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Introduction

Let k be a perfect field of characteristic p &#x3E; 0 and let K be the fraction field of
its Witt ring W(k). Let Q be the Frobenius automorphism of K. An F-isocrystal
over k is a finite-dimensional K-vector space V, together with a Q-linear bijection

The notion is due to Dieudonné who classified these objects in the 1950’s in
case k is algebraically closed. He showed that an F-isocrystal over an algebraically
closed field is determined up to isomorphism by its Newton polygon or, equivalent-
ly, its slopes. In the 1960’s Grothendieck introduced the notion of an F-isocrystal
over a general base scheme S of characteristic p which makes precise the heuristic
idea of a family of F-isocrystals over perfect fields parametrized by the points
of S. Grothendieck ([G], appendix; comp. also [Ka]) proved the basic theorem
that the Newton polygon rises under specialization s - s’ and that its end point
remains constant. Katz [Ka] subsequently investigated the question whether the
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constancy of the Newton polygon under specialization implies the constancy of the
F-isocrystal.

The theory took a new tum with the injection of algebraic groups into the theory
by Kottwitz [K]. His starting point is the observation that the isomorphism classes
of F-isocrystals (V, &#x26;) of height h = dim V are in bijective correspondence with
the Q-conjugacy classes in GLh(K). He investigated the set B(G) of Q-conjugacy
classes in G(K) where G is any connected reductive group over Qp, in case k
is algebraically closed. (In fact, Kottwitz considers the case where Qp is replaced
by a finite extension, but in this introduction we will disregard this). Kottwitz
introduces the subset B( G)basic of basic elements of B(G), characterized by the
fact that the slope homomorphism of any representative in G(K) factors through
the center of G, and gives a complete description of B (G)basic. Furthermore, he is
able to describe all of B(G) in the case when G is quasi-split (thereby generalizing
Dieudonné’s results) by taking the basic sets of the various Levi subgroups as
building blocks.

To explain our results consider the Newton map

which generalizes the Newton polygon associated to an F-isocrystal. Here T is
a maximal torus of G with Weyl group S2. The map associates to b e B(G) the
conjugacy class of the slope homomorphism of any representative in G(K). The
fibres of this map are principal homogeneous spaces under finite abelian groups
of the form Hl (Qp, J), where J is a Levi subgroup of a quasi-split inner form of
G (depending on the image point). In the case of G = GLh, these cohomology
groups are trivial and we recover Dieudonné’s results.

Our purpose in the present paper is to generalize Grothendieck’s specialization
theorems. To this end we introduce on the target space of the Newton map a

partial ordering which generalizes the (reverse of the) usual partial ordering on
Newton polygons with same end points. We define the notion of an F-isocrystal
with G-structure over a base scheme S and associate to such an object a function
s H b(s) E B(G). The generalization of Grothendieck’s theorem is that the
Newton point of b(s) decreases under specialization. The proof is by reduction
to Grothendieck’s theorem. Furthermore, we prove that if S is connected and the
Newton point of b(s) is constant, then so is b(s). For G = GLh, this last statement
is vacuous since in this case the Newton point determines the F-isocrystal up
to isomorphism. For the proof we use the result of Katz mentioned above. The
constancy of the end point of the Newton polygon in Grothendieck’s theorem
also has a counterpart in the general situation, but it has then a somewhat subtle
cohomological meaning.
We now give a brief description of the various Sections. In Section 1 we give

an account of most of the results of [K] with two noteworthy modifications. First,
we use the algebraic fundamental group of Borovoi [B] instead of the center of the
Langlands dual group used by Kottwitz. The gain is that the results are obviously
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functorial. Second, as mentioned above, we reformulate some of his results in terms
of the Newton map which enables us to say something even about the non-basic
part of B(G) for any connected reductive group and not only for quasisplit ones as
in Kottwitz. This Section is largely expository and contains almost no proofs.

In Section 2 we introduce the partial order mentioned above. Our specialization
result for Newton points is completely analogous to the specialization result for
the Harder-Narasimhan polygons of vector bundles resp. G-bundles on a Riemann
surface of Atiyah and Bott [AB]. However, perhaps surprisingly, their result is
the exact opposite of ours. In this context the partial ordering had already been
introduced in [AB]. We therefore content ourselves with quoting their results.

In Section 3 we prove the specialization results alluded to above. We also
mention here the generalization (3.13) of Grothendieck’s conjecture on the converse
to his specialization theorem.

Section 4 is an afterthought to the proof in Section 3. In it we generalize Mazur’s
theorem that the Hodge polygon of an F-crystal over an algebraically closed field
lies below the Newton polygon of the corresponding F-isocrystal and that both
have the same end points.

1. The structure of B(G)
In this Section we give a presentation of some results of Kottwitz, [K], [K2].

1.1 - In this Section we will use the following notations, comp. [K].

k - an algebraically closed field of characteristic p.
K - the fraction field of the Witt ring W (k).
K - an algebraic closure of K.
F - a finite extension of Qp in K.
L - the compositum of K and F in K.
Q - the Frobenius automorphism of L/F.
W (K/F) - the Weil group, i.e. the group of continuous automorphisms

of K which fix the elements of F and induce on the residue
field k of K an integral power of the Frobenius auto-

morphism.
F - the Galois group of F/F.

1.2 - Let G be a connected reductive group over F. Let

where the equivalence relation is 03C3-conjugacy, i.e.
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The fact that k does not appear in this notation is justified by the following
lemma (for F = Qp, this is proved in [RZ], (1.16); the general case is the same).

LEMMA 1.3 Let k’ C k be an algebraically closed subfield and let L’, 0", B’ (G)
be the corresponding objects for k’ instead of k. The obvious map

is a bijection.

1.4 - There is an exact sequence of topological groups

where (Q) denotes the infinite cyclic (discrete) group generated by a. By Steinberg’s
theorem the induced map

is a bijection. On the other hand, the restriction homomorphism W(K/F) -
Gal(F/F) and the inclusion G(F) C G(K) define an injective map ([K], 1.8.3)

1.5 - Let 1 - G 1 -t G2 - G3 - 1 be an exact sequence of connected reductive

groups over F. Then there is an exact sequence of pointed sets ([K], Sect. 1)

1.6 - Let F’ be a finite extension of F contained in K. Let G’ be a connected
reductive group over F’ and let B’ (G’ ) be the corresponding set for G’, L’, 0".
Then there is a Shapiro isomorphism ([K], Sect. 1).

1.7 - Let D be the pro-algebraic torus with character group Q. For a connected
reductive group G over F we put

(set of 03C3-invariants in the set of conjugacy classes of homomorphisms D L - GL).
For instance, if G = T is a torus, then

More generally, if T C G is a maximal toms with Weyl group Q, then
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THEOREM 1.8 ([K], Sect. 4) Let b E G(L). Then there exists a unique element
v E HomL(D, G) for which there exists an integer s &#x3E; 0, an element c E G(L)
and a uniformizing element 1f of F such that

(i) sv E HomL(Gm, G).
(Here Hom(Gm, G) C Hom(D, G) via the homomorphism D -- Gm induced
by the inclusion of character modules Z C Q).

(ii) Int(c) o sv is defined over the fixed field of QS in L.
(iii)

The element v is called the slope homomorphism associated to b.

Furthermore, the map b F--+ v = vb = VG,b has thefollowing properties.

(a)
(b)
(c)
(d) vb is trivial if and only if b is in the image of the map (cf. (1.4)) H1 (F, G) -

B(G).
1.9 - From (b) and (d) of the previous theorem it follows that the map b H vb

induces a natural transformation of set-valued functors on the category of connected
reductive algebraic groups

Here, denoting by a bar the 03C3-conjugacy class resp. the conjugacy class

The map V-G is called the Newton map of the group G.

EXAMPLE 1.10 Let G = GL(V), where V is a finite-dimensional F-vector
space. Then B(G) classifies the isomorphism classes of Q - L-spaces of height
h = dim V. To b e G(L) we associate the Q - L-space (i.e. a finite-dimensional
L-vector space with a Q-linear bijective endomorphism)

There exist uniquely determined rational numbers

and a uniquely determined decomposition
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into &#x26;-stable subspaces for which there exist OL-lattices Mi c Y with

where di = Ai - h2 e Z. The subspace Vi is called the isotypical component of slope
Ài. The associated homomorphism vb is equal to

Here Ai - idv2 denotes the composition

In this case the map

is injective, as follows from the Dieudonné classification of 03C3 - L-spaces [K],
Section 3. It is customary to use the slopes ( 03BB1, ... , Àr) and their multiplicities
( h 1, ... , hr ) to form the Newton polygon of the 03C3 - L-space (VL, (03A6), which
explains the name we have given to the map in general.

1.11 - Let b e G(L). We consider the following group-valued functor on the
category of F-algebras. To an F-algebra R it associates the group

Then ([RZ], (1.12)) this functor is representable by a connected reductive group
Jb over F. Let b’ = h- 1 b03C3, (h). Then Int h-1 induces an F-isomorphism

Let b E B (G) and let b E b be an element such that svb factors through Gm.,2 and
is defined over the fixed field Fs of 03C3s in L and such that

for a suitable integer s &#x3E; 0 and a uniformizer 7r in F, cf. (1.8). Then ([RZ], (1.14))
Jb ®F Fs is the Levi subgroup of G 0F Fs which centralizes the 1-parameter
subgroup svb,

Let h be such that b = hb03C3,(h)- 1. Then h E Jb (F) . Therefore the F-
isomorphism in (1) is unique up to inner automorphisms by elements in Jb (F).
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PROPOSITION 1.12 ([K], Sect. 5). Let b E G(L). The following conditions are
equivalent.

(i) The homomorphism vb factors through the center of G.
(ii) The a-conjugacy class of b contains an element contained in an elliptic torus

of G.
(iii) The group Jb is an inner form of G.
(iv) (in case G = GL(V), as in example (1.10)). The slope decomposition has

only one factor.

In this case the element b resp. its a-conjugacy class b is called basic. We denote
by B (G)basic the set of basic a-conjugacy classes.

1.13 - In order to state the next results we introduce the algebraic fundamental
group of a connected reductive group G over F ([B], comp. also lM]). Let T C
B c Gp be a maximal torus and a Borel subgroup defined over F. We have an
action of r on X* (T ) defined by

where g E G(F) satisfies g(T(T, B))g-1 = (T, B). We obtain an induced action
ofron

which is independent of the choice of B. Here 03A6 (G, T) denotes the set of roots of
T and for a e 03A6(G, T) we denote by a v the corresponding coroot.

If T’ = gTg-1, g E G(F), then Int(g) induces a r-equivariant isomorphism

which is independent of the choice of g. We therefore may define xi (G) as the
common value of these r-modules. It is called the algebraic fundamental group
of G. The functor xi is an exact functor from the category of connected reductive
groups over F to the category of finitely generated discrete r-modules, ([B], (1.5)).
If G’ is an inner form of G, there is a canonical isomorphism

1.14 - Kottwitz [K] formulates his results in terms of the center Z(G) of
the Langlands dual group, which a priori is functorial only for morphisms with
image a normal subgroup. We prefer to formulate his results in terms of the
algebraic fundamental group since this is functorial for all morphisms. To make
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the connection we point out that there is a canonical isomorphism of r-modules
([B], (1.10))

In particular

(coinvariants resp. torsion subgroup in coinvariants).
We also point out that

- for a torus T,

- for a semi-simple group G, with simply connected covering o : Gsc - G,

- if the derived group of the connected reductive group G is simply connected,

Here, as in the rest of the paper, Gab denotes the factor group of G by its derived
group.

THEOREM 1.15 ([K2], Sect. 6), [K]) (i) There exists a unique natural transfor-
mation

of set-valued functors on the category of connected reductive groups over F such
that the following diagram is commutative.

Here the valuation on L is normalized by ordL(1rL) = 1 for a uniformizer 1rL.
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Furthermore, the induced maps

and

are bijections for all G. This puts the structure of abelian groups on B( G)basic
and on Hl (F, G) in a functorial way. The action of the subgroup Hl (F, G) on
B (G)basic by translations preserves the fibres of (the restriction to B (G)basic of)
the Newton map and is simply transitive on each fibre ofvGIB(G)basic.

(ii) Let G = T be a torus, in which case B (T ) = B(T)basic and 03C01 (T ) = X* (T).
Then the structure of abelian group on B (T) defined in (i) is the natural structure.
Let iT be the composition

Let E be a finite extension of F contained in K such that T splits over E and
let Eo = En L be the maximal subfield of E unramified over F. Let 7rE be a prime
element in E. Then

The following diagram is commutative, if E is a finite Galois extension of F.

Here TN denotes the Tate-Nakayama isomorphism (cup product with the fun-
damental class in H2(E / F, EX)).

(iii) For any connected reductive group G over F, the natural homomorphism
G - Gab induces an isomorphism of vector spaces

The functor 1rl ( . )r 0398 Q is an exact functor from the category of connected
reductive groups over F to the category of finite-dimensional Q-vector spaces.

There is a unique natural transformation of functors on the category of con-
nected reductive groups
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such that for a torus T this is the natural identification (cf. (1.7))

The following diagram is functorial with exact rows (in the sense of pointed
sets).

Here the arrow in the right lower corner is given as

We often write à(b) = 8c(b) instead of ô o v(b), for b E B(G).

1.16 - The statement (i) in the previous theorem gives a complete description
of the basic subset of B(G). We now want to describe the fibres of the Newton
map through an arbitrary element b E B(G) which is not necessarily basic.

PROPOSITION 1.17 Let b E B(G) and let F be the fibre of the Newton map
through b,

Let b E G(L) be a representative of b, with associated group Jb, cf. (1.11).
Then there is a natural identification

This identification is induced from the map which associates to a representative
b’ of b’ E F the Jb-torsor whose values in a F-algebra R are given by

Furthermore, the resulting action of the finite abelian group Hl (F, Jb) on F
(cf. (1.15), (i)) is independent of the choice of b and b in the following sense. If b’ is
a representative of another element of F, then Jb, is an inner form of Jb and hence
H1 (F, Jb’) is canonically isomorphic to H1 (F, Jb), cf. (1.13).
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Proof. We first prove that Jbl,b is a torsor, i.e. is non-empty. Replacing b by a
a-conjugate we may assume that vb = vb, and that we have identities for a suitable
integer s &#x3E; 0,

Then sv is defined over the fixed field Fs of ol in L and b, b’ e G(Fs)
(comp. [RZ], (1.9)). The above identity implies that we have equality of norms,
Nmps/p(b) = Nmps/p(b’). But then it follows ([K5], 5.2) that there exists

g e G(F, 0 F) with b’ = gb03C3(g)-1. The image of g in G(L 0 F) is a point
in Jb’,b(F).
We next prove the surjectivity of the map. Let c E H1 (F, Jb). By the theorem

of Steinberg there exists a finite unramified extension F’ of F contained in L
trivializing c. We may represent c by a cocycle also denoted by c of Gal (F’/F)
with values in Jb(F’). However, it is obvious that under the natural injection

there exists g e G(L ~F F’) such that

Putting b’ = gb03C3, (g) - 1, we have b’ E G(L) and [Jb’,b] = c E H1 (F, Jb), hence
b’ maps to c.

To prove the injectivity of the map we remark that Jb’,b is a (Jb" Jb ) -bitorsor
(with Jb acting from the right and Jb’ acting from the left). Using the customary
notation for contraction we have for any b, b’, b" an identification of (Jb, Jb,,)-
bitorsors,

Hence if b’ and b" define the same cohomology class in H1 (F, Jb) it follows

that the Jb,, -torsor Jb" ,b’ is trivial. Any element in Jb" ,b’ (F) a-conjugates b’ into
b", which proves the injectivity.

It is obvious that Jb’ is an inner form of Jb. By what we have proved already,
the last assertion is equivalent to the statement that the map

induces a translation on Hl (F, Jb) = H1 (F, Jb’ ). To prove this we may assume
that the derived group of G is simply connected which implies the same fact about
Jb and Jb’. But then

Since the identity (3) above shows that the map induced on H1 (F, Jb,ab) is a

translation, this concludes the proof. D
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Remark 1.18 In order to have a complete description of B (G) by this method
one would need to describe the image of the Newton map F.,G : B(G)-- N(G).
We do not know how to do this in the most general case. In the case when G is
quasi-split the following description of the image follows from [K], Section 6. Let
M be a Levi subgroup of G and denote by p M the composition of the following
obvious maps

Here ZM denotes the center of M. The image of vG is equal to

where M ranges through all Levi subgroups of G.

EXAMPLE 1.19 (= example (1.10) continued). In case G = GL(V), an element
v E N(G) is given by a sequence of rational numbers

and multiplicities (positive integers) h 1, ... , hr such that

The condition that v be the Newton point of an isocrystal is that the break points
of the Newton polygon associated to v occur at integer points, i.e.

This is equivalent to the condition appearing in remark (1.19). Indeed, if this
condition is satisfied put

Then

The element v- is the image of

The converse is also easy to see.
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2. A partial ordering on the set of Newton points

2.1 - Let G be a connected reductive group over an algebraically closed field of
characteristic zero, with associated root datum

We fix a basis A of the set of roots and denote by ~v the corresponding basis
of the set of coroots. Let

be the corresponding closed Weyl chamber resp. obtuse Weyl chamber. Hence C
is a fundamental domain for the action of the Weyl group Q on X*(T) R . On the
other hand, C’ C X* (Tder)R, where Tder = T n Gder. For the following lemma we
refer to [AB], Section 12, and the references quoted there (in loc.cit. this lemma
is stated in the context of compact groups but the proofs carry over to the present
set-up.)

LEMMA 2.2 Let x, x’ e X*(T ) R. The following conditions are equivalent.

(i) x lies in the convex hull of the finite set

(ii) Let x resp. x’ be the representatives in C of x resp. x’ for the action of Ç2.
Then

(iii) Let x’ be the representative o, f x’ in C. Then

Let us write x - x’ if these equivalent conditions are satisfied. Then this
condition only depends on the orbits under S2 of x resp. x’.

(iv) For any representation o: G ---&#x3E; GL(V), denoting by T’ c GL(V) a maximal
torus containing o(T) we have

Let our algebraically closed field be the algebraic closure of a subfield F and
assume that G is defined over F. Let r be the Galois group of F and assume
that x, x’ E (X*(T)R/O)r. Then it suffices to check condition (iv) on F-rational
representations o: G -&#x3E; GL (V). Indeed, this follows from the proof of loc. cit.

by the following two observations. First, since x’ - x is r-invariant it suffices to
check (x’ - x, A) j 0 for any r-invariant dominant integral weight À. Second, a
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positive multiple of a r-invariant dominant integral weight is the highest weight of
an F-rational representation.

2.3 - We now retum to the set-up of Section 1. A point FI E N(G) gives a
well-defined orbit 03A9.v under the Weyl group in X*(T)R, where T is a maximal
torus in G over F. The Definition (2.2) therefore defines a partial order on N(G)
resp. B(G)

PROPOSITION 2.4 Recall the map

(iv) Let G = GL(V), as in (1.10). Let b, b’ E B(G). Then b - b’ {::} the Newton
polygon of b lies above the Newton polygon of b’ and has the same end point.

Proof. (i) holds because C’ c X* (Tder )R. We next prove (iv). By (i), if b - b’
we have b(b) = 8(b’), i.e. (1.15 (iii)) the Newton polygons of b and b’ have the
same end points. Let

be the slopes with multiplicities of b resp. b’.FBy the above remark we may assume
that

Using the form of the simple coroots for PGLh (i.e. cxi = e2 - ei +1, 1  i 
h - 1, in terms of the standard cocharacters of the diagonal torus), we see that

- 

The condition on the right is precisely the condition on the Newton polygons of
b and b’ appearing in the statement of (iv).
We now prove (iii). The fibres of the Newton map are finite, hence it suffices to

see that the image of Xb in N(G) is finite. Choose a faithful representation o of G,
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Then, as is easily seen, the induced map N(G) - N(G’) has finite fibres.
Therefore in fact the fibres of the induced map

are finite which reduces us to the case of G’ = GL(V). Using (iii) the statement
follows from the fact that the number of Newton polygons with a fixed end point
above a fixed one is finite (since they have integral break points).

The statement (ii) follows from the fact ([Bou], VI, Sect. 1,6) that

3. Variation of F-isocrystals with additional structure

In this Section we prove the specialization theorems. Throughout this Section we
will denote by S a connected scheme of characteristic p.

3.1 - We first recall the following definitions. There is the concept of a locally
free crystal on S ([Ka]). If S = Spec R is the spectrum of a perfect ring, a
locally free crystal on S is simply a module over the Witt ring W (R) which is
free of finite rank, locally on S. The locally free crystals on S form a category.
A morphism f : M - M’ in this category is called an isogeny if there exists a
morphism g : M’ - M such that f g = pn and g f = pn for some n &#x3E; 0.

An isocrystal on S is an object of the category of locally free crystals on S, up
to isogeny. If S = Spec R is the spectrum of a perfect ring, an isocrystal on S is a
module over W (R)Q = W (R) 0z Q which is free of finite rank, locally on S.

An F-isocrystal on Sis an isomorphism of isocrystals on S,

Here M(P) = Frob* (M) is the pullback under the Frobenius morphism Frob :
S - S.

The category F-Isoc(S) of Frisocrystals over S is a tannakian category over
Qp with neutral object 1. If S = Spec R is the spectrum of a perfect ring, the
neutral object is given by

To have the required isomorphism Qp -2+ End(l) it is necessary to assume that
S is connected.

3.2 - Let G be a linear algebraic group over Qp. We follow a suggestion of J. de
Jong in adapting a definition from the theory of vector bundles resp. Higgs bundles
(cf. [S], Sect. 6)
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DEFINITION 3.3 An F-isocrystal on S with G-structure is an exact faithful tensor
functor

REMARKS 3.4 (i) Assume that S = Spec k is the spectrum of an algebraically
closed field. Then the set B(G) of Section 1 classifies the F-isocrystals with G-
structure up to isomorphism. More precisely, let K be the fraction field of the Witt
ring W (k). Then any element b E G (K) defines an exact faithful functor M = Mb
via

and conversely by Steinberg’s Theorem any such functor is defined by a unique
b e G(K), comp. (3.5) below.

(ii) Let G = GLn. Then an F-isocrystal on S with G-structure is simply an
F-isocrystal X on S of height n, i.e. such that the pullback to any geometric point
s : Spec k - S gives a K-vector space of dimension n. Equivalently, the dimension
of the F-isocrystal X on S’ in the sense of tannakian categories ([D], 7.1) is equal
to n, i.e., the composition

is equal to n e Qp = End (1). Indeed, if M is an exact faithful tensor functor as in
definition (3.3), we put

where Vnat is the natural representation of GLn. Conversely, let X be an F-isocrystal
of height n over S. The above identity forces on us the value of M on Vnat. Every
irreducible representation of GLn is isomorphic to the image S,B(Vnat) of V"at of
a uniquely determined Schur functor (comp. [FH]). Here À is a partition of an
integer d &#x3E; 0 and Sa (Vnat) is a subrepresentation of VnOd. Let V be an arbitrary
representation of GLn. Then V is isomorphic to a representation of the form

We consider the pair

where a ranges over Isom(~03BBS03BB,(Vnat)m03BB, V), and where
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is defined as (3-1 o a e Aut(~S03BB (X)m03BB) . We define a set-valued functor M(V)
on F-Isoc(S) by putting

It is obvious that this functor is representable by an object M(V) e F-Isoc(S)
isomorphic to E9 S,B (x)m).. This defines the tensor functor M associated to X and
it is obvious that these two constructions are inverse to one another. We note that
the definition of Sa (X ) makes sense through the usual formulas (loc. cit. ) since
F-Isoc(S) is a tannakian category over a field of characteristic zero.

(iii) Similarly, let G be the symplectic group SP2n. As in example (ii) above
using Schur functors one sees that an F-isocrystal over S with G-structure is the
same as an F-isocrystal X of height 2n over S together with a non-degenerate
altemating pairing

Similarly, let G be the group of symplectic similitudes. There is an exact

sequence

Here c denotes the multiplier homomorphism. As above one sees that an F-
isocrystal over S with G-structure is the same as an F-isocrystal X of height 2n
over S with a non-degenerate altemating pairing

where C is an F-isocrystal on S of height 1.
(iv) Let G be a linear algebraic group over Qp and let H C G be a connected

closed subgroup. Let G’ be the centralizer of H in G. Then an F-isocrystal on S
with G’-structure is the same as an F-isocrystal M on S with G-structure, equipped
with an action of H(Qp), i.e.

such that

Here again the trace is to be understood in the sense of tannakian categories.
To see this one uses the fact that H(Qp) is a Zariski-dense in H to conclude



170

that RepQP G’ is the category of representations of G, equipped with an action of
H(Qp). ’

(v) As a concrete example let B be a semi-simple algebra of finite dimension
over Qp equipped with an involution b e b* and let V be a finite B-module,
equipped with a non-degenerate altemating bilinear form

such that

Let G be the linear algebraic group defined over Qp with points in a Qp-
algebra R

Let X be a p-divisible group over ,S’ which is equipped with an action of an order
OB of B stable under the involution and with a non-degenerate alternating form

satisfying an identity similar to the one above for b e OB and such that

Here X denotes the F-isocrystal over S associated to the p-divisible group by
the crystalline Dieudonné theory and the trace on the right-hand side is again in
the sense of tannakian categories. Combining the examples (ii-iv) we see that X,
equipped with the induced action by B and the induced altemating pairing

is an F-isocrystal with G-structure. Here 1(-1), the F-isocrystal associated to
Gm, denotes the dual of the Tate object 1 ( 1 ) . If S = Spec R is the spectrum of a
perfect ring, 1 ( 1 ) is given by

3.5 - Let s-3S be a geometric point of S. Let K(s)=K(rc(s))=Fract W (x (§) )
be the fraction field of the Witt ring of the residue field of s. There is an obvious
exact faithful tensor functor (inverse image)
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Let M be an F-isocrystal on S with G-structure. We obtain by pull-back an
F-isocrystal Ms on s with G-structure. Composing with the obvious fibre functor
F-Isoc(s) --- VectK(s) we obtain a fibre functor over K(s),

From now on we assume again that G is a connected reductive group over
Qv. By Steinberg’s Theorem we may choose an isomorphism of fibre functors on

where wst denotes the standard fibre functor. It then follows that for every object
(V, e) E RepQp G the F-isocrystal structure on wg(V,,o) is given by g(b( §) ) . (idv 0
Q), for a uniquely determined element b(s) E G(K(s)). Any other choice of an
isomorphism of fibre functors changes b(s) into a a-conjugate element. Therefore
we obtain a well-determined element b(s) E B(G).

This element b(s) only depends on the point s E S underlying the geometric
point s in the sense of Lemma (1.3). We shall use the symbol b(s) = bM(s) E
B(G) for the element thus defined.

Summarizing, we have associated to an F-isocrystal on S with G-structure a
function on S,

THEOREM 3.6 Let S be a connected scheme of characteristic p and let M be an
F-isocrystal with G-structure on S. Then the following statements hold.

(i) The function on S,

is constant.

(ii) Fix bo E B(G). The subset

is Zariski-closed and locally on S the zero set of a finitely generated ideal.
(iii) The subset

is Zariski-closed and locally on S the zero set of a finitely generated ideal.

In the proof of this theorem we are going to use the following result of
Grothendieck (cf. [Ka], 2.3.1).

Let F : M(p) -t M be an F-isocrystal over a connected scheme S of char-
acteristic p. Then the set of points s E S where the Newton polygon of its
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fiber Fs: Ms(p) --+ Ms at s lies above a given continuous R-valued function on
[0, height(M)] which is linear between successive integers is Zariski-closed in S
and is locally the zero set of a finitely generated ideal. Furthermore, the integer
valued function

is constant.

Since the last statement is not contained in loc. cit. we indicate a proof. There
exists an isomorphism of isocrystals

such that VF = FV = pn, some n &#x3E; 0. Clearly

ord det ( FS ) + ord det(E) = ord det pn .

Both summands on the left are upper semi-continuous functions on S, whereas
the right-hand side is a locally constant function on S. The result follows. For a
different proof, see [C], 1.7. Il

PROOF OF THEOREM (3.6): (i) For this statement, replacing G by its maximal
abelian quotient, we may assume that G = T is a torus. Let X : T -- G, be
a Qp-rational character and denote by the same symbol the maps induced by
functoriality,

Denoting by X(M) the induced F-isocrystal with Gm,-structure we have

which is a constant function in s by the second part of Grothendieck’s result quoted
above. The being true for all Qp-rational characters X the assertion (i) follows.

(ii) By (2.2), (iv) a point s lies in this subset if and only if for any representation
 : G - GLn the induced F-isocrystal e(M) of height n over S (cf. (3.4), (iii))
satisfies

In fact, it suffices to check this on a finite number of representations o (this
is a minor complement to the statement of (2.2), (iv)). We may therefore assume
that G = GLn. In this case this subset is empty unless the Newton polygons of
b(s) and bo have the same end points, in which case the assertion follows from
Grothendieck’s result via (2.4), (iv).
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(iii) By (i) the function s -- b(b(s)) is constant. Therefore the assertion (iii)
follows from (ii) since by (2.4), (ii) the subset appearing in (iii) if it is non-empty
can be described as

and since by (2.4), (i), this is a finite intersection. n

3.7 - In the case G = GLn Theorem (3.6) contains all there can be said about the
specialization of F-isocrystals since in this case the Newton map vG is injective
(this follows by (1.17) from the vanishing of Hl (Qp, Jb) for b E G(K) in this
case).

In the general case Theorem (3.6) is complemented by the following result.

THEOREM 3.8 Let S be a connected locally noetherian scheme of characteristic
p and let M be an F-isocrystal with G-structure on S. Let bo E B(G) and assume
(constancy of the Newton point)

Then the subset

is either empty or all of S.
Proof. We have to show that the map s H b(s) is locally constant on S

provided that F.,(b(s» is so. It suffices to prove that s-b(s) is unchanged under
specialization. Since S is locally noetherian we may assume, after base changing
the whole situation, that S is the spectrum of a discrete valuation ring which we
may assume complete with algebraically closed residue field k, i.e.

Let si resp. so be the generic resp. special point of S. Let R = k[[t]]perf be
the perfect closure of k[[t]]. We are going to use the following result of Katz [Ka],
2.7.4.

Let k be an algebraically closed field of characteristic p. Let M be an F-
isocrystal on Spec k[[t]] and assume that the Newton polygons at the two points s 1
and so of Spec k[[t]] coincide. Let MSO resp. Ms¡ resp. MR be the inverse images
of M on so resp. si resp. Spec R.

Let a be the composition of morphisms
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Then there is a unique isomorphism

which induces the identity on Mso .
In loc. cit. it is only stated that the F-isocrystal MR on Spec R is constant, i.e.,

that there exists an isomorphism as above. The uniqueness statement follows from
the following lemma.

LEMMA 3.9 Let R be a perfect k-algebra where k is a perfect field. Let M and
M’ be F-isocrystals over k and denote by MR and MR the F-isocrystals obtained
by base change. Then the map

is injective. If k is algebraically closed this map is bijective.
Proof. By definition we have Hom(M, M’) = Hom(M, M’)F, where on the

right-hand side we have the invariants of Fin the intemal Hom. Hence the injectivity
amounts to saying that for an F-isocrystal N we have an injection NF --+ NFR . This
is obvious since N C N ~w(k)Q W (R)Q.
Now we assume that k is algebraically closed. We may also assume that N is

isoclinic. If the slope of F is positive, F is topologically nilpotent and

Something similar holds if the slope of F is negative, i.e. F-1 is topologically
nilpotent. If the slope is zero, we may assume since k is algebraically closed that
N = W (k)Q and that F = Q is the Frobenius automorphism 03C3 In this case the
assertion reduces to W(R)Q = W (k)Q = Qp. 
We retum to the notations introduced in the proof of Theorem (3.8). Let SI be a
geometric point above si which factors through Spec R. The result of Katz quoted
above yields a commutative diagram of exact faithful tensor functors

Here F-Isoc(9)const denotes the full tannakian subcategory of F-isocrystals on
,S’ with constant Newton polygons. The functor asl is an equivalence of categories.
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Starting now with the F-isocrystal with G-structure M on S, our assumption on
M implies that the functor M factors as

The above diagram therefore yields an isomorphism of tensor functors

which had to be shown. ~

COROLLARY 3.10 Let S be a locally noetherian scheme of characteristic p and
let M be an F-isocrystal with G-structure on S. Let bo E B( G)basic. Then the set

is closed in S.

Proof. Indeed, by Theorem (3.8) the set above is open and closed in the set
appearing in (3.6), (ii). This follows from the two following trivial observations:

As B. Totaro pointed out to us, Theorem (3.8) allows us to strengthen the statement
of the assertion (i) of Theorem (3.6). The following proof was worked out jointly
with B. Totaro. Recall from (1.15) the map,: B(G) - 03C01 (G)r.

COROLLARY 3.11 Let S be a connected locally noetherian scheme of char-
acteristic p and let M be an F-isocrystal with G-structure on S. The function
on S,

is constant, provided that at least one of the following conditions is satisfied:
- the derived group of G is simply connected, or
- S is locally of finite type over a field.
Proof. Let us first assume that the derived group of G is simply connected.

Using the bijection 7r1 (G)r = 7r1 (Gab)r we are then immediately reduced to the
case where G = T is a torus. In this case the map ~ yields a bijection

By Theorem (3.6), (i) the function in question is constant up to torsion, hence can
assume only finitely many values. Therefore Corollary (3.10) implies the assertion
in this case.
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The case of a general group will be reduced to the previous one using a z-
extension a: G --t G ([K5], Sect. 1). Since we are assuming now that S is of
finite type over a field we may, in order to prove that s H y(b(s)) is unchanged
under specialization, base change the whole situation to Spec k{t} where k is an
algebraically closed field and where k{t} is the henselization at (t) of k[t]. The
advantage over the power series ring is that the facts we are going to need are in the
literature, although they should also hold true in the other case. The result follows
from the following lemma.

LEMMA 3.12 Let

be a z-extension. Let M be an F-isocrystal with G-structure on Spec k{ t}, wherek is an algebraically closed field. Then its inverse image MR on R = k{ t}perf
comes from an F-isocrystal with G-structure (reduction of structure from G to G).

Proof. We need to use the description of the category of F-isocrystals over
Spec k{ t} given in [Ka], (2.4). (The reader checks readily that k{t} satisfies the
conditions of loc. cit.). Let B be the p-adic completion of the henselization of
W(k)[t] in (p, t) and let E : B - B be the lifting of the Frobenius endomorphism
Q of k{ t} which sends t to tP and induces the Frobenius automorphism on W (k).
To give an F-isocrystal over Spec k{t} is equivalent to giving a free module M
of finite rank over B[l/p], an integrable W(k)Q-connection V and a horizontal
isomorphism

such that (M, V) is induced by a pair (Mo, Vo) where Mo is a free B-module and
Vo is a nilpotent W (k)-connection. The choice of E defines injections B - W (R)
and B [ 1 /p] - W (R)Q and the inverse image of the F-isocrystal on R corresponds
under this equivalence to tensoring the isomorphism (1) up to W (R)Q and forget-
ting about B7 .

Let now M be our F-isocrystal with G-structure on Spec k{t}. It therefore
defines a fibre functor

and an isomorphism of fibre functors

By our above remarks it suffices to show that wm is induced by a fibre
functor wû on RepQ G and that the isomorphism F lifts to an isomorphism
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But w M differs from the obvious fibre functor by an element on H1 (Spec B [1 /p],
G) (étale or fppf topology, it comes to the same).

Consider the long exact cohomology sequence where we have set X = Spec B

The image of wM in H2(X~,T) is a torsion element which is fixed under the
induced action E*. For the existence of wM it suffices to show that this element

is trivial. Similarly, the obstruction to lifting the isomorphism F into F lies in
HI (X~, T) and it therefore suffices to show that this last group is trivial. Now T
is a product of tori of the form ResE/Qp Gm. Therefore, using Shapiro’s Lemma
we are reduced to proving the following statements. Let A be a complete discrete
valuation ring of unequal characteristic (0, p) with algebraically closed residue field
k and with uniformizer 1r. Let B be the p-adic completion of the henselization of
A[t] in (03C0, t). Put X = Spec B and X,, = Spec B [1 /7r]. Let E be the endomorphism
of B lifting the Frobenius Q on B/03C0B which sends t to tP and induces on A an
extension of the Frobenius automorphism of W (k). Then

Here the first statement follows immediately from the fact that B[l/1r] is fac-
torial. For the second statement we first reduce ourselves to a geometric situa-
tion. Let B° be the henselization of A[t] in (7r, t) and put X° = Spec B° and
X~ = Spec BO[l/1r]. The homomorphism B° 2013 B (= p-adic completion) induces
a natural map

By a general theorem of Fujiwara [F], (6.6.4), and of Huber [H], (3.2.11), this
map is an isomorphism. We are therefore reduced to proving H2(X~, 1 (0).

If f :f- p we have H2(Xo~, 03BCl) = (0) by the classical purity theorem (this special
case is in fact an easy consequence of the smooth base change theorem).

Consider now the case l = p. An easy reduction allows us to assume that
A contains a primitive p-th root of unity (form A’ = A[(p] and extend E by
E((p) = (p so that it commutes with the action of the Galois group Z/(p - 1)Z;
then observe that taking invariants under Z/(p - 1 ) Z in an Fp-vector space is an
exact functor). We may therefore apply the theorem of Bloch and Kato [BK], *

Corollary (1.4.1) which defines a canonical filtration of H2 (Xo~ ’ 03BCp) and identifies
the associated graded. Their result shows that the associated graded is isomorphic
to a direct sum of groups of one of the following forms

* We thank L. Illusie for pointing out this reference to us.
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where we have put Y = Spec B/03C0B.
The action of E* respects this filtration and induces on the associated graded

the action induced by the Frobenius Q on Y, which evidently is zero. It follows that
E* is a nilpotent endomorphism and hence can have no invariants. o

3.13 - Theorem (3.6) and Corollary (3.11) above suggest the following con-
jecture. Let bo, b, e B(G) with bo - bl and q(bo) = ,(b1). Then there exists a
scheme S of characteristic p and an F-isocrystal M on S with G-structure such
that

where so and s are points of S’ such that so is a specialization of s 1.
A weakened version of the conjecture above would be that there exists an

F-isocrystal M on S’ with G-structure such that V(bM(Si)) = v(b2), i = 1, 2.
However, the stronger version seems reasonable to us.

In the case where G = GLn and where bo and bl are given by the F-isocrystals
of p-divisible groups this conjecture is essentially due to Grothendieck [G] who
asked for a p-divisible group over ,S’ with fibres at s 1 resp. its specialization so to
give the elements bl resp. bo. A similar conjecture can be posed in the context of
p-divisible groups with additional structure, as in (v) of Remark (3.4), assuming
that the group G defined there is connected. Results announced by Oort ([O], Cor.
2.8) confirm this conjecture in the case of the group of symplectic similitudes.
F. Oort informs us that he can also handle the case of GLn, i.e. Grothendieck’s
original conjecture.

4. Hodge points

In this Section we give a generalization of Mazur’s Theorem.

4.1 - In this Section we use the notations introduced in (1.1). In addition we
assume that the group G is quasi-split and split over an unramified extension of F.
We fix a hyperspecial point Ao in the building of G over F. Let V be the orbit of Ao
under G (L) in the building of G over L. There is an action on V of the semi-direct
product of G(L) and (a), the infinite cyclic group generated by 03C3.

Let K C G (L) denote the stabilizer of Ao E V. Then there are canonical
bijections (comp. [K3], (1.3))

Here T denotes a maximal torus contained in a Borel subgroup in G, with Weyl
group Ç2. We denote by
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the map induced by composition of the above identifications. It depends only on
the G(F)-orbit of Ao. For A e V and b E G(L) we put

The element MA (b) E X*(T) /03A9 is called the Hodge point associated to A and
b. We have the following identities.

An element IL E X*(T)/S2 defines in the obvious way an element in ?Tl(G).
Its image in 7ri (G)r will be denoted by 03BCb. On the other hand, IL may not be
invariant under u. We define p E (X*(T)Q /03A9)(03C3) to be the class of the average
of the representative of IL in the closed Weyl chamber corresponding to a Borel
subgroup in G containing T over its orbit under a.

THEOREM 4.2 Let b E G(L) with corresponding a-conjugacy class b E B(G).
Let A E V.

(i) The elements y (b) and 03BC039B(b)  of 03C01(G)r are identical.
(ii) We have the following relation between elements of N(G),

Before giving the proof we give an example.

EXAMPLE 4.3 Let G = GL(V). The elements of V are just OL-lattices in V 0 L.
Let A and A’ be two lattices. Then there are uniquely defined integers

such that

Here 1r dénotes a uniformizing element. Then

In case A’ = bQ(A), the element inv(A, A’) is called the Hodge polygon of A
and b E G(L). The case when L = Ko and when A’ C A is considered in [Ka].
In this case it is proved in [Ka], 1.4.1 (Mazur’s Theorem) that the Hodge polygon
of A and b lies below the Newton polygon of b and that both polygons have the
same end points. The proof of loc. cit. immediately generalizes to the slightly more
general case considered here.
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Proof of Theorem (4.2): (i) We first consider the case when the derived group
of G is simply connected. In this case the assertion is equivalent to the statement
that b and 03BCA(b) have identical images in B(Gab) = X*(Gab)r. The torus Gab
is unramified, let Gab(OL) be the maximal compact subgroup of Gab(L). Then A
defines a well-defined coset

The image of J-LA(b) in B(Gab) is given by the Q-conjugacy class of

where t is a representative of t and where bab denotes the image of b in Gab(L). Since
Gab is unramified, the Q-conjugacy class of this element is well-determined (cf.
(1.15), (ii)) and the assertion follows in this case. The general case is immediately
reduced to the previous case by making use of an unramified z-extension G - G,
comp. [K3], Section 3.

(ii) Let p: G -&#x3E; G’ = GL(V) be a representation. By choosing an OL-lattice in
V 0 L, rational over F and fixed under the stabilizer of Ao in G(L), we obtain a
G(L) x (a)-equivariant map

where V’ denotes the set of OL-lattices in V ® L. Let T’ be a maximal torus of G’
containing g(T) and let S2’ be its Weyl group. Then

In particular by example (4.3) we have

The last element on the right is of course Q-invariant. Therefore applying the
previous result to all elements of the orbit of the representative of 4A (b) under Q
and adding up the results we obtain that

This being true for any representation p, we thus conclude by appealing to
(2.2), (iv). 0
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