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Introduction

Let E be a p-adic field and let Q% be the complement of all E-rational hy-
perplanes in the projective space P4~1. This is a rigid-analytic space over
E equipped with an action of GL4(E). Drinfeld [Dr 2] has constructed a
system of unramified coverings Q% of Q% to which the action of GL4(E) is
lifted. These covering spaces are interesting for at least two reasons. Firstly,
these spaces can be used to p-adically uniformize the rigid-analytic spaces
corresponding to Shimura varieties associated to certain unitary groups.
This uniformization looks formally very similar to the complex uniformiza-
tion by the open unit ball which gives rise to these Shimura varieties. Sec-
ondly, Drinfeld conjectured that the £-adic cohomology groups with compact
supports H, ;(Qg ®r E,Q4), £ # p, give a realization of all supercuspidal
representations of GL4(E) which would give a construction of these repre-
sentations analogous to the construction of the discrete series representa-
tions of semi-simple Lie groups through L2-cohomology (Griffiths, Schmid,
Langlands, ...).

In the present work we generalize Drinfeld’s construction to other p-adic
groups. This construction is based on the moduli theory of p-divisible
groups of a fixed isogeny type. The moduli spaces obtained in this way
are formal schemes over the ring of integers Op whose generic fibres yield
rigid-analytic spaces generalizing Q%. The covering spaces are then ob-
tained by trivializing the Tate modules of the universal p-divisible groups
over these formal schemes. Furthermore, we show how these spaces may be
used to uniformize (an open part of |, see below) the rigid-analytic spaces
associated to general Shimura varieties. We will also exhibit a rigid-analytic
period map from the covering spaces to one of the p-adic symmetric spaces
associated to the p-adic group.

vii



viii INTRODUCTION

Before describing in some more detail our main results we sketch the back-
ground of the problems considered here and our motivation. The subject
of p-adic uniformization starts with the paper of Mumford [M2] which was
inspired by Tate’s work on the uniformization of elliptic curves with mul-
tiplicative reduction over a discretely valued field. In this paper Mumford
introduced the one-dimensional formal scheme Q2E and showed that an al-
gebraic curve with completely split reduction over Spec O is uniformized
by a suitable subset of Q2. Cherednik [Ch] discovered that Shimura curves
associated to quaternion algebras which ramify at the prime p admit a p-
adic uniformization in the sense of Mumford by the whole of Q%. Drinfeld
[Dr2] subsequently gave an algebro-geometric proof using the moduli the-
ory of p-divisible groups. In his paper Drinfeld formulates for any d > 2
a moduli problem of p-divisible groups and shows that it is representable
by the formal scheme Qf;, a higher-dimensional analogue of Mumford’s for-
mal scheme which had been introduced by Deligne and Mustafin [Mu]. For
higher-dimensional Shimura varieties a p-adic uniformization by Q% is pos-
sible only in rare cases, comp. theorem IV below (comp. (6.50), cf. also
[R1]). For instance, the naive hope that if the group giving rise to the
Shimura variety is anisotropic at the place p one should have uniformiza-
tion at the places of the Shimura field lying above p turns out to be quite
false, as was first observed by Langlands [La]. Indeed, the special fibre of
the Shimura variety usually is not totally degenerate, comp. [Z1], [R1].
A closely related observation is that there may be infinitely many isogeny
classes in the special fibre. This explains why our theorem 111 below which
applies to a general Shimura variety exhibits a uniformization only of the
tubular neighbourhood of a fixed isogeny class.

Another moftivation for us was Drinfeld’s conjecture on the f-adic ccho-
mology groups of S:l}’g This conjecture was made more precise by Carayol
[Ca). His version also involves an action of the multiplicative group of
the division algebra D with center E and invariant 1/d on the covering
space ﬁ% It roughly states that the resulting action of the triple prod-
uct Wg x D* x GL4(E), where Wg denotes the Weil group of E, is a
Langlands correspondence. There recently has been a flurry of activity con-
cerning this conjecture (we mention the work of H. Carayol, of G, Faltings,
of A. Genestier and of M. Harris). Carayol [Ca] also pointed out that a sim-
ilar conjecture can be made in the case where the Drinfeld moduli problem
is replaced by the formal deformation problem of Lubin and Tate. Shortly
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after Kottwitz formulated a very elegant recipe for such correspondences
for arbitrary reductive p-adic groups, cf. [R2], §5. From this point of view
our construction of the covering spaces yields the rigid-analytic spaces for
which his recipe should describe their £-adic cohomology. The conjecture of
Kottwitz is the analogue in this purely local context of the global problem
of determining the reciprocity laws describing the correspondence between
automorphic representations and £-adic representations of Galois groups of
number fields defined by Shimura varieties [Ko2].

The third motivation for us was to elucidate in this context the role of
p-adic period morphisms. This subject starts with Dwork’s investigation
(comp. [Kal]) of the formal deformation space of an ordinary elliptic curve
(comp. also [Ka 3], [PI]). His period morphism = maps the open unit disc
D to the affine line A! and is given by the famous formula 7*(7) = log ¢
where ¢ = T + 1 in terms of the coordinates 7 on Al resp. T on D. It de-
scribes the variation of the Hodge filtration of the deformed elliptic curve.
Grothendieck [Gr2] introduced a new point of view through his rigidity the-
orem for p-divisible groups up to isogeny. The rigid-analytic point of view
(which was present in Dwork’s original work) was re-introduced by Gross
and Hopkins [HG2] when they defined a period mapping in the case of the
formal deformation space of a supersingular elliptic curve. Their period
morphism maps the open unit disc to the projective line. Although it can-
not be expressed in terms of elementary functions, a great deal is known
about it, comp. [HG2], [Yu]. In the general case the period morphism maps
one of our covering spaces to a Grassmann variety and describes the varia-
tion of the Hodge filtration induced by the universal p-divisible group. Our
construction of it is closest in spirit to Grothendieck’s approach. In addi-
tion, the question of determining the image of a period morphism touches
on one of the fundamental open problems in the domain of p-adic cohomol-
ogy, namely the conjectures of Fontaine [Fo2]. They constitute the p-adic
analogue of Riemann’s theorem characterizing the classical periods coming
from abelian varieties. Assuming his conjectures to hold it turns out that
the image is a p-adic symmetric space, either in the more elementary sense
as defined by Fontaine’s condition, or as defined by van der Put and Voskuil
[PV] through geometric invariant theory (they are identical, as proved by
Totaro).

We will now give an overview of our main results. We will first describe the
moduli problems of p-divisible groups and the representability theorem which
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yields the formal schemes generalizing Q% above. Next we will describe the
covering spaces and the rigid-analytic period morphism. Finally we shall
explain our non-archimedean uniformization theorems for Shimura varieties.

To formulate our representability theorem we introduce some notations. We
fix a prime number p. If O is a complete discrete valuation ring of unequal
characteristic (0, p} we denote by Nilpo the category of locally noetherian
schemes S over Spec O such that the ideal sheaf p - Og is locally nilpotent.
We denote by S the closed subscheme defined by p-Og. A locally noetherian
formal scheme over Spf O will be identified with the set—valued functor on
Nilpo it defines. A morphism X' — Y of formal schemes is called locally
formally of finite type if the induced morphism Xpeqg — Vreq between their
underlying reduced schemes of definition is locally of finite type.

In what follows we call a quasi-isogeny between p—divisible groups X and Y
over a scheme S € Nilpz, an isogeny multiplied by a power of 1/p.

The moduli problems of p—divisible groups which we want to consider are
of two types. The type (EL) will parametrize p-divisible groups with
endomorphisms and with level structures within a fixed isogeny class. The
type (PEL) will parametrize p—divisible groups with polarizations, endomor-
phisms and level structures within a fixed isogeny class. The moduli prob-
lems depend on certain rational and iniegral data which we now formulate
in both cases in a simplified form where the level structures are absent. Let
L be an algebrajcally closed field of characteristic p and let W(L) be its ring
of Witt vectors. Let Ko = Ko(L) = W(L) ®z Q and let o be the Frobenius
automorphism of Kj.

Case (EL): The rational data consists of a 4-tuple (B,V,b, 1), where B
is a finite-dimensional semi-simple algebra over Q, and V a finite left
B-module. Let G = GLp(V) (algebraic group over Q,). Then b is an
element of G(Kp). The final datum p is a homomorphism G,, — Gg
defined over a finite extension K of Ko. Let V @q, K = Vi be the
corresponding eigenspace decomposition and VI = EBizj V; the associ-
ated decreasing filtration. We require that the filtered isocrystal over K,
(Veq, Ko, b(id®a), Vi), is the filtered isocrystal associated to a p-divisible
group over SpecOg ([Grl], [Fol], [Me]). The integral data consists of a
maximal order Op in B and an Op-lattice A in V.

Case (PEL): In this case we assume p # 2. The rational data are given by a
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6-tuple (B,*,V, (, ),b,p). Here B and V are as before. Furthermore, B is
endowed with an anti-involution * and V is endowed with a non—degenerate
alternating bilinear form (, ) : V ®q, V — Q, such that

(dv,?') = (v,d*v"), de B.

The remaining data are as before relative to the algebraic group G over Q,
whose values in a Qp-algebra R are

G(R)={9 € GLp(V ®R); (gv,9v") =c(g)(v,v'), c(g) € R*}.

We require that the rational data define the filtered isocrystal associated to
a p—divisible group over Spec Ox endowed with a polarization (= symmetric
isogeny to its dual). The integral data are as before. We assume that Op is
stable under % and that A is self-dual with respect to the alternating form

()

In either case let E be the field of definition of the conjugacy class of g, a
finite extension of QQ, contained in K. Let E = B.K,, with ring of integers
Ojp. The representability theorem in rough outline may then be formulated
as follows (3.25).

Theorem I We fiz data of type (EL) or (PEL). Let X be a p-divisible
group with action of Op over Spec L with associated isocrystal isomorphic
to (V®q, Ko,b(id ® 0)). In the case (PEL) we endow X with a Op-
polarz'zatign defined by the alternating form on V ®q, Ko. We consider the
Junctor M on Nilpo, which associates to S the set of isomorphism classes
of the following data.

1.) A p-divisible group X over S with Op-action.
2.) An Op—quasi-isogeny 0 : X X specL S —XxgS.

These data are required to satisfy the following conditions.

(i} We have deto,(d; LieX) = detx(d; VR /V}) as polynominal functions
in d € B (Kottwitz condition [Ko3]).

(ii) Let M(X) be the Lie algebra of the universal extension of X. Then
locally on S there is an Op-isomorphism M(X) ~ A ®z Os.

(iti) In the case (PEL) there ezists an isomorphism p : X — XV into the
dual p-divisible group such that fopo g : X XspecL S - X X SpecL S
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differs from the quasi—isogeny induced by the fized Og—polarization on X by
a constant in Q.
The functor./\;i is representable by a formal scheme locally formally of finite
type over Spf Op.

This representability theorem is more general than Drinfeld’s but it is also
less precise in that it does not identify the formal scheme M. In fact we
know very little about M in the most general case, not even about its local
structure. For instance, we do not know if M is flat over Spf O #, although
this has been proved in numerous special cases (JCN1], [CN2], [DP], [dJ1],
[R1], [St], [Z1]). We reduce here this conjecture to the corresponding state-
ment on the local model of our moduli problem ((3.26)). Namely, we define
an explicit closed subscheme M*° of a finite product of Grassmannian vari-
eties over Spec O such that M is locally for the étale topology isomorphic
to the completion of M*¢ along a closed subscheme (this generalizes and
makes more precise a concept introduced in [R1], cf. also [dJ1], [DP]). We
hope that the conjecture is of interest in commutative algebra.

The above representability theorem is reduced by standard techniques to
the universal case. In the proof of the universal case we have to allow the
field L appearing above to be an arbitrary perfect field of characteristic
p. A p-divisible group over L is called decent ((2.13.)) if the Ko—vector
space underlying its isocrystal (N, F) is generated by elements n satisfying
an equation F*n = p"n for some integers r and s > 0. If L is algebraically
closed any p-divisible group is decent. The definition of decency is implicit
in Kottwitz [Kol], comp. (1.8). Using this concept the representability
theorem in the universal case may be formulated as follows (2.16).

Theorem I Let X be a decent p—divisible group over Spec L. We consider
the functor on Nilpw (1) which associates to S € Nilpw(r) the set of iso-
morphism classes of pairs (X, g) consisting of a p—divisible group X over S
and a quasi-isogeny ¢ : X X SpecL 5 — X %58 of p-divisible groups over S.
This functor is representable by a formal scheme locally formally of finite
type over Spf W(L).

Just as in Drinfeld’s case, the moduli problem appearing here is not of
the type usually considered in algebraic geometry, hence we cannot directly
apply standard methods. We ultimately use a finiteness theorem in the
Bruhat-Tits building of GL,, (2.18) which seems interesting in its own right.
Before turning to the next circle of ideas we mention that the formal scheme
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M associated to the moduli problem of type (EL) or (PEL) comes with ad-
ditional structure. To the pair (G, b) there is associated (1.12) the algebraic
group J over Qp with points in a Q,-algebra R

J(R) = {g € G(R®q, Ko); o(g) =b""gb}.

The group J(Q,) of quasi-isogenies of X acts on the left of M, via

9-(X,0)=(X,g097).

The formal scheme M can be broken up into a disjoint sum of open and
closed formal subschemes as follows. Let A be the abelian group dual to
the group of Qp-rational characters of G. The group J(Q,) acts on A by
translations. There is a canonical J(Qp)-equivariant map s : M = A
(3.52). In essence, the morphism 2 associates to an S—valued point (X, g)
of M the height of g. It is not clear to us under which conditions the fibres
of s¢ are connected. (A similar question may be asked in the rigid-analytic
context, cf. below). We also remark that the formal scheme M depends
only on the equivalence class (3.18) of the data of type (EL) or (PEL). We
finally mention that Mis equipped with a natural Weil descent datum from
Spf Og to Spf Og (3.48), i.e. an isomorphism

o M — M.

Here 7 € Gal(¥/E) is the relative Frobenius automorphism. Although this
descent datum is not effective, it becomes effective after suitably complet-
ing M: a suitable completion of M can be written in a canonical way as
M Xspso0n Spf Oy for a pro-formal scheme M over Spf O (3.51). This
will be used in the uniformization theorems below.

We next turn to the rigid~analytic aspects of the situation. We continue
with the formal scheme M associated to our moduli problem of [ type (EL) or
(PEL). Let M7 be its associated rigid—analytic space over E (its generic
fibre). Tt should be pointed out that, contrary to what happens in Drinfeld’s

case, the formal scheme M may not be p-adic, i.e. p©O o may not be an
ideal of definition. (Indeed, we believe that Drinfeld’s moduli problem and
trivial variants of it are the only ones yielding a p—adic formal scheme but
we were unable to prove something along these lines.) Therefore Raynaud’s
construction of the associated rigid space no longer applies. That M should
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our paper, it may be said that the system of ézale coverings of M9 bears
many resemblances to the tower of varieties over a number field defined
in the theory of Shimura varieties, and this analogy seems to go quite far
(comp. [R2]). In fact, we conjecture ((1.37), cf. also (5.53)) that there is a
rigid-analytic space (F“*) mapping in an étale and bijective way to F**,
and a local system in Qp—vector spaces over (F*?)' with typical fibre V
such that M x Is the space of level structures of level K of this local system.
It was pointed out by de Jong that (F“*) may not be isomorphic to F**

We finally turn to the description of the non—archimedean uniformization
theorems for Shimura varieties. We slightly change our notations. Let
B be a finite-dimensional algebra over Q equipped with a positive anti-
involution #. Let V be a finite B—module with a non-degenerate alternating
bilinear form ( , ) with values in Q satisfying the identity appearing in the
description of the case PEL above. We define the algebraic group G over
Q in complete analogy with the case (PEL). Let h : Resc/r Gm — Gr be
such that (G, h) satisfies the axioms of Deligne defining a Shimura variety
over the Shimura field E C C. We fix an order Op of B such that Op®Z,
is a maximal order of B @q Q, stable under *, and a self-dual Op ®z Zp—
lftttice Ain V ®q Qp. We fix an open compact subgroup C? C G(A?). Let
Q be the field of algebraic numbers in C and fix an embedding v : Q — Q,.
We denote by the same symbol the corresponding place of E above p and
let E, the completion of E in v. '

These data define a moduli problem of PEL-type parametrizing triples
(A, X, 7) consisting of a Op—abelian variety, a Q-homogeneous principal
Op—polarization and a CP-level structure and which is representable by a
quasi-projective scheme Ac» over Spec Og, (cf. §6 for details). Let Cp be
the fix group of A in G(Q,) and C = C?.C,. The Shimura variety Sh(G, h)c
is contained as an open and closed subscheme in the generic fibre of A¢».
We take for L the algebraic closure of the residue field of Og,. We fix a
point (Ag, Ao, 715) of Acz(L). Let Ny be the isocrystal associated to Ag. We
fix an isomorphism Np @ V ®q, Ko which respects the actions of B® Ky
and the alternating bilinear forms on both sides. This allows us to write
the Frobenius operator on Ng as b(id ® o), with b € G(Kp). Let M be the
(pro-) formal scheme over Spf Op, associated to the data of type (PEL),
(B®Q,,*,VOQyp, (, ), b, 1,007y, A). It is acted on by the group J(Q,).
Here p1 denotes a 1-parameter subgroup of G defined over a fintie extension
K of Ky in the conjugacy class defined by h. The methods employed to
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relate M and the local model M*¢ may be used to show that locally for
the étale topology Ac» is isomorphic to M%¢. The formulation of one
uniformization theorem is as follows (6.30).

‘Theorem ITI Assume that (Ag, Ao, 75) is basic, i.e. the corresponding ele-
ment b € G(Ky) ts basic [Kol]. Then

(i) The set of points (A, X, #P) of Ace(L) such that (A,]}) is isogenous to
(Ao, Ao) is a closed subset Z of Acs.

(ii) Let Acsyz denote the formal completion of Ac» along Z. There is an
isomorphism of formal schemes over Spf Og,,

1(Q)\ M x G(A})/CP] = Acsyz.

Here I is an inner form of G such that I(Q) is the group of quasi—isogenies
of (Ao, Xo), which acts diagonally through suitable natural embeddings of
groups,

Q) — J(Qp), 1(Q) — G(A).

The source of this tsomorphism is a fintte disjoint sum of formal schemes of
the form T\ M, where I' C J(Q,) is a discrete subgroup which is cocompact
modulo center,

Heuristically, Z should be thought of as an isogeny class in A¢»(L) which
is the most supersingular. In the Siegel case (principally polarized abelian
varieties with level structure prime to p) the subscheme Z is the supersin-
gular locus. It may be conjectured that such isogeny classes always exist
in the special fibre. The above uniformization theorem for formal schemes
implies a corresponding rigid—-analytic uniformization theorem, cf. (6.36).
This represents an admissible open subset of the rigid—analytic variety over
E, associated to the Shimura variety Sh(G, k)¢ (the tubular neighbour-
hood of Z) as the finite disjoint sum of quotients of M7 resp. of one of its
coverings, by a discrete subgroup of a p-adic group. In this rigid-analytic
version the open compact subgroup C C G(Ay) is completely arbitrary.

We prove in fact a uniformization theorem even for non—basic isogeny classes
but since these do not form in general a closed subset the formulation is more
technical. Indeed, we prove this more general but somewhat formal version
first (6.24) and then deduce the above theorem from it. In the deduction we
use the fact that Tate’s theorem on endomorphism of abelian varieties over
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a finite field becomes extremely simple in the basic case, as well as results of
Katz [Ka2] on the constancy of isocrystals over a complete discrete valuation
ring (these are also behind the results of [RR] which are used here as well).
In general the set of points in a basic isogeny class makes up only a small
part of the special fibre of a Shimura variety. (This supports the earlier
statement that most often the formal schemes M described above are not
p—adic). There are, however, examples of Shimura varieties where the points
in the special fibre form one basic isogeny class in which case we obtain
a p—adic uniformization theorem (6.50). As explained above we believe
that it is not simply coincidental that the uniformizing formal scheme is in
these cases one of Deligne’s formal schemes (or products of them). We
content ourselves with stating the following special case of such a p-adic
uniformization theorem which generalizes a result in [R1].

Theorem YV In the above notation we assume that B is a division algebra
over Q and that the involution % is of the second kind, i.e. induces a non-
trivial automorphism of its center K. We further assume that the B—module
V is of rank 1. Let F' denote the field of invariants under = in K. We assume
that there is precisely one prime ideal p above p in F and thatp = q-q
splits in K. We assume that

invgB = 1/d

invgB —1/d.

il

Let ® C Hom(K, Q) be the uniqgue CM —type of K such that v o ¢ defines
the place g of K for all ¢ € ®. For any p € ® there is an isomorphism

B VK p C Md(C)

such that the tensor product of x with compler conjugation becomes the in-
volution X v *'X. We mey write V ®k,, C = C¢ ® C? in such a way that
the action of Ma(C) s via the first factor and such that

(Zl Wi, Z2® Wz) = TIC/R(tZ1Z2 . Wl . H«,Wz)

and where

H, = diag (—V/—1,...,—V=1; vV=1,...,V/=1).
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Letry be the number of places where —/~1 appears in H,. Let J, : V®x o
C — V®k,, C be the endomorphism given by idge®H,,, andlet J =P J, :
VR — V @R. The homomorphism h : Resc/r Gm ~— Gr defining the
Shimura variety Sh(G, h) is defined by the condition that h(r) for r € R
acts on Vr by multiplication by r and h(v/=1) acts as J.

We fiz an element « € ® and assume that

Te =
= 0, ped\{a}

Let C, C G(Qp) be the unique mazimal compact subgroup and let CP C
G(A’}) be a sufficiently small open compact subgroup and put C' = C?.Cj,.
Then there is a model She of the Shimure variety of level C over Op,
which is open and closed in Acr and there is an equivariant isomorphism
of p~adic formal schemes

Ty

I{(Q)\ (Q%,, Xspt O, SPF OE',,) x G(Ay)/C =~ Sh¢ xsps 0, Spf Op, .

Here Sh). denotes the completion of She along its special fibre. Furthermore
I(Q) is the group of Q-rational poinis of an inner form of G such that
Q) = {(a,b) € GLa(Fp) x GLyg(Fp)*?; ab € Qp} and with I(A}) ~
G(A’}). We used o to identify Fyy, with E,. The natural descent datum on
the right hand side induces on the left hand side the natural descent datum
on the first factor multiplied with the action of

(-1
g= (I, p/ ) € B} x BP*

on G(A;)/C. Here Il is a uniformizing element of Dqy and f is the index
of inertia of Fy.

The rigid —analytic version of this theorem represents the Shimura variety
Shc as a finite disjoint sum of quotients of one of Drinfeld’s covering spaces
of QdE, by a discrete cocompact subgroup of I(Q,). The rigid-analytic
version is also considered in [V].

This concludes our brief description of the subject matter of this paper.
We refer to the report [R2] for further remarks on general p-adic period
domains and their cohomology.

We now describe briefly the contents of the various chapters. Section 1
besides defining the p-adic symmmetric spaces assembles various facts about
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(filtered) isocrystals. We point out in particular our conjecture (1.20) on
the Fontaine functor which we prove in a special case by an extension of
an argument of Kottwitz. We also mention that the present formulation
of the Harder—Narasimhan filtration in this context is due to Faltings and
is an improvement on our first version. This chapter also contains various
examples which are considered again in later parts of the manuscript from
other points of view. These various examples are (in our opinion) fun but
they also form the backbones of the theory. Section 2 is devoted to the
proof of the representability theorem in the absolute case. In chapter 3
we formulate the moduli problems and prove their representability. We
also construct the local models M'°® mentioned above. In the appendix
to chapter 3 we prove the existence of normal forms for polarized chains
of lattices over a general base scheme. This existence theorem is more or
less standard when the base is a complete discrete valuation ring (Bruhat-
Tits theory) but we were unable to find it in this form in the literature.
In chapter 4 which may be omitted at a first reading we define the Hecke
correspondences on the formal schemes of chapter 3. In chapter 5 we treat
the rigid—analytic aspects of the situation and in chapter 6 we prove the
uniformization theorems for Shimura varieties.
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Period Spaces for p-divisible Groups



1. p—adic symmetric
domains

The aim of this chapter is to introduce the p—adic symmetric domains and
to discuss the conjectural local systems on them. In chapter 5 we will show
that in many cases the p—adic symmetric domains are the conjecturel image
of the period morphism. In addition, we introduce the concept of a decent
wsocrystal, cf. (1.8).

1.1 We first recall some concepts of o—linear algebra. Let L be a perfect field
of characteristic p. Let W (L) be its ring of Witt vector and K = Ko(L) =
W(L)q its fraction field. We denote by o the Frobenius automorphism. An
1socrystal over L is a finite-dimensional Kg—vector space V equipped with a
bijective o-linear endomorphism @. The dimension of V is called the height
of the isocrystal. The isocrystals over L form in an obvious way a Q-~linear
category. Let L be algebraically closed. Then the category of isocrystals
over L is a noetherian, artinian semi~simple abelian category. Its simple
objects are parametrized by the elements of Q. To A€ Q, A = r/s,(r,s) =
1,5 > 0 (r,s € Z) there corresponds the simple object

0 1
E» = (Kg, 1]
" 0

and Dy = End(E,) is a division algebra with center Q, and invariant —A.
If (V,®) is an isocrystal we will write

V=W

3
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for its isotypical or slope decomposition.

Over an arbitrary perfect field L, the category of isocrystals is no longer
semi-simple, but the isotypical decomposition continunes to hold, compatible
with base change L — L, [22]. An isocrystal (V,®) over L is isotypical iff
there are integers r, s with s > 0 and a W(L)-lattice M in V such that

(M) =p" M.

There is an obvious variant of these concepts where instead of a o—linear
endomorphism one considers a ¢”—linear endomorphism, for r # 0 fixed.

1.2 Let L be a perfect field of characteristic p. Let Ky = Ko(L) and let K
be a finite extension of Ky. A filtered isocrystal over K (Fontaine uses the
name "filtered module” [Fo2] - neither terminology is very good, ours not
since these are not filiered objects in the category of isocrystals) is given
by an isocrystal (V,®) over L and a decreasing filtration F* on the K-
vector space V @, K such that 77 = (0) and F* = V ®g, K for suitable
r,s € Z. The filtered isocrystals over K form a Q-linear category with ®
and internal Hom. It is an exact category, but not an abelian category. An
admissible monomorphism (V, ®, F*), also called a subobject, is given by a
subvector space V’ which is ®-stable, for which V' ®xk, K is equipped with
the induced filtration.

1.3 A filtered isocrystal (V, ®, F*) over K is called weakly admissible {[Fo2],
§4) if for every subobject (V/, &', F'*) we have

) i dimgri (V! ®k, K) < ordydet(d’)

and if for (V/,®,F'*) = (V,®,F*) we have equality in this relation. Tt
is known that the full subcategory of weakly admissible filtered isocrystals
over K is an abelian category which is closed under extensions and under
passage to the dual object. A theorem of Faltings ([Fal], comp. also [T]),
proving a conjecture of Fontaine [Fo2], 5.2.6, states that it is closed under
®. If K C K', the obvious base change functor from the category of filtered
isocrystals over K into the category of filtered isocrystals over K/ preserves
the corresponding subcategories of weakly admissible objects. We shall
need to analyze how a filtered isocrystal can fail to be weakly admissible,
by introducing the analogue of the Harder-Narasimhan filtration.
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Let (V,®,F*) #0 be a filtered isocrystal over K. We define its H N—slope

_ Yoi-dimgri(V @k, K) — ord,det(d)
- dimV

w(V) = u(V, @, F*)

In.analogy with Mumford’s definition for vector bundles over a curve we
call (V, ®, F*) semi-stable if for every subobject (V',®', F'*) # (0) we have

p(V') < p(V).

Therefore, (V,®,F*) is weakly admissible if and only if it is semi-stable
and p(V) = 0. The following proposition is the analogue of the canonical
filtration of Harder—Narasimhan—Quillen—Tjurin in the context of vector
bundles. The proof of this proposition is almost word — for — word the same
([AN}), the main point being that for a morphism of filtered isocrystals
V! — V which induces an isomorphism of the underlying vector spaces we
have u(V') < u(V), and will therefore be omitted.

Proposition 1.4 (Faltings) Let V = (V, ®, F*) be a filtered isocrystal over
K. Then V possesses a unique decreasing filtration by subobjects V* para-
metrized by Q, called its canonical filtration, with the following property..
Let Vot =300, Ve, Ifvet g V<, then V¢ /V is semi-stable of HN -
slope «.

Furthermore, tf V* § V, then

w(V®) > u(V).

In particular, V is semi-stable if and only if its associated canonical filira-
tion 1s trivial

Remarks 1.5 (i) It is obvious that any morphism of filtered isocrystals
over K is strictly compatible with the canonical filtrations. The canonical
filtration is also compatible with passage to the dual and with the formation
of the tensor product of two filtered isocrystals. This last fact follows from
the theorem of Faltings mentioned above.

(ii) We recall the definition of the Tate object 1(n), n € Z. In the context
of isocrystals,

1(n) = (Ko, p"0o).
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In the context of filtered isocrystals over K, we filter 1(n) such that

K i<n

Fil'(1(n)) = { © i>n
A Tate twist of a (filtered) isocrystal V is defined as
V(n) =V ® 1(n).
It is obvious that p(V(n)) = u(V).

1.6 We also recall Fontaine’s functors. Let L be a perfect field of character-
istic p. Let Ky = Ko(L) and let K be a finite extension of K. We denote by
B¢y, Fontaine’s crystalline period field ([Fo3]). It is a K—algebra, equipped
with a continuous action of Gal(K /K), a o-linear endomorphism and with
a filtration of the K-algebra B.ry, ®k, K. A p-adic Galois representation
U of Gal(K /K) is called crystalline if the dimension of the Ko—vector space

G(U) = (U ®q, Borys)FHE/K)

is equal to the dimension of U. From By, the Kgp-vector space G(U)
inherits the structure of a filiered isocrystal relative to the extension K/ Kjy.
Fontaine has shown [Fo2] that the functor G induces a fully faithful exact @
functor from the category of crystalline Galois representations of Gal(K /K
to a full subcategory of the category of weakly admissible filtered isocrystals
over K. An object of the essential image over G is called admissible. We
denote by F Fontaine’s quasi-inverse @—functor to G from the category of
admissible filtered isocrystals over K to the category of crystalline Galois
representations,

F(V) = (Fil°(V ®k, Berys))®.

1.7 Let G be a linear algebraic group over Qp. Let L be a perfect field of
characteristic p and Ko = Ko(L) and let

b € G(Ky).

Then to any Q,-rational representation V of G we associate an isocrystal
over L,
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(V@ Ko, b (id® o).

In this way we obtain an exact ®functor from the category REP(G) of
finite-dimensional rational representations of G over Q, to the category of
isocrystals over L. Let g € G(Kp) and put

b =gbo(g) .

Then multiplication by g defines an isomorphism between the ®-functor
associated to b and the @-{unctor associated to &'. If L is algebraically
closed and G is connected we use the notation B(G) to denote the set of
o—comjugacy classes of G(Ko) (cf. [Kol]). The fact that L does not appear
in this notation is justified by proposition (1.16) below.

We denote by D the algebraic torus over Q,, whose character group is Q.
Kottwitz [Kol] associates to b a morphism of algebraic groups defined over
I{O’

v:D— Gg,.

We will call this the slope morphism. H V is a Qp-rational representation
of (¢, the morphism v defines a Q—grading on the vector space V ® Kp. The
morphism v is characterized by the property that this grading is the slope
decomposition of the isocrystal associated to b and V. We say that A € Q
is a slope of V, if the isotypic component of slope A is not equal to zero.
The property that A is a slope of V' does not depend on the choice of b in
the o—conjugacy class b.

The group Q* acts on D, since it acts on the character group Q. Fors € Q*
we use the notation sv for the composite D — D = G. Let D — G, be
the projection to the multiplicative group induced by the inclusion of the
character groups Z C Q. Then for a suitable s the morphism sv factors
through this projection,

sv: G, — G.

Since both sides of the slope morphism are defined over Q, the conjugate
v? by the Frobenius morphism is defined. We have the formula:

Wb l=v.
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To check this we may replace v by sy. Then it is enough to check that for
a € Gp(Kp) we have:

bo'(su(a"la))b_1 = sv{a)

We interpret both sides as endomorphisms of V ® Ky. Let @ = bo be the
Frobenius on V ® Kg. Then the assertion is:

®sv(o™'a) = sv(a)®.
This is obvious if we restrict to an isotypic component.

Definition 1.8 We call ¢ o—conjugacy class b in G{Ko) decent if there
exists an element b € b such that for some natural number s:

(bo)* = swip)o’.

We suppose here that sy factors through a morphism G,, — G, which is
also denoted by sv. The identity is between elements of the semi-direct
product G(Ko)x < o >. We will call b a decent element in b and the above
equation a decency equation for b.

Corollary 1.9 Assume that b is decent, and that b and s are from the
definition (1.8). Then b € G(Qp:), and v is defined over Qps.

Here Q,- denotes the unramified extension of degree s of Q,.

Proof: Let us first prove the second assertion. We set by = bo(b)...0° 1 (b).
Then we get from the formula above

c® -1 _
b b = .

By definition of decent we have b, = sv(p). Inserting this in the equation
above we get the desired v = .
To prove the first assertion we consider the equation:

(ba )’ (bo) = (bo)(bo)*.

We obtain sv(p)o’bo = bosv(p)o®. Taking into account that swv(p) com-
mutes with bo, the assertion follows.
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Corollary 1.10 Lei by, by € b which satisfy a decency equation for the same
integer s. Then ithe elements by and by are o-conjugate in G(Kg N Qps).

Proof: There is an element g € G(Ko), such that b, = gbyo(g~') and
vy = gr1g~ 1. The decency equations for & and b, are:

(b16)° = sii(p)o?®, g(bio)g™t = gsul(p)g"la’.

Comparing these equations we see that g commutes with ¢*, so that g €
G(KD ﬂ Qpl‘).

1.11 Let b be a decent o—conjugacy class and let b € b be decent. Then
b € G(Qp-) defines for every Qp-rational representation V of G an isocrystal
over the field L, = Fy- N L. The corollary (1.10) says that this isocrystal
only depends on b, up to isomorphism. Its base change under L, — L is
(V® Ky, bo).

Assume that G is connected and that L is algebraically closed. Then by
Kottwitz [Kol] any o—conjugacy class is decent.

Proposition 1.12 Let L a perfect field of characteristic p, and b €
G(W(L)q). Then the following functor on the calegory of Q,-algebras is
representable by a smooth affine group scheme over Qp,

J(R) = {9 € G(R®q, W(L)g); g(bo) = (bo)g}.

Assume that b € G(W(L')q), where L' is an algebraically closed subfield of
L. We dencte by J' the corresponding funcior defined with L'. Then the
canonical morphism J' — J is an isomorphism.

Yor the proof we need a lemma.
Lemma 1.13 Let V be a finite dimensional veclor space over W(L)q. As-

sume we are given a ¢*-linear isomorphism ¢ : N — N, where s is some
nonzero integer. Then the functor on the category of Qp—algebras

F(R)={n€ N®q, R; ¢(n)=n}

is representable by an affine space over Q.
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Proof: Choosing a basis of the Qpy—vector space R, we see that
F(R)= N%@®q, R.

Here N¢ denotes the invariants of ¢. Hence the assertion is that N% is a
finite dimensional Qp—vector space. To see this we may assume that L is
algebraically closed and then apply a theorem of Dieudonné (e.g. [22} 6.29),
which tells us that the dimension of N?¢ over Q, is the dimension of the
part of slope zero of V over W(L)q. This proves the lemma.

Let us assume for a moment that L is algebraically closed. Let L' be a field
extension of L. Then the argument of the proof shows that the functor F”
defined by N @w(z)q W(L")q and the o’~linear operator ¢ ® o* coincides
with F.

Proof of proposition (1.12): We choose an embedding G C GL(V). We

denote by B the endomorphism of V induced by b. We consider the following
functor:

F(R)={g€ EndVoW(E)q®R; B '¢B =a(g)}

By the lemma above, applied to the o-linear map Bo(g)B~?, it is repre-
sentable.

More precisely there is a finite~dimensional Q,—subspace W C EndV ®
W(L)q, such that F(R) = W ® R. We choose a basis A;,..., Ay of W,
where the A; are endomorphisms of V with coefficients in W{L)q. Hence
we have an identification of F' with an affine space:

(rl,...,rm) ER" —rihi+...+rmAnm.

Let {fi} be the equations of the subset G in GL{V). Then the subfunctor
J C F is given by the following conditions:

fk(}—: riAi) =0, det(i ridi) # 0
i=1 i=1

Using a basis of W(L)q over Q,, we may rewrite these conditions in terms
of polynomials in 71, ..., 7m with coefficients in Qp. Hence J is a locally
closed subfunctor of F.

Finally, if the coeflicients of B lie in W(L'), then we have remarked that the
functor F does not change if we replace L by L'. Then J does not change
because it is defined inside F' by the same conditions for L and L'. &
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Corollary 1.14 In the notation of proposition (1.12), assume that b satis-
fies a decency equation of the form

(bo)* = sv(p)o®

(c¢f. (1.8)), where sv factors through a homomorphism G, — G which is
also denoted by sv and which is defined over Q.. Then J is an inner form
of the centralizer Gs,(p), a Levi subgroup of Gq,. .

Proof: By the decency equation bo defines a 1-cocycle of the adjoint group
(Gsv(p))ad(Qps). Hence

J'(R) ={g € Gou(»(R ®q, Qp+); g(bo) = (bo)g}

defines an inner form of G,,(;). It remains to be checked that any element
in J(R) lies in J’(R). For this it is enough to remark that an element in
J(R) commutes with sv(p) (cf. (1.9)). By the decency equation it therefore
commutes with o°.

Remark 1.15 Let G be a connected reductive group and let L be al-
gebraically closed. By Kottwitz [Kol] the following conditions on & €
G(W(L)q) are equivalent:

(1) The slope homomorphism v factors through the center of G.

(ii) The element b is o—conjugate to an element in T(W(L)q) where T is
an elliptic maximal torus of G.

(iii) The algebraic group J of (1.12) is an inner form of G.

In this case the element b respectively its class b € B(G) is called basic.
Proposition (1.12) admits the following variant.

Proposition 1.16 Let by and by be two elements of G(W(L)q). Consider
the functor

J(R) = {g € G(R®q, W(L)q); g9(b10) = (bo)g}.

Then this functor is representable by a smooth affine scheme over Qp. As-
sume that by,by € G(W(L')q), where L' is an algebraically closed subfield
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of L and let J' be the corresponding functor. Then the canonical morphism
J' — J is an isomorphism.

In particular the map from the set of oc—conjugacy classes in G(W(L')q)
to the set of o—conjugacy classes in G(W(L)q) is injective. The map is
bijective if both L and L’ are algebraically closed and G is connected.

Proof: Indeed, the surjectivity part of the last assertion follows from (1.9)
since by Kottwitz every o—conjugacy class is decent, if G is connected and
L algebraically closed.

1.17 Let K be the fraction field of the Witt vectors of an algebraically
closed field L. Let K be a finite extension of K. Let GG be an algebraic
group over Q. Let us consider a cocharacter

p:Gn—G
defined over K, and an element
b € G(Ko).

Then to any Qp—rational representation V of G we have associated a filtered
isocrystal

(V) = (V ® Ko, ba, V), (1.1)

where the filtration VI‘;, is given by the weight spaces Vi ; with respect to
75

Vi =P V- (1.2)
i2i

Definition 1.18 Let G be a reductive group. We call the pair (p, b) admis-
sible, if one of the following equivalent conditions is fullfilled:

(i) For any Q,-rational representation V of G the filtered isocrystalZ(V')
is admissible.

(i1) There is a faithful Q,-rational representation of G, such that I(V) is
admissible.
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We make the same definition for weakly admissible.

Proof: f V is a faithful representation, then any Q,-rational representation
appears as a direct surnmand of V®" ® V®m_ Hence the equivalence of the
conditions follows from the following facts (Fontaine [Fo2]). A direct sum of
filtered isocrystals is admissible, iff each summand 1s admissible. A tensor
product of admissible filtered isocrystals is admissible. The same is true for
weakly admissible filtered isocrystals, but the last fact is then a theorem of
Faltings (cf. (1.3)). |

1.19 Let (u,b) be an admissible pair in a reductive algebraic group G. Con-
sider Fontaine’s functor F from the category of admissible filtered isocrys-
tals over K to the category of crystalline representations of the Galois group
Gal(K /K). We denote by F, the composite of F with the natural forget-
ful functor to the category of finite~dimensional Q,~vector spaces. Let
REP(G) be the category of finite dimensional rational representations of G
over Qp. Then the composite of 7, with the functor (1.1) defines a fibre
functor

Fy oI :REP(G) — (Qp — vector spaces).

Let Ver be the standard fibre functor. Then Hom(Ver, F,Z) is a right
torsor under the group G and hence defines a cohomology class:

cls(p, b) € H(Qp, G).

We have a conjecture to compute this cohomology class in the case that
G is a connected reductive group, as follows. Denote by G the connected
component of the L—group of G. We denote the center by Z (G). Let T
be the group Gal(Qp/Q,). Then Kottwitz [Ko2] defines a commutative
diagram:

HYQ,,G) B(G)
X*(Z(C) )or X*(Z(G)F).
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The left vertical arrow is an isomorphism.

Proposition 1.20 Assume that the derived group of the connected reduc-
tive group G is simply connecied. Let (p,b) be an admissible pair. The
cocharacter p defines in a canonical way a character of Z(G). We denote
its restriction to Z(G)T by pb. Then we have:

cls(p, b) = k() — pt.
Here we consider the left hand side as an element of X*(Z(G)L,,,.

We conjecture that this proposition holds without the assumption that the
derived group is simply connected. It shows that for a fixed b the invariant
cls(y, b) depends only on the conjugacy class of p, if it is defined.

Before proving proposition (1.20) we note that for a torus T over Q, all
admissible pairs may be described in an elementary way:

Proposition 1.21 The following conditions for a pair {;1,b) with respect to
the torus T' are equivalent:

(i) (u,b) is weakly admissible

(%) p— v is orthogonal to all Qp-rational characters of T. Here we view
v as an element of X, (T) ® Q.

(iii) For any Qp-rational character x of T', we have

ord, x(8) = <x,p> .

() (p,b) is admissible.

Proof: Clearly the conditions (ii) and (iii) are equivalent. The first condition
implies the third. Indeed, let V be the one~dimensional representation given
by x. Then the isocrystal N = (V ® Ko, bo) is isotypic of slope ord,(x(d)).
The only non zero weight space of Vi is Vi ; for j =< x,p >.
Next we have to show that (iii) implies (i). Let V be an irreducible repre-
sentation of T'. Let

N =P Na

aeQ
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be the decomposition of the associated isocrystal into isotypic components.
We need to verify:

> adimNy = idimVg,. (1.3)
o

The characters of T" appearing in Vi form an orbit under the Galois group
Gal(Q,/Q,)- Let x be a particular character of this orbit and Nm x be the
product of elements of this orbit. Clearly the right hand side of (1.3) is

Z <x',p>=<Nmy,p> .
x’€orbit

Assume that sy factors through Gp,. Then the left hand side of (1.3} is
1 ) idimW;,
s

where W; C Vg, is the weight space with respect to sv. But since Vg, =
@x' the last expression is equal to

1
5 Z<x',sy>:<me,y> .
XI

Since N y is rational over Q, this proves the claim.

It remains to be shown that Z(V) is semistable. We may take b to be
decent and Ko = W(F,)q for some finite field, cf (1.9). We consider the
Harder—Narasimhan filtration of Z(V). If Z(V) is not semistable we have
a subisocrystal M C N belonging to this filtration with H N-slope strictly
bigger than zero. But by the uniqueness of the H N-filtration M is T(Q,)-
invariant. Since T(Qp) C T(Kp) is Zariski dense, we get that M is T(Kg)-
invariant and in particular 8M = M. On the other hand boM = M since
M is a subisocrystal. Therefore oM = M, i.e. M is defined over Q,. From
the irreducibility of V' we get the contradiction M = N.

Finally we show that the first three conditions of the proposition are equiva-
lent to (g, b) being admissible. Our argument follows that of Kottwitz [Ko3]
§12. We fix a finite Galois extension F of Q,, such that the torus T splits
over F'. Then p is defined over F and we get a map:

F* — T(F) 2 7(Q,).
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By local class field theory its restriction to the units in F* defines a p-adic
representation V() of Gal(Ko/KoF) on V. This representation is crys-
talline and hence the image of some admissible filtered isocrystal N(V(u)) =
(N, ®, Fil) under the functor F. The filtration of V is given over the com-
posite K = F K.

One can give an explicit description of the isocrystal N(V(u)). Let b, be
the image of g under the map (Kottwitz [Kol]):

X.(T) — B(T).

Lemma 1.22 Let b, € b,. Denote by Zu,(V) the isocrystal associated by
(1.17) to the pair (u,b,). Then the image of this isocrystal by the Fonlaine
Junctor is V(p),

F(Zup, (V) = V()

Proof of lemma (1.22): The functor V +— N is a fibre functor on the tan-
nakian category REP(T) over Kq. We may choose an isomorphism of fibre
functors

N2V Q®Kp.

By Kottwitz this isomorphism may be taken in such a way that it maps the
Frobenius @ to b,0. We claim that the filtration on V @ K induced by this
isomorphism is the filtration given by pu.

Indeed, the isomorphism above defines a filtration of the category REPk (T7),
which is independent of the choice of that isomorphism. The filtration is
given by a unique cocharacter p’ € X..(T).

Let us consider the category of tori over Q, that split over F'. Then the
assignment g + g’ is an automorphism of the functor 7" — X, (T). We have
to show that this automorphism is the identity. But the functor X.(T)
is represented by the torus Resp;q,Gm,r and its universal cocharacter
Puniv. The elements 7 € Gal(F/Q,) define in a natural way characters
xr of Respq,Gm,r. This is a basis. We denote the dual basis for the
cocharacters by A;. Then Ay = ftynsy is the universal cocharacter.

The p-adic representation associated to the representation V = F of the
torus Resryq, Gm,F and the cocharacter A; is isomorphic to the rational
Tate module of the Lubin—-Tate formal group associated to F, by the main
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theorem of formal complex multiplication ([Se]). As a representation of
Respjq,Gm,r the isocrystal of the Lubin—Tate formal group is a direct
sum of the characters x,. By definition of the Lubin-Tate formal group
the Lie algebra corresponds to xi1. Hence the filtration defined by the Lie
algebra is given by Ay. This proves the equality ftyniv = Hini,- By the
universality we get our lemma. [}

Hence we have shown that the pair (u,b,) is admissible. We are now able
to prove the proposition (1.20) for tori. We have an exact sequence:

1 — HYGal(Q)7/Qp), T(Q}™)) — B(T) — Xu(T)r® Q — 1.

Since b and b, have the same image p in X,.(T)r ® Q, their o—conjugacy
classes differ by a cocycle ¢,, which is defined over a finite unramified ex-
tension L of Q,.

Hence we have for a suitable choice of b, in its o—conjugacy class that
b=1,b,.

We set (V @ L)t=? = W. Then we have an equality of filtered isocrystals

(V ® Ko, tsb, ® 0, Fil) = (W & Ko, b, ® o, Fil).

Since we know that the right hand side is the filtered isocrystal associated
to the crystalline representation W (), it follows that (4, b) is admissible.
Moreover we have an isomorphism of functors:

FIV) = W(n).

Especially the proposition (1.20) holds for T |

From this proposition (1.20) follows in the general case. Indeed, let D be
the quotient of G by the derived group G%". Since the cohomology of G%"
vanishes we get an injection

HYQ,,G) — HY(Q,, D).

Hence cls(y, b) is uniquely determined by the image of (p, ) in D. Since we
know the proposition for D, the proof is finished. |

Definition 1.23 Let G be a connected reductive group. We fiz a finite
extension K of W(L)q. We call two pairs (i1,b) and (¢, b') equivalent,
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iff there is an element g € G(Kp) such that b’ = gbo(g)~! and such that
the cocharacters y' and gug™' define the same filtration on the category
REP(G) (compare Milne [Mi]).

One checks easily that two pairs are equivalent, iff the corresponding func-
tors Z, 3 and T p» are isomorphic.

Definition 1.24 We call @ pair (p,b) special, iff there is e subtorus T of
G, which is defined over Q,, such that there is a pair (¢, ¥} equivalent o
(p1,b) with the property that p’' factors through T and ¥ € T(Kq) and that
(¢, ¥) is an admissible pair with respect 1o T.

A special pair is admissible. The proposition (1.20) holds for a special pair,
since it holds for the torus 7. We have a weak assertion of existence of
special pairs:

Proposition 1.25 Assume that G is a connected reductive group. Let (s, b)
be a weakly admissible pair in G, such that b is basic. Then there is a
cocharacter p' in the G(K)— conjugacy class of p such that (', b) is special.

Proof: By Kottwitz [Kol] there is an elliptic maximal torus 7" over Q, in
G, such that the o —conjugacy class of & is in the image of the map

B(T) — B(G).

Changing (z,b) in its equivalence class, we may assume that b € T(Kp).
Choose a p' in the conjugacy class of p, that factors through 7.

Let again denote by D the factor group of G by the derived group. The
image of (¢, ) in D is weakly admissible since it coincides with the image
of (i, b). Since the groups of cocharacters that are defined over Q,, of T and
D coincide up to torsion, it follows from the proposition (1.20) that (¢, b)
is admissible for T'.

1.26 We also mention the following compatibility of our conjecture for the
connected reductive group & and an inner form which was pointed out to
us by J. de Jong. We assume that G is connected and fix a cohomology
class 7 € H}(Qp,G). By Steinberg’s theorem we may represent 5 by an
unramified cocycle 6 +— g5, go € G(Kp). Let G' be the inner form of G
defined by the image of this cocycle in the adjoint group. Hence we have
an identification
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Gk, = Gk,
Also, the cocycle defines a tensor equivalence
REP(G) — REP(G'),

such that the fiber functors of both tensor categories over Ky are the same
under the identification of Gk, with G, .

An admissible pair (i, 5) for G defines an admissible pair (¢/, ') for G’ as
follows. The functor Z corresponding to (u,b) defines by composing with
the tensor equivalence above a functor Z* from REP(G') into the category
of admissible filtered isocrystals over K. The composition with the obvious
tensor functor into the category of Ky—vector spaces is the standard fibre
functor over Ky and hence 77 is given by a unique pair (¢, 8'). It is easy to
see that under the identification of Gk, with G, we have

¥ =bgt, p=p
Since G” is an inner form of G there is a canonical identification
X*(Z(@Q)") = X*(Z(G")).
It induces an identification (comp. diagram before (1.20))

HI(QP) G)= HI(QIH GI)'
Lemma 1.27 Under the above ideniification we have
cs(u’,8) = cls(p,b)—7n
WE)-pt = K- -1,
Proof: By definition cls(y’, b') measures the difference between the standard
fibre functor Ver’ on REP(G') and F, oZ’, and similarly for cls(y, b). The

first assertion follows since 1 measures the difference between Ver and Ver’.
The definition of & ([Ko2]) implies

k(b') = k(b) ~ 7.

Since obviously 't = g}, the second assertion follows. O
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We therefore see that our conjectures for G and for G’ are equivalent; by
choosing 7 suitably we may assume in proving it that cls(y’,¥’) = 0. Using
this remark J. de Jong has checked our conjecture in some cases where the
derived group of G is not simply-connected.

1.28 We can make our conjecture explicit in the example of the special
orthogonal group. Since this group (which is semi-simple) is not simply
connected this case is not covered by proposition (1.20) and in fact we
cannot prove our conjecture in this case. Let F be a finite extension of Q,
and let V be a quadratic space over F, i.e. a finite F'—vector space with a
non—degenerate symmetric F-bilinear form. Let G be the special orthogonal
group of V, considered as an algebraic group over Qp by restriction of
scalars from F to Qp. Then H'(Q,,G) ~ Z/2 classifies the isomorphism
classes of quadratic spaces over F' of the same dimension and with the same
discriminant as V. Let (g, 5) be an admissible pair and let V' = F,Z(V)
be the associated quadratic space over F'. An explicit way of describing the
cohomology class cls(i,b) € H1(Qp, G) is as follows. Let w(V'), resp. w(V')
be the Witt invariant of V resp. V' (take any of the various definitions to
be found in the literature). Then

cs{y,b) = w(V') — w(V) € Z/2.

Therefore, our conjecture in this case may be considered as a formula for
the Witt invariant of V’. This formula is as follows. To p corresponds its
class p! € Z/2 which is trivial or non~trivial according as to whether p lifts
to the spin group or not. Similarly, we associate to b the trivial resp. the
nontrivial element of Z/2 according as to whether & may be lifted to the
spin group G(Ky) or not. Our conjecture then states that

w(V') = w(V) + (x(b) — ).

1.29 It is also interesting to consider certain non—connected groups. As a
representative example we consider the orthogonal groups. We retain the
previous notations, except that we denote now by G the orthogonal group
of the quadratic space V. Now H!(Q,, G) classifies the isomorphism classes
of quadratic spaces over F' of the same dimension as V. There is a bijection

HYQ,,G)=Z/2 @ F*|F*?
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which associates to a quadratic space V' of the same dimension as V the
differences of the Witt invariants and of the discriminants of V and V.
This decomposition is a splitting of the short exact sequence induced on
cohomology

0 — H'(Qp, G*) — H'(Qp,G) — H'(F,Z/2) — 0.

Here G° denotes the connected component of the identity, the special or-
thogonal group. Let (p,&) be an admissible pair and let V' be the corre-
sponding quadratic space over F'. We wish to define an analogue of the right
hand side of proposition (1.20). Since p factors through G the invariant
b} € Z/2 is defined. We consider g} as an element of H(Q,, G) with trivial
component in F*/F*2,

We now define the component of x(b) in F* /F*2. On the maximal exterior
power A™**V we have an induced symmetric F-bilinear form,

(,): ATV @p ATV — F.

Since (det b)o commutes with the action of F' it is easy to see that there is
a generator w € A™**V ®q, Ko with

{detb)o(w) = w.

Then (w, w) € F®q, K¢ is invariant under id ®o, i.e. defines an element of
F*, Its image in F'* /F*? is independent of the choice of w. The difference
between this element and the discriminant of V' is the component of x(8) in
FX/F*Z, To define the component of x(b) in Z/2 we distinguish two cases.

First case: dim V even. In this case there is a surjective homomorphism
G(Ky) — G(Ko)

where G denotes the Clifford group of ¥ (Bourbaki, Algébre IX, §9). If
b € G(Ko) is any lifting of b, the component of £(b) in Z/2 is defined as

ordyNmpq, (SNm(?)) € Z/2.

Here SNm(b) € F' ® Ky denotes the spinor norm of b, of which we take its
norm Nmp;q, down to K. (In loc.cit. the spinor norm is only defined on a
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subgroup of G(Ky); however, when dim V is even, the definition given there
extends to all of G(Kp).)

Second case: dim V odd. In this case G is the direct product of G° and
its center Z,

G=G"x Z.

This decomposition induces in this case the above decomposition of H*
(Qp, G). X b =187z with 6° € G(Kp) and z € Z(Ky), then (%) € Z/2 is
defined and may be considered as an element of H(Qp, G), and z defines
an unramified cocycle with class x(z) in HY(Q,,2) = F*/F*? which we
also consider as an element of H(Qp,G). We put x(b) = x(b°) + «(z). It
is easy to see that this element has the component in FX/F*? described
earlier in general.

We now conjecture that again, with these definitions,

cls(p, b) = £(b) — p! € H'(Qp, G).
The following fact is well-known and easy to prove.

Proposition 1.30 (Fontaine, Messing, Ogus): The images of cls{y, b) and
of k(b) — pb in F*/F*? coicide.

In terms of the generator w of (A™**V) ® Ky above this proposition states
that {w, w) is the discriminant of V*.

Another case of interest is the case of the group of orthogonal similitudes
(with similitude factor in > or in Q). In this case we do not even have a
conjectural description of cls(g, §) (except under special hypotheses), much
less a proof.

1.31 Let G be an algebraic group over Q,. We fix a conjugacy class of
cocharacters

u: Gy —G.

To fix ideas we consider the cocharacters defined over subfields of the com-
pletion C, of a fixed algebraic closure Qp of Qp. Let E be the field of
definition of the conjugacy class. Then F is a finite extension of Q, con-
tained in Q,. It is a local analogue of the Shimura field.
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Two cocharacters will be considered equivalent if they define the same filtra-
tion on the category REP((G). The equivalence classes of cocharacters form
(the Cp—valued points) of a projective algebraic variety F defined over £, a
partial flag variety. Let V be a Qp—rational faithful representation of G. To
the cocharacter g defined over K we associate the filtration F(V) = Vi
given by the weight spaces Vi ; with respect to g, ¢f. (1.2). This filtra-
tion only depends on the equivalence class of u and this defines a closed
immersion of F into a flag variety of V,

F o Flag(V) ®q, E.

Here the points with values in a Qp-algebra R of Flag(V') are the filtrations
of F* of V @ R by R-submodules, which are direct summands, and such
that tk F* = dim V}. The variety F is a homogeneous space under the
algebraic group Gg. Our next aim will be to construct rigid-analytic subsets
of F s = F @ E. Here we denote by E = EKy = EKo(F,) the completion
of the maximal unramified extension of E.

1.32 We will first give a general method of construction of a rigid—analytic
structure on certain subsets of projective algebraic varieties. Let F' be a
locally compact discretely valued field and let C, be the completion of an
algebraic closure of F. For z € P*(C,) we will denote by # a unimodular
representative, i.e.

1z <1, alld; |Z|=1, at least one é; i=0,...,n.

Such a representative is unique up to a unit in C,. Let X C P, T'C P™
be projective schemes defined over F. Let K be a subfield of C, which is
complete in its induced topology and which contains F'. Let

HC(X xT)er K

be a closed subscheme. Let H:; C X be the fibre through t € T(F). We
wish to put the structure of an admissible open subset (in the sense of
the Grothendieck topology) of the rigid-analytic space over A underlying
X(C,) on the set

X\ | He

teT(F)
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We imitate the procedure of [SS], §1. Represent H as the common zero set
of a finite set of bi-homogeneous polynomials with integral coefficients,

fa(X(), vy Xy, . ..,Tm), a € A.
The real-valued function on X(C,) x T(C,)

(z,1) = |fa(Z, D)

is independent of the choice of unimodular representatives of & and £ respec-
tively and will be denoted by |fo(z,t)|. For ¢ > 0 and ¢ € T(F) consider
the tubular neighbourhood of H;,

Hi(e) = {z € X(C);|fa(z,t)| <6, a€ A}

Let £ and # be unimodular representatives of points ¢ and ¢ in T(F). We
use the triangular inequality

[fa(®, )| < max{|fa(&,1") — fa(Z,D, | fa(& DI}

Observing that the coefficients of f, and the coordinates of & are integral it
follows that for € > 0 there exists § > 0 such that for ||/ — |} < § (maximum
norm) we have

Ifa(:ﬁ,{’) - fa(i',{)l S €, ie.
Hi(e) C Hile)-

Using the fact that the set of unimodular representatives in F™+1\ {0} of
T(FY) is compact we therefore deduce the following lemma.

Lemma 1.33 For every € > 0 there exists a finite subset S C T(F) with

U #ele) = | Helo).

teT(F) tes
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Proposition 1.34 For every € > 0,
X(Cp) \ Hule), tE€T(F)
is an admissible open subset of Xg hence so is also
Xe=X(C)\ |J #(o),
teT(F)

o finite intersection of subsets of the previous kind. On X(Cp)\U,ep(r) He
there is a structure of admissible open subset of X (considered as a rigid
space over K ) characterized by the fact that for any sequencee; > e3...— 0
the covering

X, CX, C...
is an admisstble covering.

Proof: For the first assertion it suffices to establish the following fact. Let
fa(Xo, ..., Xyn),a € A, be a finite set of homogeneous polynomials. Then
the subset of P,

{z € P*;|fa(z)] > €, some a}

is an admissible open. This follows easily from the fact that fori =0,...,n
the intersection of this set with the set of points z € P™*(C,) where the
unimodular representative  satisfies |£;] = 1 is obviously isomorphic to the
following admissible open subset of the closed polydisc in A™:

Zg Tn. & ) Zo &,

{(":‘,,—,_i),[TJI S 1,] = 0,...,71; lfa(-‘:",...,TﬂN >€, SOHleLYEA} .
T x4 T &; x;

The argument also shows that for ¢; > ¢3... =0

X(CP) \Ht(E;),i = 1,2, RN

is an admissible open covering of X \ H;. To show the second assertion, let
f : Y — Xk be a morphism of an affinoid variety Y into Xx such that
F(Y) € X(Cp) \ User(r) H:- We have to see that f factors through X,
for suitable ¢. But by the above remark, for every { € T(F') there exists a
minimal #(¢) such that
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J(Y) C X(Cp) \ Hulesqr))-

By the remarks preceding lemima (1.33) the function £ — i{t) is continnous.
Since T'(F') is compact it follows that it assumes its maximum, which proves
the assertion. 0

1.35 Let G be an algebraic group over Q,. We fix a conjugacy class of
cocharacters g : G,, — G and the corresponding flag variety F over I,
cf. (1.31). Let Ko = W(F,)q and fix an element b € G(Ky). Let K be a
finite extension of £ and let Fy € F(K) be a point corresponding to the
cocharacter yi. Then F, will be called weakly admissible (with respect to b) if
the pair (u, b) is weakly admissible, ¢f. (1.18) (this condition is independent
of the representative p of F,). We denote by F“*(K) = Fy*(K) the set of
weakly admissible filtrations. Let J = J; be the algebraic group associated
to b, cf. (1.12). Then J(Q,) C G(Kp) and hence operates on F(K). This
operation preserves Fy *(K). In what follows we again sometimes take the
naive point of view identifying F with the set of its C,—valued points. We
denote by E.Qp- the jon.

Proposition 1.36 (i} Let b € G(Ko). The set of weakly admissible fil-
trations with respeci to b in F has a natural structure of an admissible
open rigid—analytic subset of F Qp E. IfV = gbo(g)~t, g € G(Ko), then
Fp e g"HFp) = Fyoay, induces an isomorphism between the weakly ad-
missible subset corresponding io b and the weakly admissible subset corre-
sponding to b'.

(#) Let b be a decent o—conjugacy class in G(Kq) and let b € b be a decent el-
ement, satisfying a decency equation with the integer s > 0 (cf.(1.8)). Then
the subset of weakly admissible filirations in F(C,) with respect to b has
a natural structure of an admissible open rigid-analytic subset defined over
EQp. Ifb € b satisfies a decency equation with the same integer s, then
any g € G(Qp) with ¥ = gbo(g)™ (cf.(1.9)) induces via F* — g~ }(F*)
an isomorphism defined over E.Qp- between the corresponding admissible
open subsels of F Qg E,.

Proof: We first prove (ii). Let V be a faithful Q,~rational representation
of G. The set of conditions on F* € F(K) to be weakly admissible is
parametrized by the set of ®-stable subspaces Vj C V3 = V ® Ky. Let
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Ve =V ® Qps and equip V, with the o-linear operator ®, = b(idv @ o).
Then (V,®) = (V ® Ko, bo) = (Vs,®;) @q,. Ko and there is a bijection
between the ®-invariant subspaces of V; and the ®,—invariant subspaces
of V;. Let T” be the projective algebraic variety over Qp. parametrizing
the subspaces of V, which are compatible with the isotypical decomposition
of V;. More precisely, let Vi = €D V be the isotypical decomposition and
Ve = @(V; N VA) be the induced decomposition of V,. For a Qp.—algebra
R,

T(R)y={V' CV, ®q,. R; V' a direct summand with
V=@V 0 ((Vs NVa) Bq,. R)}-

Then T is a disjoint sum of closed subschemes of Grassmannians of V,. We
are going to put a Q,-rational structure on 7" such that for the descended
variety T over Q,, we have

T(Qp) = {®,-stable subspaces of V,}.

The Q,-structure is defined via a descent datum,
a:T — T,

We may interpret T ¢ as the functor which to a Qps—algebra R associates
the set of direct summands of V; ®q,. s R compatible with the isotypical
decomposition. We have an isomorphism

Qs : Vs ®Qpn,a R-— "; ®QP. R.

We define o to be the map which associates to the direct summand V' of
V; ®q,. R the direct summand &;1(V’) of V; ®q,.,, R. To see that o is a
descent datum we have to check that ™ o...0a : T — T is the identity.
Let V = @V, be the isotypical decompeosition. Then V, = &(V; n13) is
a decomposition into ®—stable subspaces. From the definition of the slope
morphism v it follows that

(2, |(VsNVA) =9 idv,nv,, A=7/s.

Any direct summand ¥V’ of V, ® R in T"(R) decomposes as V/ = @V] where
V] is a direct summand of (V; NV}) ®q,. R and
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(@) (V) =p" VA=W,

as required.

Consider the variety 1 = Flag(V') of flags F* of V with dim F* = dim F},.
This is a projective variety over Q, and there is a closed embedding defined
over &, F C F1 ®q, E. Consider the closed subscheme defined over Q,-,

HC (fl X T) ®Q? QP'

given by pairs (F*, V') where F* is a filtration of V; ®q,. R in F1 and
V' = @V is a direct summand of V; ®q,. R = &(V;NV3)Q®q,. R such that

Y i th(grrav: (V1) > DA rk(V3).
A

2

Noting that the left hand side is equal to
00
> k(FNV')—N-k(V')
i=—N
for some N > 0, we see that H is indeed a closed subscheme defined by
conditions of Schubert type. Furthermore, the above considerations show
that the set of weakly admissible filirations in F;(C,) is given by

F(C) =FA(C)\ | e
1E€T(Qp)

Applying proposition {1.34) we see that this is an admissible open subset of
Fi1®q, Qp+ defined over Qp+. The result follows from intersecting 77 (Cp)"¢
with F C F1 ®q, E. The last assertion of (ii) is obvious.

We now turn to the proof of (i). The case when b is decent follows at
once from (ii). Let G be connected. Then by Kottwitz [Kol] there exists
g € G(Kp) such that ¥’ = gbo(g)~! is decent. Identifiying F3(C,)¥* with
g Fy(Cp)™, the result for ¥ implies the assertion for b. Let Gy = GL(V).
Then G is a closed subgroup of G; and & induces a o—conjugacy class b;
which is decent since G; is connected. Let b1 = g1bo{(g1)~" be a decent
element in b; and let FY* C F1 @5 E be the corresponding admissible open
subset of weakly admissible filtrations. Then F*° = (F ®g E) N g1 F¥% is
an admissible open subset of F ®g E, as required. The last assertion of (i)
is trivial. |
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1.37 In the rest of this chapter we will consider F¥¢ = F}'* as an admissi-
ble open subset of F 5 with the rigid analytic structure given by proposition
(1.36). We call this subset the p—adic symmetric space or p—adic period do-
main associated to the triple formed by G, the conjugacy class {u} of u
and the element b € G{Ky). (We refer to (5.45) for the problem of lowering
the field of definition to E). We are now in a position to state our basic
conjecture on the existence of local systems on F*°. Here we adopt the fol-
lowing definition of a local system in Qp—vector spaces on a rigid-analytic
space X (it was suggested to us by J. de Jong). Recall (cf. e.g. [SS]) that
the big étale site in the category of rigid spaces has as coverings morphisms
Y — X which are étale and such that there exists an admissible covering
of Y by affinoids such that its image is an admissible covering of X. Lo-
cally constant sheaves in Z/p”-modules are defined exactly like in algebraic
geometry, and so are smooth Zp,-sheaves. However, the category of local
systems of Qp—vector spaces is defined starting with smooth Z,-sheaves,
tensoring the Hom groups with Q, and then imposing descent with respeci
to étale coverings. (We mention that this last condition is automatic in
the algebraic case, if the base is normal.) In particular, a local system in
Q,—vector spaces on X is not necessarily defined by a smooth Z,-sheaf on
X, but merely by a smooth Z,—sheaf over an étale covering Y of X. The
local systems in Qp~vector spaces on X form a ®-category and every point
z € X defines a fibre functor in the category of finite Q,—vector spaces.
Before stating our conjecture we mention that an étale surjective morphism
Y — X factors in a unique way as ¥ — X’ — X such that Y — X’ is an
étale covering and X’ — X is étale and a bijection on points (this fact was
communicated to us by J. de Jong).

We conjecture the existence of an étale bijective morphism (F}3 %Y — Fy ¢
and of a @-functor from the category REP(G) to the category of local
systems in Q,—vector spaces on {F3 ") with the following property: Let
(p,b) be a weakly admissible pair of G and ¥}, € F;*(K) the corresponding
point. Then the pair (u,b) is admissible and the fibre functor on REP(G)
which associates to a representation the fibre in F of the corresponding
local system is isomorphic to the fibre functor considered in (1.19) with
respect to (p,b),

Fy oI : REP(G) — (Qp-vector spaces).
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We note that the conjecture that every weakly admissible pair (p,b) is
admissible is due to Fontaine. The validity of this conjecture would imply
the existence of interesting étale coverings of (F¥?)’. We shall exhibit in
cases related to p—divisible groups plausible candidates for these coverings,
cf. (5.34). For further remarks on the tower of étale coverings comp. (5.53)

1.38 We now introduce the algebraic groups G over Q, which will cccupy
us jn this paper. We will distinguish two cases. The first case will be related
to classifiying p—divisible groups with given endomorphisms and level struc-
tures, the second one will be related to classifying p-—divisible groups with
given endomorphisms and polarization and level structures. Accordingly we
will name these cases (EL) resp. (PEL). We will fix data of the following

type.

Case (EL):
Let F be a finite direct product of finite field extensions of Q.
Let B be a finite central algebra over F'.

Let V be a finite dimensional-B-module.
Let G = GLp(V) considered as an algebraic group over Q,.

Case(PEL):

Let F, B,V be as in case (EL).
Let (, ) be a nondegenerate alternating Q,-bilinear form on V.
Let b +— b* be an involution on B which satisfies:

(bv, w) = (v, b*w), v,weV.
Let G be the algebraic group over Q,, whose points with values
in a Qp—algebra R are given by:

G(R) = {g € GLa(V ® R); (gv,9w) = c(g)(v,w), c(g) € R}.

We denote by Fy the elements of F', which are fixed by the
involution *.

Let b € G(Kg) where again Ko = Ko(F,). Then we obtain an isocrystal
associated to the natural representation of G on V,

N(V)=V &Koy, ®=0(idy ®0).
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It is equipped with an action of B and in the case (PEL) with an alternating
bilinear form of isocrystals,

% : N(V)Q N(V) — 1(n).

Here n = ord ¢(b). Indeed, since F, is algebraically closed we may write
c(b) = p™ - uo(u)~! with a unit u. Then the pairing is defined as

B(v,v') =u"t-(v,7'), w,v'EN(V).

Any other choice of u multiplies ¢ by an element in Q. Furthermore, the
isocrystal with B-action (resp. and its Qp—homogeneous polarization 7 in
case (PEL)) depends up to isomorphism only on the o—conjugacy class of
b.

We now fix in addition to the data above a conjugacy class of cocharacters 1 :
G — G and the corresponding homogeneous algebraic variety F defined
over E. Let us make these objects more explicit. We fix a cocharacter p, in
our conjugacy class defined e.g. over Q, and let F? be the corresponding
B-invariant filtration of V @ Q,. In the case (PEL) we have

Fi= (FpoiL,
Here m denotes the composite cop € Hom (G, Gp) = Z.
Lemma 1.39 (i) The field E may be described as the field of definition of

the isomorphism class of Fy as D—invariant filtration, or equivalently as
the finite extension of Q, generated by the traces

Te(d; g7%,(V® Qp)), de€B, i€l
(ii) The variely F may be described as follows. Let R be a E-algebra. Then

F(R) is the set of filirations F* of V ®q, R by R-submodules, which are
direct summands, and such that

Te(d; grie(V ® R)) = Te(d; gr- (V® Qp)), dE€B, i€%Z

and in case (PEL) such that in addition
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.7_-1' —_ (}-m—i—l-l)_l_.

Proof: The equivalence of the two descriptions of E in (i) holds because
two representations of D are isomorphic iff they have identical traces. Let
F1 be the scheme whose R-valued points are described in (ii). Then it is
easy to see that the remaining assertions follow if we can prove that F, is
a homogeneous variety under Gg. We restrict ourselves to the case (PEL),
the case (EL) being similar but simpler. After extending scalars from Q,
to Qp, the data (F, B,*,V,(, )) decompose as a direct product of data of
one of the following kind.

(A) B = End(W)xEnd(W), where W is a finite-dimensional vector space
over Q, and W its dual, and (u, v)* = (*,'x).

V=WeV'+W®V’, where V' is a finite-dimensional vector space
over Q.

(W1 @V +13 @V, wa@ vy + W @T) = < wy, e >< vy, ¥ > —

<y, wg >< U, vh >

G={(1®¢,c(10% ™), ¢ €GL(V'), c€Gn}

(C) B = End(W), where W is a finite-dimensional vector space over
Q, equipped with a symmetric bilinear form ( , )w, and # is the
transposition with respect to {, Jw.

V = W@V, where the vector space V' is equipped with an alternating
bilinear form {, Jyr and (, ) =(, Jw @ (, )v.
G={cg’; ¢ €Sp(V',(, )v'), c€Gm}.

{(BD) As in (C), except that (, )w is anti-symmetric and { , )/ is sym-
metric. Furthermore, in this case

G = {cg’; g' S SO(V’,( N )VI), cE Gm}

Corresponding to this decomposition, the variety F1®g Q, also decomposes
into a product of varieties of partial flags of V' of either of the following type
(as does the adjoint group of G).
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(A) HF=WeFleWe(#™H L,

The correspondence F* — F'* identifies F with the variety of partial
flags of V' with fixed dimensions dim(F").

(C, BD) F* = W @ F", and the correspondence F* — F'* identifies F with
the variety of partial flags of V’ with fixed dimensions dim(F" '} and
with F* = (f’m""l_’)l (with respect to (, ). .

In the case (A) it is obvious that the flags F'* form a homogeneous space
under G. In the cases (C) and (BD) note that F"* is totally isotropic for
i > 1/2(m + 1) and that these determine all the other members of the flag
uniquely. Therefore Witt’s theorem shows that again these flags form a
homogeneous space under the adjoint group of G.

1.40 Before discussing examples of weakly admissible subsets we point out
that the whole theory explained so far has a variant where we replace Q,
by a finite extension F of Q,, cf. [Dr2] or (3.56) below. More precisely, let
L be a perfect field extension of the residue field kp of F'. Let

Kr(L)=F ®p+ Ko(L),

where F'* = Ky(kp) is the maximal subfield of F, which is unramified over
Qp. Let 7 be the antomorphism over F induced by the Frobenius auto-
morphism of L relative to kp. A 7 — Kp(L)-space is a finite-dimensional
Kp(L)-vector space N equipped with a bijective 7—linear endomorphism
P.

The theory of these objects (N, ®) (called 7 — Kp(L)-spaces) is completely
analogous to the theory of isocrystals. We leave it to the reader to formulate
the corresponding results in this context. In particular, if L is algebraically
closed, then (N, ®) is isotypical of slope A = »/s if and only if there is a
Or ®o,. W(L)-lattice M in N such that

P (M)=7"M,

where 7 € F is a uniformizer. Then End (N, ®) is a central division algebra
over F' with invariant —A.
We have also an obvious notion of a filtered 7 — Kp(L)-space relative to a
finite extension K/Kr(L).
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There is a natural equivalence between the category of isocystals over L
and the category of 7 — Kp(L)-spaces. We describe this in a more general
setting.

We consider an algebraic group G’ over F* and the group G = Resr/q,G’
obtained by Weil restriction. Then there is a natural bijection between the
o-conjugacy classes in G(Ko(L)) and the 7-conjugacy classes in G'(Kr(L)).
Indeed one has an equality

G(Ko(L)) = [[ G'(F @+, Ko(L)),

2

where g runs through the elements of Gal(F*/F). The bijection associates
to the T-conjugacy class of an element ¥’ € G*(Kp(L)) the o-conjugacy
class of the element b € G(Ko(L)), which has component b for ¢ = 1
and component 1 for all other g in the decomposition above. Let ¥V’ be a
rational representation of G’ on an F-vector space. The natural equivalence
of categories above associates to the 7 — Kp(L)-space (V' ®F Kp(L),¥'7)
the isocrystal (V' ®q, Ko(L),b0).

We may extend this equivalence to a functor from the category of filtered
T — Kp(L)-spaces relative to an extension K/Kp(L) to the category of
filtered isocrystals relative to K /Kg(L). Indeed, let us assume for simplicity
that K contains the Galois closure of F. We extend a filtration on V' @p K
to a filtration on

v’ ®Q, K=®.r-k v’ ®F, K,

by taking the given filtration for ¢+ = 1 and the trivial filiration on the
summands correspouding to ¢ #% 1. Here the trivial filtration is the filtration
whose graded module is V' @7, K in degree zero.

In group theoretic terms let p' be a cocharacter of G’k corresponding to
the filtration on V' @ p K. Consider the decomposition:

Gk= [[ G
o F—K
Then the cocharacter p of Gx which defines the filtration on V' ®q, K
above has component ¢’ at the entry corresponding to the : = 1 and trivial
component at all other entries. If we fix an algebraic closure F' of F and
consider Kr(kr)and K as subfields of the completion C, of F, the algebraic
variety F(G’, p’) is defined over the local Shimura field E’, where E' is a
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finite extension of F' contained in F. It is obvious that the local Shimura
field E of F(G, p) coincides with E’ and that we have a natural identification
of algebraic varieties over Spec E,

FG,u)=F(G,p).
Since E contains F' we have
E = EK(kr) = E'Kr(kr) = B

The above identification induces an isomorphism on the weakly admissible
subsets,

(F(G, p) @8 E)** = (F(G', ') @5 E')"*.
We also have
Jy = Respyq,Jy-

We may twist the correspondence defined above by any central cocharacter
w' 1 G, — G defined over F in the following sense. Let # € F be a
fixed prime element. We redefine § € G(Kj) as the element whose entry b,
corresponding to g = 1 in the decomposition for G{Kjy) above is given by

w,(ﬂ-)bl = w'(p)b/,

while the entries corresponding to ¢ # 1 are all equal to w'(p).

We redefine p to be the cocharacter of Gg, whose entry at ¢ = 1 is g/, and
whose other entries are all equal to w'.

For this twisted correspondence between filtered 7 — Kr(L)-spaces and fil-
tered isocrystals with an F-action all remains valid what was said in the
untwisted case w’ = 1 above.

1.41 We shall now discuss a few examples to give an idea of the various
possibilities of the admissible open subset F¥¢ C F ®g E. In each case
we shall consider a situation of type (EL) or (PEL) and fix an element
b € G(Ky). The conjugacy class of cocharacters will be given by fixing a
model filtration F? of V®Q,, as in (1.39). In these examples we will denote
the Qp—vector space by V and the corresponding isocrystal (V @ Ko, bo) by
(N, ®).
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1.42 We shall first discuss the following example of type (PEL). Let B = D
be the quaternion division algebra over Q, and let * be a neben involution.
Explicitly, present D in the following form

D = Qpe[Ml}; O? = p, Ma = o(a)IL.

Here Q> is the unramified extension of degree 2 in Ky. Then the involution
may be given as follows,

a* = ofa), a €Qp
m =1

Let V = (V, ) be a free D-module of rank n, with a non—degenerate alter-
nating bilinear form satisfying the conditions in (1.38). In this case G is
a non-trivial inner form of the group Gps, of symplectic similitudes. For
b € G(Ky) we take any element with ¢(b) = p and such that the correspond-
ing isocrystal (N, ®) is isotypical with all slopes equal to A = 1/2. Using
the action of D on N = V ® K and the decomposition Q,:® Ky = Ko® Ky
we obtain a direct sum decomposition (a Z/2-grading)

N=NPm
with
degll = deg ® = 1.

Furthermore, Nj; is totally isotropic with respect to (, ), as follows from the
identity

a-(v,v') = (av,v") = (fo* (a))v,v') =

= (v, (@))') = (v, 0(a) - V') = o(a) - (v, '), v,0' € N;, a € Q.
We define a new non—degenerate alternating bilinear form

<,> : Nog® Ny — Ky
<v,v> = (v,IIv)).

We also introduce the o-linear endomorphism of Ny,

®o =T~ - B|N,.
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Then, since
orddet ® = orddet I = 2n,

. 1t follows that orddet ®; = 0. Furthermore, since ® has all its slopes equal
to 1/2 it follows that ®¢ has all its slopes equal to 0. Also

< Bgv, Py v’ >=o(< v,v >).

Indeed,

<Bv, B0 > = (I7'9v,89) = a(v,Iv)
= o(<v,v >).

It follows that there exists a unique Qp-rational structure for the pair (N, <
,>) such that the Frobenius acts through ®;. Writing (5, < , > ) for this
symplectic space over Q, we obtain easily an identification

J =Gp(Ve, < ,>).

In particular, J(Qp) is the set of Qp-rational points of the split inner form
of G.

We consider now the case of the Siegel Grassmannian, i.e. we take as the
model filtration ) the one with

O=F2CFICF=VOQ,

with F, = F! a D-invariant totally isotropic subspace of dimension 2n.
Hence F is the Qp—variety of D—invariant Lagrangian subspaces of V. If
F € F(K) is such a subspace there is a direct sum decomposition, compat-
ible with the one of NV,

F=FPr.

Furthermore, F5 C Ny ®k, K is a maximal totally isotropic subspace (with
respect to <,>) and in fact the map sending F to Fy identifies F(K) with
the set of K—valued points of the Grassmanunian of Lagrangian subspaces of
Vo, < ,>)-
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Proposition 1.43 Under the above ideniification, the subset FU% of the
Grassmannian of Lagrangian subspaces of (Vo, < ,> ) is characterized by
the following condition:

For all totally isotropic subspaces Wy C Vo we have
dimFN(Wo @ K) <1/2-dim W;.

Proof: Clearly the the H N-slope pu(N,®, F) = 0, hence weak admissibility
is equivalent to semi-stability.

The uniqueness of the canonical filtration of (N, ®, F) implies its D—invari-
ance. It follows that (N,®,F) is weakly admissible if and only if for all
subspaces P C N stable under @ end D-invariant we have

dim (Fo N (P @k, K)) < orddet (; P).

However, since all slopes of ® are equal to 1/2 the right hand side of this
inequality is equal to

orddet (®; P) = 1/2 . dim P.

By the D~invariance of P we obtain a direct sum decomposition P = Py@® Py
and the ®-invariance of P is equivalent to the ®g—invariance of Py, i.e. to
the fact that Py is a Qp-rational subspace of Ny. The above condition
is therefore equivalent to the condition appearing in the statement of the
proposition, but for ell Q,-rational subspaces Wy C Vp. However, this is
equivalent to the apparently weaker requirement that the inequality hold
only for totally isotropic subspaces, as the following argument shows. Put

W, = Wo N W
Then this is a totally isotropic subspace and on
W = Wo/W,

we have a natural non-degenerate alternating bilinear form. Therefore we
. o, " . . .

have for the image F, in W, @ R of the totally isotropic subspace Fy N

(We ® K) that

dim Fy < 1/2-dim W, .
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Therefore, if dim Fo N (W) ® K) <1/2- dim W{, we cbtain
dim Fo N (Wo @ K) < 1/2 - dim Wo.
O

1.44 The next class of examples is of type (EL) and arises from the following
set—up. Let F be a finite extension of degree n of Q, and let B = D be a
central simple algebra of dimension d? over F' and with invariant

inv(D) = s (mod d).

We fix s with 0 < s < d—1 in its congruence class modd. Let V = (V1)
be a free D-module of rank 1. Let us fix an isomorphism D 2 V. In
this case G is the multiplicative group of D°PF (the opposite algebra of D).
Obviously G = Resp/q,G’, where G’ is the multiplicative group of D°PP
considered as an algebraic group over F'. We will describe this example by
making use of the procedure of (1.40), i.e. b (resp. p or Fg) will be induced
by that procedure from &' (resp. from y' or F¢') and the obvious central
cocharacter v’ : Gy, > G, t—=t-1€ D.

Let F' be an unramified extension of degree d of F' contained in D and let
T € Gal(F /F) be the relative Frobenius automorphism. We may present D
in the form

D = F[); 0%=7* Tz = 7(z)I,

where m € F is a prime element. We fix once and for all an embedding
€ : F — Q,, ie., an algebraic closure of F. We use the notation K =
7(Fp). We set b € G/(K}) equal to

Vo=l

It is easy to see that the corresponding T — K-space (N', &) = (V @p
Kb, ¥'7) is isotypical with all slopes A = (d — s)/d. The corresponding
isocrystal (N, ®) = (V ®q, Ko,bo) under the procedure of (1.40) is then
isotypical of slope {d — s)/nd. Explicitly the element b of

DPP @ Ko = H [yorp ®F‘,e Ko
pF*—Ko
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has the component pII~! for ¢ = 1 and the component p for all other p.
As model filtration F* we take one with F/2 = (0), F* = V ®F Q, and
with F! = F'! equal to

dim (7)) = (d — s)d.

This determines ¥, up to isomorphism. The field of definition of the cor-
responding algebraic variety 7' is E = £(F). Consider the decomposition
(cf. 1.40))

Vee, K= [] V.
v FP—K

Under the correspondence of (1.40) we are therefore considering filtrations
F* with [V, c FL

ife 5
We fix an extension &’ : F — K| of . We have a decomposition

For Ky=PK].

The sum ranges over the powers 7 (i € Z/d) of 7 € Gal(F/F). The action
of F on V induces a decomposition of N,

N'= P N
i€Z/d
Here
N! ={veN'; (flv=¢ o (f)v, f€ F}.
The operators @' and II of N’ are homogeneous of respective degrees
deg® = 1
degll = -—1.

The restriction of & (xII71)~! to N} is a 7—linear operator with all slopes
equal to 0,

@y = &'(alI~1)" N} : Nj — N}

We therefore obtain a rational structure of N§ over E : Putiing VJ = N(/,q)é’
(fixed module), we have an isomorphism
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Vs ®e Ky = Ng
such that under this isomorphism
dy)@T= .

Let ' € F(Cp) and let F) C Nj ®r.x, Cp be its image under the ob-
vious projection map. Then Fj is a (d — s)-dimensional subspace in the
d—dimensional C,—vector space Vj @g C,. It is easy to see that we obtain
in this way an identification with the Grassmannian

F' = Grass, (V).

Proposition 1.45 Under this identification the subset of weakly admissible
points of F'{K) corresponds to the set of (d— s)—dimensional subspaces F)
of V{ @g K satisfying the following condition:
For every rational subspace W§ C VJ we have

dm(F, 0 (W, @ K)) < (d — s)/d - dimV{.

Proof: Just as in the proof of proposition (1.43) the conditions on weak
admissibility are parametrized by the ®'—stable D~invariant subspaces P’ C
N’. However, these correspond precisely to the ®j-stable subspaces P C
Vg, i.e. to the E-rational subspaces W'y C Vjj. Furthermore, the condition
corresponding to P’ may be reexpressed in terms of W',. Indeed,

dim(F N (P’ Ok K)) =d-dim(FyN (W' ® K))
and

orddet(®; P') = (d—s)/d-dim(P")
= (d—s)-dim(Wp).
Therefore the condition becomes
dim(F, N (W'o @ K)) < (d— s5)/d - dim(Wy).
which proves the proposition. In exacily the same way one sees that

J' = GL(VY).
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Corollary 1.46 Assume s = 1 in the preceding proposition. Then the
weakly admissible subset of F corresponds bijectively to the sel of poinis
of the projective space P(V) not containing a F-rational line. a

1.47 The next example will again be of type (EL), with F = B an extension
of degree n of Q,. Let V = F? be the standard d-dimensional F—vector
space. Then G = Resp/q,GLs. We again describe this example through
the procedure of (1.40) and the obvious central cocharacter v’ : G, —
GLg, t+—1-1.

Let G' = GLg over Spec F. We fix once and for all an embeddinge : F' — Q,
and again use the notation K = Kp(F,). We fix b’ € G'(K}) equal to

-1

¥=x IEURET |
T 0

Here w denotes a uniformizer in F'. The corresponding 7~ Kj~space (N', @)
is isotypical with all slopes A = (d - 1)/d.
As model filtration subspace F), = ]-';1 we take one with

dimF! =d—1.
Again F,2 = (0) and F,® = V ®p Q,. The Shimura field is equal to

0
E = ¢(F). We obviously have an identification with the projective space of

V over Spec F,

F =PV).
Proposition 1.48 All points of F'(K) are weakly admissible.
Proof: This is obvious since the v — K{-space (N’, ®') is simple. (|
In this case J is the multiplicative group of the central division algebra with
invariant = 1 (mod d) over F.
Remark 1.49 We mention briefly some variants of example (1.44). For
simplicity we take F' = Q,.

(i) For the first variant we consider a central simple algebra of dimension
d? over Q,, with invariant = s(mod d). We again take V to be a free D—
module of rank 1. We fix an integer r, 0 < r < d — 1 which is a multiple of
s modulo d,
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t-s=r+j-d.
As element b € G(Ky) = (D°PP @ Ko)* we take
b=n"7 -1,

where II € D is as before. Then the corresponding isocrystal (N, ®) has
all its slopes A = r/d. We consider D~invariant filtrations F with F2 =
(0), 7O = V ® Q, and with F = F' of dimension r - d. We analyze this
case following the same principles. Let Q,¢ be an unramified extension of
degree d of Qp contained in D which we assume embedded in Kp. The

decomposition Qe ® Ko = € Ko yields decompositions
¢:Q,a—Ko

N = @Ngy
F = @fg

and ®(N¢) = Neoo, I(N¢) = Nggp-1. In this case ® - 11 preserves the
summand Ny corresponding to the chosen embedding and induces there a o—
linear endomorphism ®q which is isotypical with all its slopes A = (r+5s)/d.
Now let us assume that r+ s is prime to d, and let us determine the weakly
admissible filtrations. Let P C N be a ®-stable D-invariant subspace.
Then P = P P; and P is stable under ®,. However,

orddet(®o; Po) = (r + s)/d - dim(FPp)

and since r + s was assumed prime to d we conclude that P is frivial,
ie. (0) or N. We therefore see that in this case all points of F are weakly
admissible. In the same way one sees that J(Q,) is the multiplicative group
of the central division algebra of invariant = r + s(mod d) over Q,.

(ii) We want to do one more example, one with filirations with a higher
number of steps. Let again D be a central simple algebra of dimension d?
over Qp, with invariant = s(mod d), with 0 < s < d— 1. Let V be a free
D-module of rank 1. As element b € G(Kg) ~ GL,(DPP) we take b =TI/,
where j = 1(mod d).

Then the corresponding isocrystal (N, ®) has all its slopes A = js/d. We
fix integers
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with
d .
Zé’ = js.
i=1

We consider D-invariant filtrations F* with F4*! = (0),F° =V ® Q, and
dim F* = 8 .d,i = 1,...,a. We may analyze this example in the same
way as the preceding ones and obtain the following results. The Qp—variety
F may be identified with the variety of incomplete flags on the standard
vector space Qg,

O cFcF*lc...cFtcgt

with dim F* = 6*,i = 1,...,a. The subset of weakly admissible elements
over K is characterized by the following condition: For any rational subspace
W C Qg we have

idim (Fin (W ® K)) < (js/d) - dim W.

i=1l

In this case J ~ GLg.

1.50 In the preceding examples the element b was basic. We now give one
example (of type (EL)) where b is not basic. Let B = Qp and let V = Q2".
We denote the canonical base by e1,...,ea, and let

V_ =span <ei1,...,en >, Vi =span < enyi,..., €2 > .

As the element b € G(Ko) = GLaa(Ko) we take b = p-idy_ @ idy,. Then
the slope decomposition of the isocrystal (N, ®) has the form N = Ny @& N,
with

No=Vy @ Ko, Ni = V. @ Kp.

We consider the space F = Grass, (V) of subspaces F of dimension n. It is
then easy to see that F is weakly admissible if and only if
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Fn (Vi K) = (0).

In other words, 7% may be identified with the big cell defined by V., an
open algebraic subvariety of . It may be identified with the variety of
splittings of the exact sequence of vector spaces,

0=V =V V. =0,

i.e. with an affine space of dimension n? = dim Hom (V_, V). In this case
J is the Levi subgroup of G,

J(Qp) = GL(V3) x GL(V.).

1.51 We now wish to relate the weakly admissible subset to Geometric
Invariant Theory. We assume that G is connected. We fix a conjugacy class
of cocharacters p and the corresponding projective algebraic variety F over
E. We fix an invariant inner product on the Lie algebra of a maximal
torus of G and use it to interpret p as a conjugacy class of a character.
To this character there is associated an ample line bundle £ on F which
is homogeneous under the derived group G%", after perhaps replacing £
by a positive tensor power. Let b € G(Kq) be such that the set of weakly
admissible poinis in F y is non—empty. Let J be the corresponding algebraic
group over Q. Then J N G is a subgroup of J defined over Q, which
will be denoted by J4". Then J %e’ is a subgroup of G‘};’ and hence acts
on (F, L). For any maximal Q,—split torus T C J% let

Fo(TY?* C Fy

be the set of points which are semi-stable for the restriction to T of the
action of J' g" on (F,L)y. For any finite extension K of E, let

Fi(K) = FuD*(X),
T

where the intersection is over all maximal Qp—split tori of J der 1t is obvious
that this set is stable under the action of J(Q,). This set was considered
by van der Put, Voskuil [PV]. It is easy to see that this set is unchanged if
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L is replaced by a positive tensor power and does not depend on the choice
of the invariant inner product above.

The following theorem was proved by B. Totaro in response to a conjecture
in a first version of this book.

Theorem 1.52 (B. Totaro): We have
Fi'(K) = FyU(K),
for any finile extension K of E.

The assumption that F contain weakly admissible points is only made to
ensure that semi-stable points in the sense of (1.3) are weakly admissible.
We now illustrate this statement in the previous examples.

1.53 We first consider example (1.42), with the notation introduced there.
In order to analyze the subset F°°(K) we use the Hilbert—-Mumford crite-
rion. Note that the representation of J on I'(F, £) is, under the identifica-
tion of J with Gp(Vg, < ,> ) a positive tensor power of the n—th exterior
power of V5. Choose a basis of Vj,

€41,€432,...,€C4n
with
<e,e.;> = 1, i=1,...,n
<ei,e;> = 0, i# -]

Let T be the diagonal torus and let A € X,.(T"} be a 1-parameter subgroup,
AMtye; =t7e;, i€{l,...,tn}; ro;=—n.

We investigate the Mumford criterion in case A lies in the positive Weyl
chamber, i.e.

TL>re> ... >1r > 0.
Let I C {&1,...,%£n} and let

Ly =span{e;; 1€}
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be the subspace spanned by the corresponding basis vectors. Then Ly is
totally isotropic if I N (—I) = . Consider the self-dual standard flag fixed
by T,
0)CLhiCLyC...CLpnCLxC...CL3CL1=V
with
Li = Ly, .5

Ly = Ly, i1,4i..4a), 15i<m,

Let o C V@K be a Lagrangian subspace and let I{Fp) be the set of jumps
in the intersection of F; with the standard flag, i.e.

,U,EI(TQ)QEUE}'()Q(L”@I{)

with v ¢ preceding member of the chain. Then it follows easily for the
action of T' on the corresponding points in the Grassmannian,

}_I_I)Ié )\(t) . .r() = L](]:'D).

Furthermore, A(%) operates on the fibre in Ly(x,) of the homogeneous line
bundle defined by the n—th exterior power representation through the char-
acter Try, p € I(Fp). Therefore the point corresponding to Fp satisfies
Mumford’s criterion with respect to 7', A if and only if

Z r, <0.

s€I(Fo)

By convexity this condition then holds for all A in the closure of the pos-
itive Weyl chamber. It suffices to check this condition on the extremal
1-parameter subgroups i.e. the fundamental co-weights,

M=(m=...=n=lmu=...=rm=0), 1<i<a.

Therefore the above condition for all A in the closure of the positive Weyl
chamber is equivalent to the condition

HL,.., 0 (=IFN 2 UL, ..., 0 l(F), i=1,...,n.
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Looking back at the definition of the flag and recalling that (—I(Fp)) N
I(F) = 0 this condition is in turn equivalent to

dim(FoNL;)<if2, i=1,...,n.

Since any totally isotropic subspace of Vp is conjugate under J(Qp) to L;
for suitable ¢ (1 < ¢ < n) and since F**(K) is stable under the action of
J(Q,) it follows that the points in F*°(K) satisfy the condition appearing
in the statement of proposition (1.52). Conversely, since all maximal split
tori and all 1-parameter subgroups may be conjugated under J{Q,) into
(T, A) as above with X in the closure of the positive Weyl chamber it follows
that all points satisfying the condition in proposition (1.52) lie in 7°°(K).

1.54 We now discuss the other examples. In example (1.44) the group
J is GL(V{]) acting on the appropriate Grassmannian. The corresponding
subset F°*(K) was determined in [PV], 2.8.2. and was found to be described
by exactly the same condition as the one appearing in proposition (1.45).
Something analogous applies to the last example of (1.49) (use [PV], 2.8.1.).
The first example of (1.49) and example (1.47) are also compatible with
theorem (1.52) Indeed, in these cases the group J is an inner form of G
anisotropic modulo center so that the condition describing F**(K) is empty.
1t follows that F**(K) = F(K) = F**(K). Finally, the non-basic example
(1.50) may be treated in exactly the same way as (1.53) above.



2. Quasi—isogenies of
p-divisible groups

In this chapter we will define a moduli space for the quasi-isogenies of a
given p-divisible group X. This moduli space will be a formal scheme over
the Witt vectors.

2.1 Let us review some basic facts on formal schemes in the form needed
here. Consider a preadmissible topological ring A. Let {Z,} be a set of
ideals of A that form a fundamental system of neighbourhoods of 0. Then
we define a contravariant functor Spf A on the category of schemes

Spf A(Z) = lim Hom (Z, Spec A/Lq)

This is a local functor, i.e. a sheaf for the Zariski topology on the category
of quasicompact quasiseparated schemes. If the ring (4, Z,) is adic, we will
call Spf A an affine formal scheme. A local functor which has a covering by
open subfunctors which are affine formal schemes, is called a formal scheme.
If A is a preadmissible ring we may consider the category Nilps of schemes
over Spf A. Then the category of formal schemes over Spf A is a full
subcategory of the category of set valued sheaves on Nilp,.

2.2 We call a morphism X — Y of formal schemes to be of finite type, étale,
lisse, etc., if for any scheme Z and any morphism Z — Y the fibre product
X xy Z is a scheme and X xy Z — Z is of finite type, étale, smooth etc.
in the usual sense.

Let X be a formal scheme. Then there is a unique morphism X,.q — X,
where X,.q is a reduced scheme, such that for any reduced scheme Z the
following map is bijective

49
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Hom(Z, Xyeq) — Hom(Z, X).

X is called locally noetherian, if it is locally isomorphic to Spf A, where A
is a noetherian adic ring.

Definition 2.3 Let X and Y be formal schemes that are locally noetherian.
A morphism X — Y is called formally of finite type if Xreq — Yrea 15 of
finzte type.

The notion formally locally of finite type is defined in the same way.

2.4 If A is an adic noetherian ring and & is an affine noetherian formal
scheme over Spf A, such that X — Sf A is formally of finite type, then
there is a A-algebra A of finite type with a preadmissible topology {Z,}een
such that

X =9f (A, La).

The ring (A, Z,) need not to be preadic, but its completion is an adic ring
by definition.

The following proposition gives a condition to ensure that the completion
of (A,T,) is adic. It is a reformulation of [EGA]O; 7.2.2.

Proposition 2.5 Let A be ¢ preadmissible ring. Assume a fundamental
system of neighbourhoods ts given by a chain of ideals

Z:D2Z3D--DZy D reN.

Let I be an ideal of definition of A, such that I/T? is topologically of finite
type, i.e. I/T?+Z, is a A-module of finite type for allr. Then the completion
of A is an adic ring if for each m € N the following chain of ideals stabilizes

LI+ I D - D +I"D -

Proof: Let us denote by a,, the intersection of the ideals in this last chain.
Then a; =1 and

An D Qpyl, Gpi1+al =a@nm.
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Moreover a;/ay is a A-module of finite type. We conclude by [EGA] loc.
cit. that lim A/a,, is an adic ring. ]

We add a few remarks on isogenies of p-divisible groups. By a p-divisible
group X over a scheme S we mean a Barsotti-Tate group in the sense of
Grothendieck (see Messing [Me] ).

Definition 2.6 A morphism f : X — Y of p-divisible groups over S is
called an isogeny, iff f is an epimorphism of f.p.p.f. sheaves whose kernel
1s representable by a finite locally free group scheme.

If S € Nilpgz,, the kernel of an isogeny is of rank a power of p. If the rank
is constant and equal to p® we call h the height of the isogeny. We have a
converse to this definition,

Proposition 2.7 Let X be a p-divisible group over ¢ scheme S. Let H be
a finite locally free group scheme over S and H — X a monomorphism over
S. Then the f.p.p.f. sheaf X/H is a p-divisible group.

Proof: Clearly the multiplication by p : X/H — X/H is an epimorphism
and X/H is a p-torsion group. We have to verify that the kernel of the
multiplication by p is representable by a finite locally free group scheme
over S. Lei us denote the kernel of multiplication by p™ on X by X[n]. By
Oort and Tate [OT] we have that H is a closed subscheme of X[n] for big
n {compare EGA IV 8.11.5). Hence for big n we get an exact sequence:

0— H — X[n] — (X/H)[n] — H — 0.

One knows that the quotient X[n]/H is a finite locally free group scheme
and that an extension of finite locally free group schemes in the category of
f.p.p.f.-sheaves is again a finite locally free group scheme (see Grothendieck
[Gr2]). Hence (X/H)n] is a finite locally free group scheme. We finish the
proof by writing the exact sequence:

0— (X/H)1] = (X/H){n + 1] — (X/H)[n] — 0.
O

The multiplication by p on a p-divisible group is by definition an isogeny.
It follows that the group Homg(X,Y') is a torsion free Zy,-module. Let us
denote by Homg(X,Y) the Zariski sheaf of germs of homomorphisms.
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Definition 2.8 Let X and Y be p-divisible groups over a scheme S. A
quasi-isogeny is a global section f of the sheaf Homg(X,Y)® Q, such that
any point of S has e Zariski neighbourhood, where p* f is an isogeny for o
suttable natural number n.

Let us denote by Qisgs(X,Y) the group of quasi-isogenies from X to Y.
Quasi-isogenies of p-divisible groups have the following well-known rigidity
property. Let S’ C S be a closed subscheme, such that the defining sheaf
of ideals J is locally nilpotent. Assume moreover that p is locally nilpotent
on S. Then the canonical homomorphism

Qisgs(X, Y) -_— Qisgsr (Xsl s Y,gl) (2.1)
is bijective (Drinfeld [Dr2]).

Proposition 2.9 Let o : X — Y be a quasi—isogeny of p-divisible groups
over a scheme S. Consider the functor:

F(T)={¢ € Hom(T,S) | ¢*a is an isogeny}.
Then F is representable by a closed subscheme of S.

Proof: The question is local for the Zariski topology. Hence we may assume
that p™« is an isogeny for some natural number n. The property that o
is an isogeny is equivalent to the property that p®a : X[n] — Y[n] is the
zero morphism. To show that this last property is representable by a closed
subscheme we prove:

Lemma 2.10 Let a : M — £ be a morphism of Os—modules, on a scheme
S. Assume that L is finite and locally free. Then the functor

F(T) = {¢ € Hom(T, S) | ¢"a =0}
is representable by a closed subscheme of S.
Proof: We have an isomorphism
Hom(M, £) = Hom(M @ £L*,0s), £L* = Hom(L,s).

The morphism « corresponds to & : M @ £* — Og. The ideal Image &
defines the desired closed subscheme.
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2.11 Let X be a p-divisible over Fp. Let W = W(F,) be the ring of Witt
vectors. We will define the functor of quasi-isogenies of X, and show that it
is representable by a formal scheme. Although we are only interested in the
case of the field Fp, it will be essential for the proofs to allow other perfect
fields L of characteristic p. In this context we set W = W(L). We denote
by o the absolute Frobenius automorphism of W.

The category Nilpw is the category of schemes S over Spec W such that p
is locally nilpotent on S. A scheme S € Nilpw may be viewed as a formal
scheme with ideal of definition pOg. We denote by S the closed subscheme
of S defined by the sheaf of ideals p(g. By the universal property of Witt
vectors (Grothendieck[Gr2]) it is equivalent to give a morphism § — Spf W
or to give a morphism S — Spec L.

2.12 We consider isocrystals over I (1.1). Our notation will differ a little
from the first chapter. We write F = & for the Frobenius morphism. We
do this because we also need the Verschiebung V = p. &1, We define the
dimension of an isocrystal N by the formula

dim N = ordydet V.

We recall that an isocrystal N is isoclinic of slope A € Q, if there isa W(L)-
lattice M C N, such that F°M = p"M, where s > 0 and r are integers,
such that A = r/s. If N is isoclinic of slope A we have the relation

dim N = (1 — A)height N.
We will call a sublattice M C N a crystal if it is stable under F and V.

Definition 2.13 An isocrystal (N, ¥) over L is called decent, if the vector
space N is generated by elements n salifying an equation F°n = p™n for
some integers r and s > 0.

Remarks 2.14 Let us write N = V@ W(L)q for some Q,-vector space V.
Let G = GL(V) considered as an algebraic group over Q. Then we get a
o-conjugacy class b € B(G) that is defined by the equation F = b(idy ® o),
where b € G(W(L)q). Then N is decent, iff b is decent in the sense of (1.8).
An equation of the form F*n = p"n implies that n lies in some isoclinic
component of N. Hence N is decent, iff all isoclinic components are decent.
Over a finite field decent amounts to saying that on each isoclinic component
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Ny C N we have F* = p" for suitable integers r» and s > 0 , such that
A =r/s. Any decent N is obtained by base change from a decent isocrystal
over some finite field. Over an algebraically closed field any isocrystal is
decent. Hence in the case in which we are interested this definition is empty.
We call a p-divisible group over a perfect field L of characteristic p decent,
if the corresponding isocrystal is decent.

Definition 2.15 Let X be a decent p-divisible group over a perfect field L.
We associate to X the following functor M on the calegory Nilpw. For
S € Nilpw a point of M(S) is given by the following data:

1. A p-divisible group X on S.
2. A quasi-isogeny ¢ : Xz — X3.

We denote such a point by (X,g). Two points (X, 1) and (X3, 02) are
identified if g1 o 951 lifis to an isomorphism Xy — Xy, t.e., if they are
1somorphic.

Theorem 2.16 The functor M is representable by a formal scheme over
Spf W, which is locally formally of finite type.

The proof will depend on several lemmas. Let us start by the remark that
M depends only on the isogeny class of X. Since the isocrystal associated
to X is defined over a finite field, we may assume that the field L is finite.
Let P be any perfect field of characteristic p. For the following proposition
let W = W(P) be the ring of Witt vectors and 7 be some positive power
of the Frobenius automorphism o. The invariants of r are the Witt vectors
W(L) of a finite field L. Let N be a finite dimensional vector space over
W(L)q. Then T acts via the second factor on the Wq-vector space N =
No @w(z) W. A finitely generated W-submodule M C N is called a lattice,
if the natural map M @y, Wq — N is an isomorphism.

Proposition 2,17 Let h be the dimension of the Wq-vector space N. Let
M be any lattice in N. Then the lattice M + (M) + --- + 7"~ 1(M) is
invariant under T .

Proof: We make an induction on k. Clearly for h = 1 any lattice is invariant.
We choose an invariant vector e € N. We will assume ¢ € M but p~le ¢
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M. Let M’ denote the image of M in N' = N/Wqe. We replace M by
M+ - -+7""2(M). Then by induction M’ is r-invariant. Hence it is enough
to show that M + 7{M) is 7 -invariant, under the assumption that M’ is
r-invariant.

Let fi,..., fa_1 be a T-invariant basis of M’. We lift these elements to 7
-invariant elements fi,---, fr—1 of N. Hence M has a set of generators of
the form

e, fi—we,..., fr-1 —wh_1e,

where w; € Wq.
The module M + 7(M) has the following set of generators

e, fi —wie, ..., fo—1 — whore, (T(w1) —wide, ..., (r(wa-1) — wr-1)e.

We have to show that M + 7(M) is invariant under 7. But we have

i=h-1
M4 r(My=M+ Y Wpriw-wie,
i=1
Since the sum is invariant under 7 we get the result. |

Proposition 2.18 Let N be a decent isocrystal over a fintte field L. Then
there is a natural number ¢ and e finite extension L' of L, such that for any
perfect field P containing L', and for any crystal M C N Q W(P)q there
is a crystal M! ¢ N@QW(L')q, such that M C M' @ W(P) and has indez
smaller than c.

Proof- We assume first that N is isoclinic of slope r/s, s > 0. As above
we denote the height of N by h. Since N contains a crystal, we have
s > r > 0. We may assume that the field L fixed by o® contains L. The
operator & = p*~"V~* acts on N Qg zy W(L') Qi W(P) = Np by
the Frobenius automorphism 7 over W(L’) on the last factor. The crystal
M = M+ (M) + ...+ 7" (M) is by the previous proposition of the
form M’ @y W(P). Since M + (M) C V~#(M), we conclude that
length (M + 7M)/M < sdim N. Iterating this we get length M/M <
(h—1)sdim N. This number depends only on N (and L).

In the general case let s be a common multiple of the dominators of the
slopes of N. Again we assume that the fixed field L' of o* contains L.
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Let N = No @ ...® N; be the isotypic decomposition of N. We order the
summands such that the slopes decrease:

mon sl
Since N is decent, we way assume that F*n = p"in for each n € N. We
prove by induction on the number of isotypic components that there exists
an M’ as claimed in the proposition, with the additional property that it is
a direct sum of isoclinic crystals. Let Ny, = N1 @...¢ N; be the direct sum
and M5 C N5 p = N5 ®wzy W(P) be the image of M by the projection
Np — Ns p. We obtain an exact sequence

0— Mg — M — M, — 0, (2.2)

where the kernel is an isoclinic crystal My C Ny p. By induction assumption
and the isoclinic case we may assume that My and M are obtained by the
base change from crystals over L’ and moreover that M- is a direct sum of
isoclinic crystals. If sequence (2.2) would split as an extension of crystals,
we would obtain M by base change from a crystal M’ over I/. This would
prove the proposition. Therefore it suffices to show that the following is
true.

Lemma 2.19 After push-out by p™ : My — My the ezact sequence (2.2)
splils as a sequence of crystals.

Proof: Let W = W(P) and W[F] be the non-commutative polynomial ring
(Fw = o(w)F). From the exact sequence

0 — My —> Ng — No/My — 0
we obtain an isomorphism
Homyyr) (M, No/Mo) 2 Extiypm (Ms , Mo)
Hence the extension (2.2) corresponds to a W-linear homomorphism
«: Ms — Ng/My,

which commutes with F. By assumption M is generated as a W-module
by elements m satisfying some equation F*m = p"im, i = 1,...,1. Let
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a(m) = Z be the image and z € Ny a representative. We assume that k € Z
is chosen such that p*z = w € My, but p*~'2 ¢ M,. By the equation
F*m = p"im we obtain that

FPw = p"w mod p* Mp.

On the other hand we have F*My = p™My. For k > rp we would get
pMiw = 0 mod p™ My which contradicts ro > r;. Hence we have k < rg, ie.
pra(m) =0.

This proves the lemma and the proposition.

Remarks 2.20 (i) The hypothesis that N be decent is indeed necessary
for the conclusion of (2.18), as the following example shows.

Let N = Qf, with the standard basis e, es. We define the Verschiebung by
the requirement Ve; = e;, Vez = aez, where @ is a unit in Z,. Then (N, F)
is decent, iff a is a root of unity. Let n be a positive integer and ¢ € W(F))
a unit. Consider the lattice in N ®@ W(F,):

M = W(Fp)(e1 +p "cea) + W(Fp)ea.
Then M is a crystal, if VM = M, i.e.
a(e)a = ¢ (mod p™).

An element satisfying this equality always exists.
Let s > 0. It is easy to see that the smallest lattice M, of the form M. ®¥% »
W(F,) containing M is

M, = W(Fy)(e1 +p~"cez) + W(Fp)p™" (€ — 0°(€))ez + W(F,)ea.

We note that € — o°(€) = o (e)}(a® — 1). If N is not decent, we have for any
s that

m, = ordy(a® — 1) < o0.
Hence we obtain for n > m,
M, = W(f‘p)(el +p"ees) + W(f‘p)p“"+m'eg,

We get that for any s the indices of M in M, can become arbitrarily large
for a suitable choice of M, i.e. n.
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(i1) The content of proposition (2.18) may be interpreted as a statement
about the Bruhat-Tits building of the general linear group over a p-adic
field. As such it can be generalized to any connected reductive group over
a p-adic field, comp. [RZ], [Rou].

2.21 Having done these preparations we will write M as a union of repre-
sentable subfunctors. The last step is to exhibit Zariski open sets, which
remain stable in this union. Let us start by giving an alternative definition
of the functor M.

Let X be a lifting of the p-divisible group X to Spf W(L). Then a point of
M with values in S € Nilpy () is given by the following data:

1. A p-divisible group X on S.
2. A quasi-isogeny 9 : Xs — X of p-divisible groups on S.

2.22 We define the closed subfunctor M™ of M by the condition that p"g
is an isogeny. The functor M™ is representable by the p-adic completion of
a scheme locally of finite type over S. Indeed, M™ is a union of open and
closed subfunctors M™™ which are given by the condition that p"g is an
isogeny of height m. To give such an isogeny is the same thing as to give
a finite locally free group scheme G' C X[m]s, which is of height m. Hence
we see that the functor M™™ is representable by the p-adic completion of
a closed subscheme of a Grassmanian variety associated to the algebra of
functions on X(m) . This proves the representability of M™. In the sense
of Zariski sheaves we have M = lim M" .

To prove the theorem we need still another representation of M as a union
of representable subfunctors. To do this we define for any field extension P
of L a quasi-metric on the set M(P).

Definition 2.23 Let « : X — Y be a quasi-isogeny of p-divisible groups
over P. We define q(a) = height p" o, where n is the smallest integer such
that p"a is an isogeny.

If P! is a field extension of P we have g(a) = ¢(ap/).

Lemma 2.24 Let o : X — Y be an isogeny of p-divisible groups over a
scheme S. For any inieger ¢ the set of points s € S such that g(a,) < ¢ is
closed.
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Proof: We prove that the set of points s € S, such that ¢(a,) > ¢ is open.
The function g does not change if we multiply & by a power of p. Therefore
we may assaume that o, is an isogeny, but p~lo is not an isogeny. Then
there is a neighbourhood U of s, such that p~a; is not an isogeny for £ € U.
Let n; be the smallest integer, such that p™ta, is an isogeny. Hence n; is
nonnegative for ¢ € U. Assuming that height «; is a constant function on
U we find the result

¢ < g(a;) = height o, = height o, < height p™ a: = ¢{0;).

Definition 2.25 Lel o : X — Y be a quasi—isogeny of p-divisible groups
over P. We define d(a) = g(e)+q(a™t). For two poinis of M(P) we define
d((X, 0),(X",¢')) = d(d'e™")

If my is the smallest integer such that p™+o is an isogeny and m_ is the
smallest integer such that p™-a~! is an isogeny, we have d(e) = (my +

m_)heightX .
Corollary 2.26 Lemma 2.24 holds with q replaced by d.

Because d((X, g), (X, po)) = 0 the function d is not quite a metric on M(P).
To get a metric, we consider for k € Z the subfunctor M(k) C M of quasi-
isogenies of height k. We set:

height X~1

M= JI M.
h=0

It is easily checked that the function d of definition (2.25) is a metric on
M(P).

The proposition 2.18 may be reformulated as follows:

Proposition 2.27 There 15 a natural number ¢ and a finite extenston L' of
L, such that for any perfect field P containing L', and any point X € M(P)
there is a point Y € M(L'), such that d(X,Yp) <c.

We define for a natural number ¢ a subfunctor M, of M consider the
subfunctor M(h) of quasi-isogenies of height 2. We define
. height X—1
M= H M(h).

h=0



60 CHAPTER 2

It is enough to show that this functor is representable. Since multiplication
of an isogeny by p does not change the value of the function d,

M (S) = {(X,0) e M(S); d(gs) <c for se&S}.

Lemma 2.28 The functor M. is representable by a formal scheme, which
is locally formally of finite type over Spf W(L).

Proof: Let M(h) be the open and closed subfunctor of M. that consists
of points (X, g) such that height ¢ = h. Then M. is a disjoint union

M= T Mc(h).

h€Z

The multiplication of g by p defines an isomorphism

M_(h) — M(h + height X).

Therefore it is enough to show that the following functor is representable
by a formal scheme formally of finite fype

height X—1

M= [ M.m).
h=0

We consider the functor M? = M” [\ M,. The functor M? is represented
by the completion of the scheme M™ along the closed set of points s € M"
given by the conditions d(g,) < ¢ and 0 < height g, < height X. Hence it
is represented by a formal scheme formally of finite type over Spf W(L).
Let (X, p) be a point of M, with values in a field P. Then p~lp is
not an isogeny, because otherwise we would have height ¢ = height p +
height p~'¢ > height X. Hence the smallest integer m,, such that p™+p
is an isogeny must be nonnegative. Since height ¢~! = — height g, we have
the inequalities

—height X < height o~ < 0.

Again we conclude that the smallest integer m._, such that p™-p~! is an
isogeny, is nonnegative. By the remark after definition (2.25) we conclude
that
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my + m- < c¢/height X.

Hence my is bounded by ¢/height X. This implies that we have an equality
for n > c¢/height X

('A;’?)f‘ed = (M?-H)red- .

The equality follows because a quasi-isogeny a : X — Y of p-divisible
groups over a reduced scheme S is an isogeny, if o, is an isogeny for each
point s € S (see 2.9).

We fix an affine open subscheme U C (M?).q for large n. For n big we
get an affine open formal subscheme Spf R, of .A:ff:‘ , whose underlying set
is U . Hence we have a projective system of surjective maps of adic rings

Rn+1 — Ry

Let R be the projective limit. We write R, = R/a,. Let J be the inverse
image of the ideal of definition in some R,,.
In order to show that M, = lim M? is a formal scheme, we have to prove

that the ring R is J -adic. Since R, is J -adic we may write
R =lm R/a, +J™.

The limit is taken independently over all n,m. We claim that for fixed m
the following descending sequence stabilizes

coan +I" Dag +I™ D ...

Indeed, let X, be the universal p-divisible group on Spf R, . Then X =
1i_1}1 X, defines a p-divisible group on R/J™ for each m. Weget ¢ : Xg 13m —
X by lifting the existing quasi-isogeny for m = 1. By the definition of
representable we get for a suitable N a unique map Ry ~ R/J™ that
induces the point (X, g). For any n > N the composite map

R, — Ry — R/J™ — R, /IR,

has to be the canonical one. This implies that the first arrow induces an
isomorphism R,/J™R, — Rn/J™Ry. We conclude that the descending
sequence of ideals stabilizes.
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By proposition (2.5) we conclude that R is an adic ring. This completes the
proof of lemma (2.28).

Corollary 2.29 The funcior M, is representable by a formal scheme for-
mally of finite type over Spf W(L). The associated reduced scheme (Mc)red,
whick is the subscheme defined by the largest ideal of definition, is projective.

Proof: Indeed, for n > ¢/height X we have

(-’\Zc)red = (M?)redv

But the right hand side is a closed subscheme of [[ M™™, where nh < m <
(n + 1)h with h = height X. This follows because for each geometric point
(X, o) of the right hand side

height p™ g = nheight X + height ¢ < (n + 1) height X.

O
Proof of theorem 2.16: Let c and L' as in proposition (2.27). It is enough to
show that M is representable over L'. As in the proof of lemma (2.28), we
see that it is equivalent to show, that the subfunctor M is representable.
Obviously the proposition (2.27) remains valid for the functor M.
Let a be an integer. For a point (Y,y : Xzr —Y) of M(L") we denote by
Ma(Y) C M, the closed subset of points 5 € M, , such that d(X,,Y) <e,
where X denotes the universal p—lelSlble group over M,. Tt is easily seen
by the triangular inequality, that M,(Y) =8, if d(XL/,Y) > a+c.
Let U} be the open formal subscheme of Ma, whose underlying set is the
complement of

U Mo (Y).

YEM(L),d(X10,Y)> f
Note that the last union is finite, because Mgayc(L') is finite by the last
corollary.
Claim: If @ > f + ¢ we have U] = U/,,.

First we show this equality for the underlying sets. Let Z € U,{ +1(P) a point
with values in some field P. We have to show d(Xp, Z) < a. By proposition
(2.18) there exists a point Y € M(L’) such that d(Yp, Zp) < c. But by the
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definition of U;f+1 it follows that d{(Xp,Yp) < f. Hence d(Xp,Z) < fH+e <
a.

The equality of formal schemes follows because M, is the completion of
Ma+1 along the closed subset Image .Ma — Ma+1 Indeed, this tmplies
that UJ is the completion of U7 241 along the closed subset vl +1- Hence the
claim follows.

We set UF = UJS for any @ > f+c. Clearly Uf — Uft! is an open
immersion of formal schemes of finite type. We have M = U g UY, because
any point s of M such that d(X,,X;) < f —c is contained in the open
set U/. Indeed, if s is in the complement of U/, there is a ¥ € M(L'),
such that d(X;,Y;) < ¢ and d(X,,Y,) > f. Hence we get the contradiction
d(X,, X,) > f — c. The theorem is proved. 1

2.30 We call a subset T C M bounded if there is a natural number N such
that d(X;, X;) < N for each point ¢ € T. We call a subset T C M bounded
if there is an NV, such that for each point ¢ € T represented by (X;, 0:) we
have

helght ot S N, d(Xt,Xt) S N.

By the proof of the theorem (2.16) we see that a subset of M is bounded,
iff it is contained in one of the sets US. Since (Uf),q is contained in the
projective scheme (./\;‘!a)red for a suitable number a, we see that (U/),q is
quasiprojective. We obtain the following:

Corollary 2.31 For ¢ locally closed subscheme T' of M, the following con-
ditions are equivalent:

(i) T is bounded.
(ii} T is quasicompact.
(iii)} T is quasiprojective.

Indeed for the proof it is enough to note that M is the union of the quasi-
compact open subsets U7,

Proposition 2.32 Any irreducible component of the scheme M,.q is pro-
jective.
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Proof: Let us first show that an irreducible component is quasiprojective.
By the last corollary it is enough to verify that an irreducible component
is bounded. Let 7 be the general point of the component. By corollary
(2.26) we have for each point of the irreducible component the inequality
d(X:, X:) < d(X,, X,). This shows quasiprojectivity.

To finish the proof it suffices to show that the valuative criterion for proper-
ness is satisfied for our irreducible component C of M,.4. Let R be a discrete
valuation ring over L with field of fractions (). Suppose we have a @-valued
point (X, ) of C. To extend this point to Spec R we may replace g by
p"0 and hence assume that g is an isogeny. Then Ker ¢ C Xg[n] for some
n. Taking the scheme theoretic closure we extend Ker g to a finite flat
group scheme H C Xg[n]. Then gg : Xg — Xg/H is the desired extension
of (X, p). d

2.33 Let us denote by J(Q,) the group of quasi~isogenies of X. There is a
natural right action of J(Q,) on the formal scheme M,

(X,Q)F—*(X,QO’)’), VEJ(QP)‘

We will give conditions for the existence of the quotient of M by the action
of a discrete subgroup of J(Q,).

Proposition 2.34 Let T C J(Qp) be a discrete subgroup. Let U C M be
& quasicompact open formal subscheme. Then the sel

{vel; UynU £} (2.3)
1s finile.

Proof: There is a finite field Ly C L such that X is obtained by base change
from a decent p—divisible group Xy over Lg. After a finite extension of Lg
we may assume

End Xy = End X.

Indeed, to see this we may assume that X is isotypical. Then there are
integers r and s > 0, such that p~"F* acts identically on the Cartier module
Mp of Xp. We may assume Ly = Fpe. Let M be the Cartier module
of X. Then Mg are the invariants of the operator p~"F*. Hence any
endomorphism of X maps Mg to itself.
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This remark shows that we may suppose that L is a finite field. Since M,.q
is locally of finite type the conditions

UynU =8 and (U@))ynUL) =0

are equivalent.

The points of U(L) correspond to subcrystals M of the isocrystal Mowu)
W(L)q. Since U is quasicompact and therefore bounded there are integers
a,b € Z such that

"M C M Cp"M
for each M € U(L). If yM € U(L) for some 7 € T, we get the inequalities

"My M C P

Hence if ¥ runs through (2.3) the set of W(L)-lattices {y~1M} is finite.
Since the set of elements of J(Q,) C Endwry M ® Q that fix the lattice M
is compact, there are for a given v € I’ only finitely many elements ' € T
such that

v IM=4y"M.
This proves the proposition. [

Corollary 2.35 If the group T is torsionfree, it acls without fized points
on M.

Proof: ¥ z is a fixed point of v € I',v # 1, we choose a bounded open
neighbourhood U of . Then we have

Uy*nU#£9 for ncZ.

Hence the proposition implies that v is a torsion element.

Lemma 2.36 Let I' C J(Q,) be a discrete subgroup. There is a family
of quasicompact open subsets {U;}ier such that for any quasicompact open
subset V of M, there are only finttely many pairs (v,%) such that

VﬂUi‘Y#@

and such thet U Uiy 1s a covering of M.
rxr
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Proof: We may assume that the ground field L is finite. Then there is a
constant ¢ such that any point of M has distance less than ¢ to a point of
M(L).

For any point € M(L) we define an open neighborhood

Us:=M\ |J Be(w),
YEM(L)
d(y,x)>2c

where B.(y) denotes the closed ball around y of radius ¢. One checks that
the open set U, has the properties:

Be(z) C Uz C Bac(), Uy = Usy for v € J(Qp)

Then U U, = M and only finitely many U, meet a given bounded

zEM(L)
subset of M. We get the desired system {U;}ier, if we take for I C M(L)
a set of representatives of M(L)/T. O

Let us call the group T' separated, if it is separated in the profinite topology.
This means that for any y € T, 4 # 1, there is a normal subgroup I' C T
of finite index that does not contain 7.

Proposition 2.37 Let I' C J(Q,) be a torsionfree separated discrete sub-
group. Then ithe quotient M /T as a sheaf for the étale topology is a formal
algebraic space locally formally of finite type over Spf W(L).

Proof: We define open subfunctors of M/T' which are formal algebraic
spaces. Let {U;}ics be as in the previous lemma. We choose for a fixed
¢ a normal subgroup I C T such that U; NU;y = @ for 4 € T". For each
7 € I' we have an open immersion of locally ringed spaces

Ui'}' e (M/F,)ringed space-
Hence the image of the morphism

H Ui')’ —t (M/ I.")ringred space
vEr

is a scheme V;, where the finite group I'/T acts without fixed points.



QUASI-ISOGENIES OF p—DIVISIBLE GROUPS 67

Then V; — M/I” is an open immersion because it is the union of the
open subfunctors Uyy. The quotient of this open immersion by the group
G =T/T” is an open immersion of an algebraic space V;:

Vi — MJT.
Hence we have a cartesian diagram

Vi M/T

M/JT

Since the upper horizontal arrow is an open immersion so is the lower one,
which proves that V; is an algebraic space open in M/T.
To prove the proposition we have to show that the map

v=][Vi—M/T (2.4)

iel
is étale and surjective in the sense of sheaves. To see this we note that
Vi Xaqyr M is the open subset U Uiy C M. This implies surjectivity of

ver
(2.4) by the previous lemma. To show that (2.4) is étale it is enough to

verify that it is of finite type, because we already know that V; — M/T is
an open immersion. Since the map is locally of finite type it suffices to show
that for any quasicompact scheme T' the scheme V' x aq/1 7' is quasicompact.
Again we may assume that there is a section 7' — M. Then there are
only finitely many indices ¢ € I such that U;y meets the image of T" for
some ¥ € T', by lemma (2.36). For the remaining indices ¢ € I we have
Vi xpmyr T = 0. Since each V; is quasicompact the proposition is proved.



3. Moduli spaces of
p—divisible groups

In this chapter we formulate a moduli problem of p—divisible groups with
a level structure of parahoric type and show that it is representable by a
formal scheme.

We fix a prime number p. Let B be a finite-dimensional semisimple algebra
over Q, and V be a finite left B-module. We fix a maximal order Op of B.
We are going to define the notion of a multichain of lattices in V. We
consider first the case, where B is a simple algebra.

Definition 3.1 A chain of laitices is a subset L of the set of Op-latiices of
V, that satisfies the following conditions:

1. If A and A’ are two lattices of L then either

ACA or ACA.

9. Let z € B* be a unil of B, which normalizes Og. Then zA € L, if
Aecl.

3.2 We may make this definition a little more explicit. There is a division
algebra D and an isomorphism B ~ M_,(D), that takes Op to M,(Op),
where Op is the unique maximal order of IJ. We consider D as a subalgebra
of M,(D) via the diagonal embedding.

The normalizer of M,(Op) in Mp(D)* is D* - M,(Op)*. Indeed, consider
an £ € M, (D) of that normalizer. Then zOp C D" is an My, (Op)-lattice.
Hence it is enough to show that any My, (Op)-lattice in D® has the form dO,

69
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for some d € D*. This is well-known for n = 1. For general n it follows from
the so called Morita equivalence (easy exercise), that asserts that the functor
from the category of Op-modules to the category of M, (Op)-modules given

by

Wi— Of ®op, W

is an equivalence of categories.
If we fix a prime element Il of Op, we may reformulate our second condition
as follows:

2’) For any lattice A € L the lattices TEA belong to L.

Indeed any element b of the normalizer of Op has the form & = II*u, where
k is some integer and u is a unit in Op. Hence bA = IT¥A.

We call b a mazimal element of the normalizer, iff ¥ = 1. It is equivalent to
say that b € Op and that bOp is a maximal two-sided ideal in Op.

Fix some lattice Aq € £. By the property 2’} it is enough to know the lattices
between T~ 'Ag and A that lie in £ to recover the whole chain. Hence to
give a chain £ of lattices is equivalent to giving a finite set {Ag,...,Ar—1}
of M, (Op)-lattices in ¥, such that

Aq gAl g"'gSAf"l gﬂ_lAg

The number r that appears here is called the period of the chain. We see
that £ = {Ai}iez, where the A; for i not in the intervall [0, » — 1] are defined
by the condition

A, =1 A;.

3.3 Next we consider the case of a semisimple algebra B. It is a product of
simple algebras

B=B;x...x By,.

There are maximal orders Op; of B;,i = 1,...,m, such that

Op =0, x...x0p,, .

We get a corresponding decomposition of V,
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Vzvl@@vm

Moreover, each Og-lattice A C V may be written in a unique way:

A=A D DA,
where A; C V; is an Op;-lattice. Let us call A; the ith projection of A and
denote it by pr;A.

Definition 3.4 A set £ of Op-lattices A C V, is called @ multichain, iff
there exists for eachi=1,...,m a chain of Op,;-lattices £; in V;, such that
L consists of the Op-latiices for which pr; A€ L; fori=1,...,m.

3.5 Let T be a Z,-scheme, such that p is locally nilpotent on T. We are
going to define the notion of a multichain of Op ®z, Or-modules of type
(£). A typical multichain on T will be {A ®z, Or} where A € L.

Let us fix a notation. Assume that b € B* is in the normalizer of Op. Then
conjugation by b~! defines an isomorphism

Op — Op z+— b~ lab

Let M be a Og ® Op-module. We denote by M? the module obtained via
restriction of scalars with respect to this isomorphism. Then multiplication
by & induces a homomorphism

b: M — M.
Let us begin with the case, where B is simple. We consider the chain £ as
a category with inclusions as morphisms.

Definition 3.6 A chain of Op ®z, Or-modules of type (L) on T is a func-
tor

Ar—s MA
from the category L to that of Op ® Op-modules. Moreover, for each b € B
in the normalizer of Op, a periodicity isomorphism
By - M} = Myp

is given.
We require that the following conditions are satisfied:
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1. Locally on T there ezist isomorphisms of Op ® O -modules

Mp~A Rz, Or.
2. If b is mazimal (cf.(3.2)) and A, A’ € L are such that BA C A’ C A,
we have an isomorphism of Op/bOp @ Op-modules locally on T
MA/QA,AI(MAI) ~ A/A/ QR Orp .

Here pa,ar : Mar — My denotes the homomorphism that corresponds
by functoriality to the inclusion A’ C A.

8. The periodicily isomorphisms are funcitorial, i.e. for any inclusion
A’ C A the following diagram is commutative:

é
M}, b My
OALA! OBABA’
b Oy
MA MbA .
The 0y satisfy the cocycle condition:
Mklb2 9171('72 Mb1bzA
B,
oy
b b
(M2)h i My -

4. For each b € B*, which is in the normalizer of Op the composition

8 OA,bA
M} 2 Mpp 22 My

s multiplication by b.
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Let us reformulate this definition more explicitly. As above we represent
B as a matrix algebra over a division algebra D in such a way that O =
Mn(Op). We fix a prime element Il € Op. Then we may represent £ as a
chain of Og-lattices in V

e CMNCAp Cee- €L,

such that A;_, = IIA; for some fixed natural number r and any i € Z. We
may reformulate our definition as follows:

Corollary 3.7 A chain of Op @ Or-modules of type (L) on T is an indexed
set of Op ® Op-modules {M;}icz, such that

M, = il'I’ 1€Z.

Moreover there is a Op ® Op-homomorphism of degree one

0:M; — My

such that the following conditions are satisfied.

1. We have isomorphisms of Og @ Op-modules locally on T':

M;~A;®0rp, M;/o(Mi1) ~ AifAi 1@ Or.

2. The map
Qr : M-—-r = M;H — M;

15 the multiplication by I1.

We note that the condition 1) does not claim any functoriality in A;. Tt just
says that M; is locally on T a free Op ® Or-module of the same rank as
the Op-module A; (i.e. dimpV) and M;/o(M;-1) is a free Op/MO0p @ Or—
module of the same rank as the Op /IO p-vector space A;/A;i ;.

3.8 We will also consider chains {M; };cz where we replace the condition 1)
by the weaker conditions, that M; is locally on 1" a free Op ® Op-module,
and that M;/o(M;i_1) is locally on T" a free Op/lI0p ® Or-module. Then
we speak just of a chain of Op @ Op-modules on T without fixing a type.
The type (L) enters in the definition 3.6 only via the ranks of the modules
above.



74 CHAPTER 3
We note that the Morita equivalence induces a bijection between chains of

Op ® Op-modules and chains of Op ® Op-modules.

3.9 Let us return to the general case, where B need not to be simple. We
consider the decomposition into simple algebras. Let £ be a multichain of
Op-lattices in V. We denote by £; the chain of Op,-lattices in V;, which is
the projection of L,

L;={prA|Ae L}

Definition 3.10 A maultichain of Op ®z, Or-modules on T' of type (L) is
a set {My, ..., Mn}, where M; is a chain of Op, ®z, Op-modules of type
(£3).

If A € £ has the decomposition
A:Al@'--@Am R A, e l;

m
we write Ma = € Ma,, where M}, is defined by the chain M;. Again A —

i=1
My is a functor from £ to the category of Op ®z, Or-modules. Moreover
for any b € B* that normalizes Op we have a periodicity isomorphism

eb:Mk—"MbA;

such that the following diagram is commutative for 6A C A:
M} Mia

OAbA

Ma

Theorem 3.11 Let {My} be a multichain of Op @ Orp-modules of type (L)
on a Ziy-scheme T, where p is locally nilpotent. Then locally for the Zariski
topology on T the multichain {Ma} is isomorphic to {A ® Or}rcc.

If {M}} is @ second muliichain of type (L) on T, then the following functor
on the category of T-schemes
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T’ v Isom ({Ma ®o, Or'}, {M} ®0r O1})

is representable by a smooth affine scheme over T,

We remark that by the Morita equivalence it is enough to prove this theorem
in the case, where B = D is a division algebra. We refer to the appendix
to this chapter for the proof and first formulate a similar theorem in the
presence of a polarization. Whenever we consider the polarized case we will
make the blanket assumption that p # 2.

3.12 We fix data (F,B,V,( , )) of type (PEL), cf. (1.36). Let * denote
the involution on B. We let O be a maximal order of B invariant under
. If W is a right B-module, we define a left B-module by restriction of
scalars

*: B — BPP

With this convention the dual vector space V* = Homgq,(V,Q,) is a left
B-module and ( , ) induces an isomorphism of B-modules

v:V —V*
In the same way for an Op-lattice A in V, A* = Homgz,(A,Z,) is a left
Op-module. The image of A* by the map
-t
AN — VSV
is the dual lattice with respect to ( , ). We will denote it by A* as well.

Definition 3.13 A maultichain L of lattices in V is called selfdual, if A € L
implies A* € L.

Definition 3.14 Let £ be a selfdual multichain of latiices in V. A polar-
ized multichain of Op @z, Or-modules on the scheme T of type (L) is a
multichain of Op ®z, Or-modules {Mp} of type (L) together with perfeci
O -linear pairings

gA:MAXMA: ——>0T

such that the following conditions are satisfied
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1. Ex{am,m’) = Ea(m,a*m'), m € Mp,m’' € M+, a € Op
2. Ex(m,m’) = —Ep{m/,m), m € My, m' € My-.

3. Let A1 C As be lattices in L. Then

En(m, oar azn) = En,(0a,,0, My 1), M E Mp,,n € Mys .

4. Let b € BX be in the normalizer of Op. We set b = (5=1)* so that
Jor a lattice A we have the relation (bA)* = bA*. We consider for a
lattice A € L the periodicity isomorphisms

3 :MK = Ma 6,‘, : MX‘ — Mi,. = M(bA)* .

Then we have the relation

Ea(my, mz) = Eal(fsmy, O5ma), my € Mp, ma € Ma-.

3.15 On the selfdual chain £ we may consider the functor A — My =
Mj. = Homg,(Mp+,0r). We have a periodicity map on this functor de-
fined by the diagram

(MA)b = (M};\*)* e (MZA')* = M(";,A)‘ = MbA.

One verifies with little pain that {#,} is a multichain of Op ® Op-modules
of type (£). Let us call My the dual chain. We may restate the definition
of a polarized multichain in this set-up more elegantly:

A polarized multichain over the scheme T of type (L) is a multichain { My}
of type (L) together with an antisymmetric isomorphism of multichains

{Mp} — {Mar}.

The analogue of theorem (3.11) in the polarized case is the following theo-
rem. For the proof we again refer to the appendix to this chapter.

Theorem 3.16 Let £ be a selfdual muliichain of Og-lattices in V. Let
T be a Zy-scheme, where p is locally nilpotent. Let {Ma} be a polarized
multichain of Op ®z, Or-modules of type (L). Then locally for the étale



MODULI SPACES OF p—-DIVISIBLE GROUPS 77

topology on T the polarized multichain {Mp} is isomorphic to the polarized
maultichain {A ® O7}.

Moreover, if {M}} is a second polarized multichain of type (L) on T then
the functor of isomorphisms of polarized multichains on the category of T-
schemes

T' +—s Isom ({MA® O}, {Ma @ OT'})

1s representable by a smooth affine scheme over T.
3.17 We will now define moduli problems of p-divisible groups, that are

variants of the problem in chapter 2. Our starting point is one of the
following two situations:

Case (EL):

We fix (F', B, V) as in (1.38), and a maximal order Op in B. Let
G be the corresponding algebraic group over Q,.

Case (PEL):

We fix (F, B,V,( , )) asin (1.38), and a maximal order Op in
B fixed by the involution *. Let G be the corresponding alge-
braic group over Q,.

To define the variants of our functor M we need a replacement for X. In
terms of the group G this is given by an admissible pair, cf. (1.18).

Definition 3.18 A set of data for moduli of p-divisible groups in the case
(EL) relative to an algebraically closed field L of characteristic p is a tuple:

(FaBa OBa Kb’ﬂaﬁ)’

Here (F, B,0g,V) are the data of case (EL). We denote by G the associated
reductive algebraic group over Qp. Let us denote by Kq the quotient field
of W(L). The datum b is an element of G(Ko). The next datum is a
cocharacter

p:Gy —G
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that is defined over a finile field exiension K of Ky. Finally £ is a mulfi-
chain of Opg-lattices in V.
We require, that the following conditions are fullfilled.

(i) The pair (b, p) is admissible, cf.(1.18).
(i) The isocrystal (V @ Ko,bo) has slopes in the interval [0, 1].

(iii) The weight decomposition of V @ K with respect {o the cocharacter p
contains only the weights 0 and 1:

Ve K=V V.

In the case (PEL) we have in addition io the data above the nondegenerate
antisymmetric pairing (, )} on V that induces an involution * on Op. We
require that the multichain L is selfdual. The mulliplier of the corresponding
group G is denoted by c. Let us denote by v the slope morphism associated
to b. In addition io the condiiions above we require:

(iv) The characier cv : D — G, is the characier y; that corresponds to
the rational number 1.

Let us fix the set of data (EL) respectively (PEL). We consider two sets of
data (b, p, L) and (¥, 4, £') to be equivalent, iff b and & are in the same
o-conjugacy class, u and g’ are conjugate over a suitable finite extension
K" of Ky, and there exists a bijection A ~ A’ between the chains £ and
L', such that for any pair A; and A

lengthop A1fA2 = lengtho, AL /AS.

Moreover in the case (PEL) we require that the bijection A — A’ commutes
with taking the dual lattice. Note that we do not require the equivalence of
the pairs (b, ) and (¥, /mu’) in the sense of definition (1.23).

3.19 Let us make a few comments on this definition.

a) By the crystal associated to a p-divisible group X over L we mean the
Lie algebra of the universal extension of some lifting of X to W(L). It is
canonically isomorphic to the Cartier module of X.

The condition (ii) above says that (N, F) = (V ® Kg,bo) is the isocrystal
of some p-divisible group X over L.
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The conditions (i) — (iii) are satisfied if there is a p-divisible group X over the
ring of integers Og of K, such that its reduction Xz modulo the maximal
ideal is equipped with a quasi-isogeny X — X, and such that the following
condition is satisfied.

In general let X be a p-divisible group over a base scheme S, where p is
locally nilpotent. Then we denote by M (X} the Lie algebra of the universal
extension of X.

In our case where S = Spec Ok the definition of M(X) makes sense because
Ok is a p-adic ring. The given quasi—isogeny allows us to identify M(X)®Q
with the K-vector space N ®g, K. Indeed we have a quasi-isogeny

X X Spec L Spec OK/p~—> X Xspf Ox Spec OK/p

that lifts the quasi—isogeny X — Xr. This induces a quasi-isogeny between
the values of the crystals associated to the p-divisible groups at the divided
power thickening Spec Ok /p — Spf Ox. We get the desired identification
(comp. also (5.15)).

The condition is that under this identification the canonical filtration on
the universal extension

0> Fill s M(X)®Q — LieX®Q —0
coincides with the filtration given by p
00—V - VeK-—-V/Vi—0.

Conversely one expects that the existence of an X with the properties above
follows from the conditions (i) — (iii). If this is false it could happen that
the moduli functors we are going to define are empty for some of the data
of definition (3.18).

b) The condition that (b, i) is admissible implies that for each character
of G that is defined over Q,, we have

< p,x >= ordy x(b),

(cf.(1.21)). K we take for x the determinant of an element g € G(Q,) acting
on the Qp—vector space V

detq, : G — Gy,
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we get the equality:
dim Vi = ord, detx,(b; V @ Ka).

If we take in the case (PEL) for x the multiplier ¢, we get from the condition
(iv) that

<p,c>=1

This implies that the subspaces Vj and V] are isotropic with respect to the
pairing obtained on V @ K by extension of scalars.
We also note that conditions (i) and (iii) imply condition (ii).

3.20 We recall (cf. (1.38)) that the isocrystal N is equipped with an action
of B. In the case (PEL) it is also equipped with an alternating bilinear form
of isocrystals,

Pp: NN — 1(1).

Indeed since L is algebraically closed and since ord, ¢(b) = 1, we find v €
W (L)* such that ¢(b) = pu~'o(u) and put ¥(v,v') = u(v,v'). If we choose
another u, we change 1 by a factor from Q. We call the set Q‘% of bilinear
forms on N a Qp-homogeneous formal polarization.

The form 9 defines a polarization on the p-divisible group X, i.e. an anti-
symmetric quasi-isogeny ) : X — X. The isogeny class of the pair (X, Q%)
is well defined by the data of definition (3.18).

Let E denote the Shimura field, i.e. the field of definition of the conjugacy
class of g, cf. (1.31). We denote by E the complete unramified extension of
E with residue class field L, which is contained in K. We define a functor on
the category Nilpo,, that is associated to the data of definition (3.18). For a
scheme S in Nilpo, we will denote by S the closed subscheme of 5 defined
by the sheaf of ideals p(Js. The structure morphism ¢ : S — Spec Op
induces a morphism

é6:5— Spec Oy [pOy — Spec L,

which allows us to consider S as a scheme over L.
Let X be a p-divisible group over S with an action

1:0p — End X.
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For an element ¢ € B* that normalizes Op, we define 1*(z) = ((a™!za).
By abuse of notation we write X¢ for the pair (X,:%). The multiplication
by ¢(a) induces a morphism of Op-modules:

X* —X.

Definition 3.21 Let M be the contravariant set-valued functor on the cat-
egory Nilpo,,, such that a point with values in S € Nilpo,, is given by the
following date up to isomorphism.

(1) For each lattice A € L a p-divisible group X over S, with an action
of the algebre Op:
Op — End X,

(2) For each lattice A € L o quasi-isogeny
or 2 X Xspee, S — Xa x5 5,
which commutes with the action of Op.

We require that the following conditions are satisfied:

Let us denote by My the Lie algebra of the universal extension of Xa. It is
a locally free Og-module. We will write

Bara : Xa — Xn
for the guasi—isogeny that lifts QAIQXI.
(i) Locally on S the Op ® Os-module My s isomorphic 1o A® Os.

(i1) Let A C A’ be two neighbours in the multichain L. Then the quasi-
isogeny par,A is an isogeny. The cokernel of the induced map My —
My is locally on S isomorphic to A'/A ®z, Os as an Op ®z, Os-
module.

(1ii) For any @ € B* that normalizes Op the map X* — X defined above
induces an isomorphism

90 ZXX -——-)X,,A.
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(iv) For each A € L, we have an equality of polynomial funclions on Op:

detog(a; Lie Xp) = detg(a; V), a € Op.

(v) In the case (PEL) there exists an isomorphism py for each lattice
Ael
pa: Xa — Xpn,

such that the following diagrams are commutative up to a constant in
Q¢ which is independent of A,
(Xa)s — (XRn)s

QAT leﬁ/\

Xz — X

A

A
5-

We often write (X, ¢) for a point of the moduli problem M. We remark
that the functor M does not depend on the choice of the p-divisible group X
but only on the polarized isocrystal (N, $Q;). Indeed, for another choice
X' we have a canonical quasi-isogeny « : X' — X that respects the ho-
mogeneous polarization. The map (X, ) — (X, gaz) gives the canonical
isomorphism between the funciors defined by X respectively X'.

The automorphism group J(Q,) of the homogeneously polarized isocrystal
(N, 9Q;) acts by quasi-isogenies on X.

Definition 3.22 Let g € J(Q,) and let (X¢,0) be a point of M(S). Let
9(X¢,0) € M(S) be the point (Xz,09™ ). This is an action from the left
of J(Qp) on the functor M.

"This action is independent of the choice of X.

3.23 Let us explain the data and conditions of this definition.

a) The condition (iv) on the determinants is taken from Kottwitz [Ko3].
The precise formulation is as follows. Let V be the scheme over Z,, whose
set of points V(R) with values in a Z,-algebra R is Op ®z, R. We choose
a Op-invariant Og-lattice I’ C V. For an Og-algebra R we define a map:
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beOg®R +— det(b;I'®o, R)

This defines a map of schemes Vg, — A%,K, which is easily seen to be
defined over O, where F is the Shimura field. Since 1t is determined by its
restriction to the general fibre, it does not depend on the choice of T'. In the
definition we denote by det(d; Vp) this morphism. In the same way we view
det(b; Lie X ) as amorphism Vg — AL. What we mean by condition (iv) is
an equality of morphisms of schemes over 5. We cannot interpret condition
(iv) in the naive way, because in general different polynomial functions may
have the same value on the finite set Og/p"Op.

b) Let us point out a consequence of the condition (iv). We write B as a
product of simple algebras,
B=]]B.
i=1

The algebras B; are matrix algebras over divison algebras D;,
B; =2 M, (Dy).
We may choose the isomorphism in such a way that
05 = [] M, (Op,).
i=1

This induces decompositions of the lattices in our chain £ and of the corre-
sponding p-divisible groups,
A=EPnr

Xa =[] Xa.-

The condition (iv) is a condition on each X, separately. Therefore we may
restrict to the case 7 = 1 in the discussion of that condition. Hence we
assume that O = M,(Op) is a matrix algebra over the ring of integers
in a division algebra D with center F. We denote by F an unramified
extension of F' that is contained in D and splits D. Let F* respectively F*
the maximal unramified extensions of Q, contained in F respectively F.
Assume that F* embeds into K. Then we get a decomposition:
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Vo= P W

o FtoK

Here ¢ runs through all possible embeddings and

Ve ={veVo;fo=4¢(flv, feF}.

Let II be a prime element of D that normalizes F. Let us denote by 7 the
automorphism of F' induced by conjugation with II. Then II induces an
isomorphism:

o:vy — Ve

It follows that the rank of the K-vectorspaces Vo¢ and Vod’l agree, if the
restrictions of ¢ and ¢’ to F'! are the same. The restriction of the polynomial
function detg(a; Vo) to Op: ® Ox is uniquely determined by the ranks of
the K-vectorspaces V0¢.

Assume that we are given a point of the functor M with values in S. We
have a decomposition,

Op: ®Os = H Os.
$:Ft—K
Note that Og is a Op-algebra and that ¢ maps O, to the subring Oy of K.
Since the Lie algebra of X, is a Oz ® Og-module, we get a decomposition

Lie Xp = €P) Lie? Xs.
¢

The restriction of the condition (iv) to the subalgebra O, of Op says
exactly that the rank of the locally free @g-module Lie? X coincides with
the rank of the K-vectorspace Vf. This condition on the ranks is weaker
than condition (iv), if F' is not an unramified extension of Q,.

¢) Let us show that the conditon (iv) on the Lie algebra implies the condition
(1) of the definition (3.21). Let Mj; be the Lie algebra of the universal
extension of Xa,. Then the condition (i) of definition (3.21) is equivalent
to the condition that for each 1 = 1,...,m the Op, ® Os-module M}, is
locally on S free of the same rank as the Op,-module A;. We note that the
condition on the rank is automatic by the existence of the quasi~isogeny ga
of definition (3.21) .
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Lemma 3.24 Let D be a finite—dimensional division algebra over Qp. Let
F be the center of D. We denote by Op the mazimal order in D. We
denote by k respectively k the residue class fields of F' respectively D. We
note that k and k are in a canonical way subalgebras of Op/pOp.

Let X be a p-divisible group over an algebraically closed field P of charac-
teristic p, with a faithful action of Op. Then Lie X is a k® P-module. We
have a decomposition

kepP= [ P
o:k—P

which induces a decomposition of the Liealgebra:
LieX = ®qLie, X.
The following conditions are equivalent:
(i) For each o the f~c®k,a P-module Lieq, X is free.

(i) The Cartier module M of X is a free Op @ W(P)-module.

Proof: Let F be the center of D. Let d? be the degree of D over F. We fix an
unramified extension F of F of degree d that is contained in D. We write 7
for the Frobenius of ¥’ over F'. We denote by F* respectively F'* the maximal
unramified extensions of Q,, which are contained in F respectively 7. We
fix a prime element II of D that normalizes F. Then Op is the algebra,

Op =0p[ll], Ha=7(a)ll, a€F.

Here s is some natural number prime to d. It follows that 1% is a prime
element 7 of F'.
We have a decomposition:

Op@WP)= H we).
qS:F"—»W(P)Q

The sum ranges over all possible embeddings ¢. This decomposition induces
decompositions of the Lie algebra and the Cartier module of X,

Lie X = @y Lie? X

M= EB¢M¢.
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Explicitly the W{P)-submodule M is given by the condition:
M?={m e M;(f ® )m = (1® ¢(f))m}.

One easily checks that the action of Il on X induces on the Cartier module
a map

I:M*—s MO,
An element m € M?, which is not in IIM?™" generates a direct summand
of M as an Op ® W(P)-module, which is isomorphic to Op ®p: , W(P).
Hence the condition (ii) of the lemmasays that the dimension as a P-vector
space of the cokernel of the above map is independent of ¢.
The Verschiebung V induces a map

VMt — MY,

which becomes an isomorphism when tensored with Q,. We consider the
commutative diagram:

I

0, Mo Mo b 0
v v
N Mé c# 0

¥

Lied™ | Lie®

It follows that the cokernels C¢ have all the same dimension, iff Lie? and
Lie®™ have the same dimension for all ¢. But this is exactly the condition
(i) we put on the Lie algebra in the lemma. |

The lemma shows, that the determinantal condition in our moduli problem
implies the condition, that the value M, of the crystal of X, on the scheme
S is locally for the Zariski topology on S isomorphic to A ® Og. Indeed, to
show this we may restrict to the case, where B is simple. By the Morita
equivalence we may further assume that B = D is a division algebra over
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Qp. In this case the condition (i) of definition (3.21) simply says that
locally on S the Op ® Os-module My, is free. By the remarks made on
condition (iv) the assumptions of the lemma above are satisfied. Hence for
any geometric point Spec P — § the crystal induced by X, over Spec P is
a free Op @ W(P)-module and a fortiori the value of this crystal at Spec P
is a free Op ® P-module. Since M, is known to be a locally free (Js-module
this suffices to prove our assertion.

d) Next we claim that the condition (ii) of the definition in view of condition
{iv) is equivalent to the following:

(ii bis) For any neighbours A C A’ of the chain L the height of the quasi-
isogeny X, — X is equal to log, AN i=1,...,m.

Indeed, to show this one reduces as above to the case where O = Op
is the ring of integers in a division algebra D, with residue class field k =
Op /TOp. The equivalence of the conditions follows if we can show that the
cokernel N of the map My — Mjy: is a locally free k® Os /pOs-module.
By Breen-Berthelot-Messing [BBM] Prop.4.3.1 (compare also de Jong [dJ1]
2.3) we know that N is a locally free Og/p0s-module. Hence it is enough
to consider the case, where S is the spectrum of an algebraically closed field
P. As before we have a decomposition,

N = @N¢.

o:k—P
We get a decomposition of the Cartier module M of Xx:

M= @¢,M¢.

A similar decomposition holds for the Cartier module M’ of Xx:,. We see
that N is a free £ ® P-module, iff the dimension of the P-vectorspace N
is independent of ¢. This follows in the same way as in the proof of lemma
{3.24) from the following commutative diagram:
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0 — M* Yo M9 — Lie*Xy —0
{ ) )
0 - M7 Y M'% — Lie*Xpy —0
i !
N°® . N¢
{ 1
0 0

Theorem 3.25 The functor M is representable by a formal scheme, which
is formally locally of finite type over Spf Op.

Proof: We start with the representable functor M of theorem (2.16), for our
X at hand. In fact the theorem is applicable, because over an algebraically
closed field any isocrystal is decent. Let (X, p) € M(S) be a point. We
transport the action of B on X by quasi~isogenies via g to an action of B
on X by quasi~isogenies. Let Mo be the subfunctor of M, where Op acts
by isogenies. This is clearly a closed subfunctor and therefore representable.
We have an obvious morphism of functors:

j: M — H Mo.
A€C

It is enough to show that this morphism is representable. We know (2.9)
that the condition, that a quasi-isogeny of p—divisible groups over a scheme
S is an isogeny, is representable by a closed subscheme. Hence the condi-
tion that Op acts on Xa, the conditions (iii) and (v), and the condition
that gas A is an isogeny for any two neighbours A C A’ is relatively repre-
sentable with respect to j. The condition (iv) is clearly representable. In
the presence of condition (iv), condition (i) is automatic and condition (ii)
is equivalent to condition

(ii bis) prescribing the degree of certain isogenies. This is obviously repre-
sentable by an open subscheme.

3.26 Next we will consider the problem of determining the local equations
of the formal scheme given by definition (3.21). We reduce this to a problem
of linear algebra by constructing a local model, comp. [R1].
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Let us start with a set of data (B, F,Op,V, u, L) in the case (EL). In the
case (PEL) we have in addition a nondegenerate antisymmetric Q,-pairing
(, )onV.

The cocharacter p is given over the field K. Let £ C K be the Shimura
field. Let us define a functor M'° on the category of Og-schemes.

Definition 3.27 A point of M'° with values in an Og-scheme S is given
by the following data.

1. A functor from the category £ to the category of Og @ Os-modules on
S:

Ar— iy, Ael.

2. A morphism of functors

pr: A®z, Os — 1.
We require that the following conditions are satisfied:

(i) ta is a finite locally free Og-module. For the aclion of Op on ty we
have the following identily of polynomial functions

detos(a; ta) =detx(a; Vo), «a€Op.

(ii) The morphisms pp are surjective.

(%) In the case (PEL) the composite of the following maps is zero for each
A:
£ LA, (A@OSY%A@OS LA ;.

Clearly the functor M/ is represented by a closed subscheme in a product
of Grassmannians. We write M for M ®0,, Op.
Let us introduce a smooth covering of the formal scheme M.

Definition 3.28 Let N be the contravariant sei-valued functor on the cai-
egory Nilpo,, such that a point of N with values in S € Nz'lpoJllj is given by
the following data

1. A point (Xu, en) of M(S).
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2. An isomorphism of (polarized) multichains

TA - Ma —’:—)A@)zp Os.

Here Mp denotes the value of the erystal of X5 on S.
3.29 The smooth formal group
P(S) = Aut({A ®z, Os})

acts on A via the data 2):

p-(Xa,00,7) = (XA, 04,P78),  PEP(S).

We see that A is a left P-torsor over M and therefore representable by a
formal scheme, which is of finite type over M. There is a natural morphism

N — N
(Xn,on,7a) +— A®z,0s ZE_: My — Lie Xy,
that factors through the p-adic completion M of Mo,
By Grothendieck and Messing [Me] the map
N —s B0

is formally smooth. It is formally locally of finite type since A and M'°
are formally locally of finite type over Spf Oj.

3.30 Let us fix a closed point z € M. We identify its residue class field
w(z) with the residue class field x = L of Oy. We will consider sections of
the smooth morphism

N—M
in a pointed étale neighbourhood (I/,y) of z. By definition of A a section
s over Y is given by an isomorphism of (polarized) chains
a : MA ®o,, Ou — A®z, Oyu.

We are going to explain a condition on the section s that ensures that the
composition
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U-L*N—%Mloc

is formally étale.
Consider a local artinian augmented x-algebra A, such that the square of
the maximal ideal of A is zero. Consider a morphism

i:Spec A—U : (3.1)

which is concentrated in . Let us denote by Y, for A € £ the p-divisible
groups on SpecA induced by the universal p-divisible groups X on M. Let
Yo =Ya X Spec 4 Spec K be its reduction. Let Np (respectively Na) be
the Lie-algebra of the universal extension of Y5 (respectively ¥3). By the
crystalline nature of Ny we have a canonical isomorphism

71 Np®s A~ Ni.

On the other hand the section s provides an isomorphism

~va: Np ~1+A®z,A.

Definition 3.31 We call a section s rigid of the first order in z, if for
all algebras A as above and morphisms @ as above the following diagram is
commutative

NA(X),CA—L—)NA

o/

rA
A®zp A

where v, = 74 @4 K.

3.32 Any closed point z € M has an étale neighbourhood, such that there
is a section s in this neighbourhood which is rigid of the first order in =.
Indeed, let 7 be the maximal ideal of definition of O,y. Let M3, be the
closed subscheme of M defined by Z2. For any formal scheme X of finite
type over M we will denote by A the scheme &' X 4 .A:iz. Since N — M is
a smooth morphism, it is enough to find an étale neighbourhood s — M,
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of £ and a section § : Yy — .A72 which is rigid of the first order in x in an
obvious sense. Since My — M 2 1s a morphism of schemes of finite type it
is enough to ask for the existence of a section over Spec O, where OSt is
the strict henselization of the local ring of M; at z. By Hensel’s lemma it
is enough to find a section over Spec O§h /mZ. Since any morphism (3.1)
factors through the spectrum of the artinian ring A’ = Ot /m2 4 zOSh,
it is enough to construct a section over Spee A’, such that the diagram of
definition (3.31) is commutative. This is obvious.

Proposition 3.33 Let ¢ € M be a closed point and let s : U,y) = N be
a section in a pointed étale neighbourhood (U,y) of = which is rigid of the
first order. Then the composition

u LN N — Mloc
ts formally étale in a Zariski open neighbourhood of y in U.

It follows that any point of M has an étale neighbourhood, which is formally
étale over M'°°. For the proof we need the following general result on formal
smoothness contained in EGA.

Lemma 3.34 Let N — S be a morphism of locally noetherian formal
schemes, which is formeally of fintte type and formally smooth. Let M — N
be a closed subscheme of N defined by a coherent sheaf of ideals K C Oyr.
Let x be a point of M, and y be its image in N'. Then the composite M — S
of the morphisms above is formally smooth in a Zariski open neighbourhood
of the point z, iff the map

/C//Cz R0 e IC(.’L‘) —_ Q_}v’/s B0 &(y),
induced by the universal derivation ([EGA] Orv 20.5.11.2}, is injective.
Proof: Consider the standard exact sequence

K/K? = QL5 @0, Ot — Qhyps — 0.

By [EGA] Orv 20.7.8 the condition that M — S is formally smooth in
a neighbourhood of z is equivalent to the condition that § is formally left
invertible in a neighbourhood of z. The topological O -module Q}Ws is
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formally projective [EGA] Oyy 20.4.9. The topology on Q}V /s is the J-adic
topology, where J C Oy is some ideal of definition [EGA] Oy 20.4.5.

It follows that Q}V- /s ®on Ox is a formally projective Oxq-module, that
carries the adic topology induced from Opg. Let us denote by T the maximal
ideal of definition of Ox. By [EGA] Oyv 19.1.9 the condition that § is
formally left invertible in a neighbourhood of z is equivalent to the condition
that

K/K?®0, Om/T — Q}ws ®on Om/T

is left invertible. One checks that both modules are coherent modules over
O /T . Hence we conclude the proof of the lemma by [EGA] Orv 19.1.12.

Corollary 3.35 If the map in (3.34) is an isomorphism, then M — § is
formally étale in a neighbourhood of ©.

Proof: This follows from the fact that Q%, /5= (0) in a neighbourhood of =
in this case, [EGA] Ory 20.1.1.

Proof of Proposition (3.33): First we show that the map is formally smooth.
Wewrite ¥ = U, V=N x U, Z= M'¢, Consider the diagram of formal

schemes over 7 = Spf Op.
y
X Z

By [EGA] Ory 20.7.18 we have split exact sequences
0 — P*Qi-/.r — Q;/T —_— Qi’/rf’ — 0.
If we apply s* to the lower exact sequence, we get a canonical splitting
0 — s*p*Q}Y/T ~— *Qyr — FQyx — 0
o | I | =

Q) < seQyr S K/KE



94 CHAPTER 3

Let y = s(z) and ¢(¥) = 2. The morphism ¢s defines an inclusion &(z) —
%(z). Let us use the notation @} /r(2) = Q7 ®o,, k(z) for the geometric
fibres.
We claim that the formal smoothness of ¢s is equivalent to the assertion
that the map

Q% /7(2) @x(zy (@) 1= Q7 (¥) gy Klx) = Q7 (2)
is injective.
Indeed, consider the diagram

e

Q)7 55N S 570, X K/K?

Y
s*Qt

yiz

s* q*le/T

It is easy to see that d induces an injection of the geometric fibres at z, iff

4 does. Hence the claim follows from the lemma.

Let us identify &, k(2), £(y), and «(z). By duality it is enough to show that
Home (Q}Y/Tu &) — Homo, (le/Tv K)

is surjective.

We set A = Oxo/m2 +70x, and B = Og;/m? + 70z ,. These are
augmented artinian x-algebras, such that the squares of the maximal ideals
are zero. Qur assertion is that the map

Der, (A, £) — Der,(B, k)
is surjective. This means that any commutative diagram

M — Mloc

AN

Spec & — Spec «[e],
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such that the vertical arrows are concentrated in z, respectively z, admits
a diagonal arrow as indicated.

Indeed the left vertical arrow is given by a chain {X,} of p-divisible groups
over k. The point y defines a rigidification of their crystals, i.e. an isomor-
phism of polarized chains

MA 2A®ZP K.

Set £5 = LieXa. Then the Hodge filtration defines the point z of the period
space M

Mp = A®gz, &
N N

tA
The right vertical arrow in the diagram above gives a lifting of the last map
A ®z, kle] — ta.

By the horizontal isomorphism above M ®, k[e] ~ A ®z, «[e] is identi-
fied with the value of the crystal of X5 at x[¢]. Hence by Grothendieck
and Messing we get a lifting X of Xa, such that My, the Lie algebra
of the universal extension of Xj,, is identified with My ®x xle]. We get a
rigidification
My ~ Mp ®y klg] = A ®z, &le]

and hence an element of N (x[e]). The point is, that this is the image of
the point {Xx} € M(x[e]) under s : M — N because s is rigid of the first
order.

It follows that the map on derivations is bijective. The formal étaleness
follows immediately from corollary (3.35). 0

We conjecture that M is flat over Spf Op. By proposition (3.33) it is
equivalent to ask whether the local model Mo is flat over O - At the end
of this chapter we review some examples which support this conjecture.

3.36 In the definition (3.18) of the moduli data we had assumed that L is
algebraically closed. We now want to consider an arbitrary sufficiently big
perfect field L of characteristic p. We keep the notations of (3.18) except
that we now impose an additional condition, namely that b is decent, cf.

(1.8).
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Lemma 3.37 Assume thal we are in case (PEL) and that b satisfies a
decency equaiion with an integer s > 0, cf. (1.8). Assume that L contains
the field Fps. Let Ky = W(L)q,. Then there is a unit u € W(L), such that
the Kg-bilinear form

P(v, w) = u(v, w), v,weEN
13 a polarization of the isocrysial N.

Proof: As in the case where L is algebraically closed (comp. (3.19)) our
conditions imply that ord, ¢(b) = 1. We define Nmb € G(Q,-) by the
equation (bo)* = (Nm b)o*. For v,w € N we find the equation for the
given symplectic form on V:

((bo)* v, (bo Y’ w) = ¢(Nm b) (o’ v, 0 w).
If we replace (bo)® by sv(p)o® in the equation, we obtain
¢(Nm &) = p°.

Let us denote by Nm, the norm of the extension W(F,.)/W(¥,). Then we
have ¢(Nm b) = Nm,¢(b). The above equation takes the form:

Nm, p~le(d) = 1.

By Hilbert Satz 90 this is equivalent to the existence of u € W(F,.), such
that

e(b) = pu~lo(u)
Clearly this is a u as required by the lemma. (1
From the corollary (1.10) we obtain:

Proposition 3.38 The isomorphism class of the homogeneously polarized
B-isocrystal
(N, Q) ) depends only on the o~conjugacy class b.

Definition 3.39 A set of data for moduli of p-divisible groups relative to a
perfect field I in the case (EL) is a tuple (F, B,0p,V,b, u, L), that satisfies
the conditions (i) (it) and (1) of the definition (3.18). Moreover we require
that b € G(Ky) is decent, and that with respect to the inclusion of the
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Shimara fleld E C K, the residue class field of E is coniained in L. This
gives an Og-algebra structure on L. In the case (PEL) we have in addition
the nondegenerate antisymmeliric pairing ( , ), that satisfies the conditions
of definition 3.18. In this case we assume that L contains Fy,., where s > 0
appears in a decency equation for b.

Let E be the complete unramified extension of the Shimura field E with
residue class field L. By proposition (3.38) there is a Q,-homogeneously
polarized p-divisible group X over L whose isocrystal is (N, Q). With
this X the moduli problem M of definition (3.21) makes sense over O in
this more general situation.

Corollary 3.406 The functor M of definition (3.21) associated to the daia
of definition (3.39) is representable by a formal scheme which is formally
locally of finite type over Op.

3.41 Our next aim is to define a completion of the formal scheme M of
definition (3.21) over the ring of integers Og of the Shimura field for any data
of definition (3.18) over an algebraically closed field L. For the following
proposition we start with data of definition (3.18) in case L is algebraically
closed or with data of definition (3.40) if L is an arbitrary sufficiently large
perfect field (in the latter case b is decent).

Let s be any integer, such that the morphism sv factors through G,,. We
set

ys = p*(sv(p)) ™.

This is a quasi-isogeny of height sdim X of the p-divisible group X, which
lies in the group J(Q,). Let T'; = 7Z be the cyclic group generated by 7.
Hence T'; acts on the functor M.

Proposition 3.42 Lei M, be the Zariski sheaf associated 1o the funcior
M(S)/Ts.

Then M, is representable by a formal scheme, which is locally of finite type
over Spf Oy.
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More explicitly let S be a connected scheme in Nilpo,. Two data (X, ¢)
and (X%, ¢') over S define the same point of M,(S), if for some integer k
the quasi-isogeny gv¥ ¢'~! lifts to an isomorphism X} — X,,A € L.

Since 7, is in the center of the algebra End X the group J(Q,) continues
to act on M,.

Proof: We fix a member Ag of the lattice chain £. Let ./\;l(n) C M be the
subfunctor where ga, Is a quasi-isogeny of height n. This is an open and
closed subfunctor and M is a disjoint union:

a1 = [T 4.

Let us first exclude the uninteresting case where X is etale. Since v, is a
quasi~isogeny of height sdim X, the action of 7, on M is homogeneous of
a nonzero degree. We get an isomorphism:

sdim X
I #x)— M..
n=1
In the case where X is etale the quasi-isogeny 7, is the identity. Hence the
result is trivial in this case.

Remark 3.43 : If the group X is etale, we are in the case (EL). Since
our functor M is empty unless dim X = dim V;, we may assume that
the morphism g is trivial. Assume that L is a perfect field, and that b €
G(W(L)q) is a decent conjugacy class. Take a decent b € b. Then for a
certain integer s, we have:

(bo)® = sv(p)o’® = p°o”, b e G(Qp-).

Since by Hilbert Satz 90 the cohomology group HY(Qp+/Qp, G(Qp+)) is
trivial, we conclude that p € b. By corollary 3.40 we find a formal scheme
Mg over Spf Z,, such that Mg x Spf W(L) = M. The scheme Mj is
a disjoint union of copies of Spf Z,. We have one copy for each chain of
Og-lattices in V conjugate to £. This is the model of M over the integers
Zyof the Shimura field, which we would like to define in the general case.

3.44 We will now define some sort of descent data on the functors M resp.
M. Let us start with a more general setting.
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Let E be a finite extension of Q,. Let L be an algebraically closed extension
of the residue class field k of E. We denote by E the complete unramified
extension of E with residue class field L. Let us denote by r € Gal(E/E)
the Frobenius automorphism. Let S = (S, ) be an object of N ilpo, , where
¢ : S — Spf Op denotes the structure morphism. We will denote by S
the pair (S, 7¢). We mean by 7 the Frobenius automorphism of the scheme
Spec Op. We consider a (contravariant) functor G on the category Nilpo,.
We denote by G™ the functor defined by: ‘

G7(5) = 6(Sin)

Definition 3.45 A Weil descent datum for the functor G is an isomor-
phism of functors:

a:§-—G"

3.46 If we are given a functor Gy on the category Nilpo,, we have an
obvious isomorphism for S € Nilpo,:

@ = GO(id) : gO(S) hd go(S[-,]).
Hence we have a Weil descent datum on the restriction G of Gy to Nilpo 5
Let Sy € Nilpoy be a scheme, and let S = Sp xs5p7 0y Spf Op. The
Frobenius automorphism on the second factor defines an isomorphism:

7:85,7—S.

If Gy is a formal scheme we have an exact sequence:

G(r)

Go(S)) ———  G(5) G(Sn1)

Hence the Weil descent datum determines Go uniquely. We say that a
Weil descent datum on a formal scheme G over Spf Oy is effective, if it is
isomorphic to the descent datum defined by a formal scheme Gg.
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If G, o, G} is a second formal scheme over Spf Op with an effective Weil
descent datum, we obtain:

Hom((g’ 0‘)’ (gla al)) = Hom(gg, g:))

Let E, be the unramified extension of degree r of E. Then « induces a Weil
descent datum relative to the extension E/E,:

L aTa G — G
We will call it a power of «, and denote it by o. If « is effective, then o”
is effective, and is the Weil descent datum defined by Go Xsp¢ 05 Spf OE, .

The usual Galois-descent asserts that a converse is true:

Proposition 3.47 Let G be a formal scheme, which is formally locally of
finite iype over Spf Op. Assume that the associaled reduced scheme is
quasiprojective. Let a be a Weil descent datum on G. If some power a” of
« 15 effective, then « is effective. The same is true if Groq is a union of an
ascending chain of quasiprojective subschemes.

Proof: There is a unique formal scheme G; over Spf Og, and an isomor-
phism
G =G1 Xsps 0, S0f Op,

which induces on G the descent datum o”. Since a commutes with o
the morphism a : G — G7 is obtained by base change from a morphism
@ : Gy — G]. Clearly @ = 1 holds. Hence & is an ordinary Galois descent
datum for the etale covering Spf O, — Spf Og. We conclude by SGA 1,
Exp.VIII Corollaire 7.6.

3.48 We will now define a Weil descent datum on the functor M. Let us
denote by 7 : Spec L — Spec L the Frobenius automorphism relative to
the residue field k£ of E. We have the Frobenius morphism of the p-divisible
group X relative to &,

Frobg : X — TX,

Let S € Nilpo, be a scheme. We consider a point (X, 0) of M over S.
We can now define a point (Xg, ¢%) in M (Sir1) as follows:
We set X& = X, and we set 9 to be the morphism:

0¢*(Frobzl) : 7¢ X — ¢*X — X3.
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We obtain a Weil descent datum on the formal scheme M:

a: M(S) —  M(Sp)
(X.C:Q) = (Xg)ga)'

It is obvious that the action of 9, commutes with this Weil descent datum,
hence we obtain an induced Weil descent datum on M,.

Theorem 3.49 Let M/Spf Oy be the functor of definition (3.21), i.e.
the field L is algebraically closed (but the conjugacy class b need not to be
decent). Let M, be the functor given by proposition 3.43. Then the above
Weil descent datum on M, 1is effective.

Proof: One checks that the isomorphism class of the descent datum does
not depend on the choice of b € b, and on the choice of X. For any pair of
natural numbers 5,7 € N we have a canonical isomorphism:

Mst/rs = M3~

Since this isomorphism respects the descent data, it is enough to prove the
theorem if s is sufficiently divisible.

Let us first consider the case, where the group G is connected. Then we
may assume that there is a decent b € b, such that

(bo)® = sv(p)o’, be GW(Fp:)q)

We may assume that the residue class field of F is contained in Fpe. Let
us denote by F, the unramified extension of E with residue class field F..
To the element b and the representation V' we have associated an isocrystal
Ny over Fp.. In the case (PEL) it carries a canonical Qp-homogeneous
polarization. Let X be a p-divisible group with this isocrystal. By corollary
(3.41) we get a formal scheme over Spf Op,, which we call M°. We set:

M? = MO/T,

This is a well-defined formal scheme over Spf Og,, if we exclude the case
where the formal group X is étale. We have a canonical isomorphism:

X= Xg X.S‘pec | Spec L.
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The action of 7, V™* on the left hand side of this equation induces on the
right hand side the action of ¢° via the second factor. Indeed, this is what
the above equation says.

For the moduli schemes we get:

M, = M] Xsps 05, Spf O

The canonical Weil descent datum on the right hand side of this equation,
looks on the left hand side as follows:

(X, 0) — (X, g7s Frobgi,).

Since +, is the identity on M, this is a power of our descent datum. Hence
a power of our descent datum is representable. By proposition (3.48) we
are done in the case, where G is connected.

In the case, where the group is not connected, we consider the embedding
G — G' = GLg(V). The additional data p, b € G(W(L)q), and L in the
definition for the functor M, may also serve as additional data for the group
G!. Hence we get a formal scheme M. Since the group G is connected,
the Weil descent datum is effective for the formal scheme M?. The reader
convinces himself that M, C M! is a closed subscheme. Our theorem
follows from the following lemma:

Lemma 3.50 Let E be local field of residue characieristic p. Let E be
an unramified extension of E with algebraically closed residue field. Let us
denote by T the Frobenius automorphism of E over E. Let V be a scheme
over O and assume that p is locally mlpotent onV. Let Z C Vo, be a
closed T-invariant subscheme. Then Z is obtained by base change from a
closed subscheme Z C V.

Proof: We may assume that V = Spec A is affine. Let 7 be the ideal of
Z in A®oy Op. We have to show that I is generated by elements of A.
Let M be any submodule of A and set M = M ®o, Op. It is enough
to show that N = [N M is generated as an Og-module by elements of
M. If M is annihilated by a prime element 7 of E this is a well-known
fact from linear algebra (Bourbaki, Algebre II, §8,7). Since the residue field
of E is algebraically closed, 7—id is surjective on M. The general case
now follows by induction on the power of = annihilating M. Indeed, let

" M = (0). We find generators of N N 7"~1M lying in M. Considering
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N/Nnz"~'M ¢ M/z""M we find by induction elements of N which
are T—invariant modulo N N #"~! M, which generate N/N n7"*~1M. Since
7—id is surjective on N na™~1M we can take these elements r-invariant.
Hence we have found generators of N in M. O

Definition 3.51 We will denote by M the pro-formal scheme over O that
is the projective limit of the formal schemes M;. It is equipped with a left
action of the group J(Qy).

The last statement says that the action of J(Q,) on M, commutes with the
descent datum in (3.49). This is true because any endomorphism commutes
with the Frobenius morphism.

3.52 We will use the height of g to split M into a disjoint union of open and
closed formal subschemes. We have a natural map of groups of Q,-rational
characters

Xg,(G) — Xg,(7).

Indeed let x be a Qp-rational character of G. For a Qy-algebra R we get a
map

J(R) — G(R® Ko) % (R® Ko)* .

An element ¢ € J(R) satisfies bo(z)b~! = z. Since x commutes with o, we
obtain ox(z) = x(z) and hence a morphism of functors in R

f: J — Gm,Q, .
Let A = Homz(X§_(G), Z) be the dual. We define a map

wy: J(Qp) — A

by the equation

< wy(z),x >= ord, X{(x).

Our aim is to define a map

w:M-— A,
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which is equivariant with respect to wj.
Let us give an explicit basis for the group A. Clearly it is enough to do this
in the cases where F' is either a field or * is an involution of the second kind
and F = Fy x Fg, where Fy is a field, and * interchanges the two factors.
Consider first the case where F is a field. We set ¢ = i(B) = /[B : F]. Let
us denote by n the composition of the maps

mo _ N
Endp(V) Y% F Q,, (3.2)

where Nm® denotes the reduced norm of the central simple F-algebra
Endp(V). Then n defines a character of the group G, which we denote
by the same letter.

We have the relation

n(g)’ = detq,(s;V), 9€G(Qp).
In the case (EL) the character n is a generator of Xg (G). In the case
(PEL) we have the character (1.38)

¢:G— Gnq,,
which is related to n by
n(g)z — c(g)dimqu/i’

Then X (G) is the Z-module generated by n and ¢ and the above relation
between them.

Finally we consider the case of an involution of the second kind, where
F = Fy x Fy. Then there is an isomorphism B 2 D x DP? such that *
induces on the right hand side the involution (dy, d2) v (d2,d1). Moreover
there is a left D-module W and an isomorphism of D x D°PP—left modules
V = W & W*, such that the given form on V induces the natural pairing
W x W* — Q, between W and its Q,—~dual W*. Let n and n* be the maps
EndpW — Q, resp. Endp«W* — Q, defined by (3.2). Then X3 (G) is
generated by the characters n, n*, ¢ subject to the single relation

n.n* = cdima,W/i(D),

The definition of the map s in the case (EL) and F a field is as follows.
For a point (X¢, g), 0 = {oar} of M over a connected scheme S it suffices to
define the integer
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ﬁ(XL;, Q) =< %(XL;, g),n >, (3.3)
such that for g € J(Qy)

i(g(X¢, 0)) =< wr(g),n > +ii(X¢, 0)- (3.4)

Lemma 3.53 Let F be a field. Let p : X — Y a quasi—isogeny of p—
divistble Og—modules over an algebraically closed field P, which both satisfy
the condition 3.21 (iv). Then the height of p is an integral multiple of
i(B)- f(F/Qp), where f(F/Q,) is the indez of inertia.

Proof: Let M resp. N denote the Cartier modules of X resp. Y. Using the
decompositions M = ®M?, N = @N? from the proof of 3.24, we get maps
induced by ¢

M?®Qp, — N*®Q,.

The orders of the determinants of these maps are well defined. Since the
maps commute with V we conclude by 3.21 (iv), that these orders are
independent of ¢. O

For the construction of 3 we may assume that M is not empty. Then we
may take for X a p—divisible Op—module, which satisfies 3.21 (iv). We fix
a particular A and set

. 1 .
n(Xe,0) = —m height gp € Z.

We have to verify the identity (3.4),
1 . -1 1 .
~——height pag™" =< ws{g),n > ) height g4 .

i(B) (B)

This follows from
i(B) < ws(g),n >= ord, det(g; V ® Ko) = height g.

Next we consider the case (PEL), where F' is a field. We may assume M is
not empty and choose a point (X¢, g) over L. We may take X = X, for a
fixed lattice A. We choose the polarization A : X — X in such a way that
it induces an isomorphism X — 5(‘; Then we have height A = logp[f& /A
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We have to define equivariant maps in the sense of (3.4)
g M — 7,

such that 2fi = ((dimq,V)/i(B))é. This amounts to the assertion that 2
height ga is divisible by dimg,V. But we have

2height gz = height gz + height g — log,|A/A|.

Hence the divisibility follows from 3.21 (v).
Finally we consider the case F = Fy x Fy, B = D x DP?, We may assume
X=Yx ?, where Y is an Op-module and Y the dual Opers—module.
We fix a lattice of the form Ag & fkg C W o W* of the multichain £. For a
point (X, @) of M we have quasi-isogenies

a:Y — Xp,, ﬁ:’i’-——)XAo,

such that o x § = g, g4 . The quasi-isogeny S& is up to a constant in Qp
an isomorphism. Then we define maps

an* ¢ M—2Z
by 1 = ~1/i(D) - height o, n* = —1/i(D) - height 3, and

height fé.

¢=

1
- dimqp w
This gives the desired J(Qp)~equivariant morphism
a: M — A

3.54 In the end of this chapter we discuss some examples. Drinfeld[Dr2]
first considered a functor M in the case (EL) in the following situation
(compare 1.44). Let B = D be a central division algebra over F' with
invariant 1/d. Let V = D considered as a D-module. In the following we
will also use the right D-module structure on V. It gives us an identification
G(Q,) = (DP?)*, We keep the notation F', 7, 1I, 7, : F — Q, from (1.44).
Since the invariant is 1/d we have II¢ = 7 and the ring of integers in D is

Op =0p[0], Hz=r7(z)U, z€0p.
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In this example L will be the field F,,, which we identify with the residue
class field of Q,. We write W = W(L) for the Witt vectors. Then Ko C Cy,
the completion of Q,. Let K/Kj be a finite Galois extension contained in
Cp, such that ¢(F) C K. Then we have the decompositions

Doq,E = ][] Dorn K
7 F—K

V®Qp K = @ V;? *
mF—K

We take for Vj C V ®q, K a K-vectorspace of dimension d, which is in-
variant by the action of D (from the left), and such that V5 C V.. For
Vi C V ®q, K we take any complementary space invariant by the action of
D. Let u: Gy, — G be the cocharacter with weight decomposition

Veq K=V®Vi.

It is the cocharacter p defined under (1.44).

Finally we will define the structure of a crystal on Op ®z, W, such that
the induced isocrystal is (V, ®) in the notation of (1.44). This will give us
the o—conjugacy class of b € G(Kj).

Let F* be the maximal unramified extension of Q, contained in F'. We use
the decomposition

Op®z, W= H Op ®0,.,a W.

a:Ft— Ky

Let v € Op ®z, W be the element, whose components u, with respect to
this decomposition are defined as follows

v = 0 ifo=c¢|F?
« 1 ifa#elFt

Let V be the o~ 1-linear operator on Op ®z, W defined by V= o) -
u, 2 €0p ®z, Ww.
Let us denote by

M = (Op ®z, W, V., F) (35)

the crystal. The action of Op from the left gives a homomorphism
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¢: Op — End ML

The action of O via ¢ on the F,~vectorspace M/VM is given by the
homomorphism £ : O — F, induced by .

3.55 In this context it is more convenient to replace M by a T — Wr(L)-
crystal M (1.40). The procedure is as follows.

Let I be any perfect field with an Op-algebra structure £ : O — L. From
£ we get a map € : Opt — W(L). We set Wr(L) = OF ®0,., W(L).
It is a complete discrete valuation ring with residue class field L, that is
unramified over Op. The quotient field is Kp(L) (1.40). Let 7 be the
Frobenius automorphism of Wx(L) relative to Op.

A 7 — Wp(L)-crystal is a free Wp(L)-module of finite rank M with a 7~ -
linear operator V : M — M, such that VM D 7M.

Proposition 3.56 The category of T — Wr(L)—crystals is equivalent to the
category of crystals M over L with an action 1 : Op — End M, such that
the action of Op on M/VM induced by 1 coincides with the aclion given
by €. Objects of the latter category are called Op-crystals.

This is well-known (Drinfeld [Dr2]). We only indicate how to obtain a
T — Wp(L)-crystal from the crystal M over L. Now M is an Or Qz, W(L)-
module. From the decomposition

OF ®Z, W(L) = H OF ®OFg,a-‘s W(L):
i€Z/f

where f = [F: Q,] we deduce a decomposition

M:@M;.

i€Z/f

One checks ‘Ehat \~/°M,- C M;41. The condition that the action ¢ on the tan-
gent space M /V M be via ¢ is equivalent to the condition that the operators

VZM,'_l—-—-)Mi, Z#U
are bijective. We set V = V/ and M = (Mp, V). Then we have an

identification M/VM = M/VM. Since this Op-module is annihilated by
%, we obtain in fact a 7 — Wp(L}~crystal:
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TMCVMCM.

We have

[F: Q,) TaﬂkWF(L)M = rankW(L)Azf .

We call rankw,, (z)M the F-height. Let & : (M, 1) — (M', ') be an isogeny
of Op-crystals. Then ¢ induces a morphism ¢ of T — Wg(L)-crystals. We
have

L
f

We denote this number by F-height ¢, comp. (3.53).
Op-crystals arise from p-divisible groups of the following type.

| ot
height @ = 7 lengthy o\ M'/G(M) = lengthy,, o\ M'/p(M).

Definition 3.57 Let S be a scheme over Op. A p-divisible Op-module over
S is a p-divisible group X over S with an action + : O — End X, such
that the action of OF on the tangent space Lie X induced by ¢ is given by
the structure morphism Op — Og.

3.58 The r— Wy(L) crystal associated to the crystal M defined by (3.5) is

M=0p B0 e W(f‘p) y

with the operator V defined by Vm = 7~!(m) - II. We will denote by X
the associated p-divisible group over f‘p with the action ¢ : Op — End X.
Let £ be the chain of lattices in V' = D, which consists of the lattices
{I*Op},k € Z.

We have thus a complete set of data (F, D,0Op,V = D, b, , L) of type (3.18)
(EL) which we call the Drinfeld ezample. The associated Shimura field E
is £(F') C C,. We note that ¢ induces an isomorphism of the field Kp(F,)
with .

Let M be the associated formal scheme over Spf Op. Let us denote by S
a scheme over Spf Op. In the example at hand the condition (3.21) (iv) on
the determinants may be expressed in a different way. The decomposition
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Op: ®z, Os = H Os
a:Ft—E
induces a decomposition of the tangent spaces of the p-divisible groups X
involved

Lie X = @ Lie®X .

Here again o ranges over all embeddings Ft — E. If o|Ft = ¢|F*, there is
a unique extension ¢4 : F — E of a, such that eq|F = ¢.

We claim that the condition (3.21) (iv) is equivalent to the following:
Ifa|F? # o|F? the Og-module Lie® X is zero. If a|F* = ¢|F* the Og-module
Lie® X is locally free of rank 1 and Op acts on Lie® X via €q-

A formal p-divisible group X over an Opg-scheme S with an Op-action
1 : Op — End X that satisfies the condition above will be called (following
Drinfeld) a special formal Op-module. We show that X is a special formal
Op-module if 3.21 (iv) is satisfied and leave the converse to the reader.

To do this we restrict our attention to an element a € Op in 3.21 (iv).
We denote by W the scheme over Z,, whose S-valued points are Oy ®z,
I'(S,0g). The decomposition above induces a decomposition

:HWQ.
43

If a|F? = e|F* we define a function po : W, — A! by the map ¢, :
Op ®pt, Os — Os.

For the remaining « : F* — E we set Po = 1. The right hand side of 3.21
(iv) restricted to Wy is Hp,.

On the other hand consider the decomposition:

Lie X = P Lie"X .
We set

gala) = detos(a; Lie®X) for a € Op ®041,0 Us -

This is a function on W, which is by definition 1 if Lie®X = 0. Then the
left hand side of 3.21 (iv) is the product of the gq,. Hence the condition is
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H Qa = Hpa .
Since the functions p, do not vanish everywhere there are constants k, €

(E’)’< such that qo = kapa. The degree of g, is the dimension of Lie®X.
Hence we get

0 alFt #¢|F*

e
rankeg Lie X_{ 1 a[F":s[F‘.

Hence for a|F* = ¢|F* the function ¢, is a homomorphism

O3 ®0p1,0 Os — Os..

Then the equation ¢4 = kop, implies that this homomorphism is £,. This
completes the verification that X is a special formal Op-module.

3.59 We may thus replace the condition 3.21 (iv) in the definition of the
functor M by the condition that X is a special formal Op-module. In [Dr2]
Drinfeld considered the subfunctor given by the condition that g is of height
zero.

It is obvious that the notion of a special formal Op-module makes sense
over any Og-scheme S. If ¢ : Op — End X is a special formal Op-module
then the action of +(f) on Lie X for f € Op coincides with the action of
e(f) € Og — Og.

Let S be the spectrum of an algebraically closed field L. We denote by M
the 7 — Wg(L)-crystal associated to X. Since Op acts on M, we have on
M the structure of an Op Qo Wr(L)-module. We choose an embedding

£:0p — Op — Wr(L) (3.6)
which extends ¢. Let
M; = {m eM; (fym= T“ie"(j‘:)m} .
Then we have
M=¢M;.

The operator (1), which we denote also by II, is Wp(L)-linear and homo-
geneous of degree 1,
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0:M; — My, IP=n;

while V is homogeneous of degree 1 and 7~ !-linear

V:M; — My, V(wm)=1"Yw)Vm, we Wr(L).
The Wr(L)-modules M; are free, and M;/VM;_; are 1-dimensional L-
vector spaces. The length of the Wg(L)-module M;/TIM;_; is indepen-
dent of i. Since we are interested in special formal Op-modules that are
isogenous to X, we will assume that this length is 1 or equivalently that
ranky,(r)M; = d, i.e. F-height X = d?. The isogeny class of X is uniquely
determined by the 7 — Kp(L)-isocrystal (Mo ® Qp, V~'II).

Lemma 3.60 QOver an algebraically closed field L any two special formal
Op-modules of F-height d* are isogenous. The group J(Qp) defined by
(3.22) is isomorphic to GLq(F).

Proof: By a theorem of Dieudonné there is a unique isotypic isocrystal of
slope zero and height d. Therefore it suffices to see that (M ® Q,, V~11I)
is isotypic of slope zero. Consider the maps induced by multiplication with

(1),
Il : Mi/VM'_.l —_— M,'.H/VM,‘.

Since II% = 7 = 0 in L, we obtain that there is an index i, such that the
above map is zero. We give a definition before finishing the proof.

Definition 3.61 Let X be a special formal Op-module over an Oy-scheme
S. We have a decomposition of the tangent space of X

LieX = (P LiéX.
i€Z/dZ

Here i(f) for f € F acts on Li¢(X) via the homomorphism 7€ : Op —
Op — Os.
We call the indez i critical for X if the map

It: Lie! X — Liettlx

15 zero.
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For S = Spec L we have Lie*X = M;/V M;_;. We have seen that there is
a critical index ¢ for X. In this case IIM; C V M;, and since both modules
have the same index in M; we obtain IIM; = VM;. Hence M; C My ® Qp
is a lattice stable by V~'II. Therefore My ® Q, is isotypical of slope zero.

O

The fact that there is only one isogeny class is the reason the formal scheme
M is p-adic, as we are going to prove now.

Let R be a complete noetherian local ring of chara.ctenstxc p, which is
equipped with a Og-algebra structure. Then we have an injection F —
Oy /pOg — R. Let us denote by L the residue class field of R.

Proposition 3.62 Let X be a special formal Op-~module over R. Then any
quasi—isogeny Xz — X1 exlends uniquely to a quasi-isogeny Xp — X.

Before proving this we note:

Corollary 3.63 In the Drinfeld example M is a p-adic formal scheme lo-
cally of finite type over Spf Op.

Proof: Tt is enough to show by (2.2) that Z = M Xspf 0y Spec Op/pOpy is
a scheme. Since Z is a formal scheme, it is enough to verify that a sheaf of
ideals of definition is locally nilpotent.

Consider a point z of Z and let R be the completion of the local ring Oz ,.
The special formal Op-module X given over Spf Oz, extends to a special
formal Op-module on Spec Oz, , and hence on Spec R, which we also denote
by X. By the proposition there is a unique quasi-isogeny Xz — X, which
extends the given quasi-isogeny over the closed point. By definition of M
we get a morphism Spec R — Spf Oz ;, such that the following diagram is
commutative

SpecR — Spf Oz,

SpecOz;

But this means that an ideal of definition T C Oz, is nilpotent in R.
Therefore 7 is nilpotent itself, and the corollary is proved. O
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3.64 For the proof of proposition (3.62) we shall use Cartier theory (Drinfeld
[Dr2], Zink [Z2]). Let R be an Op-algebra. We denote by Eg = E the
Cartier ring of R relative to Op and a prime element © € Op. Then Ep is
the set of all formal sums

Z Vi [aij]Fj )

,j>0
where i, j are integers and a;; € R. One requires that for fixed { only finitely
many a;; are nON—zero.
One has the relations Fla] = [a?]F, [a]V = V[a?], where ¢ is the number of
elements in the residue class field & of Op. Furthermore Eg is a Op-algebra.
The structure morphism maps a (g — l)th root of unity £ € OF to [¢] € Eg.
Moreover we have FV = 7 and

[s.¢]
[a]+ 8] = [a + 8] + > V*[Pi(a, B)]F?,

i=1
where the P; are universal polynomials.
The category of formal Op-modules (compare Definition (3.57)) over R
is equivalent to the category of reduced Cartier modules. Let us assume
that we are given a homomorphism Oz — R that extends the structure
morphism O — R. Then Ep is a Og-algebra.
The category of special formal Op-modules over R is equivalent to the
category of triples (M, M;,II), where M is a reduced Eg-module, M =
@ieZ/d M; is a grading of the abelian group M and Il : M — M is a
Eg-module homomorphism. One requires that the following conditions are
satisfied. The operators [a], V,F, Il act homogeneously on M and have the
degrees degla] = 0,degV = 1,degF = ~1,degll = 1. We have II¢ = 7.
The R-modules M;/V M;_; are locally free of rank 1.
We note that the decomposition

M/VM = P M;/VM;_,
i€Z/d
is exactly the decomposition in definition (3.61) for the corresponding spe-
cial formal Op-module X.
Assume that the R-modules M;/VM;_; are free for i € Z/d. Let m; €
M, i € Z/d, be a V-basis of M such that m; € M;. Then the elements
IIm; may be uniquely expressed as follows
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Om; = ZV"[a,»,,,]m,-_,._,.l, i€ Z/d‘ (3.7)
n>0

Conversely for any set of elements a;, € R,n > 0,7 € Z/d such that
ILicz/q @0 = 7 there is a unique (M, M;,1I) with a V-basis m;, such that
the equations above are satisfied.
Let X be a special formal Op-module over R and assume that the index
i € Z/d is critical for X (3.61). Then we have IIM; C VM; and because V
is injective we get an operator

U=V: M — M.

Let R’ be a R-algebra. We denote by Xp/ the special formal Op-module
obtained by base change, and by Mg its Cartier module.
With this assumption we have the following

Lemma 3.65 (Drinfeld): For any n > 0 the funcior which associales {0 a
R-algebra R’ the set of invariants of the operator U

U
RI — ((MRI),‘/V”d(MRI)i)
is representable by a scheme étale over Spec R.

Proof: Since the question is local on Spec R we may assume that a V-basis
exists. Any element of (Mg );/V™*%(Mpg:); has a unique representation

nd-1

E Vi[zslmi—s, z,€R. (3.8)

s=0
This identifies the functor R’ + (Mps);/ V"4 Mg:); with the affine space
A7 and U with an endomorphism of A%¢. Hence the functor in (3.65) is
representable by a scheme of finite presentation over Spec B. We show by
the infinitesimal criterion that this scheme is étale.
Let ¥ — R be a surjective homomorphism of R-algebras with nilpotent
kernel a. We have to show that the map

(Mp)i [V (M) - (Mpo)i [ V" (Mpn); (3.9)

induces a bijection of the U-invariants. This follows if we prove that U is
nilpotent on the kernel of (3.9). An element of the kernel may be expressed
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in the form (3.8), where x, € a. It is enough to see, that for sufficiently
large N

nd-1
15 (Z V’[z,]m;_,) =0,

5=0

where the equality is meant in Mp/.
But for given t € N we have I¥m;_, € VEM. The desired equation is
therefore clear for large ¢t. 1

Let us denote by 7{<[n] the étale scheme given by Lemma (3.65) on Spec R.
It commutes with base change R — R':

Xpr

n; ¥ [n]= 7’:')( [n] X specr Spec R .

Furthermore 5 [n] has an Op-module structure given by that of M. If X is
of the minimal possible F-height d?, we see by the case of an algebraically
closed field that 5 [n] is locally for the étale topology isomorphic to the
constant scheme associated to (Op /7" Or)4.

3.66 We are now ready to prove proposition (3.62). Let us start with

the case that there is an index ¢ critical for X. By assumption F-height

X = F-height X = d2. Hence 5¥[n] is a finite scheme locally isomor-

phic to (Or/7*OF)? as a scheme with Op-action. Since we have a quasi—

isogeny X5 — X this scheme is constant over Spec L and hence over

SpecR. Let 1, ...,74 € li_nln;’( [n] be a Op-module basis. Then 71,...,74 €
kL

l‘i__IpM/V“dM = M, and we have Ily; = V.

n
The Cartier module Mg of the special formal Op-module Xp, is given by
the equations Ilmg = Vg, k € Z/d in the sense of (3.7). We get a map of
Cartier modules

MR — M
mp — V¥iy b=ii+1,...i+d-1
Using the fibre criterion for isogenies (Zink [Z3]} we see that the morphism

of formal groups Xp — X induced by this map is an isogeny of height
d(d—1).
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If we multiply this isogeny Xz — X by a suitable quasi—isogeny of X, we
get the desired lifting of Xy — Xf.

Let us now consider the general case. Then S = Spec R is the union of the
closed subsets S; C S, where the index ¢ is critical. Let us more generally
consider two p—divisible groups X and Y over a noetherian scheme S, where
p is locally nilpotent. By the rigidity property (see after definition (2.8)) it
makes sense to speak of a quasi~isogeny from X to Y over a closed subset
TCS.

Lemma 3.67 Let S be a union of finitely many closed subsets S = S; U
...US,. Assume we are given quasi-isogentes ¢; : Xg, — Yg, for1,...,r,
such that p; and p; agree on S;NS; for any i and j. Then there is a unique
quasi—isogeny ¢ : X —'Y over S, which induces the p;.

Proof: It is enough fo prove this for a covering with two closed subsets
S = 51 US;. We may suppose that S is affine, S = Spec 4, 51 = Spec A;,
Ss = Spec Ay, S1 NSy = Spec B. Since nilpotent elements play no role, we
may assume that A is the difference kernel A — A; x A3 =3 B. We see
that for two flat affine group schemes G and H over A there is an exact
sequence 0 — Hom (G, H) — Hom (Ga,,Ha,) ® Hom (Ga,,Ha,) =3
Hom (Gp, Hp). The lemma follows easily.

Since we have shown that the quasi-isogeny Xy — X uniquely lifts to any
S; the proposition (3.62) follows from this lemma. [

3.68 We give now the description of the p-adic formal scheme M, which is
due to Drinfeld.

We recall the definition of the Bruhat-Tits-building B of PGL4(F). It is a
simplicial complex, whose 0-simplices are equivalence classes 7 of Op-lattices
modulo homothety. For two lattices 7 and 7/ we define the logarithmicindex

log[n : 7] = lengtho,.n/(n N 1') — lengtho 7' /(n N 7).
A simplex is a set of O-simplices A = {#;y,.. ., i, L 0< o <61 < -+ - < 4p <
d such that there are representatives 7, € s, , such that
i, C i C - C1piye (3.10)

Since we have different homothety classes of lattices the inclusions are
proper. We assume that the indices are chosen in such a way that log[n;, :
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Bir_ ] = ik — ik—1,k = 1,...r. Of course there are many choices of indices
1g, . - -, iy for the same simplex A.

Let us fix an integer h. Then for any simplex A there is a unique choice
of indices and a unique choice of representatives 5;, € 7j;, satisfying (3.10)
and such that

log [mi, : O%] =ix—h. (3.11)

We view B x Z as a disjoint union of Z copies of B. Then a simplex of
B x {h} is a chain of lattices (3.10) such that (3.11) holds.

The group GL4(F) acts naturally on B x Z, such that the action on the
second factor is translation by ordp detg, ¢ € GLa(F) and the action on the
first factor is via the projection GLg — PGLg4. More explicitly, if A x {h}
is a simplex of B x {h}, which looks in the canonical representation (3.10)
as follows

Tﬂircﬂiuc"'cﬂi”

then the canonical representation of gA is of the form

A, Chip C---C Ay,
where A;, = g%,

3.69 Let us consider the category Nilpg, of Op-schemes S, such that p €
Oy is locally nilpotent. For any simplex A of B x Z we are going to define a
functor Ua on N ilpos. We always assume that A is given in its canonical
representation (3.11).

A point of Ua(S) is given by an isomorphism class of diagrams

e C My C -0 C M, T M
Pig «I- Piy l l l (312)
ﬁio — ‘Cil — —— *Ci,- — L:io

Here we denote by L;, invertible Og-modules. The lower horizontal arrows
are Og-module homomorphisms. The ¢;, are Op-module homomorphisms.
We require that for any n € u;, \mi,., the section p;,(n) of L;, vanishes
nowhere on S.
It is not difficult to check that Ua is a formal 7-adic scheme over Spf Op
isomorphic to
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Spf (OF [Toy- -y oy Urity -+ Uay Uy o U [ To - o T = )"
(3.13)
The symbol * denotes the m-adic completion.
Fix an index k and let A’ = A\{7;,}. Consider the morphism Ups — U,
which associates to a point n;, — £;,, [ =0,...,r and | # k, the point

nio — e —F 77*'1;-1 -3 nik — nik-l-l —_— e
! ! { 1
'Cio —_ ‘Cik—l —_ L:ik-}-l = Cik+1 —_— e

Then Uar — Un is an open imimersion.
Let us denote by 2% the union of the formal schemes Ua with respect to
the open immersions defined above.

Proposition 3.70 The formal scheme é%. is separaied over Op.

Proof: A scheme X over Op is separated if there exists an open covering
{U:}ier, such that for all 7,j € I the canonical immersions U; N Uj —
Ui x o, U; are closed. Since we have UAO U[‘ =U ANT by definition of = =, we
need to verify that the canonical morphism Uanr — Ua XOp Ur is a closed
immersion. We leave this to the reader. O

3.71 There is a left action of GLg(F) on E4. An element g € GL4(F)
transforms a S-valued point @, : 76 — L4 t0 ©4g™! : gy — L. The units
in the center of GL4(F) act trivially.

The projection B x Z — 7Z induces a natural morphism

EF "—"..Z_a

where Z denotes the constant formal scheme over Spf Op associated to Z.
Following Drinfeld we denote the fibre over 0 of this morphism by Qf,—-. We
note that the fibres over different connected components n : Spf O — Z
are all canonically isomorphic. Indeed for a simplex A € B x Z the functor
Ua, depends only on the projection of A to B. Therefore we obtain a
canonical isomorphism

:ﬁw—»()}xz.
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The additive group Z acts via the second factor on éﬁ.. The action of
m € Z takes a point m;, — L;, to the point {n}, .. — LI .}, where
Mipam = x> Liyym = Li,- We call this the transletion by m.

Theorem 3.72 (Drinfeld): There s an isomorphism of formal schemes
J\;l -——*é};‘s XSpfOF SpfOE".,

where the morphism Spf Oy — Spf OF is given by g. For a suitable iso-
morphism GL4(F) ~ J(Qp) this map is equivariant. The Weil descent
datum on M gives on the right hand side the composile of the canoni-
cal Weil descent datum and translation by 1. The iranslation by m on
24 Xgpsop SpfOp induces on M the morphism which associates to a
point (X, g) the point (X" ,TI-"p), where =™ here denotes the morphism
X — X" defined by (3.20).

For the proof we refer to Drinfeld (loc. cit.).

3.73 We will give here a few comments on the proof which we will use later.
Let us denote by M the 7 — Wp(F,) crystal of X,
M = 0Op ®o; WF(FP).

Note that there is a unique isomorphism Wp(F,) ~ Oy that induces the
given O -algebra structure on F,, and such that

OF — Wr(F,) — O

is the embedding £. We use this isomorphism to identify Wpg (Fp) and Op.
With respect to the choice of the extension € of € to Oz (3.6) we have the
decomposition

M=P M.
We may write
M; = WF(Fp) Br-ig,05 Op.

Any index ¢ € Z/d is critical with respect to M, i.e. VM; = IIM;. The
operator VI : M; — M; is given by the formula
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Vi(w®z)=r(w)@Wzl™, we Wp(F,),z2€0p.

The invariants A; C M; of this operator consist exactly of the elements

w®IlV, weOr, 0<j<d.

Let us denote by ey, ..., eq the standard basis of ¢,

If n is an integer we denote by 7i the integer given by the conditions 0 <
#i < d and n = i mod d. We use the same notation for n € Z/d. We define
Op-linear embeddings

A, — F¢

i)y

j
P i

where ¢(3,7) =0if 14 j < d, and £(3,) = 1 if i+ 7 > d. Let us denote the
image of this embedding by A;. Then we have a commutative diagram

Aacr B Ae B AL = A B A
Tl l~ i l= 71 |~
Ag-1 C A C XM C X1 C 7 tx

3.74 Let X be a special formal Op-module over a Og-scheme S of charac-
teristic p. Assume g : Xs — X is a quasi-isogeny that gives a point of M.
Let 7 [n] be the étale sheaf of lemma (3.65), and

7 = limn [n].
n
The quasi-isogeny g gives a map \; — 77<. We use it to identify the constant
sheaf n with a lattice in F'¢. We have the canonical map

9 — M; — M;/VM; = Lid X, (3.14)

where ®M; denotes the Cartier module of X.

Assume that the maps II : Lie/ X — Lie/ X are isomorphisms for j # i.
Then the morphism in (3.72) associates to g the point of {7{,,’} given by
(3.14). The canonical index of the O-simplex {7;} in the sense of (3.11) is i.
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If S is the spectrum of a perfect field L, the morphism in (3.72) looks on
the L-valued points as follows. Let 0 < iy < - - < 2, < d be representatives
for the critical indices of X. Again the quasi-isogeny ¢ allows us to identify
ni with a lattice in 9. The canonical maps (3.14) fit into a commutative
diagram

i}
o C 7, c---C i, - Tio
| | | |
Lief* X e Lie* X = Lie'r X - Lie’* X .

It is easy to check that this is a point of Ua, where A C Bx Z is the simplex
{n:,} with the canonical indices i.

3.75 To make this definition work over any base S, Drinfeld proposes the
following construction.

Let again S = SpeeL. Let i € Z/d and j be the first critical index that
follows 1. If ¢ is critical, j is by definition equal to 7. Let s > 0 be the
smallest integer, such that i + s = j mod d.

Consider in M7*! = M; @ --- @ M; the abelian subgroup U;*!, which is
generated by elements of the form

,...,0,Vz,—Tiz,0,...,0).

Then there is an isomorphism

Mis+1/Uia+1 _:L) Mj
(%o, -y 2s) +— Mo+ "1V +.. 4 Vg,

The operator V™I on M; induces on the left hand side of this isomorphism
an operator of the form

(zg...a:s)»-a—>L:cg+(:c1,.‘.,m,,0) (315)

where L : M; — M}*/Uf*! is a homomorphism of abelian groups. One
defines an operator

o M{JUF — ME[UE
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by the formula ¢(xg,...,24-1) = Lzo + (21,...,24-1,0), where L is the
composite of the L above with M+ /U +* — M3 US.

The invariants (M#/UZ)® are the same as those of the operator (3.15) on
M:YH/US ie. via the isomorphism with Mj, equal to nf .

The construction of ¢ makes sense for the Cartier module of a special formal
Op-module X over any base S and gives the desired morphism (3.72). By
the case of a perfect field it is radical and surjective. The étaleness is verified
in a standard way from the Grothendieck-Messing criterion.

3.76 Drinfeld’s theorem shows that the local equations of the formal scheme
M are given by (3.13). We may also obtain the local equations by computing
M'¢, and then applying proposition (3.33).

Let us consider the definition (3.27) in our case. The chain of lattices £
consists of a single homothety class Op C V of Op-lattices. Assume we are
given a point Op — t of M over a Op-scheme 5. We fix an embedding
€:F — E. Again by condition (3.27, (i)) ¢ is a direct sum of line bundles

t= @ti.

i€Z/d

Here Oz C Op acts on ¥ via the embedding Op % Op — Os, and
I € Op acts as an operator of degree 1. Let ' C Op be the free Op-
submodule with basis 1,11, ...,I[%"1. To give a Op-linear map Op — #is
equivalent to giving a Op-linear map ; : I' — t*. The condition that the
@; define a Op-linear map amounts to the requirement that the following
diagram is commutative

oo T A o

@il 1 piv1 (3.16)

..._)ti _ ti+1——-)..-

Hence M is the functor of those diagrams (3.16) which satisfy the condi-
tion that ¢; ® Os is surjective.
The ; define a closed embedding

\yloc d—-1 d—1
M — P&l x . xPEL,
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where we have one copy of the projective space for each ¢ € Z/d. Let
us denote by Té’), - ,T‘gf_)l the homogeneous coordinates on the ;th copy.
Then M* is the closed subscheme given by the equation

i i1 i+1 i .
TOTE = 11O k<o

Tj(f-)1T(§i+1) = WTJ'(i-H)Ty—)1 j<0.

The scheme M has indeed the same local equations as those given by

(3.13).

Proposition 3.77 Let M be the pro-formal scheme over Spf O (3.52)
associated 1o the Drinfeld example. Then there is an isomorphism of func-
tors over Spf O

M — Q%‘ Xspjor SPf Op -

Proof: By Drinfeld’s theorem (3.72) the right hand side represents the fol-
lowing functor G on the category Nilpo,. A point of G(S) is a triple
(¢, X, @) up to isomorphism. Here ¢ : S — Spf Oy is a morphism over
Spf Og, X is a special formal Op-module over S. Let us denote as before
the reduction modulo p by a bar. Then g is a quasi—isogeny of height zero
of special formal Op-modules

0: "X — X5z.

For X we take the special formal Op-module given by the r— Wg(L)-crystal
associated to (3.5).

Let S € Nilpy M be an object and ¢ : S — Spf O the structure morphism.
We define a morphism of functors

M(S) — G Xsprog Spf Op.
(X,0) — (™9, X, op* (Frobz™)) x %

Here m denotes the F'-height of ¢ which is locally constant. Recall that on
M we have a Weil descent datum given by

M(S) — M(S)
(X,0) — (X,e9" (Frobz')) .
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We give G Xsp5 05 Spf Op its canonical Weil-descent datum. One checks
1mmediately using the expression for the descent datum given by Drinfeld’s
theorem (3.72) that the functor morphism above respects these descent data.
Since the p-divisible group X is isoclinic, we get that the action of v, 42,
on ./\;i(S) (see 3.41) is multiplication by p?. On the right hand side of
(3.77) we get an action of ¥,42, on G. The natural morphism G — Spf O
becomes equivariant, if 7,42, acts on SpfOp by'-r”dz" .

If we denote by G, respectively Spf Og, the quotients with respect to the
action of 7,42, on G respectively Spf Oy, we get a cartesian diagram

G — SpfOy

! !
G. — SpfOg, .

Taking this into account, we obtain

M=lmG, 2G.

In terms of the functor G the action of J(Q,) on M takes the following
form

g(p, X, 0) — (T—ordFdetg%X’ Qg—lhob%rdpdetg) ,
where g € J(Qp) = GLa(F).

3.78 We now discuss an example for the rational data (F = B,V = F9)
introduced in (1.47). In this case we take as a lattice chain £ the multiples
of the standard lattice O%. An argument similar to the one used in the
analysis of the Drinfeld example (3.58) shows that our moduli problem M
(for L = Fy,) is given as follows. Let X be a p-divisible group over F, with
isocrystal equal to (V ® Kg, bo). A point of M with values in S € Nilpo 5 18
given by a pair (X, g) consisting of a p—divisible group over S with an action
of O and a quasi-isogeny ¢ : X X g, F,g — X x5S which commutes with
the action of Op. The determinant condition is equivalent to the condition
that the induced action of O on Lie X is the natural one, after identifying
F with E = ¢(F). In other words, the fibres of X are formal Op-modules of
dimension 1 and F-height d, comp. [HG2]. The corresponding infinitesimal
deformation functor was studied by Lubin and Tate [LT], and Drinfeld [Dr1],
comp. [HG2].
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Proposition 3.79 The formal scheme M is {non—canonically) isomorphic
to a disjoint sum of copies of Spf W(¥p)[[T1,- .-, Ta-1]l,

M= 1] Spf WE) T, .., Ta-1ll

heZ

Proof: Let (X,9) € M(Fp) with height ¢ = h. Let § : X — X be a
quasi—isogeny of height —h. Then

00 : X — X

is a quasi—isogeny of height 0 between formal Op—modules of dimension 1
over an algebraically closed field and hence an isomorphism (comp. [HG2]).
We obtain a bijection given by the height,

M(F,) = Z.

Let M) be the open and closed subfunctor of M where the height of o
is equal to A. Then ./‘\;l(")(f’p) has only one point. Since M® is formally
locally of finite type over Spf Oy it follows that M is of the form

M® = Spf A,

where A is a complete local ring with residue field F,,. Let (Xg, go) be the
special fibre of the universal object over Spf A and let ()~( , @) be its universal
formal deformation over Spf W(F,)[[T1,...,T4-1]], comp. [HG2]. Then
()E' , @) defines an object of M®) ie. alocal homomorphism

A—s WEN L, ..., Ta1]).

Conversely the universal object over M® is an infinitesimal deformation,
i.e. defines a local homomorphism,

W(F,)[Ty, ..., Ta1]] — A.
Universality shows that these are mutually inverse isomorphisms. 1

3.80 We now consider the example (1.50). It is of type (EL) with F = B =
Q, and with V = Qg”. Let the chain £ be given by the multiples of the
standard lattice Ag = Zf,". Let X be the p-divisible group over f‘p,

X = Gp, x (Qp/Zp)"
Its isocrystal is equal to (V ® Ky, bo).
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Proposition 3.81 The formal scheme M is tsomorphic to a disjoint sum
of copies of the formal spectrum of the ring of formal power series in n?
variables with coefficients in W(F,),

M= IT Spf W(E,) [Tra, ..., Tanl]
GLA(Qp)/GL(Zp)XGLn(Qyp)/GLn(Zy)

Proof: Let S € Nilpw(g,) and let (X,0) € M(S). The existence of the
quasi—isogeny g shows that the function

s+—sep. rank X[1],, s€8§

which associates to a point s the separable rank of the finite group scheme of
p—division in X, is constant. It follows [Grl], IL. 4.9. that X is an extension
of an ind-étale p—divisible group by a connected p—divisible group,

00— X% X — X 0.

The quasi—isogeny respects this extension structure and induces therefore
quasi—-isogenies

0% G?};S — Xg, 0% (Qe/Zp)% — X%t.

The fibre of g® resp. ¢° in a point s € S defines an element g;(s) €
GLa(Qp)/GLn(Zy) resp. ga(s) € GLa(Qp)/GLn(Z,) and the functions

s—gi(s), i=1,2

are locally constant on S. Correspondingly we obtain a decomposition of
M into a disjoint sum

M= H M(91;92),
(91.92)

where M(91:92) is the open and closed subfunctor where the functions s

9i(s) are constant of value g;.
Let (X, ¢) € M1:93)(F,). Then (X, g) is isomorphic to

(ngl X §2 :X_")X))
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where §; € GLn(Q,) are representatives of g; € GLn(Qp)/GLn(Z,). There-
fore M(91:92)(F,) consists of a single point. The rest of the argument is
similar to that used in proposition (3.55), with the result of Lubin—Tate
being replaced by the fact that the universal formal deformatlon of (X, p) is
represented by the formal torus T with character group y At , cf. [DI]. More
precisely ([DI}, p.131}), let

e1,...,en be the standard basis of Ag. = Ao NV_,
€n41,- - -, €an be the standard basis of Aoy = AgnV,.

Let
% € Hom (A0—7A0+)7 ,j=1,...,n

be the element which sends e; into e,4; and all other basis elements to
zero. Put T;; = ¢;;—1. Then the universal deformation space is canonically
isomorphic to

Spf W(E)[T11, - - - Tunll.

3.82 We call aset of data (B, F, O, V,b, L) of type (EL) unramifiedif Bisa
product of matrix algebras over unramified extensions of Q, and if the mul-
tichain £ is a product of chains of lattices consisting of multiples (by powers
of p) of a single lattice. In the case (PEL) we require in addition that in each
of the factor chains there is one member which is selfdual with respect to the
given alternating form. In other words, in the unramified case the data L is
completely determined by giving a single Op-lattice A in V' which in case
(PEL) is supposed to be selfdual. In the unramified case the Shimura field
E associated to a set of data of our moduli problem, (F,B,0B,V,b,p, L),
is an unramified extension of Q, and hence E= Ko(L). An object of our
moduli problem over S € Nilpo,, is a pair (X, o) consisting of a p-divisible
group with Op—action over S and a quasi-isogeny

Q:XXSpecLS'_"X ng'.

The conditions of (3.21) reduce in this case to the determinant condition
and, in case (PEL), to the condition that the given polarization on X induce
on X a multiple by a power of p of a principal polarization. The unramified
case is considered by Kottwitz in [Ko3]. He shows by an application of the
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deformation theory of Grothendieck—Messing that the representing formal
scheme M is formally smooth over Spf Ok, {[K03],85). In particular, in
this case the flatness conjecture before (3.36) is obviously true.



Appendix: Normal forms
of lattice chains

We will give the proofs of the theorems (3.11) and (3.16).

We start with the proof of theorem (3.11). Clearly we may assume that
B =2 Mu(D), where D is a central division algebra over a local field F'.
Moreover, we assume that Op = M,(Op). We consider Op C Op as a
subalgebra by the diagonal embedding. We will fix a prime element I of D.
Let £ = {Ai}iez be the given chain of Op-lattices in V. Then a chain of
Op ® Op-modules of type (L) on an affine scheme T = Spec R is given by
the following data (corollary 3.7):

A sequence of Op ®z, R-modules

NN INY ¥ LN i+1_‘~’_+... ieZ,

and for any i € Z a periodicily isomorphism

0: M, = MI
such that the following conditions are satisfied:

1. locally on Spec R there ezist isomorphisms of Op ®z, R-modules

M; ~ A; ® R, Mifo(Mi—y) 2 MifAi i QR

2. 0p=20p, o =18.

131
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Remarks A.1 The first condition says that M; is locally on Spec R a free
Op ® R-module of the same rank as the D-module V.

Let x(D) = Op/HOp be the residue class field of D. Then the second
condition says that locally on Spec R the «(D) ® R-module M;/g(M;_1) is
free of the same rank as the &({D)-vector space A;/A;_q.

Lemma A.2 For k < r the following sequence of Op ®z, R-modules is
ezxact and splits locally on Spec R for anyi € 7

0 — M;/o"(Mi_i) — Miy1/0" T (Mi_t) — Miy1/o(M;) — 0.

Especially there exzists locally on Spec R isomorphisms M;/o¥(M;_3) =~
A:/Ai_r ® R of Op ®z, R-modules.

Proof: We may assume that B = D. Moreover we may assume that the
k(D) ® R-modules M;.1/0(M;) are free. Clearly the sequence of (D) @ R-
modules is exact on the right and the surjection

Mig1 /@t (Mi_g) — My /o(M:)

splits. Hence we get surjections

M; /" (Mi_i) ® Miy1/e(M:) — Miyp1 /"t (Mip).

Hence by induction M;/¢*(M;i_;) is the quotient of an x(D) ®z, R-module
F; p which is locally on Spec R free, and has the same rank as the (D)
vector space Ai/A;_g.

To see that M;/o*(M;_g) is locally on Spec R a free k(D) ®z, R-module
of the same rank as A;/A;_; we apply descending induction on k. For
k = r this follows from our assumptions. Assuming by induction that
Miy1/e* 1 (M;—) is locally on Spec R free of the given rank, we obtain a
surjection of projective modules of the same rank

Fij ® Miga/o(Mi) — Mgy /o" Y (Mig).

This is then also injective. Hence Fj z — M;/o*(M;_;) is an isomorphism.
The exactness on the left of the sequence asserted in the lemmais immediate.

O
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Let us denote by M; the x(D) ® R-module
M; = k(D) ® M; = M; /UM; = M;/M;_,
Corollary A.3 For any inleger i and any k such that 0 < k < r there is
an exact sequence
_ gr—k _ Qk - .
Mivk—r — M; — My

Proof: Indeed by the lemma we have an injection:

k —
Coker 0"~ = M; /M 25 Miyi/Miyk_ = My

) O
We obtain a trivial example of a chain of Op ® R-modules if we tensor the
chain £ by R.

Proposition A.4 Let T be a scheme over Zy, suck that p is locally nilpo-
tent on T. Let {M;} be a chain of Op ®z, Or-modules of type (L).

Then locally on T the chain {M;} is isomorphic to L @ R. Moreover, the
functor on the category of T-schemes

T —— Aut ({M, ®r OT‘})

is representable by a smooth group scheme over T

Proof: Let T'= Spec R be affine. We may assume that B = D is a division
algebra. If N is an Op-module we denote by N the Op-module N/IIN =
K(D) Qop N.

We choose a k(D) ® R-linear section s of the surjection M; — M;/ o(M;_1).
Let U; C M; be the image of s. We may lift U; to a direct summand U; of
the Op ® R-module M;. Clearly the U; may be chosen to be periodic, i.e.
for each 7 the morphism 6 induces an isomorphism

GZU,'_,--—*U}—I.

The maps g induce an obvious map
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0
EB Uiep — M; . (A1)
k=r—1

We claim that this map is surjective. By Nakayama’s lemma we need to
verify this modulo II.

Let us denote by M]_, the image of M;_; in M; for the given i. We obtain
a flag by direct summands

0 C Mil—r-l»l C - C M:—-l C Mi . (A.2)

By the lemma we have isomorphisms

Mi_i/o(Mi_g—1) ~ M{_,/M{_;_,.

Hence the images of U;_ in M; define a splitting of the flag ( A.2). This
shows that (A.1) is a surjection mod II. Since (A.1) is a surjection of
projective modules of the same rank it is an isomorphism.

In terms of the U; the map M; — M;y; looks as follows

r—-1 r—2

L

k=0 k=~1
On the summand U;_ for k # r» — 1 this map induces the identity to the
corresponding summand on the right hand side. On U;_,;1 it induces the
map

m6e: Ui._,v.;_;[ — U,‘+1‘

From this we see that any two chains of type (£} are locally isomorphic,
since locally on T the Op ® Or-module U; is free of the same rank as the
k{D)-vector space A;/A;_1.

The representability of the functor of automorphisms by a scheme of finite
type over T is obvious.

Definition A.5 We call the modules {U;} a splitting of the chain {M;}.
They are characterized by the property that U; is a direct summand of M;
such that U; maps isomorphically to M;/o(M;_1), and the U; are periodic
with respect to 8.
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Let R — S be a surjection with nilpotent kernel. Let {V;} be a splitting of
{M;} ®r S. Then any set of liftings of the V; to direct summands U; of M;
which is periodic is a splitting for {M;}. Therefore any given splitting {V;}
lifts. The formal smoothness of the functor Auf is a consequence. Indeed,
let & be an automorphism of {M;} ®r S. We find liftings U; and U/ of the
splittings V; respectively ofV;). Then the isomorphism V; — a(¥;) lifts to
an isomorphism U; — U] which is periodic. It gives the lifting of & to an
automorphism of {#;}. This completes the proof of the proposition. [

A.6 Let us now turn to the case of polarized chains (theorem 3.16). Without
loss of generality we assume that the invariants Fy of the involution * on
F form a field. We do a case by case verification according to the following
list.

(I) F = FyxFp and the involution on F induces the obvious transposition.
There is a central division algebra D over Fp, such that

B = M,(D) x M,(D?)
and the involution on B is given by
(dl,dz)* = (dz, dl), where di,ds € Mn(D) = M"(D)Opp .

(1) B = Mn(F), F=F.
(II1) B = Mu(F) and F/Fy is a quadratic extension.

(IV) B = M, (D) where D is a quaternion algebra over F' and F' = Fj.

{We remark that on M, (D) there are no involutions of the second
kind).

We note that the case where B = Q and £ is a maximal selfdual chain was
treated by de Jong [dJ1].

A.T Let us consider the case (I). We have the decomposition

B ~ Mn(D) x M, (D°P?). (A.3)



136 APPENDIX TO CHAPTER 3

‘We may choose the isomorphism (A.3) in such a way that it takes the max-
imal order Og to M, (Op) x M, (OR?). From (A.3) we get a decomposition
of the representation V:

V=WeoWw.

The spaces W and W are isotropic subspaces of V with respect to ( , ).
Hence ( , ) puts these two spaces in duality

WX,WV-—»QP.

More precisely ( , ) identifies W with the dual space W* = Homgq, (W, Q,)
with its natural M, (D°P?)-action from the left.

A multichain of Op-lattices in V is a pair L, Z, where L is a chain of
M, (Op)-lattices in W and £ is a chain of M,(OF?)-lattices in W. The
multichain is selfdual if and only if the two chains £ and L are dual to each
other.

A polarized multichain of Op ® Or-modules on a scheme T of type (L, E) is
a pair of chains, a chain of M,{Op) ® Op-modules of type (£) and a chain
of M,(O%?) ® Op-modules of type (L), which are dual to each other.

Lemma A.8 The funcior which associates to a polarized multichain
{MA}AGE’{MX}XeZ of type (L, L) the unpolarized chain {Mp}rcc of type
(L) is an equivalence of categories.

Proof: We have an obvious quasi-inverse functor: If A € £ and hence
A* € L, we put

MA:- = HomoT(MA, OT)

with the natural M, (O}’;”!7 ) ®z, Or-module structure. We have to check

that M~ is of type L. But this is obvious, since we know that locally on T
the chain {My} is isomorphic to £ ® R. O

This lemma shows that the case (I) of theorem (3.16) reduces to the unpo-
larized theorem (3.11).

A.9 Yor the other cases we recall some basic facts on quadratic forms in
the generality needed for the proof.

Let R be a commutative unitary ring and S a unitary R-algebra, which
need not be commutative. Assume that we are given an involution s — §
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of S, i.e. a R-algebra anti—isomorphism of order 2 on §. Let us assume that
2 is invertible in R. Let M and N be left S-modules and L a S-bimodule.
A sesquilinear form is a biadditive map

P:MxN—L
that satisfies the relations
®(sm, n) = ®(m, n)s
®(m,sn) = s®(m, n).

We will say that a S-module is R-locally free, if it is locally free with respect
to the Zariski-topology on Spec R. We note that we can view any right
S-module as a left S-module by restriction of scalars with respect to the
involution. For example the right S-module Homg_(M, L) becomes a left
module by the rule

(s)(m) = p(m)8, ¢ € Homg_(M,L).

With this convention a sesquilinear form is a homomorphism of left S—
modules

M — Homs_(N,IL) (A.4)

m — ®(m,-).

If we view M as a right module by our convention, this is also equivalent to
giving a homomorphism of left S-modules
N — Hom_g(M,L) (A.5)
n +— &(—,n).

® is said to be perfect, if (A.4) and (A.5) are isomorphisms.
In the case M = N = S a hermitian form is given by an element s € S:

®(m,n) = nsin. (A.6)

Then the condition (A.4) (respectively (A.5)) says that s has a right inverse
(respectively a left inverse). Hence perfect means that s is a unit.

A hermitian respectively antihermitian form on a S-module M is a sesquilin-
ear form
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P:MxM—S,

that satisfies ®(m3, me) = £P(mq,m;). We will also say that ® is an
e-hermitian form, where ¢ = +1 if @ is hermitian and ¢ = —1 if ¢ is
antihermitian. We note that for such a form the conditions that (A.4) and
(A.5) are isomorphisms are clearly equivalent.

If 7 is a two-sided ideal in S invariant under the involution, we can consider
the reduction of the e~hermitian form ® modulo Z:

3 : M/IM x MJIM — S/T.

i M is a projective S-module and ® is perfect, so is ®.

Definition A.10 Let M be a finite projective S-module with a e-hermitian
form & which is perfect. Let N be a isotropic direct summand of M. An
isolropic complement to N is a direct summand C of M, which is isotropic
and such that the pairing

P Nx(C— S
is perfect.

We note that the restriction of ® to the orthogonal complement (N & C)*
of N & C is perfect, and that

M=NeCo(NaoO)'.
Lemma A.11 An isoiropic complement ezisis.
Proof: Since @ is perfect, we get a split surjection

M — Homg_(N,S) — 0
Let C the image of a section. Then

P.NxC— S

is perfect. Any sesquilinear form on C' is of the form ®(afei), ¢z), where «
ranges over the homomorphisms Homg_ (C, N}. Hence there is « such that
—1®(c1, e2) = ®(a(c1), c2). But then
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C'={c+alc);ce C}
is the isotropic complement we are looking for. O

Proposition A.12 Let M be a finite R-locally free S-module and & be
a perfect e-hermitian form on M. Lel T C S be a two—sided nilpotent
ideal, which is invariant under the involution. Then ® = ® modulo T is
a perfect e-hermitian form on the module M = M/IM over the R-algebra
S = SJI. Assume that N is a R-locally free isotropic direct summand of
M. Then there is an isotropic R-locally free direct summand N of M such
that N = N/IN.

Proof: As usual we may assume that Z? = 0. Let us start by assuming that
there is a lifting N of N to a direct summand of M, which is not necessarily
isotropic. We write

M=NaoC.

If N’ is any other lifting of N, the projection to C defines a map N/ —
M=Noe(C—C.

The image of this map lies in ZC. Hence TN is mapped to zero and we get
a map

a:N—I.C=I®;C.
We have

N ={n+a(n)|ne N}.

Therefore we get a bijection between the liftings and the set

Homgz(N,Z ®;z C). (A.7)
I we replace C by C1, such that C; = C the map « that belongs to N’
does not change. Hence the obstruction to lifting N lies in the cohomology
H? of the sheaf on Spec R defined by (A.7) and is therefore zero.
The sesquilinear form ®(c(n;), n2) on N x N is given by the homomorphism

N—rI@gé———) I®§Homg__(1\_f,.§')
o

Homg_(N,Z),
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where the last isomorphism of left S-modules maps 7 ® ¢ to the homo-
morphism n — gp(n)\zf. Since the second map of the last diagram is sur-
jective, any Z-valued sesquilinear form of N may be represented in the
form ®(a(ni),n2). We get the isotropic lifting if we choose « such that
®(a(ni),nz) = —3®(ny,n2) € I. O

Proposition A.13 Let M be a finite left S-module and ® a c-hermitian
perfect form on M. Assume thai T C S is a nilpotent two-sided ideal of
S, which is invariant under the involution. Assume that €1,...,&, is an
orthogonal basis of the S-module M. Let a; € S be liftings of the elements
B(e;,e;) € S, such that a; = a;”. (Liftings with this property always exist.)
Then there is an orthogonal basis ey, ..., e, of the S-module M with respect
to @, such that e; modulo T = &; and ®(e;, ;) = a;.

Proof: Let €'1,...,¢el, € M be any liftings of the elements &;,...,8,. Then
&(el, e;- = a;6;; + 243, where z;; € 7 and x;; = &;; respectively #;; = —&;4,
depending on whether ¢ = 1 or ¢ = —1.

For arbitrary elements my, ..., m, € M we have the formula ®(e} +mj;, e} +
m;) = a;8;5 + x5 + B(my, ef) £ ®(m;, €f)” By perfectness any linear form
on M with values in 7 is of the type ®(m,—) for some m € ZM. Hence we
may choose m; € M in such a way that ®(m;, e;) becomes an arbitrary
given matrix with coefficients in Z. To finish the proof it is therefore enough
to find y;; € Z, such that z;; + yi; + g = 0. Clearly g; = —52 does the
job. (|

The usual orthogonalization procedure takes in our setting the following
form. Assume that S is a finite R-algebra. Then by Nakayama’s lemma
the condition that a fixed element s € S is a unit is represented by an open
subscheme of Spec R. For our purposes it is enough to make the strong
assumption that for any point £ € Spec R the ring S ®g «(z) modulo its
radical is a product of fields. In particular this ensures that the kernel of a
surjection of R-locally free S-modules is again R-locally free.

Proposition A.14 Suppose S salisfies the assumptions just made. Let M
be a finite R-locally free S-module end ® be a perfect e-hermitian form on
S. In the case € = —1, we assume that there is a unit u € S, such tha!
%= —1u.
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Then locally for the Zariski topology on Spec R the S-module M admiis
an orthogonal base, i.e., (M, ®) is an orthogonal sum of forms of the type
(A.6).

Proof: It is enough to find locally an element m € M, such that ®(m,m) is
a unit in S. Indeed our assumptions ensure that the orthogonal complement
of Sm is again R-locally free. Hence we may restrict to the case, where R is
a field. Let J be the radical of S. Then by proposition (A.13) it is enough
to show our assertion for S/J. Hence we may assume that S is a product
of fields. Then one reduces easily to the case, where either S is a field or
S = Sy x 5y, where Sy is a field and the involution interchanges the factors.
In these cases the proof is standard linear algebra. |

A.15 Let us consider the case (II) where B = M,,(F) and * is an involution
of the first kind. We will assume that Op = M,,(Op). Let us fix once for
all a prime element 7 € Op.
We may index our chain of lattices £ by Z:

e CMhCMhp C--

The periodicity condition says that there is an integer », such that

7I'A,' = A,’_,. (AS)
for all i € Z. We call r the period of the lattice chain L.

The selfduality condition means that there is an integer a such that
A,: = A—i+a .

We may index our chain in such a way that a=0ore = 1.

Let T' = Spec R be an affine Zy-scheme, where p is locally nilpotent. We
consider polarized chains My of M,(Or) ® Op-modules on 7. We set
M; = My, and get a sequence of M,(Or) @ Op-modules:

v B My S My S icZ.

We denote the periodicity isomorphism 8, simply by 6 :

0:M; — M;_,.
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We have the relations

g0=m, 0Op=¢b.

The polarization on the chain {M;} is given by a set of perfect bilinear
forms

g,' : M,' X M_;+a — OT.
By Morita equivalence we write

V=F"Qpr W.

Then there is a chain of Op-lattices G = {I';} of the F-vectorspace W, such
that

A= 0’;,—. R0z I;.
We will see that the chain G is selfdual for a suitable inner product on W.

Proposition A.16 Up to multiplication by a unit in Op there is a unigue
perfect bilinear form

¢F : O?.—» X O?v —_— OF
ihat satisfies the equation

¢r(Az,y) = ér(c, A"y), z,y € OF, A€ Mu(OF). (A.9)

Moreover ¢ is either alternating or symmeltric.
Proof: One knows (e.g. [M1]) that any involution on M, (F) may be written
A*=C7 1A C where 'C=4iC.
The bilinear form
ép FPx F* — F

defined by ¢r(z,y) = 'zCy satisfies the equality (A.9). Weset I' = O% C
F™. The dual lattice I'* with respect to ¢ is an M, (Or)-module. Hence
by Morita equivalence there is an f € F, such that
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™ = fT.

The bilinear form ¢p = fqu is the perfect pairing we are looking for.

Corollary A.17 There is a perfect Zy-bilinear pairing

¢:0% x 0p — Zy
that satisfies the equation
¢(Az,y) = ¢(z,A"y), =z,y€OF, A€ Mu(Or).
Any other pairing ¢’ with this property is of the form
¢'(z,y) = ¢(fz,9),
for a suitable f € OF.
Proof: Let Yp be a generator of the different ideal of F over Q. Then the
pairings ¢ and ¢p determine each other by the equation
$(fz,y) = trr/q, 95 for (2, y) .
|

Proposition A.18 Let My = O% ®o, N1 and My = O% Qor N2 be lefi
Op ® R-modules which are projective and finite.
Then there is a bijection between perfect R-bilinear forms

E: M1 X M2 — R,
that satisfy the equation
E(b*m1,mp) = E(my,bmg), be Op
and perfect Op ® R-bilinear forms

B:Nyx Ny — OpQR.

The forms B and € determine each other uniquely by the equation

E(uy ® ny, uz @ ng) = (ur, uaB(ny,n2)), n; € N;, u; € OF.
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We omit the easy proof. A slight meodification of this proposition may be
applied to our form ( , j)on V = F” Qr W and provides us with a
F-bilinear form { on W, which satisfies the equation:

(@ w,u' ®w) = ¢(u,{(w,v) - w') u,w' € F, w,w' €W. (A.10)

The form ( is symmetric if ¢ is antisymmetric and vice versa. The chain G
is selfdual with respect to the form (,

I‘: - I‘_,'+a .

Consider a polarized chain of M;(OF) ® R-modules of type (£). Then the
Morita equivalence provides us with a chain of Op @ R-modules {N; }icz,

M; = O?- ®Qop N;.

Clearly the chain {N;} is of type (G), i.e. there are locally on Spec R iso-
morphisms of O ® R-modules:

N;=T;®R, N,‘/Q(N'_l) ~/T;1 ®R. (A.ll)
Moreover by proposition (A.18) we get perfect Op @ Op-bilinear pairings
B; : N; x N—i+a — O O7p
such that the following equations are satisfied:
L. Bi(o(n),n’) = B;_i(n,p(n")), n€Ni_1, #' € N_ipap1.

2. Bi(n,n'y = 2B_;1,(n',n), neN;, n' €N jy,.

Here the sign depends only on the type of the involution with which
we started.

3. 6 :N; — N;_, is the period isomorphism, then

Bi(n,6(n')) = Bi—r(0(n),n’), n€N;, n' € Noipria-

We call a set of perfect pairings B;, which satisfy these relations a polariza-
tion of the chain {N;} of type (G).
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Proposition A.19 The above funcior which associates to a polarized chain
{M;},€ of M,(OF) ® R-modules of type (L) the polarized chain {N;},B of
type (G) is an equivalence of caiegories. ||

Remarks A.20 We may take indices in Z/(r), if we define

Ny =lm (Ng,0) keZ/(r).
k€K
The condition 3) simply says that Bg is well-defined, and we may forget
about it. The condition ¢" = 7f on the period morphism becomes ¢" = 7.
We call {Nz} a polarized circle of Op @ Or-modules.

By proposition (A.19) we may reformulate the theorem (3.16) in the case
(1) at hand:

Proposition A.21 Let {N;}icz,B and {N}}icz, B’ be two polarized chains
of OF @ Op-modules of type (G).

Then locally for the etale topology on T these twe polarized chains are iso-
morphic and moreover the following functor on the category of T-schemes

T’ — Isom(({N;}, B), ({N{},B")) (A.12)

is represeniable by a smooth affine scheme over T

Ifthe form { (A.10) is entisymmeiric or if the period r of G and the number
a both are even, the two polarized chains are even isomorphic locally for the
Zariski topology.

Let us first treat the case » = 1. We may moreover assume that ¢ = 0. Then
the chains in proposition (A.21) are already determined by the modules Ng
and Nj. To ease the notation we set N = Ny, B = By, N' = N}, and
B' = Bj. The Or ® R-module N, N’ are R-locally free of the same rank,
and the pairings B and B’ are perfect. We need to verify that the pairs
(N, B) and (N', B') are locally isomorphic for the etale topology.

Let us first consider the case, where the forms B and B’ are symmetric. By
the existence of an orthogonal base (proposition A.14) we are reduced to
the case, where N, N’ are free of rank 1. Clearly it is enough to see that
there is locally for the etale topology an orthonormal vector in N. The pair
(N, B) is given by a unit s € Op ® R. We have to check that after an etale
covering of Spec R the element s becomes a square. This is obvious since
the residue characteristic is different from 2.



146 APPENDIX TO CHAPTER 3

If the form B is antisymmetric, the usual proof in linear algebra works to
show:

Lemma A.22 Locally for the Zariski lopology on Spec R the sympleciic
Or ® R-module has a standard symplectic base ey, ... ey, t.€.

Blei, ej4r) = &3, L,j=1,...,r.

Hence the pairs (N, B) and (N',B’) are locally isomorphic for the Zariski
topology in the antisymmetric case.

The representability of the functor (A.12) is obvious. The smoothness is a
consequence of the propositions (A.13) in the symmetric case and (A.12) in
the antisymmetric case.

Before we go on with the proof of (A.21) let us add a remark about some
nonperfect forms over a ring R respectively an Op-algebra R.

Definition A.23 Let N be a finile projective R-module and Q be a sym-
metric or antisymmetric bilinear form on N.

We call @ semiperfect, iff the cokernel of the corresponding map N — N* =
Hompg{(N, R) is a projective R-module.

Lemma A.24 (N, Q) is semiperfect, iff (N, Q) may be written as an or-
thogonal sum
(N,Q) = (M, B) & (K, 0)

where (M, B) is perfect. 1
Lemma A.25 Let R be an Op-algebra, where 7 is locally nilpotent in R.
Let (N, Q) be a symmetric or antisymmetric form on a finite projective R-
module. Suppose that the map N — N* has a cokernel that is annilated by
7 and is a projective R/m-module. Then (N, Q) may be writien locally as a
direct orthogonal sum

(N, Q) = (M’ B) ] (07 7"7)):

where B is a perfect pairing on M and P is a perfect pairing on C.
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Proof: Let N = N ®o, R/7. Let M C N the subspace of N given by the
first lemma. We lift M to a direct summand M of N. Then Q induces a
perfect pairing B on M. Let C be the orthogonal complement of M. We
get a decomposition N =M @ C.

Then C*/C is isomorphic to N*/N and hence has the same rank as C.
Therefore the image of C in C* is #C*. Let @ : C — C* be the map
induced by Q. We find a lifting '

C ——C*

C*

Then é‘izéi or é~’12§'—: defines the pairing P we are looking for. In order
to show that P is perfect, we have to ensure that & may be chosen to be
surjective. Then 5‘:*:25“ =a+ &25‘ is surjective because &@* F& = 0 mod 7.
Locally the map « may be written by choosing a basis in each module:
R* ™% R* where X € M, (R). Since the image is 7 - R” there is a matrix
Y such that #XY = 7F, where F is the unit matrix in M, (R). We have
to show that in each point of Spec R we may find a matrix Z, such that
7% = 0 and X + Z is invertible. Since 7(E — XY) = 0 it is enough to
find locally matrices Uy and U, which are invertible, and such that X +
Ui(E — XY U, is invertible. But over a field, for a suitable choice of basis,
we have X = diag(1,...,1,0,...,0) and for suitable U'; and Uz we have
U(E — XY)Uy = diag(0,...,0,1,...,1) Hence we get what we want since
obviously rkX + rk(E — XY) > n. |

We now continue with the proof of proposition (A.21). Let us consider
the case where the period r is arbitrary and a = 0. Then By is a perfect
symmetric or antisymmetric bilinear form on Ny,

By : Ng x Np —+ Op @ Op .

For r — 1>t > 0 let us denote by F_; the image of N.; in Ny/xNg. We
obtain a flag of Op /7Op @ Op-modules, whose quotients are locally free on
T

b

O%F——H—l g'--%Fg:NQ/’)TNo. (A13)
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Let By be the perfect pairing Bo modulo 7 on Ny /7 Ng.

Lemma A.26 F_; is the orthogonal complement of F_,4; with respect to
By.

Proof: The orthogonal complement of F_,; is the image of the following
submodule of Ny in Fy:

{no € No; Bo(6*(N-¢), o) € 7O ® Or}

= {ng € No; B_s(N_¢, ¢*(no)) € 70F ® Or}.
Since B._; is perfect the last condition is equivalent to ¢*(ng) € 7Ny =

0" (N¢—.). By the corollary (A.3) we get ng € ¢"~*(N¢—r). |

Hence F_; for t > § is an isotropic subspace of Fy. Moreover By induces
perfect pairings
N—t/N—t—l XN_r+t+1/N_,-+t ——*OF/?TOF@OT. (A14)

We are assuming that a = 0. Let us now take indices ¢ € Z/(r). Because of
the perfect pairings

B_i:N_;x Ni_, — Op®Or

we may forget about N_; and B; for i in the open intervall ¢ € (0, §) without
loosing information. We get a chain

No— N_ypyg — ++» — Ny — Ng— N_,4; — {A.15)

such that moving once around in the corresponding circle is multiplication
by n. Here t = [ﬂ?i] Let us denote the map ¢"~* : Ny — N_; by o and
the map g : N_; — Ng by 8.

For 0 < k < t we will identify N_; with N7__ by the formula n_j +— n* ,
where

nZp(nk—r) = Bop(n_p, np—r).

Equivalently we have the dual identification Ny, — N*, which is given by
the formula ng_, — nf_, where
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ny_ (n_i) = Br—r(nr—r,n_) = Bop(n-p, np—r).

The maps N_; — N, and No — Nj = Np which come from the identi-
fications above and g define bilinear forms @ on N_; and B on Nyg. We
have

B_i(n_:,0(n_,)) rodd

B_i(n_¢,n,) r even

O(n_synly) = {
B = Bs.

Lemma A.27 To give a polarized chain of O ® Op-modules on T of type
(G) with period r and a = 0 is equivalent to giving the following data:

1. A circular diagram of locally on T free Op @ Or-modules

N—T+1 AN IN N_; t = [ﬂ]

\/

(A.16)
2. Of ® Op-bilinear pairings
B: N(] X N() e OF ® OT
Q: N, x Ny — Opo0Or
such that the following conditions are satisfied.
(i) There exist isomorphisms locally on T
N; ~ ;@ Or t=—t,...—r+1,0
N,‘/Ng_l ~ I‘i/P,'-]_@OT t=—t,...,~r+1
I‘_,+1/I‘_¢ ® Orp r odd
* ~
NZofNot = { 0 T even

The bilinear form B is perfect.
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(i) We have the identily

B(B(z),y) = A=, ()

where & : Ng — N_;,8 : N_y — Ny are the obvious maps in the
diagram.

(#i) Going once around the circle above stariing from any point is multi-
plication by =.

Proof: We have to recover from the data of the lemma the modules Ng, k €
Z/rZ and the bilinear forms

By : Ny X Nop, — Op®0rp.

This is simply accomplished by taking Ny = N*, for k = 1,..., [g] - 1.
We get the chain

No— N_yy1 — -+ = Ny > N*, = N*,y — -+ = N} — No.
(A.1T)
Here g is the map g(n_;)(n",) = Q(n:, n’_,). The maps which are symmetric
around the arrow ¢ are by definition dual to each other. Hence we have that
NZ*, — Ng = N{ is the map a*. We have a*¢ = 4

B(a*q(ne), no) = g(ne)((no)) = Q(ne, a(no)) = B(B(n:), mo) -
The existence of the isomorphisms (A.11) is obvious by duality. [

A.28 To prove the proposition (A.21) let us work with the circles above.
First we consider the case r = 2. In this case By mod 7 on Ny/7 Ny induces
a perfect pairing

N_i/xNy x No/N_; 2, Or/70r @ R

and hence these modules have the same rank. Our circle of modules has the
form:

No-N_, 2Ny 2N, af=fa=r.
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Here the maps « and £ are dual with respect to the perfect pairings @ and
B. The sequence is exact mod # by lemma (A.2). We construct an isotropic
direct summand Uy of Ny as follows.

The image of N_; in Ng =N, /7Ny is an isotropic direct summand. Let Up
be an isotropic complement. By the rank conditions we have InN_1 & U =
No. Next we lift Uy to an isotropic subspace Uy of Ny (proposition A12).
By the same process we define an isotropic direct summand U_; of N_;.
The modules Uy and U...; are a splitting of our chain in the sense of definition
(A.5) by isotropic subspaces. Hence we know

No = Us®B(U-1)
N_, = U_1€B(X(Uo).

Moreover we see that a(Up) and B(U~,) are isotropic subspaces. Hence our
chain may be written as

Uo® U1 2 U0 U 2 U0 U_y, (A.18)

where U and U_; are isotropic subspaces with respect to the bilinear forms
and the pairing between them is given by the formula

B(z,ﬂ(y)) = Q(a(m)’y)y zEUO, yEU_l.

Hence in the case » = 2 any two chains of modules of type (G) are locally
isomorphic for the Zariski topology.

A.29 Let us now consider the case, where r is even. Then the modules
Ng — N_z — N form with the given bilinear forms a circle of period
r = 2. Hence the last sequence may be written in the form (A.18). Hence
our chain looks as follows

No=Uo@U; “ZR" N_; =t 0 U3 "8 No=Uo0U;  (A.19)
NoCN_py1 C---CN_z CNo (A.20)

Since o is the identity on Uy we may write
N_; :UO@N__k, k=

Hence we get a chain
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US‘ """ﬁ—r-{-l — —>ﬁ_§_1 —-—>US (A21)

We see that going once around the circle here is multiplication by #. Hence
this is an unpolarized chain of a given type, which clearly determines the
circle (A.19) which we started with up to isomorphism. We conclude that
for r even and a = 0 (or @ even) two polarized chains are locally isomorphic
for the Zariski topology.

A.30 Next we need to show that in the case r even and a = 0 the functor
of isomorphisms is formally smooth. First we look at the case r = 2. In
order to write our circle Ng — N_; — Ny in the form (A.18) it is enough
to take for Uy and U_y any splitting of the underlying unpolarized chain,
with the additional property that Uy and U_; are totally isotropic in Np
respectively N_;. Let us call Uy and U_1 an isotropic splitting.

Let R — S be a surjection with nilpotent kernel. Since we can lift isotropic
direct summands in the affine case (proposition A.12), we can do the same
with isotropic splittings. We may conclude as in the proof of proposition
(A.4) . In the case r even we need to lift isotropic splittings of the chain
No — N_:z — Ny over S and then splittings of the chain (A.21) over S,
which is possible by what we have shown.

A.31 Next let us consider the case, where 7 is odd. Again we look first at
r = 3. In this case we start with a circle

No -2+ N_y 25 Ny (A.22)

We are given a perfect pairing B on Ny and a pairing Q on N_, which are
both symmetric or antisymmetric, such that the cokernel of the induced
map ¢ : N_y — N*, is locally on Spec R a free Op /7 ® R-module. We have
B(B(x),y) = Q(z, a(y)). Moreover we require that af = fa = 7 and that

rkoy/xeR N-2/No + rko, jxgr No/N_2 = rkorer No = rkosor No.
(A.23)
These last conditions mean that we have an unpolarized Op ® R-chain if
we forget about B and Q.

As we have remarked, we may insert N*, in the diagram (A.22),
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No %+ N_p 45 N*, 25 Ny (A.24)
Explicitly ¢ and p are given by the equations

q(m)(Z):Q(.’E,Z) x)ZEN——Z
Ble(a"),3) = #*(2(s)); = € N-z,y € No.

Then we have gg = § and (A.24) becomes an unpolarized chain if we disre-
gard B and Q. Especially, turning once around the circle is multiplication
by =.

We will now construct a special isotropic splitting of the diagram (A.22).
Let us denote by N_3 and N*, the images of 8 and g in Ny = Ny /7N,

OCN_ZCNiZCNO.

Then for the pairing B mod , we have that N _; Is isotropic and N*, =
(N —2)* is the orthogonal complement by lemma (A.26). Take any isotropic
complement Uy of N _3. Then the induced pairing

]\(}_QX 170‘-—901?/7!'01?@1%

is perfect and moreover N*, @ Uy = Ny. Hence Uy — No/NZ*, is an
isomorphism. We lift U to an isotropic subspace Uy of Np.

Next we construct an isotropic subspace U_3 C N_y. We look at the flag
induced on N_3 = N_,/7N_s,

0C N*, € No C Nos.
Then N*, is the kernel for the pairing @ mod 7 on N3 by corollary (A.3)
and Ny is a totally isotropic subspace. Consider any complement C C N,
of ]V_"i2. Then we lift C to a direct summand C of N,. By construction the
restriction of @ to C' is perfect. The image of Ny by the projection to C is
isotropic. We take an isotropic complement and lift it to a direct summand
Uy of C. Then the map U_s — N_s/ Ny is by construction an isomorphism.

B defines a perfect duality between U_, and Uy, since mod 7 it reduces to
the perfect duality by ( A.14) :

N_3/No x No/N*, ") Op/70F ® R.
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Let us denote by V C Ny the orthogonal complement of B(U_3)® U in Np.
Hence Ng = B(U_2) ® Up ® V. Then Uy @ V is mapped isomorphically to
No/N_3. Hence the spaces U_, and Uy @ V are a splitting of our original
chain ( A.22). Therefore the map « restricted to Uy @ V is an isomorphism
onto a direct summand of N._q, and J restricted to U_3 is an isomorphism
onto a direct summand of Ny. We see that the diagram (A.22) may be
identified with a diagram of the form:

U—-?@Uo@v—;—)U-z@Uo@VTU_z@U()@V.

Here « is the identity on Up®V and 8 is the identity on U_;. The restriction
of o to U..¢ is multiplication by 7 and so is the restriction of fto Uy & V.
We see easily that with respect to Q the spaces U_o @ Up and V are orthog-
onal:

Q(u-2, a(v)) = B(B(u-2),v) = B(u-2,v) =0

Qug, a(v)) = B(B(uo),v) = B(wug,v) =0.
Moreover U_5 and Uy are totally isotropic for B and Q and the pairings
B,Q:U_s xUy — Or ® R are the same by

B(B(u—2), uo) = Q(u_z, a(uo)).

Finally we have for v1,v2 € V

Q(’t)l, ’U2) = Q(a(vl), a(ﬂg)) = B(ﬁa(vl),vz) = 71'[)’(1)1, ‘Uz) (A25)

From this we conclude that the whole situation is up to isomorphism de-
termined by the perfect symmetric or antisymmetric form (V, B) and the
number rkUy = rkU_s. But locally for the étale topology the isomorphism
class of (V| B) is determined by r£V. Since these ranks are fixed by the type
(G) we conclude that two chains of type (G) are locally isomorphic for the
étale topology.

A.32 The proof of the formal smoothness goes as usual. Let R — 5 be a
surjection with nilpotent kernel.Let & be an automorphism of the polarized
chain {N;} ® S. We choose a splitting U_ 5, Up s by isotropic direct
summands. Let Vs the orthogonal complement of U_5 s ® Up 5. The image
under « gives another splitting of {N;} ® S,
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Ulys=a(U-2s), Ups=a(lUs), Vi=a(Vs).
We take liftings of the isotropic subspaces Up,s, U g and U_s,5,UL, ¢ to
isotropic subspaces Uy, U} of Ny and U_o, U’ 4 of N..3. Clearly the isomor-
phism « lifts
a: Uy — U, &:U_y — U,

We denote by V respectively ¥V’ the orthogonal complements of Uy @ U_,
respectively U} @ U’ , with respect to B. These are liftings of the spaces
Vs respectively V{. Hence all we need to show is that the isomorphism of
perfect bilinear forms

a:(V,B)s — (V',B)s

lifts to an isomorphism

&:(V,By — (V',B)
But this follows by the propositions (A.13) and (A.14).

A.33 Next we must treat the case r > 3, where r is odd and a = 0. We set
¢t = [=$L]. We start with a circle of lemma (A.27),

No—-——*N..,-.H w— ey —)N_t —+NQ, (A26)
and with symmetric or antisymmetric bilinear forms B on Ny and Q on
N_;.

Then the chain
Ny — N_; — Ny (A.27)

with the pairing B and Q is exactly of the fype (A.22). Therefore ( A.2T)
may be written as follows:

T@id; dugov du_,&x

UiolphV U_:GBUOGBV — U0y V.

Because of the idy,qv in this diagram, we may write

Np=N,oUV, k= [g—]—}-l,...,r——l.
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We get an unpolarized chain of a certain type,

Uit — Ny — - — N'_[g]_z — U

We conclude by the same arguments as in the case where the period is even.

A.34 Let us now assume that ¢ = 1. Let us start with a polarized chain of
Or @ Op-modules

N B N1 2 BNy SNy — (A.28)

and perfect pairings B_; : N_; x Njy; — Op ® Op. Assume that we have
period r, so that we may take the indices in Z/rZ. We define the bilinear
form B on Ny by

B(no, m) = Bo(no, e(ng))-
The chain induces a filtration on Ng = Np/7 Ny (compare (A.13)),

0CF_p41 C---CF_1CNy.

By assumption this chain of Op/7Op ® R-modules splits. Moreover one
easily verifies, following the proof of lemma (A.26):

Lemma A.35 With respect to the bilinear form B = Bmodw on Ng, the
orthogonal complement of F_y s F_,4py1, l.e.

F_{-k:F—r+k+1 k=0,...,—r+1.

In particular F_,y; is the kernel of the pairing B and

B : No/N_,,-.;.l X ND/N_r+1 —_— OF/W®R

1s perfect, (H]

Let us start with the case » = 4, which is the essential one. Hence we have
a chain

Ng«_—N_4~——>N_3——°-+N_2-~—>N_1 -—rNg. (A?g)
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By Bp respectively B_y the modules Ny and N_g respectively N_s and N_;
are in perfect duality. In addition to B on Ny we define a bilinear form @
on N_s,

Q(n_s, nl—z) = B_s(n_s, Q("’-z))
First we construct isotropic splittings Uy C Ny for B respectively U., C
N_, for Q.
Indeed N_o/N_3=F 3/F_3C NQ/F_;-} is an isotropic subspace. We write
its inverse image in Ny as ¥y @ F_3. Let us choose an isotropic complement
[7'0 C NO/F_;;. We write the inverse image of [70 in Ny as Us @ F_3. Next
we lift Vy @ Uy to a direct summand M of Ny. Then B is perfect-on M
and hence there is an isotropic lifting Uy C M of Us. The canonical map
Us — No/N, is an isomorphism, because the orthogonal complement of
N_Q/N_3 in No/N_g is N_l/N_g.
The construction of U_s is the same. From the unpolarized case, we know
that N_s — Np induces an injection on U_y. We will identify U_» with its
image. Moreover we identify Uy with its image under the map No — N_».
By the lemma (A.35) we see that B and Q define perfect pairings

Uy xU_9g— Op®Op. (A.30)

It is easily checked that these pairings coincide. Let us denote by V the
orthogonal complement of Up ® U_y C Ng with respect to B. Because B is
perfect on Ug & U_, we have a decomposition

No=UpdU_s0 V.

For N_; we get a similar decomposition

No=UopU..oW.

Let us identify N..3 = N§ with Uy @ U_2 & V* via the given perfect pairing
on Uy @ U_y induced by B or @. Doing the same to N_; we may write
N_i=Ups U W™

Since the map Ny — N_z = N{ is induced by the form B it induces a map

UoGBU..z@Vidﬁ?UuEBU-Z@V*,

where o : V — V* is some symmetric or antisymmetric map.



158 APPENDIX TO CHAPTER 3

In the same way we may write the map N_, — N_; as

Voo UsoW X e U 0w

where #: W — W* is again a symmetric or antisymmetric map.
Y- Y.

Next we will check that under the map N*, = N_; — Ny the subspace W*
is mapped to V. Let [ € W*. We have to check

B(ug, (D)) =0, B(u-2,0(l))=0.

We interpret [ as a linear form on N_j, such that {(lp) = 0, {(U_2) = 0.
Note that by definition of the identification N*, = N_;, we have

By(n_s,1) = I(n_s).

Hence we get

B(UO, Q(l)) = BQ(UQ, 92(1)) = B_2(92(UO), l) = I(UO) = 0.
We used that by definition ¢® : Ng — N_s is on Ug the identity.

B(u_3, o(l)) = Bo(e*(u-2), 6> (1)) = B_a(e*(u_2),)
=aB_g(u_z2, ) =wl(u_3) =0.

We conclude that the map N_y — Ny is of the form

=@idy_, O
—

o U_soW* U U_2®YV,

for some map v : W* — V. Since Uy is a splitting, the cokernel of this
map is Ug/xUs. Therefore v : W* — V is an isomorphism. Because
N_3 — N_5 is the dual map to N_; — Ng, we have identified all maps in
the diagram (A.29). Identifying U_s with U§ by (A.30) our original chain
looks as follows:

VeaUiao V& ,eUr o V*

iy, @r@idy s
—_—

Voo Ur @v* 2 (A31)

r@idu.

UealUsioV — UyoUiaV.

The perfect pairings B; are the obvious ones. Hence the whole polarized
chain is up to isomorphism determined by the diagram
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vy 2, V, where aff = fa =, {A.32)
and where the maps o and @ are both symmetric or antisymmetric. By
construction of V' it is easily checked, that V*/V and V/V* are locally on
T free Op/7Op @ Op-modules and that

rk V¥ /a(VY+rk V*/B(V)=rk V/zV.

Therefore we are exactly in the situation » = 2 and a = 1. Hence by lemma
(A.35) the sequence (A.32) becomes exact if we reduce it mod m,

v E e Ly E g (A.33)

Let us take a direct summand M of V which is complementary to Ker &.
Then lift M to a direct summand M of V. Let us denote by K the kernel
of the canonical map

V-5V — M.

Hence we have an orthogonal decomposition with respect to the bilinear
form Q, defined by e,

V=KoM.
We rewrite the diagram (A.33) as follows
KoM 2™ g oM 2 koM™ ko M*.
We claim that 8 respects the direct sum decomposition. Firstly
BM)=Ba(M)=7M CM.
Secondly we must verify that
B(K*)CK.

But this is equivalent to the condition that the projection of af(K*) to M*
is zero. This is clear because a@(K*) = 7 - K*.

We may now write 8 = Sx+ @ Ba~. Let us identify K* and K via g+ and
M and M* via apr. Our diagram takes the form
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KoM =% koM ‘O oM
I I Il (A-34)
Ny — N_y — Ny

The perfect pairing By : No X N_3y — OF ® R is induced by perfect pairings
Ok- on K* and Gy on M. Since the composition of the two arrows of
{ A.34) is 7 we conclude that o+ = w and fy = 7. Hence the isomorphism
class of the original polarized chain is determined by the isomorphism classes
of the perfect pairings Qpr and Qg~, which locally for the étale topology
are determined by the ranks of M and K*. This proves that in the cases
r=2 a =1 respectively r = 4,a = 1 two polarized chains of the same type
(G) are locally isomorphic for the étale topology.

Finally we treat the case where r > 4 is even and @ = 1. Consider the
subchain consisting of the following modules,

N() —— N—T+1 — N.g —% N~'§+1 — No. (A.35)
The pairings By and B_; define a polarization on that chain. By the case
7 =4 and ¢ = 1 this chain takes the form {A.31). The modules N_;,k =
0,...,% — 1 inherit from (A.31) a direct sum decomposition

Nia=M_ eUjeV.

The M_; form an unpolarized chain of a given type,

Ug = M_§+1 C M_.§+2 C-C My=Up. (A36)

In the same way we get an unpolarized chain

U{; =M_ 41 CM_r42C---C M_g = Ug (A37)

We see that the data giving a polarized chain {N;} are equivalent to that
of a polarized chain of the form (A.31) and to two unpolarized chains of
the form (A.36) and (A.37) respectively, which are in duality to each other.
This shows that also in the case r even, ¢ = 1 two polarized chains of type
(G) are locally isomorphic for the étale topology.

A.36 Let us now show the formal smoothness of the functor of isomor-
phisms in this case. First we look at the case r = 2, that is a chain of
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the form (A.32). We define a splitting of such a chain to be an orthogonal
decomposition with respect to Q4

V=KoM

such that K modr is the kernel of @, mod .
Let us consider a surjection with nilpotent kernel B — S. We claim that
any splitting over S

VOrS=Ks®Ms
lifts to a splitting over R. Indeed let us denote by a bar the reduction mod 7.

Consider the diagram

Or/t®R +— Or®R
Or/1®S «— Or®S

The kernel K(&) of @, mod7 is a Op/mOr @ R-module. All we need to
show is that there is a direct summand K of V, such that K = K(&) and
K @ § = Kg. Let us replace in the above diagram Or ® R by a ring
T, such that we get a fibre product. Define K7 to be the fibre product of
K(&) and Ks over Ks. Clearly Kr is a direct summand of V ® T. Hence
it is enough to lift K to a direct summand K of V. Since an easy diagram
chasing shows that Op @ R — T is a surjection with nilpotent kernel we
have no trouble doing that.

Now consider an automorphism w of the chain ( A.32) tensored with S.
Choose a splitting of V' as above and set

M_Ig =w(Mg) and Kg =w(Kg).
Then we lift V @ S = M ® K} to a splitting over R,
V=KoM.
We need to lift the isomorphisms of perfect quadratic forms

w:(Ms,Qa,s) — (M§,Q4,5), w:(Ks,Qss)— (Ks,9s,5)

to isomorphisms of perfect quadratic forms
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w: (M, Qe) — (M',Qa), w: (K, Qp) — (K, Qp).

This can be done by the propositions (A.13) and (A.14). This finishes the
case r = 2.

Let us now consider the case of any even period r. We look at the diagram
(A.35). We define a semisplitting of our polarized chain to be an isotropic
subspace Up C No and an isotropic subspace U_z C N_gz, such that the
maps

Up— No/N_y, U_z — N_z/N_zp

are isomorphisms. Although contrary to the case a = 0 the pairings on Np
and N_z are not perfect, it is easy to see that such semisplittings lift with
respect to surjections R — S with nilpotent kernel. Indeed one can use that
Up and the image of U~ in Np generate a perfect subspace of No. Then
one argues by first lifting this perfect subspace.

To lift an automorphism of the polarized chain one is reduced by using a
semisplitting, to lift isomorphisms Uy — U}, isomorphisms of a polarized
chain (A.32) and isomorphisms of unpolarized chains (A.36) and (A.37).
This finishes the case a = 1 and r even of our theorem.

The only case left is ¢ = 1 and » odd. Fortunately by an index shift this
reduces to cases we have already done. Indeed, assume we are given a
polarized chain ({N;}, B;). Then we define a new polarization by the rule

B (n_isnivi-r) = Bi(n_i, 0(niy1—r))

where n_; € N_; njy1—r € Nip1_,. Then for the new chain ({N;}, B}) we
have a = 1~ r even. An index shift N/ = N, 1r reduces everything to
the case a = 0, which we already treated above. This finishes the proof of
proposition (A.21).

We will now consider the case (III). We assume that Op = M,,(OF). The
restriction of * to F' will be also denoted by f +— f.

Let R be a Z,-algebra. We extend the involution R-linearily to S = Or®z R
and denote it by s — 5. With respect to this involution we may speak of
an e-hermitian form on a S-module M.
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Proposition A.37 There is a hermitian or antthermitian form

x:0% x O — OF

which is perfect and satisfies the equations

x(Az,y) = x(z,A"y), =,y€ 0%, A€ M, (OF). (A.38)
The form x is uniquely determined up to a unit f € O;ﬁo.
Proof: Let us remark that there may exist both a hermitian and an anti-
hermitian form meeting the requirements of the proposition; this is how the

above uniqueness assertion is to be interpreted. We may write the involution
* in the form

A*=U"1AU .
The equation A** = A implies U~ € F. We write

U =fU.
We see that ff = 1. By Hilbert Satz 90 we conclude that we may assume
that '/ = U. Then

x(z,y) =20y

is a hermitian form that satisfies ( A.38). Since * leaves M,,(OF) invariant,
we see that U ‘10} is an M,(Or)-lattice. By Morita equivalence there is an
u € F, such that U=10% = u-O%. We have to find an element u; € F, such
that u and uy have the same order, and 4; = +uy. If F)/Fp is unramified or
if the order of u is even, we may find u; € Fy having the same order as u.

In the ramified case, there is a prime element 7 of O that satisfies 7 = —7.
In this case we take u; to be a power of 7. Clearly u; - x is the form we are
looking for. u

Remark A.38 We may choose a generator dp of the different ideal of
F/Q, that satisfies #p = Jdp or 9p = —Ip. As for Op-bilinear pairings the
equation

trryq, 97 Fx(z,y) = xol, fv)
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gives a bijection between hermitian or antihermitian forms and Z,-bilinear
forms xo, which are symmetric or antisymmetric and satisfy the relation

xo(z, fy) = xo(fz, 7).

Under this bijection perfect forms correspond to perfect forms.

A.39 Let M be aright M,(Op)-module. Then we view M as a left module
by the equation
Am = mA*, meM, A€ M,(Or).

With this convention yp becomes an isomorphism of M, (Op)-modules

xo0 : Op — Hom(O%, Zy) .
Let R be a Z,-algebra. Let M and M’ be M, (OF) ®z, R-modules. Assume
we are given a R-bilinear form
EMxM —R,
such that £(Am,m') = £(m, A*m’). By Morita equivalence we write M =
O% ®0, N and M’ = O% ®o, N’. Then there is a unique R-bilinear form
B:NxN —0Opr@R

such that B(fn,n’') = fB(n,n’) = B(n, fn') for f € Op. Namely, B is
defined by the equation

E(x1 @ ny, z2 @ n2) = xolz1, B(ny, na)zs). (A.39)
More formally we have the map of M,,(Or)-modules induced by &:

0% ®0 N — Homg(O% Qo, N', R) 2Homo,gr(N', Homr(O} @R, R))
l Xo
Homogr(N', O ® R)

i
O% Qo5 Homo,gr(N',Or @ R)

Hence again by Morita equivalence we get
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B:N — Homo,gr(N',Or ® R).

Clearly B is perfect if and only if £ is perfect, and B is hermitian if xg is
antihermitian and vice versa.

A.40 Assume we are given a selfdual chain of M,(OF)-lattices £ = {A}
in the vectorspace (V,4). We write V = F™ Qp W. The equation (A.39)
applied to this situation yields a hermitian or antihermitian pairing

w:WxW —F.

We have then a selfdual chain of lattices G = {T'} in (W, c), such that
{A=03@T; T €G}isthe chain (£) and A* = 0% QT™*.
Assume we are given a polarized chain of M, (Or) ® Or-modules (My, E4)

of type (£) on a scheme T'. Then there is a chain Np of Op @ Op-modules
of type (G), such that

Mozer = Op ® Nr.
From ( A.39) we get perfect pairings
Bp : Np X Npe — OpQOr.
They satisfy the equation

Br(n,n') = eBr+(n',n), n € Np,n’ € Np«,

where the sign ¢ is opposite to the sign of xo.

Definition A.41 Let {Np} be a chain of Op @ Or-modules on a Zy-scheme
T of type (G). A polarization of the chain {Nr} is a set of perfect sesquilin-
ear forms

Br : Np x Np» — Op Q Or

whick satisfy the following conditions

1. Br(fn,n’) = fBr(n,n’) = Br(n, fn'),
n € Nr, n’ENp*, fEOF
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2. Bp(n,n’) = £Br-(n',n)
Here the sign depends only on the involution with which we started.

3. LetT1 C Ty be lattices in G. Then

Br, (m, gry r3(n)) = Br,(er,,r,(m), n),
where m € Np,,n € Nr\;.

4. There is a periodicity morphism functorial in T

9:'01'—1 : N.r — Nr,

such that w- 0 = gr »r and such that

Br(6(n),n’) = % r(n,8(n')), n€ Nyr,n’ € Npe.

In the notation of the definition (3.6) we have 26 = fz-1. If we multiply
the last equation of condition 4) by % we get a special case of 3).

We summarize our considerations as follows:
Proposition A.42 There is an equivalence between the categories of po-

larized chains of M, (Op) ® Or-modules on the scheme T of type (L) and
the category of polarized chains of Op @ Op-modules of type (G). 0

The theorem (3.16) may be reformulated as follows in case (ITI):

Proposition A.43 Let (Nr, Br) be a polarized chain of Op ® Op-modules
of type (G). Then locally for the étale topology on T there is an isomorphism
of polarized chains

{Nr, Br) =~ (T, )@ Or.

Ifr and a (see below) both are even, such an isomorphism exists even locally
for the Zarisk: topology.

If (N}, Bp) is a second polarized chain of type (G), then ithe funcior on the
category of T'-schemes .

T" — Isom{((Nr, Br)r:, (Nf, Bp)r)

is representable by a smooth affine scheme.
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Proof: Since the question is local we will assume that T' = Spec R. Let us
choose a prime element 7 € F, such that 7 = 7 in the case where F/Fy is
unramified and 7 = —7 in the ramified case. Let us index the selfdual chain
G by Z:
SR e Vi el ¥ I ey
7rI‘,- = 1‘;_, ]._“: = I‘_,‘.}.a .

If (Nr,Br) is a polarized chain of type (G), we will set N; = Np, and
B{ = BI‘,'-

Let us start with the case » =1 and a = 0. Then the whole polarized chain
(Vi B;) is determined by a perfect e-hermitian form :

By:Ngx Ng —Op®R.

In the case where By is hermitian or F' is unramified over Fj the proposition
(A.14) is applicable. Then the proof is as in case (II). Hence we are left
with the situation, where F/Fy is ramified, and the form By is antihermitian.
We claim that Zariski locally Ny is a direct sum of two isotropic subspaces.
Indeed, since By modulo 7 is an alternating form on Ny/wNp, we have
locally a decomposition into isotropic subspaces modulo n. By proposition
(A.12) we obtain the desired decomposition for Ng. This implies the first
part of the proposition for ¢ = 0 and » = 1. The proof that isomorphisms
(No, Bo) — (N§, Bp) lift follows from the same proposition.

The case r = 1,6 = 1 is done in the same way. We have only to use the
perfect e-hermitian pairing

Q(nOanf)) = BO(nOag(nf)))a no’n:) € No,

which in this case determines the whole chain up to isomorphism.

Next we consider the case ¢ = 0 and r > 1. There is an obvious analog of
the lemma (A .27), which we give without proof:

Lemma A.44 A polarized chain of Op @ Op-modules of type (G) of period
T and a = 0 is given by the following data.

1. A circular diagram of T-locally free Op @ Op-modules
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N—r+1 £ ""“*N—~tr

\/

2. Op, ® Op-bilinear pairings, which are either hermitian or antitherm:-
tian

where t = [T£L].

B : Ny x No — Of ®z, Or
QZN__t XN_.t ’—*)OF®ZP C)T-

The following conditions are satisfied.

(?) Locally on T there exist isomorphisms

N; =~ I‘g@poT i=0,—r+1,...—1
Ni/Nioy =~  Ti/Tie1®z,0r i=—t,. .., —r+1
T_i41/T_2®z, Op  ifr is odd
* o~ ?
NZJN- = { 0 if r is even.

The left hand side of the last isomorphism is a notation for the cok-
ernel of the map induced by Q

N_; "‘—’Nit

The bilinear form B is perfect.

In the case where the extension F[Fy is unramified the forms B and
Q are hermitian of the same sign as 3. In the ramified case B has the
same sign as x bul Q has the opposite sign.

(ii) Let a = g7t : Ny —> N_;. Then we have the identity

B(B(m),n) = Q(m,a(n)), m€ N_,, n€ No.
(i) Going once around the circular diagram is maultiplication by =. N

A.45 Let us start with the case where r is even. Assume r = 2. Then the
circular diagram of lemma (A.44) looks as follows
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No =% N_y 2o Ny % N4,

where foa = aff = 7.

We know that isotropic subspaces of No/wNg and N_; /7 N..; with respect
to Bmod 7 and @ mod 7 lift, since in the case r even the form Q is per-
fect. Hence we find a splitting of our chain by isotropic subspaces {compare

(A.18)):

Nyg = Uo@ﬂ(U_l)
Ny = U_l@a(Ug)‘

We have a perfect sesquilinear form, U_; x Uy — Op @ R given by

B(B(u-1), uo) = Q(u-1, a(uo)).

We see that the Op ® R-module Uy determines the whole chain up to iso-
morphism. Since Uy mod  is isomorphic to the cokernel of 8, it follows that
Uy is T-locally free. Hence any two chains of type (G) are locally isomorphic
for the Zariski topology. The rest of the argument for r even is exactly as
in the case of M,(Op) with an involution of the first kind.

The case, where r is odd and a = 0 is done by an obvious modification of
the arguments in case (II). We therefore skip it.

A.46 We will now consider the case a = 1. We consider the sesquilinear
form

B:Ngx Ny—Or®R,
which is defined by

B(ng,np) = Bo(no, o(np))-

B is e-hermitian of the same sign as . We set Ny = Ny JalNg. For0 <t <r
we denote by F_, the image of the map N_; — Ny obtained from .
In the same way as lemma (A.26) one proves:

Lemma A.47 The orthogonal complement of F..; with respect to B modulo
is Foyioy 0.
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We will start with the case » = 2. For an Op ® R-module N we denote by
¢N the module obtained from N via restriction of scalars by the conjugation
Or®@R—OrQR,fQr—f®r.

The perfect sesquilinear pairing

P:Nox Ny — Or®@R (A.40)
(no,n_1) +— Bo(no,0(n-1))

allows us to identify N_; with °*Nj. Let @ be the map
NO —>N_2 —>N..1 ~ cN; .
o-1 e
We get a diagram
Ng —)cNE TN(), (A41)
@

where the map g is induced by p. We have aff = fa = 7.

Exactly as in case (II) (A.32) this diagram determines the whole polarized
chain up to isomorphism, If s is hermitian, one checks that § is hermitian
with respect to P, while « is hermitian in the case where F'/ Fy is unramified
but antihermitian in the ramified case. If s¢ is antihermitian, « and £ are
e-hermitian with the opposite sign. By corollary (A.3) we get an exact
sequence, if we reduce modulo 7,

No —»¢Ng— No—¢Ng.
a ﬁ o
We may rewrite this diagram in the same way as (A.33):

KoM “93M e g opr* PR g gy .

Here the maps ey and Bx are isomorphisms. These isomorphisms deter-
mine g and fy uniquely by the equations fxax = m and fFyrapy = 7.

Hence our polarized chain is determined by the maps oar and Bg, which
may be interpreted as perfect hermitian respectively antihermitian forms
on M and °K™. Hence we finish the case r = 2 by applying the proposition
(A.43) in the case r =1, ¢ = 0 to apr and Bx.
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A .48 We consider now the case r = 4. We have a chain of modules:

[ e 2 ¢ o
Nog—N_4—N_.g— N_3 — N_; — Np. (A.42)
Moreover we have perfect sesquilinear forms

Po:NoxN_3— Or Q@R

Po(no, n—3) = Bo(no, O(n-3))

and

P_a:N_ogxN_i—OrQR

P-s(n_z,n_1) = B_o(n_2,8(n_1))
We have the relations
Pono, 0~ e(np)) = xP(ng,0~1o(no))

p_z(n_2, Q(nl_.z)) = i‘-fp—z(n{-Z) 9(”—2))
Po(e(n-1),n_3) = =P_s(e(n_3),n_1)

Here the signs depend on s and the ramification of F/Fy. We also introduce
the e-hermitian forms

B(no, np) = P(no, 07" g(np)) = Bo(no, e(np))

and

Q(n_s,n_y) = P_a(n_s, o(n’,)) = B_z(n_z,00(n’_,)).

We can use Py (respectively P_3) to identify N_g with °Ny (respectively
N_; with °N*,). Then the diagram (A .42) takes the form:

No -LsenNt 2 N_p L oN*, -2 N, (A.43)

The relations between the bilinear forms above signify that the second and
the forth arrow in this diagram are anti-dual to each other, while the first
is induced by B and the third is induced by Q.

As in the case (II) we find totally isotropic direct summands Uy C Np
with respect to B and U_o C N_; with respect to @, such that the maps
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U — No/N_; and U_3 — N_3/N_3 are isomorphisms. Since by lemma
(A.47) the form B modulo 7 induces a perfect pairing

B:N_Z/N_3 X N()/N..I — OF/WOF®R
n_g X ng —  B(g*(n_2),ne) modulo 7,

we get a perfect pairing

Uy xUp— Or ®R, (A.44)

which maps u_s x ug to B(%(u-2),10) = Q(u_2,0%0 " (us)). From the
unpolarized case we know that ¢® maps Uy isomorphically to a direct sum-
mand of N_, and U., isomorphically to a direct summand of Ny. Hence
we may identify Uy with a direct summand of N_; and U_5 with a direct
summand of Ny. Then the restrictions of B to the subspace Ug@U_3 C Ng
respectively of Q to the subspace Uy @ U_5 C N_, are the same perfect
pairing given by ( A.44).

Taking the orthogonal complements to Up & U_g we may write:

No=UpgBU_28V, N o=UpdU_20W.
If we identify Up & U_» with ¢(Uy @ U_2)" by (A.44) we may write

‘No=UsdU_20°V", ‘N*,=UgdU_s @ W™,
As in the case of an involution of the first kind, one checks that the map
N_j — Ny takes with these identifications the form
Bid @
Uo®U_y @ W* = —2 UhdU.20V.
The map v is an isomorphism, which we use to identify V' and ‘W*. Then
our original chain (A.42) looks as follows:

» 14®P

id tdy, ®rdide
tddba ey Chd V'UO@U—2@CV iy

UDhdUgdV —UgdU_2 ®
wDidy_, Didy

U U_sV —— Ui U_sap V.

Here o : V — V" and 8 : °V* — V are maps, which are either hermitian
or antihermitian and «f = fa = x. This is exactly the situation of the
diagram (A.41). This shows that the ranks of the modules N; and N;/N;_;
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determine locally for the étale topology the polarized chain (A.42) up to
isomorphism.

In the case where » > 4 is an even number the proof of this fact may be
reduced as in case (II) to the case r = 4.

The proof of the formal smoothness of the functor is as usual. The case
a =1 and r odd reduces to the case ¢ = 0 by a shift of indices.

A.49 We will now consider the case (IV). For the maximal order in B we
may take Op = M,(Op), where Op is the unique maximal order in the
quaternion algebra D.

We will fix an unramified extension Fy/F of degree two that is contained in
D. We also fix a prime element II € D, such that conjugation by I induces
on F, the nontrivial automorphism over F:

e=Hell™ for e€c Fs.

Then 12 = 7 € F is a prime element of F. The maximal order in D is
Op = Op,[1].

By assumption the involution X +—— X* X € M;(D) leaves M,(Op) in-
variant. Let us classify the possible involutions of this kind up to isomor-
phism. In terms of matrices this problem may be rephrased as follows. For
X € M,(D) we denote by X’ the matrix obtained by applying the main
involution to the entries of X. Then

X tX’
is an involution of M, (D) that leaves M,(Op) invariant. Any other invo-
lution of the first kind is of the form

X —C'X'ct,
where C € G L, (D) is a matrix that satisfies one of the equations C = + *C’.
Two involutions X* = C *X’C~! and X* = C; *X'C;! are isomorphic, iff
there is an A € GLo(D) and f € F*, such that

ACTA! = fC,.

Since the involution X —— X' fixes M,(Op), we see that CO} C D® is a
left M, (Op)-submodule. By Morita equivalence we conclude that
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CO% =N*0%  for some k.

Since we may multiply C by an element of F' without changing the involu-
tion, we may assume that k =0 or £ = 1.

Let U = OF considered as a right Op-module. We have Og = End_o, (U).
In the case k = 0 we have a perfect hermitian respectively antihermitian
form on the right Op-module U with respect to the main involution

H(u,v) ="'C7'v, w,vel.

In particular we have the equations

H(ud,v)=d'H(u,v)

and

H(u,vd) = H(u,v)d.

This form H induces the involution X +— X* on Op

H(Xu,v) = H(u, X"v).

In the case k = 1 we define A € GL,(Op) by the equation C = AIl. We
will work with the nebeninvolution on D,

Definition A.50 The nebeninvolution on D with respect to the prime ele-
ment Il is defined by d = IId'H~1.

We note that even up to isomorphism this definition depends on the prime
element II.
Hence in the case £ = 1 we have with the obvious notation

X' =A'XATT,
where A € GL,(Op), *A = FA. In this case we get a perfect e-hermitian
form on the right Op-module U with respect to the nebeninvolution

H(u,v)=‘aA %, wuvel.

This pairing induces the involution X —— X* on O = End_o,(U). We
note that isomorphic e-hermitian forms on U induce isomorphic involutions
on Op. Let us summarize our conclusions.
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Proposition A.51 Any involution of the first kind on Op is induced by a
perfect e-hermilian form on the right Op-module U = OF with respect to
the main involution or the nebeninvolution,

H:UxU — Op.

The reader may verify that up to isomorphism there are the following pos-
sibilities for perfect e-hermitian forms on U.
Let us denote by d —— d an involution on D, which is either the main
involution or the nebeninvolution. In the table below we represent a z-
hermitian form H on U by its matrix N € M,(Op),

H(u,v) ='i4Nwv.
We also denote by ¢ a root of unity of order prime to p that generates Fy/F

Case: H hermitian with respect to the main involution,

N = E the unit matrix.

Case: H antihermitian with respect to the main involution ,

N =CE.

Case: H hermitian with respect to the nebeninvolution,

N=F or N:(g?)

Case: H antihermitian with respect to the nebeninvolution

0 FE
N =
(5
where the blocks are quadratic of the same size.

Instead of H we can consider the perfect (anti-)symmetric Op-bilinear form

hp:UXU-—«—POF,

which is given by the formula

hF(ul,ug) = tTOH—IH(’ul, U'),) y (A.4;5)
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where #r° denotes the reduced trace form on D. Let us denote by d —
d* the involution on D given by d+ = IIdII-!. This is either the main
involution or the nebeninvolution. One checks that 2 p satisfies the equation

hF(ul, ‘uzd) = hF(u1d+, ’u2) . (A.46)

Conversely a perfect (anti-)symmetric Op-bilinear form hp that satisfies
the equation (A.46) comes from a perfect hermitian pairing H on the right
Op-module U with respect to the involution d — d.

As usual to hp there corresponds a Zy,-bilinear perfect form

h(ul, uz) = tTF/Q, ﬂ;-lh_p(u]_, U2) .

Here Jp is any generator of the different ideal of F' over Qp. Again &
satisfies the equation (A.46). It induces on End_o,(U) = Op the given
involution X — X™.

We may reformulate the Proposition (A.51):

Proposition A.52 Any involution of the first kind on Op 1is induced by a
perfect (anti-) symmetric Zy-bilinear form on the right Op-module U = OF

h:UxU—1Z,
that satisfies the equation

h(uIJ, up) = h(u1,uad),

where d — d” is either the main involution or the nebeninvolution.

Proposition A.53 Let M1 = O} ®o, N1 and Mz = OF Qo Na be left
Op ® R-modules which are projective and finite.
Then there is a bijection between perfect R-bilinear forms
£ My x My — R,
that satisfy the equation

S(b*ml, mz) = S(ml,bmg), be Op,

and perfect sesquilinear forms with respect to the involution d@ r+— dor
on Op @ R,
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B: Ny xN, —Op®R.
The forms B and £ determine each other uniquely by the equation

E(ur ® my, ug @ ma) = h(uy, uaB(m1, my))

Proof: Let us denote by M| the left Op ® R-module obtained from the
natural right Op ® R-module Homp(M;, R) by restriction of scalars with
respect to the given involution b —— b* on Op. Then £ becomes a linear
map of left Opg-modules

M, — Mj

my — E(—,m3)
Using the Morita equivalence we get a map

0% ®op Na — Hompg(0} ®o,, N1, R). (A.AT)
Let us extend A to a perfect form on O} @ R,
h:0, QRx O, ®R— R.
We see that h defines an isomorphism of left Oy ® R-modules,
(O ®R) — (0% ® R)Y =Homg(0O} ® R, R)

u — h(—,u).

Using this isomorphism, we may rewrite the right hand side of (A.47),

Hompg(O%, o, N1, R) = Homo,er- (N1, Homr(O} ® R, R))

A
~ Homo,gr-(N1,0% ® R) ~ O} Qo, Homo,er—(N1,0p @ R).

We note that the left Op-module structure on Homp(Op ® R, R) used to
form the second Hom is the one induced by the natural right Op-module
structure on OF,. The left Op ® R-module structure on OF ® R respectively
on Op ® R used to form the Hom in the second line is induced from the
natural right module structure by restriction of scalars with respect to the
involution d — d on Op.
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Inserting what we did in (A.47} we get by Morita equivalence an Op-module
homomorphism

Ny — Homg,gr—(N1,0p ® R). (A.48)

The Op-module structure on the Hom is induced by the natural left Op-
module structure on Op ® R. Clearly (A.48) defines the sesquilinear form
B we are looking for. Moreover B is perfect, iff £ is perfect. d

Consider the given symplectic B-module (V,( , )} with respect to the
involution & — b* on B

(b, w) = (v, 5" w).

We write V as a left B-module in the form V = D” @ p W. Then by
proposition (A.53) we find a sesquilinear form

x:WxW-—D,

that satisfies the equation

h(ug, uax(wi, we)) = (w1 @ wy,u2 ® wa)
x(dwy, w2) = x(wi,wa)d
x(wi,dws) = dx(wi,ws)

x(w1,w2)” = £x(wq,w1).
The sign in the last equation is + if A is antisymmetric and — if h is

symmetric.

Now assume that we are given a selfdual chain of lattices {A;}iez in V,
indexed as in corollary (3.7). We write A; = O} ®o, I';, where G = {T; }iez
is a chain of Op-lattices in W. If the lattices A; and A;s are dual with respect
to ( , ), then by proposition (A.53) the sesquilinear form

X:P,'XF,':———*OD

is perfect, i.e. {I';} is selfdual with respect to y. There is an integer a such
that
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Iy =T_;4a.
If the chain {A;} has period r we get
Ii_.=0HT;.

Definition A.54 Let T be a scheme, where p-is locally nilpoteni. A po-
larized chain of Op ® Or-modules of type G = {T;} on T is given by the
following data:

1. A sequence of left Op @ Or-modules

---—+N¢'_1—Q—>N;—Q—>Ni+1——>---, icZ.

2. A set of periodicity isomeorphisms

g: N,-rI — Nijr.

3. A set of perfect sesquilinear forms with respect to the involution d —
don D

Bi :NixN_j4a — Op @0r.
These data are subject to the following conditions :
(i) Locally on T there ezist isomorphisms of Op @ Or-modules
N;2T;0@0r, N;i/Nio12Ti/Tim1®07.
()
fo=pb, J6=1.

(#i) The forms B; satisfy the following relations:

B;(ml, dmz) = dB,‘(ml,’I’Hgl
Bi{dmy,mg) = Bi(my,m2)d
Bi(mi,mg) = *B_jya(my,mi)

Bi(e(ms), ms)
Bi—r(6(m1), ma)

B;_1(ms, o(m2))
—HB,' (m1 s 0(m4)),

fi
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where my € N;, mp € N_iya, m3 € Ni—1, ma € N_jyr44, d € Op.

Let {M;}iez, € be a polarized chain of modules of type (£) on a Zy-scheme
T. The polarization form & consists of a set of perfect pairings

& M; x M_iyq — Op,

where a is some fixed integer.
By Morita equivalence we get a chain {N; };ez of Op ® Op-modules of type

(9),
M; =2 0} ®op N;.
By proposition (A.53) we have perfect sesquilinear forms
B;: N; x N_jyq — Or.

Proposition A.55 The chain {N;}icz with the forms B; is a polarized
chain of Op ® Or-modules of type (G). The functor which associates to
a polarized chain ({M;},E) of type (L) the polarized chain ({N;},B) is an
equivalence of categories.

Proof. For any element b in the normalizer of Op we have an isomorphism

01, :MK——>M1,A.

Let us begin with the definition of the isomorphisms 8 : N,-II — N;_,, and
show how the 6; may be recovered from §.
We view 8; as an isomorphism of Op-modules

01, : MA -3 MbA (A49)

that satisfies the relation

Gb(am) = bab‘lﬂb(m), a€0p,me M.

‘We note that any element b of the normalizer of Op may be written

b=1"u  u€ GL,(Op). (A.50)

We denote the exponent m by ordpb. By the equation (II*)? = 7 we see
that
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ordpb = ordpb™*.

If ordpb = 0 the map (A.49) is just multiplication by 4. For a general b we
have

01, = (6’11)”‘ *U.

We note that there is a natural isomorphism
MfT=(03)" ®0p Ni — O ®0,, N}
r@n— Izl @n.

Hence the map 0y : M1 — M;_, induces by Morita equivalence a map

O : NI — Ni_,.
Conversely the map 61 may be written
fn: O ®op Ni — Op Qop Ni—r
r®@n +— Nzl 1@ H_H(n,-).

Next we need to verify that the relations (iii) of definition (A.54) hold for
B. Only the last relation needs a verification.
We have IT* = ull for some u € OF. Then the map - is

b : OB Q@ N; — O} ®op Ni—r
z@n — ullzll"1® én(n).

By definition the periodicity isomorphisms are compatible with the polar-
ization £ in the following sense:

gi_.,-(en(ml), mz) = Ei(ml y Hﬁ(mz)) . (A.51)

Let us compute, what these equations say about the sesquilinear forms B;:
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& +(On(z1 ® (n1)),22@n2) =& (T2 T ® fny, 22 @ n2) =
= h(Tlz 01, 22Bi - (Br(n1), n2))
= h(zy, T*22B;_r (fri(n1), n2) 1)
= —h(z1,ullz2B;_, (fr(n1), na) T 1).
Computing the other side of the equality (A.51) we get

Ei(z1 ® n1, O« (22 @ n2)) = Ei(z1 ©@ ny, ulle I @ Ory(n2))
= h(.’l)l, uﬂxzﬂ’lB,-(nl, aﬁ(nz))) .
Comparing both results, we get the last equation of the proposition. |

The theorem (3.16) may now be reformulated in the case at hand.

Proposition A.56 The polerized chain {N;} of type {G} is locally for the
étale topology on T isomorphic to {T: @ Or}. If r and a both are even, such
an isomorphism exists even locally for the Zariski topology.

Moreover if {N]} is ¢ second chain of type (G) on T, then the functor of
isomorphisms of polarized chains on the category of T-schemes,

T s Isom({N,-} Ror Ors, {N,’} Ko, 0T’)>

1s representable by a smooih affine scheme.

The proof of this proposition will be the rest of this appendix. We may
assume that T = Spec R is afline. Let us start with the case where ¢ = 0
and r = 1. Then we have a perfect sesquilinear form

By:NoexNg— Op®R.

From Bp we recover the whole chain of modules by the rules:

N_i =N, ¢ =1,0 = id, B_i(n1,n2) = I Bo(ny, m)il’ .

Consider first the cases, where either By is hermitian or ~ is the main invo-
lution, Then the modules Ny and N} admit locally for the Zariski topology
an orthogonal basis by proposition (A.14). The smoothness of the functor
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of automorphisms follows by proposition (A.13). To show the first assertion
of proposition (A.56) in the case where By is hermitian with respect to the
main involution it is enough to show that there exists an orthonormal base.
Since an orthogonal basis exists we may assume that Ny is a free Op ® R-
module of rank 1. In this case the assertion is that we have a surjection of
étale sheaves in R,

(Op ® R)* — (Or @ R)*. (A.52)

This follows because the last map is a smooth morphism of algebraic groups
over Zp, for p # 2. Next we have the case, where By is antihermitian
with respect to the main involution. This reduces to the case before, by
multiplying By with a root of unity ¢ of order prime to p, which generates
Fy/F. In the case where By is hermitian with respect to the nebeninvolution
we consider the reduction of By modulo II,

B: NO/HNO X NO/IINO — Kk Q R,

where k2 denotes the residue class field of Fy. To show the existence of an
orthonormal basis we may replace by proposition (A.13) By by B. Since
the nebeninvolution is the identity on &3 the form B is a perfect symmetric
bilinear form, which has an orthonormal basis locally for the étale topology.

Finally let By be antihermitian for the nebeninvolution. Then the reduction
B modulo II is an antisymmetric perfect form, which even with respect to
the Zariski topology has a standard symplectic basis. Then the same is true
for the form By by proposition (A.12). The smoothness of the functor of
isomorphisms follows from the same proposition.

Hence we have treated the casca=0andr=1. Thecascea=landr=1
1s similar. In this case

P(ng, na) = Bl (0_1(710), nf,)
is a perfect hermitian or antihermitian form with respect to the involution
d— TIdT 1
’p:NgXNo-—-—‘*OD®R-

Again P determines the whole polarized chain uniquely. Hence in this case
the proposition (A.56) is valid too.
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We may now assume r > 1. Let us start with the case where @ = (. Then
By is a perfect e-hermitian form on Ny with respect to the given involution
d — d. We will denote this pairing also by B. The lemma (A.26) holds
with the same proof.

Lemma A.57 For0 <t < rlet F_; be the image of N_; in Ny /ILNy under
the map ¢. Then F_,y. is the orthogonal complement of F_; with respect
to B modulo 1I. a

From now on let t = [ﬁzi} . Then we define a form

Q. N_;xN_;— Op®R
B:(6~p(n),n") ifris odd
B:(6-1(n),n’)  ifris even.

Q(na nl) =

Then @ is hermitian or antihermitian with respect to the involution d —
dTi-t =dt.

The definition A.54 may be rephrased in terms of the sesquilinear forms P
and Q.

Before doing this we need to fix a notation. Let N be a left Op ® R-module.
Then N* = Homo,gr-(N,Op ® R) is in a natural way a right Op ® R-
module. We denote the left Op ® R-modules obtained by restriction of
scalars with respect to the involutions d — d”respectively d — d¥ by N~
respectively N*. There is a natural isomorphism of left Op ® R-modules

(N = N = (N
It is given by conjugation with II:
Homo,gr~ (N(P, Op® R) — HomoD®R_(N0,OD ® R)
e (n) =M lp(n)l.

Proposition A.58 To give a polarized chain of Op ® R-modules on T =
Spec R of type (G) with period r and a = 0 is equivalent to giving the
following date

1. A circular diagram of locally on T free Op ® R-modules:
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Noppt =2 oL N

\ / t= [r;fl]
Ny
(A.53)

The maps p and 8 are Op Q@ R-linear. The map -y satisfies the relation

v(an) = Hall"'y(n), a€O0p®R, n € Ny.

2. Two R-bilinear forms

B: Ng x No — Op®R
QZ N_t X N_t — OD®R

B is perfect and e-hermitian with respect to the involution d — d”
and Q is e-hermitian with respect to the involution d +— TATI~L.
The forms B and Q are e-hermitian of the opposile sign.

The following conditions are required.

(i) Going once around the diagram (A.53) is multiplication by II.

(i1) There ezists locally on T' isomorphisms of Op ® R-modules
N, ~ I;QR
Nife(Ni-1) =~ Ti/Ti1®R, i=-r+2,...,—t
N_rq1/7(No) =~ T i/T,®R.

The cokernel of the map
N—t — Ni-t

n — Ofn,—)

is locally isomorphic to Uy 1 /T @ R.
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(i1i) Let @ = g" 1y : N — N_,. Then we have the relation

Q(a(n),n') = B(n,B(n')), n € No,n' € N_y.

Remark: Because we are in a non comrmutative situation some care is
needed:

Q(n', a(n)) = ~IIB(A(n’),n)II ™" .

Proof: Tt is obvious that a polarized chain of modules of type (G) of the def-
inition (A.54) gives rise to a circular diagram with the properties described
in the proposition. Let us prove the opposite assertion.

We note that g is uniquely determined by « and the equation

Q(a(n),n’) = B(n,B(n')), n€ Ng, n’ € N.;.

We denote the map n’ — Q(n’,~) by ¢: Ny — NI, Fort<i<r—1
let N_'_*',- be the dual of N;_, with respect to the involution 4. We denote
the corresponding sesquilinear forms by

<, >2N_':-XN,-_,. — Op.

If we denote by g% the dual map to ¢ defined by these pairings, we get a
diagram

+
NI N o 2 SN, LN 9_,..._91,er+1 2N,
(A.54)
Here the map § is given by the equation
B(Tl[), é(m)) =£&9 < m77(n0) >+1
or equivalently
— I B(§(m), no)I =< m, y(ng) > . (A.55)

Here £g denotes the sign of the e-hermitian form Q.
Let k = r—t— 1. We claim that the map §(¢*)¥g coincides with 3. Indeed
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B(na,8(¢*)*¢(n)) = eg < (e*)*q(n), v(no) >+
= eg < ¢(n), 6" v(no) >*=£0 Q(n, e*y(no))*
= Q(¢*7(no), n) = Q(a(no), n) = B(no, B(n)).
Next we consider the chain (A.54) modulo II. Then the maps
N N_pp1 and N, 2’

are dual to each other by the equation (A.55). Since the first map has by
our condition a Op /TI0p ® R-projective cokernel which is free locally on T,
we conclude that the second map has a cokernel with the same properties
and of the same rank.

Finally we have to show that going once around the circle (A.54) starting
at any point is multiplication by II. Indeed, this is a requirement except if
we start in a point NT;. In this case let (¢¥) and (o)’ be the maps

(") :NY, — N3, (¢"): N}, — NF,.

For n_; € N*. and n;_, € Ni_, we get

~—3

< (e*)’qad(et)*(ni), nier >=

< qad(gt)(n-s), @ (ni-r) >= Q(ad(g*)*(n-s), &’ (ni-r)) =

= B(8(g*)*(n-s1), B (ni-r)) = —I* < (¢*)°ny, fe'mi—y > M =
=—I1<n_;n; . >0=— <n_jn,>1

=<ln_;,n;_, > .

This proves the proposition. According to the proof we will set in the
following N_; = fr“ for 1<i<t~1. O

A.59 In the case r = 2 and a = 0 we have a diagram

No-N_y L Ng 2Ny  af=Ba=n. (A.56)

The forms B and Q are perfect. Then the chain arises as follows:
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Let P : Up x U~y — Op @ R be a perfect sesquilinear form with respect
to the involution d — d, where Uy and U_y are locally on T free Op ® R-
modules. Then the diagram (A.56) above is given as follows

NE=Ulguy ‘g, Y ev.,.

The forms B and Q are uniquely defined by the condition that the spaces
Uy, U1 respectively UL are totally isotropic and by the equations

B(ug,u-1) = P(up,u-1) B(u_j,ug) = Z£P{ug,u_1)"
Qug,u-1) = Plug,u_y) Qu_1,u0) = FP(uo,u_1)".
One verifies the equation @(Iu_y, ug) = B(u-1, Mug), which shows that the

condition (iii) of the proposition {A.58) holds.
This shows that in the case » = 2 and a = 0 any two polarized chains of type
(G) are locally isomorphic for the Zariski topology. The same is true for any

even r by the argument given in the case (II). Also the formal smoothness
can be seen as in the previous cases because isotropic direct summands lift.

A.60 We consider now the case, where r is odd. Let us start with r = 3.
In this case the circle looks as follows

NE- %N, L,

where o and # are Op ® R-linear maps.
The given e-hermitian forms on B and Q allow us to factor 8 as follows:

NI 2 N, L NE, 2N (A.57)

The map q is the one defined by the form Q (Prop. A.58) (ii)), and the map
& is given by the equation

B(no, §(m)) = eg(m(a(no)))*,
where g denotes the sign of the e-hermitian form Q.
Let us denote by Up an isotropic complement of the image FEZ of N_o in
No = No/IINg. If FO, denotes the image of N_; in Ny we find a direct sum
decomposition

NQ:F21®UQ.
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Let Uy C Ny be an isotropic direct summand that lifts Uy. Next let Fy 2 be
the image of @ in N_p = N_/IIN_; and F~2 C F; 2 be the image of aé.
By the lemma (A.3) we know that =7 is the kernel of ¢ modIL. Tt is easily
checked that the orthogonal complement of Fjy 2 with respect to QmodII
is Fg 2. We find an isotropic subspace U_g in N_, such that its image in
N_,/F~} is an isotropic complement of Fy 2/ F~2 We get

ﬁ_z@F6—2:N_2.

Let U_y C N._2 be an isotropic subspace that lifts _y. The spaces Up and
U_, are part of a splitting of the unpolarized chain (A.57). Hence by the
proof of proposition (A.4) S(U—_2) ® Uy C Ny is a direct summand. Since
B(U_2) mod Tl and Uy modIl are isotropic complements, the same holds for
B(U-2) and Uy. Hence we get an orthogonal decomposition

Noe={Ups®B(U-2)) LN.
It is clear that U_3 C N_g and Ug @ N C Ny represents a splitting of the
unpolarized chain
a B
Nog — N_3 == Ny.

Hence we get N_o = U_y @ a(Up & N).
We have a perfect sesquilinear pairing with respect to the involution d +—

d
P: UyxU.s—0OpQR
P(uo, u—2) = Bluo, fu-2)

and moreover a perfect ez-hermitian form induced by B:

B: NxN—Op®R. (A.58)

Our whole situation is uniquely determined by (N, B) and the dual spaces
(U0, U4, P).
Indeed the circle takes the form

ATy N@idy_
NI = UBoNToUR, 0 UBONT U, = Ny — Up@N@U-.

(A.59)
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The bilinear forms B and Q are uniquely given by the rules

Blug,u—2) = Qug,u—2)="Plug,u_2), u-2€U_s, ug€lp
B(v, ") coincides with (A.58) for v, € N
Q(v,v") = HB(v,?v').

Hence the question whether two polarized chains of the same type (G) are
locally isomorphic for the étale topology is reduced to the question whether
two perfect e-hermitian spaces (N, B) and (N, B') of the same rank and sign
are isomorphic. But this was settled in the case r = 1. The smoothness of
the functor follows in the usual way from the lifting property of isotropic
direct summands. )

To treat the more general case where r is odd and a = 0 one proceeds
exactly as in the case (II).

A.61 Let us now consider the case a = 1. If »r = 2¢ + 1 is an odd number
we define a new polarization on our chain by the rule

BLi(n_iynivi—r) = Brei(07 (noi)y nig1—r) -

This is a polarization for the involution d — d* with a = 1 —r even. Since
we have already done this case we may restrict our attention to the case
r =2t and a = 1. Let us start with the case r = 2,

NE 2N, 5 Ny — N, (A.60)
We consider the sesquilinear form with respect to the involution -+,
P N,.l XN()—-—>OD®R

P(n_l, no) = 31(9-1(11_1), no).

The form P determines the polarization B; uniquely. We define a form B
on Np and a form @ on N_; by the equations

B(no,ng) P(08(n0), ng)

Il

Q(n_1,n_,) P(n_1,0(n’_,)).

Il
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Then B is a eg-hermitian form for the involution d — d”and Q is a eg-
hermitian form for the involution d — dt.
Let us denote of by « and 8 by #. We look first at the situation modulo II:

NS N, 2, s N (A.61)

We note that P induces a perfect pairing

P: &N x No/B(N_1) — Op /I @ R. (A.62)

Indeed, assume that P(ang,ng) = OmodIl for all ny € Ny. We have
P(a(ny), no) = esP(a(ng), ny). Hence a(ng) = 0modIl and by the exact-
ness of (A.61) nomodIl is in the image of 4.

Let Cp be a direct summand of Ny projecting isomorphically to No/ ,B(N_l).
Let C; be the orthogonal complement of Cy with respect to . Then by
(A.62) C, is complementary to &(NZ') and hence projects isomorphically
onto N_;/Ima. Again from (A.62) we deduce that B is perfect on Co and
by symmetry Q is perfect on C;.

Let us lift Cp to a direct summand Cy of Ny. Then B is perfect on Cy and
hence we find an orthogonal decomposition with respect to B:

NQ:CO@CéL

Let C_y C N_; be the orthogonal complement of Cy with respect to P.
Then C_1modIl = C_; and Q is perfect on C.;. We get an orthogonal
decomposition with respect to Q:

N =Ci0Ch.

We claim that the fna.p 8 induces an isomorphism 8 : C_; — Cg. For
c_1 € C_; and ¢g € Cp we have the equation

B(ﬁ(c-1), L‘o) = 'P(aﬂ((:_ﬂ, CQ) - —H'P(c_l,Co) =0

Hence (C,) € C¢. On the other hand Cf modIl = Kera = ImfB. We
conclude by the lemma of Nakayama. By symmetry o : Cif — C1, is an
isomorphism. We obtain
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a(Ci) = af(C-1) =1IC-;
B(CL) = Gy

P(CL,,C) = P(CL,, f(C-1)) = Q(C-1,CL) = 0.
It follows that the couple of (4)-hermitian perfect spaces (Cy, B) and
(C-1,Q) for the involution” and *+ respectively determine the polarized
chain uniquely.
Indeed, using the isomorphisms 16 : Co@®@C_1 >~ Ny and a®l : CH@C_ 1 =
N_; our polarized chain becomes

Ni=Cloc™ N  =ClaC_1 B Ny=CodC_s.

The polarization P is uniquely determined by the properties

P(ch,c0) = Blep co) co,¢5 € Co
’P(c,_l)c—l) = Q(cl_lyc-—l)°

The spaces C—; and Cp (respectively Cif and C_;) are orthogonal to each
other.

Two chains are locally isomorphic for the étale topology because by propo-
sition {A.56) in the case r = 0,a = 0 the corresponding spaces (Cp, B) resp.
(C-1, Q) are locally isomorphic.

We call a splitting of the chain (A.60) a pair of direct summands Co C No
and C_; C N_j, such that Cy modulo I maps isomorphically to Ny/B(N_1)
and C_; is the orthogonal complement of Cg with respect to P. The smooth-
ness of the functor of proposition (A.56) follows from the fact that splittings
lift with respect to surjections B — S with nilpotent kernel.

In the case where a = 1 and r is any even number, we consider the ep-
hermitian form

B: NgxNgo—OpQ®R

B(ng, np) = Bi(e(no), ng).
We denote by a bar its reduction modulo II

BZ N()XNO —-)0D/H®R.
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Let F_; be the image of N_; — Ng.
(O)ZF_,- CF_.,-_'_} CCFO:N()
One verifies as usual

Lemma A.62 The orthogonal complement of F_; with respeci 1o the form
B is -Ft-l-l—rn D

Let @: N_z x N_z — Op ® R be the £g-hermitian form with respect to
the involution + given by
Q(n) n,) = B%-!—l(gg—l(n)’nl): nanl € N——% .

Then the lemma holds for @ with the obvious modifications.

A.63 Next we consider the case r =4 and a = 1. We get a chain

Neg "5 No -2 Ny B Ny -5 Ny -5 N (A.63)

The polatization B; is uniquely determined by the following perfect sesqui-
linear forms with respect to the involution +

P_1: N.1x N_g —Op ®R,
P_1(n_y,n_z) = B3(0~1(n_1),n_2)
P_s: N.ax No— Op @R,
P_s(n_3,n9) = B (6~ (n_3),n0).
We have the relations:
B(no,np) = P-s(fe(no), ng) = Bi(e(no), no)

Q(n3,n.3) = P_1(e(n-2),n_5) = Bs(0 e(n-2),n.,).

With the notations of lemma (A.62) one checks that (No/F_3, B) is a per-
fect ep-hermitian space. Let Cy C Ny /F_3 be an isotropic complement of
F_5/F_3. Then we have by the lemma that Co ® F_;/F_3 = No/F_3.

We lift Cy to a direct summand Cp of Ny and F_y /F_3 to a direct summand
M_o of Ny. Then Co and M_» are isctropic subspaces and Cy @ M_, is
petfect. We lift Co @ M_+ to a direct summand M of N. Then B restricted
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to N is perfect and hence Cy may be lifted to a direct summand Cy of M
which is isotropic.

Hence we have shown that there is an isotropic direct summand Cp of
Ny with respect to B, whose reduction modulo II maps isomorphically to
Ny /F_,. There is an isotropic direct summand C_3 of N_s, whose reduction
modulo II maps isomorphically to N_o/ImN_3.

Let Ly be the orthogonal complement with respect to B of the perfect direct
summand Cp @ ¢%(C_2) of Ny. We get the decomposition

Ng = (Co (<] Qz(C_z)) @ Lo.

Similarly we have an orthogonal decomposition with respect to Q:

N_y = (6’6(Co)®C2)® L_2.

We define L_; C N_; to be the orthogonal complement of (¢*6(Co) & C-»)
with respect to P_;.

From the definition of Q we have p(L.2) C L_;. We claim that g induces
an isomorphism L_; — Lg. Let us verify that ¢(L_1) C Lo. Indeed this
is equivalent to B(g(l),z) = 0 for any I € L_; and = € Co @ p*(C-2). But
we have

B(o(1), z) = B1(e*(1), z) = B_1(1, 6*(2))
= —MB3(6~1(1), 0% (z)) = —TIP_; (I, 0o*(z))IL = 0.

Since Lo ® ¢%(C-3) is the orthogonal complement of ¢?(C_5) with respect
to B, it follows from the lemma (A.62) that Ly & ¢%(C_-2) reduces modulo
Il to F_;. Hence L3 @ p(C_3) %> Ly ® 02C_s is an isomorphism modulo
I and we get our assertion.

Similarly we define L3 and get that g induces an isomorphism L_3 —
L_,. Hence our original polarized chain

Ny iN__g —s N_9g— N_; — Ny

splits into two orthogonal parts, one formed by the modules Cp and C..»
and one formed by the modules L;. On the first part the polarization is
given by a perfect pairing between Cy and C..o,

Q(6°0(co), c—2) = B(co, 6*(c-2)) - (A.64)
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Hence locally for the Zariski topology this part is determined by the rank
Of Co .
On the part

R Ay AR ARELEY (A.65)

the forms P_; and P_j3 that define the polarization are given by a single
sesquilinear form with respect to the involution +,

P L_zXL()—->0D®R-

It is given by one of the following equivalent equations:

P(l_3,10) = P_s(e" (I-2), o) = —esP-1(e" (o), I_2)*.
We note that the forms P and Q are given by

B(lo, 1) = P(0° (o), 15), QUl-2,15) = P(l-2,0*(IL,)) -
Hence the polarized chain (A.65) is determined by the chain

20 2
Lo &5 Loy %5 Ly,

which is polarized by the form P. The last chain is exactly of the type r = 2
and a = 1, already considered (A.60). It follows that the whole polarized
chain {N;} (A.63) is determined up to isomorphism locally for the étale
topology by its type {T;}, and that the functor of isomorphisms is smooth.

A.64 In the case where 7 > 4 is any even number and ¢ = 1 we consider
the following subchain of modules
N() — N—-r+1 —— N_g — N—§+1 — N().
The pairings By and B_; define a polarization. Hence we are in the situation
r = 4. We conclude that the map N—§+1 — Ny looks as follows,
Lo CleCs— LiedCodCos.

This map has the form o®l@idc_,, where g : L1 — Ly is an isomorphism
and IT : G — G is multiplication by II.
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Hence the part N—§+1 — N Typ— o — N_; — Np of our chain is
given by an unpolarized chain
Cy =Nlgyy — NLg— - NL, — N§ = Co. (A.66)

Similarly we get a chain

C£I2=N'—r+1 —"N;-;-z - "'—’Nl_g =C.2,

which is dual to the chain above, with respect to the pairing (A.64). From
this we obtain the theorem for r even and a = 1, which was the last case to
be treated.

This completes the proof of proposition {A.56) and also of theorem (3.16).



4. The formal Hecke
correspondences

In this chapter we shall define the Hecke correspondences. They will be
self-correspondences of any one of the formal schemes constructed in the
previous chapter. We shall first explain the relative position of lattices and
lattice chains and then pass to the corresponding concepts for isogenies of
p-divisible groups. The case of a moduli problem of type (PEL) will be
reduced to the case of type (EL).

4.1 Let us recall the notion of a Hodge polygon. Let D be a finite dimen-
sional division algebra over Q,. We denote by Op the ring of integers in D,
and by II a prime element. We consider an injection of finite torsion free
Op-modules of the same rank,

p:M~-— N. (4.1)

Then there exists a basis {v;}i=1,...r of the Op-module N, such that there
is a basis of M of the form {lI*"v;};_; - where the e(¢) are nonnegative
integers. We define nonnegative integers x:

ty = F(D/Qp)card {ise(i) = k}

Here f(D/Q,) = dimg,Op /lIOp denotes the index of inertia of D over Qp.
For negative integers k we set {; = 0. In a more invariant way the numbers
t; for nonnegative k may be expressed as follows:

t = lengthy (M NI*N +IIM)/(M NT*HN +TM).

197
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From this definition we conclude

Y te = f(D/Qp)ranko, M = e(D/Qy) ™" dimq, M © Q.
keZ
Sometimes it is convenient to work with the non-decreasing function
wky=> t+ky u. (4.2)
I<k >k

For nonnegative k this function may be written:
t(k) = Iengthz?kefr'(ﬂlc :N/M — N/M).

Let {tz}rez be any sequence of nonnegative integers, such that h = 3, ., &
is bounded. We call such a sequence finite.

Definition 4.2 The Hodge function associated to the sequence tp is the
unique nondecreasing continuous function in the real interval [0, h], which is
linear of slope k on the interval [ 4, Zlgk t;} and vanishes ai the origin.
The graph of this function is called the Hodge polygon. If the numbers arise
from the situation as in ({.1), we will speak of the Hodge polygon of the
injection .

Clearly this function takes the following values:

HO t)=) .

I<k I<k

Lemma 4.3 Suppose we are given two setfs of nonnegative integers:

{tr}rez, {ti}rez.

Assume that h =Y, .zt =3 sz 1t is bounded. Denote by HP and HP°
the associated Hodge polygons. The condition that the Hodge polygon H P°
lies above the Hodge polygon of HP is equivalent to the following inequality
for the t-functions ({.2).

t(k) <t°(k)
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We content ourselves with giving the geometric reason for this elementary
lemma. Consider two convex continuously differentiable functions y = H(z)
and y = H%z) on the real interval [z, z,)], i.e. the derivatives of the
functions are nondecreasing. Then the graph of the function H lies below
the graph of the function H® if and only if the tangent line of slope A to the
graph of H lies below the tangent line of slope A to the graph of H®. For
the proof of the lemma it is enough to note that #(k) is the ¢-coordinate of
the intersection point of the tangent line of slope k to H P with the vertical
linet = h.

4.4 The Hodge polygon of an Op-morphism (4.1) is an invariant that ex-
presses the relative position of Op-lattices. To explain this, consider a D-
vectorspace V. We consider an Op-lattice M C V, i.e. a finitely generated
Op-submodule of V such that M ®z Q = V. Given two Op-lattices M and
N of V we associate to them a Hodge polygon HP(M, N) as follows. There
is a power II™ such that ™M C N. Let tgcm) be the sequence associated to
this inclusion. Then we associate to the pair of lattices (M, N) the sequence
tr = tgizn This is independent of the number m chosen.

Definition 4.5 The Hodge polygon HP{M,N) of the pair (M,N) is the
Hodge polygon of the sequence ty.

4.6 More generally we will consider the situation where B is a simple algebra
of finite dimension over Q,. Let Op be a maximal order of B. Then there is
an isomorphism B = M, (D) with a matrix algebra over a division algebra
D such that O = M,(Op) under this isomorphism. Assume we are given
a B-vectorspace V. The Hodge polygon of two Opg-lattices M and N in V
is by definition the Hodge polygon HP(M,N) of M and N viewed as Op-
lattices. We will denote the corresponding Hodge function by H(M, N). It
is a real function on the interval [0,], where h = e(D/Q,)~'dimq,V. Here
e(D/Q,) denotes the ramification index. There is a natural submodule W
of V such that V = W" as an M,(D)-module. Any Opg-lattice M C V is
of the form M" for the natural Op-lattice M C W. The Hodge functions
are related:

H(M, N)(nt) = nH(M, N)(®).

Consider the algebraic group G = GLg(V) over Q,. We fix an Op-lattice
A C V, which we call the standard lattice. The stabilizer of A is a maximal
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open compact subgroup X C G(Q,). With the notations introduced above
we have G = GLp(W).

To any pair of Op-lattices M and N in V one associates a double coset in
K\G(Qp)/K. To do this we take an element € G(Q,) such that N = zA.
Then there is a g € G(Q,) such that M = zgA. One verifies that the double
coset K gK is independent of the choice of z and g.

Definition 4.7 The relative position of the pair (M, N) is the double coset
KgK. We will use the notation : pos(M,N) =g4.

Example 4.8 Let M and N be lattices in a D-module V. Let {u; }iz=1. »
be a basis of A as an Op-module. With respect to this basis we have an
isomorphism G = GL,(D?). Assume there is a basis {v;}i=;. . of the
Op-module N, such that {l1*®)y;};_;. , is a basis of M. Then pos(M, N)
is given by the diagonal matrix

™ 0 ... 0
0 m@ .. 0
. ’6 ...... (.) ......... iié(; .)

Lemma 4.9 The map
H : K\ G(Q,)/K — C[0, h]

that associates to ¢ double coset KgK the Hodge function H(gA,A) on the
interval [0, k], h = e(D/Q,)~1dimq,V, is an injection.

‘We omit the verification. Hence the relative position and the Hodge function
determine each other by the relation:

H(pos{(M,N)) = H(M,N).

4.10 We next consider the extension of these concepts to periodic lattice
chains. Let us first consider the case where D is a division algebra and V is
a D-vector space. Let £ = {A;}iez be a lattice chain of V' (cf. 3.1) which
we index by the integers. We put

m; = lengthy (A;/Ai—1).

Then m;y, = m;, where » denotes the period of £, (cf. 3.2).
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Lemma 4.11 Lei L = {A;} and L' = {A;} be indezed lattice chains.
There exists g € G(Qp) = GLp(V) with gA'; = Ay, all 4, if and only if
L and L' have the same period r and if m; = m';, 1 € Z.

Proof: Only the if-direction is non-trivial. Let ¢’ € G(Q,) with ¢’A’s = A,.
Then also gA’_, = A_, and g’L’ and £ induce two filtrations of the same
length on the Op /TIOp-vector space Ag/A_,.. By assumption the successive
quotients have identical dimensions. Therefore we find ¢"” € G(Q,) with
g Agp = Ag which carries one filtration into the other. The element g = ¢"'¢’
therefore takes A’; into A;, all 4. [

4.12 Let £ = {A;} and £’ = {A’;} be two conjugate indexed lattice chains
in V, Le. there exists g € G(Q,) with gA’; = A;, all i. We introduce new
lattices

Ai; = An A'j + A’jﬁl.

Then for fixed j these form an increasing sequence of Op-lattices between
A’;_1 and A’; which for small values of i all coincide with A’;_; and for large
values of ¢ all coincide with A’;. We introduce the non-negative integers

ti; = lengthg (Aij/Ai-y5).
Lemma 4.13 The integers i;; have the following properties,
0 Xt =mj, 2t =mi
(1) tigrj4r =ti
(i) Ay =N <=1t =0forl>i
Aij=ANj 1 =;=0frl<i
(i Njchi<=tp=0forl>d4,k<j
MCANj et =0forl<i k>
™)

Vi dj1, 52 withfip =0 for I>iandk < j1 and
for I<iand k > jo
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V5 Jiy,4p withtip =0 for [ >4, andk <j and
for [ <igand k > j.

Proof: The first assertion of (i) is trivial and the second follows from the iso-
morphisms GrfGer' o~ Grf'Grf. The assertions (ii) and (iii} are obvious.
Let us prove the first statement of (iv). The one implication is obvious, so as-
sume A; x = Az, k < j. But then A; NA'; —l—A’j_l = A’j, A; ﬂAlj_l—l-Alj_g =
A';_1 , ete. From these equalities we inductively deduce that

MNA; + AN =N, E<j.

However, if k is small enough that A’y C A; we deduce that A’; C A;. The
second statement of (iv) is similar. Finally, using (iv), the first statement
of (v) says that

Vi 3j1,j2 with A5, CA; C A,
and similarly for the second statement of (v).

Example 4.14 (i) Let » = 1 and let M = Ag and N = A’y. Because of
the periodicity condition (ii) of (4.13) the integers ¢;; are determined by the
integers

ti0 = lengthy (I'N N M + IM)/(I~C-YN 0 M + IIM).

However, it is obvious that the sequence of integers 3 associated in (4.4.)
to the pair (M, N) is given by tx = t_p . In this sense the collection of
integers ¢;; generalizes the definition given in (4.4.).

(i) Let » = dimpV, ie. m; = m'; = 1, all &. Then Vj 3% = w(j)
with #;; = 1. For ¢ # w(j) we have t;; = 0. Lemma (4.13.), (i) and (ii)
easily imply that the map w : Z — Z belongs to the affine Weyl group
Wt = {w:Z — Z bijective; w(j+d) = w(j)+d}.

4.15 The integers t;; serve to determine the relative position of two indexed
lattice chains. To explain this we fix a indexed lattice chain £° which we
call the standard chain. The subgroup

K=Kp={9€G(Q); gA=A,A€L"}
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is an open compact subgroup of G(Q,). If £ and £ are two indexed lattice
chains conjugate to L? one associates to them in a way completely analogous
to (4.7.) above a double coset KgK. We will again use the notation

pos(L, LY =g 3z € G(Qp) : L' = 2L%, L = xgL°.
The analogue of lemma (4.9.) above is the following assertion.
Lemma 4.16 The map which associates to the double coset KgK the col-
lection of integers t(g) = (i;(9)) = (t:;(9£%, L0)) is injective. In other

words, if £, L', £1,£'1 are indezed lattice chains all conjugate to L°, then
there exists ¢ € G(Q,) with

zh; =Ny, 2y =Ny, all i

if and only if t;;(L, L) = 4;;(L1,L'1). Put yet another way, if £ and L' are
indezed lattice chains conjugate to L°, then there exisis k € K with

EA; = A';
if and only if t;;(L, L% = t;;(L", £°).

Proof: We prove the lemma in its last form. We consider a segment of the
chain £°,
AJCAYC...cAY.

A set of direct summands M; of A? is called a splitting of this segment if
the image of M; in A2/A{ is equal to A]/Aj. The existence of a splitting
shows the surjectivity of the map

r
K — [ GLon(A}/A]_y).

j=1

Therefore, replacing £ by £,k € K, we may and will assume that
ANAYSHA) = ANAT+A7 .

We use the following statement.
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Sublemma 4.17 Let s > 1. Assume that
ANA]+A)_ =AiNA]+AY .
Then there ezists k € K with (k — 1)AY C A]_, such that

EANA]+AY_ = NinA?+AY .
Proof: We consider the submodules
Gij =A; ﬂA?/A,‘ n A?_, - A?/Ag_s
G'ij =A;N A_?/A,‘ N A?—a—l C A?/A;)_ _
and
‘/i] :AﬂAO 5+1/A,’ﬂA0 CA.O 5_'_1/
Vi = ANAY_/A0A]_ C A 3+1/ —s—1-
We have a cartesian diagram with exact rows

0 —_ W,j—l — é,] — G” g 0
il u U

0 — Vijor — Wy — Wy — O

If we replace £ by £’ only the middle terms change and Gy; /Vi; = G'3; /V'i;.
Let y € V;; and let z,2" € Aj_ 0 41/AY_,_; be liftings to the middle terms
of the lower rows in the above dlagram for £ resp. L’. Then the residue
class of z — 2’ in

(A?—s/A?—s—l)/A?,j——l

is independent of the choices of z and «’. Hence the difference between the
diagrams is measured by a homomorphism

i Vig — (AJ_ JAY_,_1)/AY; 5.

Now let k € K with (k —~ 1)A] C A?_‘,. Then the difference between the
extension for £ and for k£ is given by the maps induced as follows from
k-1
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Vii  ——— (A /AY )/
n T
k-1
Ay/A?—s - A?—J/A?-fs—l

Therefore, to prove the sublemma, we have to find ¥ € K with (k—1)A} C
A?_8 which induces the given maps «;, all 4,j. Clearly any set of homo-
morphisms

CJ : A_?—s+1/A;']—s - A?—s/A_?—s—l

(7 =1,...,r) is induced by some k — 1. Therefore we must prove that for
fixed j there is a homomorphism ¢; which induces a;j, all i. However, this
is an exercise in linear algebra which we may formulate as follows.

Let V and W be vector spaces with finile separating and ezhaustive increas-
ing filtrations V, and W,. Suppose we are given linear maps,c; : V; — W/W;
such that the following diagrams are commutaiive.

Vi — WiwW
i T
Vieh — W/Wi,
Then the maps «; are induced by a homomorphism

V—W

The proof is by induction, constructing at the i-th stage a dotted arrow so
as to make following diagram commutative.
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Vi W/Vi

Vi1

End of the proof of lemma (4.16). By an obvious induction we construct
elements k, € K with (k, — 1)A? C A}_ (s = 2,3,..) such that putting
k() =k, - - - k2 we have (k() — 1)A? C AY_, and

EOANAY+ A = A5 OAY+ A,
However, k(*) converges to k € K with (k — 1)A? C A]_; and
EA; NAD = A N AL,
ie, kL=L".

4.18 In the setting of (4.15) we define the Hecke correspondence associated
to the double coset KgK (with K = Ko, L% = {A?}). It is the correspon-
dence on the set of indexed lattice chains conjugate to £9 defined by

Ty(£) = {L'; pos(L, L) =g}
Alternatively, by lemma (4.16.), this set may be described as follows. Let
t(g) = ((9)) = (ti5(9£°, L%)).
Then
Tg(ﬁ) = {,CI; tij(ﬁ,ﬁl) = t,-j(g), all 4,5}.
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Lemma 4.19 The set Ty(L) is finite.

Proof: We may assume £ = £°. The set T;(L) may then be identified with
the orbit under K of g£% Being discrete and compact it is therefore finite.

4.20 More generally we will consider the situation where B is a simple
algebra of finite dimension over Q, and Op is a maximal order of B. As in
(4.6.) we write B = M, (D) for a division algebra D and Op = M,{Op).
We consider indexed lattice chains £ = {A;} in a B-vector space V, ¢f.(3.2).
Let G = GLg(V). For two indexed lattice chains £ and £’ we introduce the
numbers ¢;;(L, L') as above by considering £ and £’ as Op-lattice chains.
The obvious analogue of lemma (4.16) is true and may in fact be reduced
to this lemma by Morita equivalence, cf. (3.2) and (4.6). In fact, under
this equivalence we may write any Op-lattice A in the form A" for an
Op-lattice in the D-vector space W with V = W". Corresponding to the
indexed lattice chains £ and £’ there are indexed lattice chains £ and £’
and

(L, L) = n-4;(L, L)
Similarly, G = GLg(V) = GLp(W) and K = Kz, which proves the claim.

4.21 We now turn to p-divisible groups. Let B be a simple algebra of finite
dimension over Q, and Op a maximal order of B. We consider p-divisible
groups X with an Op-action:

Op — EndX .

We require that morphisms respect the Opg-action.
Let X and Y be p-divisible Op-groups over a perfect field L of characteristic
p. Assume we are given an Opg-isogeny

o: X —Y.

Let ¢ : M — N be the morphism of the corresponding crystals. This is a
morphism of Op ®z, W(L)-modules. For nonnegative integers k we define:

t = lengthy () (M NI*N + TIM)/(M N T*H N 4+ TIM).

For negative integers k we set £y = 0.
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Definition 4.22 The Hodge funciion of the isogeny « is the Hodge function
associated to the sequence ty. We will denote the Hodge function respectively
the Hodge polygon of o by H(«a) respectively HP(a).

In contrast to the situation considered in (4.1) there is no reason for the
integers ¢ to be divisible by f(D/Q,). We have the relation:

>t = e(D/Qp) ™" height X = height X(IT)

keZ
Here X (II) denotes the kernel of the isogeny II : X — X. The kernel of
the isogeny « is a finite group scheme A with an Op-action. We denote
by A(T1*) the kernel of the multiplication by II¥ on A. The function (k)
associated to the Hodge polygon of o {c¢f. 4.2) is for nonnegative k given by
the formula:

t(k) = height A(TT%).

We note that the numbers #; for nonnegative k and height X determine the
Hodge function of ¢.

4.23 We denote by Nilp the category of schemes where p is locally nilpotent
(cf. chapter 2). Let us consider an isogeny of p-divisible Op-groups o : X —
Y over a general base S5 € Nilp. Then A is by definition a finite locally
free group scheme. We denote by A(IT*) the quasicoherent (Js-algebra
associated to A(II*). Tt is locally of finite representation.

Before we proceed, we need to recall a definition. Let R be a commutative
ring. Let M be a finitely generated R-module. One associates to M a
sequence of ideals of R,

190(M) C 191(M) C192(M) C...,

the determinantal or Fitting ideals of M (Bourbaki, Algebre commutative,
Exerc.10 Chapt.VII, 4). These ideals commute with arbitrary base change,
i.e. for any ring homomorphism R — S, we have

19,'(M)S = 19;(M R S)

‘The variety V(9;(M)) consists of all points s € Spec R, such that the rank
k() (M ®r £(s)) > i. If M is of finite presentation the Fitting ideals are
finitely generated.
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Definition 4.24 Lei {a;}rez be any sequence of nonnegative integers such
that ap = 0 for k < 0. We say that the Hodge polygon of an isogeny of p-
divisible Og-groups « : X — 'Y over S € Nilp lics above the Hodge polygon
associated to the numbers ay, if the (p®*¥)—1) Fitting ideal of the Og-module
A(II*) is zero.

If S is the spectrum of a perfect field this means simply that the Hodge
polygon associated to o (cf. 4.22)) lies above the Hodge polygon H P(a)
associated to the sequence ag. If S is reduced the Hodge polygon of «
lies above H P{a), if and only if for any geometric point 5 of S the Hodge
polygon of az lies above H P(a).

4.25 We make the well known fact that the Hodge polygon rises under
specialization a little more precise. For a given isogeny o : X — Y over
S, we define the functor HPZ® on Nilp. The T-valued points H P24(T)
consists of morphisms f : 7' — S such that the Hodge polygon of f*(a) lies
above the Hodge polygon H P(a).

Proposition 4.26 The functor HP2° is representable by a closed sub-
scheme of S.

4.27 We want to extend these considerations to quasi-isogenies of p-divisible
groups with Op-action. We recall that any b € B* normalizing Op defines
an isogeny (cf. 3.20)

b: Xt — X.

Let ¢ = {ap}rez be any sequence of nonnegative integers. We denote by
a(™) the sequence given by agm) = Ag—m-

Definition 4.28 Let a = {ai }rez be a finile sequence of nonnegative inte-
gers. We denote by m the smallest nonnegative inleger, such that agm) =90
for k < 0. We say that the Hodge polygon of a quasi-isogeny o : X — Y
lies above HP(a), if ™o : X" — Y is an isogeny, whose Hodge polygon
lies above H P(a™).

Remark 4.29 Assume that ax = 0 for £ < 0. Assume that the Hodge
polygon of « lies above H P(a). Then the Hodge polygon of I« lies above
HP(a™), but the converse need not be true. Indeed, if A denotes the kernel
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of & and A’ the kernel of Ilo, we have an exact sequence of group schemes
forany k> 1:

0 — X(I) — A'(IIF) — A(T* 1) — 0

This implies that locally for the Zariski topology on S the algebra A’(IT%) as-
sociated to A’(I1¥) is as an Og-module a direct sum of p* copies of fi(Hk -1,
where h = height X(IT). Let 9, (A(TT*~1)) be the first nonvanishing Fitting
ideal of A(I*=1). We conclude by Bourbaki loc.cit. that 9;(A’(IT*)) = 0
for i < pPu and that pu, (A'(I1%)) = I, (A(TF1))P". Hence u > pok=1)
implies p*u > pk—1)h = p“(l)(k). This proves the assertion of the remark.

Proposition 4.30 Let HP2¢ be the subfunctor of S, where the Hodge poly-
gon of the quasi-isogeny o lies above HP(a). Then HPZ2% is representable
by a closed subscheme of S.

Proof: This follows from proposition (4.26) since the subfunctor of S where
"™ is an isogeny is representable by a closed subscheme of S, (cf. 2.9).

4.31 We also introduce the functor HP=%, It is the subfunctor of S which
consists of points f : T'— S| such that II” f*() is an isogeny and moreover
if A’ denotes the kernel of ™ f*(a) then A/(TI*) is a locally free group
scheme of height a(™ (k).

Proposition 4.32 HP=% is an open subfunctor of HP2°,
This is a consequence of the following elementary fact.

Lemma 4.33 Let M be a quasicoherent module on a scheme S, which is
locally of finite type. Assume that the (t — 1) Fiiting ideal of M is zero. If
for a point 5 € S the inequality 1'/;:,;(5)]\2r ® k(s) <t holds, then M is a free
module of rank t locally around s.

Proof: Let n = rky M ® k(s). By the lemma of Nakayama there is

an affine neighbourhood Spec R C S of s, such that the R-module M =
H®(Spec R, M) admits a resolution

0 —K—R'"— M-—0.
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Let €1,...,e, be the standard basis of R” and e}, ..., ¢} a dual basis. The
i-th Fitting ideal ; is by definition generated by the (n—¢) X (n ~7) minors
of the following (possibly infinite) matrix

ak,;:(k,e’,'-‘), keK, i=1,...,n,

where ¥; = R for i > n.
If M is free of rank ¢, we have ¥;_; = 0.
For the converse assume ¥;_; = 0. Since ¥,, = R we conclude n > ¢ — 1.
Hence n = t, since by assumption n < ¢. But then ¥J,_1 is spanned by the
element ag ;. It follows that K = 0.

|

4.34 Propositions (4.30) and (4.32) justify the following definition. The
quast-isogeny « : X — Y puis X and Y in relative position a if the locally
closed subscheme HP™% of S is all of S. In fact, we shall not use this
definition in the sequel.

4.35 We now return to the definition of the formal Hecke correspondences.
We wish to transpose the definition of (4.18) to the context of chains of p-
divisible groups with Og-action of a fixed type (L), (cf. 3.21). We number
L once and for all,

£ ={Ai}iez.

Therefore a chain of p-divisible groups of type (L) over some base scheme
S € Nilp inherits a natural numbering,
— Xi 1 &Xg‘iﬁ... .
Let
a: X, =Y,

be a Op-quasi-isogeny of chains of p-divisible groups of type (£) over S.
This means that we are given Op-quasi-isogenies o; : X; — Y; commuting
with the transition morphisms. Obviously, giving « is equivalent to giving
«; for one i € Z. Let S be the spectrum of a perfect field L of characteristic
p. Then the quasi-isogeny o allows us to identify the rational Dieudonné
modules of X; and of Y;. We denote by V this B ® Ko(L)-module. The
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Dieudonné modules of (X;); define a indexed chain of lattices in an obvious
sense (these are Op ® W(Z)-modules)

LLCAC N Tl
and similarly for Y,, which defines {A’;}. We put
t,-j(a) = lengthW(L)(Ag ﬂA’j + A’j_l)/(A,’_l N A’j + Alj_l).
There is the relation

Zt,-j = height Ker(a; : Y; -1 — ¥;).
i

We shall use this relation to treat the case of a general base scheme S € Nilp.

4.36 We fix a collection of integers ¢ = (¢;;). One example we have in mind
is when ¢ = t(g), cf. (4.16). We wish to say what it means for the quasi-
isogeny « to be of type t. Let i, 7, k be integers such that { < k and that o
induces a true isogeny X; — Yj. Let A;x(j) be the intersection of the finite
group schemes arising as the kernels of isogenies,

Air(F) = Ker(X; — X)) NKer(X; — Y;).

Definition 4.37 The Op-quasi-isogeny o is of type ¢ = (ti;) if, for all
integers 1,7,k as above, Air(j) is a finite locally free group scheme of rank

p™ with
n= Z th,-.

i<r<k 1<

4.38 Let S be the spectrum of a perfect field L and (A;) and (A’;) the
Op @ W(L)-lattice chains associated to X, and Y, in the B® Ky(L)-module
V. We suppose that 1;;(a) = £i; (cf. (4.35)). Then A;x(j) is a finite group
scheme of rank p” with

n = lengthy () (Ax N A';/A;).

Here A; C Ag and A; C A';. However,

k
length (Ax N A’;/A;) = > length (A'; N A/A'; NA_y)

r=i41



THE FORMAL HECKE CORRESPONDENCES 213

k
= ) length (A N A, +Ar_y/Ar_y)

r=i41
- Y T
i<r<k I<i

Therefore « is of type (¢;;) in the sense of definition (4.37). Conversely, if «
is of type (I;;) in the sense of (4.37) then ¢;;(a) = ¢;;. Indeed, the numbers
length (Ax N A';/A;) for all 4,5,k with ¢ < k and A; C A’; determine
uniquely all integers #;;{c). In this sense the definition (4.37) is the correct
definition of the relative position of a in the case of a perfect field L.

We now analyze the definition (4.37) over a general base scheme S € Nilp.

Proposition 4.39 The subfuncior of S where the quasi-1sogeny o 1s of type
(tij) is representable by a locally closed subscheme of 5.

Proof: Due to the periodicity condition there is a positive integer ¢ such
that the quasi-isogenies

Xje — Y — Xjie

are isogenies for all j. Furthermore, for any ¢, j,k as in (4.37) there is an
exact sequence of group schemes

0 = Xir(Il) — Aimrk(§) — Aue(G) — 0 -

Therefore, locally for the Zariski topology on S, the affine algebra associated
to A;_r 1(f) is a direct sum of p" copies of the affine algebra of A;x(j), where
h = height X;(II). Hence the condition in (4.36) for i, j, k is equivalent to
the condition for i —r, j, k. Farthermore, for fixed 4, j, k as in (4.36) we have
fk>j+e,

A,’k(j) = Ker(X,- — Y_',)

since the isogeny X; — X factors through Y;. Therefore for such indices
the condition that A;z(j) be locally free is automatic and the condition
on the rank follows from the condition for 4, §, ko with &y = max(?,j + ¢).
Finally, multiplication by I induces isomorphisms of group schemes

Aix(§) = Aiprprr (G + 1)
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Summarizing, we see that the subfunctor of S where « is of type (Z;)
is defined by finitely many conditions of the type that a certain finite S-
group scheme be locally free of a given rank. By (4.30) and (4.33) this is
representable by a locally closed subscheme of S.

Remark 4.40 We have reduced here the proof of proposition {4.39) to
(4.30) and (4.33) which use the Fitting ideals. In fact, the assertion that
the condition that a certain finite S-group scheme be locally free of a given
rank defines a locally closed subscheme of S is more elementary.

4.41 We finally remark that everything generalizes to the case where Bisa
finite - dimensional semi-simple algebra over Q, and Op a maximal order in
B and where we consider indexed multichains of lattices and of p-divisible
groups and Op-quasi-isogenies between them. In this case B,Opg, and G
decompose as a product and we associate to each ¢ € G(Q,) the function
t(g) = (ti;) of each factor and to a pair of conjugate indexed multichains
of lattices £ and £’ the function (L, L’} of each factor. Similarly, if a
collection of integers ¢ = (%;;) is given for each simple factor, it makes sense
to say of a Op-quasi-isogeny between multichains of p-divisible groups to
be of type ¢.

4.42 We now return to the set-up of chapter 3 and consider a moduli prob-
lem of type (EL), corresponding to (F,B,0g,V,b, 1, L) (cf (3.21)) rela-
tive to an algebraically closed field L of characteristic p. We denote by
M = M_ the formal scheme over Spf(Q}) representing the functor (3.21).
Let S € Nilpo, and let (X¢,0) € M(S) and (X'¢, o) € M(S). Then
o'0~! defines a quasi-isogeny from X x5 S to Xz xg S which extends in
a unique way to a quasi-isogeny

dot X — X'e.

Definition 4.43 Let t be as in (4.41). The formal Hecke correspondence
associated to t is the functor on Nilp which t0 S associates the isomorphism
classes of objects

(Xz,0), (X', ') € M(S) x M(S)

such that the resulting quasi-isogeny ¢' o™ from Xe to X'c is of type t, cf.
(4:41).
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From (4.39) we deduce immediately the following statement.

Proposition 4.44 The preceding functor is representable by a locally closed
Jormal subscheme

Corr(t) C .A;f XSpf O ./\2
We remark that the projection morphisms
M — Corr(t) — M

very often are not proper (comp however (5.42)). In fact, Corr(t) is in
general not Zariski—closed in M X gpy Oy M. The reason for this is that the
Hodge polygon of a family of quasi-isogenies may vary with the point of the
base scheme.

If g € G(Qy) and if t = i(g), cf. (4.41), we use the notation

Corr(g) = Corr(t).
In general, the collection of integers need not arise in this way.

4.45 We now pass to the polarized case which will be reduced to the previ-
ous case. Let then (F,B,0g,*,V,(, )) be data of case (PEL). We denote
by G the associated reductive algebraic group over Q,. Let Fy be the in-
variants under the involution * in F.

Let £ be a selfdual multichain of lattices in V. Let K¢ be its fix group,

Ke={9€G(Qp); A=A, AL}

Then, as in (4.15), one associates a double coset KgK ¢ to a pair of indexed
selfdual multichains of lattices, conjugate to £ under G(Q,).
Let

i:G— G=GLg(V)

be the canonical embedding, and let K C G(Qp) be the fix group of £ in
G(Qy).

The proof of the following theorem was communicated to us by Waldspurger.
1t is the generalization of a lemma. of Kottwitz [Ko3], 7.4 which is valid for
hyperspecial open compact subgroups K.
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Theorem 4.46 The embedding i induces an injective map on sets of double
cosels,

K¢ \ G(Qp)/Kﬁ - ffﬁ \é(Qp)/R’L-

To present Waldspurger’s proof we need some preparations. Any self-dual
multichain of lattices £ may be refined to a maximal self-dual multichain of
lattices £’ (i.e. A € £ = A € £) and any two maximal self-dual multichains
are conjugate by an element g € G(Q,) with ¢(g) = 1. We fix one such
maximal self-dual multichain £° and denote the corresponding fix group in
G(Qp) by K°. It is an Iwahori subgroup of G(Q,) and we may assume that
LY is a refinement of £,i.e. K° C K.

4.47 We shall first assume that F is a field. Let B = M,(D) and Op =
M, (Op) for a division algebra D. We consider D™* as a D-module from the
right and a B-module from the left. Let * : D — D be a main involution if
D is a quaternion algebra. In the case that the involution on B is of second
kind, we have D = F and we take for * the restriction of the involution to
F. Then there exists a D-valued sesquilinear form

H:D"xD®* — D

such that

H(zd,yd')
H(bz,y)

d*H(z,y)d', d,deD
H(z,b"y), be B.

il

Let
h(ms y) = TIF/QP'I\IO(H(:E: y))‘

By Morita equivalence we may write V = D" ®@p V. Furthermore, there is
a uniquely defined sesquilinear form

<,>:VXxV—D

such that

(z@v, 2’ ®V)=h(z, 2’ < v, >), 2,27 € D*, v’ e€V.

Then
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<dv,dv >=d'<v,v >d*, ddeD.

and <, > is hermitian or anti-hermitian. Let G’ be the algebraic group over
Q, with

G'(Qp) = {9 € GLp(V); < gu, 99" >= c(g) < v,0' >,c(g) € F}.

We write V' as an orthogonal sum of an isotropic space and an anisotropic
one,

Vv=VeV"

Here V' posesses a maximal Witt basis. In V" there is a unique Op-lattice
L C V" such that

(LII)* 3 LII 3 H(L”)*.
We introduce the integers
« dim,(py(L” /T(L")*)

B dim(py((L")*/L")
2r = dimpV’'.

il

Then the dimension d of V is 2r + o + f. Let

7 - A if & is odd
CT L Z+1/2 ifaiseven.

We choose a basis {€1-a
2
basis

,...,ea;11.7+ﬁ} of V such that L” has as Op-

-
{el.—Tag,...,Bg%-_l_}U{CaT—l_+r+1,...,€a_;l+r+ﬁ},
(L”Y* has as Op-basis

{Cl_—ﬁ_ni,. . .,60,2;1} U {H_Ieo%_l_*_r_*_l,.. .,H—leg%'i_}_’._!_p},

and such that
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{el;_u_,.,..., 61_—;;_&_1}U{6a2;1+1,..., €5§A+r}

is a basis of V' such that < e;, e; >= 0 if ¢; and e; both are in the same of
the two sets above and such that

< €;,e >= 6,',_.]'
if ¢; lies in the first set and e; in the second set. Before proceeding we make
a simple remark. Let
¢ = min{c > 0; Ig € G'(Q,) : ¢(g) € T°Op}.

Assume that ¢j is odd. Then D = F and hence ¢j = 1. Let go € G'(Qp)
with ¢(go) € TIO). Then go(V’) has again a Witt basis and hence by Witt’s
theorem there exists h with ¢(h) = 1 which takes V' into go(V’). Replacing
go by h~lgy we may therefore assume that go(V') = V', go(V") = V.
However, since c(go) € IO}, by the uniqueness of the lattice L we have

gO(LII)* — L”,ggL” - II(L”)*.
and gp induces an isomorphism
(LII)*/LII _l) L"/H(L”)*.

In particular, « = 8 and d is even in this case. We therefore have proved
the following statement.
Let ¢g = min{orde(g) > 0;9 € G(Qyp)}. Then ¢ = cod/2 € Z.

Indeed, if ¢g is even there is nothing to prove. If ¢g is odd, then since ¢y is
a multiple of ¢’g the latter is odd and hence, by the above, d is even.
We now extend the definition of ¢; to all of Z, by putting

€itjd — H’ej.

The basis {e;} defines a maximal split torus S of G, namely S(Q,) consists
of those elements g € G(Q,) such that

gei = dies, A € Q) alld.
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Furthermore, for e; € V", the scalar ); is independent of e; and satisfies
M =c(g), es€V".
The centralizer H of S is therefore defined by
gei = diei;, M €D*,e; €V,

In particular, any g € H preserves the subspace VV”. The maximal compact
subgroup of H(Q,) is defined by the conditions

gei:)‘iei) Ai € OB ;€ € V,,
clg) € Zy.

The last condition is automatic if V' # (0). The normalizer N of S is
formed by the elements g € G which permute the lines D e; in V/ and which
preserve the subspace V*.

Lemma 4.48 Recall the integer ¢ = cod/2. The affine Weyl group ngf
of G may be identified with the group of permuistions w : Zy — L, such
that

(1) w(i+d)=w(i)+d, i € Zy,.
(11) There exists y(w) € Z such that
w(i) + w(—i) = 2ev(w), i € Zq
w(i) = i+ey(w), i € {152,..., 5 u{et+r+1,..., 5 +r+ B}

Proof: By definition the affine Weyl group ng 7 is the factor group of
N(Q,) by the maximal compact subgroup of H(Q,). Let g € N(Q;). If
e; € V' we define w(i) through the following identity

gei = Miewy, i €03, ewgy € V.
Let y(w) € Z such that

ord ¢(g) = v(w)eo.

Then w is a permutation of
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a—1 a—1 a—1

2\ (52 U L Sy + i)

which satisfies (i) and the first half of (ii). We extend w to the remaining
elements of Z,, by the second half of (ii). It is then easy to see that the map
g — w induces an isomorphism of ng ! with the group of permutations of

Z, satisfying (i) and (if). o
4.49 Let A? denote the Op-lattice with basis {e_;,...,e_iyq-1}. Let Z'y =

S l-« a—1 a—1 a—1
Zo\{i+7d; zG{T—l—l,..., 3 Tu{ 3 +r+2,...,T

+r+0}}

Then £° = (AD)iezs, is a maximal self-dual chain of lattices. Let £ be a
self-dual chain extracted from £°. Let

We =W nkg,

i.e., W is the factor group of K;NN(Q,) by the maximal compact subgroup
of H(Qp)-

Lemma 4.50 There is an equalily
K; =KW, K°.
Furthermore, there is an identification of sets of double cosets,
K°\ G(Q,)/K° = wg’

and

Ke\G(Qp)/Ke =W \W& jwe.

More generally, if L' is another selfdual chain estracted from L£° with asso-
ciated subgroups K, and Wp»,

K \G(Qp)/Ker = W \WE jwe.

Proof: This is a general fact about reductive groups over local fields, al-
though a comprehensive reference does not seem to be available. If G were
semi-simple and simply connected, then (G(Q,), K°, N(Q,)) would form



THE FORMAL HECKE CORRESPONDENCES 221

a Tits system and the statements would follow from corresponding state-
ments valid for general Tits systems (Bourbaki, groupes et algebrés de Lie,
chap. IV). Since this is not applicable, the most expedient way seems to
verify that (G(Q,), K°, N(Qp)) is a generalized Tits system in the sense of
Iwahori [1] and to transpose the proofs of the corresponding statements in
Iwahori-Matsumoto [IM], (2.27) and (2.34), compare also [T], (3.31). O

We now return to the proof of theorem (4.46). The lemma (4.50) transposes
in an obvious way to the group G. The affine Weyl group W“‘f Fof Gis
identified with the group of permmtations w : Z, — Z, satlsfymg (i) in
Lemma (4.48). To the chain £ extracted from £° we associate the subgroup
We C Wg ¥ and we have

ke = KO W KO
Re\G(Qp) /K = W \WE /W,

Therefore theorem (4.46) follows from the case £ = L’ of the following
proposition.

Proposition 4.51 The natural maep

We \ W |Wer — W \WET jWe
is tnjective.
Proof: Let Zic C Z' be the corresponding subset, i.e. i € Zg <> Al € L. If
i € Z¢, let it be the smallest element of Z, with it > i and let I; be the
interval {i,i+1,...,i% — 1}. Then the subgroups W, of ng F resp. Wy

of W(a-;f f are the common stabilizers of the intervals L, ie€Z;.

Every double coset Wg w Wy contains a unique element W of minimal
length (Kostant representative). It may be characterized as follows. Let
the chain £’ define the intervals I} = {j,7 +1,...,5* — 1}, j € Zgr. Then
W is monotone increasing on each interval I;,i € Z., and @~ is monotone
increasing on each interval I';,j € Zgr.

We are going to show that if such a double coset contains a element w €
W“ff then @ € WewWy:. Let

dij = |Lnw™ (I';)].

The selfduality of £ and £’ imply that if { € Z, j € %o then
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~it4+1€Zg, —jt+1€Zg.
Furthermore, condition (ii) in (4.10) on w implies easily that

—(LNw (I) = it Nw™ (T o+ pi4209(w)),
doitpry = di—jriri2er(e)

We now define permutations u, v’ of Z, by the following rules.
Let i € Zg,j € Zgs, write I; N w"l(I’j) = {ki,. “7kdij} with k1 < k3 <
o< kdi_.,-- Then

u(k;) = -1+ Zj’<j d,'jl +1
u/_l’LU(kl) - ]—' 1 + E,‘l<,’ di'j + L

Claim: u € WG“ff with y(u) = 0, and similarly for w' w.

We indicate the proof for u. The condition (i) of (4.48) is trivial. Let us
check the condition (ii), a). By the above relations we have

u(—k;) = (—z+ +1) -1+ Ej'<—j++1+2¢'y(w) d_jvp1 50 + di; —1
= —it+ Zj’<—j++1+2c'y(w) & —jtprp2er(w) T+ dij — 1

The inequality in the index of the last sum is equivalent to
—§" + 14 2¢y(w) > j*.
We therefore obtain
u(—k)

—it +Zj'2j d,‘j' -1
(i 1) = Yy digr =1
= u(kz).

I

This proves condition (ii) a) and condition (ii) b) follows. Indeed, let us for
instance show that u|{152,..., 251} is the identity. By condition (ii), b)

for w there exists a unique (¢,j) € Z; x Z¢ such that {L’Z—"‘-, e, -"‘g—l} -
LNw™'(I}). Hence theset {#3%,..., %1} is mapped under u to an interval,
in 2 monotone increasing manner. Hence u|{132,..., 211} is a translation

and therefore, taking into account (ii) a), the identity.
Since u stabilizes each interval I;, in fact u € W,. Similarly v’ € We».
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We now define the permutation v of Z/, by

vi—1+) dip+k)=7—14+3 duj+k ke{l,2,...,d5}.
i'<j R

Then obviously

w=uvu

and all factors lie in W&’/ . Furthermore, v is the representative of shortest

length since v is monotone on [; (¢ € Z¢) and v~! is monotone on I (j €
Z/.). The proposition follows.

Remark 4.52 (i) Given a self-dual lattice chain £ there exists a unique
chain extracted from £° and conjugate to £ by an element g € G(Q,)
with ¢(g) = 1. However, two self-dual chains extracted from £° may be
conjugate under G(Q,). In fact, this occurs if and only if these two chains
are conjugate under wy € W&/ where

wo(i) =i+ec , i€ L.

It is easy to give a criterion for two self-dual lattice chains £ and £’ to be
conjugate by an element g € G(Q,) with ¢(g) = 1. (An analogous crite-
rion for conjugacy under G(Qp) is complicated by the above phenomenon).
Namely, we index the chain £ in such a way that

Ap Q_AE:A“

and that there is no member of £ strictly between these two lattices. The
integer a is 0 or 1 and is an invariant of £. We furthermore have as before (cf.
(4.10)) as invariants the period r and the integers m; = lengthy (Ai/A;—1).
Then the self-dual chains £ and £’ are conjugate by g € G(Q,) with e(g) =1
ifandonlyifa=a',r =7 and m; =m';, i€ Z.

On the other hand it is easy to give examples of self-dual lattice chains
which are conjugate under G(Q,) but not under G(Qp).

(i1) The analogue of theorem (4.46) where instead of the fiz groups K resp.
K, we take the stabilizer groups, e.g.

{g€G(Qp); VAeL N eL:gA=A"}

is false,
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4.53 We now prove theorem (4.46) in the special case where Fj is a field
and where F' is the direct sum of two copies of F which are interchanged
by the involution x. The decomposition of F induces a decomposition of B
and V,

B=B'xB?, V=V'xV?
and an identification V2 = V1*, B? = B!°PP and finally an identification
of the natural embedding ¢ with the inclusion
{(91,92) € GLp: (V') x GLp:(V'); g2 =e¢g1, c€Qf}C
GLBI(Vl) X GLgl(Vl).

The claim of the theorem is in this case a trivial exercise which is left to
the reader.

4.54 We now prove theorem {4.46) in general. We may decompose our data
of type (PEL) into a product,

(F,B,OB,*,‘/,( 1] )):H(F'i:Bi)OB,';*i;‘/b( 3 )i);
i=1

where each factor is of one of the two types already treated, i.e. either F;
is a field or is the direct sum of two fields which are permuted under the
involution #;. Let Gy resp. G; = GLpg,(V;) be the groups corresponding to
the i—th factor. We obtain a commutative diagram of natural inclusions,

m
¢ c []c
i=1
N n
~ i ~
G = H i
i=1
For each i = 1,...,m, there is a unique multichain of Op,~lattices £; in V;

such that £ consists of the Op-lattices for which the projection into V; lies
in £;. (If F; is a field, £; is a chain of lattices). Let K ; C Gi(Qp) resp.
K¢, € Gi(Qp) be the corresponding fix groups. We have K = 1K, We
put
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¢ =116G: K.=]]Ke.

The above commutative diagram induces a map on sets of double cosets,

K\ G(Qp)/K: - K&\ G'(Q,)/ K

R\ G(Qp)/Ke

The map # is the product of the corresponding maps for the individual
factors, for 2 = 1,...,m. By what has already been proved it is therefore
injective. Theorem (4.46) therefore follows from the following statement.

Proposition 4.55 The map j above is injeclive.

Proof: We introduce the kernels of the multiplicator homomorphism ¢ in
the various groups,

GcaG, GG, GOca.
Then
G = ') = H G§O)'

We make a compatible choice of a maximal Q,~split torus in all these groups
adapted to the maximal chain £°. Let Wal), Wa//, Wall ete. be the
corresponding afline Weyl groups. The multichain £ defines corresponding
subgroups Wé{;’; NKeg, ng InKg, Wg‘ff N K., etc. Now the map j may
be identified with the map on double cosets of affine Weyl groups induced
by the inclusion W&/ ¢ wgi/,

W K AW (W 0K — wET ak AW /Wl n k.

The assertion therefore follows from the following statement.

Claim:
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weink, = Wg{f)ﬂKﬁ, or equivalently
Well Ky, = WilnKe, i=1,...,m.

It suffices to prove the last statement factor by factor. The case that Fj is
the direct sum of two fields which are permuted by the involution is easy
and left to the reader.

We now consider the case where F; is a field. We drop the index from the
notations and place ourselves in the situation cousidered in (4.47) — (4.52).
In the notation of (4.48) the subgroup Wé{£ of W& is defined by y(w) = 0
so that all that has to be shown is that

weWH nKke = y(w) =0.
However, any w € Wg.f 'nk ¢ stabilizes each interval I;,i € Zg. On the

other hand, condition (ii) in (4.48) implies

’U)(—Ig)
w(I_;++1) = I—i++1+237(w)’

=L + 2ey(w), i.e.

il

hence y(w) = 0 as required.

Corollary 4.56 Let L and L' be indezed self-dual multichains of lattices
in V which are conjugate under G(Qp). Let g € G(Q,). Then

pos(L, L) = g (cf.(4.45)) if and only if
L, L) = t(g) (cf.(441)).

Proof: This is just the conjunction of (4.46) and (4.16), as generalized to
the composite case in (4.41). 0

The preceding considerations justify the following definition relative to the
case (PEL) which is the analogue of definition (4.43) for the case (EL).
Let M = M/ be the formal scheme over Spf Oy representing the mod-
uli problem (3.21) relative to the data (F,B,0p,V,( , ), b,u,L) of type
(PEL).
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Definition 4.57 Lei & be as in (§.41). The formel Hecke correspondence
associated to t is the functor on Nilpo, which to S associates the isomor-
phism classes of objects

(X,Crg)v (Xlﬁg ._0,) € M(S) X M(S)
such that the resulting quasi-isogeny p'o~! from X to X'y is of type t

(cf-(4.41)). This functor is representable by a locally closed formal sub-
scheme

Corr(t) C M Xsps Oy M.



5. The period morphism
and the rigid—analytic
coverings

In this chapter we first explain the Berthelot~Raynaud functor which asso-
ciates to one of the formal schemes M encountered in the earlier chapters a
smooth rigid—analytic space M9, We then construct the period morphism,
a rigid—analytic morphism from M9 to cne of the p—adic period domains
introduced in chapter 1 and investigate its properties. Finally we construct
the tower of rigid-analytic coverings of M"9.

5.1 In the beginning of this chapter we will change our notation. We shall
denote by (F, 0, k, v} a complete discrete valuation ring. Our aim is to de-
scribe Berthelot’s functor which associates to a formal scheme X formally
locally of finite type over Spf O (cf. {2.3)) a rigid-analytic space. Our ref-
erence is chapter 0 of Berthelot’s projected Astérisque volume [Ber], comp.
also the appendix to [dJ2]. Let us start with the case of a m—adic formal
scheme X, i.e. X is locally of finite type over Spf O (cf. (2.2)) (the topol-
ogy on Oy is the m—adic topology). In this case the construction is due to
Raynaud [Ral]. To describe this construction we start with the affine case.
H X = Spf A is an affine m—adic formal scheme of finite type, then A® F
is a Tate algebra and we put X™ = Spm(A ® F). In general, define the
set X*%9 to be the set of closed formal subschemes Z which are irreducible
and reduced and finite and flat over O. This definition coincides with the
previous one in case X is affine (associate to z € Spm(A ® F) the formal
spectrum of the image of A4 in the residue field of ). The support of such

229
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a subscheme Z is a closed point of X, called the specialization of the point
£ € X9 corresponding to Z. This construction defines a map

spr AT s X,

For any affine open U = Spf(A) C X, sp~}(U) can be identified with
Spm(A® F).

Examples 5.2 (i) Let X = SpfO{T1, ..., T, } (restricted power series ring).
Then X" is the closed unit ball. A point & of X7 is defined by (¢1, .. .,&,)
€ O(z)" where O(z) is a discrete valuation ring finite over O. Then sp(z) is
the point (&3, ..., £n) in the affine space A%, where §; are the residue classes
of & .

(ii) Let X = 15’(‘) be the formal projective space. Then a point z of X" can
be represented in homogeneous coordinates (&g, - .., € ) € O(z)"*! where at
least one &; is a unit. The point sp(z) is the point of P? with homogeneous
coordinates (&, . .., &, )-

Proposition 5.3 [Ber, 0.2.3.]: Let X be @ w-adic formal scheme locally of
finite type.

(i)  There exists on X9 q unique structure of a rigid-analytic space over
F with the following properties.

(a) The inverse image under sp: X™9 — X of an open subscheme
(resp. of an open covering) of X is an admissible open subset
(resp. an admissible covering) of AT,

(b) For any affine open subscheme U = Spf A C X the structure on
U™ = sp~1(U) induced from X9 coincides with the one on
Spm(A Q F).

(i) The map sp defines a morphism of ringed sites X™9 — X with
sp,..((’)';g ) = Ox ® F. This morphism has the following universal
property. Let Y be any rigid-analytic space and let u : Y — X be a
morphism of ringed sites. Then u factors in a unigue way through
sp.

(#i) The functor X — X7 has the following properties.

(a) If X is of finite type, then X™9 is quasi-compact.
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(6) It commules with products and transforms open resp. closed
immerstons inlo open resp. closed immersions.

Examples 5.4 (i) Let f € O{Ty,...,7,} and let & = D(f). Then U™ is
the open subspace of the closed unit ball defined by |f(z)] = 1.

(ii) Let Q% be Deligne’s formal scheme. (cf. [Dr2], comp. (3.61)) Then
(Q4.)9 is the complement of the union of all F-rational hyperplanes in
Pg,'l. Here Pﬁ."l is the rigid space defined either by completing projective
space over O along its special fibre or by applying the GAGA functor to
projective space over F'. This identification is obtained as follows. A point
of (Qd Y with values in a finite field extension K of F is given by a diagram
(3.12) over Spf Ok. For a given index i we tensor ¢;, with F' and obtain
a morphism ¢ : F¢ — L, where L is a K-vector space of dimension
1. 'This morphism is easily checked to be imjective and independent of
the choice of 7. Hence ¢™¢ is a point of P}.‘l in the complement of all
rational hyperplanes. Conversely assume we are given an F-linear injection
@™ : F4 — [ into a K—vector space L of dimension 1. Consider the chain
{A} of all Ox-lattices in L. Then g4 = AN F? form a chain of Op-lattices
in F'%. The morphisms ¢, : 74 — A provide a section of va over Spf Ok.

5.5 We now consider the general case of a formal scheme &, formally locally
of finite type over Spf O. As before we start with the affine case.

Let X = Spf A and let fi,..., f- be a system of generators of a defining
ideal. For each n put

Bﬂ :A{le"'yﬂ'}/(f;; _WT]-""’fI"; —'71'T1-)

where A{Ty,...,T,} is the 7—adic completion of A[T},...,7]- The hypoth-
esis implies that B, is topologically of finite type over O, hence B, ® F is
a Tate algebra. For n’ > n we have a homomorphism

Bp —+ By i T! — M. T3,
The corresponding morphism

Spm(Bn ® F) — Sm(Bu © F)

identifies Spm(B,, @ F) with the special domain defined by |fi(z)] < [W]l/".
The rigid space X" is then defined as the union of pm(B, ® F), with the
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Sm(By ® F) as an admissible open covering. One shows easily (cf. [Ber])
that this definition is independent of the choice of the defining ideal, and of
the set of generators, and that this definition coincides with the usual one
in case where X is w—adic. The morphisms

Spm(By, ® F) 22 Spf(B,) — X

define by passage to the limit the morphism of ringed sites

i L x.

Let # € X" be represented by a maximal ideal z, € pm(B, ® F). It is
easy to see that the image R of A in the residue field of 2, is independent
of this representative and is an integral domain which is a finite and flat
O—algebra. Conversely, if R is a factor algebra of A with these properties it
is a local ring and it is easily seen that for large n the images of the elements
/7 lie in its maximal ideal. It follows that R arises in the way described
above from a point in Spm(B,, @ F).

Now consider the general case. By the preceding remarks we may define as
before X7 to be the set of closed subschemes Z of X which are integral
and finite and flat over O. The support of such a subscheme Z is a closed
point of X, the specialization of Z. We obtain a map

spr XY X,

For any affine open & C X, sp~'(U) is in bijective correspondence with
U3, With these remarks, proposition (5.3) carries over ([Ber, 0.2.6.]). (In
((i), b) the given structure on U™ is of course supposed to be the one
defined above; unless A is 7—adic, Spm(A4 ® F) makes no sense).

We call X7 the generic fibre of the formal scheme X over Spf O.

Example 5.6 Let X = SpfO[[T1,...,Ts]] with ideal of definition (=, T3,
...yT). Then X" is the open unit ball, regarded as the increasing union
of closed balls of radius [wll/".

Proposition 5.7 [Ber, 0.2.7] Let X be a formal scheme locally of finite
type over Q. Let I be an ideal of definition and Xo = V(I). Let Z C Xo
be a closed subscheme and let X be the completion of X along Z. Then
sp~Y(Z) is an open subspace of X™9 and the canonical morphism of rigid



THE RIGID-ANALYTIC PERIOD MORPHISM 233

spaces X9 — XT3 arising from the canonicel morphism X — X induces
an isomorphism

AT, sp~H(2).

Example 5.8 Let X be a m—adic formal scheme and let fi,..., f» be ele-
ments of I'(X, Oy) with reductions fi, ..., f, mod = such that the closed set
Z =V(fi,...,fr). Then sp~Y(2Z) = {x € X"%9; |fi(x)| < 1,i=1,...,7}.
This allows in general a more direct description of the generic fibre X7,
comp. e.g. the example in (5.6).

5.9 A morphism of rigid spaces f : Y — X is smooth (resp. étale) if there
exist admissible affinoid coverings (¥;); and (X;); of Y and X such that

@ f¥)CX;
(i) if A =T(X;,0x), B =T(Y;, Oy), there exists an isomorphism

Bi = Ai{le' . '7Tﬂ}/(f1:"':f1‘)

with det(8fz/0T¢)r t=1,.» invertible in B; (resp. and » = n). We shall
need the following analogue of Grothendieck’s infinitesimal criterion for a
morphism to be étale.

Proposition 5.10 [Ro, 3.1.]: The morphism of rigid spaces f : X — Y
is étale if and only if the following condition is satisfied. Let Z be rigid-
analytic space with only one point and let Zg C Z be a closed subspace.
Then any commutative diagram of morphisms below with solid arrows can
be completed tn a unique way by a dotted arrow into a commutative diagram.

Zg—}X
S
-

Proof (reduction to the staterment of loc. cit.): Both conditions are local
on X and Y, hence we may assume that X and Y are affinoid which is
the general setting of loc.cit. In loc.cit. the rigid-analytic space Z is any
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affinoid space and Zp is definied by a nilpotent ideal; however a glance at
the proof shows that it suffices to consider only spaces appearing in the
statement of the proposition (which are, of course, affinoid).

Remark 5.11 The Berthelot functor may be viewed in a natural way from
the standpoint of Huber’s adic spaces, cf. [Hu]. The category of adic spaces
over the adic space Spec(F)® associated to Spec F' contains as a full sub-
category the category of rigid spaces and there is a functor which associates
to a locally noetherian formal scheme an adic space. The image under the
Berthelot functor is the generic fibre of this associated adic space. We men-
tion without proof the following fact which clarifies the difference between
the Raynaud functor and its extension of Berthelot.

Proposition 5.12 (R. Huber) Let X be a formal scheme formally locally
of finite type and flat over Spf O. Then X9 is quasicompact if and only
if X is of finite type over Spf O, in particular X is a noetherian w—adic
formal scheme.

5.13 We now revert to the notations used elsewhere in this paper. Let us
start with the data (B, F,Op, V, b, s, £) in the case (EL) relative to L = F,.
In the case (PEL) we have in addition a non-degenerate alternating Q,—
pairing ( , ) on V. We denote by M the solution of our moduli problem
(3.21). This is a formal scheme, formally locally of finite type over SpfOp.
Here E denotes the completion of the maximal unramified extension of
the Shimura field E. We denote by (X, ¢) the universal object over M.
We denote as usual by M the Lie algebra of the universal extension of
XA (A € £). The isogenies gara : Xa — Xar (A C A) (cf. (3.21))
induce morphisms of coherent locally free O yy—modules My — My which
induce isomorphisms between the corresponding modules over the structure
sheaf of the rigid space M7 associated to M. Let us denote the common
value of this O oyrig—module by M;;g . We are going to exhibit a canonical
isomorphism

M =V @0y (5.1)

5.14 The construction of this isomorphism is best done in a somewhat more
general context. Let (F,0,k, ) be a complete discrete valuation ring of
unequal characteristic, with perfect residue field of characteristic p. Let
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M be a formal scheme formally locally of finite type over SpfO. Let X
be a p—divisible group over M. We denote by Mx the Lie algebra of the
universal extension of X. Its formation is functorial in X and commuies
with base change. Let X be a p~divisible group over k. We assume given a
quasi—isogeny

g:XMD _"X.Ma-‘

Here M, denotes the «—scheme defined by an ideal of definition of M
containing the uniformizer 7. By the rigidity of quasi—isogenies this datum
is independent of the choice of such an ideal of definition.

Proposition 5.15 The quasi-isogeny ¢ induces ¢ canonical and functorial
isomorphism of locally free O yy,:,—~modules of finite rank, compatible with
base change,

7: NX) Qw(x)q Oppria — M;g.
Here N(X) denotes the isocrystal associated to the p—divisible group X.

Proof: We first treat the case when M is a w—adic formal scheme, in which
case we may assume that My is defined by the image of . Let M be
defined by the image of p. Then Mp C Mj is a nilpotent immersion.
Since O/p0 is a k—algebra we may consider Mj as a x—scheme. By the
rigidity of quasi-isogenies the quasi-isogeny g extends in a unique way into
a quasi-isogeny of p—divisible groups over Mj,

QlixMa -———->XM8

Since the closed immersion M{ C M has a canonical divided power struc-
ture we may apply the theory of Grothendieck—Messing. Therefore ([Me],
v, 2.2) if X is any lifting of X to O and if N > 0 is such that p" ¢/ is an
isogeny, there is an induced homomorphism of locally free Opq-modules of
finite rank,

oN : M)'(M — Mx.

Since there exists a morphism from X ay, to X M, such that the compositions
with pN ¢’ are a power of p it follows that gy induces an isomorphism be-
tween the corresponding O sqriy—modules. Furthermore there is a canonical
identification (compatibility with base change)
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MZ? = N(X) ®w(x)q Omris-
The desired isomorphism is now defined as
1 ; .
0= p—ﬁ'ég\;g:N(X)@OM"i’ —>M§;‘q.

It has all the properties stated in theorem (5.15).

(In the previous argument when p = 2 the application of the result of
Grothendieck—Messing is not justified - one also needs the nilpotence of
the divided power—structure. We leave the modifications of the argument
needed in this case to the reader).

We now consider the general case. We may assume M affine, M = Spf A.
We recall (cf. (5.5)) the way in which the associated rigid space M"™9 was
defined. Using the notations introduced there, M"™ is the union of the
open subspaces Spm(B, ® F') and Spf B, comes with a morphism to M.
Since Spf By is a m—adic formal scheme we may apply the first part of the
construction to the pull-back of X to Spf B,,. The desired isomorphism g
then arises by passing to the limit over the open subspaces Spm(B, ® F).

5.16 Going back to the set~up of (5.13) we see that the quasi-isogenies ¢
appearing in the moduli data induce a canonical isomorphism

N(X) @k, O pyris = MBY.

On the other hand the isocrystal N(X) is identified with V ® Kj, cf. (8.19),
which establishes the desired isomorphism (5.1). This isomorphism is com-
patible with the actions of B and, in case (PEL), preserves the alternating
forms up to a scalar in Q.

The surjective homomorphisms M — Lie(X, ) induce surjective homomor-
phisms M} — Lie(X )™ which are independent of A and will be denoted
by

MY — Lie(X)"9. (5.2)

Recall from chapter 1 the Grassmann variety F over E parametrizing the
B-invariant totally isotropic subspaces of V in the isomorphism class of
V1. The kernel of (5.2) is a point with values in M™9 of F, i.e. defines a
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rigid-analytic morphism #* : Mris ., F Qe E. We abbreviate F Rr E
into F. On the other hand recall from (3.52) the morphism s from M to
A. We denote by #2 the resulting morphism of rigid—analytic spaces over
E, #2: M — A. Here A denotes the discrete rigid—analytic space with
A as its underlying point set. The product morphism

rig

F=Fx# MY S F " xA

is called the period morphism of the moduli problem. Recall from chapter 1
the algebraic group J over Q, associated to the group G and b € G(Kj).
The group J(Q,) acts via

h-(Xe,0) = (Xc,0-h7Y), he J(Qy)

on the moduli problem and hence on M (cf. (3.22)). The group J(Q,) also
acts on F, (cf. (1.35)), as well as by translations on A, cf. (3.52). We let
J(Q) act diagonally on FxA. Tt follows immediately from the construction
above that # is J(Q,)-equivariant.

Proposition 5.17 The period morphism &, or equivalently its first compo-
nent %', is étale. In particular M™9 is a smooth rigid-analytic space.

Proof: We are going to use the infinitesimal criterion (5.10). Let Z be as
in the statement of this criterion. Then Z is of the form Z = Spm(R ® E),
where RQE is the Tate algebra associated to a finste flat O y—algebra R such
that, denoting by n C R the nilradical, B/n is a complete discrete valuation
ring. Consider the set of R-algebras R’ which are finite flat O y~algebras
with R/n ~ R'/n . R’ and with R @0, ESR @0 . E. Then these form in
an obvious way a directed set S under the inclusion relation. We fix a free
R/n-module My of finite rank. There is an obvious functor (”associated
rigid module”):

locally free R'-modules locally free Oz—modules
hm” | M ! of finite rank, together - M of finite rank, together
R'es with an isomorphism with an isomorphism
M’ Rnt R/n = My M®oz Ozo = Mgi‘q

This functor is exact and an equivalence of categories, compatible with base
change R — R; where R, is another finite flat O-algebra as above.
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We now turn to the verification of the ezistence of the dotted arrow in the
diagram of (5.10). Replacing R by a larger R’ € S, we may assume that
the morphism Zq — M™% is induced by a morphism of formal schemes

Spf Rja— M,

where a C n is a nilpotent ideal. Proceding inductively we may assume
a? = (0). By pullback we obtain an object (X¢,0,00) of the moduli problem
(3.21) over Spf R/a (i.e. over all its truncations). The morphism Z — F
making the solid diagram commutative defines a locally free factor module

NX)® 0z — L. (5.3)

We equip a with trivial divided powers. Let M, be the value of the crystal
associated to X o on Spf R. Then Ma (A € £) is a (polarized) chain and
there is a compatible family of natural identifications,

NX)® 0Oz = M.

Furthermore, the homomorphism (5.3) is induced by a unique surjective
homomorphism onto a locally free module

MA I £Aa

at least after replacing R by alarger R’ € S. The transition homomorphisms
Ma — M} induce homomorphisms £, — L} and tensoring with @z R/a
gives us back

MXA’() — Lie(XA’o), Ael.

By Grothendieck—Messing, the system above is induced by a unique chain
of p-divisible groups X, = (Xa; A € L) over Spf R such that the above
homomorphism is equal to

MXA —>LieXA

and restricting to Xz 0. The quasi-isogeny go lifts automatically. It is
obvious that (X, g) is an object of .:‘\;i(Sp f R). The induced rigid—analytic
morphism Z — M7 renders the diagram commutative. The uniqueness
assertion is proved in the same way.
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Remark 5.18 We recall (cf. (3.29)) the morphisms of formal schemes over
SpfOg

4)\7' —_ Mloc

{

~

M

The associated rigid—analytic space N classifies the trivializations
v M V@O xyrig

of the isocrystal of the universal object (X¢, o) over M. The construction
of the first component of the period morphism above may therefore be
interpreted as defining a canonical section to the projection morphism,

s:M™ — N7

Furthermore, M is a projective scheme over Spec Op whose generic fibre
may be identified in an obvious way with . The horizontal morphism in
the diagram above induces therefore a morphism A% — F*. The first
component of the period morphism #' is the composition

s 2 fimis L F

A variant of the above proof that i is étale (which uses the reference
[Ro]) would be to imitate the proof of proposition {3.33). Namely, if the
statements from EGA used in that proof could be transposed to the rigid—
analytic context, it would follow that the étaleness of 7 could be checked
on diagrams as in (5.10) for Z = Spm Kle] and Zy = Spm K, for a finite
field extension K of the residue field of a point of X. In this case a cofinal
system in the set § appearing in the proof of (5.17) is given by

R; = Ox E—] = Ox[X]/(*X)?, i=0,1,2,... .

Here 7 denotes a uniformizing element in Ox.



240 CHAPTER 5

5.19 We give a different definition of the period morphism for formal groups,
which is due to G. Faltings.

Let R be a ring such that pis nilpotent in R. Let R’ — R be a P D-extension
with nilpotent kernel. Later we will also consider the case where R’ is adic
and the kernel is topologically nilpotent. We define a category Extr:—p as
follows. The objects are quadruples

WV, E,g,X) .

Here X is a p-divisible formal group over R, F is a (smooth) formal group
over R/, V C E is a vector group and g : Ep — X is a morphism, such that
the following sequence is exact:

O-——*VR——>ER—Q—>X———>O.

We note that E/V is a formal group over R/, which is a lifting of X.

A morphism (V, E, ¢, X) — (V',E’, ¢, X’) is a morphism v : E — E’ of
formal groups, such that the following conditions are satisfied.

The map vg gives rise to a morphism of exact sequences:

0 — Vg & EBg — X — 0

vg | ! l

0 — Vp = By — X' — 0

We require that vy is a morphism of vector groups. Moreover we require
that there exists a lifting of vy to a morphism of vector groups 7 : ¥V — V',
such that

dobyg—ovV:V— FE

is an exponential in the sense of Messing. Here ¢/ is the given inclusion
V= FE.

The conditions on a morphism are easier to explain in Cartier theory ([Z4],
esp. (2.3}, (2.4)). Let Egs be the Cartier ring of R'. We denote the Witt
ring by W(R') and by w, : W(R') — R’ the Witt polynomials. Let L be a
R'-module. We define a Eg-module C(L) as follows. As an additive group
we set
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c(L) =ﬁL‘

i=0

An element of this product with component z; we write formally as

oo
2: i

V:B,'.
i=0

The Epg-module structure is given by the following equations

¢ (Z V*'x,-) > Viwn(@)a:, e W(R)
i=0 i=0

it

oo oo
A% (Z Vi:cg) = Z VH_IZ,'
i;() io=°0
F (Z V‘xi) = Y ViTlps
i=0 i=1

If L is a finite locally free R'-module, this is the Cartier module of the formal
group associated to L.

Let a be the kernel of R’ — R. The PD-structure defines an isomorphism
of additive groups

log: W(a) —T[Z,a,
¢ — [[ua)/p”

where the divided powers give a sense to the expression w,(§)/p". The map
a — [[icga ~ W(a) that maps a to (e,0...0) is a ring homomorphism,
that maps a to an ideal in W(R').

An object (V, E, g, X) gives rise to an exact sequence of Cartier modules

0-—sC(L)y— Mg — M —0,

where L = V 4 alieF C LieE, Mg is the Cartier module of £, and M that
of X.

One has aMg C L C C(L) where the last inclusion s given by | —
(1,0...0). Then a morphism (V, E, ¢, X) =5 (V' E, ¢, X") is simply a mor-
phism of exact sequences
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0 — ¢y — Mg — M — 0
vo | 1 1
0—>C(L')—-—+MEI—>M1—>0
such that vg is induced by an R'-module homomorphism L — L’. The
category Extgp—g lies over the category of p-divisible formal groups on R.
By a theorem of Messing the fiber Extg:—p(X) at X has an initial object
E(X)"V ie. Hom (E(X)™", (V,E, g)) consists of a single element.

5.20 Let us consider the following situation. Let k£ be a perfect field of
characteristic p. Let W = W(k) be its Witt vectors. Let K¢ = Wq be
the field of fractions. Let K be a finite field extension of Ky and O = Ok
be its rings of integers. We set R = O/pO. Let X be a p-divisible formal
group over R and Xp = X ®gk be its reduction. We denote by M = M(X)
respectively My = M(Xy) the Cartier modules of X respectively Xp.

Let Cx,,x be the category of morphisms of K-vectorspaces

My @w K — L.

We consider functors for varying O and X

EXto—»R(X) — CXO,K

of the form E ——— [Mp ®w K — Lie E ®¢ K]. We require that for any
extension K'/K there is a commutative diagram

EXtO—*R(X) CXO,K
base change oK' (5.4)
Extoqui(XRl) CXU,K’ .

We require that a morphism (V, £, ¢, X) — (V', E', ¢, X') gives rise to a
commutative diagram

My(X)®w K — Lie Ex @0 K

! ! (5.5)
M()(X’) Qw K — Lie Ex) @0 K.
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Finally we require that for KX = Ky the map

Mo(X) ®w Ko — Lie E(X)"™ @w K, (5.6)

is an isomorphism.

We claim that any two families of functors with these properties differ by
an automorphism of the functor X — My(X) @w K.

Indeed for that we verify that Mo(X)Q@w K — Lie E(X)"™ @ K is always
an isomorphism. We have W C O and hence 8 C R. f X = X, @ R, we
get what we want by base change (5.4). In the general case we have a quasi—
isogeny Xo r -2, X, which induces the identity on Xp. We can apply the
commutative diagram (5.5) to p™a and p™a~! for a large m € N to get
the assertion. The uniqueness of the families of functors follows from the
existence of the universal extension.

We will call a family of functors as above a period map in Cartier theory.
Let us replace for a moment the module My in the definition of the category
Cx,,x by Lie E(Xg)"™". Then the crystalline theory [Me] provides us with a
period map (family of functors) as above (compare proof of (5.15)). Clearly
this crystalline period map agrees with any other period map in Cartier
theory via the isomorphism (5.6) by uniqueness.

5.21 For the construction of the period map in Cartier theory, which is in-
dependent of the crystalline theory, let us consider a more general situation.
Let O be a torsion free p-adic ring. Let R = O/p. We will assume that
there is a natural number m, such that £™ = 0 for any element in the kernel
of R — Ryea and that Rpeq is perfect. Let X be a p—divisible formal group
over R and let M be its Cartier module. Let Mg be a reduced Cartier
module over O and let L be an O-module. Assume we are given an exact
sequence of modules over the Cartier ring Eq,

0 — C(L) — Mg - M — 0.

Then we will construct for large natural numbers [ and ¢ homomorphisms of
abelian groups 7; : p' M — Mg such that pr; = 741 and or; = p*. For the
construction we fix a number h, such that Ker(F' : M — M) = Ker(F" :
M — M), t > h. Let Mg be the Cartier module of X,.q. Moreover we fix
a natural number r such that

V™My C FM,.
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This is possible because the multiplication by p : X — X is by assump-
tion an isogeny and the ring Ryeq is perfect. Since p*M = p"Mp, we get
V™phM C F*p"M for any natural number n. We have maps for each
i>h:

o M — ME/pi_hC(L).

Foi' the definition we represent z € F*M as z = Fim and choose a lifting
m € Mg of m. We define

oi(z) = Fiin.

For a different choice m/, ', we have F*(m — m’) = 0 and hence F*(m —
m') = 0. Hence we get F*(# —m’) € C(L) and Fi(fh — ') € FF~*C(L) =
p*~*C(L). Therefore the map is well-defined. Clearly we have oi(z) =
oir1(z) mod p~*C(L) for z € FH1M.

Let us set M = pP M. For n > h we get maps

F" 0, V' : M — Mg /p" " C(L).

Lemma 5.22 The operator F*" o, V™ is divisible by p(*~?)". For each
n > h one has the congruences

F* o, VY = p B g, VU mod prrn—h=10(L)

Proof: The first assertion makes sense because Mg has no p-torsion and is
an obvious consequence of the second one. To prove the congruence we may
on the right hand side replace o, by 6n—1. Take x € M. We choose m € M
such that V(*=1rz = F*~lm and hence V"¢ = F*~'V"m. For a lifting
m of m we get

Fnran_lvnrx =FrEn-lyrg, = er(n—l)an—lm
= er(n—l)rO,n_lv(n—-l)rm mod pnr-l-n—l—hC(L)'

We define

The{Z) = nlim Mo V.

1
L
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Since C(L) is p-adically complete, the limit exists by the lemma. We have
oThr(z) = p* z. Indeed, the difference between two members in the se-
quence above is in C(L); hence it is enough to check that g(F*" o, V#7) =
p"", which is trivial. For i > hr we define

(X)) = P, (X).

For different choices of » and h we would end up with the same 7;, whenever
they are defined.

We note that if the ring R is reduced and perfect, we may choose h = 0.
Then 7y 1s defined and is a section of g.

Lemma 5.23 The homomorphisms 1; have the following properties
( 1 ) F =Fr
(i) nVe—Vrne € LCC(L) forae M.
Proof: The verification of (i) is trivial. For the verification of (ii) we note
that it is enough to check that
F(rV-Vr) =0,
which follows from (i). O
Let us denote by k the ring Ryeq. Let W = W(k) be the Witt ring. The
homomorphisme W{(O) — W (k) has a section §, which is defined as follows.
For a fixed w € W(k) we find a sequence wy, € W(k) such that F?w, = w.
We define
é(z) = nl—ifrgo F*d,,
where 1, are liftings of w, and the limit is in the p-adic topology. We
denote by g the composite of the maps
bp : W(k) - W(0) — W(R).

The sections 6 resp. 8p commute with the action of the Frobenius.

Lemma 5.24 For any i such that ©; is defined, we have

ri(6r(w)z) = §(w)ri(x), =€ M.
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Proof: With the notations above we may assume ¢ = rh. We fix n >
h and choose m such that V*"z = F”m. This implies V" ég(w)z =
F?8p(Wnrin)m. Let 1 € Mg be a lifting of m. We obtain

1

anrUnVnréR (’UJ)SL' =

Sy E (g

————§(w)F" i = ———6(w)F™ 0, V™" & mod p"" " A C(L).

(” pa=h)r (n h)r

Passing to the limit we get what we want. O
5.25 Let us localize the exact sequence that we associated to (V, E, g, X):

0—C(L)®zQ — Mg ®z Q -+ M ®z Q — 0. (5.7)

We note that the map 7 = 1/p'r; is a natural W(k)[F]-linear splitting
of the sequence. Moreover the natural projection M — My has a kernel
annihilated by a power of p and hence induces an isomorphism

MeQ— MeQ.

Hence we may rewrite the sequence as follows

0—CL)®zQ — MpRzQ5M;eQ —0.
e

We obtain a Kp—linear map
T Me®Q — (ME/VME)® Q= (Lie E)Q .

Proposition 5.26 The functor that associates to an extension (V, E, g, X)
the map 7: M{(Xo)q — (Lie E)q is a period map in Cartier theory. Let C
be the category of pairs (My,q, Mo,q — L), where the arrow is a Ky-linear
map to a K-vectorspace L and My,q is the rational Cartier module of a
p-divisible group over k. Then the functor

Ertg—=p@Q — C
VB, 0, X) (M(XO)Q)'?)

is fully faithful.
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Proof: Let us first prove that the functor is fully faithful. By Cartier the-
ory we know that the functor which associates to an object (V, E, g, X) of
Exto—pg ® Q the exact sequence (5.7) is fully faithful. Hence we have to
show how to recover this sequence of modules over the Cartier ring Eo from
My(Q), Lie F ® Q and the morphism 7.

By (5.19) we have an isomorphism Lq =~ (Lie E)q. We obtain an isomor-
phism C(L) ®z Q == C((Lie E)q). The section 7 defines an isomorphism of
abelian groups

Mg ®2 Q = C((Lie E)q) ® Mo,q. (5.8)

We are done if we describe the action of Eo on the right hand side of (5.8)
in terms of 7. Let us first look at the action of the Witt ring W(O). Since
W(R)® Q = W(k)® Q we get a split exact sequence

0 W(pO)®Q — W(0)® QSW(k)®Q — 0
~| log
(TrO)®Q

Hence W(0) ® Q = Ko @[], K, where [], K C K* are the elements with
bounded denominator. Then (5.8) is a decomposition of Ky[F}-modules,
where Ky acts on C(L)®z Q by

’“O(Z Vil;)=» Vic'(ko)l;, o = TFrobenius.
For a € [[, K we have
a (Z V"I,-) =" Vigal;
am =Y, Vi (a;® 7F'm) € C(L) ® Q.

Finally we have to define the action of V on elements m € Mo,q C Mg,q.
We note that the map V7 — 7V : My q — (Lie E)q given by lemma (5.23)
may be identified with —FV : Mg q — (Lie E)q. Hence V is given by

V(0,m) = (~7Vm,Vm).
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It remains to check that 7 is a period map in Cartier theory. We show that
the map My(Xo) Qw Kg — Lie E(X YV @u Ko is an isomorphism. The
other requirements for a period map are obviously fulfilled.

In the case K = K the section 7 is even a section of the sequence

0 — C(L) — Mg — M(X,) — 0,

i.e. without killing torsion. The same argument as above therefore shows
that the category of such sequences is equivalent to the category of commu-
tative diagrams

L

!

M(Xo) — Lie E

\

M(Xo)/VM(Xo)

Hence we get the universal extension if we set Lie E = M(X,).

5.27 We now return to the general case and consider the problem of deter-
mining the image of the period map associated to a moduli problem of type
(EL) or (PEL). By Fontaine [Fo] the image of the first factor of the period
morphism #! : M9 — F lies in the weakly admissible subset.

Proposition 5.28 Let us assume Fontaine’s conjecture ([Fo2], 5.2.5) that
e weakly admissible filtered isocrystal (V,®,F*) with F? = (0) and F° =
V ®k, K comes from a p—divisible group over SpecOx. Hence to every x €
j—'wa(K ) there is associated via Foniaine’s funcior a Qp—vector space V,(z)
with an action of B and a non—degenerate alternating Q,-linear form up to
a constant in Q. We make the further assumption that the isomorphism
class of Vy(2) is independent of z € F*. Then the tmage of the period
morphism is of the form

~ R

F o ox A,

where A’ is a union of cosets of the subgroup of finite index in A formed by
the Q,-rational cocharacters of the center of G, unless M9 is emply.
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Proof: Let K be a finite extension of I and ¢ € .7v"wa(K). Fontaine’s
conjecture says in this case that there is a p—divisible group X over Spec Og
with rational Dieudonné module of its special fibre equal to V ® Ky such
that z corresponds to the natural surjection of K—vector spaces,

V@K =Mx Qo, K —*LZE(X) ®ox K.

The p-divisible group is uniquely determined up to isogeny over Og, cf.
([Fol], IV., 5.2). Consider the rational p-adic Tate module of the generic
fibre of X,

Vo(X) = V(X ®ox K).

Then V,(X) is the image Vj(z) of the filtered isocrystal corresponding to z
under the Fontaine functor ([Fo2]). By hypothesis, the isomorphism class
of V,(z) is independent of the point . Let ' € F“*(K’) be a point in the
image of M79(K"), for a finite extension K’ of K. Let (X%, ¢') be an object
of M(Spf Ok’) mapping to &’. The p-adic Tate modules of X} define a
polarized multichain of Op-lattices £’ in V,(X') whose members are in a
natural one-to-one correspondence with the members of £. Let L be the
image of £’ under a fixed isomorphism

Vp(X) 2 Vp(X').

There is a finite extension K" of K such that £” is stable under Gal(£/K").
Hence there is a chain of p—divisible groups X, (A € £) over Ogw in the
isogeny class of X @ x K”. Furthermore, the identification Mx, ®o,., K" =
V @ K" provides us with a family of quasi—isogenies over the residue field
of Ogn,

on : X — Xp Qo K.

We claim that (X.,g) is an object of M(SpfOxn). We have to check
conditions (i) - (v) of (3.21). Consider the determinant condition (iv) on
the generic fibre of XA. However, Lie(Xa ®0,., K”') = Lie(X)®o, K" is a
module over the semi-simple algebra B ® K’ and therefore prescribing the
determinants of elements of B comes down to prescribing the dimensions
of the corresponding modules over the various simple factors of B. Since
Lie(X) ® K satisfies the determinant condition, so does the generic fibre
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of X, and hence X itself. In the presence of condition (iv), condition (ii)
is equivalent to condition (ii bis) of ((3.23), d). To check this condition
we may assume B simple. However, for any two neighbours A C A’ the
height of the isogeny Xa — X4 is equal to the order of the cokernel of the
induced map on the p-adic Tate modules of the generic fibres. Since the
indices of members of £ and corresponding members of L are identical the
condition (ii) is indeed satisfied. Of the remaining conditions, (iii) and (v)
are trivially satisfied and (i) is automatic. Therefore we have found a point
(Xc,0) € M(Spf Oxn) whose image under the first factor of the period
morphism is clearly the point £ with which we started.

Let Z be the center of G. Then Z is also a central subgroup of J. The
assertion follows from the fact that the image of i is stable under Z(Q,)
and that the image of Z(Q,) under wy (3.52) is a subgroup of finite index
in A, O

Remark 5.29 In (1.19) a cohomology class cls(z,b) € H'(Q,, G) was as-
sociated to « € jz'wa(K ), if = is admissible. It seems reasonable to expect
this class to be constant as = varies through F*®. This is true by the for-
mula in (1.20) if G is connected with simply connected derived group. In
this sense the last assumption in proposition (5.20) seems reasonable.

5.30 In the unramified case we can say more. Let (F, B,0p,V,b, p, L) be
unramified data of type (EL) or (PEL), cf.(3.82). Let M be the correspond-
ing formal scheme over the Witt vectors Spf Og,. By the flatness of M
(cf.(3.82)) it follows that M™9 is non-empty. Let K be a finite extension
of Ko with ring of integers Ox. Let (X, ) € M(Spf Ok) be an object
of our moduli problem, cf. (3.82). Then the rational p-adic Tate module
Vp(X) of the generic fibre of X is the image of the filtered isocrystal over
K agsociated to X under the Fontaine functor. It contains the p-adic Tate
module T,(X) as a Op-lattice which in case (PEL) is selfdual with respect
to the non-degenerate alternating Q,~form on V,(X).

Proposition 5.31 Let (B, F,0p,V,b, 1, L) be unramified and let = be a
point of F'*(Ko). Then z is admissible. Let V,(z) denote the image un-
der the Fontaine functor. We make the assumption that V,(z) contains a
selfdual Op-lattice (automatic, if G is connecied, cf. (5.33) below). Then
there ezists y € M™9(Ko) with ¥'(y) = .
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Proof: We only treat the case (PEL), the case (EL) being similar but sim-
pler. By the theorem of Laffaille [L], proving Fontaine’s conjecture in the
unramified case, ¢ comes from a p-divisible group X over Og,. In par-
ticular, the first assertion is true. Using similar arguments as in the proof
of the previous proposition the second assertion will be proved if we can
exhibit a p—divisible group in the isogeny class of X which is equipped with
an Op-action and an Op-linear principal polarization. For this it suffices
to find a selfdual Op-lattice A’ in the rational p-adic Tate module V,(X)
which is stable under the action of the Galois group Gal(f&’g /Ko). Indeed,
the stabilizer of A’ in B is a maximal order O', invariant under *, and any
element of B which conjugates O into Op also conjugates A’ into a Galois
stable selfdual Op—lattice which then yields the desired p-divisible group.
The image of the Galois group Gal(Ky/Kp) in GL(V,(X)) is contained in
the group of B-linear symplectic similitudes. It is therefore contained in a
maximal compact subgroup of this group and therefore stabilizes an Op—
lattice A C V,(X) with

ACA*Cpt-A.

Indeed, consider a Galois invariant A such that A C A* and such that the
index [A* : A] is minimal. If pA* & A consider the lattice A’ = A + pA*,
Then (A')* = A*Np~*A. Hence A’ C (A')* with a smaller index, which is a
contradiction. We are going to replace A by a Galois invariant Op-lattice A/
with A C A’ = (A')* C A*. Proceeding inductively we may assume A # A*
and that there is no Galois invariant Op-lattice A’ with A;A’ c Ay ;%A*.
We want to derive a contradiction.

On the Fy-vector space

V=A"A
we have a non—degenerate alternating bilinear form
(3,7 =p-(v,v') mod p, v,v' € A*.

The Galois group acts on V and preserves this formn. We remark that V
cannot contain a non—zero Galois—stable totally isotropic subspace. Indeed,
the orbit under Op of the inverse image in A* of such a subspace would
yield a Galois invariant Op-lattice A’ with ASA’ C (A’)* SA*, contrary to
our hypothesis.
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Claim: The Galois module V is trivial.

The Galois representation on V is defined by a finite flat group scheme over
Ok, killed by p (the kernel of the polarization induced on the p-divisible
group corresponding to A). We may therefore apply Raynaud’s theory [Ra2].
It follows (loc.cit, §3) that on each Jordan - Holder factor of V the Galois
group Gal(Ky/Kp) acts through its tame quotient I;. Furthermore, if W
is a Jordan - Holder factor of V, then the commutant of I; in End W is a
finite field F and W is an F—vector space of dimension 1. The action of I;
is given by a character

L — py—1(Ko) - B,

Here ¢/ = p” denotes the cardinality of F. Let xo be the inverse of the
Teichmiller character, and consider the fundamental characters

—-1

X0, X1 = Xby- - Xr—1 = X5

Any character 9 as above has a unique expression of the form

Y=x5"Xri1s 0<mi <p—1.

By Raynaud and since the ramification index of Ky is one, the character
1 defining the Jordan - Holder factor W has as exponents n; only 0 or 1
(i=0,...,r—1).

Let now W be a simple Galois submodule. The bilinear form defines a
Galois homomorphism of W into its contragredient W*. By the simplicity
of W this homomorphism is either an isomorphism (i.e. the restriction of
( , ) to W is non-degenerate), or zero (i.e. W is totally isotropic) and
the latter case is excluded by our inductive hypothesis. We may write the
restriction of { , ) to W as the trace of an F-bilinear form defined by

(aw,w') = Trpr, ¢ - (w,w'), a €F.
The F-valued form satisfies
(aw,d'w") = a-(w,w')d”, a,d €F,

where * is an involution on F. If W is defined by the character 1, then W*
is defined by 9*~1. Since W is isomorphic to W*, we obtain
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2n,_1

L=g? = x" x50
if * is trivial, and

l=1-9* = Xgo+ﬂ. .. .X::—11+nr-1+,’

if * is the non-trivial automorphism of F = Fyr = Fp2. over Fps.

By the uniqueness of the expression in terms of the fundamental characters
and since 0 < n; + n; < 2 < p we conclude that W is a trivial Galois
module. Replacing V by the orthogonal complement of W, an obvious
induction proves the claim.

We now finish the proof of the proposition. By assumption V,(X) contains
a self-dual Op-lattice. This implies that there exists a self-dual Op-lattice
A’ C Vp(X) with A C A’. By our claim above this lattice is automatically
Galois invariant and this contradicts our assumption. 0

5.32 We now introduce the tower of rigid-analytic coverings of M9, Here
M denotes as before the formal scheme over Spf Oy representing our mod-
uli problem for the data (F, B,Og, V, b, 1, L) of type (EL) or (PEL).

Let z € M“'-"(K) be represented by (X.,g) € ./\;l(Spf Oxk). Then the
rational p-adic Tate module V,(X) is equipped with an action of B and,
in case (PEL), with an alternating form up to a constant. Unfortunately
we do not know whether the isomorphism class of V,(X) is independent
of ¢ € M™9(K), cf. remark (5.29). Therefore we fix representatives
Vi, (, ) (6 =1,...,1) of the isomorphism classes of V,(X), as ¢ varies
through M7, Fix i and let V' = V/. Then V' defines a twisted form of
our original group, with

G'(Qp) = {g' € GLa(V'); (¢'v,gV') =c¢) (v,v'), e(¢') € Q;'}-

This expression refers to the case (PEL). The group G’ is an inner form
of G since the B-modules V and V' are isomorphic and since the forms
{ , )and ( , ) are both compatible with the same involution * on B.
Indeed, one easily checks that the B~modules V and V' equipped with their
alternating forms become isomorphic over the algebraic closure QP. We fix
a multichain of lattices £ in V’/ which under an isomorphism of V' with
Vo(X)(x € M™9) maps to the multichain Tp(X5),A € £, defined by the
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p—adic Tate module of X.. Let K, C G'(Qp) be the corresponding fix
group. The conjugacy class of £’ resp. K7, is independent of the choice of
the isomorphism and of x. We note that the members of £ and £’ are in a
natural one-to-one correspondence such that indices of corresponding pairs
of lattices are identical, comp. the proof of proposition (5.28).

Let .A;(?g (i=1,...,1) be the subset of points z € M9 where the rational
p—adic Tate module V,(X) is isomorphic to V;/. We also use the notation
M or M7F for MY if V! = V/, and L' is the multichain of lattices in
V' defined above.

Lemma 5.33 The subsel .A;i?-"’ is a union of connected componenis of
M i =1,...,t. If G is connecled then V,(X) ~ V for all z € M™9,
i.e. t =1 and V{ = V. In particular this applies to the case (EL).

Proof: We remark that the p—adic Tate modules Tp(Xa), A € £, for the
points ¢ € M7 piece together to a locally constant Z,—sheaf for the étale
topology on M"9 (namely, T,(X2) ® Z/p" is the generic fibre of the finite
flat group scheme of p*—division of X which is étale). By Nakayama’s
lemma V,(X) is determined by T,(Xa) ® Z/p", A € £, for a fixed n > 0.
The first assertion follows since this chain of finite étale group schemes triv-
ializes over a connected finite étale covering of each connected component
of M"is,

Now assume G connected. Let @ € M™9 and let V’, £’ denote its rational
p-adic Tate module with its natural multichain of lattices. Then £’ is a
polarized multichain of Op~modules on Spec Z, of type (£), in the sense
of chapter 3. Therefore (3.16) there exists an unramified extension L of Q,
such that there is an isomorphism of polarized multichains,

LR®0r =L 0.

Therefore, the difference between V and V' is measured by a 1-cocycle with
values in K£(Or) where we momentarily denote by K. the smooth Z,~form
of G defined by L. However, since G is connected, K has connected fi-
bres. Therefore by Lang’s theorem and a standard approximation argument
(comp. [BT], 7.2) we conclude that after enlarging L this 1-cocycle is trivial,
and hence V =~ V',

5.34 We denote by Tz = {Th; A € £} the multichain of locally constant
étale Z,~sheaves defined by the p-adic Tate modules of the universal p-
divisible gronp Xa on M. Fix i (i = 1,...,%) and let (V', L) = (V/, L}).
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We also have the inner form G’ of G. Let K’ C K7, be an open compact sub-
group. We consider the finite étale covering M/ g+ of M?ﬂ parametrizing
the classes modulo K’ of trivializations of the local system T over M7¥,

a:T; =L (mod K').

Then for K’ = K, we have obviously K/ICI,Krﬁ, = M’Z,g. Let K' C K'p»
and let ¢' € G'(Q,) be such that ¢ 'K'¢ C K'pi. We are going to
construct a canonical isomorphism

L(gl) : Mﬁl,Kl —— M[’l,yl-lKlgl.

We content ourselves with giving the construction pointwise. Let us describe
the image of a point ¢ € Mg g+(K) corresponding to ((Xg,e),@). The
inverse image under o ®z, Q, of the multichain ¢’L’ defines a multichain of
p-divisible groups X} over O with a quasi-isogeny X — X}.. We obtain
an object (X7,0') of M by taking ¢ to be the composition of g with the
special fibre of this quasi-isogeny. Finally, the trivialization o/ of T,(X7) is
given by the composition )

o1
Tp(Xg) < gL 4 .

To perform the same construction starting with a point of l\v/Iy, k' with
values in the rigid space associated to a p-adic formal scheme S — M
the main point is the construction of (X%, ¢’). In general the p-divisible
group (X%)™9 over S™9 corresponding to the multichain ¢’L’ extends to a
p-divisible group over S only after replacing S by an admissible blowing-up
([BL], thm. 4.1).

The definition of the Hecke correspondences is now done exactly as in the
classical case ([De], 2.1.). We therefore obtain for every pair of open compact
subgroups K’, K{ C G'(Qp) contained in K7, and any ¢’ € G'(Q,) with
g~ 1K!{g' C K’ a morphism

. .
T k(9 Mg ki — Mg g

defined by the composition of 1(g') : M LK = M crgi-1K g and the projec-
tion morphism Mﬂl’gl—l Kig — I\V/Iy‘ % induced by the inclusion g'~1K{g' C
K’. Furthermore, if K} is another open compact subgroup contained in K7,
and ¢} € G'(Q,) such that gi"'Kjg} C K/ we have that
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Tx; x(g') o mrr k1 (91) = Tr1 K (919")-

Furthermore if K’ C K7, and K] C K’ is a normal subgroup the morphisms
K K! (¢") define an action of K*/K{ on I\?Ig’K; with

Mok /(K'/K7) = Mo g

The last formula allows us to define Mg:,K/ even if K’ is not contained
in K.,. Namely, we take a principal congruence subgroup K| which is a
normal subgroup of K’ and such that K{ C K},. Then we define I\V/Ig, K
through the last formula. All we have said above remains valid for arbitrary
open compact subgroups K’ C G'{Q,).

The Hecke correspondence on 1\715:, k defined by ¢' € G'(Q,) is given by
the diagram

MLI,KIngIKgI—I
T/ N 7(g’)

MCI,KI ——— = — —— MﬁI’KI,

We abbreviate 7x+ x(1) into 7 k.

The tower of rigid-analytic spaces {Mgr g+; &' C G'(Q,)} with the right
action of G'(Q,) defined above are our candidates for the conjectured étale
coverings of F, (cf. (1.37)),

- ~ “wa
¥y Mg g — F oo

If K" C K}, we introduce 7‘1’%{, : Mgr,Kz ~ A as the composition of mg: K,
and #2. It is clear that this definition extends in the obvious way to all
open subgroups K' C G'(Q,).

5.35 We note that the (left) action of J(Q,) on M is lifted to each
member My g1 of the tower.

Lemma 5.36 Let Z be the center of G. Then we may also tdentify Z with
the center of the inner form G' of G and also with a central subgroup of J.
The left action of an element z € J(Q,) with z € Z(Qp) coincides with the
right action of z € G'(Qp).
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Proof: We check this on points. Let z € 1\711;:, &/(K) correspond to a triple
((X¢,0),@). The Hecke correspondence associated to z € (Q,) sends =z
to 2’ corresponding to (X%, ¢'}, ') where X/ is connected to X through
a quasi—isogeny 7 appearing in the following commutative diagram

LX) — ¢
C
T l v’
C
Tp(XL) — 2t
However, z may be considered as an element of F* and defines a self-

quasi-isogeny of X. Furthermore, there is an isomorphism of X} with X,
making the following diagram commutative

X = Xg
] 1=
X;-' ~ Xg y

as one checks on Tate modules. This isomorphism allows us to identify
X', with X;. Under this identification ¢’ becomes z~!p and o’ becomes a.
Hence

(X,lC) Qfaa’) s (XJC:Z—le Ol) = (Xﬁa Qz_l) a)-

Here in the last equation z is considered as a self-quasi-isogeny of X. Re-
calling the definition of the action of J(Q,) on the moduli problem the last
equation says that the Hecke correspondence z € G'(Q,) acts on Mg g+ as

z € J(Qp).
Proposition 5.37 Let K' C G'(Q,) and consider the first component of
the period morphism

7\?}{: M MgI,KI — j:wa.

Two poinis 21,22 € Mgl,xl have the same image under %L, if and only if
they are mapped into each other under a Hecke correspondence, i.e. if there
exists y' c G,(Qp) and yve Mgl’Klnnglgl—l with
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z1 = 'R'KlnglKlgl—l,Kl (1)(y), Ty = WKlnglKlgl—l’Kl(g/)(y).

In other words, the fibre of %%, through a poini z € l\v/Ic:,K: may be identified
with G'(Qp)/K'. Let G'(Qp)* be the subgroup of G'(Q,) where the values of
all Qp -rational characters are units. Then the fibre of the period morphism
Frr = ¥k X %%, through © € Mg g+ may be identified with G'(Q,)'/ K.

Proof: Let z; be represented by ((X L, 6'), ') over Spf Ok. Since z; and
2 have the same image in F , the fully faithfulness of the Fontaine
functor implies that there is a B- quasi—isogeny 7: X% — X2 over Ok such
that g% equals the composition of p! with the special fibre of 7. We define
¢ € G'(Q,) so as to make the following diagram commutative

al

TXHeqQ — VvV’

lr le

a2

T(X2)@Q > V.

The double coset of ¢’ mod K’ is well-determined by ! mod K’ and 2 mod
K'. 1t is easy to see that the point y represented by ((X}, o), a'mod K’ N
g'K'g'~1) has the required property. The last assertion follows easily.

5.38 Let £, be another multichain of lattices in V and let M; be the
formal scheme over Spf Oy corresponding to the moduli problem where
the multichain £ has been replaced by £;. Assume that £ is a refinement
of £ and denote by

71':./\;!1—>M

the obvious morphism. Let V; (i = 1,...,11) be the set of isomorphism
classes of rational p-adic Tate modules of points ¢ € M. It is obvious
that this is a subset of the corresponding set for M9, We now encounter
the problem that it may be a proper subset (the worst case would occur if
./\;l?g were empty - which would contradict the flatness conjecture before
(3.36)). We note however that if V occurs in one of these sets it occurs in
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both. Indeed, let & € M™9 (X) be represented by (X, ¢) over Spf Ok and
let

VB(X)=V

be an isomorphism taking the p~adic Tate module chain T,(X¢) into £. The
inverse image of £ in V,(X) under this isomorphism is invariant under the
Galois group Gal(K/K') of a finite extension K’ of K and defines in the
obvious way an object (X, ¢') of M} over Spf Ox.

We now fix V'’ which occurs in both the set of isomorphism classes corre-
sponding to M; and to M. Again we denote by £ and £’ and G’ the
corresponding multichains in V' and the inner form of G. Then L] is a re-
finement of £’. Let K ’L, and K}, be the corresponding fix groups in G'(Q,).
We obtain a commutative diagram of rigid—analytic morphisms

orig
M, = Mok,
1

i
ﬂ'zlgl ‘!/ Kll:] ’KI !
Mrz.q - M‘CI’K::I .

Since 7 is proper, so is 772’;" and therefore also ¢. On the other hand, if

zE MLQ(K) is a point represented by (X, g) over Spf Ok, to give a point
T € M} 1 5, (K) represented by (X¢, , ¢) over Spf Og mapping to z is equiv-
alent to giving a refinement of type £} of the multichain 7, (X, ) of V,(X),
whick is Gal(K /K )-invariant. 1t follows that . induces a bijection on points.
Similarly one shows using the infinitesimal criterion (5.11) that 7r"g is étale.
Hence ¢ is finite, étale and bijective and therefore an 1somorphlsm It fol-
lows that the towers {MC'I,K': K' C G'(Qp)} and {Mg:,K:,I C G'(Qp)}
defined by ./\;ifﬂ,l and M'Z;‘] are canonically identified.

5.39 Finally we mention that the tower {Mg x1; K’ C G*(Qp)} is indepen-
dent of the choice of £’. More precisely, let ' € G'(Qp) and let £} = 'L’ be
another candidate for the polarized multichain in V. We define as follows
an isomorphism of towers

@:Mgogi — Mg wgmpio
(XC’ g) a) —_ (XL b Q’ h,a)
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One verifies easily that this isomorphism is Int(h’}-equivariant with respect
to the action of G'(Qp) by Hecke operators on both sides,

pon(g) =m(hg'h op.

Here 7(g") resp. w1(g') refers to the action of G/(Q,) on the tower defined
by £’ resp. by L. Furthermore, using that h' K7, is uniquely defined by £’
and L}, one sees that this isomorphism depends only on £’ and £f.

5.40 We now want to compare the rigid-analytic Hecke correspondences
with their formal counterparts, cf. chapter 4. We start with the data for
our moduli problem (F, B,Op, V,b,u,L). Wefix V' = V; (¢ =1,...,t) and
introduce again the multichain £', the inner form G’ of G and the subgroup
K7, C G'(Qp). For an element ¢’ € G'(Qp) we have the rigid-analytic
Hecke correspondence

; Y v o
T(g )C’ = ML':KZInQ'KfCrg'_I C MC':K’U X MLI'K;,.

We fix an indexing by Z of the members of £ and therefore also of £’. Theel-
ement ¢’ € G'(Q,) defines the function t = t(g") = (t:;(¢")) = (ti;(¢'L’, L)),
of. (4.12) and (4.18). (As a matter of fact, ¢’ defines such a function for
each simple factor of B, cf. (4.41)). We stress that we are applying the
considerations of chapter 4 to V' and L', not to V and £. Consider the
formal Hecke correspondence associated to ¢ = ¢(g'), cf. (4.43) resp. (4.57),

C(t) = Corr (t) C M x M.
Let C(t)’z,'q be the pullback of C(t)™*¢ under the morphism
MG x MEF — M7 x M9

For any point ((X¢, ¢),(X;,d')) € C(1)(Spf Ox) defining a K-rational
point of (,’(t)z";" the quasi-isogeny ¢'o~! on the special fibre lifts uniquely
to a quasi~isogeny from X to X} over Spec Ox. Consider the multichains
of their p—adic Tate modules T,(X ) and T,(X%) in their common rational
p-adic Tate module V,(X) = V,(X’). It is obvious that they are in relative
position . Therefore there exists an isomorphism « of V,(X) with V' which
sends T,(Xc) to ¢’L’ and T,(X}) to £'. This construction defines a rigid-
analytic morphism
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L C(t)ng —*T(g"‘l)ﬁ’ ,
compatible with the projections to M7 = M LK,
Proposition 5.41 The above morphism is an isomorphism.

Proof: Since C(t) is a locally closed formal subscheme in M x M, it follows
(5.3), (iv) that C(t)"g is an admissible open in a Zariski—closed subspace
CQ)ES of M7 x M. Tt is obviously contained in T(g' =)z,

L C)F CCOZ CT(g e

However, since the relative position of (X¢, ¢) and (X%, ') over Spf Ok
can be checked on their p-adic Tate modules, it follows that ¢ is bijective
on points. Since T(g"‘l)g is reduced, ¢ is an isomorphism.

Remark 5.42 As a consequence of this proposition, C(t)”g 1s Zariski—
closed in M "‘" . This is in contrast with the fact pointed out in
(4.44) that C(t) very often is not Zariski—closed in M x M.

Consider quite generally a locally closed formal subscheme of a formal
scheme formally locally of finite type over a comblete discrete valuation
ring O,

1: Y- X

Assume that %9 : Y9 — X" is a closed embedding. Then, as R. Huber
pointed out to us, 7 is a closed embedding, provided that Y is O-flat.
The upshot is that the formal Hecke correspondences are formal models of
the rigid-analytic Hecke correspondences which are not flat over Op.

5.43 Recall that we defined a Weil descent datum on M over Spf Og, cf.
(3.48). We are now going to construct a Weil descent datum e on F x A
over Spec F, compatible with the period morphism. (Here we transpose our
terminology from (3.44) - (3.47) which referred to the descent from Spf Op
to Spf Og to the descent problem from E to E)

We place ourselves in the general context of (1.35) and (1.36). Let 7 = o/
be the Frobenius in Gal(E/E). Let R be a E-algebra. We then define the
isomorphism « as follows,
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a:FxAR) — (FxA)(R)=F(R®k, - Ko)x A
(Fpw) +— (ba')f(f‘:,w) = ((ba)f]-—;,w -+ f ord (b)).

Here ord (b) is defined by the identity

{ord (d), x) = ord, x(b), x € XaP(G).

Since under the isomorphism of isocrystals
(ba) : V® Ko — (V@ Ko

the filtration Fy3 is carried into (bo)/ (F3) it is obvious that « respects the
admissible open subset FxA.

5.44 Let v = v, be the slope homomorphism associated to b € G(Kp). Let
s > 0 be a sufficiently divisible integer such that sv factors through Gg,.
Let 95 = sv(p) € G(Ky). Obviously ord ¥, = s[v] € A where [V] is defined
by the identity

(tl,x) =xov €Q, x € X3,(G).

Under either of the following two conditions the quotients of F x A resp.
v Wa

F x AbyT, =7Z exist in the category of rigid—analytic spaces.

(1) b is basic.

Indeed, in this case the action of I's on the first factor is trivial.

(i) 11 0. ]

Indeed, in this case the action of Iy is obviously properly discontinuous for
the Zariski topology on F x A.

Since ¥, commutes with o the descent datum ¢ induces a Weil descent
datum on the quotient,

a: (F x AT, — (Fx AJT,).

Proposition 5.45 We assume condition (1) or (ii) above satisfied. The
Weil descent datum on (F x A)JT, is effective and defines a projective
scheme F, over E. There is an admissible open rigid-analytic subset Fy ¢
in F, with an action of J(Q,) defined over E such that
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FUHC) = (F'(C) x A)/T..

If &' is divisible by s, then the action of T's/Ts on Fyr is defined over E
and

Fs =fs’/(fs/fa’): -‘F'sua :]—'l",“/(f‘s/f‘s,),

Proof: We first assume that b is a decent element satisfying a decency
equation for s, cf. (1.8). Then 7, € G(Q,+) and b € G(Qp+). Furthermore,
the equation (bo)* = 7, - 0* shows that o® = o” .a"a coincides with
the Weil descent datum for the obvious form ({F ®E Es) x A)/T over the
unramified extension Fs; of E of degree s. In particular, o® is effective.
Since we are dealing with projective schemes it follows (cf. (3.47)) that o
itself is also effective. In order to construct the admissible open subset F3 ¢
of F, it suffices by proposition (1.34) to define a closed subset

ch:s X(T@QPE)
such that
FUC) = (F () x M)/, =F,\ | e
teT(Qy)

We return to the proof of {1.36). Let V be a faithful Qp-rational repre-
sentation. For T we take the same scheme as in the proof of (1.36) except
that we apply the considerations there to s’ where Q,«.E = E,. Therefore
T is a Qp—form of the Q,./—scheme T" parametrizing the subspaces V' of
V ® Q. compatible with the isotypical decomposition. Instead of giving
H we give

H C(F. 08 E) % (T' ®q_,, Es)
invariant under the descent datum. Let R be a E,—algebra. We put
H(R) = {((F*w), V") € (F(R) x AJL,) x T'(R);
S itk (g (V) > Ak (V)).
This proves the second statement of the proposition in this case. The last

statement is obvious and allows us to reduce the case of an arbitrary s > 0
to the case where s is sufficiently divisible.



264 CHAPTER 5

If now b is a decent o—conjugacy class and b € b is an arbitrary element,
write b = gb'o(g)~! with & € b descent and ¢ € G(Ko). Then F* —
g~ 1(F*) defines an isomorphism between the quotients of F' by su (p) and
by svy(p) compatible with the respective Weil descent data. Therefore the
result already proved for b’ implies the corresponding result for b. The
assertion for a non—decent o—conjugacy class is treated as in the proof of
(ii) of proposition (1.36) by embedding the group G in a larger one, Gy, in
which it becomes decent. |

5.46 We claim that the period morphism
R MU S FxA

is compatible with the Weil descent data. Here we must be careful that we
are working with covariant Dieudonné theory. To define the Weil descent
datum on the period domain we use the pair (w(p)~b, w™1x) where

w: G, — G, t—t-idy

is the obvious central cocharacter. We remark that the spaces F*? obtained
from (b,) and (w(p)~'b,w™'p) are canonically isomorphic, via F* —
(F ® 1(-1))*. The compatibility of the Weil descent data now follows
immediately from the fact that the Frobenius morphism of the p—divisible
group X relative to the residue field £ of E induces on V@ Kg = M(X)®Q
the inverse of the f—th power of the Verschiebung,

(Frobzp'y* =V = (w(p™) -b-0).

We also remark that if we exclude the uninteresting case that X is étale,
the condition (ii) of (5.44) relative to (w(p)~1b, w™'u) is satisfied. Applying
proposition (5.45) we obtain for varying s a projective system of morphisms
of rigid spaces defined over E,

T M, — Fyh.

5.47 Ii follows immediately from the definition (3.48) that the Weil descent
datum o on M lifts to the universal p—divisible group on M. We therefore
also obtain a Weil descent datum on the towers {Mg x1; K' C G'(Q,)},
compatible with the period morphisms #x/, K' C G'(Q,) for the various
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forms V/, i=1,...,t. After passage from M to M,, the finite étale cover
M i+ descends to a finite étale cover Mg/ g+ , of the descended rigid space
M"g Mﬂg For varying s these form a projective system.

5.48 We now give some examples for the period morphism. We start with
the Drinfeld example (3.58). We will compare the period map (5.16) in
the Drinfeld case to the map given in [Dr2]. This compatibility result was
communicated to us by G. Faltings. We keep the notation of (1.44): D, F,¢:
F—Q,CCpE=¢(F), e F,II € D, 7. The invariant of D is 1/d.

In (3.54) we constructed a crystal (M V F) of a special formal Op-module
X over F Let M C M be the associated 7 — WF(FP)—crystal Wlth oper-
ators V a.nd F. We identify the Op-module of invariants MrIV with O% -
(3.73). By (1.46) the period space Q% in this example consists of the points
of P% ! which do not lie on any F-rational hyperplane

By (5.16) we have a map of rigid analytic spaces over E:

#loM Qb ep. E.

Let K C C, be a finite extension of Ky, which contains e(F). Then #' is
defined on the K-valued points as follows. A point of M™ is given by a
special formal Op-module X over Ok, and a quasi-isogeny ¢ : Xp — Xg
over the f‘,,-algebra R = Og /pOg. We use p to identify the isocrystals of
Xpg and Xg. Hence the value of the isocrystal of Xp at the PD-extension
Spec R — SpecO is identified with Mq ®k, K. The Hodge filtration
associated to X gives a map

Mgq ®x, K —» Lie X ®0oy K.
By the decompositions in (3.56) and (3.58) we find a point of P&L(K),
=MEY " = Lie®X @0, K -

It is weakly admissible by Fontaine and therefore in Q%(K). This defines
the image of (X, ) under #!.

5.49 On the other hand we have Drinfeld’s period map, which is defined by
the isomorphism

.A;( — éfm XSpf OF SpfOE v
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By (3.71) we have a canonical isomorphism of rigid analytic spaces E4 ~
Q4. x Z. Hence we get the Drinfeld period map

Fpr: M™ Qb op K.

On the K-valued points this map is explicitly described as follows. Let M
be the Cartier module of the p-divisible group X over Og. Let M C M be
the Cartier module relative to Op and N = EB:};Ol MJU together with the
operator ¢ the module defined by (3.75). Let T be any artinian quotient of
Og and Xp, ﬁT, Mrm, N7, ete. the objects obtained by base change. Then
by Drinfeld [Dr2] (compare 3.65) for any surjection 7 — 7' we have an
isomorphism

= N§ > np = N

Considering the degree zero part with respect to the Z/d-grading we get a
map

np,,0 CimNro=No — Mo/VMp (5.9

K i
(zoy-..,2d) — =z mod VM.

The quasi-isogeny X — Xz, provides us with an isomorphism

~

Fi=MIG" 05, 0 ®0, F.
Combining this with the map (5.9} we get the definition of the Drinfeld
period of (X, a):
F= g 0 ®0p F — Mo/VMo®0y K =Lie’X @0, K.  (5.10)

To show that this map coincides with the period given by #!, it is enough
to verify that the map deduced from (5.10)

Mg, 0 ® Q =18, ®0p.c Wr(Fp)q — Lie®X @0, K

coincides with the period map given by proposition {5.26).
Let T be any quotient of Ok . Consider the maps
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My - Np 2 My
m > (m,0...0)
(mo,...,mg-1) +— M4 Img + M2Vmy 4+ V& imy

We have to A =191 and A ot = II%!. Hence ¢ ® Q is an isomorphism

Mr®Q~Nr®Q, (5.11)

which we use to identify these modules. It is easily checked from the defining
relation AL = F for the operator L, that ¢ induces on the left hand side of
(5.11) the operator TV~'. Hence from (5.11) we get an inclusion 75, o C
My ® Q. Tts composition with the canonical map My ® Q — Lie’X ® Q
is the Drinfeld period. The coincidence of the period maps follows if we
show that this composition 7z, o — Lie’ X ® Q coincides with the map 7 of
proposition (5.26). More precisely 7 is the map associated to the extension
of Cartier modules

0 — C(pLieX) — Mx — Mx, — 0,

where R = Ok /pOxk.

Let m € 95,0 C Mg, ® Q. The inclusion 75, o C M ® Q provides us with
a lifting m € M ® Q, which satisfies Il'm = Vm. The claimed coincidence
would follow from the equation

T =m. (5.12)

Here the notation 7 has the meaning of (5.25). Since M is torsion free as
an abelian group we may assume that me M C M ® Q.

We set n = [F" : Qp]. Then the equation V7 = Il implies V4 = epim C
i‘ﬂl}? since II%e(F/Qs) = ¢p with £ € OF. Since the same equation holds
for m we conclude

o, V"™ = V™% mod p" ~*C(pLieX)

and

f\rndo.r{/'—rndﬁz —_ pnrdm mod pnr+n—hC(pLieX) ’

where h is defined in (5.21). Hence we obtain
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d

Thngtt = lim p™ém = pPim.

r—*o0 W
This proves {5.12) and finishes the proof that the period map used by us
agrees with Drinfeld’s.

5.50 We now consider the moduli problem of formal Op—modules of di-
mension 1 and height d, ¢f. (3.78). In this case the period morphism was
constructed by Gross and Hopkins [HG1,2] in a different way which is, how-
ever, essentially equivalent to our definition. It is a morphism

7"1":./\;(—->P%_1><Z.

We noted in (1.48) that all points in the target space are weakly admissible.
On the other hand, Laffaille [L] has proved Fontaine’s conjecture in the
one-dimensional case, i.e. for formal O—-modules of dimension 1. (In [L] he
only considers the case O = Z,, but the proof seems to work in the general
case.)

The moduli problem is of type (EL) hence there is no twisting, i.e. G' =
G = Respyq,GLg. Let K C GL4(F) be an open and compact subgroup and
consider the period morphism which is equivariant with respect to the action
of the multiplicative group of the central division algebra with invariant
= 1(mod d) over F,

#x : Mg — P! x Z.
It follows that g is a surjective étale morphism, with fibres of the form
#% (fx (=) = GLy(F) /K.
Here GLi(F)! = {g € GL4(F); det(g) € OF}.

5.51 We now consider the period morphism for the example considered in
(3.80) resp. (1.50). We continue to use the same notations. In this case we
had a decomposition into a disjoint sum

M= H M(a93),
GLA(Qp)/GLn{Zp)XGL0(Qp)/ GLx(Z)
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We abbreviate (M(51)# into M? and consider the restriction 7 of the first
component of the period morphism to M9,

7: M° = (Spf W(E)[[T11, - - -, Tanl))™ — Grass,(V ® Ko).

The source of this morphism is identified with the open unit disc of dimen-
sion n?. The period morphism in this case is due to Dwork (comp. [Kal]).
The weakly admissible subset was determined in (1.50). It is the big cell
formed by the subspaces transversal to Vi C V. Let

Tij, Li=1,...,n

be the canonical coordinates on the big cell A" e, 7;; is the function
corresponding to the element in Hom (V_, V) which sends e; into e,y
and all other basis elements to zero. Recall from the proof of (3.81) the
rigid—analytic functions on M?,

g5, Li=1,...,n

Proposition 5.52 The period morphism T is given by the following for-
maula,

T (n) =logaij, 4,5=1,...,n
Proof: Let
VM — M 0

be the Gauss—Manin connection on the Lie algebra of the universal extension
of the universal p~divisible group. Its sheaf of locally constant sections is
the constant sheaf V ® Ky. Let F be the universal Hodge filtration,

0— F — MY — Lie (X)™ — 0.

Since F is transversal to V; ® K at every point, F projects isomorphically to
V_ @ Oyyo (where the latter is considered as the quotient by V; @ Oyyo). Let
w; be the global section of F projecting to ; ® 1 € V. @Oy, i = 1,..., 1.
Then obviocusly,

wi:e£®1+zen+j ® (7ij o 7).
i
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Hence

V(w,—):Zen_,_j ®d(rjo®), i=1,...,n.
i

On the other hand, by Katz [Ka3], 4.3.1.,

V(ws) = Z€n+j ®dlogei;, i=1,...,n

J

The result follows since both functions in (5.52) vanish at the origin. For
the right hand side this is obvious. For the left hand side it follows from
the fact that F, = V_ ® Ky since the origin corresponds to the canonical
lifting G2, x (Qp/Z,)" of X to W(F,).

5.53 In the examples (5.50) and (5.51) the period morphism is not quasi-
compact. In fact, in these cases the fibres of # are infinite. We now give
an example which seems to show that the phenomenon that # may not be
quasi—compact, lies deeper.

We take up the example of type (EL) with rational data introduced in
(1.49)(i), for integers r and s such that r + s is prime to d. The corre-
sponding variety F is defined over E = Q; and is an unramified twist of a
Grassmannian,

F Xspecq, Spec Ko = Grassq_.(W).

Here W denotes a d-dimensional RKg—vector space. There is only one choice
of a lattice chain £ possible. We denote by M the corresponding formal
scheme over Spf W(F,). We have a decomposition of M according to the
height of the quasi—isogeny p,

At = T M.
ncZ
We consider the first component of the period morphism restricted to one
of these summands,

7™ MOV, Grassq_ (W).

In this case there is no twisting, i.e. G = G’, and K is the unique maximal
compact subgroup of G(Qy). Furthermore, K is the stabilizer of M(*)7%¢ in
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the group of Hecke correspondences. Proposition (5.37) implies that 7(") is
injective on points. On the other hand, we noted in (1.49)(i) that all points
of Grassq_.(W) are weakly admissible. A slight variant of proposition
(5.28) shows that 7(*) is surjective, provided that M®)rig is non-empty
and that Fontaine’s conjecture holds true. Therefore under this hypothesis,
if 7 were quasi—compact it would follow that 7{") is an isomorphism. This
is absurd since the rigid—analytic finite étale coverings 1\715, & of M7 would
define non-trivial algebraic étale coverings of the Grassmannian, which is
impossible. We therefore see (assuming the above hypothetical statements)
that the period morphism is not quasi—compact in a very serious sense in
this case.

5.54 We conclude this chapter with some more details on the conjecture
in (1.37). We return to the general setting of (1.37). We therefore fix
an algebraic group G over Q, and a conjugacy class of cocharacters p and
denote by F the corresponding partial flag variety over the Shimura field F.
Let b € G(Ky) and let J be the corresponding algebraic group over Q,. We
had constructed a 1-cocycle with values in G which measured the difference
between two fibre functors on REP(G), ¢f.(1.19). The class of this cocycle
should only depend on the conjugacy class of y, cf. (1.20). Let G’ be the
corresponding inner form of G (defined by the image 1-cocycle with values
in Gaq). The conjecture in (1.37) would define a G'(Q,)-equivariant tower
of rigid-analytic étale coverings of (F3 “)', where (F} *)’ maps to F3 ¢ by
a bijective étale morphism,

M ks K'C G (Qp)}

where each member is equipped with a lifting of the action of J(Q,) on
Fyt

We also mention the following speculation. Assume that b is basic and
denote by G = J the corresponding inner form of G. We also assume
that the 1-cocycle measuring the difference between the two fibre functors
is trivial, so that G’ = G. Let {Mg;K C G(Q,)} be the corresponding
tower. We identifiy Gk, with Gk,. Let b € G(K;) correspond to b~!
under this identification and let the conjugacy class of cocharacters ji of
G correspond to p~! under this identification. The corresponding partial
flag variety F is the opposite of F. Since the pair (b, ji) satisfies the same
hypotheses relative to G as (b, i) relative to G and since the inner form
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of G defined by b is equal to G, we obtain a tower {My; K C G(Q,)}
of étale coverings of (F; )" on which G(Q,) acts as a group of the Hecke
correspondences and with a lifting of the action of G(Q,) on Fj . The
conjecture is that there exists a rigid—analytic space X with an action of

G(Qyp) x G(Qp) such that
Mg = X/K (K C G(Qp)), Mg = X/K (K C G(Qp)),

compatible with the actions of G(Q,) and G(Q,) on both sides. This is
the natural generalization of a modification of a conjecture of B. Gross.
That Gross’s original formulation had to be modified was pointed out by
Drinfeld. Gross was considering the case where (G, b, p} is the Drinfeld
example, cf.(1.46) and (3.54). In this case (G,b,/1) leads to the moduli
problem of formal Op—modules of dimension d — 1 and height d {dual in
some sense to the moduli problem of formal OrF—modules of dimension 1
and height d considered in {5.50)).



6. The p-adic
uniformization of Shimura
varieties

In this chapter we establish non-archimedean uniformization theorems for
Shimura varieties. We define a global moduli problem and prove a non-
archimedean uniformization theorem for its formal completion along an
isogeny class. In the case of a basic isogeny class this theorem can be
strengthened considerably. Finally we establish a p-adic uniformization the-
orem under very special hypotheses.

6.1 In this chapter we use different notations. Let B be a finite dimensional
semisimple algebra over Q. Let * be a positive involution on B. Then the
center F of B is a product of CM fields and totally real number fields. Let
V be a Q-vector space with an alternating bilinear form ( , ) with values
in Q. Assume that V is equipped with a B-module structure, such that

(bv,w) = (v,b*w), v, wEV, b€ B.
Let G C GLp(V) be the closed algebraic subgroup over Q, such that

G(Q) = {g € GLp(V) | (gv, gw) = c(g)(v, w),c(g) € Q} .

We set § = Resg/rGm,c. Let A : § — Gr be a morphism that defines
on Vr a Hodge structure of type (1,0), (0,1), such that (v, h(v/=Dw) is a
symmetric positive bilinear form on V@R, i.e. the Riemann period relations
are fullfilled. We get a decomposition

273
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Ve=V,c®W,c (6.1)

where § acts on V¢ via the character 2 and on Vi ¢ via z. These data
define by Deligne [De] a Shimura variety over the Shimura field

E = Q[{Trc(b| Vo,c)}ies]

In fact we denote here by h, what is hy ' in the notation of [De] 4.9., where
ko denotes the composition of hy with the complex conjugation § — S.
But we retain the same reciprocity law as in [De], i.e. the reciprocity law
obtained from £~1 by loec. cit. 3.9.1.

Making suitable hypotheses for the prime number p that ensure good re-
duction, Kottwitz [Ko3] defines a moduli scheme of abelian varieties that
is defined over O ® Z(y). The general fibre of the moduli scheme contains
the Shimura variety mentioned above as a connected component. The other
connected components are Shimura varieties too, but they may correspond
to different groups.

We will consider the moduli problem of Kottwitz but for less restrictive
conditions on p.

6.2 We consider an order Op of B, such that Op ® Z, is a maximal order
of B®Q,. We assume that Op ® Z, is invariant under the involution. The
existence of such an order is a condition on p. Assume that we are given
a selfdual multichain £ of Op ® Z,-lattices in V ® Q, with respect to the
antisymmetric form ( , ).

Let C? C G(A;) be an open compact subgroup. We fix embeddings Q — C
and Q = Qp. The v-adic completion of the Shimura field E will be denoted
by E, C Qp.

Using the isomorphism 8¢ ~ C* x C*,z +— z X %, we define p to be the
composition

c ¢ x e 2o g
Let K C Q, be a finite extension of Q,, such that (6.1) is defined over K,
Vk =V @& W.

Let V be the Z,-scheme that represents the functor R+ Op ®z R on the
category of Zp-algebras R. Then as in (3.23), a) we may view
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detg (b; Vo), beB

as a morphism of schemes Vo, — A} - One verifies that this morphism
is defined over Og, .

6.3 We will work with a category AV, which is defined as follows: The
objects of AV are pairs (A4, )}, where A is an abelian scheme over some base
S and ¢ is a homomorphism

¢t :0p ® Zp) — EndA ® Zy).

The homomorphisms between two objects (A1,:1) and (A, i2) are homo-
morphisms between abelian varieties that respect the Og-actions, tensored
with Z(p)

HOl’IlAv(Al s Az) = HomoB (A1 s Az) Q@ Z(p).

We call AV the category of abelian Op-varieties up 1o isogeny of order
prime to p. It is a fibred category over the category of schemes. An isogeny
in AV is a quasi—isogeny of abelian schemes relative to some base scheme
S, which is a morphism in AV. We note that the p-divisible group of an
object of AV is well-defined, i.e. functorial. An isogeny A; — Aj defines an
isogeny of the corresponding p-divisible groups X; — X3 in the usual sense.
We define the kernel of an isogeny A; — Aj over a base scheme S to be the
kernel K of X; — X5. Then K is a finite locally free group scheme whose
order is locally a power of p. Let B ® Q, = [[;_, Bi be a decomposition
into simple algebras such that

OB®Zp:HOB,"

Then K decomposes into a product of finite locally free group schemes

K =]k,
where Og acts on K; via the projection to Op,. Assume that the order of the
group schemes K; is constant on S. Then we denote by hg(é),i=1,...,r
the height of K;, i.e. p"<(®) is the order of the finite locally free scheme K;.
We call the function h(7) = hi (i) the height of the isogeny A; — As.
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6.4 Let A be an object of AV with Op-action by ¢. For an element a € B*
that normalizes Op ® Z(,) we define as in the local case a new action
*(b) = 1(a~'ba), beO0p.

We use the notation A% for the object {4,:%). The multiplication by ¢(a) is
a quasi-isogeny in AV

a:A® — A
We have a canonical identification (A%2)% = A%%2_ If (4,:) is an object of
AV, we define an action of Op on the dual abelian variety A by the formula:

i(b) = «(b*)".

Hence A becomes an object of AV. For an element a € B* that normalizes
Ogp ® Z¢,) we have a natural identification

(A" = (A

A polarization of an object A of AV is a quasi—isogeny A : A — Ain AV,
such that nA for a suitable natural number n is induced by an ample line
bundle on A. We call the polarization principel if A is an isomorphism
in AV. The condition that A respects the Op-action is equivalent to the
condition that the Rosati involution induced by A is the given involution *.

Definition 6.5 Let £ be ¢ multichain of Op ® Zy-latlices in V® Qp. A
L-set A of abelian varieties is a functor from the category L io the category
AV

Aw— Apy garn i Ay — Aps,

such that the following conditions hold.
(i) oara is an isogeny of height h(i) equal to log, |A}/A;}.

(1) For any a € B* N(0p ® Z,)) that normalizes Op ® Z(y) there are
periodictly isomorphisms 8,, such that the following diagrams are com-
mutative
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AT Aan

It follows easily that the isomorphisms f; are uniquely determined and
functorial in A. For any two lattices A’, A € £ there are quasi—isogenies

ona P Ay — A,
such that for any A” CANA/, A" € £ we have

OA,A? © QAT AY = DA A -

With this definition there are isomorphisms 6, for any a € B* that nor-
malizes Op ® Z(p), such that the diagram under (ii) is commutative.

Let us now assume that £ is a polarized multichain. To any L-set of abelian
varieties a dual L-set A is defined as follows:

Ay = (Aa
éA'LA (QA*,A")A
0 = ((Bary-2)" 1"

Definition 6.6 A polarization of an L-set of abelian varieties A = {Ap}
is a quasi~isogeny of L-sels, i.e. a rattonal multiple of an isogeny of L-sels

A:A-— A4,

such that the morphism

Ax 2 Ay = (g B ()"

1s a polarization of the abelian variety Ap for each A. The polarization is
called principal if Ap is an isomorphism in the category AV for each A.

A polarization satisfies the symmetry condition

Af\ = Aps.

Indeed this follows from the commutative diagram
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An M (ap
OA* A (oax A)"
Aps (A"
e

and the symmetry of the polarization (ga+ a)" © Aa.

Definition 6.7 A Q-homogeneous polarization is a set X of quasi-isogenies
of L-sets of abelian varieties

A— A

such that locally two elements of A differ by a factor from Q* and such that
there ezists X € A, such that X is a polarization. If X may be chosen to be
principal the Q-homogeneous polarization is called principal.

6.8 Assume we are given an £-set A of abelian varieties over an algebraically
closed field. For I # p the rational Tate module Vi(4,) = Ti{4A) @ Q is
well-defined by the isomorphism class of Ay in AV. Moreover the quasi—
isogenies gps o define isomorphisms Vi(Ax) ~ Vi(Axs). Hence the rational
Tate module Vi(4) of the L-set A is well defined. We will also denote it by
Hi(A, Q). As usual we can form the restricted product

Hy(A, A%) = (HTI(AA)) ®Q.

I#p
Again this is well-defined independently of A. If A is given over any base S,
we view Hiy(4, A’}) as a Af-sheaf for the étale topology. If A is polarized
there is the Riemann form

Hi(A,A%) x Hy(A,A2) — AZ(1).

We are now ready to define a moduli problem of abelian varieties associated
to the set of data

(B)OBrm( 3 ),,U,E,Cp,l’)
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over the ring of integers Og, of the completion of the Shimura field at the
place v.

Definition 6.9 A point of the functor Acyr with values in an Og, -scheme
S s given by the following set of data up to isomorphism.

1. An L-set of abelian varieties A = {Ap}.
2. A Q-homogeneous principal polarization X of the L-set A.
3. A CP-level structure

7: Hi(A,A}) = V ® A% mod C?

that respects the bilinear forms on both sides up to a constant in (A"Ji)><
(Kottwitz [Ko3] §5).

We require an identity of polynomial functions for each A

{(z) deto, (b; LicAs) = detg{(b; Vo), beOp

The representability of the functor A¢» by a quasiprojective scheme over
Og, follows from Mumford’s theorem in a standard way (Kottwitz [Ko3]
§5). For varying C? the schemes Acr form a projective system A. The
transition maps Acr — Acy for C? C C} are finite. They are étale if C} is
small enough, i.e. is contained in a principal congruence subgroup of level
N > 3,(N,p) = 1. We define a right action of G(A?) on A. An element
g € G(A%}) acts on A by morphisms

g :ACP —> Ag—lc'pg
which are defined by (4, A, %)g = (4, X, g~77) on the S-valued points.

6.10 Assume that p is locally nilpotent on S. Then we denote by M, the
Lie algebra of the universal extension of A5. We have shown ((3.23), c))
that by the condition (i) we have locally on .S an isomorphism

MA~A®Os
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of Op ® Og-modules, and that for any two neighbours A C A’ of £ we have
locally on S

MAI/MA 'ZA'/A@OS.

Assume that S is the spectrum of an algebraically closed field of charac-
teristic 0. Then for each A the p-adic Tate module T,,(A,) is well-defined.
Again the condition (i) implies that there is an isomorphism of Op-modules

Tp(Ar)~A.

Indeed, for this it is enough to show that there is an isomorphism of B-
modules

V;,(AA) ~Ve® Qp .

To show this we may assume that the Og,_-algebra Qg is equal to the O, -
algebra C. For b € Op we get an identity in Q in the sense of the chosen
embeddings

detq,(b; V;(4a)) = detc(b; Hi(A, C))
= detc(b; Liedp) + dete(b; Lieda)
= detc(b; Vo) +dete(d; Vi,c) = detq(b; V),

which implies the assertion. It is also a consequence of the existence of a
CP-level structure.

Consider again the decomposition of B into simple algebras over Qp, cf.
(6.3). It induces a decomposition of the Tate module

r
T(An) = [] T (A)as.
i=1
Let A C A’ be neighbours in our multichain. The periodicity isomorphisms
0, imply that T,,(A)a1/T,(A)a, is a vector space over the residue class field
k; of Op,. By the condition on the heights of definition (6.5) (i) the di-
mension of this vector space is equal to the dimension of the «;-vectorspace
AL/A;. Hence we get an isomorphism of Op -modules

To(A)ay [ Tp(A)a, = A/ A
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and hence an isomorphism of Op-modules

Tp(Aa)/Tp(Ax) = A'/A.

Therefore the L-sets of our moduli problem satisfy stronger conditions than
those of definition (6.5).

Definition 6.11 An L-set of abelian varieties A over a base scheme S is
called a L-mullichain of abelian varieties if for any laitice A of £ and for
any pair of neighbours A C A’ of L the following conditions hold

(i} For any geometric point 9 of S of characteristic different from p there
are isomorphisms of Og-modules

Tp(Aam) 2 A, Tp(An )/ Tp(Asy) = A'/A

(ii) For any geometric point 1 of S of characteristic p there are isomor-
phisms of

Op ®z, Oy-modules

Mpg~ A@Z,, Oy, MAI,,,/MA’,, o~ A'/A ®z, 0y,
where My , denoies the Lie algebra of the universal extension of Ap ;.

We may replace the word L-set by L-multichain in the definition (6.9) with-
out changing the functor Ac».

6.12 Let us denote by & the residue class field of Og, and by & its al-
gebraic closure. We consider a point of Ac»(%), which is given by the
data (Ag, Mo, o). We will give a description of the set of points (4’, X, i)
which are isogenous to (Ao, Ao, flo), i-e. such that there exists a quasi—isogeny
Ag — A’ that respects the Q-homogeneous polarizations. Let us fix a prin-
cipal polarization Ao € g, and an isomorphism 79 € .

Let Kg be the field of fractions of W{(&). Let N be the isocrystal associated
to Ap. The principal polarization induces an antisymmetric polarization
form on N. There is an isomorphism of B @ Ky-modules

N~Ve®Ky (6.2)
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that respects the antisymmetric forms on both sides. Indeed, the polarized
multichain of abelian varieties A9 = {A4¢a} induces a polarized multichain
of Op ®z, W(k)-lattices in N. Since the scheme Spec W (k) does not have
nontrivial etale coverings, it follows from theorem (3.16) that this multichain
is isomorphic to the standard multichain L&z, W (k). Hence we get a fortiori
the isomorphism of B ® Ko—modules above.

In the discussion that follows the isomorphism above will be fixed. The
Frobenius operator F on the left hand side may be written as b ® o, for a
uniquely defined b € G(Ko). Moreover we have by construction c(b) = p
(compare (3.20)). Let M be the formal scheme over O 1, associated to the
data (F,B,0g,V,b,p, L) and M = lEnM, be the formal proscheme over

Og, constucted from M.

6.13 We are going to define a2 morphism of functors over Nilp Op,
M x G(A%) — Ac»

such that the image of the K-valued points are the points of Ac¢»(k) that
are isogenous to (Ag, Ao, 7o)

The definition is based on the following construction. Let A’ an object
of the category AV of abelian Op-varieties up to isogeny of order prime
to p over a base scheme S. Let X’ be the p-divisible group of A’. Then
to any quasi-isogeny £ : X! — X" of p-divisible groups over S with an
Op ® Zp-action there is an object A" of AV whose p-divisible group is
X" and a quasi-isogeny A’ — A" that induces X’ — X”. The arrow
£, : A — A" in AV is uniquely determined. We will use the notation £, 4’
for A”. If A’ carries a polarization X' we will use the notation £, for the
polarization (£71)"X¢;1. If S is a Zp)-scheme and A’ has a rigidification
n:VP(A') =+ V @ AL, we denote the rigidification 5o VP(£;1) by &.1.
Clearly this construction is functorial in &,

(5251)*14! = o (ﬁl*Al) -

6.14 Let X be the polarized p-divisible group over % used to define the
functor M. Its polarized isocrystal is identified with (V @ Ko,b ® o) =~
(N, F). There is an object A € AV which is isogenous in AV to. Ag a and
whose p-divisible group is isomorphic to X. It is well-defined up to isogeny
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of order prime to p and it inherits a Q-homogeneous polarization Ay and a
rigidification 7y from the quasiiaogeny A — Ag . We fix a lifting X of X
to the Witt ring W(&) = W and denote by A the corresponding lifting of
A.

Let (Xa, ga) be a point of ./\;l(S) Then each gy lifts to a quasi-isogeny
oa : Xs — Xa. Applying the construction given above we obtain a polar-
ized L-multichain of abelian varieties (§A)*As = Aa. The rigidification of
V?(A) obtained from 7 carries over to a rigidification of V?(A,) denoted
by (8 )aio-

Hence we have constructed a morphism of functors on Nilpg 2,

©: M x G(AR)/CP — Ac» x Spec Oy, (6.3)
(Xa,ea) x g +— (A= (Br)rAs, g7 (8n)+il0)

The morphism © is equivariant with respect to the right G(A%)-action on
the projective systems on both sides of (6.3).

6.15 Let us denote by I(Q) the group of quasi-isogenies in End%y (A) that
respect the given homogeneous polarization. Here we view I as an algebraic
group over Q. By (6.12) the polarized isocrystal of A is identified with
(V®Ky,bo). Let us denote as before by J(Q,) the group of automorphisms
of the isocrystal (V @ Ky, bo) that respect the polarization form up to a
factor in Q. We obtain a homomorphism

ap 1 1(Qp) = J(Qp).
On the other hand we have a homomorphism

of 1 1(Q) — G(AT)

which is defined by the following commutative diagram
V)

VP(A) VP(A)
Mo To

? P
V@Aj VoAl

a?(£)
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for £ € I(Q) and some choice 75 € 7jp which is fixed.
We define a left action of the group I(Q) on M x G(A%)

(XA: QA) X g > (XA1 @A © aP(E_l)s) X ap(g)g.

We claim that two points in the same orbit of I(Q) have the same image
by ©. Indeed, since the quasi-isogeny a,(§71) : X — X is induced by the
quasi-isogeny of abelian varieties £~ : A — A we have (1), A = A. Tt is
clear that this equality respects the polarization. It follows that there is a
canonical isomorphism

(a0 ap(€71)s)sA = (0a)sA .

We need to verify that the induced rigidifications on both sides are the same
if we multiply the left hand side by g~a,(~!) and the right hand side by
g~ 1. This follows from the equality

A (S N AT AR S VAN
where gpq 1 Ag — Ap 5 = (ga)+Ag denotes the isogeny that induces g
on the p-divisible groups.
Hence the map © factors through a map

I(Q)\M x G(A%)/C? — Ac» x Spec Oy, . (6.4)
We call this map the uaiformization morphism. It depends on our choices
(Ao, Ao, 7o) and the isomorphism (6.2).
Source and target of the uniformization morphism have an effective Weil
descent datum relative to Oy /Og,. We will prove that (6.4) is compatible
with these descent data.
First we verify that © is continuous in the following sense.

Proposition 6.16 Let S € Nilp, 5 be an affine scheme. Then there exisis

a natural number t € N, such that ©(S) : M(S) x G(A%)/CP — Ac»(S)
factors through M.(S).

Consider the quasi-isogeny v, cf. (3.41). It is defined for sufficiently divisi-
ble s. We have the relation

(vs4) = ('f-v)t .
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We postpone the proof of the proposition above and first show several lem-
mas.
Let us consider the natural injection

End’A ®q Q, — End’X.

Lemma 6.17 The endomorphism v, of X lies in the center of the algebra
End’(A) ® Q,. It satisfies the equation

Vs oY =0

Proof: The homogeneously polarized abelian variety A is obtained from
some A over F,. Replacing F, by an extension we may assume that

End®A = End°A .

Let X be the p-divisible group of A. Since the slope decomposition is
defined over any perfect field we have 7, € EndX. We conclude 7, €
End’A ® Qy, since by a theorem of Tate End X = (EndoA) ® Qp. The
remaining statements of the lemma are obvious. O

We remark that v, is even in the maximal order of the center of (EndoA) ®
Q,. Indeed this follows because there is a crystal isogenous to that of X that
splits into a direct sum of isotypic components and therefore is invariant by
Ys-

Let us denote by Z the center of End°A. Let ¥, be the image of 7, by the
natural inclusion

Z0Q, — Z®A;.

Lemma 6.18 For any congruence subgroup Cz C (Z @ Ay)* there is an
element z € Z and a natural number r, such thet z = 57 mod Cz and
z- z* = pr.s‘

Proof: The image of 4, in the finite group Z*\(Z® A;)*/Cz has some finite
order r. Hence there is an element z € Z, such that z = 37 mod Cz. To
find in addition a 2 that satisfies z - 2* = p"* we may assume that the group
Cz is invariant under conjugation. Let § be the image of p by the map
Z®Qp — ZQAj;. We find that
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(- z*)—l(%'y:)r = (ZZ*)_Iﬁ” cCy.

Since some power of pp~! is contained in Cz we get that for a possibly

bigger r we have (22*)~'p™® € Cz. The lasi element is a unit in Z. The
topology induced by the congruence groups on the group of units is the
profinite topology. For small Cz our element is therefore in the group of
units of the maximal real subfield of Z and is there a square

(zz*)“lpr’ =u?, u=u".

The desired element is z - u. [

Let us denote the rigidification of V?(A) obtained from the rigidification 7
of V?(Ag) by the same letter. We do the same with Ag.

Lemma 6.19 There is an isomorphism of homogeneously polarized and
rigidified objects of AV for a suitable natural number r

() (A, Ao, o) = (A, Ao, 7o) -

Proof: The element z of the last lemma induces an isogeny z : A — A
that respects Ay and 7jg. Hence we get an isomorphism Z*(A,;\Q,ﬁg) o
(A, Xo, 7o), where the last z denotes the quasi-isogeny z : X — X. If
we prove that (7727 1).(A,Xs, o) = (A, Ao, 7o) Wwe are done. For this it
is enough to show that 472z7! : X — X is an isomorphism. But this is
certainly an isomorphism if (y7271) is in a sufficiently small open compact
subgroup of (Z®Q,)*. Indeed we have a continuous faithful representation
on the Q,-vectorspace N. For the small open subgroup we may take the
inverse image of the subgroup of Autq, N that fixes the lattice of N given
by the crystal M of X. Hence we are done if we choose Cz , small enough.

|

We can strengthen the last lemma as follows. Let £ > 1. Let Ak be the
restriction of A to Oy /p*Op .

Corollary 6.20 For a suitable number r we have an isomorphism

(72)+(Ak, Ao, 70) = (Ag, Ao, 7o)
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Proof: The proof we have just given works, if we can show that 77 z7!
induces an isomorphism of the p-divisible group X; of Ag. For this it is
enough to show that 77271 lifts to a homomorphism. By a theorem of
Grothendieck and Messing this is the case if 77271 respects the Hodge fil-
tration on M®o, Oy, /p*. But a sufficiently small compact open subgroup
of (Z ® Qp)* acts identically on the last space. This proves the corollary.

Proof of proposition (6.16): Let (Xa, ga) be a point of M over a Op/p* 05
scheme § for some natural number &£. Let g5 : Xz 5 — X be the quasi-
isogeny that lifts go. Then the proposition asserts that for suitable »

(8a75 )+ (A%, Ao, Tlo) = Bax(Ak, Ao, o) -
But this is obvious by the last corollary. O

Theorem 6.21 The morphism (6.3) defines « morphism over pf Og,
©: M x G(A%)/CP — Acs,

where the left hand side is the pro-formal scheme over Og, given by (3.51)
and the right hand side is the p-adic completion of the scheme Acr. The
action of I(Q) on M x G(A%)/C? given by (6.15) descends to an action of
I(Q) on the source of the above morphism and © is invariant with respect
to this action.

Proof: We need to verify that the action of the group I{Q) and © commute
with the descent data given on both source and target of the arrow above
and that I(Q) acts on the schemes M;. The assertions for I(Q) hold
because they hold for the action of J(Qp) by definition (3.22). To show the
assertion about © let us first recall what the descent data on Ac» relative
to Oy, /Okg, is. Let us denote by 7 : SpecOp — Spec Oy the morphism
induced by the Frobenius automorphism of E, relative to E,.

Let S be a Oy -scheme and denote by ¢ : S — SpecOy the structure
morphism. Let Sp; be the same scheme as S but with structure morphism
7. Then the natural descent datum on Ac» x SpecOy is given by the
map

Ac#(5) — Ac»(Sm)

that views a polarized multichain A, on S as a polarized multichain on Sj;.
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It is enough to show that the restriction of the map © to M x 1 is compatible
with the descent data,

M(S) — Acs(S).

Let us first assume that S is a scheme over Oy /pOp. Let (Xa,0n) be a
point of M(S) and let ga.9*(A,7jo) be its image by the above map. The
descent datum on M associates to (Xa, ga) the point (X4, ga¢* (Frobz')).
Hence we have to show that the following points of ACP(S[T]) are the same:

(oag" (Frobg' )" 7" (A, 7lo) =2 ons " (A, o).

This reduces to the obvious fact that there is an isomorphism

(Frobz").m*(A, 7o) 2 (A, 7o) .

In the general case let us denote by (Aa,7n) be the polarized rigidified
multichain associated to the reduction (Xa, ea) of (Xa, ea) by the above
map. Then the image of (Xa,ea) is just given by the lifting A of Ap
that is determined by the lifting X of the p-divisible group Xa of Aa.
Hence if we know that the images of (X4, ¢a) and (Xa, 008" (Frob;_,l)) are
isomorphic we know the same for the images of the points (X, ea) and
(X, oap*(Frobz')). Hence the proof of the theorem 6.21 is finished.  [1

6.22 Let X be a scheme. We consider a family of closed subschemes 7 =
{Ti};c 1> such that each T; meets only finitely many members of 7. Then
we define the completion X/7 of X along 7 as follows. For any point
z € Uz‘eITf' we define

o ({7

This is a locally closed subset of X. The underlying topological space of
X/T is to be Uie 1 T; with the inductive limit topology, i.e. a subset & C
Ui c 1 T: is open, iff T; U is open for each i{. The formal open subscheme
of X/T with the underlying topological space 7(z) is defined to be the
completion of X along the locally closed subset 7(z).
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Theorem 6.23 Let I be the set of I{Q)-orbits of irreductble components of
M xG(A’})/Cp. Let us denote by T; the image of any irreductble component
in the I(Q)-orbit ¢ € I by the uniformization morphism (6.4). Then each
T; is a projective subscheme of Acr x pf Oy, , that meets only finitely
many members of the family {TJ'}jeI = T. The morphism © induces a
G(A‘}’)—equivariant isomorphism of sheaves for the étale topology,

0 : I(Q)\M x G(AR)/C? — (Ac» x $f Oy )/T .

We note that a geometric point of Ace» x Spf Op is in the union of the
sets T;, iff the underlying Q-homogeneously polarized Op-varieties Ay are
isogenous to (Ag, Ao).

Proof: We remark that the map is formally étale. This is easily verified,
because quasi-isogenies of p-divisible groups extend to infinitesimal neigh-
bourhoods in the category Nilpg 5,

Since the map is compatible with the action of G(A’}) it is enough to prove
the assertion for sufficiently small open compact subgroups C?. We claim
that for small CP the sheaf for the étale topology I(Q)\M x G(A%)/C? is
a formal algebraic space. We note that

I(Q) = J(Qp) x G(A})

is a discrete subgroup. Indeed, comsider an open subgroup U C J(Q,) x
G(A%). For U sufficiently small the Z,-lattice no(T2(A)) for £ # p is fixed
by U and the quasi-isogenies of X defined by the elements in the image of
the projection U — J{Q,) are isomorphisms. Hence an element of I(Q)NU
induces an isomorphism of the polarized abelian variety (A, A), where X €
Xo a polarization. Hence U N I(Q) is finite. We write

I(Q\M x G(AR)/CP =| |T\M,
r

where T runs through a countable set of subgroups of J(Q,) of the form
(J(Qp) x (gCPg~ 1)) NI(Q) C J(Qp). This is a discrete subgroup by what
we have said.

We claim that for small groups CF the groups I' are torsion free. Indeed,
let h € T C I{(Q) be an element of finite order m. Then we find a polar-
ized abelian variety A in the isogeny class of Ag, such that A induces an
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automorphism of 4 fixing a polarization and the n-division points for some
n > 3 prime to p, so that by Serre’s lemma h = 1.

Indeed, let My C N be the Cartier module of some abelian variety in the
isogeny class Ag. Weset M = Mg +hMy+---+ A" 1 My. We assume that
C? fixes a lattice Vz» CV ® A’} and acts trivially on Vzs/nVg». Then we
may take for A the abelian variety with Tate module V?(4) = n;*(9Vz-)
and Cartier module M.

It follows from (2.37) that I’ \M is a formal algebraic space. Next we remark
that the map © is injective on geometric points. This is easy to check
from the definition of I(Q). Since the formal algebraic space I(Q)\M x
G(A’f’) /CP is formally locally of finite type over Spf Oy  and has projective
components, the subsets 7; have the properties stated in the theorem.

The morphism 6 is quasifinite. Indeed, since the geometric fibres are finite
this follows becaunse the formal algebraic spaces involved are locally formally
of finite type over Spf Oy . Hence by Knudsen [Kn} IT 6.7 it follows that
I(QN\M x G(A%)/C? is a formal scheme.

The reader checks easily that a morphism of finite type of locally noetherian
schemes that is unramified, proper and radical is a closed immersion. Let

0: X —Yy

be the morphism of the theorem. It is formally étale, radical, surjective and
the map O,cq : Xreq — Vreq is proper. We claim that any morphism © of
locally noetherian formal schemes with these properties is an isomorphism.
Clearly we may assume that X' and Y are affine. We set X = Spf (4,])
and X, = Spec A/I*. Let us first consider the case where Y is a reduced
scheme. Then A, — Y is an unramified, proper and radical morphism of
schemes and hence a closed immersion. Since ) is reduced and the last map
is surjective it is an isomorphism. In general this shows that the map © is
adic. Hence it is enough to prove the assertion in the case where X' and Y
are schemes. In this case © is a closed immersion that is étale and surjective
and hence an isomorphism. The theorem is proved. |

We note that for any affine scheme S € Nilpy M there is an integer s such
that the canonical map

(HQ\M x G(AR)/CP)(S) — (I(Q)\M, x G(A})/CP)(S)

is bijective. This follows exactly in the same way as proposition (6.16).
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The theorem (6.23) shows that the family {7;} of projective subvarieties of
Ac, x Speck is invariant by the action of Gal(E,/E,). Hence the formal
scheme A¢» /T is defined over the local Shimura field O, .

Theorem 6.24 There is a G(A’})—equivam’ant tsomorphism of formal sche-
mes over Og,

©: I[(Q}\M x G(A )/ C?P *—>.Acp/T
Proof: This is a combination of the theorems (6.23) and (6.21). O

6.25 The theorem takes a rnuch simpler form if the element b € G(Kp)
given by (6.12) is basic. By definition basic means that the corresponding
slope morphism v : D — G which is defined over Ky, is central. We use
this definition even in the case that G is not connected.

Let FRQ, = Hp /o Fy, be the decomposition as a product of local fields. We
get a corresponding decomposition of the isoerystal (N, F') = (V ® Ky, bo)

"N=EPN,.
P

The assumption that b is basic implies that each of the N, is an isotypic
isocrystal. Indeed, assume that sy factors through G,,. Then sv(p) €
G(K,) acts on the isotypic component N, of slope /s of N by multipli-
cation by p”. By definition sv(p) is in the center of G(Kg). Going to the
algebraic closure (compare 1.39) we see that the center of G(Kj) is

{fe F® Ko, ff* € Ko}.

Hence sv(p) € @ Kg. On the other hand sv(p) commutes with b € G(Kp)
and with bo. We deduce that sv{p) commutes with & and therefore sv(p) €
F @ Q,. This implies that N, is isotypic.

6.26 Let X be a p-divisible group over a scheme S where p is locally nilpo-
tent with an action ¢ : O — EndX. Then the set of points s € S such
that the isocrystal of X—— =) with its F-action is isomorphic to the isocrys-

tal (N, F) @, W (x(s))q is closed. This is a variant of Grothendieck’s
theorem on the specialization of the Newton polygon. The reader may ver-
ify this using (4.30) and the relation between Hodge and Newton polygons
explained in Katz [Ka2]. More generally we have the following result (cf.

[RR]).
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Theorem 6.27 Assume again that (N, F) is given by a basic elemeni b €
G(Kyp). Let X over S as above be a p-divisible group equipped with an Opg-
action and a polarization that induces the given involution. Then the set of
poinis s € S, such that there exists an isomorphism of the B-isocrystal of
X5y and the B-isocrystal (N, F)Qp, W (x(s))q) that respecis the polar-
ization forms up to a constant is closed.

Before we state the uniformization theorem for basic isogeny classes we need
a lemma.

Lemma 6.28 Let (A, X) be a polarized abelian variely over a finite field Fy.
Let K C End®A be a commutative subalgebra such that the Rosali involution
induces an automorphism of K. Let N be the rational Cartier module of
A. Consider the decomposition K ® Qp, = Hp‘p Ky into local fields. We
assume that in the corresponding decomposition of N = ®PIP Ny each of
the Cartier modules Ny is isoclinic. Then some power of the Frobenius
morphism Fr : A — A over F, is coniained in K.

Proof: Since Ny, is isoclinic there is a W(F,)-lattices Mp C Np stable under
Frobenius and Verschiebung such that F°» M, = p"» M,,. We may assume
that My, is fixed by Og,. We may assume that the Cartier-module of A
is @My and that Ox C EndA, by changing A in its isogeny class. Let us
assume that all s, are equal to s and that ¢ = p°®, which we may do without
loss of generality. Hence we have Fr My, = p"™» M. Let us denote by ordy,
an order function on K, normalized by the condition ordpp = 1. We are
looking for an element u € K that is a unit at all non archimedian places
not lying over p and that satisfies the equations

ordpu=r, du=gq, (6.5)

where i is the Rosati involution applied to u. Since we may enlarge the field
F, it is enough to find a solution if we replace the integers rp by a multiple
mrp and ¢ by ¢™. Hence we find an element u with the required properties
except for the second identity above. By the presence of the polarization
we have rp + rp = 5. It follows that for v’ = ¢ - u/i we get the equations

ordpu’ = 2r,  u'u =q°.
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Hence we may assume the existence of an u € K with (6.5). Tt follows that
¢ = u~'Fr is an automorphism of A that fixes the polarization. Hence by
the lemma of Serre we conclude that some power of £ is 1. |

Corollary 6.29 Let A be an abelian variety over ]s:'p with a polarization A
and an embedding ¢ : K — End®A that satisfies the assumptions of the pre-
vious lemma over F,. Assume we have a second variety (A’, N, ') satisfying
the same assumptions. Then

Hom% (A, A") ® Qq
Hom% (A, AN ®Q,

Homg (Ve(A), Ve(A')) for &£ p
HomK((Na F)7 (NI,F))

il

O

Theorem 6.30 Let (Ag, Ao, 7o) be a point of Acs(R). Assume that the
1socrystal

(V ® Kg, bo) associated to it via (6.12) is basic. Let us denote by M the
pro-formal scheme associated to the data (BQ Qp, V ® Qp, b, 11, L). Let us
denote by Z C Acr the closed set given by theorem (6.27). Then there is
an open and closed subset Z' C Z such that the uniformization morphism

O: I(Q)\M X G(A?)/Cp ’—’ACP/Z’

given by (Ao, Ao, 7o) is an isomorphism over Spf Og,. The source of this
morphism is a finite disjoint sum of formal schemes of the form '\ M where
I'C J(Qp) is a discrete subgroup which is co-compact modulo center.

The group I is an inner form of G. If G salisfies the Hasse principle the
sets 7' and Z coincide.

Proof: Let us first verify that I is an inner form of G. Let L = End}V
and L, = El’ld%Ao. Let us denote the involutions on L (respectively L,)
induced by { , ) (respectively by A) by *. By the Corollary (6.29) we
have L, ® Q¢ ~ Endp(Ve(4s)). The existence of the symplectic similitude
implies, that (La® Qy, *) and (L ® Q¢, *) are isomorphic as F'® Q,-algebras
with involution *. Hence there exists such an isomorphism ¢ : L @ Q —
Lo ® Q over Q. It defines an isomorphism between the groups G = {£ €
L*;¢0* € Q) and I = {£ € LX;0¢* € Q} over Q. Clearly it is enough to
show that ¢ is unique up to an inner automorphism by an element of G(Q).
Indeed, let g : L ® Q — L ® Q be an automorphism of F'® Q-algebras that
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respects the involution *. Then by Skolem—Noether there is an a € L ® Q,
such that g(f) = afa™!. Since g respects the involution, we have that a*a
lies in the center F'® Q. Hence a*a = f2 for some f € F ® Q. In the case
of an involution of the first kind we may replace a by f~'a € G(Q). Indeed
in this case g is the inner automorphism by f~*a. The case of an involution
of the second kind is similar.

We now verify the remaining statements. Clearly it is enough to verify these
over Spf Oy . By definition of © we are also allowed to replace M by M.
The homogenously polarized abelian varieties representing points of Z(%)
are divided into finitely many isogeny classes (A1, 1), ...,(Am,Am). In-
deed, since the (A;, A;) together with the subalgebra F C End®A; satisfy
the assumptions of the lemma above, they are all isogenous as abelian va-
rieties with a B-action. Hence we may assume Ay = ... = A,,. We have
to show that only finitely many homogeneous polarizations on A; up to
isogeny come from points of Z(&). Let us fix a polarization A of A; induced
from Z{k). Any other polarization of this type is of the form Aa, where
o € EndgA,a = o* and « is totally positive. The two homogeneous po-
larizations A and Aa are isogenous, iff there exists # € EndyA; such that
o = gBpB* for some g € Q*. We consider the solution of this equation
as a torsor for the algebraic group I defined over Q. Two homogeneous
polarizations Aa; and Aarp are isogenous, iff the corresponding torsors are
isomorphic. The existence of the rigidifications % implies that the torsors
are locally isomorphic for any prime £ # p. The same is true for £ = p by
the definition of Z and at the infinite place since ¢ is totally positive. The
isomorphism classes of the torsors are therefore in the kernel of the map

Q1) — [[#'(Qu. D).

This is known to be finite.

To each (A;, A;) we choose a point of Z(k) belonging to that isogeny class.
It defines a uniformization morphism ©;. We consider the disjoint union of
these morphisms:

© : I(Q)\ UM x G(AB)/CP 225 Acsyz % $f Oy, (6.6)

It is enough to show that (6.6) is an isomorphism. We already know that ©
induces an isomorphism with Ac» /T x Spf Oy for some family of closed
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subspaces 7 = {T;}. If we show that © is surjective it follows that T
consists of the irreducible components of Z and we are done.

By construction © is surjective on the &-valued points. Let us denote the
morphism © by X — Y. Consider a point y € Y. We prove the surjectivity
by induction on the transcendence degree of k(y)/%. Take a regular point
z € {y} of codimension 1. It is enough to find an extension L of x(y) such
that a L-valued point centered at y is in the image of X(L) — Y(L). A
suitable extension of éTx is & power series ring in one variable P [T} over
an algebraically closed field P. Let L be the quotient field of P[T}. Let
us denote by (4, A, 7) the given point of the moduli functor over P[T1].
It is enough to show that (Aa,X)s is isogenous to (A;, ;) for some i.
By induction assumption this is true, if we replace the index L by P. A
theorem of Katz ([Ka2] 2.71) applied to Ay tells us that the crystal of Ay
is isogenous to a constant crystal and hence to the crystal of (4;)pyry for
some A; € A;. Therefore the isogeny ap : (4, A;)p—{(44, A)p that exists
by induction assumption extends to an isogeny of the crystals of (4:)pry
and A, . The Hodge filtration which is given on the values at P[T] of these
erystals is respected if we multiply ap by p. Therefore we may apply the
result of Grothendieck-Messing [Me] and lift ap step by step to an isogeny
(A4, X)) prry/r) — (4a, A p(T1/(T~)- Finally by Grothendieck’s existence
theorem we get an isogeny (4j, )\,-)p[T] — (Aa,A). Hence the proof of the
surjectivity is finished.

The previous lemma implies that I(A%}) = G(A%}) and I(Q,) = J(Qp). The
assertion that I' C J(Qp) is discrete and cocompact modulo center follows
from the compactness modulo center of I(R), and the finiteness assertion
from the finiteness of 1(Q) \ I(A%)/CP. O

6.31 We are going to formulate uniformization theorems on the level of rigid
analytic spaces. Let us denote by X the general fibre of the scheme Ac».
The isogeny class T given by (Ag, Ao) defines a family of closed subvarieties
T of the special fiber. We have a morphism of rigid analytic spaces:

(Ags[TYH —s X749,

We call (Ac»/T)*9 the tubular neighbourhood of Z in X™*4. We will denote
it by X"™9(T). i T is basic, 7 is a closed subscheme of the special fibre and
the above morphism identifies X™*9(Z) with an admissible open subset of
X" the tube over 7, cf. (5.7).
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6.32 Let us define a moduli problem over F,,, that is represented by a union
of connected components of X. Let C, C G(Q,) be the subgroup that fixes
the polarized chain £, i.e.

Cr={9€G(Qp); A=A, A€L}

Let us denote by C C G(Ay) the subgroup C = C,C?, We define a functor
She on the category of E,-schemes S as follows. A point of Sh¢(S) consists
of the following data:

1. An abelian scheme A over S up to isogeny and an injection of algebras

t: B — End’(A)

2. A Q-homogeneous polarization A on A that induces the given involu-
tion * on B.

3. A C-level structure
7:Hi(A,A)) > V®A;
that respects the bilinear forms on both sides up to a factor in A}‘ .

We require an identity of polynomial functions

detpg(b; Lied) = detg (b; V), be Op.

Consider the universal polarized multichain A4 of abelian varieties over X.
The Tate modules TP(AA) form in each geometric point of X a polarized
multichain of Og-modules. The set of points where this multichain is iso-
morphic to the multichain £ form a union of connected components Xz of

X.
Lemma 6.33 The scheme X represents the functor She.
Proof: Indeed, assume we are given a point {4, 4A 77} of She. The inverse

image of the polarized multichain £ by 7, defines a polarized £-set of abelian
varieties Ap and hence a point of X that is clearly in X..
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6.34 Let us assume we are given a point (4, ¢, A, 7) of Sh¢, such that A has
good reduction. Then the reduction of {AA} defines a point of the special
fibre of Acr. The isogeny class 7 of this point in the special fibre is a union
of projective varieties defined over k, the algebraic closure of the residue
class field of F,. Hence it is the isogeny class of some (Ao,io) for which
we defined the uniformization morphism, cf. (6.13). Let Shg‘q (T) be the
inverse image of X™9(Z) over the connected component Shc of X. Then
Shgg (T) is non—empty since (4, ¢, A, 77) lies in the image of the morphism
into Sh’g” . The theorem (6.24) applies to the isogeny class 7.

For the rigid version of the nniformization theorem we work with the projec-
tive limit of rigid analytic spaces M9 = @M:‘g over F,. Let us denote

by M?g the union of connected components of M™4, where the Tate mod-
ules T (compare 5.32) of the universal p-divisible groups form a polarized
chain of Opg-modules which is isomorphic to £. From theorem (6.24) we get
an isomorphism of rigid analytic spaces,

HQ\MZ? x G(A)/C? — SKE*(Z).

We note that by (5.33) the spaces M™9 and M?g coincide if the group G
is connected.

6.35 Let ép C G(Qp) be an open compact subgroup contained in Cp. Let
M, & be the space parametrizing trivializations of the local system T on

j\‘;(rig’
a: Ty — ﬁmcdé’p.

Then M ¢,¢, is a finite étale covering of M. We denote by M, ¢, the
corresponding pro-rigid space defined over E, which maps to M77.

Let C C C be a subgroup which contains a principal congruence subgroup.
Clearly the functor Shy makes sense. We define Shgg (Z) as the pullback
of Shi¥(T) by the morphism Shgg — Shgg . We allow us to call this the

tubular neighbourhood of I.

Theorem 6.36 Let C = é'pé’P C G(Ay) be an open and closed subgroup
that coniains a principal congruence subgroup, and such thai é’p C C,.
Consider a point of Shy such that the corresponding abelian variety has
good reduction. The reduction defines an isogeny class T of points in the
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special fibre of Shc,c?r' Then we have an isomorphism of rigid analytic
spaces over E,,

IQ\M, ¢, x G(A%)/CP — SK9(T).

This isomerphism is for variable c equivarigni with respect to the action as
correspondences by G(Ay) on botk sides. On the left hand side the action
of G(Qy) is the one defined in (5.34), whereas the action of G(A?) is the
obvious one. On the right hand side the action of G(Ay) is through Hecke
correspondences. In the case of a basic 1sogeny class T the space on the right
15 an admissible open subsel ofShgg.

This theorem follows because the etale covering Shy — Shcpép may be
described as the classifying space of the trivializations of the polarized chain
of Tate modules T,(Aa) — £ on Sh¢ x,. By the morphism in (6.34) the

polarized chains Tz and T,(A,) are identified. O

6.37 In the end of this chapter we give examples of Shimura varieties, which
are moduli schemes for abelian varieties with a given PEL-structure and
admit a p-adic uniformization by products of Drinfeld’s formal schemes
Q4. Let us start by defining the datum (G, h) that gives rise to the Shimura
variety. We use slightly different notations.

Let D be a central division algebra of degree d? over a number field K. Let
* be a positive involution of the second kind on D. Then K is a CM-field
and the invariants by * on K form the maximal totally real subfield F.
Let V be a left D-module and 9 an alternating Q-bilinear form on V, which
satisfies the equations

P(lv,w) = (v, f'w), L€ D, v,weV.
Let G be the reductive group over Q defined by

G(Q) = {9 € GLp(V); ¥(gv, gw) = c(g)¥(v, w), e(g) € Q}.

Then Gg is a product of unitary groups as follows. Let us fix a C M~type
® ¢ Hom (K, C) of K. We choose isomorphisms of C—algebras

D ®k, C =~ My(C), (6.7)
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such that the tensor product of * with the complex conjugation takes the
form X — *X on the right hand side. The decomposition

Dr=D®R=x~[[D®xK.C
e€®

induces an orthogonal decomposition with respect to ¥

Ve =VeoR=[]Vex.C.
e€®

Since by (6.7) the algebra Ma(C) acts on each factor we may write

V @k C~ C?ec We.. (6.8)

Here W, is a C—vector space and the action of My(C) on the right hand
side is via the first factor. We define an antihermitian form h. on W, by
the equation

W1 @ Wi, Zo @ Wa) = Tre/r(* 21220 (W1, W2)), Wi, Wa€ W,
41,29 € ce,

Choosing a suitable isomorphism W, ~ C™ we may write h, in normal form
he(Wi, Wo) = Wy H . Ws, where

H, = diag (—V/=1,...,—vV—1L;v=1,...,v/-1).

We denote by r, (resp. r¢) the number of places, where —/—T (resp. v/—1)
appears in He, Let J. : V®ke C — V ®k, C be the endomorphism
given by the matrix idge ® —H,. It has the property that the R-bilinear
form ¢.(z, J.y) in 2,y € V @k C is symmetric and positive definite. The
endomorphism J = @J,, J2 = —1, defines a complex structure of Vg. For
this complex structure we have

Tra(tVe)= 3, rea(Tr’), L€ D, (6.9)
a:K—>C

where Tr%2 denotes the reduced trace of D over K.
Let

GU(r,,75) = {A € Mu(C);*AH,A = c(A)H,, c(4) € R*}
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be the group of unitary similitudes. We have an injection

Gr— H GU(rp,75), Tot+ rg=m= Zli- dimgV
0€®

such that Gg is a normal subgroup with a torus cokernel. We define a
homomorphism f : Resc/rnGm,c — Gr by the condition that A(r) for
r € R* acts on Vg by multiplication with r and h(y/—1) acts as J. The
pair (G, h) gives rise to a Shimura variety Sh, which is defined over the
number field E C C generated over Q by the numbers (6.9).

6.38 We will obtain examples for p—adic uniformization with Drinfeld’s Q
only in the cases where r, € {0,1,m,m— 1} forall p: K — C and m = d.
As before we fix embeddings Q@ — C, v : Q — C,. Then v defines a
p—adic place of the Shimura field £. We define a model of Sh over the ring
of integers O, , if v satisfies the following conditions.

Let p1, ..., p: be the prime ideals of O lying over p. We assume that K/F
is unramified at these primes. Let us assume that for some s, 1 < s <14,

Pi = 4:idq; for i:]-;"'7s:
where q; # q; are prime ideals of Og, and
PpiOk=q; for t=s+1,...,1

are prime ideals.

Let us assume that Dg; is a matrix algebra over Kg, fori=s+1,...,¢. In
fact, this is implied by the existence of the involution of the second kind *.
Moreover we make the assumption that there is a maximal order Op, C
D ® Qp, which is invariant by the involution *. By the methods of the
appendix to chapter 3 one checks the following.

Lemma 6.39 There exists up to isomorphism a unique symplectic Op p—
module (T,,1,), such that

(i) T, is a free Zp~module of rank dimq,V.

(i) The pairing v, : Tp x T, — Zy, is perfect and satisfies

Pp(fv, w) = Pp(v, " w) for £ € Op p,v,w € T,.
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We assume that there exists an isomorphism of symplectic D ® Q,—modules

(V ®q Qp, ¥) = (Tp, ¥p) ®z, Qp- (6.10)

Let us denote by A C V ®q Q, the image of T, by this isomorphism. We
have the decomposition

A=EPAp..

The multiples of the Ay, generate a multichain £ (see definition 3.13).

Let us denote by g : Gy,c — G the cocharacter such that he = p x fi,
cf. (6.2). We have defined a moduli problem (6.9) which is for small C?
representable by a quasi—projective scheme Ag» over Og, attached to the
data (D,Op, V, ¥, 1, £L,CP,v) where CP C G(A?) is a congruence subgroup.
We note that in our case the whole £—set of abelian varieties is determined
by the single abelian variety up to isogeny of order prime to p, Ax, which
in the following will be simply denoted by A.

Let (A, 2, %), #: Hi(A, AL) —V®q A% mod C? be a point of the moduli
problem over C.

Since A contains by definition a polarization A of order prime to p, it induces
a perfect pairing on the Tate-module

E* : Ty(A) x Tp(A) — Zy.

Hence by lemma (6.40) there is an isomorphism

(Tp(4), E}‘) = (Tp, ¥p)-

We conclude that locally at any finite place w of Q there is a similitude
between the symplectic D-modules (H1(4, Qu), E*) and (V, %) @ Q. By
the condition ((6.9), i) such a similitude exists also at the infinite place.

If our group satisfied the Hasse principle this would imply the existence of
a symplectic similitude between the D-modules (H;(4, Q), E*) and (V, ¢).
This would show that Ac» ®oy, E, is isomorphic to She @ E,, where the
subgroup C' C G(Ay) is of the form C = C,-CP. The subgroup C, C G(Q,)
is given by C, = G{Q,)N Endz A.

Unfortunately the group G does not satisfy the Hasse principle. Therefore
we obtain for any symplectic B-module (V;,4;), which is locally isomor-
phic to (V,9) a Shimura variety Sh; on which G(A;) acts. I (V,9) =
(Vi, 1), ..., (Va, 9n) are all classes of such modules we have
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h
Ac» ®0p, By 2| | Shic.
i=1

6.40 We consider the p—adic uniformization of A¢» under a whole series of
assumptions which we explain now. We assume that the invariants of the
division algebra D are as follows at the primes over p

invg,D=1/d for i=1,...,r
invg, D=0 for i=s+1,...,t

Here r < s is a fixed integer. The other invariants are arbitrary but satisfy
invg, D = —invg, D, i=1,...,t.

We will also assume that V is a free D-module of rank 1, iie. m = d.
The next assumption is the existence of a CM—type ® of K, which has the
following properties and which will be fixed.

Let us first note that the chosen embeddings v : Q — QP and Q — C allow
us to identify the following sets

Hom (K, C) ~ Hom (K, Qp). (6.11)

We require that @ N Hom (Kp,,Q,) = Hom (Kg;,Qp) for i = 1,...,s. If
P: - Ok = q; is a prime ideal, we consider the maximal subfields be. C Kgq;
and F, C Fp,, which are unramified over Q,. Since by assumption K¢,/ Fg,
is a quadratic extension, it makes sense to consider a CM-type <I>fli C
Hom (K}, Qp) relative to K, /F} . We require that ® N Hom (Kg,, Qp) is
the inverse image of a CM-type @, for the extension K¥,/F{ by the map

Hom (Kg,, Qp)— Hom (K}, Q).

For any 4, such that 1 < ¢ < r we choose arbitrarily an embedding «; :

Kq, — Qp.
The condition we put on the numbers r,, is as follows.

, ifa€{e,...,an}
-1, fa€e{a,...,a}
5 ifC\.'E(I’\{aly--~1ar}

1
Ta = d
0
d, if o € ®\ {a,..., 6}
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Whether this condition is fullfilled depends of course on the place v, which
was used for the identification (6.11).
For each prime ideal q of K over p, we define

Eyq=Ql Z rac(Tr_(£)); £ € D).

a:Kq—Qp
We find easily
Eyvq; = Evg; = 0i(Kq,), for i=1,...,r
Eyq; = Bvq = Qp, for i=r+1,...,s

G“’(Qp/Eu,q;) ={re Gal(Qp/Qp)i T‘I:’fl,- = ‘I’f;,-}, for i=s+1,...,1%

The localization E, of the Shimura field is the composite of the fields , g,
fort=1,...,2.

Let (Ag, Ao, flo) € Ac#(Ky») be a point over the residue class field of E,. By
(6.12) this point determines a o—conjugacy class b of an element b € G(K,)
such that ¢(b) = p.

Lemma 6.41 The conjugacy class b is basic and does not depend on the
choice of the point (Ag, Ao, o).

¢

Proof: The decomposition F, = [] Fp, induces an orthogonal decomposi-
i=1

tion V @ Qp = &V, and moreover an injection with torus cokernel,

Gq,— Gy, (6.12)
Here G, is the algebraic group over Q, given by

Gp.(Qp) = {g € Endp, V ®F Fp;;¥(gv, gw) = ci(g)b(v, w), ci(g) € Qp'}

We will show in fact a stronger assertion than (6.41), which will be explained
now. Let G C G be the subgroup given by the condition ¢(g) = 1. The
group G1(Ko) acts by o—conjugacy on the set of elements g € G(Kp) such
that c(g) = p,

g — b7 ga(h), k€ Gi(Ko).

Let B)(G) = {g € G(Ko); c(g) = p}/G1(Ko) be the orbit space. Let us fix
a principal polarization Ag € Ag (6.6). The class in B;(G) of the element
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b € G{Kjy) defined by (6.12) depends only on the pair (Ag, Ag) and not on
the choice of the isomorphism (6.2).

Since B1(Gq,) C [1Bi(G},) it suffices to show that the components b; €
B;(Gy,,) of b do not depend on the choice of (Ag, Ao) and that the images
of b; in B(G’"pi) are basic.

In the case where p; splits in K there is a further decomposition into totally
isotropic subspaces

Vo = Vo, & Vg;.

For the remaining primes p; we have by definition V5, = Vy;, = Vg, . Similar
decompositions are obtained for the isocrystal (¥, F) associated to (Ag, Ao).
By (6.25) b; is basic if all isocrystals (Ng,,F) and hence by duality also
(Ng:, F) are isoclinic. For the second assertion of the lemma we need more-
over to verify that for 1 = 1,..., s the isomorphism classes of the isocrystal
(Ng;,F) and for ¢ = s + 1,..., the isomorphism classes of the polarized
isocrystals (Np,, F') do not depend on (Aqg, Ag).

The cocharacter p defines a decomposition for each ¢ = 1, ..., into weight
spaces

Vo: @ Cp = Vp, 00 Vpy 1 (6.13)

Of course for the Shimura variety and the associated moduli problem only
the conjugacy class of p respectively of (6.13) matters. More directly we
obtain the decomposition (6.13) as follows.
For each @ : K — Cp we choose a D @k, o Cp—submodule V,, of V ®x o Cp
of dimension dimg, Vo = ro -d. Then V; o = V4, where the direct sum is
over all & which induce on F' the valuation given by p;.
s i

Let X = [[(Xq; X Xq:) x [l Xgq; be the p—divisible group of 4g. The

i=1 i=s+41
condition (i) of 6.9 implies

detg, (¢ Lie Xq,) = detc, (4 Vaq.,0)-

For ¢ = 1,...,r this implies that Xg; is a special formal Op, —module for
the Ok, —algebra structure on K, given by a; : Ok,, — Og, (3.59). For
i =7+ 1,...,s this implies that Xy, is étale. Hence for i = 1,...,s the
component of b in Gp, is a basic conjugacy class and the isomorphism class
of the polarized isocrystal (Np,, F') is independent of the choice (4, Ag, 7jo).
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It remains to treat the primes p; for i > s. We fix an isomorphism Opqi ~
M4(Ox,,) and a perfect hermitian pairing inducing the involution *,

. 9 d
H: Oin X OKq,' Ok

which is linear in the first variable and antilinear in the second.
Let M’ be the Cartier module of Xy;. There is a Cartier module M with
an action of Ok, and an isomorphism of Cartier modules

Y|
M = Oin ®0qu' M

which respects the Ma(Ox, )-module structure on both sides. Let ¥’ be
a perfect polarization form on M’ belonging to A. Then there is a perfect
polarization form ¥ on M, defined by

V(z@m, y®n)=¥(H(z,y)m,n).

We have to show that M is isoclinic and that (M, ¥) is unique up to isogeny.
Let W = W(R,) be the Witt ring and ¢ : OKéi — W an embedding. We
set L, = Kg; ®K«§i"" Wq and let Op, = Oin ®0x,§n¢ W be its ring of
integers. '

We have the decomposition

Ok, ®2, W= [] O

@:0pr —W
;i

¢

Hence we get for the Cartier module
M= @ M,.
®
Because of the equation

U(km,n) = ¥(m,kn), ke Ok,

M, and M, are orthogonal unless ¢’ = @.

We denote by o the Frobenius automorphism of W. The Verschiebung
induces maps V : M,, — M,. By the condition on the determinants (6.9
(i)) the cokernel of the last map is a K,~vector space of dimension 0 if
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¢ € @, and of dimension de for ¢ € :I;f;, where e = [Kq, : K] is the
index of ramification of Kq,. Since M, is a free Or, ~module of rank d, we

obtain

VMe, = M, forpe®i,
VM,, = pM, forgoE@Tqi

Let f; = [Fy, : Qp] = #®},,. We fix an embedding o : K3, — Wq and we
set M = My—s,,-

It follows by (6.14) that the map U = p~fiV?/i : My — M, is an isomor-
phism. This shows that M is isoclinic of slope 1/2. We will verify that the
polarized crystal (M, ) with its Ox,,~action is uniquely determined up to
isomorphism by the conditions (6.14).

There is an integer a, such that p®V/ : My — My is an isomorphism.
Consider the perfect pairing

(6.14)

Q. MQ X MO—"‘? 114
defined by the equation
Q(m, m") = p(m,p*Vim'), m,m' € M,.

Let 7 = o/¢ the Frobenius automorphism of Ly relative to F, ;. Then Q
satisfies the following relations

Q(fm, m’) =  Qm,m'), £€0y,
QUUmM,Um!) = Qmm/) " (6.15)
Q(m,m") = —Q(m',m) for m,m’ € M.

The crystal (M, %) is uniquely determined by (My, U, Q). Let To = MY be
the Ok,,~module of invariants. Then {2 induces a perfect pairing

¥r, : To x Fo— Ok,

which is Og: —linear in the first and 7-linear in the second variable. Again
(To, ¥p,) determines (M, ¢} uniquely.
Clearly ¥r, is antisymimetric and satisfies

U, (fm, m') = ¥, (m,£'m’), m,m' €Ty, £€Ox,,.
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By lemma (6.39) the pair (T, ¥r,) is uniquely determined up to isomor-
phism. The lemma is proved. O

Teti>s. Letusset I' = OK @0, I‘o with its natural Op,, = Md(OKq ¥
module structure. On I’ we deﬁne the perfect antisymmetric Z,—bilinear
form

Pr{z@m, y@m') = TrK:;,»/Qp ¥ro(H(z, y)m, m').
Then the symplectic module (T', ¢r) is isomorphic to (Ap,, ¥).

6.42 Lemma (6.41) shows that the assumptions of theorem (6.30) are full-
filled in our situation, and that Z consists of the whole special fibre of Ag».
Let us describe now more explicitly the group I(Q) and the formal scheme
M over Spf Oy, with its Weil descent datum.

We consider the orthogonal decomposition with respect to ¥ ® Q,,

t
V®Qp :@V®FF ;-

i=1

Correspondingly {cf. (6.12))
t
G(Qp) € [161.(Qp)-

i=1
The data b, p decompose naturally as a produet & = [[b;, p = [[ ps- The
decomposition '

Vo, ®Qp=Vo® W4

defined by p; is up to conjugation determined as follows. Consider the
decomposition

Vpi ® QP = @ Vp, ®Fp,,a Qp = @V

aF,,;—*Q,

Then Vg has a decomposition

Vo :@Vo,m
s 4
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where Voo C Vo is a D ®F Qp—submodule of dimension 7, - d. The local
Shimura field associated to
(Kpi:DpuODp,-’ Vpi>bi7ﬂi»Api) (6'16)

is K, q;. Let us denote this field by F;. Let ./\;i,- be the associated formal
scheme over Spf Oy, . It is equipped with a Weil descent datum relative to
E',- /E;. On each ./\;i,' we have defined a function & : ./\;(i — Z, comp. proof
of (3.53).

One sees easily that M is the formal subscheme of

(M1 Xsps 05 SPF Op,) Xsps 0, -+ X5p1 05, (Ma Xsp5 05, SPf Op),
where the functions & agree.

6.43 We consider the formal schemes M; more closely. Let us begin with
the cases 7 = 1,...,r. The group Xa,(G{).-) has three generators n,n* ¢,
satisfying the relation n - n* = ¢™¢, where m; = d[Fp, : Qp]. We have
defined a morphism

»: M; — Hom(Xg (G,),Z)
by giving the Z—valued maps
n=<szn> 0" =<xn">, é=<xc>.

Let us denote by 6 : G,,(Qp) — Hom (X§ (G},), Z) the map defined by

< 8(g), x >= ordy x(9), x € Xap(G;)i)’ g€ Gy i(Qp)‘

We define an action of Gp,,(Qp) on M; from the right, which commutes
with the action of Ji, (Qp) from the left. Let g € G,,(Qy) and (X, g) be
a point of M; with values in some Op —scheme S. There is an element
b € Dp,, such that bb* € Q, and bg~1A,, = Ap,. We define the action by

(X,0)g = (X, ex(b71)0).

This action and § make s into a G},,(Qy)-equivariant map.
Let (X, g) be a point of M;. Because of the decomposition Op,,, = Oin X
Op,, we have the induced decomposition X = X; x Xs. The condition
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on the determinants (3.21, (iv)) implies that X is a special formal Op, -
module. Moreover X3 has to be isomorphic to the dual of X;. More precisely
the involution on Op,, induces an isomorphism Op,, ~ O‘gf g With this
identification X becomes isomorphic to the ODpi——module Xy x e 1 and the
polarization on X becomes the tautological polarization on X x X1. Hence
in the definition of the functor M; we may take for X a p-divisible group
of the form X =Y x Y, where Y is a special formal Op,,~module and the
polarization is the obvious one.

Then the fibre of ¢ over zero consists of points (X, g), where g = g; X g3 :
Y5 x Y5 — (X1 x X3)g is such that g1 and g, are quasi—isogenies of height
0. Such a point is isomorphic to (X; x Xi,01 x 97*). Hence the map
(X,0) — (X1,01) defines an isomorphism of the fibre of s over zero and
Drinfeld’s formal scheme Q}-pi XSpf Or,, Spf O,

Let I € Op,, be a prime element. Then II : X3 — XF_I is a quasi—

isogeny of height f;d. It follows easily from (3.53) that the images of § and
2 coincide. Therefore we obtain an isomorphism

M == (94, 551 0r,, SPf O,) X Gp(@)/Cpry  (6:17)

where Cp; = ker § is the maximal compact subgroup of Gy,,(Qp)-

Let us compare the descent data on both sides. To formulate the result we
write the group Gp,, in a more suitable form. Let us fix an isomorphism
V ~ D and hence a right action of D on V. As above the form ¢ and the
involution * provide us with isomorphisms

o * opp
Vo, 2 Vq, ®Vy,, Dp, = Dy, x DI?,

which take v respectively * to the obvious alternating form respectively
involution on the right hand sides.
From these isomorphisms we get an identification

G, (Qp) = {(b1,b2) € D x DZ,;b1bs € Qp}.

Lemma 6.44 The Weil descent datum on M; induces on the right hand
side of (6.17) the canonical Weil descent datum on (flﬁﬂpi X5ps 0r, SPf Op,)
times multiplication by (H,pf TI™1) on the second factor, where f; = [Ff,‘ :
Q,] is the degree of inertia.
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Proof: Indeed, consider a point (X1, g1) of QdFF XSpf Op,, SPf Op,. Then
the canonical descent datum is given by
(Xls Ql) — (XP_lr LX1(H)91 FIOb{’]-)’

where Froby is the Frobenius morphism relative to the residue class field
of E;.

The point (X1, g1) is mapped by (6 17) to the point (X; x X1, g1 % 671 of
M, The Weil descent datum on ./\/[3 maps this point to

(X1 x X1, 01 Froby" x g7 Froby 1) =
(X1 x X1, 01 Froby! x (g1 FrobyH)A—1p=14),

The comparison follows easily if one takes into account that X~ = XTL.[]

Let J; be the algebraic group associated to the data (6.16) by the defini-
tion (3.22). It acts on (QF X$pf Or,, SPF Op,) x G5, (Qp)/Cp; by the
isomorphism (6.17). Let us make this action more exphc1t

Let us choose an isomorphism Aut} D,.Y = GL4(Fp,) in such a way that the
isomorphism of theorem (3.72) becomes equivariant. We find an inclusion

Ji(Qp) C Autdh_ Y x AuthorrY & GLy(Fp,) x GLa(Fp,)™?,
which identifies J;(Qp) with

{(a,d) € GLa(Fp,) x GLa(Fp;)P; ab € Qp}.

By definition the action of (a, b) on a point (X1 x X3, g1 X g2) of M; gives
the point (X, X X2, e1a™1 x gob~1).

We may rewrite this point as follows. Let ab = ¢ € Q, and let o(a) be the
integer ordg, deta. Then g = (1909 ¢ TI—2(2)) ¢ Gy (Qp) acts from the
right on M; and we have

(X1 x Xa, gra™! x g2b71)
= (X % X5 4, (M) g107Y, ox, (e () g1 - g.

It follows from theorem (3.72) that the natural action of GL4(Fp,) on Qf .,
defined by (3.68) is given in terms of the modular interpretation by

01— 1x; (T%) g™}
We obtain the following
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Lemma 6.45 An element (a,b) € J;(Q,) acts on

(4, X5ps 0m,, SPf Op,) X G (Qp)/Cp,

by the natural action of a on the first factor and maultiplication by ¢ =
g(a,b) = (T%®), cII~%(%)) on the second factor.

We note that the image §(g) coincides with wy,((e, b)) (see (3.52)).
Hence we have described M; with its Weil descent datum and the action of
Ji(Qp) in terms of Drinfeld’s Q, fori =1,..., 7.

6.46 Next we consider M; for i = r+ 1,...,s. Consider a point (X,0
of M{(ﬁp). We have decompositions Dp, = Dg, x DFP, X = X; x Xa.
The p-divisible group X; is étale by the condition on the determinants,
and X, is isomorphic to X;. Let Y be the étale p-divisible group with
Op,,—action whose Tate module T,(Y) = Ag,. We may take the X in
the definition of M; to be Y x Y. This identifies Ji{Qp) with a subgroup
of Autp, Vg, x Autpgre Vg, which is equal to G}, (Qp). The stabilizer of
Ap, ® Ay, is a maximal compact subgroup Cp, C Ji(Qp). It follows that M;
is the constant étale scheme G, (Q,)/Cp,; and that J;(Q,) acts naturally
from the left by the identification J;(Qp) ~ G},,(Qp) given above. One
easily checks

Lemma 6.47 The Weil descent datum on M; = G, (Qp)/Chp, relative to
E; = Qp is given by multiplication with (1,p) € G, (Qp) C Autp, Vg, X
AutD;:jr V(;..

6.48 Finally we consider the primes p; for ¢ = s+ 1,...,1. We keep the
notation of the proof of lemma (6.41). In particular we make the identifi-
cation

Z/2f;iT = Hom(th,Qp)
m — oo .

Let u be the smallest natural number, such that @4, + 4 = ®4;. Then u

divides 2f;. All the intervalls [mu, (m -+ 1)u] contain the same number of

elements of @, respectively of @q‘. . Hence u is an even number. The local

Shimura field E; = E, 4, is the unramified extension of degree u of Q.
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Let (X, o) be a point of M;(F,). In the proof of lemma (6.41) we have asso-
ciated to X in a functorially a symplectic (Op,_,*)-module (T'(X), ¥r(x)).
In particular the polarized (OD,,,. ,*)—module X is uniquely determined up
to isomorphism.

Let us fix an isomorphism (I'(X), ¥p (x)) = (Ap;,%¥). It defines an isomor-
phism J;(Qp) =~ G,.(Qp). By the deformation theory of Grothendieck-

Messing one easily checks that M; is étale. We get an J;(Qp)-equivariant
isomorphism

Gp(Qp)/Cpi = M (6.18)
g — (X, idx-¢7")

By (6.14) the Weil-descent datum on M,; relative to E; /E; induces on the
left hand side of (6.18) multiplication by pt/2,

Proposition 6.49 J(Q,) is the inverse image of the diagonal by the map

t i
Hc; :HJ; —)HG""QP'
i=1

i=1

Similarly G(Qp) is the inverse image of the diagonal by

i i
]:[C,~ : HGI — HG”‘:QP'
i=1 i=1

The actions of J;(Q,) on G}, (Qp)/Cp,, which we described induce an action
of J(Qp) on G(Qp)/Cy. We have an J(Qp)-equivariant isomorphism of
formal schemes

M= [[(Q%},i Xspf Or,, SPf Of) X G(Qp)/Cy.
i=1

The action of J(Qp) on the first r factors on the right hand side is via
the projections J(Qp) — Ji(Qp) — GLn(Fp;) and on the last factor as
described above.

The Weil descent datum on M relative to E[E induces on the right hand
side the natural descent datum on the first r factors multiplied with the
action of the element g € G(Q,) on the second factor, where g is given by
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g:ﬁ(H{/fi) pri—f/fi) x f[ (Lpf) % f:[ pflz,

i=1 i=r+41 i=s+1

where the right hand side is viewed in 1GL (Qp). Here II; is a prime
element in Dy, fori=1,...,7, and f; respectively f are the index of inertia
of E; respectively E,,.

Proof: This follows by what we have said about M;.

Theorem 6.50 The Shimura variety of (G,h) and level C has under the
assumptions made on v : Q — Q, and C a model Shc over Og,. The
action of the Hecke-algebra H(G(A%)//C) extends to Shc. There is an
H(G(A%)//C)-equivariant isomorphism of formal schemes :

HQN\ (O, X507 0x,, SPF O, ) x G(A4)/C 5 Sh¢ X595 05, Spf O,

= (6.19)
Here Sk is the p—adic completion of She. The group I is an inner form of
G, such that 1(Qy) is the group J(Qp) defined above and I(A%) ~ G(A}).
This defines the action of I(Q) used in forming the guotient above.
The natural descent datum on the right hand side of (6.19) induces on the
left hand side the natural descent datum on the first r factors multiplied with
the action of g € G(Q,) on G(Af)/C defined by (6.49).

Proof: By the general theorem 6.30 the left hand side of (6.19) with the
descent datum given is Acrjz/ Xspf 0g, Spf Op, . Since the uniformiza-
tion morphism is compatible with the Hecke operators it follows that the
scheme theoretic closure of She in Agr has the special fibre Z’. In fact,
to see this it is enough to verify that G(Af,) acts transitively on the con-
nected components of limShc. Consider the map v : G — F* x KX
whose first component ¢ is the multiplier and whose second component n
is given by (3.52). The kernel is the derived group G%" and the image
is a torus 7. Since G%" is simply connected we have by Deligne [De],
that mg(She) = TH(Q) \ T(Af)/7(C). Hence we only need to verify that
T(A’f’) acts transitively on mo(Shc). This follows since T(Q) is dense in
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T(R) x T(Qp). Indeed, for K* and F* in place of T" this is well known.
For 7' itself we obtain it from the exact sequence

1— F*— F*xK* — T-—1

(5,k) — (fkk, fE?).
H

For the convenience of the reader we formulate separately a special case of
the previous theorem.

Corollary 6.51 Let (D, K, *, F,V,1%) and the associated algebraic group G
over Q be as in (6.37). We assume that the D-module V is of rank 1. We
also assume that there is precisely one prime ideal p above p in F and that
P=4-d,q9#q, splits in K. We assume that

invgD = 1/d
invgD = -1/d.

We fiz an embedding v : Q — Q. Let & be the CM~type of K such that
under the identification (6.11) all elemenis of ® induce the place q of K
above p. We fiz an element o € ®. We make the following assumplion on
the signature (cf. (6.37))

re = 1

0, €@\ {a}.

Te

Let Sh be the associated Shimura variety which is defined over the Shimura
field E, cf (6.37). Let C, C G(Qp) be the unique mazimal compact
subgroup and let CF C G(A’}) be a sufficiently small open compact sub-
group. Then there is a model She of the Shimura variety of level C over
Og,. There is a H(G(A})//C)-equivariant isomorphism of p-adic formal
schemes

Q) \ (2%, Xsps 0, SPf Op,) X G(A;)/C = ShE Xsps 05, SPS O,
(6.20)
Here I{Q) is the group of Q-rational points of an inner form of G such that
I(Qp) = {(a,b) € GLa(Fp) x GLa(Fp)P?; ab € Qp} and with I(A%) ~
G(A%). We used o to identify Fy, with E,. The natural descent datum on
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the right hand side induces on the left hand side the natural descent datum
on the first factor multiplied with the action of

g = (I, I) € G(Q,) C D x D5,

on G(A;)/C. Here 1l is a uniformizing element of Dq and f s the indez
of inertia of Fp.

We note that C, C G(Q,) is a normal subgroup under the assumptions
of (6.51). Hence G(Q,) acts by right translation on the left hand side of
(6.20). The reader checks that this is compatible with the action of G(Qp)
on the general fibre of She.
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of lattices, 71
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