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Abstract. Let µ be a minuscule coweight for eitherGLn or GSp2n, and regardµ as an
elementtµ in the extended affine Weyl group̃W . We say that an elementx ∈ W̃ is µ-
admissible if there existsµ′ in the Weyl group orbit ofµ such thatx ≤ tµ′ in the Bruhat

order onW̃ . Our main result is thatx ∈ W̃ isµ-admissible if and only if it isµ-permissible,
whereµ-permissibility is defined using inequalities arising naturally in the study of bad
reduction of Shimura varieties.

Introduction

The main result of this paper concerns the extended affine Weyl groupW̃ for GLn.
The groupW̃ is the semidirect product of the symmetric groupSn and the group
Zn; this group acts onRn, with Sn acting by permutations of the coordinates and
with Zn acting by translations.

Let d be an integer in the range 0≤ d ≤ n and letωd denote the vector
(1, . . . ,1,0, . . . ,0) ∈ Zn in which 1 is repeatedd times and 0 is repeatedn − d

times.
Let x ∈ W̃ . We say thatx is d-admissible if there existsτ ∈ Sn such thatx is

less than or equal toτ(ωd) ∈ Zn ⊂ W̃ in the Bruhat order oñW .
Again letx ∈ W̃ . For integersi in the range 0≤ i ≤ n− 1 we letvi denote the

vector inZn obtained by applying the affine transformationx : Rn → Rn to the
vectorωi ∈ Zn ⊂ Rn. We say thatx is minuscule if

0 ≤ vi(m)− ωi(m) ≤ 1 ∀i ∈ {0,1, . . . , n− 1} ∀m ∈ {1,2, . . . , n},
wherevi(m) andωi(m) denote them-th entries of the vectorsvi , ωi respectively.
We define thesize of x ∈ W̃ to be the sum of the entries of the vectorv0. We say
thatx is d-permissible if it is minuscule of sized.

The main result of this paper, Theorem 3.5(3), states thatx ∈ W̃ is d-admiss-
ible if and only if it is d-permissible. It is easy to see thatd-admissibility implies
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d-permissibility; the converse seems to be harder. Theorem 4.5(3) is a completely
analogous result for the groupG = GSp2n of symplectic similitudes.

Let us now rephrase our results in a way that makes sense for any extended
affine Weyl groupW̃ . Recall thatW̃ has the formW � X, whereW is the finite
Weyl group andX is the lattice of cocharacters. InsideX is the coroot latticeX0,
and there is a canonical surjective homomorphism

c : W̃ → X/X0

that is trivial onW and induces the canonical surjection fromX to X/X0.
Letµ ∈ X. When we regardµ as an element in the translation subgroup ofW̃ ,

we sometimes denote it bytµ. We say thatx ∈ W̃ is µ-admissible if there exists
τ ∈ W such thatx ≤ tτ (µ) in the Bruhat order oñW .

LetPµ denote the convex hull inXR := X⊗Z R of the pointsτ(µ) asτ ranges
through the finite Weyl groupW . Let ā denote the closure of the base alcovea in
XR; thus

ā = {v ∈ XR : α̃(v) ≥ 0 for all simple affine roots̃α}.

We say thatx ∈ W̃ isµ-permissible if c(x) = c(tµ) andxv− v ∈ Pµ for all v ∈ ā
(equivalently, for all “vertices”v of ā, where by a “vertex” we mean an element
lying in a face of minimal dimension).

WhenG isGLn orGSp2n andµ is a minuscule coweight, Theorems 3.5(3) and
4.5(3) say thatx is µ-admissible if and only if it isµ-permissible. In the case of
GLn the point is that forµ = ωd , the convex hullPµ is equal to the set of vectors
(x1, x2, . . . , xn) ∈ Rn such thatx1 + x2 + · · · + xn = d and 0≤ xi ≤ 1 for all
i ∈ {1,2, . . . , n}; similar considerations apply toGSp2n andωn (see 12.4). Also,
it is easy to check thatµ-admissibility always impliesµ-permissibility (see 11.2
for a proof). T. Haines pointed out to us that in light of Deodhar’s results in [D]
it seems unlikely thatµ-permissibility always impliesµ-admissibility, as we had
first hoped. It would be interesting to clarify the situation.

The results and the methods of this paper are purely combinatorial, but the origin
of the problems considered here is the study of the bad reduction of certain Shimura
varieties. Indeed, consider thelocal model associated to the triple(G,µ,K) con-
sisting of the algebraic groupG = GLn overQp, the minuscule coweightωd , and
an Iwahori subgroupK of G, ([RZ,G1]). Then the special fiber of this local model
has a natural stratification (into affine Schubert cells) whose strata are parametrized
by theµ-permissible subset of the extended affine Weyl groupW̃ for GLn. Similar
remarks apply toGSp2n.

The concepts ofµ-admissibility andµ-permissibility also play a role in the
problem of determining the function in the Iwahori-Hecke algebra which describes
the trace of the Frobenius on the sheaf of nearby cycles of a local model. We refer
the reader to [G2,H1,H2,HN] for more details.

The first author would like to thank the Universities of Cologne and Paris-Sud
for their hospitality and support during visits that made this joint work possible.
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1. Review of the Bruhat order

1.1. Notation

In this section we consider the Weyl groupW of a root systemR, which can be
either an ordinary root system or an affine root system. We choose an order onR,
so thatR =R+∐

R−, whereR+ denotes the set of positive roots, and we denote
by B the set of simple positive roots. Forα ∈ R we denote bywα the reflection in
the rootα. The mapα �→ wα sets up a bijection fromR+ to the setT of reflections
in W , and it also sets up a bijection fromB to the setS of simple reflections inW .
Forw ∈ W we denote byl(w) the length ofw with respect to the baseB. We will
recall from [1,2,4] the definition and properties of the Bruhat order. Note that [1,
2] concern ordinary Weyl groups, but we will cite only results that apply equally
well to affine Weyl groups.

1.2. Definition of Bruhat order

Let x, y ∈ W . We writex → y if yx−1 ∈ T andl(y) = l(x)+ 1. We writex ≤ y

if there exists a chain

x = x1→ x2→ · · · → xk−1→ xk = y

(k = 1 is allowed, so thatx ≤ x). The partial order≤ is called the Bruhat order
onW . It is clear thatx ≤ y if and only if x−1 ≤ y−1.

Lemma 1.3. Let x, y ∈ W , s ∈ S and assume that x ≤ y. Then

(1) either sx ≤ y or sx ≤ sy, and
(2) either x ≤ sy or sx ≤ sy.

Proof. This is Lemma 2.5 of [2]. ��
Lemma 1.4. Let x, y ∈ W . Suppose that yx−1 ∈ T and l(x) < l(y). Then x ≤ y.

Proof. This is Lemma 8.11 in [1]. The idea is to prove Lemma 1.4 by induction on
l(y), using Lemma 1.3 (ifl(y) > 0 pick s ∈ S such thatsy → y). Note however
that Lemma 1.3 was not explicitly formulated in [1].��
Corollary 1.5. Let x ∈ W and let α be a positive root. Then x−1α is a positive
root if and only if x ≤ wαx. Equivalently, x−1α is a negative root if and only if
wαx ≤ x.

Proof. Use Corollary 2.3(ii) in [2] in addition to Lemma 1.4.��
Lemma 1.6. Let x, y ∈ W and let x = s1 . . . sq be a reduced decomposition of x.
Then y ≤ x if and only if there exists a strictly increasing sequence i1 < · · · < ik
(possibly empty) of integers drawn from {1, . . . , q} such that y = si1 . . . sik .

Proof. This is Proposition 2.8 of [2]. ��
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Lemma 1.7. Let� be a partial order onW satisfying the following three properties.

(1) Let x, y ∈ W . If x ≤ y, then x � y.
(2) x � e, then x = e. Here e denotes the identity element of W .
(3) Let x, y ∈ W and s ∈ S. Suppose that x � y. Then either x � sy or sx � sy.

Then the partial order � coincides with the Bruhat order ≤ .

Proof. Suppose thatx � y. We must show thatx ≤ y. We use induction onl(y). If
l(y) = 0, theny = e and (2) yields the desired result. Now suppose thatl(y) > 0.
Then there existss ∈ S such thatl(sy) = l(y)− 1 and hencesy ≤ y. By (3) either
x � sy or sx � sy. By the induction hypothesis eitherx ≤ sy or sx ≤ sy. By
Lemma 1.3 eitherx ≤ y or x ≤ sy. Sincesy ≤ y we conclude that in any case
x ≤ y. ��

Note that this lemma is a variant of Proposition 2.7 in [2], but that Proposition 2.7
applies only to ordinary root systems (the proof in [2] uses the existence of a longest
element inW ).

1.8. Bruhat order on extended affine Weyl groups

LetG be a connected reductive group over an algebraically closed field, and letA be
a maximal torus inG. The Weyl group ofG is the quotient groupN(A)/A, where
N(A) denotes the normalizer ofA in G. The Weyl group acts on the cocharacter
groupX∗(A), and the extended affine Weyl group̃W of G is by definition the
semidirect product ofW andX∗(A). In caseG is semisimple and simply connected,
the extended affine Weyl group coincides with the affine Weyl groupWa of G. In
general we writeGsc for the simply connected covering group of the derived group
of G, and we writeAsc for the inverse image ofA in Gsc. Then the cocharacter
groupX∗(Asc) can be identified with a subgroup ofX∗(A), and thus the affine Weyl
groupWa = W �X∗(Asc) can be identified with a subgroup of the extended affine
Weyl groupW̃ = W �X∗(A). In fact the subgroupWa is normal inW̃ , so that we
get a canonical surjective homomorphism

W̃ → X∗(A)/X∗(Asc) (1.8.1)

whose kernel isWa .
Pick a Borel subgroup ofG containingA. It determines a set of simple roots

and also a set of simple affine roots. LetC be the subgroup of̃W consisting of
all elements that preserve the set of simple affine roots. ThenW̃ is the semidirect
product ofC and the normal subgroupWa , and thusC maps isomorphically to
X∗(A)/X∗(Asc) under the homomorphism (1.8.1).

As usual the Bruhat order and length function on the extended affine Weyl
groupW̃ are defined as follows. Letx, x′ ∈ W̃ . Thenx, x′ can be decomposed
uniquely asx = wc andx′ = w′c′ with c, c′ ∈ C andw,w′ ∈ Wa . Then by
definitionx ≤ y means thatw ≤ w′ and thatc = c′. Moreover the lengthl(x) of
x is defined to bel(x) := l(w).
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2. An inheritance property of the Bruhat order

2.1. Notation

We keep the notation of 1.1. In addition we now consider an automorphismθ of
the root systemR having the property thatθ preserves the setB of simple roots. If
R is an ordinary root system we require thatθ come from an automorphism of the
real vector space on which the roots are linear functions, and ifR is an affine root
system we require thatθ come from an automorphism of the real affine space on
which the roots are affine linear functions. Thus we are in the situation considered
in §1 of [3].

2.2. Fixed point group Wθ

The automorphismθ induces an automorphism, still calledθ , of the groupW , and
this automorphism preserves the setS of simple reflections. Recall from [3] that
the fixed point groupWθ := {w ∈ W | θ(w) = w} is again the Weyl group of a
root system. To describe the simple reflections in the Weyl groupWθ we must first
recall that for any subsetX ⊂ S the subgroupWX of W generated byX is a Weyl
group havingX as its set of simple reflections. Let+ be an orbit ofθ on S and
suppose that the Weyl groupW+ is finite. Then we denote bys+ the unique longest
element ofW+; note thats+ is fixed byθ . Then the elementss+, one for each orbit
+ such thatW+ is finite, are the simple reflections inWθ (see [3]).

Let x ∈ Wθ . We write l(x) for the length ofx as element inW , and we
write lθ (x) for the length ofx as element ofWθ . For any reduced decomposition
x = s+1 . . . s+q of x as element ofWθ we have

l(x) =
q∑

i=1

l(s+i
) (2.2.1)

(this is in [3], at least implicitly).

Proposition 2.3. The Bruhat order ≤ on Wθ is inherited from the Bruhat order �
on W . In other words, for any x, y ∈ Wθ , the conditions x ≤ y and x � y are
equivalent.

Proof. We prove this result by verifying that the partial order� onWθ satisfies the
three hypotheses of Lemma 1.7. First we show that ifx ≤ y, thenx � y. Let

y = s+1 . . . s+q (2.3.1)

be a reduced decomposition fory as element ofWθ . By Lemma 1.6 the elementx
can be written as

x = s+i1
. . . s+ik

(2.3.2)

for some strictly increasing sequencei1 < · · · < ik. For eachi choose a reduced
decomposition fors+i

as element ofW ; it follows from (2.2.1) that one obtains
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a reduced decomposition fory as element ofW by substituting these decompo-
sitions of the elementss+i

in the decomposition (2.3.1). Substituting the same
reduced decompositions for the elementss+i

into the expression (2.3.2), we see
from Lemma 1.6 thatx � y.

Thus the partial order� satisfies the first hypothesis of Lemma 1.7, and it is
obvious that it satisfies the second hypothesis as well. It remains to verify the third
hypothesis. Letx, y ∈ Wθ , let σ be a simple reflection inWθ and suppose that
x � y. We must show that eitherx � σy or σx � σy.

Of courselθ (σy) = lθ (y)± 1. If lθ (σy) = lθ (y)+ 1, theny ≤ σy. Therefore
x � y � σy and we are done. So we may as well assume thatlθ (σy) = lθ (y)− 1,
in which caseσy ≤ y andσy � y. It follows from (2.2.1) thatl(σy) = l(y)− l(σ ).
Choose a reduced decompositionσ = s1 . . . sq for σ in W and note that

l(si . . . sqy) = l(si+1 . . . sqy)− 1

for all i in the range 1≤ i ≤ q. It follows that

σy � s2 . . . sqy � · · · � sqy � y.

Of courselθ (σx) = lθ (x) ± 1. First we assume thatlθ (σx) = lθ (x) − 1. As
before it follows that

σx � s2 . . . sqx � · · · � sqx � x.

Applying Lemma 1.3 tox, y andsq we see thatsqx � sqy. Again applying Lemma
1.3, this time tosqx, sqy andsq−1, we see thatsq−1sqx � sq−1sqy. Continuing in
this way, we see thatσx � σy, and we are done with this case.

Next we assume thatlθ (σx) = lθ (x)+ 1. It follows that

x � sqx � sq−1sqx � · · · � s2 . . . sqx � σx.

Applying Lemma 1.3 tox, y andsq , we see thatx � sqy (we used thatx � sqx).
We now note that in factx � six for any i in the range 1≤ i ≤ q. Indeed,
sinceσ is the longest element in the Weyl groupW+, where+ is theθ -orbit in
S corresponding toσ , we can find a reduced decomposition ofσ ending withsi
rather thansq . Applying Lemma 1.3 again, this time tox, sqy andsq−1, we see that
x � sq−1sqy. Continuing in this way, we see thatx � σy, and this concludes the
proof. ��

3. Main result for GLn

3.1. Extended affine Weyl group of GLn

Consider the general linear groupGLn for n ≥ 1. Its extended affine Weyl group
W̃ is the semidirect product of the symmetric groupSn and the groupZn; this
group acts onRn, with Sn acting by permutations of the coordinates and withZn

acting by translations. The affine Weyl groupWa ⊂ W̃ of SLn is the semidirect
product ofSn and the subgroup ofZn consisting of alln-tuples(a1, . . . , an) such
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thata1 + · · · + an = 0. As usual we order the affine roots in such a way that the
simple affine roots are the functions(x1, . . . , xn) �→ xi − xi+1 (1 ≤ i ≤ n − 1)
together with the affine linear function

(x1, . . . , xn) �→ xn − x1+ 1.

The simple reflections are the transpositions(i, i+1) in Sn (1≤ i ≤ n−1) together
with the affine linear transformation

(x1, . . . , xn) �→ (xn + 1, x2, x3, . . . , xn−2, xn−1, x1− 1).

3.2. Alcoves

For a vectorv ∈ Zn we denote byv(m) them-th entry ofv; thusv = (v(1), . . . ,
v(n)). Also we write-(v) for the sum of the entries ofv; thus-(v) = v(1)+· · ·+
v(n). Given two vectorsu, v ∈ Zn we say thatu ≤ v if u(m) ≤ v(m) for all m
such that 1≤ m ≤ n. An alcove forGLn is a sequencev0, . . . , vn−1 of elements
vi ∈ Zn satisfying the following two conditions. Putvn := v0+(1,1, . . . ,1). Then
the first condition is that

v0 ≤ v1 ≤ · · · ≤ vn−1 ≤ vn. (3.2.1)

The second condition is that

-(vi) = -(vi−1)+ 1 (3.2.2)

for all i such that 1≤ i ≤ n.
For 1 ≤ i ≤ n let ei be thei-th standard basis vector inZn, thusei(j) is

0 unlessi = j , in which case it is 1. For 0≤ i ≤ n let ωi be the vector of
the form(1,1, . . . ,1,0,0, . . . ,0) in which 1 is repeatedi times and 0 is repeated
n− i times. Thestandard alcove is the sequenceω0, . . . , ωn−1. The extended affine
Weyl groupW̃ acts onZn by affine linear transformations, and this action takes
alcoves to alcoves (x ∈ W̃ sendsv0, . . . , vn−1 to xv0, . . . , xvn−1). For any alcove
v0, . . . , vn−1 the vectorsv1− v0, v2− v1, . . . , vn − vn−1 are a permutation of the
standard basis vectorse1, . . . , en (in the case of the standard alcove the permutation
is trivial). Thus we see that the extended affine Weyl group acts simply transitively
on the set of alcoves. Using the standard alcove as base-point, we identify the
extended affine Weyl group with the set of alcoves.

For any alcovev0, . . . , vn−1 the integer-(vi)−-(ωi) is independent ofi; we
denote this integer byr and say that thesize of the alcove isr. Two alcoves have
the same size if and only if the corresponding elements in the extended affine Weyl
group have the same image in the groupX∗(A)/X∗(Asc) discussed in 1.8.

3.3. Minuscule alcoves

We say that an alcovev0, . . . , vn−1 is minuscule if

ωi ≤ vi ≤ ωi + (1,1, . . . ,1)

for all i in the range 0≤ i ≤ n− 1.
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3.4. Minuscule cocharacters

We say that a vectorv ∈ Zn is minuscule if each of its entries is 0 or 1. Thus every
minuscule vectorv is a permutation of one of the vectorsωi . If v is minuscule and
-(v) = i, thenv is a permutation ofωi .

Theorem 3.5. Let v0, . . . , vn−1 be an alcove and let x be the corresponding element
of W̃ .

(1) Suppose that the alcove v0, . . . , vn−1 is minuscule. Then v0 is a minuscule
vector, and when we regard v0 as an element in the translation subgroup of W̃ ,
we have the inequality x ≤ v0 in the Bruhat order.

(2) Let v be a minuscule vector in Zn and regard v as an element in the translation
subgroup of W̃ . Suppose that x ≤ v in the Bruhat order. Then the alcove
v0, . . . , vn−1 is minuscule.

(3) Let 0 ≤ r ≤ n. The alcove v0, . . . , vn−1 is minuscule of size r if and only if
there exists a permutation v of ωr such that x ≤ v in the Bruhat order.

We will prove this theorem in Sect. 5.

Corollary 3.6. Let v0, . . . , vn−1 be a minuscule alcove and let x be the correspond-
ing element of W̃ . Let i be an integer in the range 0 ≤ i ≤ n − 1 and define a
vector µi ∈ Zn by µi := vi −ωi . Then µi is minuscule, and when we regard µi as
an element of the translation subgroup of W̃ , we have the inequality x ≤ µi in the
Bruhat order.

Proof. Let c be the element of̃W defined (as affine linear automorphism ofRn) by

(x1, . . . , xn) �→ (x2, x3, . . . , xn, x1− 1).

Consider the alcovev′0, . . . , v′n−1 corresponding to the elementcixc−i ∈ W̃ . An
easy calculation shows that this new alcove is minuscule and thatv′0 is equal to
the vector obtained by applying the linear part of the affine transformationci to
the vectorµi . Thus, viewingv′0 as an element in the translation subgroup ofW̃ ,
we have the equalityv′0 = ciµic

−i . By Theorem 3.5 (1) we have the inequality
cixc−i ≤ ciµic

−i . Sincecpermutes the simple affine roots, the inner automorphism
w �→ ciwc−i of W̃ respects the Bruhat order. Thereforex ≤ µi . ��

4. Main result for Sp2n

4.1. Extended affine Weyl group of the group GSp2n

Now we turn to the groupGSp2n of symplectic similitudes on a symplectic space
of dimension 2n (with n ≥ 1). Its derived group is the symplectic groupSp2n,
which is simply connected. The extended affine Weyl groupW̃ of GSp2n can be
realized as a subgroup of the extended affine Weyl group ofGL2n, and the affine
Weyl groupWa of Sp2n then occurs as a subgroup of the affine Weyl group ofSL2n.
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Indeed, consider the automorphismθ of R2n defined by

θ(x1, x2, . . . , x2n−1, x2n) = (−x2n,−x2n−1, . . . ,−x2,−x1);
thenθ preserves the set of affine roots ofSL2n, and it also preserves the set of
simple affine roots. The subgroup of fixed points ofθ on the affine Weyl group of
SL2n is the affine Weyl groupWa of Sp2n. We conclude from Proposition 2.3 that
the Bruhat order on the affine Weyl group ofSp2n is inherited from the Bruhat order
on the affine Weyl group ofSL2n.

It is also true that the affine Weyl group ofSp2n is the group of fixed points of
θ on the extended affine Weyl groupS2n � Z2n of GL2n. In fact the group of fixed
points ofθ onS2n is the Weyl groupWn of Sp2n, and the group of fixed points of
θ on the latticeZ2n of translations is the lattice

{(x1, . . . , xn,−xn, . . . ,−x1) | (x1, . . . , xn) ∈ Zn}
of translations forSp2n. The extended affine Weyl group̃W of GSp2n is the fol-
lowing slightly larger subgroup ofS2n � Z2n, namely the semidirect product of the
Weyl groupWn of the symplectic group with the translation groupY of all vectors
(x1, . . . , x2n) ∈ Z2n such that there existsc ∈ Z such that

c = x1+ x2n = x2+ x2n−1 = · · · = xn + xn+1.

We now see from 1.8 that the Bruhat order on the extended affine Weyl group of
GSp2n is inherited from the Bruhat order on the extended affine Weyl group of
GL2n.

4.2. Alcoves

We use notation from 3.2, though now we are consideringZ2n rather thanZn. We
want to define the set of alcoves for the groupG = GSp2n. We will refer to these
asG-alcoves to distinguish them from alcoves for the groupGL2n. In fact the
set ofG-alcoves is defined as a subset of the set of alcoves forGL2n. An alcove
v0, . . . , v2n−1 is aG-alcove if and only if the following condition is satisfied for
some integerd:

v2n−i = d+ θ(vi)

for 1≤ i ≤ 2n, whered denotes the vector(d, d, . . . , d) (recall that the vectorv2n
was defined in 3.2). Note that the standard alcoveω0, . . . , ω2n−1 defined in 3.2 is a
G-alcove (withd = 1). For anyG-alcovev0, . . . , v2n−1 it is clear that the vectorv0
belongs to the translation subgroupY for G discussed in 4.1. It is also clear that the
vectorsv1− v0, v2 − v1, . . . , v2n − v2n−1 are a permutation of the standard basis
vectorse1, . . . , e2n, and that this permutation lies in the subgroupWn of S2n. From
this discussion it is clear that the natural action of the extended affine Weyl group
W̃ of G on the set ofG-alcoves is simply transitive. Using the standard alcove as
base-point, we identifyW̃ with the set ofG-alcoves.
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4.3. Minuscule alcoves

We say that aG-alcove isminuscule if it is minuscule in the sense of 3.3.

4.4. Minuscule cocharacters

We say that a vectorv in the subgroupY of Z2n is minuscule if it is minuscule in the
sense of 3.4. Note that every minuscule vector inY is eitherω0,ω2n or permutation
of the vectorωn, this permutation coming from the subgroupWn of S2n.

Theorem 4.5. Let v0, . . . , v2n−1 be a G-alcove and let x be the corresponding
element of the extended affine Weyl group W̃ of G = GSp2n.

(1) Suppose that the G-alcove v0, . . . , v2n−1 is minuscule. Then v0 is a minuscule
vector, and when we regard v0 as an element in the translation subgroup Y of
W̃ , we have the inequality x ≤ v0 in the Bruhat order.

(2) Let v be a minuscule vector in Y , the translation subgroup of W̃ . Suppose that
x ≤ v in the Bruhat order. Then the G-alcove v0, . . . , v2n−1 is minuscule.

(3) The G-alcove v0, . . . , v2n−1 is minuscule of size n (see 3.2 for the definition of
size) if and only if there exists a permutation τ ∈ Wn such that x ≤ τ(ωn) in
the Bruhat order.

Proof. Since the Bruhat order oñW is inherited from the Bruhat order on the
extended affine Weyl group ofGL2n, the first two parts of this theorem follow from
the corresponding parts of Theorem 3.5. The third part follows from the first two.
��

5. Proof of Theorem 3.5

5.1. Strategy

We use the notation of Sect. 3. Letx ∈ W̃ , let α be an affine root forGLn, and
let wα ∈ Wa ⊂ W̃ be the corresponding reflection. Then by Corollary 1.5 the
elementsx,wαx are related by the Bruhat order, and the direction of the inequality
is determined by whether the rootx−1α is positive or negative. Moreover the Bruhat
order is generated by such elementary inequalities (by its very definition). Thus,
in order to prove Theorem 3.5 we need to answer the following question: given a
minuscule alcovev (we writev for then-tuplev0, . . . , vn−1) and an affine rootα,
when is the alcovewαv minuscule?

5.2. Answer

As above we consider a minuscule alcovev. For 0≤ k ≤ n we define a vectorµk

by puttingµk := vk − ωk; note thatµn = µ0. The condition that the alcovev be
minuscule is simply the condition that for allk the vectorµk be minuscule. Thus
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each entry of each vectorµk is 0 or 1. For 1≤ m ≤ n we define a subsetKm of
{0,1,2, . . . , n− 1} by putting

Km := {k |0 ≤ k ≤ n− 1 and µk(m) = 1}.

Let 1≤ i < j ≤ n and letd ∈ Z. Then the affine linear functionα = αi,j ;d on
Rn defined by

(x1, . . . , xn) �→ xi − xj − d

is an affine root forGLn. These are not the positive affine roots; nevertheless, up to
sign they give all affine roots. We consider the reflectionw = wi,j ;d in the affine
rootα; note thatw maps(x1, . . . , xn) ∈ Rn to the vector

(. . . , xj + d, . . . , xi − d, . . . )

(we have indicated only thei-th andj -th entries as the others are the same as the
corresponding entries in(x1, . . . , xn)). We want to express the condition thatwv
be minuscule.

To do so it is convenient to introduce some notation. We write[i, j) for the set
of integersk such thati ≤ k < j . LetX be any subset of the set{0,1,2, . . . , n−1}.
We writeX′ for the complement ofX in {0,1,2, . . . , n− 1}, and we writeξX for
the characteristic function of the subsetX.

It follows from the definitions that the alcovewv is minuscule if and only if

d − ξ[i,j)(k)+ ξKj
(k) ∈ {0,1} (5.2.1)

and

d − ξ[i,j)(k)− ξKi
(k) ∈ {0,−1} (5.2.2)

for all k in the range 0≤ k ≤ n− 1.
If condition (5.2.1) holds for allk, thend = 0 ord = 1 since the characteristic

functionξ[i,j)(k) necessarily attains both the value 0 and the value 1 (for suitable
k). A glance at the conditions (5.2.1) and (5.2.2) shows that ifd = 0, thenwv is
minuscule if and only if

[i, j) ⊂ K ′i ∩Kj , (5.2.3)

and ifd = 1, thenwv is minuscule if and only if

[i, j)′ ⊂ K ′j ∩Ki. (5.2.4)
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5.3. Position of the alcove with respect to the wall

We continue with our discussion of the alcovesv andwv. Since we have identified
the set of alcoves with the extended affine Weyl group, we may transport the Bruhat
order on the extended affine Weyl group over to the set of alcoves. Then we know
thatv andwv are related by the Bruhat order (Lemma 1.4), and we would like to
know in which direction the inequality goes. The answer is given by Corollary 1.5.
The affine rootα defines a wall inRn (the zero set of this affine linear function).
Corollary 1.5 tells us that if the alcovev and the standard alcove lie on the same
side of this wall, thenv ≤ wv, but if they lie on opposite sides of this wall, then
wv ≤ v. So we need to determine which side of the wallv is on.

Recall that the standard alcove isω0, . . . , ωn−1. The first thing to do is to look
at the values of our affine rootα on the vectorsω0, . . . , ωn−1. There are two cases.
Suppose first thatd ≥ 1. Then all these values are≤ 0 and at least one is< 0.
Thereforev and the standard alcove lie on opposite sides of the wall if and only if
there existsk in the range 0≤ k ≤ n− 1 such that

α(vk) = ξ[i,j)(k)+ ξKi
(k)− ξKj

(k)− d > 0,

and it is easy to see that this condition holds if and only ifd = 1 andK ′j ∩Ki∩[i, j)
is non-empty.

Now suppose thatd ≤ 0. Then all values ofα on the vectorsω0, . . . , ωn−1 are
≥ 0 and at least one is> 0. Thereforev and the standard alcove lie on opposite
sides of the wall if and only if there existsk in the range 0≤ k ≤ n− 1 such that

α(vk) = ξ[i,j)(k)+ ξKi
(k)− ξKj

(k)− d < 0,

and it is easy to see that this condition holds if and only ifd = 0 andK ′i∩Kj∩[i, j)′
is non-empty.

5.4. Intervals in Z/nZ

In order to simplify the conditions we derived in 5.3 we need a better understanding
of the setsKm. These subsets satisfy a very strong condition, which is best formu-
lated when we identify the set{0,1,2, . . . n− 1} with Z/nZ. First we need some
definitions.

Let k, l be distinct elements ofZ/nZ. We denote by[k, l) the following subset
of Z/nZ: choose any representativek1 ∈ Z for k, let l1 ∈ Z be the unique repre-
sentative forl satisfyingk1 < l1 < k1 + n, and then define[k, l) to be the image
under canonical surjectionZ → Z/nZ of the subset{x ∈ Z | k1 ≤ x < l1}. Here
are two examples in casen = 5: [2,4) = {2,3} and[4,2) = {4,0,1}. Note that
[l, k) is always the complement to[k, l) in Z/nZ.

We refer to[k, l) as theinterval in Z/nZ with lower endpoint k andupper
endpoint l. Note that any interval inZ/nZ is non-empty and not equal toZ/nZ.
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5.5. A property of the set Km

So far we have not taken into account the condition (3.2.1) satisfied by our alcove
v. Translating this condition into a condition on the vectorsµk, we find that for allk
in the range 0≤ k ≤ n− 1, if µk(m) = 1, then eitherµk+1(m) = 1 orm = k+ 1.
Translating this into a condition on the setsKm (now viewing each setKm as a
subset ofZ/nZ), we find that for allm the subsetKm of Z/nZ is either empty, or
all of Z/nZ, or else an interval[?,m) in Z/nZ with upper endpointm.

5.6. Continuation of 5.3

We return to the discussion in 5.3. First consider the case in whichd ≥ 1. Then
v and the standard alcove lie on opposite sides of the wall defined byα if and
only if d = 1 andK ′j ∩ Ki ∩ [i, j) is non-empty. Suppose that this condition is
satisfied. In particular bothK ′j andKi must be non-empty. From 5.5 we conclude
thatKi is either all ofZ/nZ or else an interval[?, i) with upper endpointi, and
we also conclude thatK ′j is either all ofZ/nZ or else an interval[j,?) with lower
endpointj . Using thatKi meets[i, j), we see thatKi contains[j, i). Similarly,
using thatK ′j meets[i, j), we see thatK ′j also contains[j, i). Thus the condition
thatK ′j ∩ Ki ∩ [i, j) be non-empty implies the condition thatK ′j ∩ Ki contain
[j, i) and is moreover (trivially) equivalent to the condition thatK ′j ∩ Ki not be
contained in the complement[j, i) of [i, j). We conclude that the condition that
K ′j ∩Ki ∩ [i, j) be non-empty is equivalent to the condition[j, i) � K ′j ∩Ki .

At this point we have shown the following. In cased ≥ 1, v and the standard
alcove lie on opposite sides of the wall defined byα if and only if d = 1 and
[j, i) � K ′j ∩ Ki . In cased ≤ 0, completely parallel reasoning shows thatv and
the standard alcove lie on opposite sides of the wall defined byα if and only if
d = 0 and[i, j) � K ′i ∩Kj .

Lemma 5.7. Let v be a minuscule alcove, and let w = wi,j ;d be the reflection in
the affine Weyl group obtained from the affine root α = αi,j ;d , as in 5.2.

(1) If v and the standard alcove lie on opposite sides of the wall defined by α

(equivalently, if wv ≤ v), then wv is minuscule.
(2) Suppose either that d = 0 and [i, j) = K ′i ∩ Kj or else that d = 1 and
[j, i) = K ′j ∩Ki . Then v ≤ wv and wv is minuscule.

Proof. This follows immediately from the results in 5.6 and 5.2 (see (5.2.3) and
(5.2.4)). ��

5.8. Proof of Theorem 3.5

First note that part (3) of Theorem 3.5 follows easily from parts (1) and (2) of the
theorem. Next we prove part (2) of the theorem. Letv be a minuscule vector in
Zn. We regardv as an element of the translation subgroup ofW̃ and consider the
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corresponding alcove. It is obvious that this alcove, call ita, is minuscule. Using
part (1) of Lemma 5.7 repeatedly, we see that any alcove that is less than or equal
to a is also minuscule, and this proves (2).

It remains to prove part (1) of Theorem 3.5. So letv be a minuscule alcove. Of
coursev is actually a sequence of vectorsv0, . . . , vn−1. It is obvious thatv0 is a
minuscule vector. Leta be the alcove corresponding to the elementv0, viewed as
an element of the translation subgroup ofW̃ ; of coursea is given by the sequence
v0 + ω0, . . . , v0 + ωn−1. We must show thatv ≤ a.

If v = a, then we are done. Otherwise we will show that there exists a reflection
w such that the following three conditions are satisfied: (i)v ≤ wv, (ii) wv is
minuscule, and (iii)wv0 = v0. If wv = a we are done. Otherwise we repeat the
process. Since there are only finitely many minuscule alcoves, this process must
eventually stop, and when it does, we have produced a chain of inequalities showing
thatv ≤ a.

Now we prove the existence ofw (assuming thatv �= a). We need another way
to view the conditionv �= a, so we introduce the following terminology. Recall
(see 5.5) that for anyj ∈ {1, . . . , n} the setKj is either empty, all ofZ/nZ or
else an interval[?, j) with upper endpointj (these three possibilities are mutually
exclusive). We say thatj is proper if Kj is an interval. It follows immediately from
the definitions thatv �= a if and only there existsj ∈ {1, . . . , n} such thatj is
proper.

For each properj ∈ {1, . . . , n} we define a positive integerNj , as follows. If
0 ∈ Kj we putNj = |Kj |, and if 0 /∈ Kj we putNj = |K ′j |. We now choose a
proper elementj ∈ {1, . . . , n} for which the integerNj is minimal. SinceKj is
an interval with upper endpointj , there exists a uniquei ∈ {1, . . . , n} with i �= j

such thatKj = [i, j). Of coursei may or may not be less thanj . We will show
that if i < j (respectively,j < i) there existsd ∈ {0,1} such that the reflection
wi,j ;d (respectively,wj,i;d ) satisfies conditions (i), (ii), and (iii) above.

To prove this assertion we begin by noting that sinceK ′i is either empty,Z/nZ,
or else an interval with lower endpointi, one of the two setsKj ,K

′
i is a subset of

the other. Either 0∈ Kj or 0 /∈ Kj , and either 0∈ Ki or 0 /∈ Ki . Thus there are
four cases, each of which must be examined separately.

Suppose first that 0∈ Kj = [i, j). Thusj < i andNj = |Kj |. Suppose further
that 0∈ Ki . Since 0 lies inKj but not inK ′i , it cannot be the case thatKj ⊂ K ′i .
ThereforeK ′i ⊂ Kj , which implies thatK ′j ∩Ki = K ′j = [j, i). Takew = wj,i;0.
It follows from Lemma 5.7(2) that (i) and (ii) hold (sincej < i, one must switch
the roles ofi andj when applying the lemma). Since 0∈ Ki and 0∈ Kj , thei-th
andj -th coordinates ofv0 are both equal to 1. Sincew simply interchanges thei-th
andj -th coordinates ofv0, we see that (iii) holds.

We continue to suppose that 0∈ Kj = [i, j), but now we suppose that 0/∈ Ki .
In this caseNi = |K ′i |. By minimality ofNj we haveNj ≤ Ni , and hence it cannot
be the case thatK ′i ⊂ Kj . ThereforeKj ⊂ K ′i . ThereforeK ′i ∩Kj = Kj = [i, j).
Takew = wj,i;1. It follows from Lemma 5.7(2) that (i) and (ii) hold. Since 0/∈ Ki

and 0∈ Kj , the i-th andj -th coordinates ofv0 are 0 and 1 respectively. Since
(wv0)(i) = v0(j)− 1= 0 and(wv0)(j) = v0(i)+ 1= 1, we see that (iii) holds.
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Now suppose that 0/∈ Kj = [i, j). Thus i < j andNj = |K ′j |. Suppose
further that 0/∈ Ki . Then, just as in the first case, we see thatw = wi,j ;0 satisfies
(i), (ii) and (iii). On the other hand, if 0∈ Ki , then, just as in the second case, we
see thatwi,j ;1 satisfies (i), (ii) and (iii). This completes the proof of Theorem 3.5.

6. Complement to Theorem 3.5

6.1. Notation

In this section we use the notation of Sect. 3. Also we fix an integerr in the range
0 ≤ r ≤ n and consider the dominant minuscule vectorωr defined in 3.2. As usual
we also regardωr as an element in the translation subgroup of the extended affine
Weyl groupW̃ of GLn.

Lemma 6.2. Let v be a minuscule alcove, given by a sequence v0, v1, . . . , vn−1
such that v0 = ωr . Suppose that w is a reflection in Wa such that wv ≤ v. Then
wv0 = v0.

Proof. Choosei, j, d as in 5.2 such thatw = wi,j ;d . By 5.6 our hypothesis that
wv ≤ v implies that eitherd = 1 and[j, i) � K ′j ∩ Ki , or else thatd = 0 and
[i, j) � K ′i ∩Kj .

In the first case 0∈ [j, i) and therefore 0/∈ Kj and 0∈ Ki , which means
that thei-th coordinate ofv0 is 1 and thej -th coordinate ofv0 is 0. It follows that
w = wi,j ;1 fixesv0, as desired.

In the second case one sees easily that the condition[i, j) � K ′i ∩Kj implies
that K ′i ∪ Kj = Z/nZ (use 5.5). In particular 0∈ K ′i ∪ Kj . If 0 ∈ K ′i , then
ωr(i) = v0(i) = 0, and this implies thatv0(j) = ωr(j) = 0. On the other hand,
if 0 ∈ Kj , thenωr(j) = v0(j) = 1, and this implies thatv0(i) = ωr(i) = 1. In
any case we see that thei-th andj -th coordinates ofv0 are equal, and therefore
w = wi,j ;0 fixesv0, as desired. ��

Theorem 6.3. Let v = v, . . . , vn−1 be an alcove and let x be the corresponding
element of W̃ . Then x is less than or equal to ωr in the Bruhat order on W̃ if and
only if v is minuscule and v0 = ωr .

Proof. The implication⇐� follows from Theorem 3.5(1). Now we prove the im-
plication�⇒. It follows from Theorem 3.5(2) thatv is minuscule. It follows from
Lemma 6.2, applied repeatedly, thatv0 = ωr . ��

Remark 6.4. It is essential for the truth of Theorem 6.3 that we only considerdom-
inant minuscule vectors (all of which are of the formωr for somer). Indeed,
consider an anti-dominant minuscule vectorv (which necessarily has the form
(0 . . . ,0,1, . . . ,1)). It is easy to see that there is exactly one minuscule alcove
v = v0, . . . vn−1 such thatv0 = v, namely the translate byv of the standard alcove.
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7. Complement to Theorem 4.5

7.1. Notation

We use the notation of §4. Thus̃W now denotes the extended affine Weyl group
of the groupG = GSp2n, andY denotes its translation subgroup. We consider
the dominant minuscule vectorωn = (1, . . . ,1,0, . . . ,0) ∈ Y (both 1 and 0 are
repeatedn times).

Theorem 7.2. Let v = v0, . . . , v2n−1 be a G-alcove and let x be the corresponding
element of W̃ . Then x ≤ ωn in the Bruhat order on W̃ if and only if v is minuscule
and v0 = ωn.

Proof. This follows from Theorem 4.5, Theorem 6.3 and the fact that the Bruhat
order onW̃ is inherited from the Bruhat order on the extended affine Weyl group
of GL2n. ��

8. Review of Bruhat order on sets of cosets and double cosets

8.1. Double cosets

We use the notation of §1. In addition we fix two subsetsI andJ of the setS of
simple reflections inW and denote byWI andWJ the subgroups ofW generated by
I andJ respectively. We consider the setWI\W/WJ of double cosets with respect
to (WI ,WJ ). Of course this reduces to the setW/WJ of single cosets in caseI is
empty.

Recall from Bourbaki (Groupes et Algèbres de Lie, Ch. IV, §1, Exercise 3) that
every double cosetWIyWJ in W contains a unique elementx0 of minimal length,
and that any elementx ∈ WIyWJ can be written in the formx = xI x0xJ , with
xI ∈ WI , xJ ∈ WJ andl(x) = l(xI )+ l(x0)+ l(xJ ).

8.2. Bruhat order on WI\W/WJ

LetWIxWJ andWIyWJ be double cosets, and letx0 andy0 be the unique elements
of minimal length inWIxWJ andWIyWJ respectively. Recall thatWIxWJ ≤
WIyWJ in the Bruhat order onWI\W/WJ if and only if x0 ≤ y0 in the Bruhat
order onW .

Recall that the Bruhat order onWI\W/WJ has the following two properties.
First, if x ≤ y in the Bruhat order onW , thenWIxWJ ≤ WIyWJ . Second, if
WIxWJ ≤ WIyWJ andx is the unique element of minimal length inWIxWJ ,
thenx ≤ y. (The second property follows from the fact thaty0 ≤ y, wherey0
denotes the element of minimal length inWIyWJ , and the first follows easily from
Lemma 1.3.)
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8.3. Bruhat order on WI\W̃/WJ

Now we return to the extended affine Weyl groupW̃ discussed in 1.8. As in 8.1 we
consider subgroupsWI andWJ of Wa generated respectively by subsetsI andJ
of the set of simple reflections inWa . We now define the Bruhat order on the set
WI\W̃/WJ of double cosets. LetWI x̃WJ andWI ỹWJ be double cosets, and letx̃0
andỹ0 be the unique elements of minimal length inWI x̃WJ andWI ỹWJ respec-
tively. Then, by definition,WI x̃WJ ≤ WI ỹWJ in the Bruhat order onWI\W̃/WJ

if and only if x̃0 ≤ ỹ0 in the Bruhat order oñW .
The Bruhat order onWI\W̃/WJ has the following two properties. First, ifx̃ ≤ ỹ

in the Bruhat order oñW , thenWI x̃WJ ≤ WI ỹWJ . Second, ifWI x̃WJ ≤ WI ỹWJ

andx̃ is the unique element of minimal length inWI x̃WJ , thenx̃ ≤ ỹ.

9. Replacing alcoves by general faces (for GLn)

The purpose of this section is to extend Theorem 3.5 by considering faces more
general than alcoves. We use the notation and terminology of Sect. 3.

9.1. Faces of type I

Fix a non-empty subset̄I of Z/nZ and letI ⊂ Z denote the inverse image ofĪ
under the canonical surjectionZ → Z/nZ. We consider familiesv = (vi)i∈I ,
indexed byI , of vectorsvi ∈ Zn. Such a family is called aface of type I if it
satisfies the following three conditions:

vi+n = vi + (1,1, . . . ,1) for all i ∈ I , (9.1.1)

vi ≤ vj for all i, j ∈ I such thati ≤ j, (9.1.2)

-(vi)−-(vj ) = i − j for all i, j ∈ I . (9.1.3)

Of course, in casēI = Z/nZ a face of typeI is simply an alcove (associate to the
family v = (vi)i∈I the sequencev0, . . . , vn−1). We denote byω our usual standard
alcove. Thusω = (ωi)i∈Z, and fori in the range 0≤ i ≤ n the vectorωi is the one
defined in 3.2.

The groupW̃ acts transitively on the setFI of faces of typeI . As base-point
we take the unique face of typeI such thatvi = ωi for all i ∈ I . We use this
base-point to identify the setFI with the coset spacẽW/WI , whereWI is defined
as the stabilizer inW̃ of our base-point. Note thatWI is contained inWa and is a
parabolic subgroup of that Coxeter group.

Now suppose that̄J is a non-empty subset of̄I and letJ be the inverse image
of J̄ underZ→ Z/nZ. Then there is aW̃ -equivariant surjection

FI → FJ , (9.1.4)

defined by(vi)i∈I �→ (vi)i∈J .
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9.2. Minuscule faces

Let v = (vi)i∈I be a face of typeI . We say thatv is minuscule if

ωi ≤ vi ≤ ωi + (1,1, . . . ,1) for all i ∈ I . (9.2.1)

We denote byMI the set of minuscule faces of typeI . Note that the subsetMI

of FI is preserved by the action of the subgroupWI of W̃ .

Proposition 9.3. Let J̄ be a non-empty subset of Ī . Then the restriction of the map
(9.1.4)to MI is a surjection MI →MJ .

Proof. It is obvious thatMI maps intoMJ . What we must show is that the map
MI → MJ is surjective. To prove this in general it suffices to prove it in the
case in whichĪ = Z/nZ. Let (vj )j∈J be an element inMJ . We need to complete
(vj )j∈J to a minuscule alcove(vj )j∈Z by defining suitable additional vectorsvj ′
for integersj ′ in the range 0≤ j ′ ≤ n−1 with j ′ /∈ J . We can do this step-by-step,
starting with an integerj ′ such thatj ′ −1 ∈ J . These considerations show that the
proposition is a consequence of the following lemma.��
Lemma 9.4. Let k, l be integers such that k < l ≤ k + n and let vk, vl ∈ Zn.
Suppose that the vectors vk − ωk , vl − ωl and vl − vk are minuscule and suppose
further that -(vl)−-(v) = l − k. Then there exists a vector vk+1 ∈ Zn such that
vk+1− ωk+1, vk+1− vk and vl − vk+1 are minuscule and -(vk+1)−-(vk) = 1.

Proof. Recall from 3.2 the standard basis vectorsem in Zn. For anym ∈ Z we let
r be the unique integer congruent tom modulon and in the range 1≤ r ≤ n, and
we defineem to be the basis vectorer . Note that with our extended definitions of
ωi andei , the equalityωi+1− ωi = ei+1 holds for alli ∈ Z.

We are going to takevk+1 of the formvk+1 = vk + em for suitablem with
1 ≤ m ≤ n. For any choice ofm the vectorvk+1 satisfies the conditions that
vk+1 − vk be minuscule and that-(vk+1)− -(vk) = 1. It is clear thatvl − vk+1
is minuscule if and only ifm satisfies

vl(m)− vk(m) = 1. (9.4.1)

Let k′ be the unique integer in the range 1≤ k′ ≤ n that is congruent tok + 1
modulon. Thenvk+1 − ωk+1 is equal to(vk − ωk) + em − ek′ , and this vector is
minuscule (recall thatvk −ωk is minuscule by hypothesis) if and only if one of the
following two conditions holds:

m = k′, (9.4.2)

m �= k′ and vk(m)− ωk(m) = 0 andvk(k
′)− ωk(k

′) = 1. (9.4.3)

Sincevl − vk is minuscule and-(vl)−-(vk) = l− k, exactlyl− k of the entries
of vl − vk are 1 and the remaining entries are all 0. There are two cases. In the first
casevl(k′)− vk(k

′) = 1. Thenm = k′ satisfies both (9.4.1) and (9.4.2), and we are
done.
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In the second casevl(k′) − vk(k
′) = 0. The vectorsvl − vk andωl − ωk are

both minuscule of sizel − k, and they are distinct (since theirk′-th entries are
different). Therefore we can choose an integerm in the range 1≤ m ≤ n such that
vl(m)− vk(m) = 1 (in other words,m satisfies (9.4.1)) and such that

ωl(m)− ωk(m) = 0. (9.4.4)

We claim thatm satisfies (9.4.3) as well; this will conclude the proof. It is
obvious thatm �= k′ (sincem satisfies (9.4.1) andk′ does not). Next we check
that vk(m) = ωk(m). Sincevl − ωl is minuscule, we havevl(m) ≤ ωl(m) + 1.
But ωl(m) = ωk(m) (by (9.4.4)) andvl(m) = vk(m) + 1 (by (9.4.1)). Therefore
vk(m) ≤ ωk(m). Sincevk − ωk is minuscule, we also haveωk(m) ≤ vk(m).
Thereforevk(m) = ωk(m), as desired.

Finally we check thatvk(k′)−ωk(k
′) = 1. Sincevl−ωl andvk−ωk are minus-

cule, we haveωl(k
′) ≤ vl(k

′) andvk(k′) ≤ ωk(k
′)+ 1. Moreovervl(k′) = vk(k

′)
in the case under consideration, andωl(k

′) = ωk(k
′) + 1 (obvious). Combining

these inequalities yieldsvk(k′)− ωk(k
′) = 1, as desired. ��

9.5. Size of a face of type I

Let v = (vi)i∈I be a face of typeI . Then the integerr = -(vi)− -(ωi) remains
constant asi varies through the setI , and we call this integerr thesize of v.

Theorem 9.6. Let v = (vi)i∈I be a face of type I , and let xWI be the corresponding
element of W̃/WI .

(1) Suppose that v is minuscule. Let i ∈ I and putµi := vi−ωi . Thenµi is a minus-
cule vector, and when we regard µi as an element in the translation subgroup
of W̃ , we have the inequalities xWI ≤ µiWI and WIxWI ≤ WIµiWI .

(2) Let µ be a minuscule vector in Zn and regard µ as an element in the transla-
tion subgroup of W̃ . Suppose that WIxWI ≤ WIµWI in the Bruhat order on
WI\W̃/WI . Then the face v is minuscule.

(3) Let 0 ≤ r ≤ n. The face v is minuscule of size r if and only if there exists
a permutation µ of ωr such that WIxWI ≤ WIµWI in the Bruhat order on
WI\W̃/WI .

Proof. First we prove (1). It follows from Proposition 9.3 that by changingx within
its cosetxWI , we may assume that the alcove determined byx is minuscule. Then
by Corollary 3.6 the vectorµi is minuscule andx ≤ µi . From 8.3 it follows that
xWI ≤ µiWI andWIxWI ≤ WIµiWI .

Next we prove (2). Our assumption thatWIxWI ≤ WIµWI implies (use 8.3)
thatx0 ≤ µ, wherex0 denotes the element of minimal length in the double coset
WIxWI . Sinceµ is minuscule by hypothesis, Theorem 3.5 implies that the alcove
determined byx0 is minuscule. Therefore the face of typeI corresponding tox0WI

is minuscule. Butv lies in theWI -orbit of x0WI , andWI preserves the subsetMI

of FI . Thereforev is minuscule.
Finally we note that (3) follows from (1) and (2).��
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10. Replacing alcoves by general faces (for GSp2n)

The purpose of this section is to extend Theorem 4.5 by considering faces more
general than alcoves.

10.1. G-faces of type I

Let Ī be a non-empty subset ofZ/2nZ, and letv = (vi)i∈I be a face of typeI in
the sense of 9.1. Let−I denote the set of integers−i such thati ∈ I . Then for any
d ∈ Z we define a face5d(v) of type−I by 5d(v)−i = θ(vi) + d · 1. Here we
have denoted by1 the vectorω2n = (1,1, . . . ,1,1), andθ is the automorphism of
Z2n defined in 4.1. The operations5d are of order 2.

We suppose from now on thatI is symmetric in the sense thatI = −I . Then a
G-face of type (I, d) is a facev of typeI in the sense of 9.1 such that

v = 5d(v). (10.1.1)

A G-face of type I is a face of typeI that is aG-face of type(I, d) for somed ∈ Z.
(The value ofd is uniquely determined by the face.) Of course, in caseĪ = Z/2nZ
a G-face of typeI is simply aG-alcove (associate tov = (vi)i∈Z the sequence
v0, . . . , v2n−1). Let FG

I be the set ofG-faces of typeI .
For any non-empty symmetric subsetJ̄ of Ī there is an obvious map (comp.

9.1)

FG
I −→ FG

J (10.1.2)

which is equivariant for the action of the extended affine Weyl groupW̃ of GSp2n.
It is well-known that this map is surjective, but this will also follow from the next
lemma.

As base point for the action of̃W on FG
I we take the uniqueG-face of typeI

such thatvi = ωi for all i ∈ I . Using this base point we identifyFG
I with W̃/WI

whereWI is the stabilizer inW̃ of the base point. ThenWI is a parabolic subgroup
of the affine Weyl groupWa of Sp2n.

10.2. Extending G-faces

Let J̄ be a non-empty symmetric subset ofZ/2nZ, and letJ be its inverse image
under the canonical surjectionZ→ Z/2nZ. Letk ∈ J and suppose thatk+1 /∈ J .
We letl be the smallest integer inJ such thatl > k; thusk < l ≤ k+ 2n. DefineĪ
by Ī := J̄ ∪ {k̄ + 1̄,−(k̄ + 1̄)}. (Form ∈ Z we writem̄ for the class ofm modulo
2n.) ThusĪ is symmetric, contains̄J , and has either 1 or 2 more elements thanJ̄

does.
We consider the canonical map (10.1.2)

π : FG
I → FG

J .
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We are interested in the fiberπ−1(v) of π over an elementv = (vj )j∈J in FJ . We
associate to an elementw = (wi)i∈I in π−1(v) the vectorw := wk+1. Clearlyw
satisfies

vk ≤ w ≤ vl (10.2.1)

and

-(w) = 1+-(vk). (10.2.2)

Lemma 10.3. The map w �→ w is a bijection from π−1(v) to the set of vectors
w ∈ Z2n satisfying (10.2.1)and (10.2.2).

Proof. The injectivity of our map is immediate from (9.1.1) and (10.1.1). To prove
surjectivity we start withw ∈ Z2n satisfying (10.2.1) and (10.2.2), and we must
constructw ∈ π−1(v) such thatw �→ w.

Let P̄ = J̄ ∪ {k̄+ 1̄} and letQ̄ = −P̄ , so thatĪ = P̄ ∪ Q̄ andP = −Q. Since
P,Q are not symmetric unlessP = Q, it does not make sense to considerG-faces
of typeP or Q, but it does make sense to consider faces of typeP or Q, and it is
clear that there exists a unique facex of typeP such thatxk+1 = w andxj = vj
for all j ∈ J .

Let d be the unique integer such that5d(v) = v. Define a facey of typeQ by
y := 5d(x). Clearlyyj = vj for all j ∈ J .

We claim that

p ∈ P, q ∈ Q, p ≤ q �⇒ xp ≤ yq. (10.3.1)

This is clear if there existsj ∈ J such thatp ≤ j ≤ q, so we now assume the
contrary. By (9.1.1) it is harmless to assume thatp = k+1, and then it is necessarily
the case thatq = l − 1 andk̄ = −l̄. By (10.2.1) and (10.2.2) there exists a basis
vectorem such thatxp = w = vk + em andem ≤ vl − vk. Sincek̄ = −l̄, the vector
vl − vk is symmetric under the operation of reversing its entries, and therefore
em + em′ ≤ vl − vk, whereem′ is the unique basis vector such thatem′ = −θ(em).
Sinceyq = vq+1− em′ , we conclude thatxp ≤ yq , as desired.

We also claim that

p ∈ P, q ∈ Q, q < p �⇒ yq ≤ xp. (10.3.2)

This is clear since there always existsj ∈ J such thatq ≤ j ≤ p. (Eitherj = p

or j = p − 1 will do.)
Suppose thatp ∈ P , q ∈ Q andp = q. Thenxp ≤ yq from (10.3.1). Moreover

the size ofx and the size ofy are both equal to the size ofv. Thereforexp = yp.
Thus, without ambiguity, we may definewi for i ∈ I by puttingwi = xi if i ∈ P

andwi = yi if i ∈ Q. It is immediate from (10.3.1) and (10.3.2) thatw = (wi)i∈I
is aG-face. By constructionw ∈ π−1(v) andw �→ w. ��
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10.4. Size of a G-face of type (I, d)

Let v = (vi)i∈I be aG-face of type(I, d). Then thesize of v is defined to be its
size considered as a face forGL2n, see 9.5. Using (10.1.1) one sees easily that the
size ofv is nd.

10.5. Minuscule G-faces

Let v = (vi)i∈I be aG-face of type(I, d). Thenv is calledminuscule if it is
minuscule in the sense of 9.2, i.e. when considered as a face of typeI for GL2n.
We denote byMG

I the set of minusculeG-faces of typeI . Supposev is minuscule.
Then the vectorv0 is minuscule, and using (10.1.1) we see thatd ∈ {0,1,2}. If
d = 0, thenv has size 0; therefore for alli the vectorvi − ωi is minuscule and the
sum of its entries is 0, which implies thatv = (ωi)i∈I . If d = 2, thenv has size
2n, which is the same as the size ofω+ 1; therefore for alli the vectorωi + 1− vi
is minuscule and the sum of its entries is 0, which implies thatv = (ωi + 1)i∈I .
Therefored = 1 for all minusculeG-faces other than the two we just described.

Proposition 10.6. Let J̄ ⊂ Ī be a non-empty symmetric subset of Ī . Then the
natural map

MG
I −→MG

J

is surjective.

Proof. It is enough to prove this in casēI = Z/2nZ. EnlargingJ̄ one step at a time,
we then reduce to the case in whichJ̄ ⊂ Ī are as in 10.2. Now letv = (vj )j∈J be
the minusculeG-face of typeJ that we wish to extend to a minusculeG-face of
typeI . From 10.5 it follows thatv is of type(I, d) for d ∈ {0,1,2} and also that
our extension problem is trivial ifd = 0 ord = 2. So we now assume thatd = 1.

From Lemmas 9.4 and 10.3 it follows that there is aG-facew of typeI such
thatw �→ v and such thatu1 := wk+1− ωk+1 is minuscule. We claim thatw is in
fact minuscule. By (9.1.1) it is enough to show thatu2 := w−(k+1) − ω−(k+1) is
minuscule. Since thed-value forw is 1 and that forω is 0, we see thatu2 = 1−r(u1),
wherer(u1) is the vector obtained fromu1 by reversing the order of its entries.
Thereforeu2 is indeed minuscule (sinceu1 is). ��
Theorem 10.7. Let v = (vi)i∈I be a G-face of type I and of size n. Let x ·WI be
the corresponding element of W̃/WI . Then v is minuscule if and only if there exists
an element τ of the Weyl group Wn of Sp2n such that WIxWI ≤ WIτ(ωn)WI in the
Bruhat order on WI \ W̃/WI , where as usual ωn is the vector (1, . . . ,1,0, . . . ,0).

Proof. Suppose thatv is minuscule. Then it follows from Proposition 10.6 that by
changingx within its cosetx ·WI we may assume thatx is minuscule of sizen. It
follows from Theorem 4.5 thatx ≤ τ(ωn) for someτ ∈ Wn. From 8.3 it follows
thatx ·WI ≤ τ(wn)WI andWIxWI ≤ WIτ(wn)WI . Conversely assume this last
condition. Thenx0 ≤ τ(ωn) wherex0 denotes the element of minimal length in
WIxWI . By Theorem 4.5x0 is minuscule of sizen and therefore theG-face of type
I corresponding tox0WI is also minuscule. Butv lies in theWI -orbit of x0WI and
WI preserves the subsetMG

I of FG
I . Hencev is minuscule, of sizen. ��
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11. Admissibility implies permissibility

11.1. Notation

As in 1.8 we consider a general extended affine Weyl groupW̃ . As in the introduc-
tion we abbreviateX∗(A) to X and we denote byc the canonical homomorphism
(1.8.1) fromW̃ to X∗(A)/X∗(Asc). When we regardν ∈ X as an element of the
translation subgroup of̃W we denote it bytν ; thustν1+ν2 = tν1tν2.

11.2. Goal

Let µ ∈ X. Our goal is prove that ifx ∈ W̃ is µ-admissible, then it is alsoµ-
permissible. (These terms were defined in the introduction.)

Letν ∈ X. It is immediate from the definition thattν isµ-permissible if and only
if ν lies inPµ (= the convex hull of theW -orbit ofµ in XR) andν−µ ∈ X∗(Asc).
In particulartµ′ isµ-permissible for everyµ′ in theW -orbit ofµ inX. Therefore, in
order to check thatµ-admissibility impliesµ-permissibility, we just need to prove
the following lemma.

Lemma 11.3. If x ∈ W̃ is µ-permissible and y ≤ x in the Bruhat order on W̃ , then
y is µ-permissible.

Proof. By an obvious induction argument it is enough to prove the lemma in the
special case in whichy = sα̃x for an affine root̃α which separatesxa from a. (As
in the introductiona is the base alcove inXR.) Clearlyc(y) = c(x) = c(tµ), so all
we must show is that for anyv in the closurēa of a, the pointsα̃xv − v lies inPµ.
Sincex is µ-permissible, the pointxv − v lies in Pµ. MoreoverPµ is W -stable,
and hencesα(xv − v) lies inPµ, whereα denotes the vector part of the affine root
α̃. Therefore (by convexity ofPµ) it is enough to check thatsα̃xv − v lies on the
line segment joiningxv − v andsα(xv − v). This follows from the next lemma.
��

Lemma 11.4. Let x ∈ W̃ and let α̃ be an affine root, with vector part α. Then α̃

separates xa and a if and only if for all v ∈ ā the point sα̃xv − v lies on the line
segment joining xv − v and sα(xv − v).

Proof. Let v ∈ ā. Note that

sα̃xv − v = (xv − v)− α̃(xv)α∨

sα(xv − v) = (xv − v)− [α̃(xv)− α̃(v)]α∨.

Therefore bothsα̃xv − v and sα(xv − v) lie on the line throughxv − v in the
directionα∨. Moreoversα̃xv − v lies between the other two points⇐⇒ 0 lies
betweenα̃(xv) andα̃(v) ⇐⇒ α̃ (weakly) separatesxv andv. ��
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12. ωn-permissibility for GSp2n

The introduction stated thatµ-admissibility is equivalent toµ-permissibility for
any minuscule coweightµ for G = GSp2n. This is obvious ifµ = 0, and is true
for µ if and only if it is true forµ+ 1. Thus it suffices to consider the caseµ = ωn.
In view of Theorem 4.5(3) we just need to check that an elementx in the affine Weyl
groupW̃ for G isωn-permissible if and only if the associatedG-alcovev = (vi)i∈Z
is minuscule of sizen. (As usualvi = x · ωi .)

12.1. The convex hull Pωn

For any vectoru ∈ R2n we definer(u) to be the vector obtained fromu by reversing
the order of its entries:r(u1, . . . , u2n) = (u2n, . . . , u1). It is easy to see that the
convex hullPωn is given by

Pωn = {u ∈ R2n : u+ r(u) = 1 and 0≤ u ≤ 1}.
Note that-(u) = n for anyu ∈ Pωn .

12.2. The base alcove

For G the closureā of the base alcovea is the set of pointsu ∈ R2n such that
u1+ u2n = u2+ u2n−1 = · · · = un + un+1 and

1+ u2n ≥ u1 ≥ u2 ≥ · · · ≥ un ≥ un+1.

Putηi := (ωi +ω2n−i )/2; note that-(ηi) = n. The pointsη0, η1, . . . , ηn serve as
“vertices” for ā; in other words each face ofā of minimal dimension (namely 1)
contains a unique pointηi .

12.3. ωn-permissibility

Our elementx ∈ W̃ (with associatedG-alcovev) is ωn-permissible if and only if

yi ∈ Pωn ∀i ∈ Z, (12.3.1)

where
yi := xηi − ηi = (vi + v2n−i − ωi − ω2n−i )/2.

(SinceX∗(A)/X∗(Asc) is torsion free forG = GSp2n, the conditionc(x) = c(tωn)

is redundant.)

Lemma 12.4. The element x ∈ W̃ is ωn-permissible if and only if the associated
G-alcove v is minuscule of size n.
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Proof. The alcovev is minuscule of sizen if and only if

vi + r(v2n−i ) = 2 · 1 ∀i ∈ Z (12.4.1)

and

0 ≤ vi − ωi ≤ 1 ∀i ∈ Z. (12.4.2)

On the other hand the condition (12.3.1) forωn-permissibility holds if and only if

yi + r(yi) = 1 ∀i ∈ Z (12.4.3)

and

0 ≤ yi ≤ 1 ∀i ∈ Z. (12.4.4)

Note that (12.4.1) is equivalent to (12.4.3). Indeed, there existsk ∈ Z such that
vi+r(v2n−i ) = k ·1, and it is clear thatyi+r(yi) = (k−1) ·1. We now assume that
(12.4.1) and (12.4.3) hold, and we show that under this assumption (12.4.2) and
(12.4.4) are equivalent. First note that (12.4.4) follows immediately from (12.4.2)
(by using (12.4.2) for bothi and 2n− i).

It remains to show that (12.4.4) implies (12.4.2). Using (12.4.1) together with
(12.4.4), we see that

−1 ≤ (vi − ωi)− r(vi − ωi) ≤ 1. (12.4.5)

It is enough to prove (12.4.2) for alli such that 0≤ i ≤ n. We now fix i in this
range. Then we havev−i ≤ vi ≤ v2n−i , which (using (12.4.1)) can be rewritten as

1 ≤ vi + r(vi) ≤ 2 · 1. (12.4.6)

Fix m with 1 ≤ m ≤ n. Puta := vi(m) − ωi(m) andb := r(vi)(m) − r(ωi)(m).
Then (12.4.5) implies

−1≤ a − b ≤ 1 (12.4.7)

while (12.4.6) implies

1≤ a + b + ωi(m)+ r(ωi)(m) ≤ 2. (12.4.8)

Sinceωi(m) is 0 or 1 andr(ωi)(m) is 0, the inequalities (12.4.7) and (12.4.8) imply
that botha andb belong to{0,1}; since this is true for allm between 1 andn, we
see that 0≤ vi − ωi ≤ 1, as desired. ��
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