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ON THE SHAPE OF THE CONTRIBUTION
OF A FIXED POINT ON THE BOUNDARY:
THE CASE OF Q-RANK ONE

MICHAEL RAPOPORT

(WITH AN APPENDIX BY L. SAPER AND M. STERN)

This note has its origin in a letter to R. Kottwitz
after my visit to Seattle where we had discussed at
in the title. In 1986 in Paris we had occasion to dis

a certain conjecture (4.1 below) based on the Comptes Rendus note of A. Borel

and W. Casselman [BC], suggested itself (letter to Borel of June 30, 1986). I wrote
a preliminary version of

(October 1985), written shortly
length the problem mentioned
cuss these problems again and

this note in 1989, to provide some motivation for this

L. Saper and M. Stern were able to prove this conjecture
onsequence of their work on the Zucker conjecture. Their
proof appears here as an appendix to this note. This result available, I decided to
revise my preliminary version. I was helped in this by a recent preprint of R. Pink
[P] in which he broves a general theorem on /-adic sheaves on Shimura varieties
which implies a fact I need (3.2 below) and for which no proof had been included
in the preliminary version.
To get an idea of the main result of this

note, the reader should glance at 1
and then turn to formula (6.3)

which uses notation in 2, and then glance at the
final remarks in 7 » butting this result in a more general context and comparing it
to results of M. Goresky, G. Harder, R. Kottwitz, and R. MacPherson.

I wish to thank R. Kottwitz for generously sharing his insights with me. Also,
conversations on Lefschetz numbers with G. Harder and J. Rohlfs at the Arbeits-
beitstagung Oberwolfach in 1985 were very useful to me. On a more fundamental
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the inclusion of the revised note with its appendix in this volume. I also thank R.
Pink for his comments. Various institutions have supported me during this project.

I wish to thank the University of Washington, the C.N.R.S,, th

e Volkswagenstiftung,
and M.I.T.

1. Let G be a semi-simple almost simple algebraic group over Q such that the
associated symmetric space X is a hermitian symmetric domain. Let ' ¢ G (Q) be
an arithmetic group, which we assume neat, and put Xr = I'\X. Let X be the
Baily-Borel compactification,

Jj:Xr — Xr.

Let V' be a rational representation of . We denote by V = Vr the associated local
system (with Q-coefficients) on Xr. We denote ZC(V) the intermediate extension
to Xr.

It is known from the theory of Shimura varieties that the complex algebraic
variety Xr has a model over a number field and that there is a canonical way (in fact,
several canonical ways of which we choose one)
V' an f-adic sheaf on this model. We fix these objects in the sequel and denote by
the same letter X1 such a model, resp. a model over its ring of integers; similarly,
we denote by the same symbol V the ¢-adic sheaf resp. an extension of this f-adic
sheaf over this integral model. The choice of integral model will be irrelevant for our
purposes since we will be interested in the reduction modulo p only for sufficiently
general p. By excluding finitely many rational primes p we may assume that Xp
and V have good reduction and that the same holds with respect to the natural
strata of X and ZC(V).

Here is now the problem we would like to understand. Let y e Xr(R,) be a
point in the reduction modulo a prime ideal p which is fixed by a certain power ®
of the Frobenius at p. Then & operates on the fibre at y of ZC(V) and, using the
customary notation for the alternating sum of traces, we would like to determine

to associate to the representation

TY(®; ZC(V),). (1.1)

This is the contribution of y to the Lefschetz fixed point formula for the correspon-

dence ® and H*(Xp ®Ry,ZC(V)). Only the case when y is at the boundary is of
interest.

2. We will also consider the reductive Borel-Serre compactification )?p (cf. [Z1],
4.1; cf. also [H3], p. 37/38). This is a stratified topological compactification of X1
which we are going to describe briefly. Let P C G be a Q-parabolic. Let N be its
unipotent radical and denote by M = Mp the Levi factor P/N. If °M = Nker a?
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denotes the intersection of the kernels of the s

quares of all rational characters of M
defined over Q,

we let Xps be the symmetric space of %/ (space of all maximal
compact subgroups of °Ar (R)). Starting with the arithmetic group I" we obtain
the arithmetic group Ty, of M by taking the image of TNP in M. As a point set,

the reductive Borel-Serre compactification is given as

X\T‘ZEFM\XM- (2.1)

Here P ranges over the Q-parabolics, taken modulo T -conjugacy,
M. This set is finite. The open dense subset X corresponds to the improper
parabolic P = G. The closure of the stratum corresponding to the parabolic P is
the union of all strata corresponding to parabolics P’ with P’ C P. The reductive
Borel-Serre compactification is defined for any semi-simple alge
If we assume now that G satisfies the hypothesis stated in 1 .
proper stratified map to the Baily-
Xr,

with Levi factor

braic group over Q.
there is a continuous
Borel compactification, inducing the identity on

T: Xr — Xr. (2.2)
This map was constructed by S. Zucker in [Z2],

to give seems closer to that of G. Harder in [H3]
these assertions at another occasion.) Let P be

U = Up be the center of its unipotent radical. Let H = Hp — ker(M — Aut(U))
under the adjoint action. Then K Is a semi-simple group and there is a reductive
subgroup L = Lp ¢ M commuting with H and such that M — [, . H with finite
central intersection. Furthermore the symmetric space X o —

= X}, is hermitian
symmetric, whereas the symmetric space X1, = X3, associated to ° is the quotient

by RY of an open self-adjoint cone in U(R). We obtain a product decomposition

but the description of it T am going
» - 38. (Iintend to give the proofs of

a maximal proper Q-parabolic. Let

Xm = Xp x X&,. (2.3)

By projecting T'y; into H resp. L we obtain arithmetic groups I'y and T'y, in H
and L respectively. The Baily-Borel compactification can be given as

Xr =Xru O Th\Xp. (2.4)

Here P ranges over the T -conjugacy classes of maxim,
associated subgroup H = Hp. The closure relation on the proper strata defines a
total order among the maximal proper Q-parabolics containing a fixed Q-parabolic
which may be expressed in group-theoretic terms as follows:

P/

al proper Q-parabolics with

< P <= stratum of P’ contained in the closure of stratum P <= Up, > Up.
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Now let P be any proper Q-parabolic and let P+ be the unique maximal proper
Q-parabolic containing P and minimal with respect to the total ordering among
maximal proper Q-parabolics containing P introduced above. We obtain as follows
a map

XMp — Xu,,, . (2.5)

Fix a maximal compact subgroup K in G(R) and denote by g : Gr — Gr
the associated Cartan involution ([BS], 1.6). Then, for any Q-parabolic P, there
is a unique O -stable lifting of the Levi factor M PR into a Levi subgroup M, PR
([BS], 1.9). Applying this to P and P+ we obtain an inclusion M, PR C M, PR
which induces an inclusion °M PR C M p+r (where these are defined as inverse
images of the corresponding subgroups of Mp resp. Mp+ under the projection map

isomorphism). This induces the desired map (2.5), which when composing with the
first projection in (2.3) yields

Xmp = Xy, = Xg+. (2.6)

The restriction of the map 7 (2.2) to the stratum corresponding to P is the map
induced by (2.6),
Cymp\ XM, — Cpe\Xy+.

We have obtained a commutative diagram

Xr

)
P & 1
Xr — Xr

J
3. Fix a maximal proper Q-parabolic P and denote by T\ Xp the corresponding
stratum of the Baily-Borel compactification, cf. (2.4). There is then the following

expression for the restriction to this stratum of the higher direct image sheaves
under the open immersion j of the local system V,

R5Virmxy =~ € H'(Tw, Hi(n,V)). (3.1)

itj=k
Here n denotes the Lie algebra of the unipotent radical N of P, and the action of
I’z on the Lie algebra cohomology is induced from the action of L simultaneously
on n and on V. Each summand on the right hand side defines a representation
of 'y via its representation on H (n, V) and the fact that H centralizes L. The
isomorphism in (3.1) is to be interpreted as asserting that the sheaf appearing on
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the left hand side is locally constant and isomorphic to the local system defined
by the representation of I'y; given by the right hand side. A proof of (3.1) can be
given either by using the map = : Xp — Xr introduced in (2.2) (cf. Harder [H2],
Satz 1, p. 54, [H3], p. 40; for the rank-1 case comp. [H1],Theorem 2.8) or by using
the toroidal compactifications of Xy (cf. Pink [P], Theorem 4.2.1). Implicit here
is in particular Harder’s result on the degeneracy of the Hochschild-Serre spectral
sequence for the normal subgroup NN c I'n (NL) and a van Est-type argument.
The approach of Pink has the additional bonus of yielding a description of the
£-adic sheaf associated to R¥j,V (cf. [P], Theorem 5.3.1). He works in the context
of Shimura varieties and the following statement is a coarsening of his result. (In
the preliminary version of this note I stated this only in the rank-

1 case). Recall
from 1 that we fixed a model of Xr and Rj,

V over the ring of integers in a number
field and that we exclude a finite number of prime ideals; in particular, all terms
appearing below have a meaning as objects “modulo p”.

Theorem 3.2. (G. Harder, R. Pink) Let y € Xr(,) be a point in the reduction
modulo @ for a sufficiently general prime ideal p and assume that y lies in the
stratum corresponding to the proper maximal Q-parabolic P. For a sufficiently
divisible power ® of the Frobenius at © which fixes y there is on Hi(n,V) an
operation of ® commuting with the action of L and such that the isomorphism

(R*i.V), ~ @ HY(T1, H(n,V))
itj=k

is ®-equivariant. (The action of ® on the left hand side is induced from its action
on Rj,V.) a

4.  We now return to the map  : )/(\p — Xr from the reductive Borel-Serre com-
pactification to the Baily-Borel compactification, cf. (2.2). Since s r is a stratified
topological space we may apply the construction of Deligne-Goresky-MacPherson
[GM1],[BBD)] of the intermediate extension of V to Xr through successive exten-
sion and truncation. Since the strata are not necessarily of even dimension we have
the upper and the lower intermediate extension ([GM1)),

+7¢ (V) and -IC (V).

(Examples with odd-dimensional strata are given by the symplectic group Spg or

by the Hilbert-Blumenthal groups Rp/QSLs, with F a totally real field of even
degree.)
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Conjecture 4.1.  Rr,(*IC(V)) = R, (~ZC(V)) = e (V).

This conjecture has been rediscovered independently by M. Goresky and
R. MacPherson (cf. [GM2], conjecture 1) who also announce in loc. cit. a proof
for G = Spy, Sps, and for G = Sps where in the last case V is assumed to be
the constant sheaf associated to the trivial representation. Earlier, S. Zucker had
checked the case G = Sps, V= Q.

5. From now on we assume that rkQG = 1. Then we have the following expression
for the intermediate extension

IC(V) = 7<.Rj. V. (5.1)

Here ¢ denotes the codimension of X —Xr (as algebraic variety). We shall re-
formulate the conjecture above as a vanishing condition in Lie algebra cohomology.
We fix a maximal proper Q-parabolic P and introduce as before the corresponding
groups N, M, H, L, etc. We note for the codimensions of the corresponding strata
in )/(\p resp. Yr:

codimg Xp; = dim N + 1,
codimg Xy = dim N + dim U.
Using the characterization of IC(V) ([GM1]) the assertion of the conjecture is

equivalent (always in the case of rank 1) to the conjunction of the following two
statements.

HI“(RW*J“I/E(V)) =0, k> % codimp Xy (a)

_ 1
H* (DR, *IC(V) =0, k> 5 codimp Xy (b)

We have left out from the notation the fact that we restrict the above cohomology
sheaves to the stratum corresponding to P. To be precise, the statements (a) and
(b) are equivalent to the equality between the two extreme terms in conjecture 4.1.
The second equality sign in 4.1 follows from this, if we let V' vary, for

D Rm,(*IC(V)) = Rr,(D*IC(V))

and
D +IC(V) ="IC(V™).

Here D denotes the shifted Verdier dualizer which to the local system V on the
smooth manifold Xt associates the dual local system V*. This also implies that
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both statements (a) and (b) (for all local systems V) are equivalent to statement

(a) in general. However, as with (5.1),
+IC(V)I Pm\Xp = T<% codimXMH*(na V)’

where on the right we mean the local systems (put in varying degree between 0 and
3 codim X /) associated to the natural representation of M on H*(n, V), with triv-
ial differential. It follows easily from the shape of the map 7 that H*(Rr,+ZC (V)

when restricted to the stratum corresponding to P is a local system wit

h typical
fibre

@ HTLEmY).
itji=k
j<% codim X s
Therefore conjecture 4.1 is equivalent in the rank-

1 case to the following vanishing
“theorem”.

Conjecture 5.2. HY(Tp,H'(n,V)) = 0 if j < %codimXM and i+ j >
%codimRXH.

This conjecture has been proved by L. Saper and M. Stern. Their proof is given
in the appendix to this note. Here I wish to compare this conjecture with the earlier
results of A. Borel and W. Casselman ([BC], Theorem 4; [B], Theorem 2.1). Namely,
what they prove in loc. cit. is the vanishing of the cohomology groups in question
under the conditions i< % dimN and i +j > % codimgr Xp. (To deduce this from
their results one has to express the cohomology of T';, in terms of the relative Lie
algebra cohomology of 1, K}, with values in a certain unitary representation, comp.
[BW].) Therefore, we see that they prove the conjecture in case the stratum X M

has even dimension. If the stratum has odd dimension, i.e., dim N is even, what
remained to be shown was

. ) 1
HYE, mi=t ey =i S s s 5 dimU
(note that in this case dimU is even).

6. We shall now assume the validity of conjecture (5.2) and draw consequences
from it (we continue to assume that the Q-rank of G is equal to 1). We obtain the

following expression for the k-th cohomology sheaf of the restriction of ZC (V) to
the stratum corresponding to P

HEICV)Irvxy = @ HI(TL, Hi(n, V),
i+j=k
j<idim N
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(to be interpreted as (3.1)). We now return to the setup of Theorem 3.2. We

therefore obtain for the alternating trace of the power ® of the Frobenius at p on
the fibre at y of ZC(V),

TH(BIC(V)y) = Y~ (=1 Tx(&; H*(Ty, Hi (n, V). (6.1)

j<3dimN

For the calculation of the alternating traces appearing on the right hand side we
use the following simple lemma.

Lemma 6.2. Let T be an abstract group of type FL, e.g., an arithmetic group
and let M be an arbitrary k[[']-module of finite dimension over the field k and

equipped with an endomorphism & commuting with I'. Then for the al

ternating
sum of traces of ®,

Te(®; H*(T, M)) = x(T) - Te(®; M).
Here x(I') denotes the Euler-Poincaré characteristic of T'.

Proof. (cf. [S], Prop. 4, §1) By hypothesis, the constant k[l']-module k has a fi-
nite free resolution L, and the cohomology modules H*(T", M ) are the cohomology
groups of the complex LY ®p M, where LY is the dual of the free k[I']-module
L;. Each k[®]-module LY ®r M is isomorphic to M"9(X9), The assertion therefore
follows by the usual Euler-Poincaré principle, since x(T') = > (-=1)irg(Ly). O

We therefore obtain the following expression. We keep the notation used in
(6.1).

Theorem 6.3. There is the following expression for the alternating trace of the
power ® of the Frobenius

Te(®;IC(V),) =x(Tr)- Y. (~1) Te(®; Hi(n, V).

0<j<1 dim N

In particular, this expression vanishes if, denoting by A the I-dimensional split
torus in the center of L, the group L/A has no anisotropic maximal torus over R.

Proof. Indeed, in this last case the Euler-Poincaré characteristic appearing above
vanishes (comp. e.g. [S], prop. 23, §3.2). a

Examples where the second assertion may be applied are provided by the Hilbert-
Blumenthal cases where G = Rp/QSL,, with F a totally real field of degree > 1.
In this case L ~ Rp/qG,p,. Similarly, G = Rp/qSU are examples. Here SU is a
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special unitary group of F-rank one, and F is again a totally real field of degree
> 1. (The assertion for the first class of examples appears as cor. 2.2.3 in [BL]
the second class of examples it appears as theorem 2.4.6 in [BL].)

An example where the contribution does not vanish is given by an inner twisting
of Sps of rank 1 over

; for

Q. In this case L is the multiplicative group of a quaternion
division algebra over Q.

7. We conclude this note with some general remarks. In their contribution to this
volume [GM3] M. Goresky and R. MacPherson work with the (lower and upper)
“middle weighted cohomology complexes” on Xr. They give a formula for the lo-
cal contribution of a fixed point on the reductive Borel-Serre compactification of a
Hecke correspondence. Furthermore, they announce as a theorem (joint work with
G. Harder) the analogue of conjecture 4.1 above, where the intersection complexes
on Xr are replaced by the middle weighted cohomology complexes. Therefore, by
summing over the fixed points in the reductive Borel-Serre compactification map-
ping under the map 7 to a fixed point on the Baily-Borel compactification, a formula
for the local contribution of a fixed point on the Baily-Borel compactification is ob-
tained. To compare the resulting formula with the one appearing here in the rank-1
case one invokes Kostant’s formula for the highest weights of the irreducible repre-
sentations of M appearing in H*(n, V). Similarly, Kostant’s formula would have
to be invoked to compare our formula (6.3) above with the one obtained by by-
passing completely conjecture (5.2) above and using instead the theorem of Harder,
Goresky, and MacPherson mentioned above.

Assume that, in the notation of (6.3), L/A has an anisotropic maximal torus
over R and therefore also has a discrete series. Then the factor x(I'1) may be
expressed through the Selberg trace formula on L for a suitable function on L(R).

Furthermore, assume that “there are no phenomena, of L-indistinguishability”.
Then it seems reasonable to expect that a fixed point y under a power @ of the
Frobenius at p yields a well-determined conjugacy class v(y) in Hp(Q).A(Q) and
that the trace of the operator on H* (n, V) appearing in the statement of (6.3) only
depends on v(y). Therefore, summing the contributions of the fixed points of ®
at the boundary by first summing over 7(y) the expression given above and then
counting the number of fixed points y yielding v(y) we would obtain, taking into
account the product decomposition M = L. H ; a sum of terms parametrized by the
conjugacy classes in M(Q). This would then look like the contribution of M to the
Arthur-Selberg trace formula for the trace of a Hecke operator on L2

-cohomology
(cf. [A]). Indeed, the expression

tr(¥;7<t dimNH* (0, V)
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(A]
[BBD)
B]
[BC]
[BS]
(BW]
[BL]
[GM1]
[GM2]
[GM3]

(H1]

(H2]

(H3]

[P]
[S]

(21]

M. Rapoport

is closely related to the value at 7 of the stabilized discrete series representation
corresponding to V. In [GM3] there is an allusion to a similar formula, due to
R. Kottwitz, M. Goresky, and R. MacPherson for the case of a Hecke operator
in the case of arbitrary rank. Unfortunately, L-indistinguishability makes for a

more complicated picture for the Frobenius than the one sketched in the preceding
remarks.
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APPENDIX

LESLIE SAPER
MARK A. STERN

In this appendix, we prove the following theorem conjectured by M. Rapoport
(5.2). We follow the notation of the preceding article. We fix a maximal proper
Q-parabolic P with associated groups M = Mp, H = Hp, L = Lp, etc. and
symmetric spaces X, Xy, Xy, cf. 2.

Theorem A.1. Suppose that I';\ Xy is compact. Then
Hi(l—‘Lu Hj(n> V)) =0,

if § <1/2 codim Xy and i+ j > 1/2 codimpr Xg.

Remark A.2. The condition that I';,\X, is compact can be replaced by the
weaker condition that H*(T',, H?(n,V)) is representable by square integrable forms.

The proof of the theorem follows readily from the results of [SS], as we will now
show.

For I',\X 1 compact, H'(T',, H?(n,V)) can be realized as the Ly-cohomology
Hy (Tr, H(n,V)). Let Ly(T'L\Xy, H’(n,V)) denote the space of square inte-
grable i-forms with coefficients in the homogeneous bundle associated to the local
system H7(n,V). The vanishing of Hg2) (CL\XL,H?(n,V)) is equivalent to the
existence of a positive constant ¢ such that

ldf11® + lla* £1I> > ell £11%, (1)

for all smooth forms f € Ly(T'1\Xy,H’(n,V)). Here norms and adjoints are
computed with respect to admissible invariant metrics.

Let Ao, be the nonnegative, self-adjoint invariant bounded operator defined
in [SS, Proposition 9.4]. The proof of that proposition contains the proof of the
following lemma; one merely deletes extraneous variables.
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L. Saper and M.A. Stern

ldfl* + lla* £1I1* = (A, £, f)-

The spectrum of A,, is discrete. Hence, in order to prove Theorem A.1, it
suffices to prove the following proposition.

Lemma A.3. 1
\

Proposition A.4. If \
(a) j <1/2 codim Xy, and

(b) i+4>1/2 codim Xy, B

u

then A,, is positive definite on Ly(T',\ X, H’(n,V)). i
Proof. Fix a fundamental Cartan subalgebra h of m, stable under the Cartan |
involution. Let h = hy + h, denote the Cartan decomposition of h. Further
decompose h,, as h, = h;, o ® a where a is the Lie algebra of the one-dimensional
maximal Q-split torus in the center of L. Set §p = 1/2 > acd(na) @ Let Fg bean
m-irreducible component of H’(n, V') with highest weight 3 — ép. (Here we have
chosen a positive system ®*(mc, hc) for ®(mc, hc) as in [SS, Proposition 10.2].) T
Let W denote the Weyl group of ®(gc, he). Define (1

th
W!={weW:&, c &nc,hc)},
where ®,, = &+ Nw(—®*) and &+ = &*(mc, hc) U &(nc,hc). By Kostant’s ca
theorem there exists w € W! with |®,| = j such that '
B=w(@@+A) -6+ 6bp, "
where A is the highest weight of V and § = 1/2 > aca+ @ The operator A,
commutes with the projection onto Lj(I';,\ Xy, Fs); hence, it suffices to show that
A,, is positive definite on L(I'1\Xy, F). By [SS, Proposition 10.2], if this fails
then
Blh,, = 0. (2)
[S¢

Fix a 8 for which A,, is not positive definite. We shall show that i and j lie outside
the given range.

There are two cases to consider. Assume first that for o € ®(n, a),
(Bla;a) = 0. (3)
Then we may apply [SS, Propositions 10.2 and 11.1 and (12.1)] to deduce

i+ 7 <1/2(dimn + dim X;, — 1) < 1/2 codim Xg.
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This contradicts (b).

Suppose now that for some (and hence all) a € ®(n,a),

(Bla, @) < 0. (4)

We will show that this cannot occur when J <1/2(1+dimn) =1/2 codim X,.

There exists a basis S = {7, , 7} of h} consisting of strongly orthogonal

positive real roots satisfying S c ®(uc, hc) (see [SS, Lemma 11.6]). Recall that

u is the center of n and is a weight space for a. The conditions (2) and (4) on j
imply that for all k,

(/6> 7k) = (ﬁ:71) <0. (5)
From [SS, (11.14)], we may write

(I)w = {,u € (I)(nc,hc)’(/,t,ﬂ-l- 6 — 513) < O}

Thus, since (§ — 6p)|n, = 0, (5) implies S C ®.,. Similarly, if 4 € ®(nc, he), then

(w(8+ A),u+ 1) < 0. Hence either # € Py or i € ,,. From this it is immediate
that

J=1®4| > 1/2(dimn + dim h,) = 1/2(codim X, + dimh, ), (6)

contradicting (a). O

One can recast the above argument to show that if HgQ) (TL\XL,H?(n,V)) # 0,
with j <1/2(dimn + dimh,), then in fact

J <1/2(dimn — dimh,). (7)
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