caseGK(T ) = (β1, β2+1, β3+1) and (ψ1, ψ2, ψ3) = (e1, 2
β2−β1

2 e1+
e2, c1e1 + c2e2 + e3) for suitable c1, c2 ∈ Z2. In this case we need to extract more
information about the coefficients c1, c2 from [Y1], proof of Lemma B.8. If β3 ≡ β1

mod 2, then c1 = 2
β3−β1

2 and c2 = 0. Hence L′ is generated by e1, e2,
1
2e3, hence its

matrix is T ′ = diag(u12
β1 , u22

β2 , u32
β3−2). If β3 − 2 ≥ β2 + 2, then T ′ is of type B3

b) and GK(T ′) = (β1, β2 + 1, β3 − 1), as asserted. If β3 = β2 + 2, then T ′ is of type
B2 a) and GK(T ′) = (β1, β2 + 1, β3 − 1), as asserted.

If β3 6≡ β1 mod 2, then by loc. cit., c1 = 2
β3−β1−1

2 and c2 = 2
β3−β2−1

2 . Now
β3 ≥ β2 + 3, hence c1 and c2 are divisible by 2. Hence L′ is generated by e1, e2,

1
2e3,

and its matrix is T ′ = diag(u12
β1 , u22

β2 , u32
β3−2). If β3 ≥ β2 + 4, then T ′ is of type

B3 b) and GK(T ′) = (β1, β2 + 1, β3 − 1), as asserted. If β3 = β2 + 3, then T ′ is of
type B2 b) and GK(T ′) = (β1, β2 + 1, β3 − 1), as asserted.

Lemma 1.8 is now proved in all cases.
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14. AN ALTERNATIVE APPROACH USING IDEAL BASES

by

Stefan Wewers

In this note we give an alternative proof of Proposition 1.5 and Proposition 1.6 of
[R]. This proof uses the concept of ideal bases introduced in Section 6 of [B] and thus
avoids the difficulties encountered in the case p = 2. In fact, our arguments work the
same way for any p.

1. Homomorphisms between quasi-canonical lifts

1.1. Let p be a prime number and D the quaternion division algebra over Qp. The

reduced norm gives an anisotropic Qp-valued quadratic form on D which we denote by

Q. The function v : D× → Z, α 7→ ordpQ(α), is the standard normalized valuation

on D.

Let ψ = (ψ1, . . . , ψn) be an ordered tuple of linearly independent elements of D,

and let L ⊂ D be the Zp-lattice spanned by ψ. The restriction of Q to L gives L the

structure of an anisotropic quadratic Zp-module. We say that ψ is an ideal basis of

L if

v(ψi) ≤ v(ψj) for all i ≤ j

and if

v(
∑

i

xiψi) = min
i
v(xiψi)

for all (xi) ∈ Znp . By [B], Lemma 6.4, this is equivalent to Definition 6.3 of loc.cit..

In particular, every sublattice L ⊂ D has an ideal basis.

By [B], Proposition 6.6, an ideal basis is also optimal. Moreover, if ψ is ideal then

the numbers ai := v(ψi), i = 1, . . . , n, are the Gross-Keating invariants of L.
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1.2. Let K ⊂ D be a subfield which is a quadratic extension of Qp. Then there

exists an element ϕ ∈ K such that

OK = Zp ⊕ Zp · ϕ

and such that ϕ is a unit (resp. a uniformizer) if K/Qp is unramified (resp. if K/Qp

is ramified). For such an element, we have

(1.1) v(x+ yϕ) = min{2 ordp x, 2 ordp y + v(ϕ)},

for all x, y ∈ Qp. It follows that (1, p
rϕ) is an ideal basis of

Or = Zp ⊕ Zp · prϕ,

the unique order in OK of conductor pr, for all r ≥ 0.

1.3. Let G be the unique formal group of height 2 over k = F̄p. We identify the ring

of endomorphisms of G with the maximal order OD of D. Note that for ψ ∈ OD the

integer v(ψ) is equal to the height of the isogeny ψ : G→ G.

Fix two positive integers r, s ≥ 0, and let Fr, Fs be quasi-canonical lifts of G of

level r and s, with respect to the subfield K ⊂ D. We assume that Fr, Fs are defined

over A, a complete discrete valuation ring which is a finite extension of the ring of

Witt vectors over k. We denote by

Hr,s := HomA(Fr, Fs)

the group of homomorphisms of formal groups Fr → Fs. This is a free Zp-module of

rank 2. It is also a right (resp. left) module under the order Or = End(Fr) (resp. the

order Os = End(Fs)).

Reducing a homomorphism Fr → Fs to the special fibre yields a Zp-linear embed-

ding Hr,s ↪→ D. Via this embedding we may consider Hr,s as a quadratic Zp-module.

Proposition 1.1. — 1. As a right Or-module, Hr,s is free of rank 1, generated

by a homomophism ψ1 : Fr → Fs of height |s− r|.

2. The Gross-Keating invariants of Hr,s are (|s− r|, s+ r) if K/Qp is unramified

and (|s− r|, r + s+ 1) if K/Qp is ramified.

Proof. — Replacing all isogenies by their duals, we may assume that r ≤ s. Let

F/A be the canonical lift of G with respect to the embedding K ⊂ D. By [Ww1],

§4, we may identify Fr with the quotient of F corresponding to the superlattice

Tr ⊃ T := OK defined by

Tr := Zp · p−r +OK
(and similarly for Fs). By [Ww1], Corollary 2.3, this presentation of Fr, Fs yields

an isomorphism of right Or-modules

Hr,s
∼= {α ∈ OK | αTr ⊂ Ts}.

We let ψ1 ∈ Hr,s denote the element corresponding to 1 under this isomorphism.

Clearly, the height of ψ1 equals the index of Tr in Ts, which is s − r. To prove Part
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1 of the proposition, it remains to show that αTr ⊂ Ts if and only if α ∈ Or. One

direction is clear. For the other direction, fix α ∈ OK with αTr ⊂ Ts. In order to

show that α ∈ Or, we may add any element of Zp to α. Hence we may assume that

α = xϕ, where x ∈ Zp and ϕ is as in Section 1.2. Our assumption implies that

αp−r = xp−rϕ ∈ Ts = Zp · p−s ⊕ Zp · ϕ.

We conclude that pr|x and hence α ∈ Or. This proves Part 1.

Set ψ2 := prϕψ1. Clearly, (ψ1, ψ2) is the basis of Hr,s corresponding to the ideal

basis (1, ϕ) of Or under the isomorphism Or ∼= Hr,s. This isomorphism is not an

isometry, but for ψ = α · ψ1 ∈ Hr,s, with α ∈ Or, we have

v(ψ) = v(α) + (s− r).

Therefore, it follows from (1.1) that (ψ1, ψ2) is an ideal basis of Hr,s. By the choice

of ϕ ∈ K in Section 1.2, we get v(ψ2) = s + r (resp. v(ψ2) = s + r + 1) if K/Qp is

unramified (resp. ramified). This completes the proof of Part 2 of the proposition.

1.4. We choose a uniformizer λ of the discrete valuation ring A. For n ≥ 0 we set

An := A/(λn+1). Let Hr,s,n denote the subgroup of OD consisting of endomorphisms

ψ : G→ G which lift to a homomorphism Fr ⊗An → Fs ⊗An.

Given an element ψ ∈ OD −Hr,s, we define two integers,

lr,s(ψ) := max{v(ψ + φ) | φ ∈ Hr,s}

and

nr,s(ψ) := max{m | ψ ∈ Hr,s,m}.

We let e denote the absolute ramification index of the discrete valuation ring A.

Proposition 1.2. — There exists a constant cr,s, only depending on (r, s), such that

the following holds. If lr,s(ψ) ≥ r + s− 1 then

nr,s(ψ) = cr,s +
e

2
· lr,s(ψ).

Proof. — First we consider the case r = s. Then we may assume that Fr = Fs. This

is the case studied in [Vl]. By loc.cit., Proposition 3.1, we have for lr,s(ψ) ≥ 2r − 1

(1.2) nr,s(ψ) = a(r − 1) + pr−1 +
( lr,s(ψ) + 1

2
− r

)

e+ 1,

where a(k) = (pk − 1)(p+ 1)/(p− 1). Hence the proposition is true for r = s.

For the general case, we may again assume that r ≤ s. By induction on s, we will

reduce to the case r = s. Suppose that the proposition is proved for some pair (r, s)

with r ≤ s. Let Fr, Fs, Fs+1 be quasi-canonical lifts of level r, s, s + 1. We want to

prove the proposition for the pair (r, s + 1). By Proposition 1.1.1, the group Hs,s+1

is generated, as a right Os-module, by a homomorphism β : Fs → Fs+1 of height one.

Moreover, the map ψ 7→ βψ is an isomorphism of Zp-modules Hr,s
∼
→ Hr,s+1.
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Let ψ ∈ OD−Hr,s+1 with lr,s+1(ψ) ≥ s+r. In a first step we will assume in addition

that either r > 0 or that lr,s+1(ψ) ≥ r + s + 1. It is no restriction of generality to

assume that v(ψ) = lr,s+1(ψ). Then v(ψ) > 0 and we can write ψ = βψ′, with

ψ′ ∈ OD. It follows from the assertions made in the preceeding paragraph that we

have

(1.3) lr,s+1(ψ) = lr,s(ψ
′) + 1.

In particular, lr,s(ψ
′) ≥ r + s. On the other hand, [Ww1], Corollary 6.3, says that

(1.4) nr,s+1(ψ) = nr,s(ψ
′) + e/es+1,

where es+1 is the absolute ramification index of the minimal subring As+1 ⊂ A over

which Fs+1 can be defined. So for r > 0, the proposition follows from (1.3), (1.4) and

induction.

Unfortunately, for r = 0 the above argument proves the claim only for the weaker

bound lr,s ≥ r + s = s. The problem is that for s = 1 and l = 0 the element ψ is a

unit in OD, and so we cannot divide by β and reduce to the case s = 0. However,

the argument can be used to compute the value of the constant cr,s. For instance,

for (r, s) = (0, 0) we have c0,0 = e/2 by (1.2), and so by (1.3) and (1.4) we get

c0,1 = e/e1. Therefore, the proposition is proved if we can show that for l0,1(ψ) = 0

we have n = n0,1(ψ) = e/e1.

Since l0,1(ψ) = 0, the endomorphism ψ is an automorphism of G. Let F ψr denote

the lift of G obtained from Fr by composing the isomorphism Fr ⊗A k
∼
→ G with

ψ. Then ψ lifts to a homomorphism Fr → Fs modulo λn if and only if the two

deformations Fψr ⊗ A/(λn) and Fs ⊗ A/(λn) are isomorphic. This, in turn, means

that u(Fψr ) ≡ u(Fs) (mod λn) (here u(F ) ∈ A denotes the modulus of a lift of G

defined over A). By [Ww1], Corollary 5.6, the valuation of u(F ψr ) (resp. of u(Fs)) is

equal to e/er (resp. equal to e/es). Since er = e0 < es = e1, the maximal value that

n can take is e/e1. This is what we still had to prove.

2. The modular intersection number

2.1. Let p be an arbitrary prime and k = F̄p. Let G be the (unique) formal group of

height 2 over k. We identify Endk(G) with the maximal order OD of the quaternion

division algebra D over Qp. Let W = W (k) denote the ring of Witt-vectors over k.

Let (Γ,Γ′) be the universal deformation of the pair of formal groups (G,G). It is

defined over the universal deformation space S ∼= SpfW [[t, t′]].

Let L ⊂ OD be a sub-Zp-module of rank 3. We denote by Q the quadratic form

induced on L by the reduced norm on OD. For ψ ∈ L we define v(ψ) := ordpQ(ψ).

Choose an ideal basis (ψ1, ψ2, ψ3) of (L,Q), see Section 1.1. Let ai := v(ψi). The

numbers a1, a2, a3 are the Gross–Keating invariants of L.



14. AN ALTERNATIVE APPROACH USING IDEAL BASES 181

For i = 1, 2, 3, let Ti denote the closed subscheme of S corresponding to the ideal

ICW [[t, t′]] which is minimal for the property that ψi lifts to a homomorphism Γ→ Γ′

modulo I. The following proposition corresponds to Proposition 1.5 of [R].

Proposition 2.1. — If a3 ≤ 1 then a3 = 1 and

(T1 · T2 · T3)S =

{

1, for a2 = 0,

2, for a2 = 1.

Proof. — Since Q is anisotropic, the ai cannot have all the same parity. Therefore,

a1 ≤ a2 ≤ a3 ≤ 1 implies a0 = 0 and a3 = 1. In particular, ψ1 is an automorphism

of G. It follows that T1
∼= SpfW [[t]], and that we may identify Γ|T1

with Γ′|T1
via

ψ1. So for the rest of the proof, we assume that ψ1 = 1 ∈ OD and consider T2, T3

as closed subschemes of S ′ = SpfW [[t]], the universal deformation space of G. For

i = 2, 3, Ti is defined by the condition that ψi lifts to an endomorphism of Γ.

Let O = Zp[ψ2] ⊂ OD denote the subring generated by ψ2. Since (ψ1 = 1, ψ2) is

an ideal basis of O, we have

a2 = v(ψ2) = max{v(x+ ψ2) | x ∈ Zp}.

If a2 = 0, then it follows that O = OK is the maximal order of K ⊂ D, an unramified

quadratic extension of Qp. Therefore, T2
∼= SpfW ⊂ S ′ and F := Γ|T2

is the canonical

lift corresponding to the subfield K ⊂ D. Moreover, in the notation of §1.4 we have

l = l0,0(ψ3) = v(ψ3) = a3. It follows from [Ww1], Theorem 3.3 (see the proof of

Proposition 1.2) that T3 ∩ T2 ⊂ T2 corresponds to the ideal (pn) CW , with

n = n0,0(ψ3) =
l + 1

2
e =

a3 + 1

2
= 1.

This proves the proposition for a2 = 0.

If a2 = 1, then O = OK is also the maximal order of K, but K/Qp is ramified.

With the same arguments as above, it follows that T2
∼= Spf A0 ⊂ S

′ is the canonical

locus corresponding to the subfield K ⊂ D. Here A0 is the ring of integers of the

quadratic extension K ·W [1/p] of W [1/p]. Applying again [Ww1], Theorem 3.3, we

get

n = n0,0(ψ3) =
l + 1

2
e = a3 + 1 = 2.

This proves the proposition for a2 = 1.

2.2. The next proposition corresponds to Proposition 1.6 of [R].

Proposition 2.2. — Suppose that ψ3 = pψ′3, for some ψ
′
3 ∈ OD. Let T

′
3 ⊂ S be the

closed formal subscheme corresponding to ψ′3 and S(p) ⊂ S the special fiber. Then

(T1 · T2 · T3)S = (T1 · T2 · T
′
3 )S + (T1 · T2 · S(p))S .
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Proof. — Let (Fr, Fs) be a pair of quasi-canonical lifts of G of level r and s, with

respect to the same subfield K ⊂ D. The set Hr,s := Hom(Fr, Fs) is a sub-Zp-module

of OD of rank two. We consider all pairs (Fr, Fs) such that ψ1, ψ2 ∈ Hr,s. Note that

(ψ1, ψ2) is, by construction, an ideal basis of its linear span in Hr,s. Therefore,

Proposition 1.1.1 shows that

a1 ≥ |r − s|, a2 ≥ r + s+ ε,

where ε = 0 if K/Qp is unramified and ε = 1 otherwise. We claim that

(2.1) a3 = lr,s(ψ3) := max{v(ψ3 + ϕ) | ϕ ∈ Hr,s}

(this notation was already used in the previous section). Indeed, since ψ1, ψ2, ψ3 is

an ideal basis of L we have

(2.2) a3 = v(ψ3) = max{v(x1ψ1 + x2ψ2 + ψ3) | x1, x2 ∈ Zp}.

Therefore, the inequality ‘≤’ in (2.1) follows from the inclusion 〈ψ1, ψ2〉 ⊂ Hr,s. On

the other hand, [B], Corollary 6.7, shows that (2.2) still holds if we allow x1, x2 ∈ Qp.

Hence the inequality ‘≥’ follows from the inclusion Hr,s ⊂ 〈ψ1, ψ2〉 ⊗Qp, proving the

claim. We conclude that lr,s(ψ3) = a3 ≥ a2 ≥ r + s+ ε. In fact, we even have

(2.3) lr,s(ψ3) ≥ r + s+ 1.

For if K/Qp is unramified, then a1 and a2 are even and so a3 must be odd.

By [B], Corollary 6.7, (ψ1, ψ2, ψ
′
3) is again an ideal basis of its linear span (in some

order). Therefore, we can apply the same argument to ψ′3. We get

(2.4) lr,s(ψ
′
3) = lr,s(ψ3)− 2 ≥ r + s− 1.

For α ∈ O×D, let Fαr denote the deformation of G obtained by composing the

identification Fr⊗k
∼
→ G with α. Define Cr,s = C(Fr, Fs) ⊂ S as the closed subscheme

where Γ|Cr,s
∼= Fαr and Γ′|Cr,s

∼= Fαs , for some α ∈ O×D. It follows from the results

of [Ww1] that Cr,s ∼= Spf At, where t = max{s, r} and where At is the minimal ring

of definition of the quasi-canonical lifts of level t (with respect to the given subfield

K ⊂ D). Moreover,

T1 · T2 =
⋃

(Fr,Fs)

Cr,s

is the decomposition into irreducible components. To prove the proposition it there-

fore suffices to show that

(2.5) (Cr,s · T3)S = (Cr,s · T
′
3 )S + (Cr,s · S(p))S

for all pairs (Fr, Fs). We also may assume that r ≤ s. Then (Cr,s · S(p))S = es is the

ramification index of As over W . Moreover, in the notation of the last subsection, we

have

(2.6) (Cr,s · T3)S = nr,s(ψ3), (Cr,s · T
′
3 )S = nr,s(ψ

′
3).
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However, by (2.3), (2.4) and Proposition 1.2 we have nr,s(ψ3) = nr,s(ψ
′
3) + es. This

proves (2.5) and finishes the proof of the proposition.
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15. CALCULATION OF REPRESENTATION DENSITIES

by

Torsten Wedhorn

Introduction

In this note we consider local representation densities of ternary quadratic spaces

and derivatives of associated rational functions. These results are used in [RW] to

relate the arithmetic intersection number of three modular correspondences (Tm1
·

Tm2
· Tm3

) to a Fourier coefficient of the restriction of the derivative at s = 0 of a

Siegel–Eisenstein series of genus 3 and weight 2. We also obtain an explicit formula

for the integers βl(Q) which occur in [Go2].

Let Q and N be quadratic spaces over Zp of rank 3 and 4 respectively, and let H

be the hyperbolic plane over Zp. Denote by αp(Q,N ⊥ Hr) the local representation

density, compare [Wd1], 4.3. This is a rational function fQ,N (X) in X = p−r.

In the first section we consider the case that N is anisotropic and that r = 0:

(1) Let D be “the” quaternion division algebra over Qp and N = OD be its max-

imal order endowed with the reduced norm. Then we compute αp(Q,N) for

any ternary form Q by a direct calculation (Theorem 1.1), following closely

[GK], section 6.

The value obtained is of course 0 if Q is isotropic, and for anisotropic Q we will

see that it does not depend on Q.

In general it is very difficult to compute local representation densities αp(Q,N),

and their computation has a long history. We give only a few references: For p 6= 2

a general explicit formula has been given by Hironaka and Sato [HS] for arbitrary

quadratic spaces Q and N over Zp. If the rank of Q is 2, Yang has given a formula

for αp(Q,N) in the case of p = 2 [Y1]. We will use a result of Katsurada [Ka] who

calculated αp(Q,N) for arbitrary p and Q in the case that N is an orthogonal sum

of copies of the hyperbolic plane H.

In the second section we are interested in the following values:
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(2) Let N = H2. Then we specialize Katsurada’s formula for αp(Q,N ⊥ Hr) =

αp(Q,H
r+2) to the case where Q is a ternary form and express it in terms of

a refinement of the Gross-Keating invariants (see [B]) of the ternary form Q.

This is done in 2.11.

(3) For Q (ternary and) isotropic we specialize this formula to r = 0 and therefore

obtain αp(Q,H
2) (Proposition 2.1) (for Q anisotropic, αp(Q,H

2) = 0).

(4) Finally we calculate for N = H2 and for Q a ternary anisotropic quadratic form

the derivative ∂
∂X fQ,H2(X) at X = 1 (see 2.16).

We remark that the values obtained in (3) and (4) depend only on the Gross-

Keating invariants of the ternary form Q although the value in (2) depends on a

refinement of these invariants.

1. Calculation of the representation density in the anisotropic case

1.1. We fix a prime number p, let D be “the” quaternion division algebra over Qp,

and denote by N = OD the maximal order of D which we consider as a quadratic

space of rank 4 over Zp with respect to the reduced norm. Let Q be any ternary

quadratic form over Zp. In this section we are going to calculate the representation

density αp(Q,N).

As N is an anisotropic quadratic space, Q is represented by N if and only if Q is

anisotropic. In this case the result is:

Theorem 1.1. — Let Q be anisotropic. Then

αp(Q,N) = 2(p+ 1)(1 +
1

p
).

1.2. For the proof we quote the following lemma from [Ki] Theorem 5.6.4(e):

Lemma 1.2. — For any integer r ∈ Z we have

αp(p
rQ,N) = αp(Q,N).

1.3. Proof of Theorem 1.1. By Lemma 1.2 we can assume that the underlying Zp-

module of the quadratic space Q is a sublattice Λ in OD such that Λ 6⊂ pOD.

Clearly any element of O(D,Nrd) preserves N and hence O(D,Nrd) acts on

Ãpr (Q,N) := {σ : Q/prQ→ N/prN | Nrd(σ(x)) ≡ Q(x) mod pr }

for all r ≥ 1. By definition (see [Wd1] 4.3) we have

αp(Q,N) = (pr)−6#Ãpr (Q,N)

for r sufficiently large.
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The dual lattice of N = OD with respect to the pairing associated to the quadratic

form is N∨ = m−1 ⊂ D where m is the maximal ideal of OD. We claim that the

induced action of SO(D,Nrd) on

B̃pr (Q,N) := {σ : Z3
p → N/prm−1N | Nrd(σ(x)) ≡ Q(x) mod pr }

is transitive for r ≥ 1. For this it suffices to show that SO(D,Nrd) acts transitively

on the set M of all isometries σ̃ : Q → N . But by Witt’s lemma, O(D,Nrd) acts

transitively on M . For every such σ̃ the stabilizer in O(D,Nrd) is nothing but the

orthogonal group of the orthogonal complement of the quadratic Qp-space generated

by σ̃(Q). As this complement is a one-dimensional space, we see that SO(D,Nrd)

acts in fact simply transitively on M .

Using [Wd1], Lemma 1.6 we identify SO(D,Nrd) with

{ (d, d′) ∈ D× ×D× | Nrd(d) = Nrd(d′) }/Q×p .

This group contains the subgroup of index 2

G = { (d, d′) ∈ O×D ×O×D | Nrd(d) = Nrd(d′) }/Z×p .

Therefore G acts with two orbits on B̃pr (Q,N). Let Ḡ be the quotient of G by the

subgroup generated by

{ (d, d′) ∈ G | d ≡ d′ ≡ 1 (mod prN∨) }

and by 1 + pr−1ODp
diagonally embedded in G. Then Ḡ acts faithfully with 2 orbits

on B̃pr (Q,N). As

#Ãpr (Q,N) = (#B̃pr (Q,N)) · (#(m−1/OD))
3,

we see that

#Ãpr (Q,N) = 2(#Ḡ)(#(m−1/OD))
3 = 2(p+ 1)2p6r−7p6.

It follows that

αp(Q,N) = p−6r2(p+ 1)2p6r−1 = 2(p+ 1)(1 +
1

p
).

2. Calculation of the representation density in the hyperbolic case

2.1. Again we fix a prime number p. For any element a ∈ Q×p we write ord(a) ∈ Z
for the p-adic valuation of a.

We denote by H the quadratic space over Zp whose underlying module is Z2
p and

whose matrix with respect to the standard basis is
(

0 1
2

1
2

0

)

. This means that the

quadratic form is given by Z2
p 3 (x, y) 7→ xy.

Note that H2 ∼= (M2(Zp),det).
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Let (M,Q) be any quadratic space over Zp of rank 3. In this section we will compute

the representation density αp(M,Hr+2). In fact, there is a polynomial fM (X) ∈ Q[X]

such that fM (p−r) = αp(M,H2+r) ([Ka]). We are interested in

(2.1) fM (1) = αp(M,H2)

and, for (M,Q) anisotropic, in

(2.2)
∂

∂X
fM (X)|X=1.

The first value is given in 2.12 and the second in 2.16.

2.2. We use the formulas by Katsurada [Ka] but we express them in terms of the

Gross-Keating invariants (cf. [B]) of the ternary space (M,Q), an invariant ξ̃ =

ξ̃(M) ∈ {−1, 0, 1}, and an invariant η = η(M) ∈ {±1}.

The invariant η is equal to +1 if (M,Q) is isotropic and equal to −1 if (M,Q) is

anisotropic.

The Gross-Keating invariants consist of a tuple of integers GK(M) = (a1, a2, a3)

such that 0 ≤ a1 ≤ a2 ≤ a3. In addition, if a1 ≡ a2 mod 2 and a2 < a3 there is a

further invariant εGK(M) ∈ {±1}.

In fact, we will not need the invariant εGK(M) directly in the sequel, as ξ̃(T ) is

a refinement. But we remark that the final expressions for (2.1) and (2.2) depend

only on η(M) (that is, whether (M,Q) is isotropic or not) and on the Gross-Keating

invariants GK(M) and εGK(M).

If T is the matrix associated to (M,Q) and a Zp-base of M , we also write η(T ),

GK(T ), εGK(T ), and ξ̃(T ).

2.3. Recall the Hilbert symbol (a, b)p ∈ {±1} for a, b ∈ Q×p . It is uniquely deter-

mined by the following properties (where a, b, b′ ∈ Q×p , u, v ∈ Z×p ):

(a, b)p = (b, a)p,

(a, bb′)p = (a, b)p(a, b
′)p,

(p, p)p = (−1, p)p

and, for p odd, by

(u, p)p =

(

u

p

)

,

(u, v)p = 1,
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and, for p = 2, by

(u, 2)2 =

{

+1, if u ≡ ±1 mod 8,

−1, otherwise,

(u, v)2 =

{

+1, if u or v ≡ 1 mod 4,

−1, otherwise.

2.4. For any symmetric matrix T ∈ Symm(Qp) we denote by h(T ) = hp(T ) the

Hasse invariant of the associated quadratic space (M,Q). We use the normalization

in [Ki]. For m = 3 we have

h(T ) =

{

(−1)δ2p , if (M,Q) is isotropic;

−(−1)δ2p , if (M,Q) is anisotropic

by [Ki] 3.5.1. Here δ2p is the Kronecker delta.

2.5. In the next sections we recall some results from [B] (cf. also [Y1]). We start with

the case p > 2. In that case there exists a basis (ei) ofM such that the matrix T = (tij)

associated to Q with respect to this basis (i.e., tij =
1
2 (Q(ei + ej) −Q(ei) −Q(ej)))

is a diagonal matrix. If we write tii = uip
ai for ai ∈ Z and ui ∈ Z×p , we can assume

that a1 ≤ a2 ≤ a3. Moreover, if ai = ai+1 we can assume that ui+1 = 1. Then the

Gross-Keating invariants are given as follows. We have

GK(T ) = (a1, a2, a3).

If a1 ≡ a2 mod 2 and a2 < a3, we have

εGK(T ) =

(

−u1u2

p

)

.

We set

ξ̃(T ) =

{

(

−u1u2

p

)

, if a1 ≡ a2 mod 2;

0, if a1 6≡ a2 mod 2.

Finally, let i, j ∈ {1, 2, 3} with i 6= j and ai ≡ aj mod 2 and define k ∈ {1, 2, 3} by

{1, 2, 3} \ {i, j} = {k}. Then T is isotropic if and only if (−uiuj , p)p = 1 or ak ≡ aj
mod 2.

2.6. Now assume that p = 2. In the sequel K will denote one of the matrices

H =

(

0 1
2

1
2 0

)

or Y :=

(

1 1
2

1
2 1

)

There exists a basis B of M such that the matrix T associated to Q with respect

to B is of one of the following forms.

Either Q is not diagonalizable (case A). Then we distinguish two subcases:
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(A1) T = diag(u2α, 2βK) where α ≤ β are integers and u ∈ Z×2 . Then

GK(T ) = (α, β, β).

We set

ξ̃(T ) =

{

1, if a1 ≡ a2 mod 2;

0, if a1 6≡ a2 mod 2.

(A2) T = diag(2αK,u2β) where α < β are integers and u ∈ Z×2 . Then

GK(T ) = (α, α, β).

In this case εGK(T ) is defined and we have

εGK(T ) =

{

+1 if K = H;

−1 if K = Y .

We set ξ̃(T ) := εGK(T ).

In the nondiagonalizable case A, T is isotropic if and only if K = H or α ≡ β

mod 2.

Now assume that T is diagonalizable over Z2 (case B), i.e. there exists a basis such

that T = diag(u12
β1 , u22

β2 , u32
β3) where 0 ≤ β1 ≤ β2 ≤ β3 are integers and ui ∈ Z×2 .

Then there are four subcases (here our subdivision of cases is different from [R]):

(B1) β1 6≡ β2 mod 2. Then

GK(T ) = (β1, β2, β3 + 2).

We set ξ̃(T ) := 0.

(B2) β1 ≡ β2 mod 2 and (u1u2 ≡ 1 mod 4 or β3 = β2)). Then

GK(T ) = (β1, β2 + 1, β3 + 1).

We set ξ̃(T ) := 0.

(B3) β1 ≡ β2 mod 2, β3 = β2 + 1, and u1u2 ≡ −1 mod 4. Then

GK(T ) = (β1, β2 + 1, β3 + 1).

We set ξ̃(T ) := (−u1u2, 2)2 where ( , )2 denotes the Hilbert symbol.

(B4) β1 ≡ β2 mod 2, β3 > β2 + 1, and u1u2 ≡ −1 mod 4. Then

GK(T ) = (β1, β2 + 2, β3).

In this case εGK(T ) is defined and we have

εGK(T ) = (−u1u2, 2)2.

We set ξ̃(T ) := εGK(T ).

Finally, let i, j ∈ {1, 2, 3} with i 6= j and βi ≡ βj mod 2 and define k ∈ {1, 2, 3} by

{1, 2, 3} \ {i, j} = {k}. Then T is isotropic if and only if

(−ukuj ,−uiuj)2 = (−uiuj , 2)
βk+βj

2 .
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2.7. Going through the cases in 2.5 and 2.6 we see that there are the following

possibilities for the value of ξ̃ if T is anisotropic:

• If a1 6≡ a2 mod 2, we either have ξ̃ = 0 or we have ξ̃ = −1 and a3 = a2 + 1.

• If a1 ≡ a2 mod 2, we always have a2 6≡ a3 mod 2 and ξ̃ = −1.

If T is isotropic, the possibilities for the value of ξ̃ are the following:

• If a1 6≡ a2 mod 2, we either have ξ̃ = 0 or we have ξ̃ = 1 and a3 = a2 + 1.

• If a1 ≡ a2 mod 2, we either have ξ̃ = 1 or we have ξ̃ = −1 and a2 ≡ a3 mod 2.

2.8. By [Ka] there exists a polynomial fM (X) = fT (X) ∈ Q[X] such that

fT (p
−r) = αp(M,H2+r). We use the formulas from [Ka] to compute fT . Indeed, by

loc. cit. p. 417 and p. 428 we have

fT (X) = γ̃p(T ;X)F̃p(T ;X)

with γ̃p(T ;X) = γp(T ; p
−2X) and F̃p(T ;X) = Fp(T ; p

−2X) where γp(T ;X) and

Fp(T ;X) are the rational functions defined in loc. cit. p. 417 and p. 451 respectively.

Thus

γ̃p(T ;X) = (1− p−2X)(1− p−2X2).

The function F̃p(T ;X) is more complicated. We will express it in the next sections

using the Gross-Keating invariants GK(T ) and the invariant ξ̃(T ).

2.9. By [Ka] we have

(2.3)

F̃p(T ;X) =
δ̂
∑

i=0

δ̃′/2−i−1
∑

j=0

pi+jXi+2j

+ ηp(δ̃′−2)/2Xδ−δ̃′+2
δ̂
∑

i=0

δ̃′/2−i−1
∑

j=0

p−jXi+2j

+ ξ̃2pδ̃
′/2X δ̃′−δ̂

δ̂
∑

i=0

δ−2δ̃′+δ̂
∑

j=0

ξ̃jXi+j

where η, δ, δ̂, and δ̃′ are the invariants defined on p. 450 of loc. cit. (note that in

loc. cit. the definitions of δ̃ and δ̂ have to be interchanged).
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2.10. Going through all the cases in 2.5 and 2.6 one sees that η, δ, δ̂, and δ̃′ can be

expressed as follows (where GK(T ) = (a1, a2, a3) are the Gross-Keating invariants):

η =

{

+1 if T is isotropic,

−1 if T is anisotropic,
(2.4)

δ = a1 + a2 + a3,(2.5)

δ̂ = a1,(2.6)

δ̃′ =

{

a1 + a2, if a1 ≡ a2 mod 2,

a1 + a2 + 1, if a1 6≡ a2 mod 2,
(2.7)

2.11. If we set

σ :=

{

2, if a1 ≡ a2 mod 2,

1, if a1 6≡ a2 mod 2,

we can rewrite (2.3) using the invariants η, (a1, a2, a3), and ξ̃:

(2.8)

F̃p(T,X) =

a1
∑

i=0

(a1+a2−σ)/2−i
∑

j=0

pi+jXi+2j

+ η

a1
∑

i=0

(a1+a2−σ)/2−i
∑

j=0

p(a1+a2−σ)/2−jXa3+σ+i+2j

+ ξ̃2p(a1+a2−σ+2)/2
a1
∑

i=0

a3−a2+2σ−4
∑

j=0

ξ̃jXa2−σ+2+i+j .

2.12. We now specialize to r = 0, i.e. X = 1. In that case we have

αp(T,H
2) = fT (1) = (1− p−2)2F̃p(T, 1).

If we set βp(T ) := F̃p(T, 1), it follows from (2.8) that

(2.9)
βp(T ) = (1 + η)

(

a1
∑

i=0

(i+ 1)pi +

(a1+a2−σ)/2
∑

i=a1+1

(a1 + 1)pi
)

+ p(a1+a2−σ+2)/2(a1 + 1)Rξ̃

where

Rξ̃ =























0, if ξ̃ = 0

0, if ξ̃ = −1 and a3 6≡ a2 mod 2;

a3 − a2 + 2σ − 3, if ξ̃ = 1;

1, if ξ̃ = −1 and a3 ≡ a2 mod 2.
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2.13. If T is anisotropic we have αp(T,H
2) = βp(T ) = 0, as a three dimensional

anisotropic space cannot be represented by a four-dimensional hyperbolic space. Al-

ternatively this follows also from (2.9): By (2.4) we have η = −1 and hence it suffices

to show that Rξ̃ = 0 if T is anisotropic. By 2.7 we are in one of the following two

cases:

(a) ξ̃ = 0;

(b) ξ̃ = −1 and a2 6≡ a3 mod 2.

In both cases we have Rξ̃ = 0 by definition.

2.14. If T is isotropic, (2.9) gives Proposition 6.25 of [GK]:

Proposition 2.1. — Let T be isotropic. Then:

(1) If a1 6≡ a2 mod 2, we have

βp(T ) = 2
(

a1
∑

i=0

(i+ 1)pi +

(a1+a2−σ)/2
∑

i=a1+1

(a1 + 1)pi
)

.

(2) If a1 ≡ a2 mod 2 and ξ̃ = 1, we have

βp(T ) = 2
(

a1
∑

i=0

(i+ 1)pi +

(a1+a2−σ)/2
∑

i=a1+1

(a1 + 1)pi
)

+ (a1 + 1)(a3 − a2 + 1)p(a1+a2)/2.

(3) If a1 ≡ a2 mod 2 and ξ̃ = −1, we have

βp(T ) = 2
(

a1
∑

i=0

(i+ 1)pi +

(a1+a2−σ)/2
∑

i=a1+1

(a1 + 1)pi
)

+ (a1 + 1)p(a1+a2)/2.

Proof. — We have η = 1, and by 2.7 we are in one of the following cases:

(a) a1 6≡ a2 mod 2 and ξ̃ = 0;

(b) a1 6≡ a2 mod 2, ξ̃ = 1, and a3 = a2 + 1;

(c) a1 ≡ a2 mod 2 and ξ̃ = 1;

(d) a1 ≡ a2 mod 2, ξ̃ = −1, and a2 ≡ a3 mod 2.

In case (a), we have Rξ̃ = 0 by definition, and in case (b) we also have Rξ̃ =

a3 − a2 + 2σ − 3 = 0. This proves (1).

In case (c), we have Rξ̃ = a3 − a2 + 1 and therefore (2).

In case (d), we have Rξ̃ = 1 which implies (3)

Corollary 2.2. — Set ∆(T ) = 1
2 det(2T ) = 4 det(T ) and assume that T is isotropic.

Then βp(T ) = 1 if ordp(∆(T )) = 0.
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Proof. — For p > 2 the equality ordp(∆(T )) = 0 is equivalent to a1 = a2 = a3 = 0

by definition of the Gross–Keating invariants (see 2.5). For p = 2 the condition

ordp(∆) = 0 implies that we are in case (A1) of 2.6 with α = β = 0 and K = H.

Therefore we have again a1 = a2 = a3 = 0. Hence the corollary follows for all p from

Proposition 2.1.

2.15. From now on we assume that T is anisotropic. We are going to calculate

f ′T (1) =
∂

∂X
fT (X)|X=1.

As T is anisotropic we have F̃p(T ; 1) = 0 and therefore

f ′T (1) = γ̃p(T, 1)
∂

∂X
F̃p(T ;X)|X=1(2.10)

= (1− p−2)2
∂

∂X
F̃p(T ;X)|X=1.(2.11)

Using (2.8) we see that

∂

∂X
F̃p(T ;X)|X=1 = F1 + F2 + F3.

Here

F1 =

a1
∑

i=0

(a1+a2−σ)/2−i
∑

j=0

(i+ 2j)pi+j

=

a1
∑

l=0

3

2
(l + 1)lpl +

(a1+a2−σ)/2
∑

l=a1+1

(a1 + 1)(2l −
a1

2
)pl,

and

F2 = −

a1
∑

i=0

(a1+a2−σ)/2−i
∑

j=0

(a3 + σ + i+ 2j)p(a1+a2−σ)/2−j

= −

a1
∑

i=0

(a1+a2−σ)/2
∑

j=i

(a1 + a2 + a3 + i− 2j)pj

= −

a1
∑

l=0

(l + 1)(a1 + a2 + a3 −
3

2
l)pl

−

(a1+a2−σ)/2
∑

l=a1+1

(a1 + 1)(
3

2
a1 + a2 + a3 − 3l)pl
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and hence

F1 + F2 =

a1
∑

l=0

(l + 1)(3l − a1 − a2 − a3)p
l

+

(a1+a2−σ)/2
∑

l=a1+1

(a1 + 1)(4l − 2a1 − a2 − a3)p
l,

and

F3 = p(a1+a2−σ+2)/2 a1 + 1

2
Aξ̃

with

Aξ̃ =























0, if ξ̃ = 0;

(a3 − a2 + 2σ − 3)(a1 + a2 + a3), if ξ̃ = 1;

a2 − a3 − 2σ + 3, if ξ̃ = −1, a2 6≡ a3 mod 2;

3a3 − a2 + a1 + 4σ − 8, if ξ̃ = −1, a2 ≡ a3 mod 2.

2.16. Assume a1 6≡ a2 mod 2, i.e. σ = 1. By 2.7 we either have ξ̃ = 0 and hence

Aξ̃ = 0 or we have ξ̃ = −1 and a3 = a2 + 1 and hence again Aξ̃ = 0. Therefore we

see that for a1 6≡ a2 mod 2 we have

(2.12)
∂

∂X
F̃p(T ;X)|X=1

=

a1
∑

l=0

(l + 1)(3l − a1 − a2 − a3)p
l

+

(a1+a2−1)/2
∑

l=a1+1

(a1 + 1)(4l − 2a1 − a2 − a3)p
l.

If a1 ≡ a2 mod 2, i.e. σ = 2, we have a3 6≡ a2 mod 2 and hence

(2.13)
∂

∂X
F̃p(T ;X)|X=1

=

a1
∑

l=0

(l + 1)(3l − a1 − a2 − a3)p
l

+

(a1+a2−2)/2
∑

l=a1+1

(a1 + 1)(4l − 2a1 − a2 − a3)p
l

+ p(a1+a2)/2
a1 + 1

2
(a2 − a3 − 1).

Therefore we see by [R], Theorem 1.1 that in either case

∂

∂X
F̃p(T ;X)|X=1 = −lg(OTT ,ξ).
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16. THE CONNECTION TO EISENSTEIN SERIES

by

Michael Rapoport & Torsten Wedhorn

Introduction

In a previous chapter [Go2] an expression was obtained for the arithmetic in-

tersection number of three modular correspondences (Tm1
· Tm2

· Tm3
), when their

intersection is of dimension 0. This expression is quite complicated, and involves cer-

tain local representation densities β`(Q) of quadratic forms and a local intersection

multiplicity αp(Q). It is this expression that is the main result of [GK]. However,

already in the introduction to their paper, Gross and Keating mention that compu-

tations of S. Kudla and D. Zagier strongly suggest that the arithmetic intersection

number (Tm1
· Tm2

· Tm3
) agrees (up to a constant) with a Fourier coefficient of the

restriction of the derivative at s = 0 of a Siegel-Eisenstein series of genus 3 and weight

2.

In the intervening years since the publication of [GK], Kudla has vastly advanced

this idea and has in particular proved the analogue of this statement for the in-

tersection of two Hecke correspondences on Shimura curves [Ku3]. In fact, Kudla

has proposed a whole program which postulates a relation between special values of

derivatives of Siegel-Eisenstein series and arithmetic intersection numbers of special

cycles on Shimura varieties for orthogonal groups, comp. [Ku4].

The purpose of the present chapter is to sketch these ideas of Kudla and to derive

from Kudla’s various papers on the subject the statement alluded to in the introduc-

tion of [GK]. We stress that what we have done here is simply a task of compilation,

since we do not (and cannot) claim to have mastered the automorphic side of the

statement in question. We use the results of Katsurada [Ka] on local representation

densities of quadratic forms, valid even for p = 2, to relate the local intersection mul-

tiplicities to the derivatives of certain local Whittaker functions, comp. [Wd2]. For
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p 6= 2 the corresponding calculations of representation densities are much older and

are based on results of Kitaoka [Kit].

We thank S. Kudla for his help with this chapter.

1. Decomposition of the intersections of modular correspondences

1.1. To m ∈ Z>0 we have associated the Deligne-Mumford stack which parametrizes

the category of isogenies of degree m between elliptic curves,

Tm(S) = { f : E −→ E′ | deg(f) = m }.

Here E and E′ are elliptic curves over S. Then Tm maps by a finite unramified

morphism to the stack M(2) = M×SpecZ M parametrizing pairs (E,E′) of elliptic

curves.

Let now m1,m2,m3 ∈ Z>0 and consider

T (m1,m2,m3) = { f = (f1, f2, f3) | fi : E −→ E′, deg fi = mi },

the fiber product of Tm1
, Tm2

, Tm3
over M(2). Denoting by Q the degree quadratic

form on Hom(E,E′), we obtain a disjoint sum decomposition,

(1.1) T (m1,m2,m3) =
∐

T

TT .

Here

TT (S) = { f ∈ HomS(E,E
′)3 |

1

2
(f , f) = T },

where (f , f) denotes the matrix (aij) with aij = (fi, fj) = Q(fi+ fj)−Q(fi)−Q(fj).

Note that, due to the positive definiteness of Q, the index set in (1.1) is Sym3(Z)∨≥0,
the set of positive semi-definite half-integral matrices.

Lemma 1.1. — Let T ∈ Sym3(Z)∨>0, i.e., T is positive definite. Then there exists

a unique prime number p such that TT is a finite scheme with support lying over the

supersingular locus of M
(2)
p =M(2) ⊗Z Fp.

Proof. — Let (E,E′) ∈ M(2) be in the image of TT . Since Hom(E,E′) has rank at

least 3, it follows that (E,E′) has to be a pair of supersingular elliptic curves in some

positive characteristic p. To see that p is uniquely determined by T , note that T is

represented by the quadratic space over Q corresponding to the definite quaternion

algebra ramified in p. However, by [Ku3], Prop. 1.3, there is only one quadratic space

with fixed discriminant which represents T .
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1.2. In this chapter we consider, for T ∈ Sym3(Z)∨>0, the number

d̂eg(TT ) = lg(TT ) · log p ,

where p is the unique prime in the statement of Lemma 1.1, and where

lg(TT ) =
∑

ξ∈TT (F̄p)

e−1ξ · lg(OTT ,ξ),

with eξ = |Aut(ξ)|. Our aim is to compare d̂eg(TT ) with the T th Fourier coefficient

of a certain Siegel-Eisenstein series of genus 3 and weight 2.

We first define a class of Eisenstein series, among which will be the one appearing

in our main theorem.

2. Eisenstein series and the main theorem

2.1. Let B be a quaternion algebra over Q. We denote by V = VB the quadratic

space defined by B, i.e., B with its norm form Q. We note that the idèle class

character usually associated to a quadratic space, x 7→ (x, (−1)n(n−1)/2 det(V ))Q is in

this case the trivial character χ0 (4 | n, and det(V ) is a square). Let H = O(V ) be the

associated orthogonal group. LetW = Q6, with standard symplectic form 〈 , 〉 whose

matrix with respect to the standard basis is given by
(

0 I3
−I3 0

)
. Let G = Sp(W ) = Sp6,

and denote by P =M.N the Siegel parabolic subgroup, with

M = {m(a) =

(
a 0

0 ta−1

)
| a ∈ GL3 },

N = {n(b) =

(
1 b

0 1

)
| b ∈ Sym3 }.

Let K = K∞.Kf =
∏
v
Kv be the maximal compact subgroup of G(A) with

(2.1) Kv =





Sp6(Zp), if v = p <∞;

{

(
a b

−b a

)
| a+ ib ∈ U3(R) }, if v =∞.

We have the Weil representation ω of G(A) × H(A) (for the standard additive

character ψ of A with archimedean component ψ∞(x) = exp(2πix) and of conductor

zero at all non-archimedean places) on the Schwartz space S(V (A)3) (the action of the

elements P (A)×H(A) are given by simple formulae [We], comp. also (4.1) and (4.2)

below). In the local version at a place v, we have a representation ωv ofG(Qv)×H(Qv)

on S(V (Qv)
3).

We have the Iwasawa decomposition

G(A) = P (A)K = N(A)M(A)K.
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If g = nm(a)k ∈ G(A), then

|a(g)| = |det(a)|A

is well-defined. For a character χ of A×/Q×, we have the induced representation of

G(A), corresponding to s ∈ C,

I(s, χ) = {Φ: G(A)→ C K-finite function |

Φ(nm(a)g) = χ(det(a)) · |a(g)|s+2 · Φ(g) }.

For ϕ ∈ S(V (A)3), we set

Φ(g, s) = (ω(g)ϕ)(0) · |a(g)|s.

In this way, we obtain an intertwining map

(2.2) S(V (A)3) −→ I(0, χ0), ϕ 7→ Φ(g, 0) .

Note that |a(g)| is a right K-invariant function on G(A), so Φ(g, s) is a standard

section of the induced representation, i.e., its restriction to K is independent of s. We

will also need the local version I(s, χv) of the induced representation at a place v and

the G(Qv)-equivariant map

(2.3) S(V 3
v ) −→ I(0, χ0,v).

2.2. Returning to the global situation, we consider the Eisenstein series associated

to ϕ ∈ S(V (A)3),

E(g, s,Φ) =
∑

γ∈P (Q)\G(Q)

Φ(γg, s).

This series is absolutely convergent for Re(s) > 2, and defines an automorphic form.

It has a meromorphic continuation and a functional equation with s = 0 as its center

of symmetry.

We will now make a specific choice of Φ which will define an incoherent Eisenstein

series. Let B = M2(Q) and let V (Zp) = M2(Zp) for any p. We let ϕf = ⊗ϕp =

⊗ char V (Zp), and let Φf = ⊗Φp be the corresponding factorizable standard section.

For Φ∞ we take the standard section uniquely determined by

Φ∞(k, 0) = det(k)2,

where k ∈ K∞ is the image of k ∈ U3(R) under the natural identification in (2.1).

Then by [Ku3], (7.13), Φ∞ is the image of the Gaussian ϕ∞ under the local map

(2.3) for v =∞, where the local quadratic space is V +
∞ , the positive-definite quadratic

space corresponding to the Hamilton quaternion algebra over R, and where

(2.4) ϕ∞(x) = exp(−π tr(x, x)), x ∈ (V +
∞)3.

Since V +
∞ ⊗ V (Af ) does not correspond to a quaternion algebra over Q, the standard

section Φ = Φ∞ ⊗Φf is incoherent in the sense of loc. cit., and hence (loc. cit., The-

orem 2.2),

E(g, 0,Φ) ≡ 0.
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Consider the Fourier expansion of E(g, s,Φ),

E(g, s,Φ) =
∑

T∈Sym3(Q)

ET (g, s,Φ),

where

ET (g, s,Φ) =

∫

N(Q)\N(A)

E(ng, s,Φ) · ψT (n)
−1dn,

with

(2.5) ψT (n(b)) = ψ(tr(Tb)), b ∈ Sym3(A).

For T ∈ Sym3(Q) with det(T ) 6= 0, the Fourier coefficient has an explicit expression

as a product

(2.6) ET (g, s,Φ) =
∏

v

WT,v(gv, s,Φv),

see [Ku3], (4.4). Here WT,v(gv, s,Φv) is the local Whittaker function, cf. section 5.

The local Whittaker functions are entire (cf. [Ku3] (4.2) and (4.3)), and the product

(2.6) is absolutely convergent and holomorphic in s = 0. More precisely, for Re(s) > 2,

the identity (2.6) holds and for almost all places p, the local factor at p on the right

hand side equals ζp(s + 2)−1 · ζp(2s + 2)−1 = (1 − p−s−2) · (1 − p−2s−2), and for all

places the local factor is an entire function.

2.3. For T ∈ Sym3(Q)>0, let

Diff(T, V ) = { p | T not represented by V (Qp) }.

Then the cardinality |Diff(T, V )| is odd, cf. [Ku3], Cor. 5.2. Moreover we have

WT,p(gp, 0,Φp) ≡ 0 for p ∈ Diff(T, V ), cf. [Ku3], Prop. 1.4. On the other hand,

WT,∞(g∞, 0,Φ∞) 6= 0, cf. [Ku3], Prop. 9.5. Hence

ord
s=0

ET (g, s,Φ) ≥ |Diff(T, V )|.

In particular, if E′T (g, 0,Φ) 6= 0, then Diff(T, V ) = {p} for a unique prime number p.

2.4. We may now formulate our main theorem.

Theorem 2.1. — Let V = M2(Q) and let Φ = Φ∞ ⊗ Φf be the incoherent standard

section as above. Let T ∈ Sym3(Q)>0 with Diff(T, V ) = {p}.

(i) If T 6∈ Sym3(Z)∨, then TT = ∅ and d̂eg(TT ) = 0 and E′T (g, 0,Φ) ≡ 0.

(ii) Let T ∈ Sym3(Z)∨. Then TT has support in characteristic p. For g =

(g∞, e, e . . .) ∈ G(A) with

g∞ =

(
1 x

1

)(
y1/2

y−1/2

)
, x, y ∈ Sym3(R), y > 0,

let τ = g∞ · i13 = x+ iy ∈ H3. Then

det(y) d̂eg(TT ) · q
T = κ · E′T (g, 0,Φ),
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where qT = exp(2πi tr(Tτ)) and where the negative constant κ is independent

of T .

Here H3 = { τ ∈ Sym3(C) | Im(τ) > 0 } is the Siegel upper half space.

The proof of the theorem consists in calculating explicitly both sides of the identity.

The first assertion of (i) is obvious and the second is a consequence of section 5 below,

where the local Whittaker functions are related to local representation densities (see

Proposition 5.2 below). The proof of (ii) will be reduced in section 3 to a statement

about local Whittaker functions which will be taken up in sections 4 and 5.

2.5. In the rest of this section we relate the adelic Eisenstein series to the classical

Siegel-Eisenstein series, following [Ku1], section IV.2. By strong approximation,

G(A) = G(Q)G(R)K.

By our choice of Φ, which is right Kf -invariant, the Eisenstein series E(g, s,Φ) is

determined by its restriction to G(R) (embedded via g∞ 7→ (g∞, e, e . . .) in G(A)).

We have

G(Z) = G(Q) ∩ (G(R).Kf ).

Also, P (Q)\G(Q) = P (Z)\G(Z), hence for g = g∞,

E(g, s,Φ) =
∑

γ∈P (Q)\G(Q)

Φ∞(γg∞, s) · Φf (γ, s)(2.7)

=
∑

γ∈P (Z)\G(Z)

Φ∞(γg∞, s).

For our choice of Φ∞ and of g∞ =

(
1 x

1

)(
y1/2

y−1/2

)
, we have

Φ∞(γg∞, s) = det(y)
s
2
+1 · det(cτ + d)−2 · |det(cτ + d)|−s,

where

γ =

(
a b

c d

)
∈ Sp6(Z).

Inserting this expression into the sum (2.7), one obtains from [Ku1], IV.2.23, (for

` = ρn = 2),

(2.8) E(g, s,Φ) = det(y) · Eclass(τ, s),

where

Eclass(τ, s) = det(y)s/2
∑

(c,d)

det(cτ + d)−2 · |det(cτ + d)|−s

is the classical Siegel Eisenstein series (the sum here ranges over a complete set of

representatives of the equivalence classes of pairs of co-prime symmetric integer ma-

trices).
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2.6. Using the comparison (2.8) between the adelic and the classical Eisenstein se-

ries, we obtain from Theorem 2.1 the following statement. We consider the Fourier

expansion of the classical Eisenstein series,

Eclass(τ, s) =
∑

T∈Sym3(Z)∨
c(T, y, s) qT .

Here τ = x+ iy ∈ H3 and qT = exp(2πi tr(Tτ)).

Theorem 2.2. — Let T ∈ Sym3(Z)∨>0.

(1) Then c′(T ) = ( ∂
∂sc(T, y, s))|s=0 is independent of y.

(2) If Diff(T, V ) = {p}, then TT has support in characteristic p and

d̂eg(TT ) = κ · c′(T )

for a negative constant κ independent of T .

Corollary 2.3. — Assume that there is no positive definite binary quadratic form

over Z which represents m1,m2 and m3, so that the divisors Tm1
, Tm2

, and Tm3
inter-

sect in dimension 0, cf. [Go2], Prop. 3.2. Then there exists a constant κ independent

of (m1,m2,m3) such that

(Tm1
· Tm2

· Tm3
) = κ ·

∑

T∈Sym3(Z)
∨
>0

diag(T )=(m1,m2,m3)

c′(T )

Proof. — The hypothesis implies that in the disjoint sum (1.1) only positive definite

T ∈ Sym3(Z)∨ occur as indices, comp. [Go2], Prop. 3.5. Therefore the assertion

follows from Theorem 2.2.

3. Use of the Siegel-Weil formula

3.1. Let Ṽ be the quadratic space associated to a quaternion algebra B̃ over Q. For

ϕ̃ ∈ S(Ṽ (A)3), there is the theta series

θ(g, h; ϕ̃) =
∑

x∈Ṽ (Q)3

(ω(g)ϕ̃)(h−1x),

and the corresponding theta integral over the orthogonal group H̃ = O(Ṽ ) associated

to Ṽ ,

I(g; ϕ̃) =

∫

H̃(Q)\H̃(A)

θ(g, h; ϕ̃) dh.

Here the Haar measure dh is normalized so that

vol(H̃(Q)\H̃(A)) = 1.
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We will only consider the case in which the quadratic space Ṽ is anisotropic. If ϕ̃

is K-finite, then I(g; ϕ̃) is an automorphic form on G(A). The Siegel-Weil formula

[KR] states that, if ϕ̃ gives rise to Φ̃ via the map (2.2), then

(3.1) E(g, 0, Φ̃) = 2 · I(g; ϕ̃).

Let T ∈ Sym3(Q) with det(T ) 6= 0. Then the T th-Fourier coefficient of I(g; ϕ̃) is

equal to ([KR], (6.21))

IT (g; ϕ̃) =

∫

H̃(Q)\H̃(A)

∑

x∈Ṽ (Q)3
T

(ω(g)ϕ̃)(h−1x) dh

where

Ṽ (Q)3T = {x ∈ Ṽ (Q)3 |
1

2
(x, x) = T }.

3.2. We now return to the situation considered in Theorem 2.1. Let V = M2(Q)

and let Φ be the standard section defined in the previous section. We also fix T ∈

Sym3(Q)>0 with Diff(T, V ) = {p}. Let Ṽ be the quadratic space associated to the

definite quaternion algebra B̃ = B(p) ramified at p, and unramified at all other finite

primes. Note that Ṽ (R) = V +
∞ . We consider the standard section Φ̃ which is the

image of ϕ̃ = ϕ̃∞ ⊗ ϕ̃
p
f ⊗ ϕ̃p under

S(Ṽ (A)3) −→ I(0, χ0),

where ϕ̃p
f = ϕp

f , where ϕ̃∞ = ϕ∞ is the Gaussian (2.4) and where ϕ̃p = char Ṽ (Zp)
3,

with Ṽ (Zp) the maximal order of the division algebra B(p) ⊗ Qp. Hence Φ̃∞ = Φ∞,

Φ̃p
f = Φp

f and Φ̃ is a coherent standard section. Comparing the expressions (2.6) for

the Fourier coefficients of E(g, s,Φ) and E(g, s, Φ̃), we can write, for g = g∞ ∈ G(R),

E′T (g, 0,Φ) =
W ′

T,p(e, 0,Φp)

WT,p(e, 0, Φ̃p)
· ET (g, 0, Φ̃).

We refer to Corollary 5.3 below for a proof of the fact that the denominator here is

nonzero. Using the Siegel-Weil formula (3.1) for the anisotropic quadratic space Ṽ ,

we can rewrite this as

(3.2) E′T (g, 0,Φ) = 2 ·
W ′

T,p(e, 0,Φp)

WT,p(e, 0, Φ̃p)
· IT (g; ϕ̃).

Now the function ϕ̃∞ is invariant under H̃(R). For

g∞ =

(
1 x

1

)(
y1/2

y−1/2

)
, x, y ∈ Sym3(R), y > 0,

the value of ω(g∞)ϕ̃∞ at t ∈ Ṽ (R)3 with 1
2 (t, t) = T is equal to

(ω(g∞)ϕ̃∞)(t) = exp(2πi tr(Tτ)) det(y).
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Since H̃(R) = O(Ṽ (R)) is compact, we may write using the product measure dh =

d∞h× dfh,

(3.3) 2 · IT (g; ϕ̃) = 2 det(y) · qT · vol(H̃(R), d∞h) · IT (ϕ̃f ),

where

IT (ϕ̃f ) =

∫

H̃(Q)\H̃(Af )

∑

x∈Ṽ (Q)3
T

ϕ̃f (h
−1x) dfh.

3.3. Let

H̃ ′ = { g̃ = (g, g′) ∈ B̃× × B̃× | Nm(g) = Nm(g′) }.

Then H̃ ′ acts on Ṽ via

g̃ · x = (g, g′) · x = g′xg−1.

This induces an exact sequence, where Gm lies in the center of H̃ ′, cf. [Wd1] Lemma

1.6,

(3.4) 1→ Gm → H̃ ′
pr
−→ SO(Ṽ )→ 1.

We fix the Haar measure on H̃ ′(A) such that the measure induced by the exact

sequence (3.4) on SO(Ṽ )(A) is the Tamagawa measure, and with the standard Haar

measure on the central idele group A× which is the product of the local measures

λ`
dx`
|x`|

with convergence factors λ` = 1− `−1, so that vol(Ẑ×) = 1. Let

K̃ ′ = H̃ ′(Af ) ∩ ((OB̃ ⊗ Ẑ)× × (OB̃ ⊗ Ẑ)×).

Proposition 3.1. — Let

|TT | =
∑

ξ∈TT (Fp)

e−1ξ

with eξ = |Aut(ξ)|. Then

|TT | = κ1 · IT (ϕ̃f ),

where κ1 = 2 vol(K̃ ′)−1.

Proof. — We choose a finite set of double coset representatives hj ∈ H̃ ′(Af ) such

that

H̃ ′(Af ) =
∐

j

H̃ ′(Q)hjK̃
′.

Since each double coset H̃ ′(Q)hjK̃
′ is stable under Ẑ×Q× = A×f , we obtain a disjoint

decomposition,

SO(Ṽ )(Af ) =
∐

j

SO(Ṽ )(Q)pr(hj)pr(K̃
′).

Let

Γ̃′j = H̃ ′(Q) ∩ hjK̃
′h−1j .

Note that vol(SO(Ṽ )(Q)\SO(Ṽ )(A)) = 2. We have

H̃(Af ) = SO(Ṽ )(Af ) o µ2(Af ).
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Hence

1 = vol(O(Ṽ )(Q)\O(Ṽ )(A))

=
1

2
vol(SO(Ṽ )(Q)\O(Ṽ )(A))

=
1

2
vol(SO(Ṽ )(Q)\SO(Ṽ )(A)) vol(µ2(A))

= vol(µ2(A))

and therefore

vol(µ2(Q)\µ2(A)) =
1

2
.

Let us normalize the Haar measure on µ2(R) by vol(µ2(R)) = 1. Then we get

vol(µ2(Q)\µ2(Af )) =
1
2 . Then we obtain as in [Ku3], (7.28),

IT (ϕ̃f ) =

∫

SO(Ṽ )(Q)\SO(Ṽ )(Af )

∫

µ2(Q)\µ2(Af )

∑

x∈Ṽ (Q)3
T

ϕ̃f (h
−1cx) dfh dc

=
1

2

∫

SO(Ṽ )(Q)\ SO(Ṽ )(Af )

∑

x∈Ṽ (Q)3
T

ϕ̃f (h
−1x) dfh

=
1

2

∑

j

∫

SO(Ṽ )(Q)\SO(Ṽ )(Q)pr(hj)pr(K̃′)

∑

x∈Ṽ (Q)3
T

ϕ̃f (h
−1x) dfh

=
1

2
· vol(pr(K̃ ′)) ·

∑

j

∑

x∈Ṽ (Q)3
T

1

|Γ̃j,x|
· ϕ̃f (h

−1
j x).

Here Γ̃j,x is the image of Γ̃′j,x in Q×\H̃ ′(Q) = SO(Ṽ )(Q). Therefore we have |Γ̃j,x| =
1
2 · |Γ̃

′
j,x|. Note that Γ̃j,x is trivial since x spans a three-dimensional subspace of the

4-dimensional space Ṽ .

To make the connection with TT , note that the supersingular locus ofM
(2)
p can be

written as a double coset space (cf. [Mi] 6),

(M(2))ss = H̃ ′(Q)\H̃ ′(Af )/K̃
′.

Here we chose (E0, E0) as a base point, such that K̃ ′ is the stabilizer of the Tate

module T̂ (E0)× T̂ (E0) (completed by the Dieudonné module at p). To g̃ = (g, g′) ∈

H̃ ′(Af ) corresponds Eg ×Eg′ with the diagonal isogeny,

(g, g′) : E0 × E0 −→ Eg ×Eg′ .

The lattice Hom(Eg, Eg′) in Ṽ (Q) = Hom(E0, E0)⊗Q is given by

Hom(Eg, Eg′) = { y ∈ B̃ | yg(T̂ (E0)) ⊂ g′T̂ (E0) }

= { y ∈ B̃ | g′−1yg ∈ Ṽ (Ẑ) }

= { y ∈ B̃ | g̃−1y ∈ Ṽ (Ẑ) }.
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Hence we obtain

|TT | =
∑

[y,g̃]∈H̃′(Q)\(Ṽ 3(Q)T×H̃′(Af )/K̃)

ϕ̃f (g̃
−1 · y)

=
∑

j

∑

x∈Ṽ 3(Q)T

ϕ̃f (h
−1
j · x)

= 2 · vol(pr(K̃ ′))−1 · IT (ϕ̃f ).

Since vol(K̃ ′) = vol(pr(K̃ ′)), the result follows.

3.4. The next result will be proved in section 5.6.

Theorem 3.2. — The lengths of the local rings OTT,ξ at all points ξ ∈ TT (F̄p) are

all equal to

lg(OTT,ξ) = −
2

(p− 1)2
·
W ′

T,p(e, 0,Φp)

WT,p(e, 0, Φ̃p)
· (log p)−1.

3.5. We will now prove Theorem 2.1 using Theorem 3.2. Let

H ′ = {g̃ = (g, g′) ∈ GL2 ×GL2 | det(g) = det(g′)},

K ′ = H ′(Af ) ∩ (GL2(Ẑ)⊗GL2(Ẑ)).

Then H̃ ′ is an inner form of H ′.

We now fix Haar measures on H̃ ′(A) and on H ′(A) following [Ku3], p.573. More

precisely, in loc.cit. Kudla defines for any quaternion algebra B over Q a Haar measure

on (B⊗A)× which is decomposed, i.e. the explicit product of local Haar measures on

(B ⊗Qv)
× for all places v. By our fixed choice of Haar measure on A×, we therefore

also obtain a decomposed Haar measure on H(B)′(A), where

H(B)′ = {g̃ = (g, g′) ∈ B× ×B× | Nm(g) = Nm(g′)}.

By loc.cit., the induced Haar measure on SO(V (B))(A) is the Tamagawa measure,

as required above.

We apply this construction to B = M2(Q) and to B = B̃ = B(p), the definite

quaternion algebra, ramified at p and unramified at all other finite places. Then we

have for these Haar measures (comp. [Ku3], Lemma 14.10),

vol(K ′p)

vol(K̃ ′p)
= (p− 1)2

and
vol(K ′)

vol(K̃ ′)
= (p− 1)2.
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Hence

qT · d̂eg(TT ) = qT lg(OTT ) · log p

= qT lg(OTT,ξ) · |TT | · log p

= −
2

(p− 1)2 · vol(K̃ ′)
· 2 ·

W ′
T,p(e, 0,Φp)

WT,p(e, 0, Φ̃p)
· qT · IT (ϕ̃f )

= −
2

vol(K ′)
· E′T (g, 0,Φ)det(y)

−1 v−1,

where we used (3.2) and (3.3) in the last step, and where v = vol(H̃(R), d∞h). This

proves the main theorem with the negative constant κ = − 2
vol(K′) · v

−1.

4. The Weil representation

4.1. The remainder of this chapter is devoted to the proof of Theorem 3.2. This is

a purely local statement.

We fix a prime number p and change our notation: We replace V by V ⊗ Qp, G

by G ⊗ Qp, ψ by its localization ψp (of conductor zero), etc. At the same time we

consider a more general situation.

4.2. Instead of the quadratic space associated to a quaternion algebra, we now let

V be any Qp-vector space and ( , ) a symmetric nondegenerate bilinear form on V .

Then Q(x) = 1
2 (x, x) is a quadratic form on V .

We assume that n := dim(V ) is even. In fact, we will only need the case V = B ⊥

Hr where B is a quaternion algebra over Qp endowed with the reduced norm, and

where Hr is the orthogonal sum of r copies of the hyperbolic plane H.

We denote by det(V ) the image in Q×p /(Q×p )2 of the determinant of the matrix

((vi, vj))ij where (v1, . . . , vn) is some basis of V . As in 2.1 we have the quadratic

character χV of Q×p associated to V given by

χV (x) = (x, (−1)n(n−1)/2 det(V ))p = (x, (−1)n/2 det((vi, vj))ij)p,

where ( , )p denotes the Hilbert symbol.

4.3. Let (W, 〈 , 〉) be the space Q2m
p endowed with the standard symplectic form

whose matrix with respect to the standard basis is given by
(

0 Im
−Im 0

)
. We consider

W as vector space of row vectors, in particular the canonical GL2m-action is from the

right. To prove Theorem 3.2 we will need only the case m = 3.
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As in 2.1 we denote by P = MN the Siegel parabolic subgroup of G = Sp2m(Qp)

over Qp where

M = {m(a) =

(
a 0

0 ta−1

)
| a ∈ GLm(Qp) },

N = {n(b) =

(
Im b

0 Im

)
| b ∈ Symm(Qp) }.

Let K = Sp2m(Zp) ⊂ G the standard maximal compact subgroup and set

w :=

(
0 Im
−Im 0

)
∈ G.

4.4. In the sequel we let a ∈ GLm act on V m = V ⊗ Qm
p via right multiplication,

which we denote by x 7→ xa.

Moreover for x, y ∈ V m we set

(x, y) := ((xi, yj))ij ∈ Symm(Qp).

4.5. Associated to the quadratic space V and the fixed additive character ψ there is

a Weil representation ωV of G on the vector space S(V m) of Schwartz functions on

V m. For g =
(
a b
c d

)
∈ G, ϕ ∈ S(V m), and x ∈ V m we have by [Ku2], Prop. 4.3 (cf.

also [Rao], Lemma 3.2, and [We]),

(ωV (g)(ϕ))(x) = γ(V, ψ, g)

·

∫

Vm/Ker(c)

ψ(tr(
1

2
(xa, xb) + (xb, yc) +

1

2
(yc, yd)))ϕ(xa+ yc) dgy

where γ(V, ψ, g) is a certain 8th root of unity depending on V , ψ, and g such that

γ(V, ψ, e) = 1 and where dgy is a suitable Haar measure. We make this more explicit

in three special cases:

(ωV (m(a))ϕ)(x) = χV (det a)|det a|
n/2ϕ(xa),(4.1)

(ωV (n(b))ϕ)(x) = ψ(
1

2
tr((x, x)b))ϕ(x),(4.2)

(ωV (w
−1n(b)))ϕ)(0) = γ(V )

∫

Vm

ψ(
1

2
tr((y, y)b))ϕ(y) dy(4.3)

where in (4.3) dy is the Haar measure on V m which is self dual for Fourier transform

and where γ(V ) = γ(V, ψ,w−1n(b)) is the 8th root of unity explicitly given in [Ku3]

A.4.

5. Local Whittaker functions and representation densities

5.1. We keep the notation of section 4 and assume from now on that m = 3 and

hence G = Sp6(Qp), and n = 4.



210 MICHAEL RAPOPORT & TORSTEN WEDHORN

For s ∈ C let I(s, χV ) be the degenerate principal series representation of G induced

from P , i.e., I(s, χV ) consists of K-finite functions Φ(·, s) : G→ C such that

Φ(nm(a)g, s) = χV (det a)|det a|
s+2Φ(g, s)

for all n ∈ N , a ∈ GL3(Qp), and g ∈ G.

We also set for T ∈ Sym3(Qp), as in (2.5),

ψT : N −→ C×, ψT (n(b)) = ψ(tr(Tb)).

5.2. For s ∈ C, Φ ∈ I(s, χV ), T ∈ Sym3(Qp) with det(T ) 6= 0, and g ∈ G we define

the local Whittaker function by

WT (g, s,Φ) =

∫

N

Φ(w−1n(b)g, s)ψT (n(b))
−1 db

where db is the Haar measure on Sym3(Qp) which is selfdual with respect to the

pairing

ψN : Sym3(Qp)× Sym3(Qp) −→ C, (b, b′) 7→ ψ(tr(bb′)).

As the conductor of ψ is zero, we have

(5.1) { b ∈ Sym3(Qp) | ψN (b, b′) = 1 for all b′ ∈ Sym3(Zp) } = Sym3(Zp)
∨.

Therefore

voldb(Sym3(Zp))voldb(Sym3(Zp)
∨) = 1.

As the index of Sym3(Zp) in Sym3(Zp)
∨ is 23δ2p , we obtain

(5.2) voldb(Sym3(Zp)) = 2−(3/2)δ2p .

It is known that WT (g, s,Φ) converges for Re(s) > 2 and admits a holomorphic

continuation to the entire complex plane, if Φ is standard, i.e., if its restriction to K

is independent of s [Ku3], Prop. 1.4. Moreover, we will see in Proposition 5.2 below

that WT (e, s,Φ) is a polynomial in p−s.

5.3. For ϕ ∈ S(V 3) we set

Φ(g, s) = (ω(g)ϕ)(0) · |a(g)|s.

It follows from (4.1) and (4.2) that Φ(g, s) ∈ I(s, χV ). In this way, we obtain a

G-equivariant map similar to (2.2),

S(V 3) −→ I(0, χV ), ϕ 7→ Φ(g, 0).
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5.4. For r ≥ 0 we denote by theHr the quadratic space Q2r
p whose associated bilinear

form has the matrix 1
2

(
0 Ir
Ir 0

)
with respect to the standard basis, and set

Vr = V ⊥ Hr.

It is known [Ku3] Lemma A.2 that ωVr = ωV ⊗ ωHr
as representations of G on

S(V 3
r ) = S(V

3)⊗ S(H3
r ).

We also recall Lemma A.3 from [Ku3] (see also [Ral], Remark II.3.2):

Lemma 5.1. — Let ϕ0r ∈ S(H
3
r ) be the characteristic function of M2r,3(Zp) and ϕ ∈

S(V 3) with associated Φ(g, s) ∈ I(s, χV ). Set ϕ
[r] = ϕ⊗ϕ0r ∈ S(V

3
r ) = S(V

3)⊗S(H3
r ).

Then we have for all g ∈ G and r ≥ 0

Φ(g, r) = (ωVr (g)ϕ
[r])(0).

5.5. We fix a Zp-lattice L of V such that ( , ) is integral on L. Choose a Zp-basis

of L and let Sr be the matrix associated to the quadratic form on Vr = V ⊕Hr with

respect to the chosen basis of L and the standard basis of Hr. In particular, the

matrix of the bilinear form ( , ) with respect to the chosen base of L equals 2S0.

Let ϕ ∈ S(V 3) be the characteristic function of L3 with associated Φ = Φ(g, s) ∈

I(s, χV ). Then the local Whittaker function WT (e, s,Φ) interpolates the local repre-

sentation densities:

Proposition 5.2. — For all integers r ≥ 0 we have

WT (e, r,Φ) = 2−(15/2)δ2p |detS0|
3/2γ(V, ψ)αp(T, Sr),

where we denote by αp( , ) the local representation density as normalized in

[Wd1] (4.4). In particular, WT (e, s,Φ) is a polynomial in X = p−s.

Proof. — The right hand side is a polynomial in X = p−r [Kit] and the left hand

side is an entire function in r. Hence it suffices to show the identity for r > 2. Now
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we have

WT (e, r,Φ) =
∫

Sym3(Qp)

Φ
(
w−1n(b), r

)
ψ
(
− tr(Tb)

)
db

(5.1)
=

∫
Sym3(Qp)

(
ωVr (w

−1n(b))ϕ[r]
)
(0)ψ

(
− tr(Tb)

)
db

(4.3)
=

∫
Sym3(Qp)

γ(V, ψ)
∫
V 3
r

ψ
(
1
2 tr(b(y, y))

)

· ϕ[r](y) dy ψ
(
− tr(Tb)

)
db

= γ(V, ψ) lim
t→∞

∫
p−t Sym3(Zp)

∫
V 3
r

ψ
(
tr(b( 12 (y, y)− T ))

)

· ϕ[r](y) dy db

(5.1)
= γ(V, ψ) lim

t→∞
voldb(p

−t Sym3(Zp))

·
∫

y∈V 3
r

1
2
(y,y)−T∈pt Sym3(Zp)

∨

ϕ[r](y) dy

(5.2)
= γ(V, ψ) lim

t→∞
2−(3/2)δ2pp6t

∫
y∈M2r+4,3(Zp)

tySry−T∈pt Sym3(Zp)
∨

dy.

Now { y ∈ M2r+4,3(Zp) |
tySry − T ∈ p

t Sym3(Zp)
∨ } is a union of

Ãpt(T, Sr) := #{ y ∈ M2r+4,3(Zp/2p
tZp) |

tySry − T ∈ p
t Sym3(Zp)

∨ }

cosets for 2ptM2r+4,3(Zp). Moreover, by the definition of dy (4.3) we have

voldy(M2r+4,3(Zp)) = |det 2Sr|
3/2

= |det 2S0|
3/2

= 2−6δ2p |detS0|
3/2,

and hence

voldy(2p
tM2r+4,3(Zp)) = 2−6δ2p |detS0|

3/22−3(4+2r)δ2pp−t3(4+2r).

Therefore WT (e, r,Φ) is equal to

γ(V, ψ)2−6δ2p |detS0|
3/22(−(3/2)−3(4+2r))δ2p lim

t→∞
p6t−t3(4+2r)Ãpt(T, Sr).

Now we have

Ãpt(T, Sr) = 23(4+2r)δ2pApt(T, Sr)

with

Apt(T, Sr) = #{ y ∈ M2r+4,3(Zp/p
tZp) |

tySry − T ∈ p
t Sym3(Zp)

∨ }.
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By definition we have

αp(T, Sr) = lim
t→∞

p6t−t3(4+2r)Apt(T, Sr)

and this proves the proposition.

Corollary 5.3. — For Φ as in Proposition 5.2, WT (e, 0,Φ) 6= 0 if and only if T is

represented by S0.

5.6. We will now prove Theorem 3.2.

As αp(T, Sr) is a rational function in X = p−r, it follows from Proposition 5.2 that

(5.3) W ′
T (e, 0,Φ) = − log(p)2−(15/2)δ2p |detS0|

3/2γ(V, ψ)
∂

∂X
αp(T, Sr)|X=1.

Let B be the division quaternion algebra over Qp and denote by OB its maximal

order. We denote by S = S0 (resp. S̃ = S̃0) the matrix associated to the quadratic

space V = M2(Zp) (resp. Ṽ = OB) endowed with the reduced Norm. Then we have

(see e.g. [Wd1] (4.5) and (4.6))

|det(S0)| = 24δ2p ,

|det(S̃0)| = 24δ2pp−2.

Moreover we have by the explicit formulas in the Appendix of [Ku3]

γ(V, ψ) = −γ(Ṽ , ψ).

Using the notation of Theorem 3.2, we therefore have by Proposition 5.2 and (5.3)

(5.4)
W ′

T,p(e, 0,Φp)

WT,p(e, 0, Φ̃p)
(log p)−1 = p3

∂
∂Xαp(T, Sr)|X=1

αp(T, S̃0)
.

But now by [Wd2], Theorem 1.1 and 2.16 we have

αp(T, S̃0) = 2(p+ 1)2p−1(5.5)

and

∂

∂X
αp(T, Sr)|X=1 = −p−4(p2 − 1)2lg(OTT ,ξ).(5.6)

Therefore we have

lg(OTT ,ξ) log(p)
(5.5)
=

(5.6)
−

p4

(p2 − 1)2
2(p+ 1)2

p

∂
∂Xαp(T, Sr)|X=1

αp(T, S̃0)

(5.4)
= −

2

(p− 1)2
W ′

T (e, 0,Φp)

WT (e, 0, Φ̃p)

which proves the theorem.
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