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ABSTRACT. We form generating series of special divisors, valued in the
Chow group and in the arithmetic Chow group, on the compactified
integral model of a Shimura variety associated to a unitary group of
signature (n — 1, 1), and prove their modularity. The main ingredient of
the proof is the calculation of the vertical components appearing in the
divisor of a Borcherds product on the integral model.
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1. INTRODUCTION

The goal of this paper is to prove the modularity of a generating series of
divisors on the integral model of a Shimura variety associated to a unitary
group of signature (n — 1,1).

This generating series is an arithmetic analogue of the classical theta
kernel used to lift modular forms from U(2) and U(n). In a similar vein,
our modular generating series can be used to define a lift from classical
cuspidal modular forms of weight n to the codimension one Chow group of
the unitary Shimura variety.
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1.1. Background. The construction of modular generating series whose
coefficients are geometric cycles begins with the work of Hirzebruch-Zagier
[HZ76], who considered the cohomology classes of divisors 7'(m) on com-
pactified Hilbert modular surfaces over C.

An extensive study of the modularity of generating series for cohomology
classes of special cycles in Riemannian locally symmetric spaces S = I'\ X
was undertaken by in a series of papers [[XN&6, KN&7, KM90] by the third
author and John Millson. The main technical tool was a family of Siegel
type theta series valued in the deRham complex of S, from which modularity
was inherited by the image in cohomology.

The special cycles involved are given by an explicit geometric construc-
tion, and so, in the cases where S is (the set of complex points of) a Shimura
variety, it is natural to ask whether the analogous generating series for spe-
cial cycle classes in the Chow group is likewise modular. In the case of
Shimura varieties of orthogonal type, this question was raised in [Kud97a].
Of course, up to (often non-trivial) issues about compactifications, the mod-
ularity of the image of such a series under the cycle class map to cohomology
follows from the work of Kudla-Millson. Indeed, in some cases, this already
implies the modularity of the Chow group generating series. See, for exam-
ple, [Zag85, YZZ09).

The generating series for the images of Heegner points in the Jacobian of a
modular curve was proved to be modular by Gross-Kohnen-Zagier [GKZ87].
Motivated by their work, Borcherds [Bor99] proved the modularity of the
generating series for Chow groups classes of Heegner (=special) divisors on
Shimura varieties of orthogonal type. His method depended on the miracu-
lous construction of a family of meromorphic modular forms on such varieties
via a regularized theta lift [Bor98], whose explicitly known divisors provide
enough relations among such classes to prove modularity.

The passage to cycles on integral models of Shimura varieties and the
generating series for their classes in the arithmetic Chow groups was initiated
in [Kud97b]. In the case of special divisors on Shimura curves, or, more
generally, Shimura varieties of orthogonal type, the required Green functions
constructed explicitly there are derived from the KM theta series. Quite
complete results on the modularity properties of generating series for special
cycles on Shimura curves were obtained in the book [KKRY06]. There the
case of arithmetic 0-cycles is also treated and the corresponding generating
series is shown to coincide with the central derivative of a weight 3/2 Siegel
genus 2 incoherent Eisenstein series. We will not include a further discussion
of such higher codimension cases here.

In [Bru02], the first author generalized Borcherd’s regularized theta lift
by allowing harmonic Maass forms as inputs. This provides an alternative
construction of Green functions for special divisors on Shimura varieties of
orthogonal type, and has the advantage that one can try to use the method of
Borcherds to establish modularity of the generating series built with these
Green functions. The main issue in doing this is that the divisor of the



MODULARITY OF UNITARY GENERATING SERIES 3

Borcherds form is, a priori, only known on the generic fiber and hence more
detailed information is needed on its extension to the integral model. In
the case of Hilbert modular surfaces, where the arithmetic cycles are in-
tegral extensions of the Hirzebruch-Zagier curves T'(m), this is carried out
in [BBGKO7]. Recent advances in our knowledge of the integral models
for Hodge type Shimura varieties, [Madb, Mada], in particular the Shimura
varieties of orthogonal type over QQ, suggest that a general result about mod-
ularity of the generating series for classes of special divisors in arithmetic
Chow groups is now accessible.

In this paper we deal with unitary Shimura varieties for signature (n —
1,1). In this case a definition of arithmetic special cycles was given in [[KR 11,
KR 14], and was extended to the toroidal compactification in [How15]. The
Bruinier-Borcherds construction of Green functions was carried over to the
unitary case in [Hofl4, BHY15]. The subject matter of the present paper
is a proof of the modularity of the generating series for these classes of
arithmetic special divisors.

1.2. Statement of the main result. Fix a quadratic imaginary field

k < C of odd discriminant disc(k) = —D. We are concerned with the

arithmetic of certain unitary Shimura varieties, whose definition depends on

the following initial data: let Wy and W be k-hermitian spaces of signature

(1,0) and (n—1, 1), respectively, where n > 3. We assume that these spaces

each admit an O-lattice that is self-dual with respect to the hermitian form.
Attached to this data is a reductive algebraic group

(1.2.1) G < GU(Wp) x GU(W)

over Q, defined as the subgroup on which the unitary similitude characters
are equal, and a compact open subgroup K < G(Af) depending on the
above choice of self-dual lattices. As explained in §2, there is an associated
hermitian symmetric domain D, and a stack Sh(G, D) over k whose complex
points are identified with the orbifold quotient

Sh(G,D)(C) = G(Q\D x G(Aj)/K.

This is the unitary Shimura variety of the title.

This stack can be interpreted as a moduli space of pairs (Ap, A) in which
Ap is an elliptic curve with complex multiplication by O, and A is a princi-
pally polarized abelian scheme of dimension n endowed with an Og-action.
The pair (Ap, A) is required to satisfy some additional conditions, which
need not concern us in the introduction.

Using the moduli interpretation, one can construct an integral model of
Sh(G, D) over Ok. In fact, following work of Pappas and Kramer, we explain
in §2.3 that there are two natural integral models related by a morphism
Skra — Spap- Fach integral model has a canonical toroidal compactification
whose boundary is a disjoint union of smooth Cartier divisors, and the above
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morphism extends uniquely to a morphism
(1.2.2) Skra = SPap

of compactifications.

Each compactified integral model has its own desirable and undesirable
properties. For example, S . is regular, while Sf’;ap is not. On the other
hand, every vertical (i.e. supported in nonzero characteristic) Weil divisor
on Sg,, has nonempty intersection with the boundary, while S, has certain
exceptional divisors in characteristics p | D that do not meet the boundary.
An essential part of our method is to pass back and forth between these two
models in order to exploit the best properties of each. For simplicity, we
will state our main results in terms of the regular model Sg ..

In §2 we define a distinguished line bundle w on Sk;a, called the line
bundle of weight one modular forms, and a family of Cartier divisors Zgya(m)
indexed by integers m > 0. These special divisors were introduced in [KR11,
KR 14], and studied further in [BHY 15, How12, How15]. For the purposes of
the introduction, we note only that one should regard the divisors as arising
from embeddings of smaller unitary groups into G.

Denote by

Ch(b (Sféra) = Pic(sﬁra) ®z Q
the Chow group of rational equivalence classes of divisors with Q coeflicients.
Each special divisor Zk;,(m) can be extended to a divisor on the toroidal
compactification simply by taking its Zariski closure, denoted Zj;, . (m). The
total special divisor is defined as

(123) Zf(orta(m) = Zéra(m) + BKl‘a(m) € Ch(b(‘sfzra)
where the boundary contribution is defined, as in (5.3.3), by

Bira(m) = % Z#{x € Lo : {x,z) =m} - Sgpa(P).
®

The notation here is the following: The sum is over the equivalence classes
of proper cusp label representatives ® as defined in §3.1. These index the
connected components Sf.,. (®) < Sk, of the boundary'. Inside the sum,
(Lo,<{-,-)) is a hermitian Og-module of signature (n — 2,0), which depends
on .

The line bundle of modular forms w admits a canonical extension to the
toroidal compactification, denoted the same way. For the sake of notational
uniformity, we textend (1.2.3) to m = 0 by setting

Zi35(0) = w ! + Exc € Chy(Sk,a)-

Here Exc is the exceptional divisor of Theorem 2.3.2. It is a reduced effective
divisor supported in characteristics p | D, disjoint from the boundary of the
compactification. The following result appears in the text as Theorem 7.1.5.

LAfter base change to C, each Sff,, (®) decomposes into h connected components, where
h is the class number of k.
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Theorem A. Let xy : (Z/DZ)* — {£1} be the Dirichlet character deter-
mined by k/Q. The formal generating series

Z ZIt(Orta q € Ch@(‘SKra)[[ ]]

m=0

is modular of weight n, level T'o(D), and character x}. in the following sense:
for every Q-linear functional o : Chb(&'ﬁra) — C, the series

D (2 (m)) - g™ e C[[q]]

m=0
18 the g-expansion of a classical modular form of the indicated weight, level,
and character.

In fact we prove a stronger version of this theorem. Denote by (/jl(a (Skra)
the Gillet-Soulé [GS90] arithmetic Chow group of rational equivalence classes
of pairs Z = (Z,Gr), where Z is a divisor on S, with rational coefficients,
and Gr is a Green function for Z. We allow the Green function to have
additional log-log singularities along the boundary, as in the more general
theory developed in [BGIKKO7]. See also [BBGIK07, Howl5].

In §7.3 we use the theory of regularized theta lifts to construct Green
functions for the special divisors Z{£t (m), and hence obtain arithmetic di-
visors

~1
Zf(?a( ) € Ch@(sﬁra)
for m > 0. We also endow the line bundle w with a metric, and the resulting
metrized line bundle @ defines a class

219 (0) = @~ + (Exc, — log(D)) € Ch(Sky),

where the vertical divisor Exc has been endowed with the constant Green
function —log(D). The following result is Theorem 7.3.1 in the text.

Theorem B. The formal generating series

Z ZIt(Orta q € ChQ(‘SKra)[[ ]]

m=0

is modular of weight n, level T'o(D), and character x}., where modularity is
understood in the same sense as Theorem A.

Remark 1.2.1. Theorem B implies that the Q-span of the classes ZAfgfa(m)
is finite dimensional. See Remark 7.1.2.

Remark 1.2.2. There is a second method of constructing Green functions for
the special divisors, based on the methods of [Kud97b], which gives rise to a
non-holomorphic variant of &5(7’) It is a recent theorem of Ehlen-Sankaran
[[£516] that Theorem B implies the modularity of this non-holomorphic gen-
erating series. See §7.4.
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The motivating desire for the modularity result of Theorem B is that it
allows one to construct arithmetic theta lifts. If g(7) € S,(I'o(D), x%) is a
classical scalar valued cusp form, we may form the Petersson inner product

0(9) (3, 9per € Che(Sia)

as in [[Kud04]. One expects, as in [loc. cit.], that the arithmetic intersection
pairing of 5(9) against other cycle classes should be related to derivatives
of L-functions, providing generalizations of the Gross-Zagier and Gross-
Kohnen-Zagier theorems. Specific instances in which this expectation is
fulfilled can be deduced from [BHY15, Howl2, Howl5]. This will be ex-
plained in the companion paper [BHI™].

As this paper is rather long, we explain in the next two subsections the
main ideas that go into the proof of Theorem A. The proof of Theorem B
is exactly the same, but one must keep track of Green functions.

1.3. Sketch of the proof, part I: the generic fiber. In this subsection
we sketch the proof of modularity only in the generic fiber. That is, the
modularity of

(1.3.1) S 2 (m) - 4" € Chb(Skv e Tal]
m=0
The key to the proof is the study of Borcherds products [Bor98, Bor99].

A Borcherds product is a meromorphic modular form on an orthogonal
Shimura variety, whose construction depends on a choice of weakly holomor-
phic input form, typically of negative weight. In our case the input form is
any

(1.3.2) )= > e(m)q™e My" (D, X2,
m>»>—a0

where the superscripts ! and oo indicate that the weakly holomorphic form
f(7) of weight 2 — n and level T'y(D) is allowed to have a pole at the cusp
o0, but must be holomorphic at all other cusps. We assume also that all
c(m) € Z.

Our Shimura variety Sh(G, D) admits a natural map to an orthogonal
Shimura variety. Indeed, the k-vector space

V = Homy (W, W)

admits a natural hermitian form (-, -) of signature (n — 1, 1), induced by the
hermitian forms on Wy and W. The natural action of G on V determines
an exact sequence

of reductive groups over Q.

We may also view V as a Q-vector space endowed with the quadratic
form Q(z) = (x, ) of signature (2n — 2,2), and so obtain a homomorphism
G — SO(V). This induces a map from Sh(G,D) to the Shimura variety
associated with the group SO(V).
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After possibly replacing f by a nonzero integer multiple, Borcherds con-
structs a meromorphic modular form on the orthogonal Shimura variety,
which can be pulled back to a meromorphic modular form on Sh(G, D)(C).
The result is a meromorphic section 1 (f) of w*, where the weight

k:Z’yr'cr(O) eZ
r|D

is the integer defined in §5.3. The constant v, = Hp‘rfyp is a 4" root of
unity (with 73 = 1) and ¢,(0) is the constant term of f at the cusp

;= 55 € To(D)\P'(Q),
in the sense of Definition 4.1.1.

Initially, ¥(f) is characterized by specifying — log ||¢(f)||, where || - || is
the Petersson norm on w®. In particular, 1(f) is only defined up to rescal-
ing by a complex number of absolute value 1 on each connected component
of Sh(G, D)(C). We prove that, after a suitable rescaling, ¥(f) is the ana-
lytification of a rational section of the line bundle w* on Sh(G, D). In other
words, the Borcherds product is algebraic and defined over the reflex field k.
This result is not really new, as one could first prove the analogous result on
the orthogonal Shimura variety using the explicit g-expansion of Borcherds,
as is done in [Hor14], from which the result on Sh(G, D) follows immediately.
In any case, the algebraicity and descent to the reflex field allow us to view
¥ (f) as a rational section of w* both on the integral model Sk, and on its
toroidal compactification.

We compute the divisor of 1 (f) on the generic fiber of the toroidal com-
pactification S Ik and find

(1.3.4) div(y () = Y, c(=m) - Zi&,(m) k.

m>0
The calculation of the divisor on the interior Sk, follows immediately
from the corresponding calculations of Borcherds on the orthogonal Shimura
variety. The multiplicities of the boundary components are computed using
the results of [[Kud16], which describe the structure of the Fourier-Jacobi
expansions of ¥(f) along the various boundary components.

The cusp 07 = 1/D is T'g(D)-equivalent to the usual cusp at oo, and so
c1(0) = ¢(0). Tt follows from this and (1.3.4) that

(1.3.5) D wer(0) - w = Y e(—m) - Zi(m)

r|D m=0
r>1
in Ch(l@ (Skra /k)' In §4.2 we construct for each 7 | D an Eisenstein series

Ex(r) = )] ex(m)-q" € My(D,x}),

m=0
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which, by a simple residue calculation, satisfies

e (0) = — Z c(—m)e,(m).

m>0

Substituting this expression into (1.3.5) yields

(1.3.6) 0= Z c(—m) - < 1o (m) e + Z yrer(m) - w),

m=0 r|D
r>1

where we have also used the relation e, (0) = 0 for r > 1.
We now invoke a variant of the modularity criterion of [Bor99], which is
our Theorem 4.2.3: if a formal g-expansion

Y, d(m)q™ € C[[q]]

m=0
satisfies 0 = >, -, c(—m)d(m) for every input form (1.3.2), then it must be
the g-expansion of a modular form of weight n, level T'g(D), and character
X It follows immediately from this and (1.3.6) that the formal g-expansion

Z <Zf<orta(m)/k + Z Yrer(m) - w) g

m=0 r|D
r>1

is modular in the sense of Theorem A. Rewriting this as

D2 d™ D B (T) - w

m=0 r|D
r>1

and using the modularity of each Eisenstein series F,(7), we deduce that
(1.3.1) is modular.

1.4. Sketch of the proof, part II: vertical components. In order to
extend the arguments of §1.3 to prove Theorem A, it is clear that one should
attempt to compute the divisor of 4(f) on the integral model S, and hope
for an expression similar to (1.3.4). Indeed, the bulk of this paper is devoted
to precisely this problem.

The subtlety is that both div(y(f)) and Z{£ (m) will turn out to have
vertical components supported in characteristics dividing D. Even worse, in
these bad characteristics the components of the exceptional divisor Exc <
Siira do not intersect the boundary, and so the multiplicities of these com-
ponents in div(e(f)) cannot be detected by examining the Fourier-Jacobi
expansions of ¥ (f).

This is where the second integral model Sl’:‘iap plays an essential role. The
morphism (1.2.2) sits in a cartesian diagram

*
Exc —— 8%,

.

Sing — 8§,
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where the singular locus Sing Sl’:“,ap is the reduced closed substack of points
at which the structure morphism 8§, & — Spec(Op) is not smooth. It is 0-
dimensional and supported in characteristics dividing D. The right vertical
arrow restricts to an isomorphism

(1.4.1) Skra ~ Exc = Sf, \ Sing.
For each connected component s € my(Sing) the fiber

Exc, = Exc X ox
§ SPap

is a smooth, irreducible, vertical Cartier divisor on S ., and Exc = | |, Excs.

As Sp,, has geometrically normal fibers, every vertical divisor on it meets
the boundary. Thus one could hope to use (1.4.1) to view ¥ (f) as a ratio-
nal section on Sf)ap, compute its divisor there by examining Fourier-Jacobi
expansions, and then pull that calculation back to &g,

This is precisely what we do, but there is an added complication: The
line bundle w on (1.4.1) does not extend to Spap» and similarly the divisor
Z .(m) on (1.4.1) cannot be extended across the singular locus to a Cartier
divisor on Sf;ap. However, if you square the line bundle and the divisors,
they have much better behavior. This is the content of the following result,
which combines Theorems 2.4.3, 2.5.2, and 2.6.3 of the text.

Theorem C. There is a unique line bundle Qp,p, on Sf’iap whose restriction

to (1.4.1) is isomorphic to w?. Denoting by Qya its pullback to Sf;.,, there

18 an isomorphism

ra’

? =~ Qi ® O(Exc).
Similarly, there is a unique line bundle Cartier divisor yg;tp( m) on Sfﬁap

whose restriction to (1.4.1) is equal to 2Z{ (m). Its pullback Yira(m) to
Skra satisfies

2Zkra(m) = Vira(m) + Z #{x € Ly : {x,z) = m} - Excs.
semp(Sing)

Here L is a positive definite self-dual hermitian lattice of rank n associated
to the singular point s, and {-,-) is its hermitian form.

Setting Y& (0) = Qp,

Pap we obtain a formal generating series

Pap’
Ig(;:p (] € ChQ(SPap)[[ ]]
m=0

whose pullback via Sg,, — Sp,, is twice the generating series of Theorem
A, up to an error term coming from the exceptional divisors. More precisely,
Theorem C shows that the pullback is

2 ) Zi8(m) " = Y 9s(7) - Excy € Chy(Sk.a)lall,
m=0 semo(Sing)

where each U4(7) is a classical theta function whose coefficients count points
in the positive definite hermitian lattice L.
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Over (1.4.1) we have w? = Q]f,ap,
rational section of the line bundle Qpap on Sf’;ap. We examine its Fourier-
Jacobi expansions along the boundary components and are able to compute
its divisor completely (it happens to include nontrivial vertical components).
We then pull this calculation back to S, , and find that 4(f), when viewed
as a rational section of w”, has divisor

aiv () = 3 e-m) - 24 m) + 23 0) - (8 4 Y Sy, )

which allows us to view 1(f)? as a

m>0 r|D plr
Z #{x e Ly : {x,x) = m} - Excg
m>0 semp(Sing)
— k- div(0)

where § € Oy is a square root of —D, p < Oy is the unique prime above
p| D, and S, JF, is the mod p fiber of S, ., viewed as a divisor. This is

stated in the text as Theorem 5.3.3. Passing to the generic fiber recovers
(1.3.4), as it must.
As in the argument leading to (1.3.6), this implies the relation

0= > e(- )(zfg;a( )—% > #{$ELS:<x,x>=m}-EXCS>

m=0 semo (Sing)

+ Z C(—m) : Z ’Yrer(m) (w - % Z Kra/IF';;)

m=0 r|D plr
r>1

in the Chow group of Sf,,, and the modularity criterion implies that

ra’

> 2 (m) g™ —% D1 du(r) - Excy

mz=0 semo(Sing)
EXC
+ Z ’YTET’(T) Y- ZSKra/]Fp
r|D plr
r>1

is a modular form. As the theta series J4(7) and Eisenstein series E,(7) are
all modular, so is Y, Z{2* (m)¢™. This completes the outline of the proof of
Theorem A.

Remark 1.4.1. The work of Hérmann [Horl4] includes the calculation of
divisors of Borcherds products on integral models of orthogonal Shimura
varieties, but with strong restrictions on the level. In particular, there is no
analogue in that work of the kind of bad reduction appearing in our Shimura
variety at primes dividing D, and all of the Borcherds products considered
by Hérmann have divisors with no vertical components. This is in stark
contrast to the divisor div(e(f)) computed above.
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1.5. The structure of the paper. We now briefly describe the contents
of the various sections of the paper.

In §2 we introduce the unitary Shimura variety associated to the group
G of (1.2.1), and explain its realization as a moduli space of pairs (Ag, A) of
abelian varieties with extra structure. We then review the integral models
constructed by Pappas and Kramer, and the singular and exceptional loci
of these models. These are related by a cartesian diagram

Exc —— Skra

|

Sing - SPapa

where the vertical arrow on the right is an isomorphism outside of the 0-
dimensional singular locus Sing. We also define the line bundle of modular
forms w on Skra. The first main result of §2 is Theorem 2.4.3, which asserts
the existence of a bundle Qp,;, on Sp,p, restricting to w? over the complement
of the singular locus. We then define the Cartier divisor Zk;,(m) on Skra-
The second main result of the section is Theorem 2.5.2, which asserts the
existence of a unique Cartier divisor Vpap(m) on Spap whose restriction to
the complement of the singular locus coincides with 2Zk,,(m). The final
main result is Theorem 2.6.3, which completes the proof of Theorem C.

In §3 we describe the canonical toroidal compactifications S, — Sl’:“,ap,
and the structure of their formal completions along the boundary. In §3.1
and §3.2 we introduce the cusp labels ® that index the cusps, and their
associated mixed Shimura varieties. In §3.3 we construct smooth integral
models Cp of these mixed Shimura varieties, following the general recipes
of the theory of arithmetic toroidal compactification, as moduli space of 1-
motives. In §3.4 we give a second moduli interpretation of these integral
models. The expressions for the Fourier-Jacobi expansions based on this
second interpretation are more easily related to Fourier-Jacobi expansions
on orthogonal Shimura varieties. This is one of the key technical steps in
our work; see the remarks at the beginning of §3 for further discussion. In
§3.5 and §3.6 we describe the line bundle of modular forms and the spe-
cial divisors on the boundary charts. Theorem 3.7.1 describes the canonical
toroidal compactifications Sg ., and Sf’iap and their properties. In §3.8 we

describe the Fourier-Jacobi expansions of sections of w” on Skypa in alge-
braic language, and in §3.9 we explain how to express these Fourier-Jacobi
coefficients in classical complex analytic coordinates.

In §4 we review the weakly holomorphic modular forms f e M ,i’OO(D, X),
whose regularized theta lifts are used to define the Borcherds forms that
ultimately provide relations in (arithmetic) Chow groups. We also state in
Theorem 4.2.3 a variant of the modularity criterion of Borcherds.
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In §5 we consider unitary Borcherds forms associated to weakly holomor-
phic forms

(1.5.1) e My%, (D, xp?).

Ultimately, the integrality properties of the unitary Borcherds forms will be
deduced from an analysis of their Fourier-Jacobi expansions. These expan-
sions involve certain products of Jacobi theta functions, and so, in §5 we
review facts about the arithmetic theory of Jacobi forms, viewed as sections
of a suitable line bundle Jj ,, on the universal elliptic curve £ — ) over
Z. The key point is to have a precise description of the divisor of the basic
section ©2* € HY(&, Jy 12) of Proposition 5.1.4. In §5.2 we prove Borcherds
quadratic identity, allowing us to relate Jp 1 to a certain line bundle deter-
mined by a Borcherds form on the boundary component Bg associated to a
cusp label ®. After these technical preliminaries, we come to the statements
of our main results about unitary Borcherds forms. Theorem 5.3.1 asserts
that, for each weakly holomorphic form (1.5.1) satisfying integrality condi-
tions on the Fourier coefficients ¢(—m) with m > 0, there is a rational section
¥ (f) of the line bundle w* on S;,, with explicit divisor on the generic fiber
and prescribed zeros and poles along each boundary component. Moreover,
for each cusp label @, the leading Fourier-Jacobi coefficient vy of ¢(f) has
an expression as a product of three factors, two of which, P§** and P‘g‘”’,
are constructed in terms of ©2*. Theorem 5.3.3 gives the precise divisor of
P(f) on Sf,., and Theorem 5.3.4 gives an analogous formula on Spap- An
essential ingredient in the calculation of these divisors is the calculation of
the divisors of the factors Py and Pgo’", which is done in §5.4.

In §6 we prove the main results stated in §5. In §6.1 we construct a vector
valued form f from (1.5.1), and give expressions for its Fourier coefficients
in terms of those of f. The vector valued form f defines a Borcherds form
¥ (f) on the symmetric space D for the orthogonal group of the quadratic
space (V, Q) and, in §6.2, we obtain the unitary Borcherds form 4 (f) as its
pullback to D. In §6.3 we determine the analytic Fourier-Jacobi expansion of
¥(f) at the cusp ® by pulling back the product formula for ¥ (f) computed
in [Kud16] along a one-dimensional boundary component of D. In §6.4 we
show that the unitary Borcherds form constructed analytically arises from
a rational section of w” and that, after rescaling by a constant of absolute
value 1, this section is defined over k. This is Proposition 6.4.3. In §6.5 we
complete the proofs of Theorems 5.3.1, 5.3.3, and 5.3.4.

In §7 we give the proofs of the modularity results discussed in detail earlier
in the introduction.

Finally, in §8, we provide some technical details omitted from or supple-
mentary to the earlier sections.

1.6. Thanks. The results of this paper are the outcome of a long term
project, begun initially in Bonn in June of 2013, and supported in a crucial
way by three weeklong meetings at AIM, in Palo Alto (May of 2014) and San
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Jose (November of 2015 and 2016), as part of their AIM SQuaRE’s program.
The opportunity to spend these periods of intensely focused efforts on the
problems involved was essential. We would like to thank the University of
Bonn and AIM for their support.

1.7. Notation. Throughout the paper, k = C is a quadratic imaginary field

of odd discriminant disc(k) = —D. Denote by § = /—D € k the unique

choice of square root with Im(d) > 0, and by 9 = §O the different of Ok.
Fix a m € Oy, satisfying O = Z + Zm. If S is any Op-scheme, define

es=1T®1—-1®ig(T) € O ®z Og
s =T®1—-1®ig(T) € O ®z Og,

where ig : O — Og is the structure map. The ideals generated by these
elements are independent of the choice of 7, and sit in exact sequences of
free Og-modules

a®z—ig(a)
[ AN

0 — (€s5) — O ®z Os % 0g — 0

and

0—>(63)—>Ok®2030@x’_)—i3(a)x>05—>0.

It is easy to see that €5 - €s = 0, and that the images of (eg) and (€g)
under

a®z—ig(a)

O ®z Os
O ®z Os

respectively, are both equal to the sub-sheaf 00g. This defines isomorphisms
of Og-modules

(1.7.1) (63) ~ 00g =~ (Es).

If N is an O ®7Og-module then N /eégN is the maximal quotient of N on
which Ok acts through the structure morphism ig : O — Og, and N /egN
is the maximal quotient on which O acts through the conjugate of the
structure morphism. If D € Og then more is true: there is a decomposition

(1.7.2) N =egN @egN,

Os
a®z—ig(@)x
— Os,

and the summands are the maximal submodules on which Oy acts through
the structure morphism and its conjugate, respectively. From this discussion
it is clear that one should regard eg and €g as integral substitutes for the
orthogonal idempotents in k ®g C = C x C. The Og-scheme S will usually
be clear from context, and we abbreviate eg and €g to € and €.

Let k*” < C be the maximal abelian extension of k in C, and let

art : k*\k* — Gal(k*"/k)

be the Artin map of class field theory, normalized as in [Mil05, §11]. As
usual, S = Resc/rGp, is Deligne’s torus.
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For a prime p < o0 we write (a,b), for the Hilbert symbol of a,b € Q.
Recall that the invariant of a hermitian space V over k, = k ®q Q, is
defined by

(1.7.3) inv,(V) = (det V, —D),,

where det V' is the determinant of the matrix of the hermitian form with
respect to a kp-basis. If p < 00 then V' is determined up to isomorphism by
its k,-rank and invariant. If p = 00 then V' is determined up to isomorphism
by its signature (r, s), and its invariant satisfies inv,, (V) = (—1)%.

2. UNITARY SHIMURA VARIETIES

In this section we define a unitary Shimura variety Sh(G,D) over k and
describe its moduli interpretation. We then recall the work of Pappas and
Kramer, which provides us with two integral models related by a surjection
Skra — Spap. This surjection becomes an isomorphism after restriction to
Ok[1/D]. We define a line bundle of weight one modular forms w and a
family of Cartier divisors Zk;a(m), m > 0, on Skya,

The line bundle w and the divisors Zk;a(m) do not descend to Sp,p, and
the main original material in §2 is the construction of suitable substitutes
on Spap. These substitutes consist of a line bundle Qp,;, that agrees with w?
after restricting to Og[1/D], and Cartier divisors Vpap(m) that agree with
2Zxya(m) after restricting to Og[1/D].

2.1. The Shimura variety. Let Wy and W be k-vector spaces endowed
with hermitian forms Hy and H of signatures (1,0) and (n — 1, 1), respec-
tively. We always assume that n > 3. Abbreviate

WR)=W®qR, W(C)=W®&eC, W(As)=W®&qAy,

and similarly for Wy. We assume the existence of Og-lattices ag < Wy and
a < W, self-dual with respect to the hermitian forms Hy and H. This is
equivalent to self-duality with respect to the symplectic forms

(2.1.1)  gpo(w,w') = TrgoHo (6 'w,w'),  P(w,w') = TryoH (6w, w).

This data will remain fixed throughout the paper.

As in (1.2.1), let G < GU(Wy) x GU(W) be the subgroup of pairs for
which the similitude factors are equal. The common similitude character is
denoted v : G — G,y,. The three reductive groups in (1.2.1) determine three
hermitian symmetric domains: let D(Wy) = {yo} be a one-point set, let

(2.1.2) D(W) = {negative definite k-stable R-planes y < W (R)},

and define
D = D(Wy) x D(W).
The lattices ay and a determine a maximal compact open subgroup

(2.1.3) K ={ge G(Ay) : gdg < ap and ga < a} < G(Ay),
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and the orbifold quotient
Sh(G,D)(C) = G(Q\D x G(Ay)/K

is the space of complex points of a smooth k-stack of dimension n — 1,
denoted Sh(G, D).
The symplectic forms (2.1.1) determine a k-conjugate-linear isomorphism

(2.1.4) Homy, (Wy, W) 2225 Homy (W, Wy),

characterized by ¢ (xwq,w) = ¥g(wg, z¥w). The k-vector space
V' = Homy (Wy, W)

carries a hermitian form of signature (n — 1, 1) defined by

(2.1.5) (x1,m9) = x5 011 € Endg(Wp) = k.

The group G acts on V' in a natural way, defining an exact sequence (1.3.3).
The hermitian form on V' induces a quadratic form Q(z) = (z,z), with
associated Q-bilinear form

(2.1.6) [z,y] = Tr oz, y).

In particular, we obtain a representation G — SO(V').

Proposition 2.1.1. The stack Sh(G,D)c has 21=oD)p2 connected compo-
nents, where h is the class number of k and o(D) is the number of prime
divisors of D. Every component is defined over the Hilbert class field H of k,
and the set of components is a disjoint union of simply transitive Gal(H /k)-
orbits.

Proof. Each g € G(Ay) determines Op-lattices
gag = Wy ngag, ga=W nga.

The hermitian forms Hy and H need not be Op-valued on these lattices.
However, if rat(r(g)) denotes the unique positive rational number such that

I/(g) 7 X
ran(v(g) < -

then the rescaled hermitian forms rat(v(g))~'Hy and rat(v(g)) "' H make
gag and ga into self-dual hermitian lattices.

As D is connected, the components of Sh(G, D) /c are in bijection with the
set G(Q)\G(Ay)/K. The function g — (gag, ga) then establishes a bijection
from G(Q)\G(Af)/K to the set of isometry classes of pairs of self-dual her-
mitian Og-lattices (af, a’) of signatures (1,0) and (n— 1, 1), respectively, for
which the self-dual hermitian lattice Homp, (af), a’) lies in the same genus as
Homp, (ap,a) < V.

Using the fact that SU(V') satisfies strong approximation, one can show
that there are exactly 2 =°(P), isometry classes in the genus of Homo, (ag, a),
and each isometry class arises from exactly h isometry classes of pairs (ag, a’).



16 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT, T. YANG

Identifying the connected components with pairs of lattices as above,
Deligne’s reciprocity law [Mil05, §13] reads as follows: if o € Aut(C/k)

and s € k* < G(k) are related by art(s) = o|gas, then

(ap,a’)? = (sap, sa’).
The right hand side obviously only depends on the image of s in k:x\l?:>< / @X,
and all claims about the Galois action follow easily. (]

It will be useful at times to have other interpretations of the hermitian
domain D. The following remarks provide alternate points of view. Define
isomorphisms of real vector spaces

(2.1.7) pr.: W(R) = eW(C), prg: W(R) =eW(C)
as, respectively, the compositions
W (R) — W (C) = eW (C) ®@eW (C) 22 e (C)
W (R) — W (C) = eW(C) ®eW (C) 22 W (C).
Remark 2.1.2. Define a Hodge structure
FYWo(C) =0, F'Wy(C) =eWy(C), F~'Ws(C) = Wy(C)

on Wy(C), and identify the unique point yg € D(Wy) with the corresponding
morphism S — GU(Wp)r. Every y € D(W) defines a Hodge structure

F'W(C) =0, F'W(C)=pr(y)®pre(y~), F'W(C)=W(C)

on W(C). If we identify y € D(W) with the corresponding morphism S —
GU(W )R, then for any point z = (yp,y) € D the product morphism

yo x y: S — GU(Wp)r x GUW )R

takes values in Gg. This realizes D < Hom(S,Gr) as a G(R)-conjugacy
class.

Remark 2.1.3. Each pair (yo,y) € D determines a line pr.(y) < W(C), and
hence a line

w = Home (Wy(C)/eWy(C), pr.(y) < eV(C).
This construction identifies
D= {weeV(C): [w,w] <0}/C* < P(eV(C))
as an open subset of projective space.

Remark 2.1.4. In fact, the discussion above shows that Sh(G,D) admits
a map to the Shimura variety defined the group U(V) together with the
homomorphism

hGross : S — U(V)(R), z — diag(l,...,1,2/2).
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Here we have chosen a basis for V(R) for which the hermitian form has
matrix diag(1l,—1,—1). Note that, for analogous choices of bases for Wy(RR)
and W (R), the corresponding map is

h:S— G(R), z > (2) x diag(z,...,z,2),

which, under composition with the homomorphism G(R) — U(V)(R), gives
haross. The existence of this map provides an answer to a question posed
by Gross: how can one explicitly relate the Shimura variety defined by
the unitary group U(V'), as opposed to the Shimura variety defined by the
similitude group GU(V), to a moduli space of abelian varieties? Our answer
is that Gross’s unitary Shimura variety is a quotient of our Sh(G, D), whose
interpretation as a moduli space is explained in the next section.

2.2. Moduli interpretation. We wish to interpret Sh(G, D) as a moduli
space of pairs of abelian varieties with additional structure. First, we recall
some generalities on abelian schemes.

For an abelian scheme 7w : A — S over an arbitrary base S, define the
first relative de Rham cohomology sheaf HéR(A) = Rlﬂ'*Q;‘/S as the relative

hypercohomology of the de Rham complex % /s The relative de Rham
homology

H{™(A) = Hom(Hg(A), Os)
is a locally free Og-module of rank 2 - dim(A), sitting in an exact sequence
0— FOHflR(A) — HfR(A) — Lie(A) — 0.

Any polarization of A induces an Og-valued alternating pairing on H{®(A),
which in turn induces a pairing

(2.2.1) FOH{R(A) ® Lie(4) — Og.
If the polarization is principal then both pairings are perfect. When § =
Spec(C), Betti homology satisfies H;(A,C) =~ H{E(A), and

A(C) = Hy(A,Z)\H{™(A)/FOH{ (A).

For any pair of nonnegative integers (s, t), define an algebraic stack M p
over k as follows: for any k-scheme S let M, (S) be the groupoid of triples
(A, ¢,1) in which

e A — S is an abelian scheme of relative dimension s + t,
e 1 : O — End(A) is an action such that the locally free summands

Lie(A) = eLie(A) @ €Lie(A)

of (1.7.2) have Og-ranks s and t, respectively,
e ) : A — AV is a principal polarization, such that the induced Rosati
involution f on End®(A) satisfies ¢(a)! = 1(@) for all o € O.

We usually omit ¢ and ¢ from the notation, and just write A € M, (5).
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Proposition 2.2.1. The Shimura variety Sh(G, D) is isomorphic to an open
and closed substack

(222) Sh(G,D) C M(Lo) X M(n—l,l)'
More precisely, Sh(G,D)(S) classifies, for any k-scheme S, pairs
(2.2.3) (Ao, A) € M o) (S) x M(nf1,1)(5)

for which there exists, at every geometric point s — S, an isomorphism of
hermitian Oy ¢-modules

(2.2.4) Homop,, (TKAQS, TEAS) =~ Homp,, (ao, a) ®Zy

for every prime (. Here the hermitian form on the right hand side of (2.2.4)
is the restriction of the hermitian form (2.1.5) on Homg(Wo, W) ® Q. The
hermitian form on the left hand side is defined similarly, replacing the sym-
plectic forms (2.1.1) on Wy and W with the Weil pairings on the Tate mod-
ules Ty Ao,s and Ty As.

Proof. As this is routine, we only describe the open and closed immersion
on complex points. Fix a point

(z,9) € Sh(G,D)(C).

The component g determines Oy-lattices gag = Wy and ga < W, which are
self-dual with respect to the symplectic forms rat(v(g))~to and rat(v(g)) 19
of (2.1.1), rescaled as in the proof of Proposition 2.1.1.

By Remark 2.1.2 the point z € D determines Hodge structures on Wy and
W, and in this way (z,g) determines principally polarized complex abelian
varieties

Ao(C) = gag\Wo(C)/F°(Wp)
A(C) = ga\W(C)/F*(W)
with actions of Ok. One can easily check that the pair (Ap, A) determines

a complex point of My gy Xg M(;,—1,1y, and this construction defines (2.2.2)
on complex points. O

The following lemma will be needed in §2.3 for the construction of integral
models for Sh(G, D).

Lemma 2.2.2. Fizx a k-scheme S, a geometric point s — S, a prime p, and
a point (2.2.3). If the relation (2.2.4) holds for all £ # p, then it also holds

for l =np.
Proof. As the stack Sh(G, D) is of finite type over k, we may assume that
s = Spec(C). The polarizations on Ay and A induce symplectic forms

on the first homology groups Hi(Ays(C),Z) and H;(As(C),Z), and the
construction (2.1.5) makes

Lpe(Ag,s, As) = Homo, (H1(Aos(C),Z), Hi(As(C), Z))
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into a self-dual hermitian Og-lattice of signature (n — 1, 1), satisfying
Lpe(Ao,s; As) ®z Zy = Homo, (Ty Ao,s, Ty As)

for all primes ¢.

If the relation (2.2.4) holds for all primes ¢ # p, then Lpc(Aps, As) ® Q
and Homg(Wy, W) are isomorphic as k-hermitian spaces everywhere locally
except at p, and so they are isomorphic at p as well. In particular, for every
¢ (including ¢ = p) both sides of (2.2.4) are isomorphic to self-dual lattices
in the hermitian space Homg(Wp, W) ®g Q. By the results of Jacobowitz
[Jac62] all self-dual lattices in this local hermitian space are isomorphic?,
and so (2.2.4) holds for all /. O

Remark 2.2.3. For any positive integer m define
K(m) = ker(K — Auto, (dg/may) x Auto, (d/ma)).

For a k-scheme S, a K(m)-structure on (Ap, A) € Sh(G,D)(S) is a triple
(a0, @, () in which ¢ : pm = Z/mZ is an isomorphism of S-group schemes,
and
ap : Ag[m] = ap/mdy, «a: Alm]=~a/ma

are Op-linear isomorphisms identifying the Weil pairings on Ag[m] and
A[m] with the Z/mZ-valued symplectic forms on ay/may and a/ma deduced
from the pairings (2.1.1). The Shimura variety G(Q)\D x G(Ay)/K(m) ad-
mits a canonical model over k, parametrizing K (m)-structures on points of

Sh(G, D).

2.3. Integral models. In this subsection we describe two integral models
of Sh(G, D) over O, related by a morphism Skya — Spap-

The first step is to construct an integral model of the moduli space M ).
More generally, we will construct an integral model of M, ) for any s > 0.
Define an Og-stack M, o) as the moduli space of triples (4,¢,1) over Og-
schemes S such that

e A — S is an abelian scheme of relative dimension s,

e 1 : O — End(A) is an action such €Lie(A) = 0, or, equivalently,
such that that the induced action of O on the Og-module Lie(A)
is through the structure map ig : O — Og,

e 1) : A — AY is a principal polarization whose Rosati involution
satisfies (o))" = (@) for all a € O,.

The stack M, ) is smooth of relative dimension 0 over O by [Howl5,
Proposition 2.1.2], and its generic fiber is the stack M, ) defined earlier.
The question of integral models for M,_; 1) is more subtle, but well-
understood after work of Pappas and Kramer. The first integral model was
defined by Pappas: let
Mg?fl’l) — Spec(Og)

2This uses our standing hypothesis that D is odd.
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be the algebraic stack whose functor of points assigns to an Og-scheme S
the groupoid of triples (A, ¢, 1)) in which

e A — S is an abelian scheme of relative dimension n,
t: O — End(A) is an action satisfying the determinant condition

det(T — t(a) | Lie(A)) = (T — a)" 1T — @) € Os[T]

for all o € Oy,

e ) : A — AY is a principal polarization whose Rosati involution
satisfies ()" = (@) for all a € Oy,

e viewing the elements eg and €g of §1.7 as endomorphisms of Lie(A),
the induced endomorphisms

/\n €5 : /\n Lie(A) — /\n Lie(A)
/\2 €s : /\2 Lie(A) — /\2 Lie(A
are trivial (Pappas’s wedge condition).
It is clear that the generic fiber of Mbe (n— 11) is isomorphic to the moduli
space M, _q 1) defined earlier. Denote by

Sing(,—1,1) < M(npl 1)

the singular locus: the reduced substack of points at which the structure
morphism to O is not smooth.

Theorem 2.3.1 (Pappas [Pap00]). The stack M](P;Bl 1 s flat over Oy of
relative dimension n — 1, and is Cohen-Macaulay and normal. Moreover:

(1) For any prime p < Ok, the reduction Mf:prl)/Fp is Cohen-Macaulay
and geometrically normal.

(2) The singular locus is a 0-dimensional stack, finite over Oy and sup-
ported in characteristics dividing D. It is the reduced substack un-
derlying the closed substack defined by ¢ - Lie(A) = 0.

(3) The stack ./\/l becomes reqular after blow-up along the singular
locus.

The blow up of ./\/l (n— 1 1 along the singular locus is denoted

(2.3.1) MET ) - Mf;jpl 1y

Kramer has shown that its functor of points assigns to an Og-scheme S the
groupoid of quadruples (A, ¢, 1, F4) in which
e A — S is an abelian scheme of relative dimension n,
t: Ok — End(A) is an action of O,
e 1) : A — AY is a principal polarization satisfying (a)" = (@) for all
[OAS Ok,
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e Fy < Lie(A) is an Og-stable Og-module local direct summand of
rank n — 1 satisfying Kramer’s condition: Oy acts on F4 via the
structure map O — Og, and acts on the line bundle Lie(A)/F4 via
the complex conjugate of the structure map.

The morphism (2.3.1) simply forgets the subsheaf Fj4.
Recalling (2.2.2), we define our first integral model

Spap © M1,0) X M](Pr?—pl,l)

as the Zariski closure of Sh(G, D) in the fiber product on the right, which,
like all fiber products below, is taken over over Spec(Og). Using Lemma
2.2.2, one can show that it is characterized asthe open and closed substack
whose functor of points assigns to any Og-scheme S the groupoid of pairs

(Ao, A) € M1,0)(S) x M](Ps—le)(S)

such that, at any geometric point s — S, the relation (2.2.4) holds for all
primes ¢ # char(k(s)).
Our second integral model of Sh(G, D) is defined as the cartesian product

Skra —>= M(1,0) X Mﬁrﬁm)

| |

Pa
Spap —= M) x M7y ).

The singular locus Sing < Spap and exceptional locus Exc < Sy, are defined
by the cartesian squares

Exc SKra
Sing SPap

| |

M1,0) X Sing(, 1 1) —= M(1,09) X M?ap

n—1,1)"
Both are proper over O, and supported in characteristics dividing D.

Theorem 2.3.2 (Kramer [[Xri03], Pappas [Pap00]). The Og-stack Skra is
reqular and flat. The Og-stack Spap s Cohen-Macaulay and normal, with
Cohen-Macaulay and geometrically normal fibers. Furthermore:

(1) The exceptional locus Exc < Skra is a disjoint union of smooth
Cartier divisors. The singular locus Sing < Spap, s a reduced closed
stack of dimension 0, supported in characteristics dividing D.

(2) The fiber of Exc over a geometric point s — Sing is isomorphic to
the projective space P*~1 over k(s).
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(3) The morphism Skra — Spap is surjective, and restricts to an iso-
morphism

(2.3.2) Skra \ Exc = Spyp \ Sing.
For an Og-scheme S, the inverse of this isomorphism endows
(Ag, A) € (Spap  Sing)(S)
with the subsheaf Fa = ker (€ : Lie(4) — Lie(A)).

Remark 2.3.3. Let (Ag, A) be the universal pair over Sp,,. The vector bun-
dle H{®(Ap) is locally free of rank one over O, ®z Os,,, and, by definition
of the moduli problem defining Spyp, its quotient Lie(Ap) is annihilated by
€. From this it is not hard to see that

FOH{ (Ap) = eH{™ (Ap).

2.4. The line bundle of modular forms. We now construct a line bundle
of modular forms w on Skra, and consider the subtle question of whether
or not it descends to Spyp. The short answer is that doesn’t, but a more
complete answer can be found in Theorems 2.4.3 and 2.6.3.

By Remark 2.1.2, every point z € D determines Hodge structures on Wy
and W of weight —1, and hence a Hodge structure of weight 0 on V =
Homy, (Wy, W). Consider the holomorphic line bundle w®* on D whose fiber
at z is the complex line w® = F'V(C) determined by this Hodge structure.

Remark 2.4.1. It is useful to interpret w®" in notation of Remark 2.1.3. The
fiber of w® at z = (yo,y) is the line

(2.4.1) w?™ = Homc(Wy(C)/eWy(C), pr (y)) < eV(C),

and hence w®" is simply the restriction of the tautological bundle via the
inclusion
D= {weeV(C): [w,w] <0}/C* < P(eV(C)).

There is a natural action of G(R) on the total space of w®, lifting the
natural action on D, and so w® descends to a line bundle on the complex
orbifold Sh(G, D)(C). This descent is algebraic, has a canonical model over
the reflex field, and extends in a natural way to the integral model Sky,, as
we now explain.

Let (Ag, A) be the universal object over Skya, let F4 < Lie(A) be the
universal subsheaf of Krdmer’s moduli problem, and let

Fic FUH{R(A)

be the orthogonal to F4 under the pairing (2.2.1). It is a rank one Og,, -
module local direct summand on which Oy, acts through the structure mor-
phism O — Og,... Define the line bundle of weight one modular forms on
SKra by

w = Hom(Lie(4o), Fi),
or, equivalently, w™! = Lie(A4g) ® Lie(A)/Fa.
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Proposition 2.4.2. The line bundle w on Skra just defined restricts to the
already defined w®* in the complex fiber. Moreover, on the complement of
the exceptional locus Exc € Skra we have

w = Hom(Lie(A), eFOHIE(A)).
Proof. The equality ]:j = eF'H fR(A) on the complement of Exc follows
from the characterization

Fa = ker(e : Lie(A) — Lie(A))

of Theorem 2.3.2, and all of the claims follow easily from this and examina-
tion of the proof of Proposition 2.2.1. O

The line bundle w does not descend to Sp,p, but it is closely related to
another line bundle that does. This is the content of the following the-
orem, whose proof will occupy the remainder of §2.4. The result will be
strengthened in Theorem 2.6.3.

Theorem 2.4.3. There is a unique line bundle Qpy, on Spap whose re-
2

striction to the nonsingular locus (2.3.2) is isomorphic to w*. We denote
by Qxra its pullback via Skra — Spap-
Proof. Let (Ag, A) be the universal object over Spap, and recall the short
exact sequence

0— FOH®E(A) - HE(A) L Lie(A) - 0
of vector bundles on Spap. As H{R(A) is a locally free Oy ®7, Osp,,-module

of rank n, the quotient H{®(A)/eH{R(A) is a rank n vector bundle.
Define a line bundle

Prap = Hom  /\" Hi™(4)eH{™(4), /\" Lie(4))
on Spap, and denote by Pk, its pullback via Skra — Spap. Let

be the alternating pairing induced by the principal polarization on A. If a
and b are local sections of H{®(A), define a local section Pygy, of Ppap by

Pygpler A+ Aep) = Z (=D)L y(ea, er) - q(@b) A g(el) A A qglen).
k=1

_

~~

omit g(ey)

If we modify any ey by a section of eH{R(A), the right hand side is un-
changed; this is a consequence of the vanishing of

N7 N Lie(4) » A\ Lie(4)

imposed in the moduli problem defining Sp,,. We have just constructed a
morphism

(2.4.2) P H{®(A) @ H{*(A) > Ppap
sending a @ b — Pygp.
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Lemma 2.4.4. The morphism P factors through a morphism
P : Lie(A) ® Lie(A) — Ppap.
After pullback to Skya there is a further factorization
(2.4.3) P : Lie(A)/Fa ® Lie(A)/Fa — Pkra,
and this map becomes an isomorphism after restriction to Skra ~ Exc .
Proof. Let a and b be local sections of H{R(A).

Assume first that a is contained in FOH{R(A). As FOH{R(A) is isotropic
under the pairing v, Pygp factors through a map

/\" Lie(A)/eLie(A) — /\" Lie(A).

In the generic fiber of Spap, the sheaf Lie(A)/€eLie(A) is a vector bundle of
rank n —1. This proves that P,gy is trivial over the generic fiber. As P,gy is
a morphism of vector bundles on a flat Of-stack, we deduce that P,z = 0
identically on Spap.

If instead b is contained in FOHIR(A) then q(eb) = 0, and again P,g; = 0.
These calculations prove that P factors through Lie(A) ® Lie(A).

Now pullback to Skra. We need to check that P,gp, vanishes if either of
a or b lies in F4. Once again it suffices to check this in the generic fiber,
where it is clear from

(2.4.4) Fa = ker(e : Lie(A) — Lie(A)).

Over Skr, we now have a factorization (2.4.3), and it only remains to
check that its restriction to (2.3.2) is an isomorphism. For this, it suffices
to verify that (2.4.3) is surjective on the fiber at any geometric point

s = Spec(F) — Skra \ Exc.

First suppose that char(F) is prime to D. In this case ¢,€ € O ®z F are
(up to scaling by F*) orthogonal idempotents, F4, = eLie(A;), and we may
choose an Oy, ®7 F-basis eq,...,¢e, € HfR(AS) in such a way that

€eq,€es, ..., €, € FOHfR(AS)
and

q(ee1),q(eea), ..., q(ee,) € Lie(Ay)
are [F-bases. This implies that

P @e (€1 A+ Aep) =1(Eer,eer) - q(€er) A qleea) A -+ A qlee,) # 0,
and so
P.yge, € Hom( " H{®(A,) /eH{™(4,), /\" Lie(A,))

is a generator. Thus P is surjective in the fiber at z.
Now suppose that char(F) divides D. In this case there is an isomorphism

Fl]/(2*) *2=5 Ok @2 F.
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By Theorem 2.3.2 the relation (2.4.4) holds in an étale neighborhood of s,
and it follows that we may choose an O ®z F-basis eq,...,e, € H fR(As) in
such a way that

€9,€€2, €€3, ..., €y € FOHfR(AS)
and
qer),qleer), qles) ..., q(en) € Lie(As)
are [F-bases. This implies that

P ge (€1 A+ Aep) =1(eer,ea) - qleer) A qler) A qles) -+ Aqle,) #0,

and so, as above, P is surjective in the fiber at z. O

We now complete the proof of Theorem 2.4.3. To prove the existence part
of the claim, we define Qp,, by

Qgip = Lie(A0)®2 ® Ppap,

and let Qk., be its pullback via Skra — Spap. Tensoring both sides of (2.4.3)
with Lie(A49)®? defines a morphism

—2 -1
w - QKra’

whose restriction to Sk ~ Exc is an isomorphism. In particular w? and
Qp,p, are isomorphic over (2.3.2).

The uniqueness of €2p,;, is clear: as Sing < Spyp is a codimension > 2
closed substack of a normal stack, any line bundle on the complement of
Sing admits at most one extension to all of Spap.

O

2.5. Special divisors. Suppose S is a connected Og-scheme, and
(Ao, A) € Spap(9).

Imitating the construction of (2.1.5), there is a positive definite hermitian
form on Homp, (Ao, A) defined by

(2.5.1) <:E1,l‘2> = :Eé/ oxy € Endok (A(]) = Ok,

where
Homop, (Ao, A) inc N Homo, (A, Ao)

is the Og-conjugate-linear isomorphism induced by the principal polariza-
tions on Ag and A.

For any positive m € Z, define the O-stack Zp,,(m) as the moduli stack
assigning to a connected Og-scheme S the groupoid of triples (Ag, A, x),
where

o (Ap, A) € Spap(9),
e z € Homp, (Ap, A) satisfies (z,z) = m.
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Define a stack Zk;,(m) in exactly the same way, but replacing Spap by Skra-
Thus we obtain a cartesian diagram

ZKra (m) — SKra

L

ZPap (m) ——— SPapa

in which the horizontal arrows are relatively representable, finite, and un-
ramified.

Each Zk,.(m) is, étale locally on Skia, a disjoint union of Cartier divisors.
More precisely, around any geometric point of Skya one can find an étale
neighborhood U with the property that the morphism Zg,(m)y — U re-
stricts to a closed immersion on every connected component Z < Zxy.(m)y,
and Z < U is defined locally by one equation; this is [Howl5, Proposi-
tion 3.2.3]. Summing over all connected components Z allows us to view
Zxra(m)y as a Cartier divisor on U, and glueing as U varies over an étale
cover defines a Cartier divisor on Skya, which we again denote by Zk;a(m).

Remark 2.5.1. It follows from (2.3.2) and the paragraph above that Zp,,(m)
is locally defined by one equation away from the singular locus. However,
this property may fail at points of Sing, and so Zpap(m) does not define a
Cartier divisor on all of Spyp.

The following theorem, whose proof will occupy the remainder of §2.5,
shows that Zkya(m) is closely related to another Cartier divisor on Skia
that descends to Spap. This result will be strengthened in Theorem 2.6.3.

Theorem 2.5.2. For everym > 0 there is a unique Cartier divisor Ypap(m)
on Spap whose restriction to (2.3.2) is equal to the square of the Cartier
divisor Zgra(m). We denote by Vira(m) its pullback via Skra — Spap-

Remark 2.5.3. The Cartier divisor Vpap(m) is flat over Oy, as is the re-
striction of Zk;a(m) to Skra N Exc. This will be proved in Corollary 3.7.2,
by studying the structure of the divisors near the boundary of a toroidal
compactification.

Proof. The map Zpap(m) — Spap is finite, unramified, and relatively rep-
resentable. It follows that every geometric point of Sp,, admits an étale
neighborhood U — Spy, such that U is a scheme, and the morphism

Zpap (m)U —-U
restricts to a closed immersion on every connected component
Z C Zpap (m)U

We will construct a Cartier divisor on any such U, and then glue them
together as U varies over an étale cover to obtain the divisor Vpap(m).
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Fix Z as above, let Z < Oy be its ideal sheaf, and let Z’ be the closed
subscheme of U defined by the ideal sheaf Z2. Thus we have closed immer-
sions

ZcZ cU,

the first of which is a square-zero thickening.

By the very definition of Zp,,(m), along Z there is a universal Op-linear
map = : Aoz — Az. This map does not extend to a map Aoy — Ay,
however, by deformation theory [Lanl3, Chapter 2.1.6] the induced Op-
linear morphism of vector bundles

T H?R(AOZ) — H?R(AZ)
admits a canonical extension to
(2.5.2) o' H®(Ay,) — HER(A,).

Recalling the morphism (2.4.2), define Y = Z’ as the largest closed sub-
scheme over which the composition

(25.3) H{™(Aoz) @ HM(Agz) Z85 HR (A7) @ HI™M(Az) 5 Praplz
vanishes.
Lemma 2.5.4. If U — Spap factors through Spap ~ Sing, then Y = Z'.

Proof. Lemma 2.4.4 provides us with a commutative diagram

q®q

'@’ . 2
H?R(AOZ/)®2 —>H?R(AZ/)®2 (Lle(AZ’)/]:AZ/)®

2.5.3) lN
PPap|Z’7

where
Fa, =ker(e: Lie(Az) — Lie(Az))

as in Theorem 2.3.2.

By deformation theory, Z < Z’ is characterized as the largest closed
subscheme over which (2.5.2) respects the Hodge filtrations. Using Remark
2.3.3, it is easily seen that Z < Z’ can also be characterized as the largest
closed subscheme over which

Hl(AOZ’) ﬂ» Lie(AZ/)/]:AZ,

vanishes identically. As Z < Z’ is a square zero thickening, it follows first
that the horizontal composition in the above diagram vanishes identically,
and then that (2.5.3) vanishes identically. In other words Y = Z'. O

Lemma 2.5.5. The closed subscheme Y < U is defined locally by one equa-
tion.
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Proof. Fix a closed point y € Y of characteristic p, let Oy, be the local ring
of U at y, and let m < Oy, be the maximal ideal. For a fixed k > 0, let

U = Spec(Oy,/mF) c U

be the k*'-order infinitesimal neighborhood of y in U. The point of passing
to the infinitesimal neighborhood is that p is nilpotent in O, and so we
may apply Grothendieck-Messing deformation theory.

By construction we have closed immersions

Y

|

7 —=7'——=U.

Applying the fiber product x U throughout the diagram, we obtain closed
immersions

Y

|

Z——=7 —U

of Artinian schemes. As k is arbitrary, it suffices to prove that Y < U is
defined by one equation.

First suppose that p { D. In this case U — U — Spap, factors through
the nonsingular locus (2.3.2). It follows from Remark 2.5.1 that Z < U is
defined by one equation, and Z’ is defined by the square of that equation.
By Lemma 2.5.4, Y < U is also defined by one equation.

For the remainder of the proof we assume that p | D. In particular p > 2.
Consider the closed subscheme Z” < U with ideal sheaf Z2, so that we have
closed immersions Z < Z' < Z” < U. Taking the fiber product with U, the
above diagram extends to

Y
VA z' z" U.

As p > 2, the cube zero thickening Z < Z” admits divided powers ex-
tending the trivial divided powers on Z < Z’. Therefore, by Grothendieck-
Messing theory, the restriction of (2.5.2) to

o H{%(Aoz) — Hi™(Az).
admits a canonical extension to

ZE” . H?R(AOZ//) — H?R(AZ//),

Define Y/ < Z” as the largest closed subscheme over which
(2.5.4)

"z P
H{® (Agzn) @ H®(Agzn) 285 HIR (A7) @ HR (Az0) D> Poap| 20
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vanishes identically, so that there are closed immersions

Y —Y'
VA z' z" U.

We pause the proof of Lemma 2.5.5 for a sub-lemma.
Lemma 2.5.6. We have Y =Y.

Proof. As in the proof of Lemma 2.5.4, we may characterize Z < Z” as
the largest closed subscheme along Wthh x” respects the Hodge filtrations.
Equivalently, by Remark 2.3.3, Z < Z” is the largest closed subscheme over
which the composition

HR(Agzn) 25 HIR(Ayn) S Lie(Agn)

vanishes identically. This implies that Z’ < Z” is the largest closed sub-
scheme over which

z" o€ ®2 &2
(2.5.5) HIR (A9 z0)®2 207, R (A 4) 9255 Lie( A gn)®?
vanishes identically.

It follows directly from the definitions that Y = Y’ n Z’, and hence it
suffices to show that Y’ < Z’. In other words, it suffices to shows that the
vanishing of (2.5.4) implies the vanishing of (2.5.5).

For local sections a and b of Hy(Az»), define

n—1 n
Quep : FOHM(Az)® /' Lie(Azr) — /\ Lie(Az»)
by
Quep(e1 @ g(ea) A -+ A glen)) = Plaser) -q(b) A glez) A -+ A glen).
It is clear that Qugp depends on the images of @ and b in Lie(Az~), and that

this construction defines an isomorphism
(2.5.6)

Lie(Az)® Hom<F0H1 (Az)® N\ Lie(Az), \" Lie(AZ,,)).

It is related to the map
Lie(AZ//) —> HOIH(/\ H AZ//)/EHl (AZH), /\n Lie(AZu)>
of Lemma 2.4.4 by
Pagp(er A+ A en) = Qeagen(e1 @ q(ea) A -+ A qlen))
for any local section e ® es ® - - ® e, of
FOH®R(Az) @ HR(Azn) ® - - @ H{E (Agn).

Putting everything together, if (2.5.4) vanishes, then Por(ag)@a (by) = 0

for all local sections ag and by of H ?R(AO zr). Therefore

Q7 (zag)@2" (ebo) = 0
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for all local sections ag and by, which implies, as (2.5.6) is an isomorphism,
that (2.5.5) vanishes. This proves that Y’ < Z’, and hence Y = Y". O

Returning to the proof of Lemma 2.5.5, the map (2.5.4), whose vanishing
defines Y/ < Z”, factors through a morphism of line bundles

H{®(Aozn)/eH{® (Agzr) @ H{® (Aoz)/eH{ (Aozr) — Ppaplzr,

and hence Y = Y is defined inside of Z” locally by one equation. In other
words, if we denote by Z < Oy and J < Oy the ideal sheaves of Z < U
and Y < U, respectively, then Z? is the ideal sheaf of Z” U, and

J=(f)+T°

for some f € Oy. But Y < Z’ implies that Z? ¢ J, and hence Z° ¢ Z.J.
It follows that the image of f under the composition

I - TITT - T /mJ
is an Opy-module generator, and J is principal by Nakayama’s lemma. [J

At last we can complete the proof of Theorem 2.5.2. For each connected
component Z < Zp,,(m)y we have now defined a closed subscheme Y < Z’.
By Lemma 2.5.5 it is an effective Cartier divisor, and summing these Cartier
divisors as Z varies over all connected components yields an effective Cartier
divisor Ypap(m)y on U. Letting U vary over an étale cover and applying
étale descent defines a effective Cartier divisor Vpap(m) on Spap.

The Cartier divisor Vpap(m) just defined agrees with the square of Zp,p(m)
on Spap~Sing. This is clear from Lemma 2.5.4 and the definition of Vp,,(m).
The uniqueness claim follows from the normality of Spap, exactly as in the
proof of Theorem 2.4.3. O

2.6. Pullbacks of Cartier divisors. After Theorem 2.4.3 we have two
line bundles Qk;a and w? on Skya, which agree over the complement of the
exceptional locus Exc. We wish to pin down more precisely the relation
between them.

Similarly, after Theorem 2.5.2 we have Cartier divisors YViya(m) and
2Zkra(m). These agree on the complement of Exc, and again we wish to
pin down more precisely the relation between them.

Denote by 7 (Sing) the set of connected components of the singular locus
Sing < Spap. For each s € my(Sing) there is a corresponding irreducible
effective Cartier divisor

Excs = Exc Xgp,, 8 = Skra
supported in a single characteristic dividing D. These satisfy

Exc = |_| Exc,.

semo(Sing)
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Remark 2.6.1. As Sing is a reduced 0-dimensional stack of finite type over
Ok/0, each s € mo(Sing) can be realized as the stack quotient

s = G\Spec(Fs)
for a finite field [y of characteristic p | D acted on by a finite group G.
Fix a geometric point Spec(F) — s, and set p = char(F). By mild abuse

of notation this geometric point will again be denoted simply by s. It de-
termines a pair

(2.6.1) (Ao,s, As) € Spap(F),
and hence a positive definite hermitian Og-module
Ly = Homop, (Ao,s, As)

as in (2.5.1). This hermitian lattice depends only on s € my(Sing), not on
the choice of geometric point above it.

Proposition 2.6.2. For each s € my(Sing) the abelian varieties Ags and
Ag are supersingular, and there is an Oy-linear isomorphism of p-divisible
groups

(2.6.2) Ag[p*] = iélos[poo] X oee X Aos[pool

~~

n times

identifying the polarization on the left with the product polarization on the
right. Moreover, the hermitian Og-module Ly is self-dual of rank n.

Proof. Certainly Ags is supersingular, as p is ramified in O < End(Ags).

Denote by p € O, be the unique prime above p. Let W = W (F) be the
Witt ring of F, and let Fr € Aut(W) be the unique continuous lift of the
p-power Frobenius on F. Let D(W) denote the covariant Dieudonné module
of Ag, endowed with its operators F' and V satisfying F'V = p = VF. The
Dieudonné module is free of rank n over Op ®z W, and the short exact
sequence

0 — FOHR(A,) - HIR®(A,) - Lie(A,) — 0
of F-modules is identified with
0— VD(W)/pD(W) — D(W)/pD(W) - D(W)/VD(W) — 0.

As D is odd, the element 0 € Oy, fixed in §1.7 satisfies ord,(4) = 1. This

implies that
0-D(W) =VDW).

Indeed, by Theorem 2.3.1 the Lie algebra Lie(Ay) is annihilated by ¢, and
hence 0 - D(W) < VID(W). Equality holds as

dimp (D(W)/6 - D(W)) = n = dimg (D(W)/VD(W)).
Denote by N < (W) the set of fixed points of the Fr-semilinear bijection
V3os:D(W) - DW).
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It is a free O p-module of rank n endowed with an isomorphism
D(W) = N ®z, W

identifying V' = 6®@Fr~—!. Moreover, the alternating form 1) on D(W) induced
by the polarization on Az has the form

0

for a perfect hermitian pairing h : N x N — Oy ,. By diagonalizing this
hermitian form, we obtain an orthogonal decomposition of N into rank one
hermitian O p-modules, and tensoring this decomposition with W yields a
decomoposition of D(IW) as a direct sum of principally polarized Dieudonné
modules, each of height 2 and slope 1/2. This corresponds to a decomposi-
tion (2.6.2) on the level of p-divisible groups.

In particular, A, is supersingular, and hence is isogenous to n copies of
Ags. Using the Noether-Skolem theorem, this isogeny may be chosen to be
Op-linear. It follows first that Lg has Op-rank n, and then that the natural
map

h
Y(n1 @wi,ny @ wz) = wiwy - Try g <M>

Ls ®z Zq =~ Homo, (Aos[¢™], As[¢™])
is an isomorphism of hermitian O ,-modules for every rational prime g. It
is easy to see, using (2.6.2) when ¢ = p, that the hermitian module on the
right is self-dual, and hence the same is true of each Ly ®z Z,. O

The remainder of §2.6 is devoted to proving the following result.

Theorem 2.6.3. There is an isomorphism
w? = Qi ® O(Exc)
of line bundles on Skra, as well as an equality

2Z2kra(m) = Ykra(m) + Z #{r e Ly : {x,x) = m} - Excg

semp(Sing)

of Cartier divisors.
Proof. Recall from the proof of Theorem 2.4.3 the morphism
’ D
Lie(A9)®? ® (Lie(A)/F4))®? Lie(40)®? ® Pira,

whose restriction to Skya ~ Exc is an isomorphism. If we view this morphism
as a global section

w

(2.4.3)

(2.6.3) o € H(Skra, w* ® Q)
then
(2.6.4) div(e) = ). £s(0) - Excq

semp(Sing)
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for some integers £4(0) > 0, and hence

(2.6.5) WAL = X O(Exc,)®4O,
semp(Sing)
We must show that each /5(0) = 1.
Similarly, suppose m > 0. It follows from Theorem 2.5.2 that

(266) 2ZKra(m) = yKra(m) + Z Es(m) . EXCS

semo(Sing)

for some integers ¢s(m). Moreover, it is clear from the construction of
Vkra(m) that 22k (m) — Vra(m) is effective, and so £5(m) = 0. We must
show that

ls(m) = #{x € Ly : {x,x) = m}.

Fix s € m(Sing), and let Spec(F) — s, p = char(F), and (Ags, As) €
Spap(F) be asin (2.6.1). Let W = W(IF) be the Witt ring of F, and set W =
Or ®z W. It is a complete discrete valuation ring of absolute ramification
degree 2. Fix a uniformizer w € W. As p is odd, the quotient map

W - W/wW =F

admits canonical divided powers.

Denote by Dy and D the Grothendieck-Messing crystals of Aps and Asg,
respectively. Evaluation of the crystals® along the divided power thickening
W — F yields free O ®z W-modules Dy(W) and D(W) endowed with
alternating WW-bilinear forms ¢y and v, and Og-linear isomorphisms

Do(W)/wDo(W) = Dy(F) = HE(Ag,).
and
DOW)/wD(W) = D(F) = HE(A,).
The W-modules Do(W) and D(W) are canonically identified with the
covariant Dieudonns modules of Aps and Ag, respectively. The operators

F and V on these Dieudonné modules induce operators, denoted the same
way, on

Do(W) = Do(W) @w W, DW) =D(W) Qw W.
For any elements y1, ...,y in an Ok ®z W-module, let (y1,...,yx) be the
O, ®7z W-submodule generated by them. Recall from §1.7 the elements
€, €€ O Rz W.
Lemma 2.6.4. There is an Ok ®7z W-basis eg € Do(W) such that

F]DQ(W) dgf <E€0> (e ]D)()(W)

1$ a totally isotropic W-module direct summand lifting the Hodge filtration
on Dy(F), and such that Vey = deg.

31 p = 3, the divided powers on VW — F are not nilpotent, and so we cannot evaluate
the usual Grothendieck-Messing crystals on this thickening. However, Proposition 2.6.2
implies that the p-divisible groups of Aps and A, are formal, and Zink’s theory of displays
[Zin02] can be used as a substitute.
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Similarly, there is an O ®z W-basis eq,. .., e, € DOW) such that
FD(W) def (ee1,€ea, ..., €eny < D(W)

is a totally isotropic W-module direct summand lifting the Hodge filtration
on D(F). This basis may be chosen so that so that Vey, 1 = dey, where the
indices are understood in Z/nZ, and also so that

wles (o) = {g" o

otherwise.

Proof. As in the proof of Proposition 2.6.2, we may identify
]D)()(W) ~ Ny Xz, w

for some free O p-module Ny of rank 1, in such a way that V' = 6 ® Fr— 1,
and the alternating form on Dg(W) arises as the W-bilinear extension of
an alternating form 1)y on Ny. Any Oy ,-generator ey € Ny determines a
generator of the O, ®z, W-module

Do(W) ~ Ny @Zp W,

which, using Remark 2.3.3 has the desired properties.
Now set N = No@®---@® Ny (n copies), so that, by Proposition 2.6.2, there
is an isomorphism
D(W) = N ®z, W

identifying V' = § @ Fr !, and the alternating bilinear form on (W) arises
from an alternating form ¢ on N. Let Z,» < W be the ring of integers in
the unique unramified degree n extension of QQ,,, and fix an action

L1 Zyn — Endg,, ,(N)

in such a way that ¢ (c(a)z,y) = ¥(x,(a)y) for all o € Zyn.
There is an induced decomposition

DW)= P DW),
keZ/nZ
where
D(W)g = {e e D(W) : Yo € Zyn, 1(a) - e = Fr¥(a) - e}
is free of rank one over Op ®z W. Now pick any Z,»-module generator
e € N, view it as an element of D(W), and let e, € D(W), be its projection

to the k™ summand. This gives an Ok ®z W-basis ey, ..., e, € D(W), which
determines an Ok ®7z W-basis of D(W) with the required properties. U

By the Serre-Tate theorem and Grothendieck-Messing theory, the lifts of
the Hodge filtrations specified in Lemma 2.6.4 determine a lift

(2.6.7) (Aps, Ag) € Spap(W)
of the pair (Ags, As). These come with canonical identifications

H®(Ap) 2 Do(W), HER(A,) =~ DOW)
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under which the Hodge filtrations correspond to the filtrations chosen in
Lemma 2.6.4. In particular, the Lie algebra of Ay is

Lie(A,) = DW)/FDW) = le1,ea,...,en)/ ee1,Eea, ... €.
The W-module direct summand
Fi, =(e2,...,en)/(Cea,... Epn)
satisfies Kramer’s condition (§2.3), and so determines a lift of (2.6.7) to
(Aps, As) € Sicra(WV).

To summarize: starting from a geometric point Spec(F) — s, we have
used Lemma 2.6.4 to construct a commutative diagram

(2.6.8) Spec(TF) Excg I
Spec(W) Skra Spap-

Lemma 2.6.5. The pullback of the map (2.4.3) via Spec(W) — Skra van-
ishes identically along the closed subscheme Spec(W/wW), but not along
Spec(W/w?*W).

Proof. The W-submodule of

(2.6.9) Lie(As) = D(W)/{eeq,€ea, ... €ep)
generated by ey is Og-stable. The action of O ®z W on this W-line is via

Ok; ®ZW a®z—iyy (@)z W

(where iyy : O — W is the inclusion), and this map sends € to a uniformizer

of W; see §1.7. Thus the quotient map ¢ : D(W) — Lie(A;) satisfies g(€e1) =
wq(e1) up to multiplication by an element of W*. It follows that
P.ge,(e1 A Aep) =w-P(Eer,er) - qler) Aglea) A+ A qlen)

up to scaling by W*.
We claim that 1 (€ej,e1) € W*. Indeed, as g(e1) generates a VW-module
direct summand of (2.6.9), there is some

x € FD(W) = {eey, e, ..., €y < D(W)
such that ¢(z,e1) € W*. We chose our basis in Lemma 2.6.4 in such a way
that v (€e;,e1) = 0 for ¢ > 1. It follows that 1(eeq, eq) is a unit, and hence
the same is true of 1(€eq, e1) = 1(e1,€e1) = —1(eeq, eq).
We have now proved that
Peigei(€1 Ao Aen) =@ qler) Aglez) Ao Aglen)

up to scaling by W*, from which it follows that
Poge(e1 A+ Aey) € /\n Lie(Ay)

is divisible by w, but not by w?.
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The quotient

H{®(Ay) /eHM(Ag) = DW)/(Zey, . .., Een)
is generated as a W-module by ej,...,e,. From the calculation of the
previous paragraph, it now follows that P e, € PKra|SpCC(W) is divisible
by w but not by w?. The quotient

Lie(fls)/]:AS ~ D(W)/{eer, e, ... en)

is generated as a WW-module by the image of e, and we at last deduce that
P e Hom ((Lie(A)/F4)®?, Pira) |specW)

is divisible by w but not by w?. O

Recall the global section o of (2.6.3). It follows immediately from Lemma
5 that its pullback via Spec(W) — Skra has divisor Spec(W/wW), and
hence
Spec(W) X sy, div(o) = SpecOV/wW),
Comparison with (2.6.4) proves both that ¢,(0) = 1, and that
(2.6.10) Spec(W) X s, Excg = Spec(W/@W).
Recalling (2.6.5), this completes the proof that
W2® = Qxra ® O(Exc).

It remains to prove the second claim of Theorem 2.6.3. Given any = €
Ly = Homp, (Ags, As), denote by k(z) the largest integer such that x lifts
to a morphism

Aoy @ W/(@" ) — As @ W/(=").
Lemma 2.6.6. As Cartier divisors on Spec(W), we have

Zira(m) xsy,, Spec(W) = Z Spec(W /@ W).
x€Llg

{z,x)y=m
Proof. Each x € Ly with (x,x) = m determines a geometric point
(2.6.11) (Aoz, Az, ) € Ziira(m)(F).

and surjective morphisms

OSKra,

N,

where Oz, (m). is the étale local ring at (2.6.11), Osy,, » is the étale local
ring at the point below it, and the arrow on the right is induced by the map
Spec(W) — Skra of (2.6.8). There is an induced isomorphism of WW-schemes

O zyra(m)e ®0s,. . W = W/("),

OZKra
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and the claim follows by summing over x. O

Lemma 2.6.7. As Cartier divisors on Spec(W), we have

Vira(m) X sy, Spec(W) = Z Spec(W /@ @) =1w),
x€L
{z,x)y=m
Proof. Each z € Ly = Homp, (Aos, As) with (z,z) = m induces a morphism
of crystals Dy — I, and hence a map

Do(W) = D(W)

respecting the F and V operators. By Grothendieck-Messing deformation
theory, the integer k(z) is characterized as the largest integer such that the
composition

FOHdR(AOS) —_— HdR AOS . H Lle(fis)
_ T D(W
€Dg (W) = <E€17EE(2,..?7EE7L> :

vanishes modulo w”*). In other words the composition

H{R(Ags) 25 HIR(A,) D Lie(A,)
vanishes modulo @), but not modulo w*®)+1,
Using the bases of Lemma 2.6.4, we expand

x(eg) = arer + -+ + apen

with aq,...,a, € O ®z W. The condition that x respects V implies that
a1 = -+ = ap. Let us call this common value a, so that

q(xz(eeg)) =€-qlaer + -+ + aey) = ae- q(ey)

in Lie(fis). By the previous paragraph, this element is divisible by k@)

but not by wF@+1 and so
(2.6.12) q(aer) = w"g(er)

up to scaling by W*. .

On the other hand, the submodule of Lie(As) generated by g(ep) is iso-
morphic to (O ®zW)/{e) = W, and € acts on this quotient by a uniformizer
in W. Thus

(2.6.13) €q(e1) = wq(er)

up to scaling by W*.
Combining (2.6.12) and (2.6.13) shows that, up to scaling by W*,

k(z)—1=

€ = €
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in the quotient (O ®z W)/{e). By the injectivity of the quotient map
(& — (O ®z W)/{€e), this same equality holds in {¢) ¢ O ®z W. Using
this and (2.6.12), we compute
Px(eg)@x(eo)<el ANce A en)
= 1(a€er,e1) - q(ager) A qlea) A -+ A qley)

w2k(@)=1 -p(€er,er) - qler) A qlea) A+ A qlen)

@71 gler) A qled) A+ A glen)
up to scaling by W*. Here, as in the proof of Lemma 2.6.5, we have used
1/1(?61, 61) e WX*.

This calculation shows that the composition
i @z T P
HiiR(AOs)@z - HiiR(As)®2 - ,P‘Spec(W)

2k () k(z)

vanishes modulo w ~1 but not modulo w?**) and the remainder of the
proof is the same as that of Lemma 2.6.6: Comparing with the definition of
YVkra(m), see especially (2.5.3), shows that

Oyra(m)e @0y, 0 W = W/ (071,
and summing over all x proves the claim. O
Combining Lemmas 2.6.6 and 2.6.7 shows that
Spec(W) X, (2Zkra(m) — Vira(m)) = > Spec(W/@W)

x€l g
(x,x)=m

as Cartier divisors on Spec(W). We know from (2.6.10) that

SpecOW/wW) ift=s
SpeC(W) X Skra Exc; = {0 ift #s,

and comparison with (2.6.6) shows that
ls(m) =F#{x € Ls:{x,x) =m},
completing the proof of Theorem 2.6.3. O

3. TOROIDAL COMPACTIFICATION
In this section we describe canonical toroidal compactifications
Skra —> Sf%ra
SPap Sigap7

and the structure of their formal completions along the boundary. Using
this description, we define Fourier-Jacobi expansions of modular forms.
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The existence of toroidal compactifications with reasonable properties is
not a new result. In fact the proof of Theorem 3.7.1, which asserts the exis-
tence of good compactifications of Spap and Skra, simply refers to [How15].
Of course [loc. cit.] is itself a very modest addition to the established liter-
ature [FC90, Lanl3, Lar92, Rap78]. Because of this, the reader is perhaps
owed a few words of explanation as to why §3 is so long.

It is well-known that the boundary charts used to construct toroidal com-
pactifications of PEL-type Shimura varieties are themselves moduli spaces
of 1-motives (or, what is nearly the same thing, degeneration data in the
sense of [FC90]). This moduli interpretation is explained in §3.3.

It is a special feature of our particular Shimura variety Sh(G, D) that the
boundary charts have a second, very different, moduli interpretation. This
second moduli interpretation is explained in §3.4. In some sense, the main
result of §3 is not Theorem 3.7.1 at all, but rather Proposition 3.4.3, which
proves the equivalence of the two moduli problems.

The point is that our goal is to eventually study the integrality and ra-
tionality properties of Fourier-Jacobi expansions of Borcherds products on
the integral models of Sh(G,D). A complex analytic description of these
Fourier-Jacobi expansions can be deduced from [[Kud16], but it is not a
priori clear how to deduce integrality and rationality properties from these
purely complex analytic formulas.

To do so, we will exploit the fact that the formulas of [[<ud16] express the
Fourier-Jacobi coefficients in terms of the classical Jacobi theta function.
The Jacobi theta function can be viewed as a section of a line bundle on
the universal elliptic curve fibered over the modular curve, and when inter-
preted in this way it has known integrality and rationality properties (this
is explained in §5.1).

By converting the moduli interpretation of the boundary charts from 1-
motives to an interpretation that makes explicit reference to the universal
elliptic curve and the line bundles that live over it, the integrality and ra-
tionality properties of the Fourier-Jacobi coefficients can be deduced, ulti-
mately, from those of the classical Jacobi theta function.

3.1. Cusp label representatives. The group G acts on both Wy and W.
If J ¢ W is an isotropic k-line, its stabilizer P = Stabg(J) is a parabolic
subgroup of G. This establishes a bijection between isotropic k-lines in W
and proper parabolic subgroups of G.

Definition 3.1.1. A cusp label representative for (G, D) is a pair & = (P, g)
in which g € G(Ay) and P < G is a parabolic subgroup. If P = Stabg(J)
for an isotropic k-line J < W, we call ® a proper cusp label representative.
If P =G we call ® an improper cusp label representative.

For each cusp label representative ® = (P, g) there is a distinguished
normal subgroup Q¢ < P. If P = G we simply take Q¢ = G. If P =
Stabg (J) for an isotropic k-line J < W then, following the recipe of [Ping9,
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§4.7], we define Q¢ as the fiber product
(3.1.1) Qo e Resy,/gGm

l/ laH(a,Nm(a),a,id)
P —— GU(Wy) x GL(J) x GU(JL/J) x GL(W /J%).

The morphism G — GU(W) restricts to an injection Q¢ — GU(W), as the
action of Qg on J'/J determines its action on Wy.

Let K < G(Ay) be the compact open subgroup (2.1.3). Any cusp label
representative ® = (P, g) determines compact open subgroups

Ko =gKg ' n Qa(Ay), Ko = gKg~ ' n P(Ay),
and a finite group

(3.1.2) Ap = (P(Q) N Qa(Af)Ks)/Qa(Q).

Definition 3.1.2. Two cusp label representatives ® = (P,g) and ¢’ =
(P',q") are K-equivalent if there exist v € G(Q), h € Qao(Ay), and k € K
such that

(P'.g') = (yPy~ ", vhgk).
One may easily verify that this is an equivalence relation. Obviously, there

is a unique K-equivalence class of improper cusp label representatives.

From now through §3.6, we fix a proper cusp label representative ® =
(P, g), with P — G the stabilizer of an isotropic k-line J < W. There is an
induced weight filtration wt;W < W defined by

0 c J c J+ c w

Wt73W < Wtfgw < wt,1W < WtoW,

and an induced weight filtration on V' = Homg(Wy, W) defined by

Homk(Wo,O) < Homk(WO,J) < Homk(Wo,JL) < Homk(Wo,W)

wt_oV c wt_1V c wtoV c wt1V,

It is easy to see that wt_1V is an isotropic k-line, whose orthogonal with
respect to (2.1.5) is wtgV. Denote by gr,W = wt,WW /wt;_1W the graded
pieces, and similarly for V.

The Og-lattice ga € W determines an Og-lattice

gr;i(ga) = (ga nwt;W)/(ga nwt;_ W) < gr;W.
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The middle graded piece gr_;(ga) is endowed with a positive definite self-
dual hermitian form, inherited from the self-dual hermitian form on ga ap-
pearing in the proof of Proposition 2.1.1. The outer graded pieces

(3.1.3) m=gr_5(ga), 1= gro(ga)

are projective rank one O-modules®, endowed with a perfect Z-bilinear
pairing m x n — Z inherited by the perfect symplectic form on ga appearing
in the proof of Proposition 2.2.1.

Remark 3.1.3. The isometry class of ga as a hermitian lattice is determined
by the isomorphism classes of m and n as Og-modules, and the isometry class
of gr_;(ga) as a hermitian lattice. This follows from the proof of [Howl5,
Proposition 2.6.3], which shows that one can find a splitting °

ga =gr ,(ga) ®gr_(ga) ® gry(ga),

in such a way that the outer summands are totally isotropic, and each is
orthogonal to the middle summand.

Exactly as in (2.1.4), there is a k-conjugate linear isomorphism

Homy,(Wo, gr_ W) <= Homy,(gr_, W, Wo).
If we define
(3.1.4) Lo = Homo, (ga0, gr_;(ga))
Ay = Homo, (gr_1(9a), gao),
then x — xV restricts to an Og-conjugate linear isomorphism Ly =~ Ag. We
endow Lg with the positive definite hermitian form
{x1,m2) = ) 0z € Endp, (9a) = O

analogous to (2.1.5), and endow A with the “dual” hermitian form

(@3, 2() = (21, 22).
Lemma 3.1.4. Two proper cusp label representatives ® and ®' are K-
equivalent if and only if Ay = Ay as hermitian O-modules, and n = n’
as Og-modules. Moreover, the finite group (3.1.2) satisfies

(3.1.5) Ag = U(Ag) x GLo, (n).

Proof. The first claim is an elementary exercise, left to the reader. For
the second claim we only define the isomorphism (3.1.5), and again leave
the details to the reader. The group P(Q) acts on both Wy and W, pre-
serving their weight filtrations, and so acts on both the hermitian space
Homy,(gr_W,Wy) and the k-vector space gryWW. The subgroup P(Q) n

Qa(A f)f(q) preserves the lattices
Ao < Homg(gr_, W, W)
A fact, it is not difficult to see that m =~ n as Og-modules, but identifying them can

only lead to confusion.
5This uses our standing assumption that k has odd discriminant.
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and n < groW, inducing (3.1.5). O
3.2. Mixed Shimura varieties. The subgroup Q¢(R) c G(R) acts on
Dg(W) = {k-stable R-planes y < W (R) : W(R) = J:(R) ® y},
and so also acts on
'D@ = D(W(]) X 'D@(W)
The hermitian domain of (2.1.2) satisifies D(W') < Dg (W), and hence there

is a canonical Q¢ (R)-equivariant inclusion D < Dg.
The mixed Shimura variety

(3.2.1) Sh(Qa,Ds)(C) = Qa(Q)\De x Qa(Af)/Ke

admits a canonical model Sh(Q4, Dg) over k by the general results of [Ping89].
By rewriting the double quotient as

Sh(Qs,Ps)(C) = Qo(Q)\Ds x Qo(As)Ke/Ka,
we see that (3.2.1) admits an action of the finite group Ag of (3.1.2), induced

by the action of P(Q)nQa(A)Kg on both factors of Dg x Qg (A ) Kg. This
action descends to an action on the canonical model.

Proposition 3.2.1. The morphism ve of (5.1.1) induces a surjection
Sh(Qa, Da)(C) s kRO

with connected fibers. This map is Ag-equivariant, where Ag acts trivially
on the target. In particular, the number of connected components of (3.2.1)
is equal to the class number of k, and the same is true of its orbifold quotient
by the action of Ag.

(th)'_)’/@

Proof. The space Dg is connected, and the kernel of ve : Qo — Resy oG
is unipotent (so satisfies strong approximation). Therefore

m0(Sh(Qs, Ds)(C)) = Qa(Q)\Qa (Af)/Ke = k*\k* /va(Ka),
and an easy calculation shows that vg(Kg) = (5,: O
It will be useful to have other interpretations of Dg.

Remark 3.2.2. Any point y € Dg(W) determines a mixed Hodge structure
on W whose weight filtration wt,/W < W was define above, and whose
Hodge filtration is defined exactly as in Remark 2.1.2. As in [PS08, p. 64]
or [Pin89, Proposition 1.2] there is an induced bigrading W (C) = @ W ®4),
and this bigrading is induced by a morphism S¢ — GU(W)¢ taking values
in the stabilizer of J(C). The product of this morphism with the morphism
Sc — GU(Wp)c of Remark 2.1.2 defines a map z : S¢ — Qac, and this
realizes Dy < Hom(Sc, Qac).

Remark 3.2.3. Imitating the construction of Remark 2.1.3 identifies
Dy = {we eV(C): V(C) = wtV(C) ® Cw @ Cw}/C* = P(eV(C))

as an open subset of projective space.
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3.3. The first moduli interpretation. Starting from the pair (Ag,n), we
now construct a smooth integral model of (3.2.1). Following the general
recipes of the theory of arithmetic toroidal compactifications, as in [F'C90,
How 15, Madb, Lan13], this integral model will be defined as the top layer
of a tower of morphisms

Co — By — Agp — Spec(Og),

smooth of relative dimensions 1, n — 2, and 0, respectively.
Recall from §2.3 the smooth Op-stack

M0y X0y, M(n—2,0) = Spec(Ok)

of relative dimension 0 parametrizing certain pairs (Ag, B) of polarized
abelian schemes over S with Og-actions. The étale sheaf Home, (B, Ag)
on S is locally constant; this is a consequence of [BHY 15, Theorem 5.1].

Define Ag as the moduli space of triples (Ag, B, p) over Og-schemes S, in
which (Ao, B) is an S-point of My ) X0, M(,—2,), and

0: Ay = Homg, (B, A)

is an isomorphism of étale sheaves of hermitian Og-modules.

Define By as the moduli space of quadruples (Ag, B, g, ¢) over Og-schemes
S, in which (A, B, ) is an S-point of Ag, and ¢ : n — B is an Og-linear
homomorphism of group schemes over S. In other words, if (Ao, B, o) is the
universal object over Ag, then

By = Homg, (n, B).
Suppose we fix p,v € n. For any scheme U and any morphism U —
Ba, there is a corresponding quadruple (Ag, B, o, ¢) over U. Evaluating the

morphism of U-group schemes ¢ : n — B at pu and v determines U-points
c(p),c(v) € B(U), and hence determines a morphism of Bg-schemes

U W) b p~BxB.

Denote by L(u, )y the pullback of the Poincaré bundle via this morphism.

As U varies, these line bundles are obtained as the pullback of a single
line bundle £(u,v) on Bg, which depends, up to canonical isomorphism,
only on the image of y ® v in

Symg = Sym%(n)/<(:1:,u) QU —pu® @v):xe O, pven).

Thus we may associate to every y € Symg a line bundle £(x) on Bg, and
there are canonical isomorphisms

L)@ LK) = L{x+X)
Our assumption that D is odd implies that Symg is a free Z-module of rank
one. Moreover, there is positive cone in Symg ®z R uniquely determined by
the condition p® p = 0 for all x € n. Thus all of the line bundles £(x) are
powers of the distinguished line bundle

(3.3.1) Lo = L(x0)
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determined by the unique positive generator xo € Symg,.
At last, define Bg-stacks

CCI’ = IS_O(‘cha OB@)? CZIX; = I‘IO_HI(E(I), OB@)'

In other words, Cg is the total space of the line bundle £3', and Cg is the
complement of the zero section By — Cg. In slightly fancier language,

Co = %&(@ﬁé)’ G = %Bq’<§)£é)’

and the zero section By < Cj is defined by the ideal sheaf @, L.

Remark 3.3.1. Using the isomorphism of Lemma 3.1.4, the group Ag acts
on Bg via

(u7t) b (A07B7Q7 C) = (A()?B)QOU_l)COt_l)v
for (u,t) € U(Ag) x GLo, (n). The line bundle Lg is invariant under Ag,
and hence the action of Ag lifts to both Ce and Cj.

Proposition 3.3.2. There is a Ag-equivariant isomorphism
Sh(Qa, Ds) = Co k-

Proof. This is a special case of the general fact that mixed Shimura varieties
appearing at the boundary of PEL Shimura varieties are themselves moduli
spaces of 1-motives endowed with polarizations, endomorphisms, and level
structure. The core of this is Deligne’s theorem [Del74, §10] that the cat-
egory of 1-motives over C is equivalent to the category of integral mixed
Hodge structures of types (—1,—1), (—=1,0), (0,—1), (0,0). See [Madb],
where this is explained for Siegel modular varieties, and also [Bry83]. A
good introduction to 1-motives is [ABV05].

To make this a bit more explicit in our case, denote by Xg the Op-stack
whose functor of points assigns to an Og-scheme S the groupoid Xg(S) of
principally polarized 1-motives A consisting of diagrams

n

|

0——m®z Gy, B B 0

in which B € M,_90)(5), B is an extension of B by the rank two torus
m ®yz G,, in the category of group schemes with Og-action, and the arrows
are morphisms of fppf sheaves of Og-modules.

To explain what it means to have a principal polarization of such a 1-
motive A, set m¥ = Hom(m,Z) and n¥ = Hom(n,Z), and recall from [Del74,
§10] that A has a dual 1-motive AY consisting of a diagram

mV

|

0——nY ®z Gy, Bv BY 0.
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A principal polarization is an Opg-linear isomorphism B =~ BY compatible
with the given polarization B =~ BY, and with the isomorphisms m ~ nV
and n =~ m" determined by the perfect pairing m ®z n — 7Z defined after
(3.1.3).

Using the “description plus symétrique” of 1-motives [Del74, (10.2.12)],
the Op-stack Ce can be realized as the moduli space whose S-points are
triples (Ay, 4, 0) in which

o (Ap, A) € M(1,0)(5) x Xa(95),

® 0: Ay = Homg, (B, Ap) is an isomorphism of étale sheaves of her-
mitian Og-modules, where B € M,_50)(S5) is the abelian scheme
part of A.

To verify that Sh(Q4,Dg) has the same functor of points, one uses Re-
mark 3.2.2 to interpret Sh(Qa,Ds)(C) as a moduli space of mixed Hodge
structures on Wy and W, and uses the theorem of Deligne cited above to
interpret these mixed Hodge structures as 1-motices. This defines an iso-
morphism Sh(Qgs,Dg)(C) = Cs(C). The proof that it descends to the reflex
field is identical to the proof for Siegel mixed Shimura varieties [Madb].

We remark in passing that any triple (Ag, A, ) as above automatically sat-
isfies (2.2.4) for every prime £. Indeed, both sides of (2.2.4) are now endowed
with weight filtrations, analogous to the weight filtration on Homyg(Wy, W)
defined in §3.1. The isomorphism ¢ induces an isomorphism (as hermitian
O o-lattices) between the gr( pieces on either side. The gr_; and gr; pieces
have no structure other then projective Oy -modules of rank 1, so are iso-
morphic. These isomorphisms of graded pieces imply the existence of an
isomorphism (2.2.4), exactly as in Remark 3.1.3. O

3.4. The second moduli interpretation. In order to make explicit cal-
culations, it will be useful to interpret the moduli spaces

Co — By — Agp — Spec(Oy)

in a different way.

Suppose £ — S is an elliptic curve over any base scheme. If U is any
S-scheme and a,b € E(U), we obtain an Op-module Pg(a,b) by pulling
back the Poincare bundle via

Ul By ExExgEY.

The notation is intended to remind the reader of the bilinearity properties
of the Poincaré bundle, as expressed by canonical isomorphisms

(3.4.1) Pe(a+0b,c) = Pg(a,c) ® Pe(b,c)
PE(a b+ c¢) = Pgr(a,b) ® Pr(a,c)
= Pr(b.a),

) =
Pr(a;b)
(

along with Pg(e,b) =~ Oy =~ Pg(a,e). Here e € E(U) is the zero section.
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Let B — M) be the universal elliptic curve with complex multipli-
cation by Op. Its Poincaré bundle satisfies, for all o € O, the additional
relation Pg(aa,b) = Pg(a,ab). Abbreviate

E® Ly = E®o, Lo

for Serre’s tensor construction, and denote by Pggr, the line bundle on
(E'® Lo) XMy (£ ® Lo) whose pullback via a pair of U-valued points

c= Zsi®:ﬂi e BEU)® Ly, = 25;®5E;‘ e E(U)® Ly
is the Opy-module
PrgL,(c,c) = @PE(<$Z‘,$;>SZ', S;)
i,J
Define Qpgr, to be the line bundle on £ ® Ly whose restriction to the
U-valued point ¢ = > s; ® x; is
(3.4.2) QE@LO (C) = ® PE(<3327 :Ej>8i, Sj) @ ® PE(’7<332'7 :EZ'>SZ‘, SZ'),
i<j i
where -
Y= 5 € Ok.

It is related to Prgr, by canonical isomorphisms
(3.4.3) ProLo(a,b) = Query(a +b) ® Quer, (@) ' ® Crer,(h)

PrsL,(a,a) = Qpgr,(a)®?.
for all U-valued points a,b € E(U) ® L.

Remark 3.4.1. The line bundle Pgrgr,(da,a) is canonically trivial. This
follows by comparing

ProL,(7a,a)%? = Prgr,(a,a) @ PpeL,(5a, )
with
ProrL,(va,a)®* = Prer, (va,a) @ Prgr,(Ya, a) = PreL,(a, a).

Remark 3.4.2. One should compare (3.4.3) with [Lan13, Construction 1.3.2.7]
or [MFIK94, Definition 6.2]. The line bundle Qggr, determines a polariza-
tion of £ ® Ly, and Prgr, is the pullback of the Poincaré bundle via

(E® Lo) XM (E® Lo) = (E® Lo) XMy ) (E® Lo)”.

Proposition 3.4.3. As above, let E — M o) be the universal object. There
are canonical isomorphisms

C@ Bq> A<I>

I50(QEr®Ly OrgLy) — E® Lo — M(10),

and the middle vertical arrow identifies Lo = QEgL,-
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Proof. Define a morphism Agp — M, o) by sending a triple (Ao, B, 0) to the
CM elliptic curve

(3.4.4) E = Homg, (n, Ao).

To show that this map is an isomorphism we will construct the inverse.
If S is any Og-scheme and E € M )(S), we may define (Ao, B, 0) €
Ag(S) by setting

Ap = EQ®o,n, B=Homg (Ao, Ao),

and taking for ¢ : Ay =~ Homg, (B, Ag) the tautological isomorphism. It
remains to endow B with a principal polarization. Let U be an S-scheme,
and suppose we are given points

b,/ € B(U) = Homp, (Ao, Aory)

of the form b = (-, \ya and b’ = (-, \)a’ with \, N € Ag and a,a’ € Ay(U).
Note that all points of B(U) are sums of points of this form. Define a line
bundle
Pp(b,b') = Pa,(a, (X, N Ha')

on U, and extend the definition Z-bilinearly, in the sense of (3.4.1), to arbi-
trary points of B(U). There is a unique line bundle P on B xg B whose
restriction to any U-point (b,b') € B(U) x B(U) is Pg(b,’), and a unique
principal polarization on B such that Pp is the pullback of the Poincaré
bundle via B xg B — B xg B"Y. The construction E — (Ag, B, p) is inverse
to the above morphism Ag — My ).

Now identify Ag =~ My o) using the above isomorphism, and denote by
(Ao, B, 0) and E the universal objects on the source and target. They are
related by canonical isomorphisms

Hom, (0 ®0, Ao, Ao)

e
e

By = Homg, (n, B) Hom, (Ao, ).

Combining this with the Op-linear isomorphism

E® L, 2&meha
defines By =~ F ® Lg. All that remains is to prove that this isomorphism
identifies L¢ with Qpgr,-

Any fractional ideal b < k admits a unique positive definite self-dual
hermitian form, given explicitly by (b1, ba) = b1b2/N(b). It follows that any
rank one projective Op-module admits a unique positive definite self-dual
hermitian form. For the Og-module Homp, (n, Of), this hermitian form is

Uy bo) = b (p)la(v) + L (v)la(p),

where p ® v = xo € Symg is the positive generator appearing in (3.3.1).

Homy, (Ao, E)
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The relation (3.4.4) implies a relation between the line bundles Pr and
Pa,. If U is any Ag-scheme and we are given points

s,s' € E(U) = Homo, (n, Aorr)

of the form s = ¢(-)a and s’ = ¢/(-)a’ with ¢,¢' € Homp, (n,Of) and a,a’ €
Ap(U), then

Pr(s,s) = Pa, (<€, £/>a,a/)
Pr(vs,s) = Pa, ({(1)a, l(v)a).

Fix any point ¢ € Bg(U). Using the isomorphisms in the diagram above,
¢ admits three different interpretations. In one of them, ¢ has the form

C = Z EZ()<, /\Z>CL2 € Homok (u @ok A, AOU)-
By setting

bz = <', /\Z>al € Hom@k (AOyAOU) = B(U)
si = 4;i(-)a; € Homp, (n, Agr) = E(U),

we find the other two interpretations
c= Z€ )bi € Homp, (n, Byr)
c= Z(, Aiysi € Homoe, (Ao, Evr).
The above relations between Pp, Pg, and P4, imply

Pp(c(p), c(v))
@PB (€i(12)bs, £5(v)b))

®PA0 a2,</\2,)\ >£ ( ) )

@PAO (i, L5paqs, (i, Ajraj) @@PAO ()ag, £;(V) iy Niya;)

1<j

®PE SZ7<)‘27)‘]>S] ®®PE 73w<)\17)\z>3)

1<j

12

lle

lle

I

Now write \; = x;” with x; € Lo, and use the relation
PE(si,{Nis Ajpsj) = Pe({Nj, Aipsiy 87) = Pe((xi, 7)si, 5)

to obtain an isomorphism Pgp(c(p),c(v)) = Qrgr,(c). The line bundle on
the left is precisely the pullback of L via ¢, and letting ¢ vary we obtain
an isomorphism Lo = QpgrL,- O
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3.5. The line bundle of modular forms. We now define a line bundle of
weight one modular forms on our mixed Shimura variety, analogous to the
one on the pure Shimura variety defined in §2.4.

The holomorphic line bundle w** on D defined in §2.4 admits a canonical
extension to Dy, denoted wg’, whose fiber at a point z = (yo,y) is again
defined by (2.4.1). If we embed Dg into projective space over €V (C) as in
Remark 3.2.3, this is simply the restriction of the tautological bundle. There
is an obvious action of Q4 (R) on the total space of w§”, lifting the natural
action on Dg, and so w§" descends to a holomorphic line bundle on the
complex orbifold Sh(Qa, Ds)(C).

As in §2.4, the holomorphic line bundle wg" is algebraic and descends to
the canonical model Sh(Qg,Dg). In fact, it admits a canonical extension to
the integral model Cg, as we now explain.

Define rank two vector bundles on Ag by

m:m®ZO.Aq>7 m:n®ZO.Aq>’

Each is free of rank one over O ®7z O 4,, and the perfect pairing between m
and n defined after (3.1.3) induces a perfect pairing 0t x M — O 4,. Using
the almost idempotents €, € € O, ®7 O 4, of §1.7, there is an induced perfect
pairing of line bundles

(M/eM) @ (eN) — O 4,.

Recalling that Ag carries over it a universal triple (Ay, B, ), in which Ag
is an elliptic curve with Og-action, we now define a line bundle on Ag by

we = Hom(Lie(Ao), e91),
or, equivalently,
wy' = Lie(Ag) ®o,, M/eM.
Denote in the same way its pullback to any step in the tower
Cy — Bo — As.

The above definition of we is a bit unmotivated, and so we explain why
wg is analogous to the line bundle w on Sk;, defined in §2.4. Recall from
the proof of Proposition 3.3.2 that Cg carries over it a universal 1-motive A.
This 1-motive has a de Rham realization H{*(A), defined as the Lie algebra
of the universal vector extension of A, as in [Del74, (10.1.7)]. It is a rank
2n-vector bundle on Cs, locally free of rank n over O ®z Oc,, and sits in
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a diagram of vector bundles

0 0

FOH{R(B) m

0 — FOH{R(A) —— H{R(A) — Lie(A) —=0

pI¢ Lie(B)

0 0
with exact rows and columns. The polarization on A induces a perfect
symplectic form on H' fR(A). This induces a perfect pairing
(3.5.1) FOH{R(A) ® Lie(4) — Oc,
as in (2.2.1), which is compatible (in the obvious sense) with the pairings
FYH{®(B) ® Lie(B) — Oc,

and M@ M — Oc, that we already have.
The signature condition on B implies that e FO H{®(B) = 0 and €Lie(B) =
0. Using this, and arguing as in [How 15, Lemma 2.3.6], it is not difficult to
see that
Fa = ker(e: Lie(A) — Lie(A))
is the unique codimension one local direct summand of Lie(A) satisfying

Kramer’s condition as in §2.3, and that its orthogonal under the pairing
(3.5.1) is Fi = eFOH{R(A). Moreover, the natural maps

M/eM — Lie(A)/Fa, Fi— eN
are isomorphisms. These latter isomorphisms allow us to identify
we = Hom(Lie(Ag), Fx), wg' = Lie(Ag) ® Lie(A)/Fa
in perfect analogy with §2.4.

Proposition 3.5.1. The isomorphism
Cs(C) = Sh(Qs, Ds)(C)

of Proposition 3.3.2 identifies the analytification of we with the already de-
fined wg". Moreover, the isomorphism Ae = M gy of Proposition 3.4.3
identifies

we =0 - Lie(E) ™' < Lie(E)™!
where 0 = 6Oy s the different of Ok, and E — M o) is the uniersal
elliptic curve with CM by Oy,.
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Proof. Any point z = (yo,y) € Dg determines, by Remarks 2.1.2 and 3.2.2,
a pure Hodge structure on Wy and a mixed Hodge structure on W, these
induce a mixed Hodge structure on V' = Homg(Wy, W), and the fiber of
wg' at z is
w§?, = F'V(C) = Homc (W (C)/eWy(C), e FOW (C)).
On the other hand, we have just seen that
wg = Hom(Lie(Ap), F1) = Hom(Lie(A), eFOH{E(A)).
With these identifications, the proof of the first claim amounts to carefully
tracing through the construction of the isomorphism of Proposition 3.3.2.
For the second claim, the isomorphism Ay =~ F ®p, n induces a canonical
isomorphism
Lie(Ap) = Lie(F) ®o, n = Lie(E) ® /&N,
where we have used the fact that n®p, O4, = 91/éN is the largest quotient
of M on which O acts via the structure morphism O — O4,. Thus
wg = Hom(Lie(A), M)
~ Hom(Lie(E) ® M/eN, eN)
=~ Lie(E) ™' ®0,, Hom(N/eN, eN).
Now recall the ideal sheaf (¢) € O ®z O, of §1.7. There are canonical
isomorphisms of line bundles

004, = (¢) = Hom(91/eN, eN),

where the first is (1.7.1) and the second is the tautological isomorphism
sending e to the multiplication-by-e map 91/e901 — eN. These constructions
determine the desired isomorphism

we = Lie(E)™! ®0 4, 004, -
(]

3.6. Special divisors. Let V(D) be the moduli stack over O, parametriz-
ing cyclic D-isogenies of elliptic curves over Og-schemes, and let £ — £’ be
the universal object.

Let (Ao, B,o,c¢) be the universal object over Bg. Recalling the Og-
conjugate linear isomorphism Ly =~ A( defined after (3.1.4), each x € Ly
defines a morphism

n £> B —>Q(xv) A()
of sheaves of Og-modules on Bg. Define Z5(x) < Bg as the largest closed
substack over which this morphism is trivial. We will see in a moment that

this closed substack is defined locally by one equation. For any m > 0 define
stack over Bg by

(3.6.1) Zo(m) = || Zel).
x€Lg
(x,xy=m
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We also view Zg(m) as a divisor on Bg, and denote in the same way the
pullback of this divisor via C3 — Bs.

We will now reformulate the definition of Z¢(x) in terms of the moduli
problem of §3.4. Recalling the isomorphisms of Proposition 3.4.3, every
x € Ly determines a commutative diagram

Bo—>E®Ly 2~ F

T

Agp — M(y,9) = M0y —= Jo(D),

where M(; gy — Yo(D) sends E to the cyclic D-isogeny
E - FE®o, 0!,

and the rightmost square is cartesian. The upper and lower horizontal com-
positions are denoted j, and j, giving the diagram

(3.6.2) Bs £
l l
Agp —2= V(D

Proposition 3.6.1. For any nonzero x € Ly, the closed substack Z¢(x) <
Bg is equal to the pullback of the zero section along j.. It is an effective
Cartier divisor, flat over Ag. In particular, as Ag is flat over Ok, so is
each divisor Zg(x).

Proof. Recall the isomorphisms
E =~ Homg, (n,4g), B = Homg, (Ao, Ao)
from the proof of Proposition 3.4.3. If we identify Ag ®p, Lo = B using

aQz—{-,xV Ha
A(] @ok L(] _— Homok (Ao, Ao) ~B
we obtain a commutative diagram of Ag-stacks

E ®o, Lo — Homg, (n, Ay ®o,, Lo) — Hom, (n, B) = Bg

<wr>l l@(rv)

E Hom,, (n, Ao),

in which all horizontal arrows are isomorphisms. The first claim follows
immediately.
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The remaining claims now follow from the cartesian diagram

Z% (LE) M(I,O)

| " I

Bs — = E® Ly E.

The zero section e : M o) — E is locally defined by one equation [I[XM&5,
Lemma 1.2.2], and so the same is true of its pullback Z3(x) < Bg. Com-
position along the bottom row is flat by [MFIK94, Lemma 6.12], and hence
so is the top horizontal arrow. O

Remark 3.6.2. For those who prefer the language of 1-motives: As in the
proof of Proposition 3.3.2, there is a universal triple (Ag, A, 0) over Cg in
which Ag is an elliptic curve with Og-action and A is a principally polarized
I-motive with Og-action. The functor of points of Zg(m) assigns to any
scheme S — Cg the set

Z3(m)(S) = {x € Homp, (Ao,s, As) : {x,x) = m},

where the positive definite hermitian form (-, - is defined as in (2.5.1). When
expressed this way, our special divisors are obviously analogous to the special
divisors on Sky, defined in §2.5.

3.7. The toroidal compactification. We describe the canonical toroidal
compactification of the integral model Sk;, from §2.3.

Theorem 3.7.1. Let S denote either Skra 0r Spap. There is a canonical
toroidal compactification Sp — S, flat over Oy, of relative dimension n—1.
It admits a stratification

5= sE(®)
[0}

as a disjoint union of locally closed substacks, indexed by the K -equivalence
classes of cusp label representatives.

(1) The stack Sg,, is regular.

(2) The stack Sf’iap is Cohen-Macaulay and normal, with Cohen-Macaulay
and geometrically normal fibers.

(3) The open dense substack Sp < SF is the stratum indexed by the
unique equivalence class of improper cusp label representatives. Its
complement

a5t = || si@)

$ proper

18 a smooth divisor, flat over O,.
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(4) For each proper ® the stratum SE(®) is closed. All components of
SE(CD)/(C are defined over the Hilbert class field H, and they are per-
muted simply transitively by Gal(H /k). Moreover, there is a canon-
1cal identification of Oy-stacks

Ag\By =———= Sj(?)
l l
Ag\C§ Sh

such that the two stacks in the bottom row become isomorphic after
completion along their common closed substack in the top row. In
other words, there is a canonical isomorphism of formal stacks

(3.7.1) Aa\(C3)5, = (S0)5x (@)

(5) The morphism Skra — Spap extends uniquely to a stratum preserving
morphism of toroidal compactifications. This extension restricts to
an isomorphism

(3.7.2) Sira  Exc = Sp, )\ Sing,

compatible with (3.7.1) for any proper ®.

(6) The line bundle w on Sk defined in §2./ admits a unique extension
(denoted the same way) to the toroidal compactification in such a way
that (3.7.1) identifies it with the line bundle we on Cy. A similar
statement holds for Qxra, and these two extensions are related by

w? =~ Qkra ® O(Exc).

(7) The line bundle Qpap on Spap defined in §2.4 admits a unique ex-
tension (denoted the same way) to the toroidal compactification, in
such a way that (3.7.1) identifies it with w3,

(8) For any m > 0, define Zj;,(m) as the Zariski closure of Zira(m) in
Skra- The isomorphism (3.7.1) identifies it with the Cartier divisor
Zp(m) on C.

(9) For any m > 0, define Y, (m) as the Zariski closure of Ypap(m)
in Sp,,- The isomorphism (3.7.1) identifies it with the square of the
Cartier divisor Zg(m). Moreover, the pullback of Y5, ,(m) to S,
denoted Vi .(m), satisfies

2- Zf;ra(m) = yf&ra(m) + Z #{x €Ls: <LZ',.Z'> = m} - Excg.

semp(Sing)

Proof. Briefly, in [How 15, §2] one finds the construction a canonical toroidal
compactification

o,
M(Dn—l,l) - M(nil,l)‘

Using the open and closed immersion
So = M0 % M(anm)’
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the toroidal compactification Sf is defined as the Zariski closure of Sy in
M1,09) X M(Dn’fl 1" All of the claims follow by examination of the construc-
tion of the compactification, along with Theorem 2.6.3. O

Corollary 3.7.2. The Cartier divisor Yg,,(m) on Sp, is Ok-flat, as is the
restriction of Zj..(m) to Sk, ~ Exc.

Proof. Fix a prime p < Og. In general, if X is a Noetherian, proper, flat
Oy p-scheme with geometrically normal fibers, one can find a finite unram-
ified extension F/k, such that every connected component of X, has
geometrically irreducible fibers. This follows from [FGIT05, Proposition
8.5.16].

Choose a finite extension F'/k, so that every connected component of
Sf’iap O has geometrically irreducible fibers. Proposition 3.6.1 implies that
Zgp(m) is Og-flat for every proper cusp label representative ®. Theorem
3.7.1 now implies that V5, (m) is Op-flat when restricted to some étale
neighborhood U of the boundary of Sf’iap JOp

The boundary, and hence the étale neighborhood U, meets every con-
nected component of S;ap P (this can be checked in the complex fiber, where
it follows from the fact that a k-hermitian space of signature (n — 1,1) with
n = 3 admits an isotropic k-line). It follows that U meets every connected
component of Sl’f,ap O and hence meets every irreducible component of the
special fiber. We deduce that the support of the Cartier divisor yf’iap(m)
contains no irreducible components of the special fiber, so is Og-flat.

As the isomorphism (3.7.2) identifies Y, (m) with 22 (m), it follows
that the restriction of Z% , (m) to the complement of Exc is also flat. O

3.8. Fourier-Jacobi expansions. We now define Fourier-Jacobi expan-
sions of sections of the line bundle w” of weight k& modular forms on Skiva-
Fix a proper cusp label representative ® = (P, g). Suppose 1) is a rational
function on Sf,,, regular on an open neighborhood of the closed stratum
Kra(®). Using the isomorphism (3.7.1) we obtain a formal function, again
denoted 1, on the formal completion

A 0
(Ca)g, = Sofy, (TT£5)-
=0
Tautologically, there is a formal Fourier-Jacobi expansion
(3.8.1) b =Y FI(4) ¢
£=0

with coefficients FJ, () € H°(Bg, £5). In the same way, any rational section
¥ of wk on S ., regular on an open neighborhood of Sf . (®), admits a
Fourier-Jacobi expansion (3.8.1), but now with coefficients

FJ,(¢) € H(Bg,wk @ LY).
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Remark 3.8.1. Let 7 : C§ — Bg be the natural map. The formal symbol ¢
can be understood as follows. As Cj is the total space of the line bundle
Egl, there is a tautological section

qe HO(C, m* L")

whose divisor is the zero section By — Cz. Any FJ, € H 0(B¢,£é) pulls
back to a section of w*ﬁfp, and so defines a function FJ, - ¢* on Cs-

3.9. Explicit coordinates. Once again, let ® = (P, g) be a proper cusp
label representative. The algebraic theory of §3.8 realizes the Fourier-Jacobi
coefficients of

(3.9.1) e H(Sfpar ")
as sections of line bundles on the stack
Bcp ~ F X L(].

Here £ — M ) is the universal CM elliptic curve, the tensor product is
over O, and we are using the isomorphism of Proposition 3.4.3. Our goal
is to relate this to the classical analytic theory of Fourier-Jacobi expansions
by choosing explicit complex coordinates, so as to identify each coefficient
FJy(¢) with a holomorphic function on a complex vector space satisfying a
particular transformation law.

The point of this discussion is to allow us, eventually, to show that the
Fourier-Jacobi coefficients of Borcherds products, expressed in the classical
way as holomorphic functions satisfying certain transformation laws, have
algebraic meaning. More precisely, the following discussion will be used
to deduce the algebraic statement of Proposition 6.4.1 from the analytic
statement of Proposition 6.3.1.

Consider the commutative diagram

Sh(Qe, Da)(C) — Co(C) — Bo(C) As(C)

| %

kX\k* /O M1,0)(C).

a—E(@)

Here the isomorphisms are those of Propositions 3.3.2 and 3.4.3, and the
vertical arrow on the left is the surjection of Proposition 3.2.1. The bottom
horizontal arrow is defined as the unique function making the diagram com-
mute. It is a bijection, and is given explicitly by the following recipe: Each
a € k* determines a projective Og-module

b = a-Homp, (n, gag)
of rank one, and the elliptic curve E(® has complex points

(3.9.2) E@(C) = b\(b ®0,, C).
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For each a € k* there is a cartesian diagram

EFW®L—=FE® L

|

Spec((C) —_— M(LO) .

Now suppose we have a section ¢ as in (3.9.1). Using the isomorphisms
Bs =~ E® Lo and wg = 0-Lie(F)~! of Propositions 3.4.3 and 3.5.1, we view
its Fourier-Jacobi coefficients

FJi(y) € H(Bg,wh ® L)
as sections
FJy(v) € HO(E® Lo,0" - Lie(E) ™ ® Qpgy, ),

which we pull back along the top map in the above diagram to obtain a
section

(3.9.3) FI{ (1) € H(E® ® Lo, Lie(E@) ™ ® Q% (00, )-

Remark 3.9.1. Recalling that 0 = §Oy is the different of k, we are using the
inclusion ?* < k < C to identify d* ®o, C = C, and hence

oF - Lie(E@W)~F ~ Lie(E@)~F,
In particular, this isomorphism is not multiplication by 6.

The explicit coordinates we will use to express (3.9.3) as a holomorphic
function arise from a choice of Witt decomposition of the hermitian space
V = Homyg(Wy, W). The following lemma will allow us to choose this de-
composition in a particularly nice way.

Lemma 3.9.2. The homomorphism ve of (3.1.1) admits a section

s

Qo

Resk/QGm.

Ve

This section may be chosen so that s(@,:) c Ko, and such a choice deter-
mines a decomposition

(3.9.4) |_| (Qao(Q) N s(a)Kes(a) )\ Dy = Sh(Qg, Dy)(C),
aEk:X\I::X/@;c<
where the isomorphism is z — (z, s(a)) on the copy of Dy indezed by a.

Proof. Fix an isomorphism of hermitian Og-modules

gao ® ga = gag D gr_,(ga) ® gr_,(ga) ® gry(ga)

as in Remark 3.1.3. After tensoring with Q, we let k* act on the right hand
side by a — (a,Nm(a),a,1). This defines a morphism k* — G(Q), which,
using (3.1.1), is easily seen to take values in the subgroup Q¢(Q). This
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defines the desired section s, and the decomposition (3.9.4) is immediate
from Proposition 3.2.1. O

Fix a section s as in Lemma 3.9.2. Recall from §3.1 the weight filtration
wt;V < V whose graded pieces

gr_;V = Homg(Wy, gr_oW)
groV = Homg(Wo, gr_; W)
gr;V = Homg (W, groW)
have k-dimensions 1, n — 2, and 1, respectively. Recalling (3.1.1), which

describes the action of Q¢ on the graded pieces of V', the section s determines
a splitting V = V_1 @ Vp @ V1 of the weight filtration by

Voi={veV:Yaek”, s(a)v =av}
Vo={veV:Vaek™, s(a)v =v}
Vi={veV:Vaeck* sla)v=a'v}

The summands V_; and V; are isotropic k-lines, and V{ is the orthogonal

complement of V_; + V4 with respect to the hermitian form on V. In par-

ticular, the restriction of the hermitian form to Vj < V is positive definite.
Fix an a € k* and define an Op-lattice

L = Homop, (s(a)gag, s(a)ga) < V.

Using the assumption s(Oy, ) < K¢, we obtain a decomposition
L=L1®Ly® Ly
with L; = L nV;. The images of the lattices L; in the graded pieces gr,V
are given by
Ly =a-Homo,(gao, gr_»(9a))
Ly = Homo, (900, gr_1(ga))
Ly = a™' - Homp, (gag, gry(ga)).

In particular, Ly is independent of a and agrees with (3.1.4).
Choose a Z-basis e_;,f_1 € L_1, and let eq,f; € 97 'L; be the dual basis
with respect to the (perfect) Z-bilinear pairing

[, ]: Ly xd 'L > 7Z
obtained by restricting (2.1.6). This basis may be chosen so that

Ly =Ze_1+7Zf 4 0_1[/,1 =Ze_1 + D_lzf,1
(3.9.5)
L1 = Zey1 + DZf; DflLl = Zey + Zf;.

As €V1(C) < V1(C) is a line, there is a unique 7 € C satisfying
(3.9.6) Te; + f1 € V4 (C).
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After possibly replacing both e; and e_; by their negatives, we may assume

that Im(7) > 0.

Proposition 3.9.3. The Z-lattice b = Z7 + Z 1is contained in k, and is a
fractional Oy-ideal. The elliptic curve

(3.9.7) E@(C) = b\C

is isomorphic to (3.9.2), and there is an Og-linear isomorphism of complex
abelian varieties

(3.9.8) E(C)® Lo = bLo\Vo(R).
Under this isomorphism the inverse of line bundle (3.4.2) has the form
(3.9.9) Q. ©or, = 0Lo\(Vo(R) x ©),

where the action of yo € bLy on V(R) x C is

-yo.wo> . _<wowoy . <¥0:Y0)
Yo - (w()’ q) = (wo + €Yo, q - eﬂ— N(b) ¢ 7T Im(7) n 2Tm (7) )

Proof. Consider the Q-linear map

(3.9.10) Yy LetPlimatth ¢

Its C-linear extension V_1(C) — C kills the vector e_; —7f_1 € eV_1(C), and
hence factors through an isomorphism V_;(C)/eV_;(C) =~ C. This implies
that (3.9.10) is k-conjugate linear. As this map identifies L_; =~ b, we find
that the Z-lattice b < C is Op-stable. From 1 € b we then deduce that
b c k, and is a fractional Og-ideal. Moreover, we have just shown that

ae_1+pf_1—ar+

(3.9.11) L, b.

is an Og-conjugate linear isomorphism.
Exactly as in (2.1.4), the self-dual hermitian forms on gay and ga induce
an Op-conjugate-linear isomorphism
Homo, (gao, gr_s(ga)) = Homo, (gro(ga), ga0),

and hence determine an Og-conjugate-linear isomorphism

L_y =a-Homop, (gap,gr_,(ga))
= a - Homo, (gro(ga), gao)
= a - Homp, (n, gap).

The composition

9.11
a-Home, (n,ga9) = L_; 391D, b

is an Op-linear isomorphism, which identifies the fractional ideal b with
the projective Og-module used in the definition of (3.9.2). In particular it
identifies the elliptic curves (3.9.2) and (3.9.7), and also identifies

EW(C)® Ly = (b\C) ® Lo = (b® Ly)\(C ® Lo).
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Here, and throughout the remainder of the proof, all tensor products are
over Q. Identifying C® Lo =~ Vp(R) proves (3.9.8).
It remains to explain the isomorphism (3.9.9). First consider the Poincaré
bundle on the product
E@(C) x E(C) = (b x b)\(C x C).

Using classical formulas, the space of this line bundle can be identified with
the quotient

Pr@c) = (b x b)\(C x C x C),
where the action is given by

(b1,b2) - (21, 22,q) = (Zl +b1,22 + b2, q - EWHT(Zl’bQ)HHT(Q’bI)HHT(bl’bz))

9

and we have set H,(w, z) = wz/Im(7) for complex numbers w and z.
Directly from the definition, the line bundle (3.4.2) on

E@(C)® Lo = (b ® Lo)\(C ® Lo)
is given by
Qp@ e, = (0® Lo)\((C® Lo) x C),

where the action of b® Ly on (C® Lg) x C is given as follows: Choose any set
T1,...,Tn € Ly of Og-module generators, and the extend the Og-hermitian
form on L to a C-hermitian form on C® L. If

Yo =Zbi®$i€ b® Lo

and

wo =Zzi®$i€C®Lo

then
Yo - (wo, q) = (wo + yo,q - ™)
where the factors X and Y are
X = Z < (@i, i)z, bj) + He(25,{x;, xj)b;) + HT(<a;,~,a:j>b,~,bj))

z<]

9

Z<22®xl7b ®‘T]>+ Z<b ®x27b ®.’L']>

z;é] 1<]
and, recalling v = (1 + 6)/2,

Y = Z ( (Y@, i)z, bi) + He(zi, 7{@i, i)bs) + Hr (¥{@s, w3)bi, bi)>

:Im

®$zab ®x2>+ 2’7<b @l‘l,b ®$z>

For elements Y1, Y2 € b® Lo, we abbrev1ate

y2)  {y2,91)

ON(b) ~ oN(b)

Oé(ylyyl) =
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Using 2iIm(7) = dN(b), some elementary calculations show that

7{wo, Yo,

X + 7Y — W
- Z<b ® 2, b; ®x]>+ Z<’yb ®wi, by ® i)
_ ﬁ()z«; ® i, b; @ ;) — ( )Z<b i @i, by @ 1)

+271 ; a(vh @ zi,b; @ z5) + W ZZ:<b, ® Xy by @ T4 ).
All terms in the final line lie in 2747, and so

m{wo,y0)  ™yo.y0>  7i{yg.y0)
= ¢ Im(7) ¢ 2Im(7) ¢ N(b)

e7rX+7rY

The relation (3.9.9) follows immediately. O

Proposition 3.9.3 allows us to express Fourier-Jacobi coefficients explicitly
as functions on Vj(R) satisfying certain transformation laws. Suppose we
start with a global section

(3912) 7;[) € HO( Kra/(C’ k)

For each a € k* and ¢ > 0 we have the algebraically defined Fourier-Jacobi
coefficient

(3.9.13) FI" () € H(E @ Lo, Qpnrgy,):

of (3.9.3), where we have trivialized Lie(E®) using (3.9.7). The isomor-
phism (3.9.9) now identifies (3.9.13) with a function on V(R) satisfying the
transformation law

ime v pSwo v e <vove)

(3.9.14)  FI () (wo + yo) = FI () (wp) - €™ @) ™ Tatr) T mat)
for all yg € bLy.

Remark 3.9.4. If we use the isomorphism pr, : Vp(R) = €V, (C) of (2.1.7) to
view (3.9.13) as a function of wy € €Vp(C), the transformation law can be
expressed in terms of the C-bilinear form [-, -] as

7l [wg.y0l 4l Q(yo)

(a) ( ) iWZQ(yO)
FJ (4) (wo + pre(yo)) = FI,” (1) (wp) - ™ RO ™ Tty T2t
for all yo € bLg. This uses the (slightly confusing) commutativity of

Vo(R) —2= eVp(C) —=— V4 (C)

<'7yo>l J{[nyo]

kg R C.
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In order to give another interpretation of our explicit coordinates, let
Ng < Q¢ be the unipotent radical, and let Up < Ng be its center. The
unipotent radical may be characterized as the kernel of the morphism vg
of (3.1.1), or, equivalently, as the largest subgroup acting trivially on all
graded pieces gr;V.

Proposition 3.9.5. There is a commutative diagram

z—(wo,q)

(3.9.15)  (Us(Q) n s(a)Kes(a)™1)\Dg eVp(C) x C*
(Na(Q) N s(a)Kes(a)~')\Da bLo\(eVo(C) x C*)

i which the horizontal arrows are holomorphic isomorphisms, and the ac-
tion of bLg on

eVo(C) x C* = Vp(R) x C*
is the same as in Proposition 5.9.3
Proof. Recall from Remark 3.2.3 the isomorphism
Dy = {we eV(C): eV (C) = eV_1(C) ® eVp(C) @ Cw}/C*.

As eV (C) is totally isotropic with respect to [+, ], a simple calculation shows
that every line w € Dg has a unique representative of the form

—&(e—1 —7f1) +wo + (Te1 + 1) € eV_1(C) ® eVp(C) @ V4 (C)

with £ € C and wp € €V((C) = Vp(R). These coordinates define an isomor-
phism of complex manifolds

(3.9.16) Do 22108, (i (C) x C.

The action of G on V restricts to a faithful action of Ng, allowing us to
express elements of Ng(Q) as matrices

1 ¢* u+t30*0d
n(¢7 ¢*,U) = 1 qb € N@(Q)
1
for maps
¢ € Homg(V1, Vo), ¢* € Homg(Vo, V-1), we Homg(V1,V_1)
satisfying the relations

0 ={p(x1),y0) + {x1, 90" (v0))
0 = Cu(z1),y1) + {x1,u(y1))

for x;,y; € V;. The subgroup Ug(Q) is defined by ¢ = 0 = ¢*.

The group Us(Q) N s(a)Kes(a)~! is cyclic, and generated by the element
n(0,0,u) defined by

<l‘1, a> 5

[L,1 . Oka] “

u(z1) =



MODULARITY OF UNITARY GENERATING SERIES 63

for any a¢ € L_1. In terms of the bilinear form, this can be rewritten as
u(ml) = —[l‘l,ffl]efl + [l‘l,efl]ffl.
In the coordinates of (3.9.16), the action of n(0,0,u) on Dg becomes

(w07£) g (w0,5 + 1)7

and setting g = e?™€ defines the top horizontal isomorphism in (3.9.15).
Let V_; = V_; with its conjugate action of k. There are group isomor-
phisms

(3.9.17) N3(Q)/Us(Q) = V_1 @ Vo = Vo.
The first sends
’I’L(¢7 ¢*7 u) — Y1 ®y07

where y_1 and yq are defined by the relation ¢(z1) = {x1,y—_1) - yo, and the
second sends

(ae_1 + Bf_1) @ yo — (a1 + B)yo.

Compare with (3.9.11).
A slightly tedious calculation shows that (3.9.17) identifies

(No(Q) N s(a)Kes(a)™)/(Us(Q) N s(a)Kes(a) ™) = bLo,

defining the bottom horizontal arrow in (3.9.15), and that the resulting
action of bLy on eVy(C) x C* agrees with the one defined in Proposition
3.9.3. We leave this to the reader. g

Any section (3.9.12) may now be pulled back via

(No(Q) n s(a)Kos(a) WD =209, g3, D) ()

to define a holomorphic section of (w®)*, the k' power of the tautological

bundle on

D= {weeV(C): [w,w] <0}/C*.
The tautological bundle admits a natural Ng(R)-equivariant trivialization:
any line w € D must satisfy [w,f_1] # 0, yielding an isomorphism

[' ,ffl] T > OD.

This trivialization allows us to identify 1 with a holomorphic function on
D < Dg, which then has an analytic Fourier-Jacobi expansion

(3.9.18) ¥ = FI ()(wo) - '
4

defined using the coordinates of Proposition 3.9.5. The fact that the coeffi-
cients here agree with (3.9.13) is a special case of the main results of [Lan12],
which compare algebraic and analytic Fourier-Jacobi coefficients on general

PEL-type Shimura varieties.
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4. CLASSICAL MODULAR FORMS

Throughout §4 we let D be any odd squarefree positive integer, and ab-
breviate I' = I'og(D). Let k be any positive integer.

4.1. Weakly holomorphic forms. The positive divisors of D are bijection
with the cusps of the complex modular curve Xy(D)(C), by sending r | D
to

0, = % e I\P(Q).

Note that r = 1 corresponds to the usual cusp at infinity, and so we some-
times abbreviate co = 007.
Fix a positive divisor r | D, set s = D/r and choose

_ (o B
R, = <3’Y 7‘(5) EFO(S)
with «, 5,7, € Z. The corresponding Aktin-Lehner operator is defined by

the matrix
_(ra B T
= (5 )= m ()

The matrix W, normalizes I, and so acts on the cusps of Xy(D)(C). This
action satisfies W, - o0 = 0,..
Let x be a quadratic Dirichlet character modulo D, and let

X = Xr - Xs
be the unique factorization as a product of quadratic Dirichlet characters
Xr and xs modulo r and s, respectively. Write

Mk‘<D7X) < MIL(D7X)

for the spaces of holomorphic modular forms and weakly holomorphic mod-
ular forms of weight k, level T', and character x. We assume that x(—1) =
(—=1)k, since otherwise M} (D, x) = 0.

Denote by GLj (R) < GL2(R) the subgroup of elements with positive
determinant. It acts on functions on the upper half plane by the usual
weight k slash operator

_ b
(F b)) = det()2er + ) m), = (4 1) e GLI®)
and f — f | W, defines an endomorphism of M. li(D, X) satisfying

f i Wr2 = Xr(=1)xs(r) - f.
In particular, W, is an involution when Yy is trivial.
Any weakly holomorphic modular form

fr) =2, c(m)-q™e Mi(D,x)

determines another weakly holomorphic modular form
Xr(B)xs(@) - (f s Wr) € Mi(D, ),
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which is easily seen to be independent of the choice of parameters «, 3,7, ¢
in the definition of W,.. This second modular form has a g-expansion at oo,
denoted

(4.1.1) Xr(B)xs (@) - (f [k Wr) = Z cr(m) - q™.

m>»>—0o0

Definition 4.1.1. We call (4.1.1) the g-expansion of f at co,. Of special
interest is ¢, (0), the constant term of f at co,.

Remark 4.1.2. If x is nontrivial, the coefficients of (4.1.1) need not lie in the
subfield of C generated by the Fourier coefficients of f.

4.2. Eisenstein series and the modularity criterion. If £ > 2 we may
define an Eisenstein series

E= 3 x(d)-(1|x7) e My(D,x).
~eLp\I'

Here I'y, < T is the stabilizer of oo € P}(Q), and v = (¢}) €T
Define the (normalized) Eisenstein series for the cusp oo, by

Er = xr(=B)xs(ar) - (E | Wr) € Mp(D, x).
It is independent of the choice of the parameters in W,., and we denote by
E. (1) = Z er(m)-q"
m=0

its g-expansion at co.

Remark 4.2.1. Our notation for the g-expansion of F, is slightly at odds
with (4.1.1), as the g-expansion of E at o0, is not Y, e.(m)g¢™. Instead, the
g-expansion of E at o0, is x,(—1)xs(r) X er(m)q™, while the g-expansion of
E, at o0, is > e1(m)q™. In any case, what matters most is that

1 ifs=r
constant term of E, at ooy = .
0 otherwise.

Denote by
My%, (D, x) = My_4(D,x)
the subspace of weakly holomorphic forms that are holomorphic outside the
cusp o0, and by

MZ(D, x) = My(D,x)
the subspace of holomorphic modular forms that vanish at all cusps different
from co. If £ > 2 then

for the weight k Eisenstein series I of §4.2. The constant terms of weakly
holomorphic modular forms in MQ'fok (D, x) can be computed using the above
Eisenstein series.
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Proposition 4.2.2. Assume k > 2. Suppose r | D and

fr) =" c(m) g™ e My",(D,x).

m>»>—00

The constant term of f at the cusp o0, in the sense of Definition 4.1.1,
satisfies

cr(0) + ). e(—=m)er(m) = 0.

m>0

Proof. The meromorphic differential form f(7)E,(7) dr on X((D)(C) is holo-
morphic away from the cusps o0 and c0,.. Summing its residues at these cusps
gives the desired equality. O

Theorem 4.2.3 (Modularity criterion). Suppose k = 2. For a formal power
series

(4.2.1) Y, dm)g™ e C[[q]l,

m=0
the following are equivalent:
(1) The relation Y, - qc(—m)d(m) = 0 holds for every weakly holomor-
phic form
Y clm)-q™ e My (D, x).

m>»>—00

(2) The formal power series (4.2.1) is the q-expansion of a modular form
in M°(D,x).

Proof. As we assume k > 2, that the map sending a weakly holomorphic
modular form f to its principal part at oo identifies

) -
My% (D, x) = Clg ).
On the other hand, the map sending a holomorphic modular form to its
g-expansion identifies

ME(D, x) < C[[q]]-

A slight variant of the modularity criterion of [Bor99, Theorem 3.1] shows
that each subspace is the exact annihilator of the other under the bilinear
pairing C[¢~'] ® C[[¢]] — C sending P ® g to the constant term of P - g.
The claim follows. O

5. UNITARY BORCHERDS PRODUCTS

The goal of §5 is to state Theorems 5.3.1, 5.3.3, and 5.3.4, which asserts
the existence of Borcherds products on S ., and Sf’iap having prescribed
divisors and prescribed leading Fourier-Jacobi coefficients. These theorems
are the technical core of this work, and their proofs will occupy all of §6.
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5.1. Jacobi forms. In this section we recall some of the rudiments of the
arithmetic theory of Jacobi forms. A more systematic treatment can be
found in the work of Kramer [[Kra9l, Kra95].

Let Y be the moduli stack over Z classifying elliptic curves, and let 7 :
&€ — Y be the universal elliptic curve. Abbreviate I' = SLs(Z), and let $) be
the complex upper half-plane. The groups I and Z? each act on $) x C by

a b ar+b =z o
<c d>‘(7,2):<m,m>, [5](772):(7334‘047'4'5)7

and this defines an action of the semi-direct product I'* = T' x Z2. We
identify the commutative diagrams

(5.1.1) I\($ x C) Lie(£(C))
| > | N
*\(H x C) —=TI'\H E(C) ——Y(C)

by sending (7,z) € $ x C to the vector z in the Lie algebra of C/(Z7 + Z).

Define a line bundle O(e) on £ as the inverse ideal sheaf of the zero
section e : Y — £. The Lie algebra Lie(£) is (by definition) e*O(e), and
wy = Lie(£)~! is the usual line bundle of weight one modular forms on )
(see Remark 5.1.3 below). In particular, the line bundle

Q=0(e) ®m*wy

on £ is canonically trivialized along the zero section. For a scheme U and a
point a € £(U), denote by Q(a) the pullback of Q via a: U — €.

Denote by P the pullback of the Poincaré bundle via the canonical iso-
morphism £ xy & =~ & xy &Y. If U is any scheme and a,b € E(U), we
obtain a line bundle P(a,b) on U exactly as in (3.4.1). There are canonical
isomorphisms

Pla,b) = Q(a+b) ® Qa) ' ® Q(b) ™"
and P(a,a) = Q(a) ® Q(a).
Definition 5.1.1. The diagonal restriction
Joa = (diag)*P =~ Q?

is the line bundle of Jacobi forms of weight 0 and index 1 on £. More
generally,

Tien = T @ m*wh)
is the line bundle of Jacobi forms of weight k and index m on £.
The isomorphism of the following proposition is presumably well-known.

We include the proof in order to make explicit the normalization of the
isomorphism (see Remark 5.1.3 below, for example).
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Proposition 5.1.2. Let p : H x C — E(C) be the quotient map. The
holomorphic line bundle T, on E(C) 1is isomorphic to the holomorphic
line bundle whose sections over an open set % < E(C) are holomorphic
functions F(1,2) on p~ (%) satisfying the transformation laws

ar +b z b omimes?/(ertd)
Fl—— = F . . p2mimez®/(cT
<c7'+d’c7'+d> (r,2) - (er +4d)" - e
and
(512) F(T7 z —|— oT _|_ /8) — ’F‘<,7.7 Z) . 6727rim(a27'+2az).

Proof. Let Jy, , be the holomorphic line bundle on £(C) defined by the above
transformation laws.

By identifying the diagrams (5.1.1), a function f, defined on a I'-invariant
open subset of $) and satisfying the transformation law

i (‘” : b) —Fr) - er )

ct +d

of a weight —1 modular form, defines a section 7 — (7, f(7)) of the line
bundle
\(H x C) ~ Lie(E(C)) = (w‘)l,”)’l

on I'\$). This determines an isomorphism J; g = jffg. It now suffices to
construct an isomorphism Jp1 = J'7, and then take tensor products.

Fix 7 € 9, set £, = C/(Z7 + Z), and restrict both J'7 and Jo1 to line
bundles on E; < £(C). The imaginary part of the hermitian form
2122
Im(7)
on C restricts to a Riemann form on Z7 + Z. By classical formulas for
the Poincaré bundle on complex abelian varieties, the restriction of Tt
to the fiber E, is isomorphic to the holomorphic line bundle determined
by the Appell-Humbert data 2H, and the trivial character Zt + Z — C*.
The sections of this holomorphic line bundle are, by definition, holomorphic
functions g, on C satisfying the transformation law
(Z) . 627TH7—(2,€)+7TH7—(€,Z)

H:(z1,22) =

gr(z +4) = gr
for all ¢ € Z1 + Z. If we set
F(r,2) = g:(2) - e TH(22)

this transformation law becomes (5.1.2).

The above shows that j&’f and Jy 1 are isomorphic when restricted to the
fiber over any point of Y(C), but such an isomorphism is only determined up
to scaling by C*. To pin down the scalars, and to get an isomorphism over
the total space, use the fact that both J§"! and Jo1 come (by construction)
with canonical trivializations along the zero section. By the Seesaw Theorem
[BLO4, Appendix A], there is a unique isomorphism Tt = Jo compatible
with these trivializations. U
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Remark 5.1.3. The proof of Proposition 5.1.2 identifies a classical modular
form f (1 ) >le(m)g™ of weight k and level I' with a holomorphic section
of ( ™)k again denoted f, satisfying an additional growth condition at the
cusp. Under our identification, the g-expansion principle takes the following
form: if R < C is any subring, then f is the analytification of a global
section f € Ho(y/R,wgﬁ/R) if and only if c¢(m) e (27i)* R for all m.

For 7 € $ and z € C, we denote by
191(7_’ Z) _ Z em’(n+%)27+2m(n+%)(z—%)

neZ

the classical Jacobi theta function, and by

7r7,7'/12 1_[ 2n7rz7'

Dedekind’s eta function. Set

o(r, 2) défiLi;(:’)z) =g -2 H — ()

where ¢ = €2™ and ( = e

n=1

27riz.
Proposition 5.1.4. The Jacobi form ©%* defines a global section
0> e H(E, Jo,12)
with divisor 24e, while (2mwin?)'? determines a nowhere vanishing section
(2min?)'? € HO(Y,wy?).

Proof. Tt is a classical fact that (27in?)'? is a nowhere vanishing modular
form of weight 12. Noting Remark 5.1.3, the g-expansion principle shows
that it descends to a section on }/q, and thus may be viewed as a rational
section on ). Another application of the g-expansion principle shows that
its divisor has no vertical components. Thus its divisor is trivial.

Classical formulas show that ©?* defines a holomorphic section of Jo'12
with divisor 24e, and so the problem is to show that ©2! is defined over
@, and extends to a section on the integral model with the stated divisors.
One could presumably deduce this from the g-expansion principle for Jacobi
forms as in [Kra91, Kra95]. We instead borrow an argument from [Sch9g,
§1.2], which requires only the more elementary g-expansion principle for
functions on £.

Let d be any positive integer. The bilinear relations (3.4.1) imply that
the line bundle Jocle ® [d]*]ojll on & is canonically trivial, and so

924 — @24d® ® [d]*®_24

defines a meromorphic function on £(C). The crucial point is that §3*
is actually a rational function defined over @, and extends to a rational
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function on the integral model £ with divisor
(5.1.3) div(03*) = 24(d*E[1] — £[d]).

As in [Sch98, p. 387], this follows by computing the divisor first in the
complex fiber, then using the explicit formula

2 n—1vg? \ 24
934(7_7 2) = q2(d271)<712d(d71) (H (1-— Q"C)d H (1-q"¢C 1)d )

_ d _ —d
n=0 1 an n>0 1 qn<

and the g-expansion principle on £ to see that the divisor has no vertical
components.
The line bundle w%? is trivial, and hence there are isomorphisms

Joa2 = Q' = O(e)”! @ m*wy? =~ O(e)*".

Thus there is some ©24 ¢ HY(&, Jo.12) with divisor 24e, and the rational
function

934 — §24d? ® [d]*éf24

on & also has divisor (5.1.3).

Consider the meromorphic function p = ©24/624 on £(C). By comput-
ing the divisor in the complex fiber, we see that p is a nowhere vanishing
holomorphic function, and hence is constant. But this implies that

5 = 635

By what was said above, the right hand side is (the analytification of) a
nowhere vanishing function on £. This implies that pd2_1 = 11, and the
only way this can hold for all d > 1 is if p = +1. O

Now consider the tower of modular curves
Vi(D) - (D) =Y

over Spec(Z) parametrizing elliptic curves with Drinfeld T'y(D)-level struc-
ture, I'g(D)-level structure, and no level structure, respectively. We denote
by € the universal elliptic curve over any one of these bases, and view the
line bundle of Jacobi forms Jp 12 as a line bundle on any one of the three uni-
versal elliptic curves. Similarly, we view the Jacobi forms ©2* and (27in?)!?
of Proposition 5.1.4 as being defined over any one of these bases.

The following lemma will be needed in §5.3.

Lemma 5.1.5. Let Q : V1(D) — & be the universal D-torsion point. For
any r | D the line bundle

(5.1.4) X (Q)* To,12

beZ/DZ
b#0
rb=0



MODULARITY OF UNITARY GENERATING SERIES 71

on Y1(D) is canonically trivial, and its section

B @ 00)e”
beZ/DZ
b#0
rb=0

admits a canonical descent, denoted the same way, to a section of the trivial

bundle on Yy(D).

Proof. If z1, ..., x, are integers representing the r-torsion subgroup of Z/DZ,
then 6,22 = 0 (mod D). The bilinear relations (3.4.1) therefore provide a
canonical isomorphism

X POQ.Q)®P? = (X) P(Q,120°Q) = P(Q,e) = Oy, (p)

beZ/DZ beZ/DZ
b#0 b#0
rb=0 rb=0

of line bundles on Y;(D). This is the desired trivialization of (5.1.4). The
section F?* is obviously invariant under the action of the diamond operators
on Vi (D), and so descends to V(D). O

5.2. Borcherds’ quadratic identity. For the remainder of §5 we denote
by Xk : (Z/DZ)* — {£1} the Dirichlet character determined by the exten-
sion k/Q, abbreviate

(5.2.1) X = Xzfz,

and fix a weakly holomorphic form

(5.2.2) fr)y= D elm)g™e My, (D, x)
m>—0

with ¢(m) € Z for all m < 0.

For a proper cusp label representative ® as in Definition 3.1.1, recall the
self-dual hermitian Og-lattice Lo of signature (n — 2,0) defined by (3.1.4).
The hermitian form on Ly determines a quadratic form Q(z) = {(x,x), with
associated Z-bilinear form [z1, z2] = Try/g{x1, ¥2) of signature (2n — 4,0).

The modularity criterion of Theorem 4.2.3 implies the following identity
of quadratic forms on Ly ® R.

Proposition 5.2.1 (Borcherds’ quadratic identity). For all ue Lo ® R,

3 Q) [l = LS Q) [

:EEL() (EGLO

Proof. The homogeneous polynomial

[’LL, ’LL] i [’U’ U]
P(u,v) = [u,v]? — oA

on Ly ®R is harmonic in both variables u and v. For any fixed u € Lo ® R

there is a corresponding theta series

O(r,u, P) = > P(u,z) - q%") € S,(D, ).

:EEL()
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The modularity criterion of Theorem 4.2.3 therefore shows that

dle(=m) )] ([u,x]z - %) =0

m>0 x€Lg
Q(z)=m
for all uw e Lo ® R. This implies the assertion. O

Recall from (3.6.2) that every x € Ly determines a diagram

(5.2.3) By —2" ¢

|,

Agp —j>y0(D),

where, changing notation slightly from §5.1, V(D) is now the open modular
curve over Op. Recall also that Bg carries a distinguished line bundle Lg
defined by (3.3.1), used to define the Fourier-Jacobi expansions of (3.8.1).
We will use Borcherds’ quadratic identity to relate the line bundle Lg to
the line bundle Jy 1 of Jacobi forms on £.

Proposition 5.2.2. The rational number
m - c(—m)

(5.2.4) multe(f) = ).

m>0

~#{x e Ly: Q(x) =m}

n—2
lies in 7, and there is a canonical isomorphism

cyme )~ @ @ g™

m>0 xzelg

Q(z)=m
of line bundles on Bg.

Proof. Proposition 5.2.1 implies the equality of hermitian forms

(u,)
D Q@) - Cuy lyvy = 52

(=Q(x)) - [z, 7]
x€Lg z€lo

= (u,v) - multe (f)

for all u,v € Ly. As Ly is self-dual, we may choose u and v so that {u,v) = 1,
and the integrality of multg(f) follows from the integrality of ¢(—m).

Set £ = & xy,(p) Ae, and use Proposition 3.4.3 to identify B = F® Ly.
The pullback of the line bundle

® @ i = @ gt

m>0 zelg zeLg

Q(z)=m




MODULARITY OF UNITARY GENERATING SERIES 73

via any T-valued point a = > t; ®y; € E(T) ® Ly is, in the notation of §3.4,

C? PE<Z<yz,x>t“Z<yjjx>t )@c( Q)
Q) & Pr(c(=Q(x)) - (yis ) - {a,y;) - tist)

i, x€Lg
® PE (<yza y]> iyt )®mu“q>(f)

)®multq o (f)

lle

lle

= PE@LO (a, a
(a)®2~multq> ().

~

QE®Ly
This, along with the isomorphism Qggr, = Lo of Proposition 3.4.3, proves
that
2multe (f)  H2multe(f) L s e
L™ = QE%“EO@ = & ady

m>0 xz€lg

Q(z)=m
(]

5.3. The unitary Borcherds product. For a prime p dividing D define
(5.3.1) Yp =6, (D, p), -invy(Vp) € {£1, +i},

where inv,(V},) is the invariant of V,, = Homg(Wy, W) ®g @, in the sense of
(1.7.3), and

1 ifp=1 (mod4)
€, =
P li ifp=3 (mod 4).

It is equal to the local Weil index of the Weil representation of SLy(Z,) on
St, < S(Vp), where V,, is viewed as a quadratic space as in (2.1.6). This is
explained in more detail in §8.1. For any r dividing D we define

(5.3.2) Y = H%'
plr
Let ¢,.(0) denote the constant term of f at the cusp o0,, as in Definition

4.1.1, and define
k= Z Vr CT’(O)
r|D

We will see later in Corollary 6.1.4 that all ~, - ¢, (0) € Q.
For every m > 0 define a divisor

(5.3.3) Bira(m) = % Mz e Lo (x,x) = m) - S, (@)
[

with rational coefficients on S, ,. Here the sum is over all K-equivalence
classes of proper cusp label representatives ® in the sense of §3.2, Ly is the
hermitian Og-module of signature (n — 2,0) defined by (3.1.4), and S, (®)
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is the boundary divisor of Theorem 3.7.1. It follows immediately from the
definition (5.2.4) that

Z c(—m) - Bgra(m Z multe (f) - Sra(P).
m>0

For m > 0 define the total special divisor
ZIt(Orta( ) Z]?zra<m) + BKra(m)7

where Z% . (m) is the special divisor defined on the open Shimura variety in
§2.5, and extended to the toroidal compactification in Theorem 3.7.1.

The following theorems assert the existence of Borcherds products on Sg
and Sf;ap having prescribed divisors and prescribed leading Fourier-Jacobi
coefficients. Their proofs will occupy all of §6.

Theorem 5.3.1. After possibly replacing the form f of (5.2.2) by a positive
integer multiple, there is a rational section ¥(f) of the line bundle w* on
Slira With the following properties.

(1) In the generic fiber, the divisor of ¥ (f) is
div(p(f) e = Y, c(=m) - Zigh(m) .
m>0

(2) For every proper cusp label representative ®, the Fourier-Jacobi ex-
pansion of P(f), in the sense of (3.8.1), along the boundary divisor

ACI’\B‘I) = Sféra(q>)
has the form
() = g™y o,

=0

where Yy is a rational section of wq) ® £mu“q)(f)+£ over Bg.

(3) For any ® as above, the leading coeﬂficzent Py admits a factorization
17b0 _ ch ®P£or ® Pgert’
where the three terms on the right are defined as follows.
(a) Proposition 3.5.1 provides us with an isomorphism
D_ we = j wy
of line bundles on Ag, where j : Ag — Yo(D) is the morphism
of (5.2.3), and wy = Lie(€)~! is the pullback via Yo(D) — Y of
the line bundle of weight one modular forms. Pulling back the
modular form (2min?)'2 of Proposition 5.1./ defines a nowhere
vanishing section
j* @2min®)* € H(Ap, 07" wj).

Using the canonical inclusion we < 0 'we, define

Pg = J*(27T“72)k,
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but viewed as a rational section of wg over Ag. Denote in the
same way its pullback to Bg.
(b) Recalling the function

F = @ (bQ)re™
beZ/DZ
b#0
rb=0
on Yo(D) of Lemma 5.1.5, define a rational function
qu;ert _ ®j*FgT'CT'(O)

r|D
r>1

on A, and again pull back to Bg.
(¢) Using Proposition 5.2.2, define a rational section

Pgor _ ® ® j;l;@c(—m)

m>0 x€lg
(x,xy=m

of the line bundle £glmt@(f) on Bs.
These properties determine 1 (f) uniquely.
Remark 5.3.2. In replacing f by a positive integer multiple, we are tacitly
assuming that the constants ~,¢,(0) and ¢(—m) are integer multiples of 24

for all » | D and all m > 0. This is necessary in order to guarantee k € 127,
and to make sense of the three factors (2min2)*, Phor and Pgert.

In fact, we can strengthen Theorem 5.3.1 by computing precisely the
divisor of ¥(f) on the integral model Sf% ..

Theorem 5.3.3. The rational section 1(f) of w* has divisor

div(y(f)) = Y, e(=m) - Zi&,(m)

m>0

ik (@ — div(6)> + 2179 (0) D Sitrarm,

2
r|D pl|r

_ Z c(—2m) Z #{x € Ly : {x,z) = m} - Excg,

m>0 semp(Sing)

where p < Ok is the unique prime above p, L is the self-dual Hermitian
Op-lattice defined in §2.6, and Excs < Exc is the fiber over the component
s € mp(Sing).

It is possible to give a statement analogous to Theorem 5.3.3 for the
integral model Sg, . To do this we first define, exactly as in (5.3.3), a
Cartier divisor

Ig(zfp(m) = yf;ap<m) + 2Bpap (m)



76 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT, T. YANG

with rational coefficients on Sp,,. Here y;:ap(m) is the Cartier divisor of
Theorem §3.7.1, and

Bpap(m) = % N #t{w e Lo : (2, 2) = m) - Sap(®).
[}

It is clear from Theorem 3.7.1 that
(5.3.4) 2- 2 (m) = Vit (m) + Z #{r e Ls:{x,x) =m} - Exc,

semo (Sing)

where )8!, (m) denotes the pullback of Vi3 (m) via S, — Sg,.-
The isomorphism

w? = Qi ® O(Exc)

of Theorem 3.7.1 identifies w?* ~ Qf(ra in the generic fiber of S, allowing
us to view 1(f)? as a rational section of QF . As SF . — Spap IS an

isomorphism in the generic fiber, this section descends to a rational section

of the line bundle Q’f)ap on Sf’iap.

Theorem 5.3.4. When viewed as a rational section of Q’f,ap, the Borcherds
product 1 (f)? has divisor

div(gp(f)?) = D] e(=m) - Yk (m)
m>0

— 2k - div(0) + 2 Z Yrer(0) Z‘S{;ap/Fp'
r|D plr

These three theorems will be proved simultaneously in §6. Briefly, we
will map our unitary Shimura variety Sh(G,D) to an orthogonal Shimura
variety, where a meromorphic Borcherds product is already known to exist.
If we pull back this Borcherds product to Sh(G,D)(C), the leading coeffi-
cient in its analytic Fourier-Jacobi expansion is known from [[<ud16], up to
multiplication by some unknown constants of absolute value 1.

By converting this analytic Fourier-Jacobi expansion into algebraic lan-
guage, we will deduce the existence of a Borcherds product ¥ (f) satisfying
all of the properties stated in Theorem 5.3.1, up to some unknown constants
in the leading Fourier-Jacobi coefficient. These unknown constants are the
Kko’s appearing in Proposition 6.4.1. We then rescale the Borcherds product
to make many k¢ = 1 simultaneously.

After such a rescaling, the divisor of ¥(f)? on Spap Can be computed
from the Fourier-Jacobi expansions, and agrees with the divisor written in
Theorem 5.3.4. Pulling back that divisor calculation via Sk, — Sp,,, and
using Theorem 2.6.3, yields the divisor of Theorem 5.3.3.

Using the above divisor calculations, we prove that all k¢ are roots of
unity. Thus, after replacing f by a multiple, which replaces ¥(f) by a
power, we can force all kg = 1, completing the proofs.
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5.4. A divisor calculation at the boundary. Let ® be a proper cusp
label representative. The following proposition is a key ingredient in the
proofs of Theorems 5.3.1, 5.3.3, and 5.3.4.

Proposition 5.4.1. The rational sections Py, ch‘”’, and PE of the line
bundles wg, Egultq’(f), and Op,, , respectively, have divisors
div(P]) = —k - div(é)

div(Pe) = Y e(—m)Zg(m)

m>0
div(Pge™) = Z ~rcr(0) Z By /r,-
r|D pl|r

In particular, the divisor of Pg"" is purely horizontal (Proposition 3.6.1),
while the divisors of Py and P are purely vertical.

Proof. By Proposition 5.1.4 the section

7*(2rin®)* e HO(Ag, 0 *wh) = HO(Vo(D), wh)
has trivial divisor. When we use the inclusion wg < 9 lwg to view it instead
as a rational section Pj of wg, its divisor becomes div(6~*). This proves
the first equality.

To prove the remaining two equalities, let &€ — )y(D) be the universal
elliptic curve, and denote by e : Yy(D) — & the 0-section. It is an effective
Cartier divisor on &.

Directly from the definition of Pho’" we have the equality

div(Pper) = Z div(j:0%).
m>0 x€Lg
(z,x)=m
Combining Proposition 5.1.4 with (3.6.1) shows that
Dodiv(ire*)y = > 24ji(e) = > 24Zg(x) = 2424 (m),
x€lg x€lg x€lg
{z,x)y=m {z,xy=m {z,xy=m

and the first equality follows immediately.

Recall the morphism j : A — Vo(D) of §3.6. For the second equality
it suffices to prove that the function F2* on )y(D) defined in Lemma 5.1.5
satisfies

(5.4.1) div(j*F?*) = 24> Ag/w,-
plr

Let C' < £ be the universal cyclic subgroup scheme of order D. For each
s | D denote by C[s] < C the s-torsion subgroup, and by C[s]* < C[s] the
closed subscheme of generators. More precisely, noting that

sl=[[Clp]
pls
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we may use the Oort-Tate theory of group schemes of prime order (see
[HR12] for a summary). Define

cls)* = [ clp™,
pls

where C[p]* denotes the closed subscheme of generators of C[p] as in [HR12,
§3.3]. Note that C[p]* coincides with the subscheme of points of exact order
p. See [HR12, Rem. 3.3.2].

There is an equality of Cartier divisors

idiv(Fﬁ‘l) = (C[r] — €) xee Yo(D) = Y. (C[s]" xg.e V(D))
s|r
s#1

on Yp(D). Indeed, one can check this after pullback to )y (D), where it is
clear from Proposition 5.1.4, which asserts that the divisor of the section
©%* appearing in the definition of F?* is equal to 24e. If s is divisible by
two distinct primes then

(C[s]* xg.e Yo(D)) =0,
and hence
div(F?*) = 2437 (Cp]* xe.e Vo(D)).
plr

Now pull back this equality of Cartier divisors by j. Recall that j is
defined as the composition

Ao = M(I,O) i> yQ(D),
where the isomorphism is the one provided by Proposition 3.4.3, and the

arrow labeled i endows the universal CM elliptic curve E' — My o) with its
cyclic subgroup scheme E[d]. Thus

(5.4.2) *div(F*) = 24> (E[p]* xpe M(10)),
plr

where p denotes the unique prime ideal in Ok over p.

Fix a geometric point z : Spec(Fglg) — M), and view z also as a
geometric point of E or £ using

Mg > ESE.

Let Of . and Og . denote the completed étale local rings of F¥ and £ at z.

By Oort-Tate theory there is an isomorphism

O&Z = W[[X7 Y7 Z]]/(XY - wp)

for some uniformizer w, in the Witt ring W = W(F;lg). Compare with
[HR12, Theorem 3.3.1]. Under this isomorphism the O-section of £ is defined
by the equation Z = 0, and the divisor C[p]* is defined by ZP~! — X = 0.
Moreover, noting that the completed étale local ring of M, ) at z can be
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identified with O ® W, the natural map Og . — Og ; is identified with the
quotient map

WIIX,Y, Z]|/(XY —wy) - W[[X,Y, Z]]/(XY —wp, X —uY)

for some u € W*.
Under these identifications, the closed immersion

Elp]™ xge M0 = Mq

corresponds, on the level of completed local rings, to the quotient map

OM(LO) T W[[X7 Y7 Z]]/(XY - wp, X - UY, Z)
Fp® —— W[[X, Y, Z])/(XY — w,, X —uY, Z, 27"} - X).

This implies that
E[p] x XE,@ M(170) - M(170)/F;lg.
The equality (5.4.1) is clear from this and (5.4.2). O

6. CALCULATION OF THE BORCHERDS PRODUCT DIVISOR

In this section we prove Theorems 5.3.1, 5.3.3, and 5.3.4. Throughout §6
we keep f as in (5.2.2), and again assume that ¢(—m) € Z for all m > 0.
Recall that V' = Homg (W, W) is endowed with the hermitian form {z,y)
of (2.1.5), as well as the Q-bilinear form [z,y] of (2.1.6). The associated
quadratic form is
[, 2]

Q) = o,y = 25,

6.1. Vector-valued modular forms. Let L < V be any Op-lattice, self-
dual with respect to the hermitian form. The dual lattice of L with respect
to the bilinear form [-,-] is L' = 0! L.

Let w be the restriction to SLa(Z) of the Weil representation of SLQ(@)
(associated with the standard additive character of A/Q) on the Schwartz-
Bruhat functions on L ®z A . The restriction of w to SLy(Z) preserves the
subspace S; = C[L'/L] of Schwartz-Bruhat functions that are supported on
L’ and invariant under translations by L. We obtain a representation

wip, - SLQ(Z) — Aut(SL).
For e L'/L, we denote by ¢, € Sr, the characteristic function of y.
Remark 6.1.1. The conjugate representation @y, on Sy, defined by

@L()(¢) = wr()(9)
for ¢ € Sp, is the representation denoted pr, in [Bor98, Bru02, BF0O4].
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Recall the scalar valued modular form
Fr) =) cm)-q™ e My, (D, x)
m>»—00

of (5.2.2), and continue to assume that c(m) € Z for all m < 0. We
will convert f into a C[L’/L]-valued modular form f, to be used as input
for Borcherds’ construction of meromorphic modular forms on orthogonal
Shimura varieties. The restriction of wy, to T'o(D) acts on the line C- ¢ via
the character y, and hence the induced function

(6.1.1) F@ = D0 (flma (™) wi(y) o
v€lo(D)\SL2(Z)

is an Sp-valued weakly holomorphic modular form for SLa(Z) of weight 2—n
with representation wy,. Its Fourier expansion is denoted

(6.1.2) i@ =Y am)-qm,

and we denote by ¢é(m, u) the value of ¢(m) € Sy, at a coset pe L'/L.

For any 7 | D let 7, € {£1, +i} be as in (5.3.2), and let ¢,(m) be the m'™®
Fourier coefficient of f at the cusp o0, asin (4.1.1). For any p € L'/L define
ru | D by

(6.1.3) =[] »
pp#0

where y,, € L,/ L, is the p-component of .
Proposition 6.1.2. For all m € Q the coefficients ¢(m) € St satisfy
m. ) = {ZWW cep(mr) if m=-Q(n) (mod Z),

0 otherwise.
Moreover, for m < 0 we have

- . C<m) Zfﬂ = 07
CWHU_{O if i #0,

and the constant term of f is given by

5(07/‘) = Z Yr CT‘(O)‘

rulr|D

Proof. The first formula is a special case of results of Scheithauer [Sch09,
Section 5]. For the reader’s benefit we provide a direct proof in §8.2.

The formula for the m = 0 coefficient is immediate from the general
formula. So is the formula for m < 0, using the fact that the singularities
of f are supported at the cusp at co. O

Remark 6.1.3. The first formula of Proposition 6.1.2 actually also holds for
f in the larger space M} _ (D, x).
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Corollary 6.1.4. The coefficients c(m) and ¢(m) satisfy the following:

(1) The c¢(m) are rational for all m.
(2) The ¢(m, u) are rational for all m and p, and are integral if m < 0.
(3) For all v | D we have 7, - ¢.(0) € Q. In particular

&(0,0) = X - cr(0) € Q.

r|D

Proof. For the first claim, fix any o € Aut(C/Q). The form f7 — f € MQ'fon
is holomorphic at all cusps other than oo, and vanishes at the cusp o by
the assumption that as ¢(m) € Z for m < 0. Hence f? — f is a holomorphic
modular form of negative weight 2 — n, and therefore vanishes identically.
It follows that c¢(m) € Q for all m.

Now consider the second claim. In view of the Proposition 6.1.2 the coef-
ficients ¢(m, ) of f with m < 0 are integers. Hence, for any o € Aut(C/Q),
the function f7 — f is a holomorphic modular form of weight 2 — n < 0,
which is therefore identically 0. Therefore f has rational Fourier coefficients.

The third claim follows from the second claim and the formula for the
constant term of f given in Proposition 6.1.2. O

6.2. Construction of the Borcherds product. We now construct the
Borcherds product ¥(f) of Theorem 5.3.1 as the pullback of a Borcherds
product on the orthogonal Shimura variety defined by the quadratic space
(V,Q). Useful references here include [Bor98, Bru02, Kud03, Hofl4].

After Corollary 6.1.4 we may replace f by a positive integer multiple in
order to assume that ¢(—m) € 247Z for all m > 0, and that ~,¢,(0) € 24Z for
all 7 | D. In particular the rational number

k = &(0,0)

of Corollary 6.1.4 is an integer. Compare with Remark 5.3.2.
Define a hermitian domain

(6.2.1) D={weV(C): [w,w] =0, [ww] <0}/C*,

Let @ be the tautological bundle on D, whose fiber at w is the line Cw <
V(C). The group of real points of SO(V') acts on (6.2.1), and this action
lifts to an action on w*”.

As in Remark 2.1.3, any point z € D determines a line Cw < €V (C). This
construction defines a closed immersion

(6.2.2) D < D,

under which @ pulls back to the line bundle w®* of §2.4. The hermitian
domain D has two connected components. Let DT < D be the connected
component containing D.

For a fixed g € G(A), we apply the constructions of §6.1 to the input form
f and the self-dual hermitian Og-lattice

L = Homp, (gap, ga) < V.
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The result is a vector-valued modular form f of weight 2 — n and represen-
tation wy, : SLo(Z) — Sr. The form f determines a Borcherds product \I’(f)
on D*; see [Bor98, Theorem 13.3] and Theorem 7.2.4. For us it is more
convenient to use the rescaled Borcherds product

(6.2.3) Py(f) = (2m) VW (2f)
k

determined by 2f. It is a meromorphic section of (@),
The subgroup SO(L)" < SO(L) of elements preserving the component
Dt acts on 1,59( f) through a finite order character [Bor(0]. Replacing f by
mf has the effect of replacing 1,59( f) by 1,59( )™, and so after replacing f by
a multiple we assume that 'l,Bg (f) is invariant under this action.
Denote by 14(f) the pullback of 1;9( f) via the map

(G(Q) ngKg ")\D — SO(L)"\D"

k

induced by (6.2.2). It is a meromorphic section of (w®"*)" on the connected

component
(G(Q) n gKg~ \D 2222 $1(G,D)(©).

By repeating the construction for all g € G(Q)\G(A¢)/K, we obtain a mero-
morphic section 4(f) of the line bundle (w®*)* on all of Sh(G, D)(C).
After rescaling on every connected component by a complex constant

of absolute value 1, this will be the section whose existence is asserted in
Theorem 5.3.1.

6.3. Analytic Fourier-Jacobi coefficients. We return to the notation of
§3.9. Thus ® = (P, g) is a proper cusp label representative, we have chosen

S Resk/QGm — Qo
as in Lemma 3.9.2, and have fixed a € k*. This data determines a lattice
L = Homo, (s(a)gap, s(a)ga),
and Witt decompositions
V=VaeWweV, L=L.®L®L:.

Choose bases e_1,f_1 € L_1 and eq,f; € L1 as in §3.9.
Imitating the construction of (3.9.16) yields a commutative diagram

6.2.2 -
D ( ) D+
w'—>(wo7£)l lWH(T,wo,ﬁ)
eVp(C) x C HxW(C)xC

in which the vertical arrows are open immersions, and the horizontal arrows
are closed immersions. The vertical arrow on the right is defined as follows:
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Any w € D pairs nontrivially with the isotropic vector f_;, and so may be
scaled so that [w,f_1] = 1. This allows us to identify

D={weV(C):[w,w] =0, [ww] <0, [w,f_1] = 1}.
Using this model, any w € D* has the form
w=—Ce_1 + (17§ — Q(wo))f_1 + wo + Te1 + f1

with 7 € 9, wg € V5(C), and £ € C. The bottom horizontal arrow is
(wg, &) — (1, w0, &), where 7 is determined by the relation (3.9.6).

The construction above singles out a nowhere vanishing section of w®*
whose value at an isotropic line Cw is the unique vector in that line with
[w,f_1] = 1. As in the discussion leading to (3.9.18), we obtain a trivializa-
tion

[' ,ffl] " > Oﬁ+.

Now consider the Borcherds product 'gBS(a)g( f) on Dt determined by the
lattice L above (that is, replace g by s(a)g throughout §6.2). It is a mero-
morphic section of (@ )*, and we use the trivialization above to identify it
with a meromorphic function. In a neighborhood of the rational boundary
component associated to the isotropic plane V_1 < V, this meromorphic
function has a product expansion.

Proposition 6.3.1 ([Kudl6)). There are positive constants A and B with
the following property: For all points w € DT satisfying

Q(Im(wo)) (T B
Im(7) > Alm(r) + Im(7)’

Im(§) —
there is a factorization
'ﬁzs(a)g(f) =k (sz)k ’ 772k(7) ’ e27riI§ ’ PO(T) Py (7—7 ?,U(]) ’ P2(7_7 wo, g)
in which k € C* has absolute value 1, n is the Dedekind n-function, and
1
-3 e <0——f_>—222 o1 (m — Q(x)).
beZ/DZ m>0zeLo
The factors Py and Py are defined by

0,21 1)
- e(p)

beZ/DZ
b0

and

Two H H @ ’w(), )(m)

m>0 xzeLg

Qz)=m
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The remaining factor is

. . . o 2-¢(ac—Q(z),p)
P (7_’ wo, 5) _ H (1 _ e27rzc§e27rm7—e27rzb/De 27rz[m,w0]> ’
wE571L0
ac’Z
beZ/ D7,
CEZ>0

where i = —ae_1 — %f_l +x+ce;ed L/L.

Proof. This is just a restatement of [[<ud16, Corollary 2.3, with some sim-
plifications arising from the fact that the vector-valued form f used to define
the Borcherds product is induced from a scalar-valued form via (6.1.1).

A more detailed description of how these expressions arise from the gen-
eral formulas in [[Kud16] is given in the appendix. O

If we pull back the formula for the Borcherds product @ﬁs(a)g (f) found in
Proposition 6.3.1 via the closed immersion (6.2.2), we obtain a formula for
the Borcherds product ) (q),(f) on the connected component

(G(Q) n s(a)gK g~ s(a)N\D 222, 51, D) (©),
from which we can read off the leading analytic Fourier-Jacobi coefficient.

Corollary 6.3.2. The analytic Fourier-Jacobi expansion of 1(f), in the
sense of (3.9.18), has the form

V(g (F) = Y. FI @ (f)) (wo) - ¢

=1

The leading coefficient FJga)(v,b(f)), viewed as a function on Vo(R) as in the
discussion leading to (3.9.14), is given by

(63.1)  FIV @) (wo) = - (2mi)* - n(7)* - Po(r) - Pi(r,wp),
where T € §) is determined by (3.9.6),

Po(r) = 1_[ 1_[ o <T7%>%cr(0)

r|D beZ/DZ
b+#0
rb=0

and

Pl(T,wo) = H 1_[ @(T,<wo,x>)6(7m).

m>0 xz€eLlg

Q(z)=m
The constant k € C, which depends on both ® and a, has absolute value 1.

Proof. Using Proposition 6.3.1, the pullback of @ﬁs(a)g(f) via (6.2.2) factors
as a product

Yy (f) = 6+ 2mi)" - n?M (1) - 2™ Py (1) Py (7, wo) Pa(7, w0, £),
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where £ € C* and wg € V(R) = €V (C). The parameter 7 € § is now fixed,
determined by (3.9.6). The equality

b 6(0,%f71) b yrer(0)
[[e(~p) ~ -I11I e(+p)

beZ/DZ r|D beZ/DZ
b#0 b#0
rb=0

follows from Proposition 6.1.2, and allows us to rewrite Py in the stated form.
To rewrite the factor P; in terms of (-, -) instead of [-, -], use the commutative
diagram of Remark 3.9.4. Finally, as Im(¢) — o0, so ¢ = €2™& — 0, the
factor P» converges to 1. This P, does not contribute to the leading Fourier-
Jacobi coefficient. O

Proposition 6.3.3. The integer I defined in Proposition 6.5.1 is equal to
the integer multe (f) defined by (5.2.4), and the product (6.5.1) satisfies the
transformation law (3.9.14) with £ = multe(f).

Proof. The Fourier-Jacobi coefficient FJga) (¥(f)) is, by definition, a section
of the line bundle Qg(a) oL O E@ ® I, When viewed as a function of the
variable wy € Vy(R) using our explicit coordinates, it therefore satisfies the
transformation law (3.9.14) with ¢ = I.

Now consider the right hand side of (6.3.1), and recall that 7 is fixed, de-
termined by (3.9.6). In our explicit coordinates the function O (7, (wq, z))?*
of wg € Vu(R) is identified with a section of the line bundle j} Jp 12 on
E(@) ® L; this is clear from the definition of j, in (3.6.2), and Proposition
5.1.4. Thus P;(7,wp), and hence the entire right hand side of (6.3.1), defines
a section of the line bundle

R ® j;j()c,(l_m)/2 ~ Eimulté(fﬂ) ~ Qg?i)t%(g)7
m>0 xz€lg
Q(z)=m
where the isomorphisms are those of Proposition 5.2.2 and Proposition 3.4.3.
This implies that the right hand side of (6.3.1) satisfies the transformation
law (3.9.14) with ¢ = multg(f).

The claim now follows from (6.3.1) and the discussion above. For a more

direct proof of the proposition, see §8.4. O

6.4. Algebraization and descent. The following weak form of Theorem
5.3.1 shows that ¥ (f) is algebraic, and provides an algebraic interpretation
of its leading Fourier-Jacobi coefficients.

Proposition 6.4.1. The meromorphic section ¥ (f) is the analytification
of a rational section of the line bundle w* on Skra/c- This rational section
satisfies the following properties:

(1) When viewed as a rational section over the toroidal compactification,

div($(f)) = Y, e(=m) - Zra(m)sc + ) multa(f) - Sira(®) e
[l

m>0
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(2) For every proper cusp label representative ®, the Fourier-Jacobi ex-
pansion of ¥ (f) along S, (®)c, in the sense of §3.8, has the form

P(f) = g™ te () Z Py gt

>0

(3) The leading coefficient 1g, a rational section of wg, ®£$UItq)(f) over
Bgc, factors as

o = Ko ® P ® PL @ P!
for a unique section
Ko € HO(.A@/(C, Ojl(p/(c)'

This section satisfies |ke(z)| = 1 at every complex point z € Ag(C).
(The other factors appearing on the right hand side were defined in
Theorem 5.5.1.)

Proof. From Corollary 6.3.2 one can see that ¥(f) extends to a meromorphic
section of w* over the toroidal compactification Sf;,, (C), vanishing to order
I = multe(f) along the closed stratum Sg, . (®),c = Sk, /C indexed by a
proper cusp label representative ®. The calculation of the divisor of ¥(f)
over the open Shimura variety Sk;,(C) follows from the explicit calculation
of the divisor of 1,5( f) on the orthogonal Shimura variety due to Borcherds,
and the explicit complex uniformization of the divisors Zk;,(m) found in
[KR14] or [BHY15].

The algebraicity claim now follows from GAGA (using the fact that the
divisor is already known to be algebraic), proving all parts of the first claim.
The second and third claims are just a translation of Corollary 6.3.2 into the
algebraic language of Theorem 5.3.1, using the explicit coordinates of §3.9
and the change of notation (27in?)¥ = Py, Py = P4 and P, = PPor. O

We now prove that ¥ (f), after minor rescaling, descends to k.

Recall from Proposition 2.1.1 that the geometric components of Sh(G, D)
are defined over the Hilbert class field H < C of k, and that each such
component has trivial stabilizer in Gal(H/k). This allows us to choose
connected components X; < Sh(G, D)y in such a way that

SWG D)y =] | || o).
i oeGal(H/k)

For each index i, pick g; € G(A¢) in such a way that X;(C) is equal to
the image of

(G(Q) A g:K g7 N\D 2259, sh(@, D)(C).

Choose an isotropic k-line J < W, let P < G be its stabilizer, and define a
proper cusp label representative ®; = (P, g;). The above choices pick out one
boundary component on every component of the toroidal compactification,
as the following lemma demonstrates.
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Lemma 6.4.2. The natural maps

|—|i S;%ra(q%) - S]?zra

-
=
L2
-
o
5
12

.

|_|2' S;ap (cI)Z) - S;ap

induce bijections on connected components. The same is true after base
change to k or C.

Proof. Let X} < Sf’iap((C) be the closure of X;. By examining the com-
plex analytic construction of the toroidal compactification [How 15, Lanl2,
Ping9], one sees that some component of the divisor S, (®;)(C) lies on
X}. Now recall from Theorem 3.7.1 that the components of Sg, (®;)(C)
are defined over H, and that the action of Gal(H /k) is simply transitive. It
follows immediately that

S;ap<q)l)<c) c |_| U(X:)a
oeGal(H /k)
and the inclusion induces a bijection on components. By Proposition 3.2.1
and the isomorphism of Proposition 3.3.2, the quotient map
Ca(C) — Ag,\Co,(C)

induces a bijection on connected components, and both maps C — By —
Ag have geometrically connected fibers (the first is a G,,-torsor, and the
second is an abelian scheme). We deduce that all maps in

Az, (C) < Ba,(C) = Aa;\Ba,(C) = i, (i) (C) = Sp,, (€:)(C)

induce bijections on connected components.

The above proves the claim over C, and the claim over k follows formally
from this. The claim for integral models follows from the claim in the generic
fiber, using the fact that all integral models in question are normal and flat
over O. O

Proposition 6.4.3. After possibly rescaling by a constant of absolute value
1 on every connected component of S]?;ra/(C’ the Borcherds product w(f) is

defined over k, and the sections of Proposition 6./.1 satisfy
ko € HO(Ag )k, qu)/k)

for all proper cusp label representatives ®. Furthermore, we may arrange
that ke, = 1 for all 1.

Proof. Lemma 6.4.2 establishes a bijection between the connected compo-
nents of Sf,.(C) and the finite set | |, As,(C). On the component indexed
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by z € Ag,(C), rescale 1(f) by ke,(z)"'. For this rescaled (f) we have
ke, = 1 for all 1.

Suppose o € Aut(C/k). The second claim of Proposition 6.4.1 implies
that the divisor of %(f), when computed on the compactification S JC
is defined over k. Therefore o(¥(f))/¥(f) has trivial divisor, and so is
constant on every connected component.

By Proposition 6.4.1, the leading coefficient in the Fourier-Jacobi expan-
sion of 9(f) along the boundary stratum Sf,, (®;) is

o = Py, @ Py @ Py,

which is defined over k. From this it follows that o (¢ (f))/%(f) is identically
equal to 1 on every connected component of S¢ .~ meeting this boundary

stratum. Varying ¢ and using Lemma 6.4.2 shows that o(¢(f)) = ¥(f).
This proves that ¥ (f) is defined over k, hence so are all of its Fourier-
Jacobi coefficients along all boundary strata Si . (®). Appealing again to
the calculation of the leading Fourier-Jacobi coefficient of Proposition 6.4.1,
we deduce finally that k¢ is defined over k for all ®. O

6.5. Calculation of the divisor, and completion of the proof. The
Borcherds product 9 (f) on Sf Ik of Proposition 6.4.3 may now be viewed
as a rational section of w¥ on the integral model Skra-

Let ® be any proper cusp label representative. Combining Propositions
6.4.1 and 6.4.3 shows that the leading Fourier-Jacobi coefficient of 4 (f)
along the boundary divisor Sf,, (®) is

(6.5.1) Yo = ke ® P ® PAo" ® P
Recall that this is a rational section of wé ® Egultq’(f ) on Bg. Here, by

mild abuse of notation, we are viewing k¢ as a rational function on Ag, and
denoting in the same way its pullback to any step in the tower

Ci 5 By — Ag.

Lemma 6.5.1. Recall that m has a canonical section By — Cg, realizing
B as a divisor on C§. If we use the isomorphism (3.7.1) to view ¥ (f) as a
rational section of the line bundle w{f, on the formal completion (C&’Z)gq), its
divisor satisfies

div(y(f)) = div(6 *ke) + multe (f) - By
+ Z c(—m)Zs(m) + Z "}/TCT(O)ZT(* (Ba/r,)-

m>0 r|D plr

Proof. First we prove

(6.5.2) div(ep(f)) = n*div(tho) + multe(f) - Be.
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Recalling the tautological section ¢ with divisor Bg from Remark 3.8.1,
consider the rational section

R=qg ™" W) p(f) = > i~

=0

of wi ® ﬂ*ﬁgultq’(f ) on the formal completion (C3)g, -

We claim that div(R) = 7*A for some divisor A on Bg. Indeed, whatever
div(R) is, it may decomposed as a sum of horizontal and vertical compo-
nents. We know from Theorem 3.7.1 and Proposition 6.4.1 that the hori-
zontal part is a linear combination of the divisors Zg(m) on Cj defined by
(3.6.1); these divisors are, by definition, pullbacks of divisors on Bg. On the
other hand, the morphism Cj — Bg is the total space of a line bundle, and
hence is smooth with connected fibers. Thus every vertical divisor on Cj,
and in particular the vertical part of div(R), is the pullback of some divisor
on Bg.

Denoting by i : B — Cj, the zero section, we compute

A =i*1*A = i*div(R) = div(i*R) = div(¢p).

Pulling back by 7 proves that div(R) = 7*div(ty), and (6.5.2) follows.

We now compute the divisor of ¥y on Bg using (6.5.1). The divisors of
Pg, Pgm, and Pge” were computed in Proposition 5.4.1, which shows that
on Bg we have the equality

div(tpo) = div(6 *ke) + Y c(—m)Za(m) + Y cr(0) Y Byyw,-
m>0 D plr

Combining this with (6.5.2) completes the proof. g

Proposition 6.5.2. When viewed as a rational section of w* on Siiras the
Borcherds product ¥(f) has divisor

le(’l/J(f)) = Z c(—m) ’ Z]?zra(m) + Zmultcb(f) ’ Sf&ra«p)

m>0

[}
(6.5.3) +div(E™) + D 9%er(0) D) Sk,
r|D pir

up to a linear combination of irreducible components of the exceptional di-
visor Exc < Sf;,,. Moreover, each section ke of Proposition 6.4.3 has finite
multiplicative order, and extends to a section ke € H°(Agp, (’)jf‘q)).

Proof. Arguing as in the proof of Corollary 3.7.2, we may find a finite ex-
tension F'/k, such that the maps

|_|i B<I>i/(9F - |_|z S;ap(®)/OF S;ap/OF

l

|_|i Aq)l/OF
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of Lemma 6.4.2 induce bijections on connected components, as well as on
connected (=irreducible) components of the generic and special fibers. The
same property then holds if we replace Sf)ap by its dense open substack

def

X = Sp,, \ Sing = Sk, \ Exc.

Suppose ® is any proper cusp label representative, and let Up = X/, be
the union of all connected components that meet Sg, (®),0,.. If we interpret
div(ke)/0, as a divisor on Xy, using the isomorphism

{vertical divisors on Ag /0, } = {vertical divisors on X0},

then the equality of divisors (6.5.3) holds after pullback to Ugp, up to the
error term div(ke),0, - Indeed, this equality holds in the generic fiber of Us
by Proposition 6.4.1, and it holds over an open neighborhood of Sf’;ap(CI)) /O
by Lemma 6.5.1 and the isomorphism of formal completions (3.7.1). As the
union of the generic fiber with this open neighborhood is an open substack
whose complement has codimension > 2, the stated equality holds over all
of Z/{<p .

Letting ® vary over the ®; and using ke, = 1, we see from the paragraph
above that (6.5.3) holds after base change to | |;Us, = X0, Using faithfully
flat descent for divisors and allowing p to vary proves (6.5.3). Now that the
equality (6.5.3) is known, we may reverse the argument above to see that
the error term div(ke) vanishes for every ®. It follows that ke extends to a
global section of O .

It only remains to show that each kg has finite order. Choose a finite
extension L/k large enough that every elliptic curve over C with complex
multiplication by O admits a model over L with everywhere good reduction.
Choosing such models determines a faithfully flat morphism

| |Spec(OL) = M) = Aq,

and the pullback of kg is represented by a tuple of units (z,) € [[ Of. Each
xy has absolute value 1 at every complex embedding of L (this follows from
the final claim of Proposition 6.4.1), and is therefore a root of unity. This
implies that x¢ has finite order. O

Proof of Theorem 5.5.1. Start with a weakly holomorphic form (5.2.2). As
in §6.2, after possibly replacing f by a positive integer multiple, we obtain
a Borcherds product +(f). This is a meromorphic section of (w™)*. By
Proposition 6.4.1 it is algebraic, and by Proposition 6.4.3 it may be rescaled
by a constant of absolute value 1 on each connected component in such a
way that it descends to k.

Now view 1(f) as a rational section of w” over Skra- By Proposition
6.5.2 we may replace f by a further positive integer multiple, and replace
Y (f) by a corresponding tensor power, in order to make all kg = 1. Having
trivialized the k¢, the existence part of Theorem 5.3.1 now follows from
Proposition 6.4.1. For uniqueness, suppose 9’ (f) also satisfies the conditions
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of that theorem. The quotient of the two Borcherds products is a rational
function with trivial divisor, which is therefore constant on every connected
component of Sf (C). As the leading Fourier-Jacobi coefficients of ¢'(f)
and ¥ (f) are equal along every boundary stratum, those constants are all
equal to 1. O

Proof of Theorem 5.3./. As in the statement of the theorem, we now view
P(f)? as a rational section of the line bundle Q’f)ap on S, . Combining
Proposition 6.5.2 with the isomorphism

Sicra  Exc = Sp, )\ Sing,
of (3.7.2), and recalling from Theorem 3.7.1 that this isomorphism identifies

2% « ok ~ Ok
w :QKra:QPap,

we deduce the equality
div(sh(f)?) = D e(=m) - Viyp(m) +2 ) multe(f) - Sfap(P)
D

m>0

(654) + diV((sizk) +2 Z YrCr (O) Z S;ap/Fp
r|D plr

of Cartier divisors on Sp,, ~ Sing. As Sp, is normal and Sing lies in
codimension > 2, this same equality must hold on the entirety of Sg,,. [

Proof of Theorem 5.3.5. 1f we pull back via Sg,, — Sp,, and view W(f)? as
a rational section of the line bundle

Q’f(ra ~ W@ O(EXC)_k,
the equality (6.5.4) on Spap pulls back to

div(®(f)?) = Y e(=m) - Via(m) +2 ) multe(f) - Siea(®)

m>0

(]
+ diV((Sim{) + 2 Z ’YTCT’(O) Z szra/]Fp’
r|D plr

Theorem 2.6.3 allows us to rewrite this as

div($(f)*) =2 ) e(=m) - Zfa(m) + 2 ) multe(f) - Sira(P)

m>0

(]
+ diV(5_2k) + 2 Z ’YTCT’(O) Z S;Era/IFp
r|D plr

- Z c(—m) Z #{x e Ls:{x,x) =m} - Exc,.

m>0 semo (Sing)
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If we instead view 4 (f)? as a rational section of w?* this becomes

d1V<¢(f)2) =2 Z C<_m) ’ Z&ra(m) + 2Zmult¢<f) ’ S]?zra«;[))

m>0

P
+ diV(572k) +2 Z YrCr (0) Z S;;ra/Fp
r|D plr

- Z c(—m) Z #{re Ly : {x,x) = m} - Excg
m>0 semp (Sing)

+ k- Exc.
as desired. O

7. MODULARITY OF THE GENERATING SERIES

Now armed with the modularity criterion of Theorem 4.2.3 and the arith-
metic theory of Borcherds products provided by Theorems 5.3.1, 5.3.3, and
5.3.4, we prove our main results: the modularity of generating series of di-
visors on the integral models Sg ., and Sp,, of the unitary Shimura variety
Sh(G, D).

The strategy follows that of [Bor99], which proves modularity of the gen-
erating series of divisors on the complex fiber of an orthogonal Shimura
variety.

7.1. The modularity theorems. Denote by
Ch(b (Sféra) = Pic(sﬁra) Xz Q
the Chow group of rational equivalence classes of Cartier divisors on S,
with Q coefficients, and similarly for Sf’;‘.ap. There is a natural pullback map
Chly(Sfap) — ChE(SEra):
Let x = x} be the quadratic Dirichlet character (5.2.1).

Definition 7.1.1. If V is any Q-vector space, a formal g-expansion
(7.1.1) > d(m)-q™ e V([q]]
m=0

is said to modular of level D, weight n, and character x if for any Q-linear
map « : V — C the g-expansion

Y, a(d(m)) - ¢™ € C[[q]]
mz=0
is the g-expansion of an element of M, (D, ).
Remark 7.1.2. If (7.1.1) is modular then its coefficients d(m) span a subspace

of V' of dimension < dim M, (D, x). We leave the proof as an exercise for
the reader.

We also define the notion of the constant term of (7.1.1) at a cusp oo,
generalizing Definition 4.1.1.
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Definition 7.1.3. Suppose a formal g-expansion g € V[[¢]] is modular of
level D, weight n, and character x. For any r | D, a vector v € V(C) is said
to be the constant term of g at the cusp oo, if, for every linear functional
a: V(C) - C, a(v) is the constant term of a(g) at the cusp oo, in the sense
of Definition 4.1.1.

For m > 0 we have defined in §5.3 effective Cartier divisors
Yiup(m) = Sty Zi8a(m) = Sira
related by (5.3.4). We have defined in §3.7 line bundles
Qpap € Pic(Sp,,),  w € Pic(Skya)

extending the line bundles on the open integral models defined in §2.4. For
notational uniformity, we define

VEp(0) = Qpas Zi84(0) = w™ ® O(Exc).
Theorem 7.1.4. The formal q—expansion
S i (m) - g™ € Chb(Siap)lla]:
m=0

is a modular form of level D, weight n, and character x. For any r | D, its
constant term at the cusp o0, is

(yg;tp + 22 SPap/]F > € ChQ(SPap) ®Q C.

Here v, € {+1,+i} is defined by (5.3.2), p < Ok is the unique prime above
p|r, and Fy is its residue field.

Proof. Let f be a weakly holomorphic form as in (5.2.2), and assume again
that ¢(m) € Z for all m < 0. The space MQ!’_ (D, x) is spanned by such
forms. The Borcherds product ¥ (f) of Theorem 5.3.1 is a rational section
of the line bundle

k _ ®w%cr'(0)7

r|D
on 8. If we view 1(f)? as a rational section of the line bundle
Pap - ® Qﬁfy’;ig

r|D

on Sp,,, exactly as in Theorem 5.3.4, then
div (e Z Yrer(0) - Vi, (0)

r|D
holds in the Chow group of Sp,,. Comparing this with the calculation of
the divisor of 4(f)? found in Theorem 5.3.4 shows that

(7.1.2) 0= c(=m) Vi (m) + > 7rer(0) - (ViS5 (0) +2V),

m=0 r|D
r>1
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where we abbreviate V, =3, Sg. I,
For each r | D we have defined in §4.2 an Eisenstein series
E. (1) = Z er(m) - q"™ e My, (D, x),
m=0
and Proposition 4.2.2 allows us to rewrite the above equality as
0= 3 c(=m) - | Vi (m) = 3 rer(m) - (5 (0) +20) |-

m=0 r|D
r>1

Note that we have used e,(0) = 0 for » > 1, a consequence of Remark 4.2.1.
The modularity criterion of Theorem 4.2.3 now shows that

S m) ¢ — Y B, - (L (0) + 20,)
m=0 r|D
r>1

is a modular form of level D, weight n, and character y, whose constant
term vanishes at every cusp different from oo.

The theorem now follows from the modularity of each FE,, together with
the description of their constant terms found in Remark 4.2.1. O

Theorem 7.1.5. The formal q-expansion

Z ZIt(Orta q € ChQ(SKra)[[ ]]

m=0

18 a modular form of level D, weight n, and character x.

Proof. Recall from Theorems 2.6.3 and 3.7.1 that pullback via Si,, — Sg,,
sends

ylg(?:p( ) — ZIt(Orta( ) — Z #{z € Ls : (x,x) = m} - Exc,

semo(Sing)

for all m > 0. This relation also holds for m = 0, as those same theorems
show that

Vi (0) = Qpy, = w2 ® O(Exc) = 2- 28, (0) — Exc.
Pulling back the relation (7.1.2) shows that

0= 3 cl-m)- (2 om) -~ Y, HEELIEBDZM )

m=0 semp(Sing)

1
+ Z Yrer (0 ( Ziet(0) — 3 - Exc + Vr)

r|D
r>1

in Ch(b (Si,.) for any input form (5.2.2), where we now abbreviate

Vi = Z S]?;ra/IFp :

plr



MODULARITY OF UNITARY GENERATING SERIES 95

Using Proposition 4.2.2 we rewrite this as

0= 3 cl-m)- (2 om) -~ Y, FHEELIEDZM )

m=0 semp(Sing)
1
- Z c(—m) Z Yrer(m) <Zf€rta(0) ~ 3 Exc + Vr>,
m=0 r|D
r>1

where we have again used the fact that e,(0) = 0 for r > 1.
The modularity criterion of Theorem 4.2.3 now implies the modularity of

1
Z ZIt(Orta _qm_ 5 Z v ( ) Excs
m=0 semo(Sing)
1
= Y B (1) - (2 (0) — 5 - Bxe + ).
r|D
r>1

The theorem follows from the modularity of the Eisenstein series F,.(7) and
the theta series
9s(r) = > ¢ e Mu(D, x).

xe€l g

O

7.2. Green functions. Here we construct Green functions for special divi-
sors on Sy . as regularized theta lifts of harmonic Maass forms.
Recall from Section 2 the isomorphism of complex orbifolds

Skra(C) = Sh(G, D)(C) = GQ)\D x G(Ay)/K.

We use the uniformization on the right hand side and the regularized theta
lift to construct Green functions for the special divisors

Z]?(Orta( ) Z&ra(m) + BKra<m)
on Sf,.. The construction is a variant of the ones in [BF04] and [BHY15],
adapted to our situation.

We now recall some of the basic notions of the theory of harmonic Maass
forms, as in [BF04, Section 3]. Let Hy® (D, x) denote the space of harmonic
Maass forms f of weight 2 — n for I'g(D) with character x such that

e f is bounded at all cusps of I'g(D) different from the cusp oo,
e f has polynomial growth at oo, in sense that there is a
Pp= > c"(m)gmeClg]
m<0
such that f — Py is bounded as ¢ goes to 0.
A harmonic Maass form f e HX (D, X) has a Fourier expansion of the form

(721) f(r)= > ctm)g™+ Y ¢ (m)-T(n—1,4n|m|Im(r)) - ¢,
meZ MeZ
m>»—a0 m<0
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where

ee}
I(s,z) = J e 't Lat

€T
is the incomplete gamma function. The first summand on the right hand
side of (7.2.1) is denoted by f* and is called the holomorphic part of f, the
second summand is denoted by f~ and is called the non-holomorphic part.

If fe H,(D,x) then (6.1.1) defines an Sp-valued harmonic Maass

form for SLy(Z) of weight 2 — n with representation wy. Proposition 6.1.2
extends to such lifts of harmonic Maass forms, giving the same formulas for
the coefficients ¢ (m, u) of the holomorphic part f* of f. In particular, if
m < 0 we have

_ tim) ifpu=0
7.2.2 *m,p) =4 € ’
(7.2 & (m 1) {0 .

and the constant term of f is given by

E+(07:u) = Z Yr cj(o)

ru|r|D

The formula of Proposition 4.2.2 for the contant terms ¢ (0) of f at the
other cusps also extends.

As before, we consider the hermitian self-dual Og-lattice L = Homo, (ag, a)
in V= Homy(Wp, W). The dual lattice of L with respect to the bilinear
form [-,-] is L' = 07 L. Let

S S(V(Ay))
be the space of Schwartz-Bruhat functions that are supported on L’ and

invariant under translations by L.
Recall from Remark 2.1.3 that we may identify

D>~ {weeV(C): [w,w] < 0}/C*,
and also
D =~ {negative definite k-stable R-planes z ¢ V(R)}.

For any z € V and z € D, let z, be the orthogonal projection of x to the
plane z = V(R), and let z,1 be the orthogonal projection to z*.

For (7,2,9) € § x D x G(Ay) and ¢ € Sp, we define a theta function
0(7—7 %59, (70) = Z @(gilx) : (1000(7—7 Z,ﬂf),
zeV
where the Schwartz function at oo,

Yoo (T, Z,:E) = - e27riQ(le)T+27riQ(xz)7"’

is the usual Gaussian involving the majorant associated to z. We may view
6 as a function  x D x G(Af) — S). As a function in (z, g) it is invariant
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under the left action of G(Q). Under the right action of K it satisfies the
transformation law

0(1,z,gk,0) =0(1,2,9,wr(k)p), keK,

where wy, denotes the action of K on Sy by the Weil representation and
v = Im(7). In the variable 7 € §) it transforms as a S}/ -valued modular form
of weight n — 2 for SLo(Z).

Fix an f e H (D, x) with Fourier expansion as in (7.2.1), and assume
that ¢t (m) € Z for m < 0. We associate to f the divisors

ZKra(f) = Z C+(_m) : ZKra(m)

m>0
f{?a(f) = Z C+(_m) ’ f(();:a<m)
m>0

on Skra and S, respectively. As the actions of SLy(Z) and K via the Weil

representation commute, the associated Sp-valued harmonic Maass form

f is invariant under K. Hence the natural pairing Sj, x S . — C gives

rise to a scalar valued function (f(7),0(, z,¢)) in the variables (7,z,g) €

$ x D x G(Ay), which is invariant under the right action of K and the left

action of G(Q). Hence it descends to a function on SLy(Z)\$ x Sh(G, D)(C).
We define the regularized theta lift of f as

‘o 18 : du dv
S} g(z7g7 f) = J (f(7)79(7—7 Z7g)) 2 -
SL2(Z)\$ v

Here the regularization of the integral is defined as in [Bor98, BF04, BHY 15].
We extend the incomplete Gamma function

0

d
(0,t) = f e v
. v
to a function on R by setting

N r(0,t) ift>o0,
P(O,t)—{()( ! ift=0

Theorem 7.2.1. The regularized theta lift ©*8(z, g, f) defines a smooth
function on Skra(C) N Zxra(f)(C). For g€ G(Ay) and zg € D, there exists
a neighborhood U < D of zy such that

ng(Z,g, f) - Z C+(—<l‘,l‘>) ’ f(0,4ﬂ'|<l‘z,$2>|)

zegL
xlzg

is a smooth function on U.

Proof. Note that the sum over z € gL n zg is finite. Since Sh(G,D)(C)
decomposes into a finite disjoint union of connected components of the form

(G(Q) ngKg ")\D,
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where g € G(Ay), it suffices to consider the restriction of ©™%(f) to these
components.

On such a component, O™8(z, g, f) is a regularized theta lift considered
in [BHY15, Section 4] of the vector valued form f for the lattice

gL = gL AV = Home, (gag, ga) < V,
and hence the assertion follows from (7.2.2) and [BHY 15, Theorem 4.1]. O

Remark 7.2.2. Let Ap denote the U(V)(R)-invariant Laplacian on D. There
exists a non-zero real constant ¢ (which only depends on the normalization
of Ap and which is independent of f), such that
ApO™(z,g, f) = c- deg Zkra(f)(C)
on the complement of the divisor Zk.,(f)(C).
Using the fact that
r(0,t) = —log(t) + I'(1) + o(t)
ast — 0, Theorem 7.2.1 implies that ©"( f) is a (sub-harmonic) logarithmic
Green function for the divisor Zk.a(f)(C) on the non-compactified Shimura
variety Skra(C). These properties, together with an integrability condition,
characterize it uniquely up to addition of a locally constant function [BHY 15,
Theorem 4.6]. The following result describes the behavior of ©™2(f) on the
toroidal compactification.
Theorem 7.2.3. On S, (C), the function ©™%(f) is a logarithmic Green
tot

function for the divisor Zi£\ (f)(C) with possible additional log-log singular-
ities along the boundary in the sense of [BGKIKOT7].

Proof. As in the proof of Theorem 7.2.1 we reduce this to showing that
O8( f) has the correct growth along the boundary of the connected compo-
nents of i, (C). Then it is a direct consequence of [BI1Y 15, Theorem 4.10]
and [BHY15, Corollary 4.12]. O

Recall that w® is the tautological bundle on
D~ {w € eV(C): [w,w] < 0}/(CX.

We define the Petersson metric || - | on w®" by
2 ['waw]
ol =~
me
where v = —T"(1) denotes Euler’s constant. This choice of metric on w®”

induces a metric on the line bundle w on Sk;(C) defined in §2.4, which
extends to a metric over Si; , (C) with log-log singularities along the bound-
ary [BIY15, Proposition 6.3]. We obtain a hermitian line bundle on Sf.,,
denoted
0= (w,[-])
If f is actually weakly holomorphic, that is, if it belongs to M;fon (D, x),
then ©™2(f) is given by the logarithm of a Borcherds product. More
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precisely, we have the following theorem, which follows immediately from
[Bor98, Theorem 13.3] and our construction of ¥ (f) as the pullback of a
Borcherds product, renormalized by (6.2.3), on an orthogonal Shimura va-
riety.

Theorem 7.2.4. Let f € Mé’fon(D,X) be as in (5.2.2). The Borcherds
product Y (f) of Theorem 5.5.1 satisfies

0"(f) = —log |4 (f)[*.

7.3. Generating series of arithmetic special divisors. We can now
define arithmetic special divisors on S, , and prove a modularity result for
the corresponding generating series in the codimension one arithmetic Chow
group. This result extends Theorem 7.1.5.

Recall our hypothesis that n > 2, and let m be a positive integer. As
n [BFO04, Proposition 3.11], or using Poincaré series, it can be shown that
there exists a unique f,, € Hy” (D, x) whose Fourier expansion at the cusp
o0 has the form

fm = qim + O<1)
as ¢ — 0. According to Theorem 7.2.3, its regularized theta lift ©™2( f,,) is
a logarithmic Green function for Z{2t (m).

Denote by @3@ (Si,.) the arithmetic Chow group [GS90] of rational equiv-
alence classes of arithmetic divisors with Q-coefficients. We allow the Green
functions of our arithmetic divisors to have possible additional log-log error
terms along the boundary of Sf . (C), as in the theory of [BGKIKO07]. For
m > 0 define an arithmetic special divisor

20t (m) = (2124 (m), 0°%(f,0)) € Chg(Skra)

on Sf,,, and for m = 0 set

219t (0) = & + (Exc, — log(D)) € Chy(Siiya)-

In the theory of arithmetic Chow groups one usually works on a regular
scheme such as Sf;,,. However, the codimension one arithmetic Chow group
of Sl’:‘iap makes perfect sense: one only needs to specify that it consists of
rational equivalence classes of Cartier divisors on Sf;ap endowed with a Green
function.

With this in mind one can use the equality
Yiup(m)(C) = 2 218, (m)(C)

in the complex fiber Sf, (C) = S§,,(C) to define arithmetic divisors

{to o re 1
It:'atp(m) = ( It:'atp(m)v 2.0 g(fm)) € ChQ(S;ap)
for m > 0. For m = 0 we define

~ A~ —~1
Eap(0) = Q71 + (0, —2log(D)) € Chg(Sg,y),
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where the metric on Q is induced from that on w, again using © =~ w? in

the complex fiber.

Theorem 7.3.1. The formal q-expansions

(731) Z ZIt(Orta q € ChQ<SKra)[[ ]]

m=0

and

ST Pt (m) - g™ € Choy(Stap) [l

m=0

are modular forms of level D, weight n, and character x.

Proof. For any input form f € Mé’fon(D, X) as in (5.2.2), the relation in the
Chow group given by the Borcherds product (f) is compatible with the
Green functions, in the sense that

—log[9(f)I? = D] e(=m) - ©"5(f).

m>0

Indeed, this directly follows from f =3} _,c(—m)f; and Theorem 7.2.4.
This observation allows us to simply repeat the argument of Theorems

7.1.4 and 7.1.5 on the level of arithmetic Chow groups. Viewing 1(f)? as a

rational section of the metrized line bundle Qlliap, the arithmetic divisor

div(p(1)2) % (div((f)?), ~2log [$(f)?) € Chay(Stap)
satisfies both

div(9(£)*) = Dby, = 2k - (0,10g(D)) = Y %rer(0) - Vi (0)
r|D
and
div((f)*)

= Z c(—=m) - ylg(;cp( ) — 2k - (div(0),0) + 2 Z ¥rer(0) - Ve
m>0 r|D

= Z c(—m) - ygz)atp( ) — 2k - (0,1og(D)) + 22’7/?67‘ “Vr,
m>0 r|D

where IA}T is the the vertical divisor V, = Zp‘rSl’f,ap /F, endowed with the
trivial Green function.
Using the relation
0 = div(s) = (div(s), — log |6]) = (div(4),0) — (0,log(D))
in the arithmetic Chow group, we deduce that
0= > c(=m) - Vi (m) + Y rer(0 ( E:;tp(o)+2.vr).

m=0 r|D
r>1

With this relation in hand, both proofs go through verbatim. O
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7.4. Non-holomorphic generating series of special divisors. In this
subsection we discuss a non-holomorphic variant of the generating series
(7.3.1), which is obtained by endowing the special divisors with other Green
functions, namely with those constructed in [How12, How15] following the
method of [Kud97b]. By combining Theorem 7.3.1 with a recent result of
Ehlen and Sankaran [[E516], we show that the non-holomorphic generating
series is also modular.
For every m € Z and v € R~ define a divisor

Bicra(m, v) = ﬁ S e e Lot (w,a) = m}- Ska(®)
[}

with real coefficients on S . Here the sum is over all K-equivalence classes
of proper cusp label representatives ® in the sense of §3.2, L is the hermitian
Ok-module of signature (n — 2,0) defined by (3.1.4), and Sf,,(®) is the
boundary divisor of Theorem 3.7.1. Note that Bgya(m,v) is trivial for all
m < 0. We define classes in Chi(&'ﬁra), depending on the parameter v, by

2 a(m) + Bira(m, v ifm#0
z%g:am,v)—{ foal1) Bl 1)

w4+ Exc + Bira(0,v)  if m = 0.

Following [How12, How15, Kud97b], Green functions for these divisors
can be constructed as follows. For x € V(R) and z € D we put

R(x,z) = =2Q(x-),

and we let i,
dt
s = [ e
1 t

For m e Z and (v, z,g9) € Rog x D x G(Ay), we define a Green function
(T41)  Emoung) = Y xplo'z) BETuR(, ),

eV~ {0}

Q(z)=m

where x; € Sy, denotes the characteristic function of L. As a function of the
variable (z,g), (7.4.1) is invariant under the left action of G(Q) and under
the right action of K, and so descends to a function on R~y x Sh(G, D)(C).
It was proved in [How 15, Theorem 3.4.7] that =(m,v) is a logarithmic Green
function for Z{&* (m,v) when m # 0. When m = 0 it is a logarithmic Green

function for Bk, (0, v).

~1
Consequently, we obtain arithmetic special divisors in Chg (Sf,,) depend-
ing on the parameter v by putting

Ztot ( ) (th(orta<m7 U)? E<m7 U)) ifm#0
ra\"m,v) =
: &1+ (Bira(0,v),2(0,v)) + (Exc, —log(Dv)) if m = 0.

Note that for m < 0 these divisors are supported in the archimedian fiber.
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Theorem 7.4.1. The formal q-expansion

Gronnol(T) = 3 ZL2t (m,v) - g™ € Chg(St)[[a]]:

mEeZ

is a non-holomorphic modular form of level D, weight n, and character x.
Here q = €*™7™ and v = Im(7).

Here the assertion about modularity is to be understood as in [FS16,
Definition 4.11]. In our situation it reduces to the statement that there is a
smooth function s(7, z, g) on $ x Sh(G, D)(C) with the following properties:

(1) in (z,g) the function s(7,z,g) has at worst log-log-singularities at
the boundary of Sh(G,D)(C) (in particular it is a Green function
for the trivial divisor);

(2) s(7,z,g) transforms in 7 as a non-holomorphic modular form of level
D, weight n, agd character y;

(3) the difference ¢nonnoi(7) — (7, 2, g) belongs to the space

Mn <D7 X) ®c Ch(C(SI’zra) S (RN—QMN—2<D7 X)) ®c Ch(C(szra)v

where R,,_5 denotes the Maass raising operator as in Section 8.4.
Proof. Theorem 4.13 of [ES16] states that the difference
(742) ¢non—hol(7_) - ¢(7—)

is a non-holomorphic modular form of level D, weight n, and character Yy,

~1
valued in Ch¢ (S5, ). Hence the assertion follows from Theorem 7.3.1. O

Remark 7.4.2. According to Theorem 4.18 of [X516], the difference (7.4.2)
has trivial holomorphic projection. Therefore the generating series ¢non-hot (7)
and ¢(7) define the same arithmetic theta lift

—~1
STL(Dv X) - ChR(SI?ra)‘

8. APPENDIX: SOME TECHNICAL CALCULATIONS

We collect some technical arguments and calculations. Strictly speaking,
none of these are essential to the proofs in the body of the text. We explain
the connection between the fourth roots of unity 7, defined by (5.3.1) and
the local Weil indices appearing in the theory of the Weil representation,
provide alternative proofs of Propositions 6.1.2 and 6.3.3, and explain in
greater detail how Proposition 6.3.1 is deduced from the formulas of [I[<ud16].

8.1. Local Weil indices. In this subsection, we explain how the quantity
7vp defined in (5.3.1) is related to the local Weil representation.

Let L < V be as in §6.1, and recall that Sy, = C[L’/L] is identified with
a subspace of S(V(Ay)) by sending p € L'/L to the characteristic function

¢y of i+ Lc V(Ap).
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As dimg V' = 2n and D is odd, the representation wy, of SLy(Z) on Sy, is
the pullback via

SLy(Z) — | [ SLa(Z,)
p|D

Wi, = @wp,

p|D

of the representation

where w, = wr, is the Weil representation of SLy(Z,) on Sr, < S(V}).
These Weil representations are deﬁned/\using the standard global additive
character 1) = ®,1, which is trivial on Z and on QQ and whose restriction to
R < A is given by ¥(z) = exp(2mix). Recall that, for a € Q; and b€ Q,,

wp(n(b))o(z) = ¢p(bQ(z)) - ¢(x)
wp(m(a))d(x) = X p(a) - laly - ¢(ax)

wp(w)d(w) = 7 va Up(=[z,y]) - dy) dy, w= (1 _1> :

where 7, = 7,(L) is the Weil index of the quadratic space V), with respect
to 1, and xgp is the quadratic character of Q; corresponding to k;,. Note
that dy is the self-dual measure with respect to the pairing ¢, ([z,y]).

Lemma 8.1.1.

(1) When restricted to the subspace Sp, < S(Vp), the action of v €
SLa(Zy) depends only on the image of v in SLa(IF,).
(2) The Weil index is given by

Yo = " - (D.p)] - invy (V)

where (a,b), is the Hilbert symbol for Q, and inv,(V,) is the invari-
ant of V,, in the sense of (1.7.3).

Proof. (i) It suffices to check this on the generators. We omit this.

(i) We can choose an Oy, ,-basis for L, such that the matrix for the hermitian
form is diag(ai,...,ay), with a; € Z, . The matrix for the bilinear form
[,y] = Trg,jg,((z,y)) is then diag(2ay,...,2a,,2Day,...,2Day,). Then,
according to the formula for Sy in [Kud94, p. 379], we have

1 n
%' =105 o V) = [ [0, (atp) 10, (Dajiy),
j=1

where we note that, in the notation there, z(w) = 1, and j = j(w) = 1.
Next by Proposition A.11 of the Appendix to [RR93], for any a € Z;, we
have g, (at)p) = 1 and

—«

Vo, (epip) = <7> ep = (—a,plp - €.
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Here note that if n = apy,, then the resulting character 7 of F,, is given by
(@) = Yp(p~'a) = e(—p~'a).

and 7, () = (‘71) - €p. Thus

Yp =€, - (=D/p,p)y - (det(V),p)p,

as claimed. O

8.2. A direct proof of Proposition 6.1.2. The proof of Proposition 6.1.2,
which expresses the Fourier coefficients of the vector valued form f in terms
of those of the scalar valued form f € Mé_n(D, X), appealed to the more
general results of [Sch09]. In some respects, it is easier to prove Proposi-
tion 6.1.2 from scratch than it is to extract it from [loc. cit.]. This is what
we do here.

Recall that f is defined from f by the induction procedure of (6.1.1), and
that the coefficients ¢(m, p) in its Fourier expansion (6.1.2) are indexed by
me Q and p e L'/L. Recall that, for r | D, rs = D,

ra f T a B
W = <D7 7‘5) = R < 1) » fr = <37 7"5> € Lo(s).

Note that

(8:2.1) To(D)\SLa(Z) = To(D)\SLa(Z)/T(D) ~ | | By\SLa(F,),
p|D

so this set has order Hp‘ p(P+1). A set of coset representatives is given by
1 ¢

|| R ( 1) :

r|D

¢ (modr)

Now, using (3.3.1), we have

s22) (rn (U 5)) 0= (e (7))@

= XT’(/B)XS(CY) Z T%_lcr(m) -e r

m>—0o0

On the other hand, the image of the inverse of our coset representative on
the right side of (8.2.1) has components

1 —c 0 —ﬁ) .
ifp|r
1 -5y «

1 —c¢ rdo —pf it s
1)/lo «a Pls
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Note that rad — sBvy = 1. Then, as elements of SLy(F,), we have

1 —c\ (B -1 1 afg) .
) -1 ) )( 1) ifp|r

1 —c a~l 1 —ap .
if p|s.
1 0 « 1

The element on the second line just multiplies ¢ , by x,(c). For the element
on the first line, the factor on the right fixes ¢g and

-1 _n
wil’((l >>¢0:7pp 2 Z @bu-
pely, /Ly
Thus, the element on the first line carries ¢g ), to
Xp(/B)’Ypp_% Z Yp(—cQ(n)) Pu-
HELL /Ly

Recall from (6.1.3) that for p € L'/L, r, is the product of the primes p | D
such that p, # 0. Thus

—1
(823) wr, <R7‘ (1 i)) ¢0 _ XS(OZ)XT(B) Y 7‘7% Z ezch(“)QS“.
uel’/L
rulr

Taking the product of (8.2.2) and (8.2.3) and summing on ¢ and on r, we

obtain
Z%,T—l Z Z e2ch(M)¢M Z cr(m)ew

r|D c(modr) uel'/L m>»—0o0
rulr
m
=20 2 e, alme
rlD pel//L, m>—®
rulr THQ(neL

= Z Z Z ’YTCT(mT)(Zﬁqu

!/ T
mrgi(@oo m/j_eQL(;i)LeZ Tulr|D
This gives the claimed general expression for é¢(m, ) and completes the proof
of Proposition 6.1.2.

8.3. A more detailed proof of Proposition 6.3.1. In this section, we
explain in more detail how to obtain the product formula of Proposition 6.3.1
from the general formula given in [Kud16].

For our weakly holomorphic Sp-valued modular form f of weight 2 — n,
with Fourier expansion given by (6.1.2), the corresponding meromorphic
Borcherds form W(f) on D* has a product formula [[Xud16, Corollary 2.3]
in a neighborhood of the 1-dimensional boundary component associated to

L_4. Tt is given as a product of 4 factors, labeled (a), (b), (¢) and (d).
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We note that, in our present case, there is a basic simplification in factor
(b) due to the restriction on the support of the Fourier coefficients of f.
More precisely, for m > 0, ¢(—m, ) = 0 for u ¢ L, and ¢(—m,0) = c¢(—m).
In particular, if z € L' with [z,e_1] = [z,f_1] = 0, then Q(z) = Q(xo),
where xq is the (Lg)g component of z. If zo # 0, then Q(z) > 0, and

¢(=Q(z), ) = 0 for ¢ L. The factors for W(f) are then given by:
(a)
H (1 . e*2ﬂi[m,w])5(*Q(x),m).
zel/
[w,ffl]:(]

[z,e—1]>0
mod Ln Qf_;

def O (=[x, w], 1) 9@
Py(wo, 1) = H (T> 7

z€Lg
[z, W5]>0

where W) is a Weyl chamber in V5(R), as in [Kud16, §2].
()

. (). ' &0,2)/2
P0<7_1) def 1_[ < 1( T[]‘?T;u))] Tl) ewz[x,w]{x,el])

(d) and
K (r1) 00 g,
where k is a scalar of absolute value 1, and
==Y Y dema)oiim - Q).

m gel/n(L_1)*
mod L_1

The factors given in Proposition 6.3.1 are for the form

Py (f) & (2mi) 0w (2f)

The quantity g in [Kud16] is our e(§), and 71 there is our 7.

Recall from (3.9.5) that 9™'L_ = Ze_1 + D~'Zf_1, so that, in factor (c),
the product runs over vectors D~1bf_1, with b (mod D) nonzero. For these
vectors [z,e1] = 0. In the formula for I, z runs over vectors of the form

x = —Ef +x
= D -1 0
with 2o € 971 Lo. But, again, if 29 # 0, Q(z) = Q(z0) > 0and &(—Q(x),z) =

0 unless b = 0, and so the sum in that term runs over xy € Lo x¢ # 0 and
N
over —55f 1’s.
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Thus the factors for 1,59 (f) are given by:

(a)
H (1 _ 6727ri[x,w])25(—Q(x),x)
zel/
[z, f-1]=0
[z,e—1]>0
mod LnQf_
(b)
_ c(=Q(wo))
Pl(wo,Tl)dEf H (191( [z0, w], 71) ) 7
zo€Lo 77(7—1)
xo#0
(c)
— E(Oviffl)
P T <M > v
beZ/DZ. n(71)
b#0

(d) and, setting k = ¢(0,0),
K (2min? (1) 5™,
where k is a scalar of absolute value 1, and

Ih==2% S e(—m)or(m — Qo)) + 1—12 S &, %f_l).

m>0 xo€Lg beZ/DZ

Here note that for 4, (f) = (2mi)*©9¥(2f) we have multiplied the previous
expression by 2.
Finally recall

w=—&e_1 + (7§ — Q(wo))f 1 +wo + Te1 + fi.

If [ZE, ’71] = 0, then = has the form

so that
b
[, w] = —c€ + [0, w] — a7 = T

and
Q(z) = —ac + Q(xo).

Using these values, the formulas given in Proposition 6.3.1 follow immedi-
ately.
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8.4. A direct proof of Proposition 6.3.3. Here we give a direct proof
of Proposition 6.3.3, which does not rely on Corollary 6.3.2. We begin by
recalling some general facts about derivatives of modular forms.

We let qd% be the Ramanujan theta operator on g-series. Recall that the

image under qd% of a holomorphic modular form g of weight k is in general
not a modular form. However, the function

d k

(8.4.1) D(g) = qd_q(g) - EQE2

is a holomorphic modular form of weight &k + 2 (see e.g. [BHY], Section 4.2).
Here

Ey (1) = —24 Z o1(m)g™

m=0

denotes the non-modular Eisenstein series of weight 2 for SLg(Z). In partic-

ular 01(0) = —ﬁ. We extend o7 to rational arguments by putting oy (r) = 0
ifré¢Zso. If R, = Zia—i + % denotes the Maass raising operator, and
B3 (r) = Ba(r) — —
TV

is the non-holomorphic (but modular) Eisenstein series of weight 2, we also
have

1 k

_ - *
D(g) = 47TRk(9) zIEe-

Proposition 8.4.1. Let f € Méfon(D,X) as in (5.2.2). The integer

I= % Z ¢(0,a) — 2 Z c(—m) Z o1(m — Q(x)).

aeb’lL,l/L,l m>0 zeLlg

defined in Proposition 0.3.1 is equal to the integer

D e(—Q)Q(x)

x€lg

multe (f) =

n—2

defined by (5.2.4).

Proof. Consider the Sy -valued theta function

90(7—) = Z qQ(I)Xa\c/+Lo € Mn—2<wi/o)’

zeLy
Applying the above construction (8.4.1) to ©¢ we obtain an Sy -valued
modular form

).,V n—2 v
D(@0) = Y, Qe W\, — "oy O0FS € Ma(w,)
zeLj



MODULARITY OF UNITARY GENERATING SERIES 109

of weight n. For its Fourier coefficients we have

D) = Y, Y bmv)g" X

veL}/Lom>0

bim,v) = > Q@) +2(n—2) > o1(m—Q(x)).

zev+ Lo zev+ Lo
Q(z)=m
As in [BHY15, (4.8)], an Sr-valued modular form F' induces an Sp,-

valued form F7,,. If we denote by F), the components of F' with respect to
the standard basis (x,) of Sz, we have

(8.4.2) Fro, = > Fa
OcEDflLfl/Lfl
for v e Ly/Ly.
Let f € M} , (wr) be the Sz-valued form corresponding to f, as in (6.1.1).
Using (8.4.2) we obtain
fLo € M2!—n(wLo)
with Fourier expansion

fLo = Z Z E(m,y + a)qmXVJrLo-

VM aed 1 I/1

We consider the natural pairing between the Sr,-valued modular form fLo
of weight 2 —n and the Sy -valued modular form D(0y) of weight n,

(JELov D(QO)) € M2'(SL2(Z))

By the residue theorem, the constant term of the g-expansion vanishes, and
SO

(8.4.3) Z Z é(—m,v + a)b(m,v) = 0.
m>0 veL}/Lo
aed~1I/I

We split this up in the sum over m > 0 and the contribution from m = 0.
Employing Proposition 6.1.2, we obtain that the sum over m > 0 is equal to

> e(=m)b(m,0).
m>0
For the contribution of m = 0 we notice
n—2 !
—n—z = L{/L
b(0,v) = o v =0€Lo/Lo,
0, v # 0.
Hence this part is equal to

n—2 .
— 13 Z ¢(0, ).

aGDflLfl/Lfl
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Inserting the two contributions into (8.4.3), we obtain

0= 3 e(=m)b(m,0) — "1_22 S #0,0)

m>0 aed " L_1/L_4
-y c<—m>( 3 Q@) +2n-2) Y 01<m—Q<w>>>
m=0 Q:(Lf)L:Om x€Lg

_n-2 Y H0a)

2z
aed " L_1/L_1

Y, A=Q@)Q(z) +2(n—2) Y e(=m) Y, o1(m—Q(x))

x€Llg m>0 x€Llg

_n-2 Y H0a)

12
aEDflLfl/Lfl
= (n —2)multe(f) — (n — 2)1.
This concludes the proof of the proposition. O

Now we verify directly the other claim of Proposition 6.3.3: the function

Py (1,wp) = H H @(T,<w0,$>)c(_m)

m>0 xelg

Qx)=m

satisfies the transformation law (3.9.14) with respect to the translation ac-
tion of bLg on the variable wy.
First recall that, for a, b € Z,

O(r,z + ar + b) = exp ( — mia’t — 2miaz + mi(b — a)) - O(T, 2).
If we write « = a7 + b and 7 = u + iv, then

- fm(a) _ o d, b= Re(a) — % Im(a).

v 29v
Thus
1 1 1 1 1
§a27+az+§(a—b) = M(a—@)a+%(a—d)z+§(a—b—ab).
For z and w in C, write
1
R(va) = RT(va) = BT(va) - HT(Z7w) = ;Z(w - ?I))

Then
L~ a)a+ —(a—a)z = 2R(za) + ~R(a,a)
4va a)o 2va az—2 zZ,« 1 o, Q),
and we can write

O(7,z + a) = exp(—mR(z, ) — gR(a, @)) - exp(mi(a — b —ab)) "t O(1, 2).

We will consider the contribution of the %(a — b — ab) term separately.



MODULARITY OF UNITARY GENERATING SERIES 111

For § € V, we have (wo + 8,z) = (wo,x) + (8, x). Suppose that for all
x € Ly, we have (8,z) = ar + b for a and b in Z. Writing b = Z + Zr, this
is precisely the condition that 5 € b Lg. Then we obtain a factor

exp —772 Z c(—m)
m>0 xzeLg

Q(z)=m

Expanding the sum and using the hermitian version of Borcherds’ quadratic
identity from the proof of Proposition 5.2.2, we have

5 LD | 035,29 — Cun, iy + XD P20

(Y
:EEL()

_ _% <<w0,ﬁ> + %<5,5>> :

R(<w07 LE>, <B7 LE>

" R(<ﬁ,w? <ﬁ,m>)]

1
2n — 4

3 d(-Q(@)) [, ]

x€Lg

_ —% <<wo,ﬁ> + %<5,5>> -multe (f).

Thus, using I = mults(f), we have a contribution of

mwo, ) | 7B, ﬁ>>l

v 2v

exp (

to the transformation law.
Next we consider the quantity

a—b—ab
_ Im(a) Re(a) — ulm(a)  Im(a) <Re(a) B uIm(a)>

a—a (a+a) uwa—a) a—a(a+a) ula—a)
T 20 2 20w _2w< 2 2w )

This will contribute exp(—miA), where A is defined as the sum

ZC(_Q(x))[a—d_a+d_u(a—d)_a—d <(a+a) u(a—a)”

20 2iv 2 21v 21v

2 210

where o = (8, x). Since z and —z both occur in the sum, the linear terms
vanish and

A= 3 ey - 40 () - e a) |

= 210 210

Using the hermitian version of Borcherds quadratic identity, as in the proof
of Proposition 5.2.2, we obtain

1
A= s (B,
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Thus we have
Pi(1,wo + B)

—2miudp, 5>)I‘

49?2

Py (1, wp) - exp (%(wo, B + %<5,5>)I - exp (

Finally, we recall the conjugate linear isomorphism L_; =~ b of (3.9.11)
defined by e_1 — 7 and f_1 — 1. As

V'L =Ze_1+D'Zf_,

we have —0~'7 = ar + Db for some a,b € Z, and hence

7=-D"'b(a+ 1)L

This gives u/v = aD3. Also, using

we have

(56_1 = —Dae_1 — bf_l,

1 1 1
5(1 + (5) €_1 = 5(1 — Da) e_1— §bf_1 ele 1+ 7Zf 1=L_.

Thus a is odd and b is even. Recall that N(b) = 2v/+/D. Thus

1
U aD?2

42 9N(b)D3

Y

and, since (3, f) € N(b), we have

exp ( B 2m’U<5,5>) ~ exp < _ m’<ﬁ,6>> _

402 N(b)
The transformation law is then
I
Pu(rywo + 8) = exp (Zw, 8) 4 78.6) i o) Fa(rvwo)

as claimed in Proposition 6.3.3.
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