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Abstract. Let u be a minuscule coweight for eith€rL, or GSpz,, and regarck as an
elementr,, in the extended affine Weyl grouly. We say that an element € W is u-
admissible if there existg’ in the Weyl group orbit ofu such thate < t,v in the Bruhat
order onW. Our main resultis that € W is u-admissible if and only if it im-permissible,
where u-permissibility is defined using inequalities arising naturally in the study of bad
reduction of Shimura varieties.

Introduction

The main result of this paper concerns the extended affine Wey! gtolap G L.
The groupW is the semidirect product of the symmetric grajpand the group
Z"; this group acts ofR", with S, acting by permutations of the coordinates and
with Z" acting by translations.

Let d be an integer in the range 8 d < n and letw; denote the vector
1,...,2,0,...,0) € Z" in which 1 is repeated times and 0 is repeated— d
times.

Letx € W.We say thak is d-admissible if there existst € S, such thatx is
less than or equal to(wy) € Z" C W in the Bruhat order ofiV.

Again letx € W. For integers in the range 0< i < n — 1 we letv; denote the
vector inZ" obtained by applying the affine transformation R” — R” to the
vectorw; € Z" C R". We say that is minuscule if

O<uvi(m)—wi(m)<1l Viel0l...n—1 Vme(l2...  n)

wherev; (m) andw; (m) denote then-th entries of the vectors;, w; respectively.
We define thesize of x € W to be the sum of the entries of the vectgr We say
thatx is d-permissibleif it is minuscule of sized.

The main result of this paper, Theorem 3.5(3), statesithatW is d-admiss-
ible if and only if it is d-permissible. It is easy to see thatdmissibility implies
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d-permissibility; the converse seems to be harder. Theorem 4.5(3) is a completely
analogous result for the group = G Sp2, of symplectic similitudes.

Let us now rephrase our results in a way that makes sense for any extended
affine Weyl groupW. Recall thatW has the formW x X, whereW is the finite
Weyl group andX is the lattice of cocharacters. Insideis the coroot latticeXg,
and there is a canonical surjective homomorphism

c:W—>X/X0

that is trivial onW and induces the canonical surjection fréfrio X/ Xo.

Let . € X. When we regarg as an element in the translation subgroupiof
we sometimes denote it by. We say that e W is pu-admissible if there exists
T € W such thatc < 7,(,) in the Bruhat order ofV.

Let P, denote the convex hull il := X ®z R of the pointsr (i) ast ranges
through the finite Weyl groupV. Let & denote the closure of the base alcavia
XR; thus

a={v e Xgr:a(v) > 0 forall simple affine rootg&}.

We say that € Wis w-permissibleif c(x) = c(z,) andxv —v € P, forallv € a
(equivalently, for all “vertices™ of &, where by a “vertex” we mean an element
lying in a face of minimal dimension).

WhenG isGL,, or GSp2, andu is a minuscule coweight, Theorems 3.5(3) and
4.5(3) say that is u-admissible if and only if it ist-permissible. In the case of
GL, the point is that fop. = w4, the convex hullP, is equal to the set of vectors
(x1,x2,...,x,) € R" such thattvy +x2+---+x, =d and 0< x; < 1 for all
i €{1,2,...,n}; similar considerations apply 6 Sp2, andw, (see 12.4). Also,
it is easy to check thagt-admissibility always implieg:.-permissibility (see 11.2
for a proof). T. Haines pointed out to us that in light of Deodhar’s results in [D]
it seems unlikely thati-permissibility always implieg.-admissibility, as we had
first hoped. It would be interesting to clarify the situation.

The results and the methods of this paper are purely combinatorial, but the origin
of the problems considered here is the study of the bad reduction of certain Shimura
varieties. Indeed, consider thacal model associated to the triples, 1, K) con-
sisting of the algebraic group = GL, overQ,, the minuscule coweigli,, and
an Iwahori subgrou of G, ([RZ,G1]). Then the special fiber of this local model
has a natural stratification (into affine Schubert cells) whose strata are parametrized
by the.-permissible subset of the extended affine Weyl gridufor G L,,. Similar
remarks apply t@ Spy, .

The concepts ofc-admissibility andu-permissibility also play a role in the
problem of determining the function in the Iwahori-Hecke algebra which describes
the trace of the Frobenius on the sheaf of nearby cycles of a local model. We refer
the reader to [G2,H1,H2, HN] for more details.

The first author would like to thank the Universities of Cologne and Paris-Sud
for their hospitality and support during visits that made this joint work possible.
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1. Review of the Bruhat order
1.1. Notation

In this section we consider the Weyl grolip of a root systemR, which can be
either an ordinary root system or an affine root system. We choose an oré&er on
so thatR =Ry [ [ R—, whereR, denotes the set of positive roots, and we denote
by B the set of simple positive roots. Fere R we denote byw, the reflection in

the rootwe. The mapx — w, sets up a bijection fronR . to the sef of reflections

in W, and it also sets up a bijection fromto the setS of simple reflections ifw.
Forw € W we denote by(w) the length ofw with respect to the bask. We will
recall from [1,2,4] the definition and properties of the Bruhat order. Note that [1,
2] concern ordinary Weyl groups, but we will cite only results that apply equally
well to affine Weyl groups.

1.2. Definition of Bruhat order

Letx,y € W.We writex — y if yx~1 e T andl(y) = I(x) + 1. We writex < y
if there exists a chain

X =X1—> X2 —> > Xk—1 > Xk =Y

(k = 1 is allowed, so that < x). The partial ordek is called the Bruhat order
onW. Itis clear thatr < yifand only ifx~1 < y~1.

Lemmal3.Letx,y € W,s € S and assumethat x < y. Then

(1) either sx < y or sx < sy, and
(2) either x < sy or sx < sy.

Proof. Thisis Lemma2.50f [2]. O
Lemmal4. Letx,y € W. Supposethat yx~1 € T andI(x) < [(y). Thenx < y.

Proof. Thisis Lemma 8.11in [1]. The idea is to prove Lemma 1.4 by induction on
1(y), using Lemma 1.3 (if(y) > 0 picks € S such thaty — y). Note however
that Lemma 1.3 was not explicitly formulated in [1]O

Corollary 1.5. Let x € W and let o be a positive root. Then x 1« is a positive
root if and only if x < wex. Equivalently, x~ 1« is a negative root if and only if
WX < X.

Proof. Use Corollary 2.3(ii) in [2] in addition to Lemma 1.4.0

Lemmal6. Letx,y € Wandletx =s;...s, beareduced decomposition of x.
Then y < x if and only if there exists a strictly increasing sequence i1 < --- < iy
(possibly empty) of integersdrawn from {1, ..., g} suchthat y = s;; ... sj,.

Proof. This is Proposition 2.8 of [2]. O
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Lemma 1.7. Let < beapartial order on W satisfyingthefollowing threeproperties.

(D) Letx,ye W.lfx < y,thenx < y.
(2) x < e, then x = e. Here e denotes the identity element of W.
(3) Letx,y € Wands € S. Supposethat x < y. Then either x < sy or sx < sy.

Then the partial order < coincides with the Bruhat order <.

Proof. Suppose that < y. We must show that < y. We use induction of(y). If
[(y) = 0, theny = ¢ and (2) yields the desired result. Now suppose tHat > 0.
Then there exists € S such thai(sy) = I(y) — 1 and hencey < y. By (3) either

x < sy orsx =< sy. By the induction hypothesis either< sy or sx < sy. By
Lemma 1.3 eithex < y orx < sy. Sincesy < y we conclude that in any case
x<y. 0O

Note that this lemma s a variant of Proposition 2.7 in[2], but that Proposition 2.7
applies only to ordinary root systems (the proofin [2] uses the existence of alongest
element inW).

1.8. Bruhat order on extended affine Weyl groups

Let G be a connected reductive group over an algebraically closed field, ahtidet

a maximal torus irG. The Weyl group ofG is the quotient groupV (A)/ A, where

N (A) denotes the normalizer of in G. The Weyl group acts on the cocharacter
group X.(A), and the extended affine Weyl groip of G is by definition the
semidirect product of¥ andX,(A). In caseG is semisimple and simply connected,
the extended affine Weyl group coincides with the affine Weyl grdymf G. In
general we writ& ¢ for the simply connected covering group of the derived group
of G, and we writeA for the inverse image ol in Gs.. Then the cocharacter
groupX . (Asc) can be identified with a subgroup &f.(A), and thus the affine Weyl
groupW, = W x X, (Asc) can be identified with a subgroup of the extended affine
Weyl groupW = W x X, (A). In fact the subgroup¥, is normal inW, so that we
get a canonical surjective homomorphism

W — X.(A)/ X(As0) (1.8.1)

whose kernel idV,.

Pick a Borel subgroup off containingA. It determines a set of simple roots
and also a set of simple affine roots. l@tbe the subgroup oW consisting of
all elements that preserve the set of simple affine roots. és the semidirect
product of C and the normal subgrouy,, and thusC maps isomorphically to
X (A)/ X (Ase) under the homomorphism (1.8.1).

As usual the Bruhat order and length function on the extended affine Weyl
group W are defined as follows. Let, x’ € W. Thenx, x’ can be decomposed
uniquely asx = wc andx’ = w'¢’ with ¢, ¢’ € C andw, w’ € W,. Then by
definitionx < y means thatv < w’ and thatc = ¢’. Moreover the lengtli(x) of
x is defined to bé(x) := I(w).
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2. Aninheritance property of the Bruhat order
2.1. Notation

We keep the notation of 1.1. In addition we now consider an automorphisin

the root systenR having the property that preserves the sé of simple roots. If

R is an ordinary root system we require t@atome from an automorphism of the
real vector space on which the roots are linear functions, aRdsfan affine root
system we require th@& come from an automorphism of the real affine space on
which the roots are affine linear functions. Thus we are in the situation considered
in 81 of [3].

2.2. Fixed point group W¢

The automorphism induces an automorphism, still callédof the groupW, and
this automorphism preserves the Seatf simple reflections. Recall from [3] that
the fixed point group¥? := {w € W |6(w) = w} is again the Weyl group of a
root system. To describe the simple reflections in the Weyl gittipve must first
recall that for any subsef C S the subgroug¥x of W generated by is a Weyl
group havingX as its set of simple reflections. L&t be an orbit of¢ on S and
suppose that the Weyl gro, is finite. Then we denote by, the unique longest
element ofW, ; note thats is fixed by6. Then the elements,, one for each orbit
A such thatW, is finite, are the simple reflections Wi’ (see [3]).

Let x € WY. We write [(x) for the length ofx as element inW, and we
write 1% (x) for the length ofx as element of¥?. For any reduced decomposition
X =Sa;---54, Of x as element ofv? we have

q
I(x) = ZI(SA,.) (2.2.1)
i=1

(this is in [3], at least implicitly).

Proposition 2.3. The Bruhat order < on W? isinherited from the Bruhat order <
on W. In other words, for any x, y € W?, the conditionsx < y andx < y are
equivalent.

Proof. We prove this result by verifying that the partial ordeon W? satisfies the
three hypotheses of Lemma 1.7. First we show thatdf y, thenx < y. Let

Y =58a;---54, (2.3.2)

be a reduced decomposition fpas element o¥?. By Lemma 1.6 the element
can be written as

X =S S0, (2.3.2)

for some strictly increasing sequenge< --- < i;. For each choose a reduced
decomposition fos,, as element oW it follows from (2.2.1) that one obtains
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a reduced decomposition fgras element oW by substituting these decompo-
sitions of the elements,,; in the decomposition (2.3.1). Substituting the same
reduced decompositions for the elemests into the expression (2.3.2), we see
from Lemma 1.6 that < y.

Thus the partial ordek satisfies the first hypothesis of Lemma 1.7, and it is
obvious that it satisfies the second hypothesis as well. It remains to verify the third
hypothesis. Let, y € W?, let o be a simple reflection i? and suppose that
x < y. We must show that eithar< oy orox < oy.

Of coursd? (oy) = 17(y) £ 1. 1f 1% (oy) = 19(y) + 1, theny < oy. Therefore
x < y < oy and we are done. So we may as well assume/ttiaty) = 1 (y) — 1,
inwhich casery < yandoy < y. Itfollows from (2.2.1) that(oy) = I(y) — (o).
Choose a reduced decompositior= s; . . . s, for o in W and note that

I(si...5qy) =1(siy1...54y) — 1
for all i inthe range 1< i < ¢. It follows that
Oy 2X82...84y 2 X 85qy 2 y.

Of coursel? (ox) = 1?(x) + 1. First we assume th#t(ox) = 1 (x) — 1. As
before it follows that

OX X8§2...8;%X X -+ X 5% X X.

Applying Lemma 1.3 tor, y ands, we see tha,x < s,y. Again applying Lemma
1.3, this time tos, x, s,y ands, 1, we see that, 15,x < s,_154y. Continuing in
this way, we see thatx < oy, and we are done with this case.

Next we assume tha#ft (ox) = 17 (x) + 1. It follows that

X X SgX X Sq_18¢%X X - X852...5,X X OX.

Applying Lemma 1.3 tor, y ands,, we see that < s,y (we used that < s,x).
We now note that in fack < s;x for anyi in the range 1< i < q. Indeed,
sinceo is the longest element in the Weyl groliipa, whereA is theg-orbit in

S corresponding t@, we can find a reduced decompositioncoending withs;
rather than,,. Applying Lemma 1.3 again, this time 19 s,y ands,_1, we see that
x = s4-154y. Continuing in this way, we see that< oy, and this concludes the
proof. O

3. Mainresult for GL,
3.1. Extended affine Weyl group of GL,,

Consider the general linear grogfl, for n > 1. Its extended affine Weyl group
W is the semidirect product of the symmetric graipand the grougZ”; this
group acts orR”, with S, acting by permutations of the coordinates and \ifith
acting by translations. The affine Weyl grolip, ¢ W of SL, is the semidirect
product ofS,, and the subgroup &” consisting of alk.-tuples(ay, ..., a,) such
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thata; + - -+ + a, = 0. As usual we order the affine roots in such a way that the
simple affine roots are the functiosy, ..., x,) — x; —x;r1 (1 <i <n—1)
together with the affine linear function

(X1, ..., x0) = x, —x1+ 1.

The simple reflections are the transpositigng+1) in S, (1 <i < n—1)together
with the affine linear transformation

(X]_, R xn) = (xn + 11 X2, -x37 ) -xn—27 xn—lv xl - 1)

3.2. Alcoves

For a vectow € Z" we denote by (m) them-th entry ofv; thusv = (v(), ...,
v(n)). Also we writeX (v) for the sum of the entries of thusX (v) = v(1)+-- -+
v(n). Given two vectors:, v € Z" we say thatt < v if u(m) < v(m) for all m
such that 1< m < n. An alcove forGL, is a sequencey, ..., v,—1 of elements
v; € Z" satisfying the following two conditions. Put := vo+(1, 1, ..., 1). Then
the first condition is that

vo < V1 < S U1 < Up. (3.2.1)
The second condition is that
(i) = 2(vi—1) +1 (322)

foralli suchthat 1< i < n.

For 1 < i < nlete; be thei-th standard basis vector i¥’, thuse; (j) is
0 unlessi = j, in which case itis 1. For < i < n let w; be the vector of
the form(1,1,...,1,0,0,...,0) in which 1 is repeatedtimes and 0 is repeated
n—i times. Thestandard alcoveis the sequencey, . . ., w,—1. The extended affine
Weyl groupW acts onZ" by affine linear transformations, and this action takes
alcoves to alcovesc(e W sendsug, . .., Up—1 tO X, . . . , Xv,—1). For any alcove
v, ..., Uy—1 the vectorsyy — vg, v2 — v1, ..., v, — v,—1 are a permutation of the
standard basis vectars, . . ., ¢, (in the case of the standard alcove the permutation
is trivial). Thus we see that the extended affine Weyl group acts simply transitively
on the set of alcoves. Using the standard alcove as base-point, we identify the
extended affine Weyl group with the set of alcoves.

For any alcovey, ..., v,_1 the integerz (v;) — = (w;) is independent af, we
denote this integer by and say that theize of the alcove is-. Two alcoves have
the same size if and only if the corresponding elements in the extended affine Weyl
group have the same image in the groggA)/ X . (Asc) discussed in 1.8.

3.3. Minuscule alcoves
We say that an alcove, . . ., v,—1 is minuscule if
wi<vi<wi+@11...,1

foralliintherange <xi <n — 1.
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3.4. Minuscule cocharacters

We say that a vectar € Z" is minuscule if each of its entries is 0 or 1. Thus every
minuscule vectov is a permutation of one of the vectars. If v is minuscule and
2 (v) = i, thenv is a permutation of;.

Theorem 3.5. Letwy, ..., v,—1 beanalcoveandlet x bethecorresponding element
of W.
(1) Suppose that the alcove vo, ..., v,—1 is minuscule. Then vg is a minuscule

vector, and when we regard vg as an element in the translation subgroup of W,
we have the inequality x < vg in the Bruhat order.

(2) Let v bea minuscule vector in Z" and regard v asan element in the trandlation
subgroup of W. Suppose that x < v in the Bruhat order. Then the alcove
vQ, ..., Up—1 iISMinuscule.

(3)Let 0 < r < n. The alcove vy, ..., v,—1 isminuscule of size r if and only if
there exists a permutation v of w, such that x < v in the Bruhat order.

We will prove this theorem in Sect. 5.

Corollary 3.6. Letvy, . .., v,—1 beaminusculealcoveandlet x bethe correspond-
ing element of W. Let i be an integer intherange0 < i < n — 1 and define a
vector u; € Z" by u; := v; — w;. Then u; isminuscule, and when we regard u; as
an element of the translation subgroup of W, we have the inequality x < y; in the
Bruhat order.

Proof. Letc be the element oiv defined (as affine linear automorphisniRsf) by
(xl5 A 7xn) = (-x25 -x37 M) -xila-xl - 1)'

Consider the alcoveé), e vflil corresponding to the elemeritcc™ € W. An
easy calculation shows that this new alcove is minuscule andhiatequal to
the vector obtained by applying the linear part of the affine transformatiom

the vectoru;. Thus, viewingv0 as an element in the translation subgroupiaf

we have the equallty = c'u;c”". By Theorem 3.5 (1) we have the inequality
clxe™ =c u ¢!, Sincer permutes the simple affine roots, the inner automorphism
w > ctwe™l of W respects the Bruhat order. Therefares u;. O

4. Main result for Spo,
4.1. Extended affine Weyl group of the group G Sp2,

Now we turn to the grour Sp2, of symplectic similitudes on a symplectic space
of dimension 2 (with n > 1). Its derived group is the symplectic gro§p2,,
which is simply connected. The extended affine Weyl gréupf G Sp,, can be
realized as a subgroup of the extended affine Weyl grouplof,, and the affine
Weyl groupW,, of Spo, then occurs as a subgroup of the affine Weyl grougiof, .
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Indeed, consider the automorphignof R2" defined by
0(x1, X2, ..., X2n—1, X2n) = (—X2n, —X2n—1, - - -, —X2, —X1);

then® preserves the set of affine roots $f.,,, and it also preserves the set of
simple affine roots. The subgroup of fixed pointgain the affine Weyl group of
SLo, is the affine Weyl groupV,, of Spy,,. We conclude from Proposition 2.3 that
the Bruhat order on the affine Weyl group$fz, is inherited from the Bruhat order
on the affine Weyl group of L»,.

It is also true that the affine Weyl group 8p2,, is the group of fixed points of
6 on the extended affine Weyl grosp, x Z%* of G L2,. In fact the group of fixed
points of6 on Sy, is the Weyl groupW,, of Sp»,, and the group of fixed points of
6 on the latticez?" of translations is the lattice

{('xla"-’xna_xna'~'a_-xl)|('xla"-’-xn) Ezn}

of translations forSp,,. The extended affine Weyl groufg of G Spo, is the fol-
lowing slightly larger subgroup dfy, x Z2", namely the semidirect product of the
Weyl groupW, of the symplectic group with the translation grovipf all vectors
(x1, ..., x2,) € Z% such that there existse Z such that

C=Xx1+Xon = X2+ X2p—-1= "+ = Xp + Xp+1.

We now see from 1.8 that the Bruhat order on the extended affine Weyl group of
G Sp2, is inherited from the Bruhat order on the extended affine Weyl group of
GLy,.

4.2. Alcoves

We use notation from 3.2, though now we are consideZifigrather tharz”. We
want to define the set of alcoves for the graip= GSp2,. We will refer to these
as G-alcoves to distinguish them from alcoves for the gra@upy,. In fact the
set of G-alcoves is defined as a subset of the set of alcove&1or,. An alcove
vo, ..., U2,—1 IS @G-alcove if and only if the following condition is satisfied for
some integed:

v2p—i = d +6(v)

for1 < i < 2n, whered denotes the vectatl, d, . . ., d) (recall that the vectory,

was defined in 3.2). Note that the standard aleoyge . . , w2,—1 definedin 3.2 is a
G-alcove (withd = 1). For anyG-alcoveuvy, ..., v2,—1 itis clear that the vectarg
belongs to the translation subgrolifor G discussed in 4.1. Itis also clear that the
vectorsvy; — vg, v2 — v1, ..., V2, — U2,—1 are a permutation of the standard basis
vectorsey, . . ., e2,, and that this permutation lies in the subgrapof So,,. From

this discussion it is clear that the natural action of the extended affine Weyl group
W of G on the set ofG-alcoves is simply transitive. Using the standard alcove as
base-point, we identify¥ with the set ofG-alcoves.
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4.3. Minuscule alcoves

We say that &-alcove isminuscule if it is minuscule in the sense of 3.3.

4.4. Minuscule cocharacters

We say that a vectarin the subgrougy of Z2* is minusculeif it is minuscule in the
sense of 3.4. Note that every minuscule vectdf in eitherwg, wy, or permutation
of the vectomw,, this permutation coming from the subgroufy of Sy,.

Theorem 4.5. Let v, ..., vy,—1 be a G-a~Icove and let x be the corresponding
element of the extended affine Weyl group W of G = G Sp2,.

(1) Suppose that the G-alcove vo, . . ., v2,—1 iSminuscule. Then vg isa minuscule
vector, and when we regard vg as an element in the translation subgroup Y of
W, we have the inequality x < vg in the Bruhat order.

(2) Let v be a minuscule vector in Y, the translation subgroup of W . Suppose that
x < v intheBruhat order. Then the G-alcove vy, .. ., va,_1 iSminuscule.

(3) The G-alcove vy, .. ., v2,—1 isminuscule of sizen (see 3.2 for the definition of
size) if and only if there exists a permutation t € W,, suchthat x < t(wy,) in
the Bruhat order.

Proof. Since the Bruhat order of is inherited from the Bruhat order on the
extended affine Weyl group of L, the first two parts of this theorem follow from
the corresponding parts of Theorem 3.5. The third part follows from the first two.
O

5. Proof of Theorem 3.5
5.1. Strategy

We use the notation of Sect. 3. Lete W, leta be an affine root folGL,, and

let w, € W, C W be the corresponding reflection. Then by Corollary 1.5 the
elements:, w,x are related by the Bruhat order, and the direction of the inequality
is determined by whether the root '« is positive or negative. Moreover the Bruhat
order is generated by such elementary inequalities (by its very definition). Thus,
in order to prove Theorem 3.5 we need to answer the following question: given a
minuscule alcove (we writev for then-tuplew, ..., v,_1) and an affine roat,

when is the alcovev, v minuscule?

5.2. Answer
As above we consider a minuscule alcavé-or 0 < k < n we define a vectop

by puttingu; := vr — wy; note thatu,, = uo. The condition that the alcowebe
minuscule is simply the condition that for &lithe vectoru, be minuscule. Thus
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each entry of each vectas; is 0 or 1. For 1< m < n we define a subseX, of
{0,1,2,...,n— 1} by putting

Kp:={k|0<k<n—-1 and u(m)=1}.

Letl<i < j <nandletd € Z. Then the affine linear functiom = «; ;.4 on
R™ defined by

X1, ..., ) > xi —xj—d

is an affine root folG L,,. These are not the positive affine roots; nevertheless, up to
sign they give all affine roots. We consider the reflectior= w; ;., in the affine
roota; note thatw maps(xy, ..., x,) € R" to the vector

(...,xj+d,...,x,-—d,...)

(we have indicated only thieth andj-th entries as the others are the same as the
corresponding entries ifx1, ..., x,)). We want to express the condition thaw
be minuscule.

To do so itis convenient to introduce some notation. We wiitg) for the set
ofintegersk suchthat < k < j.LetX be any subsetofthesg, 1,2, ..., n—1}.
We write X’ for the complement ok in {0, 1, 2, ..., n — 1}, and we writesy for
the characteristic function of the subsét

It follows from the definitions that the alcovev is minuscule if and only if

d — & j) (k) + &k ; (k) € {0, 1} (5.2.1)
and
d —§i, j (k) — &k, (k) € {0, =1} (5.2.2)

forallkintherange < k <n — 1.

If condition (5.2.1) holds for alk, thend = 0 ord = 1 since the characteristic
function&y; ;) (k) necessarily attains both the value 0 and the value 1 (for suitable
k). A glance at the conditions (5.2.1) and (5.2.2) shows thét=# 0, thenwv is
minuscule if and only if

li,j)) C K/ NK;, (5.2.3)
and ifd = 1, thenwv is minuscule if and only if

li. /) C K;NK;. (5.2.4)
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5.3. Position of the alcove with respect to the wall

We continue with our discussion of the alcovesndwv. Since we have identified
the set of alcoves with the extended affine Weyl group, we may transport the Bruhat
order on the extended affine Weyl group over to the set of alcoves. Then we know
thatv andwv are related by the Bruhat order (Lemma 1.4), and we would like to
know in which direction the inequality goes. The answer is given by Corollary 1.5.
The affine rootx defines a wall irR” (the zero set of this affine linear function).
Corollary 1.5 tells us that if the alcoweand the standard alcove lie on the same
side of this wall, therv < wv, but if they lie on opposite sides of this wall, then
wV < V. So we need to determine which side of the wal on.

Recall that the standard alcoveus, . . ., w,—1. The first thing to do is to look
at the values of our affine roaton the vectorsy, ..., w,_1. There are two cases.
Suppose first thad > 1. Then all these values are 0 and at least one is 0.
Thereforev and the standard alcove lie on opposite sides of the wall if and only if
there exist% in the range O< k < n — 1 such that

o(vr) = &, j) (k) + &k, (k) — k; (k) —d > 0,

and itis easy to see that this condition holds if and ondy+#f 1 andK} NK;N[i, j)
iS non-empty.
Now suppose that < 0. Then all values ok on the vectors, . .., w,_1 are
> 0 and at least one is 0. Thereforev and the standard alcove lie on opposite
sides of the wall if and only if there existsin the range O< k < n — 1 such that

a(vr) = &i,j) (k) + &k, (k) — &k, (k) —d <O,

and itis easy to see that this condition holds if and ondy# 0 andK/NK;N[i, j)’
iS non-empty.

5.4. IntervalsinZ/nZ

In order to simplify the conditions we derived in 5.3 we need a better understanding
of the setXX,,. These subsets satisfy a very strong condition, which is best formu-
lated when we identify the s¢®, 1, 2, ...n — 1} with Z/nZ. First we need some
definitions.

Letk, [ be distinct elements &t /nZ. We denote byk, [) the following subset
of Z/nZ: choose any representative € Z for k, letly € Z be the unique repre-
sentative foll satisfyingk, < I3 < k1 + n, and then defingk, /) to be the image
under canonical surjectiah — Z/nZ of the subsefx € Z | k1 < x < I1}. Here
are two examples in case= 5:[2,4) = {2,3} and[4, 2) = {4, 0, 1}. Note that
[/, k) is always the complement {®, /) in Z/nZ.

We refer to[k, [) as theinterval in Z/nZ with lower endpoint £ and upper
endpoint /. Note that any interval iZ /nZ is non-empty and not equal B/nZ.
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5.5. A property of the set K,

So far we have not taken into account the condition (3.2.1) satisfied by our alcove
v. Translating this condition into a condition on the vectorswe find that for alk
intherange < k < n — 1, if ux(m) = 1, then eithepug+1(m) = L orm = k + 1.
Translating this into a condition on the s&g, (now viewing each sek,, as a
subset 0Z /nZ), we find that for alln the subsek,, of Z/nZ is either empty, or
allof Z/nz, or else an intervdl?, m) in Z/nZ with upper endpoint.

5.6. Continuation of 5.3

We return to the discussion in 5.3. First consider the case in whighl. Then

v and the standard alcove lie on opposite sides of the wall defined ibyand
onlyifd =1 andK}. N K; N [i, j) is non-empty. Suppose that this condition is
satisfied. In particular botR’. and K; must be non-empty. From 5.5 we conclude
that K; is either all ofZ/nZ or else an intervall?, i) with upper endpoint, and
we also conclude thdf} is either all ofZ/nZ or else an intervdlj, ?) with lower
endpointj. Using thatK; meets[i, j), we see thakK; contains[j, i). Similarly,
using thatK} meets[i, j), we see thaK} also containgj, i). Thus the condition
that K; N K; N [i, j) be non-empty implies the condition tth;. N K; contain
[j, i) and is moreover (trivially) equivalent to the condition th&t N K; not be
contained in the complement, i) of [i, j). We conclude that the condition that
K; N K; N[i, j) be non-empty is equivalent to the conditiphi) < K;. NK;.

At this point we have shown the following. In cage> 1, v and the standard
alcove lie on opposite sides of the wall defineddoyf and only ifd = 1 and
[j,i) € K;. N K;. In cased < 0, completely parallel reasoning shows tkatnd
the standard alcove lie on opposite sides of the wall defined yand only if
d=0and[i, j) C K/NKj.

Lemma5.7. Let v be a minuscule alcove, and let w = w; ;.4 be the reflection in
the affine eyl group obtained from the affine root o = «; j,4, asin 5.2

() If v and the standard alcove lie on opposite sides of the wall defined by «
(equivalently, if wv < v), then wv is minuscule.

(2) Suppose either that d = O and [i, j) = K/ N K; or elsethat d = 1 and
[j,i) = K;. N K;. Thenv < wv and wv isminuscule.

Proof. This follows immediately from the results in 5.6 and 5.2 (see (5.2.3) and
(5.2.4)). O

5.8. Proof of Theorem 3.5

First note that part (3) of Theorem 3.5 follows easily from parts (1) and (2) of the
theorem. Next we prove part (2) of the theorem. Lédte a minuscule vector in
Z". We regardv as an element of the translation subgrouptofind consider the
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corresponding alcove. It is obvious that this alcove, cal s minuscule. Using
part (1) of Lemma 5.7 repeatedly, we see that any alcove that is less than or equal
to ais also minuscule, and this proves (2).

It remains to prove part (1) of Theorem 3.5. Soddte a minuscule alcove. Of
coursev is actually a sequence of vectarg . .., v,—1. It is obvious thatyg is a
minuscule vector. Lea be the alcove corresponding to the elemgntviewed as
an element of the translation subgrouplof of coursea is given by the sequence
vo + wo, . .., vo + w,—_1. We must show that < a.

If v = a, then we are done. Otherwise we will show that there exists a reflection
w such that the following three conditions are satisfiedv(ix wv, (i) wv is
minuscule, and (iiijwvo = vo. If wv = a we are done. Otherwise we repeat the
process. Since there are only finitely many minuscule alcoves, this process must
eventually stop, and when it does, we have produced a chain of inequalities showing
thatv < a.

Now we prove the existence af (assuming that # a). We need another way
to view the conditiorv # a, so we introduce the following terminology. Recall
(see 5.5) that for any € {1, ..., n} the setK; is either empty, all oZ/nZ or
else an intervall?, j) with upper endpoinj (these three possibilities are mutually
exclusive). We say thatis proper if K; is aninterval. It follows immediately from
the definitions that # a if and only there existg € {1, ..., n} such that;j is
proper.

For each propey € {1, ..., n} we define a positive integey;, as follows. If
0 € K; we putN; = |K|, and if 0¢ K; we putN; = |K|. We now choose a
proper elemenf € {1, ..., n} for which the integetV; is minimal. SincekK; is
an interval with upper endpoint, there exists a uniquee {1, ...,n} withi # j
such thatk'; = [i, j). Of coursei may or may not be less thagn We will show
that ifi < j (respectively,) < i) there exists! € {0, 1} such that the reflection
w;, j.4 (respectivelyw; ;.4) satisfies conditions (i), (i), and (iii) above.

To prove this assertion we begin by noting that sikés either emptyZ /nZ,
or else an interval with lower endpointone of the two setX ;, K/ is a subset of
the other. Either G K; or 0 ¢ K;, and either Oc K; or O ¢ K;. Thus there are
four cases, each of which must be examined separately.

Suppose firstthat@ K; = [i, j). Thusj < i andN; = |K;|. Suppose further
that O K;. Since 0 lies inK ; but not inK/, it cannot be the case that; C K.
Thereforek C K;, which implies thak’ N K; = K, = [}, i). Takew = wj ;.o.
It follows from Lemma 5.7(2) that (i) and (ii) hold (singe< i, one must switch
the roles ofi and j when applying the lemma). Since<0K; and O< K, thei-th
andj-th coordinates ofp are both equal to 1. Sinae simply interchanges thieth
and j-th coordinates ofy, we see that (iii) holds.

We continue to suppose that0K ; = [i, j), but now we suppose that® ;.
In this caseV; = |K/|. By minimality of N; we haveN; < N;, and hence it cannot
be the case that; C K;. ThereforeK; C K/. ThereforeK; N K; = K; = [i, j).
Takew = wj ;;1. It follows from Lemma 5.7(2) that (i) and (ii) hold. Sincef0K;
and Oe K, thei-th and j-th coordinates ofp are 0 and 1 respectively. Since
(wvo) (@) = vo(j) — 1= 0and(wvg)(j) = vo(i) + 1 = 1, we see that (iii) holds.
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Now suppose that @ K; = [i, j). Thusi < j andN; = |K;.|. Suppose
further that O¢ K;. Then, just as in the first case, we see that w; ;.o Satisfies
(i), (ii) and (iii). On the other hand, if & K;, then, just as in the second case, we
see thalw; ;.1 satisfies (i), (ii) and (iii). This completes the proof of Theorem 3.5.

6. Complement to Theorem 3.5
6.1. Notation

In this section we use the notation of Sect. 3. Also we fix an integethe range

0 < r < n and consider the dominant minuscule veetpdefined in 3.2. As usual

we also regard, as an element in the translation subgroup of the extended affine
Weyl groupW of GL,.

Lemma 6.2. Let v be a minuscule alcove, given by a sequence vo, v1, ..., Up—1
such that vg = w,. Suppose that w is a reflection in W, such that wv < v. Then
wvg = 0.

Proof. Choosei, j,d as in 5.2 such thab = w; ;.4. By 5.6 our hypothesis that
wv < v implies that eithed = 1 and[j,i) ¢ K} N K;, or else that! = 0 and
li, j)) C K/ NK;.

In the first case G [j, i) and therefore O¢ K; and Oe K;, which means
that thei-th coordinate ol is 1 and thej-th coordinate ofy is 0. It follows that
w = w; ;.1 fixesvo, as desired.

In the second case one sees easily that the conditigh C K N K; implies
that K/ U K; = Z/nZ (use 5.5). In particular G K/ U K;. If 0 € K/, then
w, (i) = vo(i) = 0, and this implies thatg(j) = w,(j) = 0. On the other hand,
if 0 € K, thenw,(j) = vo(j) = 1, and this implies thato(i) = w, (i) = 1. In
any case we see that theéh and j-th coordinates ofy are equal, and therefore
w = w;_ ;.o fixesvo, as desired. O

Theorem 6.3. Letv =v,...,v,-1 be an alcove and let x be the corresponding
element of W. Then x islessthan or equal to w, in the Bruhat order on W if and
only if visminuscule and vg = w;.

Proof. The implication<— follows from Theorem 3.5(1). Now we prove the im-
plication—. It follows from Theorem 3.5(2) thatis minuscule. It follows from
Lemma 6.2, applied repeatedly, that= w,. O

Remark 6.4. It is essential for the truth of Theorem 6.3 that we only consiiber

inant minuscule vectors (all of which are of the for@) for somer). Indeed,
consider an anti-dominant minuscule vectofwhich necessarily has the form
(0...,0,1,...,1). Itis easy to see that there is exactly one minuscule alcove
V = vp, ... v,_1 Such thabg = v, namely the translate hyof the standard alcove.
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7. Complement to Theorem 4.5
7.1. Notation

We use the notation of §4. Thu& now denotes the extended affine Weyl group
of the groupG = GSp2,, andY denotes its translation subgroup. We consider
the dominant minuscule vectay, = (1,...,1,0,...,0) € Y (both 1 and O are
repeated: times).

Theorem 7.2.Letv=vo,...,v2n-1 beaG-alcovegnd let x bethe corresponding
element of W. Then x < w, inthe Bruhat order on W if and only if v isminuscule
and vg = w,.

Proof. This follows from Theorem 4.5, Theorem 6.3 and the fact that the Bruhat
order onW is inherited from the Bruhat order on the extended affine Weyl group
of GLy,. O

8. Review of Bruhat order on sets of cosets and double cosets
8.1. Double cosets

We use the notation of §81. In addition we fix two subsetndJ of the setS of
simple reflections i and denote byv; andW; the subgroups o generated by
I andJ respectively. We consider the 3&;\ W/ W of double cosets with respect
to (W;, Wy). Of course this reduces to the 38 W; of single cosets in caskis
empty.

Recall from Bourbaki (Groupes et Algébres de Lie, Ch. IV, 81, Exercise 3) that
every double coséV; yW; in W contains a unique elemeng of minimal length,
and that any element € W;yW, can be written in the formx = x;xgx;, with
xr e Wr,x; e Wy andl(x) =1(x7) +1(x0) +1(xy).

8.2. Bruhat order on W;\W /W,

Let W;xW; andW;yW; be double cosets, and kefandyg be the unique elements
of minimal length inW;xW; and W;yW; respectively. Recall tha/;xW; <
W;yW; in the Bruhat order oiW;\W/ W, if and only if xo < yg in the Bruhat
order onWw.

Recall that the Bruhat order di;\ W/ W, has the following two properties.
First, if x < y in the Bruhat order orW, thenW;xW,; < W;yW,. Second, if
WixW; < WyyW; andx is the unique element of minimal length Wi;xW;,,
thenx < y. (The second property follows from the fact that < y, whereyg
denotes the element of minimal lengthyify y W, and the first follows easily from
Lemma 1.3.)
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8.3. Bruhat order on W;\W /W,

Now we return to the extended affine Weyl grodipdiscussed in 1.8. As in 8.1 we
consider subgroup®; andW; of W, generated respectively by subsétand J
of the set of simple reflections iw,. We now define the Bruhat order on the set
W;\W /W, of double cosets. Lé¥; W, andW; W be double cosets, and &t
andyg be the unique elements of minimal lengthWh x W; and W;yW; respec-
tively. Then, by definitionW;XW,; < W;$W; in the Bruhat order of;\W /W,
if and only if ¥y < Jo in the Bruhat order ofi.

The Bruhat order of/;\ W/ W, has the following two properties. First;if< j
in the Bruhat order of, thenW; X W; < WiyW;. Second, iW;xW; < W;yW;,
andx is the unique element of minimal length Wi; x W, thenx < y.

9. Replacing alcoves by general faces (for GL,)

The purpose of this section is to extend Theorem 3.5 by considering faces more
general than alcoves. We use the notation and terminology of Sect. 3.

9.1. Facesof type I

Fix a non-empty subset of Z/nZ and let/ c Z denote the inverse image of
under the canonical surjectich — Z/nZ. We consider familiesy = (v;);ey,

indexed by, of vectorsv; € Z". Such a family is called &ce of type I if it
satisfies the following three conditions:

Vien =v; + (L1, ..., D) foralli eI, (9.1.1)
v; <vjforalli, j e I suchthat < j, (9.1.2)
() — X)) =i—jforalli, jel. (9.1.3)

Of course, in casé = Z /nZ a face of typd is simply an alcove (associate to the
family v = (v;);<; the sequencey, . . ., v,—1). We denote bw our usual standard
alcove. Thuse = (w;);ez, and fori in the range O< i < n the vectow; is the one
defined in 3.2.

The groupW acts transitively on the séf; of faces of typel. As base-point
we take the unique face of typesuch thaty, = w; for all i € 1. We use this
base-point to identify the s¢f; with the coset spac® / W;, whereW; is defined
as the stabilizer iV of our base-point. Note tha¥; is contained i, and is a
parabolic subgroup of that Coxeter group.

Now suppose thal is a non-empty subset éfand letJ be the inverse image
of J underZ — Z/nZ. Then there is &/-equivariant surjection

Fr = Fi, (9.1.4)

defined by(vi),'el = (Vi)iey-
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9.2. Minuscule faces

Letv = (v;);c; be aface of typd. We say that is minuscule if
wi<vi<w+@1...,Dforalliel. (9.2.2)

We denote byM, the set of minuscule faces of tyge Note that the subse¥1;
of F; is preserved by the action of the subgrdip of W.

Proposition 9.3. Let J be a non-empty subset of 7. Then the restriction of the map
(9.1.4)to M; isasurjection M; — M;.

Proof. It is obvious thatM; maps intoM ;. What we must show is that the map
M; — My is surjective. To prove this in general it suffices to prove it in the
case inwhichl = Z/nZ. Let (vj)jes be an element iM ;. We need to complete
(vj)jes to @a minuscule alcovev;) jcz by defining suitable additional vectors
forintegersj’ inthe range (< j' < n—1with j’ ¢ J.We can do this step-by-step,
starting with an integej’ such thatj’ — 1 € J. These considerations show that the
proposition is a consequence of the following lemma.

Lemma94. Let k,[ beintegerssuch that k < [ < k +n and let v, v; € Z".
Suppose that the vectors vy — wy, v; — w; and v; — vy are minuscule and suppose
further that 3 (v;) — X (v) = [ — k. Then there exists a vector vi41 € Z" such that
Vil — @41, Vi1 — Vg @nd vj — vg41 areminuscule and X (vgy1) — Z(vg) = 1.

Proof. Recall from 3.2 the standard basis vectgysn Z". For anym € Z we let
r be the unique integer congruenttomodulor and in the range ¥ r < n, and
we definee,, to be the basis vectey.. Note that with our extended definitions of
w; ande;, the equalityw; 11 — w; = ¢;4-1 holds for alli € Z.

We are going to takey1 of the formuvi11 = vr + e, for suitablem with
1 < m < n. For any choice ofn the vectorv;,1 satisfies the conditions that
vr+1 — v be minuscule and that (viy1) — Z(vg) = 1. Itis clear that; — vg41
is minuscule if and only ifn satisfies

vi(m) — v (m) = 1. (9.4.1)

Let ¥’ be the unique integer in the range<lk’ < n that is congruent t& + 1
modulon. Thenvg,1 — wi41 is equal to(vy — wy) + e, — exr, and this vector is
minuscule (recall that; — wy is minuscule by hypothesis) if and only if one of the
following two conditions holds:

m=K. 9.4.2)
m # k" and vg(m) — wp(m) =0 andvg (k") — wp (k) = 1. (9.4.3)

Sincev; — vg is minuscule and (v;) — X (vx) = I — k, exactlyl — k of the entries

of v; — v are 1 and the remaining entries are all 0. There are two cases. In the first
casev; (k") — v (k') = 1. Thenm = k’ satisfies both (9.4.1) and (9.4.2), and we are
done.
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In the second casg (k') — vi (k') = 0. The vectors; — vy andw; — w; are
both minuscule of sizé — k, and they are distinct (since thdif-th entries are
different). Therefore we can choose an integén the range 1< m < n such that
v(m) — v (m) = 1 (in other wordsm satisfies (9.4.1)) and such that

w;(m) — wr(m) = 0. (9.4.4)

We claim thatm satisfies (9.4.3) as well; this will conclude the proof. It is
obvious thatm # k' (sincem satisfies (9.4.1) an&’ does not). Next we check
that vy (m) = wr(m). Sincev; — w; is minuscule, we have;(m) < w;(m) + 1.
But w;(m) = wi(m) (by (9.4.4)) andv;(m) = vr(m) + 1 (by (9.4.1)). Therefore
ve(m) < wi(m). Sincev, — wy IS minuscule, we also havwe,(m) < v (m).
Thereforev (m) = wi(m), as desired.

Finally we check thaty (k") — wy (k') = 1. Sincev; — w; andvy, — wy, are minus-
cule, we havew; (k") < v;(k") anduvg (k') < wr (k') + 1. Moreovery (k") = v (k')
in the case under consideration, andk’) = wi (k') + 1 (obvious). Combining
these inequalities yields; (k') — wr (k') = 1, as desired. O

9.5. Sze of aface of type 1

Letv = (v;);e; be aface of typd. Then the integer = (v;) — X (w;) remains
constant as varies through the sét, and we call this integer thesize of v.

Theorem 9.6. Letv = (vi)ies beafaceoftypel, andlet x W; bethe corresponding
element of W/ Wy.

(1) Supposethat visminuscule. Leti € 7 andput u; := v; —w;. Then u; isaminus-
cule vector, and when we regard w; as an element in the translation subgroup
of W, we have the inequalitiesx W; < w; Wy and WyxW; < Wy Wi.

(2) Let 1 be a minuscule vector in Z" and regard u as an element in the trandla-
tion subgroup of Ww. Suppose that WyxW; < WyuW;j in the Bruhat order on
W;\W/W;. Then the face v is minuscule.

(3)Let 0 < r < n. The face v is minuscule of size r if and only if there exists
a per[nutation u of w, such that W;xW; < W;uW;j in the Bruhat order on
WI\W/W;.

Proof. Firstwe prove (1). It follows from Proposition 9.3 that by changingithin
its cosetx W;, we may assume that the alcove determined lyminuscule. Then
by Corollary 3.6 the vectog; is minuscule and < p;. From 8.3 it follows that
xWp < wiWrandWixW; < Wy, Wi,

Next we prove (2). Our assumption thiagxW; < W;uW; implies (use 8.3)
thatxg < u, wherexg denotes the element of minimal length in the double coset
WixW;. Sinceu is minuscule by hypothesis, Theorem 3.5 implies that the alcove
determined by is minuscule. Therefore the face of typeorresponding tao W,
is minuscule. But lies in theW;-orbit of xoW;, andW; preserves the subsét;
of F;. Thereforev is minuscule.

Finally we note that (3) follows from (1) and (2).0
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10. Replacing alcoves by general faces (for GSp2,)

The purpose of this section is to extend Theorem 4.5 by considering faces more
general than alcoves.

10.1. G-facesof typel

Let 7 be a non-empty subset @f/2nZ, and letv = (v;);¢; be a face of typd in
the sense of 9.1. Let/ denote the set of integers such thai e 7. Then for any
d € Z we define a fac®,(v) of type —1 by ©,(v)_; = 6(v;) +d - 1. Here we
have denoted b¥ the vectorw,, = (1, 1, ..., 1, 1), andé is the automorphism of
Z2" defined in 4.1. The operations, are of order 2.

We suppose from now on thatis symmetric in the sense that = —1. Then a
G-face of type (I, d) is a facev of type I in the sense of 9.1 such that

vV =0,V). (10.1.1)

A G-faceof type I is aface of typd thatis aG-face of type(/, d) for somed € Z.
(The value off is uniquely determined by the face.) Of course, in daseZ /2nZ
a G-face of typel is simply aG-alcove (associate to = (v;);cz the sequence
Vo, ..., U2—1). Let ]—‘IG be the set of5-faces of typdl .

For any non-empty symmetric subsebf I there is an obvious map (comp.
9.1)

Fo — F¢ (10.1.2)

which is equivariant for the action of the extended affine Weyl gréupf G Spa,.
It is well-known that this map is surjective, but this will also follow from the next
lemma.

As base point for the action a¥ on }‘IG we take the uniqué&-face of typel
such that; = w; for all i € I. Using this base point we identifﬂ;‘,G with W/ W,
whereW; is the stabilizer in¥ of the base point. TheW; is a parabolic subgroup
of the affine Weyl groug¥,, of Sp2,.

10.2. Extending G-faces

Let J be a non-empty symmetric subsethf2nZ, and letJ be its inverse image
under the canonical surjecti@dh— Z/2nZ. Letk € J and suppose that+1 ¢ J.
We let/ be the smallest integer ihsuch thal > k; thusk < [ < k + 2n. Definel
byl :=JU{k+1, —(k+1)}. (Form € Z we writes for the class ofn modulo
2n.) Thus/ is symmetric, containg, and has either 1 or 2 more elements tbfan
does.

We consider the canonical map (10.1.2)

n:fIG—>.7-'§;.
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We are interested in the fiber1(v) of = over an element = (vj)jes in F;. We
associate to an elemewt= (w;);c; in 7 ~1(v) the vectorw := wy,1. Clearlyw
satisfies

e <w<uy (10.2.1)
and
Y(w) =1+ Z(vg). (10.2.2)

Lemma 10.3. The map w — w is a bijection from 7 ~1(v) to the set of vectors
w € Z?" satisfying (10.2.1)and (10.2.2)

Proof. The injectivity of our map is immediate from (9.1.1) and (10.1.1). To prove
surjectivity we start withw € Z2" satisfying (10.2.1) and (10.2.2), and we must
construcw € 7 ~1(v) such thaw > w.

LetP = JU{k+1}andletQ = —P,sothatl = PUQ andP = —Q. Since
P, Q are not symmetric unlesf® = Q, it does not make sense to considefaces
of type P or Q, but it does make sense to consider faces of ®p# Q, and it is
clear that there exists a unique facef type P such thaty,11 = w andx; = v;
forall j € J.

Letd be the unique integer such th@ay (v) = v. Define a face of type Q by
y = 04(x). Clearlyy; = v; forall j € J.

We claim that

PEP, qeQ, p=<q = xp <y, (10.3.1)

This is clear if there existg € J such thatp < j < ¢, so we now assume the
contrary. By (9.1.1) itis harmless to assume fhat k+1, and then itis necessarily
the case thag = I — 1 andk = —/. By (10.2.1) and (10.2.2) there exists a basis
vectore,, such that, = w = v + e, ande,, < v; — vi. Sincek = —1, the vector
v — vy is symmetric under the operation of reversing its entries, and therefore
em + e < v; — vg, Wheree,, is the unique basis vector such thgt = —0(e;,).
Sincey,; = vy41 — e,y, We conclude that, < y,, as desired.

We also claim that

pepvqusq<p:>quxp. (1032)

This is clear since there always exigt€ J such thaly < j < p. (Eitherj = p
or j = p—1willdo.)

Supposethat € P,q € Q andp = g. Thenx, <y, from (10.3.1). Moreover
the size ofx and the size o are both equal to the size of Thereforex, = y,.
Thus, without ambiguity, we may define for i € I by puttingw; = x; if i € P
andw; = y; if i € Q. Itisimmediate from (10.3.1) and (10.3.2) that= (w;);c;s
is aG-face. By constructiow € 7 ~1(v) andw > w. O
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10.4. Size of a G-face of type (I, d)

Letv = (v;);e; be aG-face of type(1, d). Then thesize of v is defined to be its
size considered as a face fGL.,,, see 9.5. Using (10.1.1) one sees easily that the
size ofv is nd.

10.5. Minuscule G-faces

Letv = (v;);e; be aG-face of type(l, d). Thenv is calledminuscule if it is
minuscule in the sense of 9.2, i.e. when considered as a face of tigwes Lo,.
We denote by\4§7 the set of minuscul€&-faces of typd . Suppose is minuscule.
Then the vectorg is minuscule, and using (10.1.1) we see tthat {0, 1, 2}. If

d = 0, thenv has size 0; therefore for allthe vector; — w; is minuscule and the
sum of its entries is 0, which implies that= (w;);c;. If d = 2, thenv has size
2n, which is the same as the sizewf+ 1; therefore for alk the vectorw; +1—v;

is minuscule and the sum of its entries is 0, which implies that (w; + 1);¢;.
Therefored = 1 for all minusculeG-faces other than the two we just described.

Proposition 10.6. Let J < I be a non-empty symmetric subset of /. Then the
natural map

ME — MG
issurjective.

Proof. Itis enough to prove this in case= Z /2nZ. EnlargingJ one step atatime,
we then reduce to the case in whi¢hc I are as in 10.2. Now let = (vj)jes be
the minusculeG-face of typeJ that we wish to extend to a minusculeface of
type . From 10.5 it follows thav is of type(/, d) for d € {0, 1, 2} and also that
our extension problem is trivial # = 0 ord = 2. So we now assume that= 1.

From Lemmas 9.4 and 10.3 it follows that there i€ dacew of type I such
thatw — v and such thai1 := w11 — w1 IS Minuscule. We claim that is in
fact minuscule. By (9.1.1) it is enough to show that:= w_ 1) — o—+1) iS
minuscule. Since thé-value forwis 1 and that fow is 0, we see thaty = 1—r(u1),
wherer(u1) is the vector obtained from1 by reversing the order of its entries.
Thereforeus is indeed minuscule (sinag is). O

Theorem 10.7. Let v = (v;);c; bea G-face of type I and of sizen. Let x - W; be
the corresponding element of W/ W;. Thenv isminusculeif and only if there exists
an element = of theWeyl group W,, of Spy,, suchthat W;xW; < W;t(w,)W; inthe
Bruhat order on Wy \ W/WI, whereasusual w,, isthevector (1,...,1,0,...,0).

Proof. Suppose that is minuscule. Then it follows from Proposition 10.6 that by
changingx within its cosetr - W; we may assume thatis minuscule of size. It
follows from Theorem 4.5 that < t(w,) for somer € W,. From 8.3 it follows
thatx - W; < t(w,)W; andW;xW; < Wyt(w,)W;. Conversely assume this last
condition. Thenxg < t(w,) Wherexg denotes the element of minimal length in
W;xW;. By Theorem 4.5 is minuscule of siza and therefore th&-face of type

I corresponding tagW; is also minuscule. But lies in theW;-orbit of xoW; and
W; preserves the subsMIG of ]—“IG. Hencev is minuscule, of siza. O
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11. Admissibility implies per missibility
11.1. Notation

As in 1.8 we consider a general extended affine Weyl gidups in the introduc-
tion we abbreviateX . (A) to X and we denote by the canonical homomorphism
(1.8.1) fromW to X.(A)/ X (Aso). When we regare € X as an element of the
translation subgroup ¥ we denote it by, ; thus?y, 41, = fy,fr,.

11.2. Goal

Let x € X. Our goal is prove that ik € W is u-admissible, then it is alsp-
permissible. (These terms were defined in the introduction.)

Letv € X.Itisimmediate from the definition thatis w-permissible if and only
if v lies in P, (= the convex hull of théV-orbit of . in Xr) andv — u € X..(Aso).
In particulart,’ is u-permissible for every” in the W-orbit of  in X. Therefore, in
order to check that-admissibility impliesu-permissibility, we just need to prove
the following lemma.

Lemma11.3. If x € W isu-permissibleand y < x inthe Bruhat order on W, then
y is u-permissible.

Proof. By an obvious induction argument it is enough to prove the lemma in the
special case in which = sz x for an affine rootx which separatesa from a. (As

in the introductiora is the base alcove iRr.) Clearlyc(y) = c¢(x) = c(t,), so all

we must show is that for anyin the closurea of a, the pointszgxv — v liesin P,,.
Sincex is p-permissible, the pointv — v lies in P,. MoreoverP, is W-stable,

and hencey (xv — v) lies in P, wherea denotes the vector part of the affine root
a. Therefore (by convexity oP,) it is enough to check thagxv — v lies on the

line segment joiningcv — v ands (xv — v). This follows from the next lemma.

]

Lemma11.4. Let x € W and let @ be an affine root, with vector part «. Then &
separates xa and a if and only if for all v € a the point sgxv — v lieson theline
segment joining xv — v and sy (xv — v).

Proof. Letv € a. Note that

sgxv —v = (xv —v) —a(xv)a”
Sq(xv —v) = (xv —v) — [@(xv) —a()]a".
Therefore bothszxv — v ands, (xv — v) lie on the line throughcv — v in the

directiona¥. Moreoverszxv — v lies between the other two points= 0 lies
betweenx(xv) anda(v) < & (weakly) separatesv andv. 0O
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12. w,-permissibility for GSp2,

The introduction stated that-admissibility is equivalent ta.-permissibility for
any minuscule coweight for G = GSp»,. This is obvious ifu = 0, and is true
for w if and only if it is true foru + 1. Thus it suffices to consider the case= w;,.
In view of Theorem 4.5(3) we just need to check that an elemeénthe affine Weyl
groupW for G isw,-permissible if and only if the associatédalcovev = (v;);cz
is minuscule of size. (As usual; = x - w;.)

12.1. The convex hull P,

For any vector € R?* we define-(u) to be the vector obtained fromby reversing
the order of its entries:(u1, ..., uz,) = (uz,, ..., u1). It is easy to see that the
convex hullP,,, is given by

P,, ={u e R? :u+r()=21and0<u < 1}.

Note thatX (u) = n for anyu € P,,,.

12.2. The base alcove

For G the closurea of the base alcova is the set of points € R?* such that
Ui+ Uy, =u2+u2n_1=~-~=un+un+1and

l4up, >ur>up >+ >up > py1.

Putn; := (w; + w2,—;)/2; note thatZ (n;) = n. The points)g, 11, ..., n, Serve as
“vertices” for &; in other words each face afof minimal dimension (namely 1)
contains a unique poinf;.

12.3. w,-permissibility
Our elemenk € W (with associated;-alcovev) is w,-permissible if and only if
yi€ P, VielZ, (12.3.2)

where
yi =xn; —n; = (U + vou—i — i —wa—i)/2.

(SinceX..(A)/ X.(Asc) is torsion free folG = G Sp2,, the conditiorc(x) = ¢(1,,)
is redundant.)

Lemma 12.4. The element x € W is w,-permissible if and only if the associated
G-alcovev isminuscule of sizen.
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Proof. The alcovev is minuscule of size if and only if
vi+r(vy_)=2-1 VieZ (12.4.2)
and
O<vi—w; <1 Viel (12.4.2)
On the other hand the condition (12.3.1) fg/-permissibility holds if and only if
vi+r(yi))=1 VieZ (12.4.3)
and
O0<y; <1 VielZ (12.4.4)
Note that (12.4.1) is equivalent to (12.4.3). Indeed, there ekistZ such that
v; +7r(v2,—;) = k-1, anditis clear thag; +r(y;) = (k—1)-1. We now assume that
(12.4.1) and (12.4.3) hold, and we show that under this assumption (12.4.2) and
(12.4.4) are equivalent. First note that (12.4.4) follows immediately from (12.4.2)
(by using (12.4.2) for bothand 2. — i).
It remains to show that (12.4.4) implies (12.4.2). Using (12.4.1) together with
(12.4.4), we see that
“1<( —w)—rvi—w)=<1l (12.4.5)

It is enough to prove (12.4.2) for allsuch that 0< i < n. We now fixi in this
range. Then we have_; < v; < vy,—;, which (using (12.4.1)) can be rewritten as

1<v+r)=<2-1 (12.4.6)

Fix m with 1 < m < n. Puta := v;(m) — w;(m) andb := r(v;)(m) — r(w;)(m).
Then (12.4.5) implies

—1l<a-b<1 (12.4.7)
while (12.4.6) implies
1<a+b+wi(m)+r(w)im) <2 (12.4.8)
Sincew; (m) is 0 or 1 and-(w;) (m) is 0, the inequalities (12.4.7) and (12.4.8) imply

that botha andb belong to{0, 1}; since this is true for all: between 1 and, we
seethat < v; — w; < 1, as desired. O
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