
ON INTEGRAL LOCAL SHIMURA VARIETIES

GEORGIOS PAPPAS AND MICHAEL RAPOPORT

Abstract. We give a construction of integral local Shimura varieties which are formal

schemes that generalize the well-known integral models of the Drinfeld p-adic upper half

spaces. The construction applies to all classical groups, at least for odd p. These formal

schemes also generalize the formal schemes defined by Rapoport-Zink via moduli of p-

divisible groups, and are characterized purely in group-theoretic terms.

More precisely, for a local p-adic Shimura datum (G, b, µ) and a quasi-parahoric group

scheme G for G, Scholze has defined a functor on perfectoid spaces which parametrizes p-

adic shtukas. He conjectured that this functor is representable by a normal formal scheme

which is locally formally of finite type and flat over OĔ . Scholze-Weinstein proved this

conjecture when (G, b, µ) is of (P)EL type by using Rapoport-Zink formal schemes. We

prove this conjecture for any (G,µ) of abelian type when p ̸= 2, and when p = 2 and G is

of type A or C. We also relate the generic fiber of this formal scheme to the local Shimura

variety, a rigid-analytic space attached by Scholze to (G, b, µ,G).
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1. Introduction

Recall the mechanism of Shimura varieties: to a Shimura datum (G,X) (here the first entry

is a reductive group over Q), there is associated a tower of algebraic varieties (ShK(G,X) |
K ⊂ G(Af )) over the reflex field E = E(G,X). Here, K runs through the open compact

subgroups of G(Af ). Furthermore, at least if (G,X) is of PEL-type, there exist integral p-adic

models if K is of the form K = KpKp, where Kp satisfies some additional conditions. More

precisely, fix a prime number p and a p-adic place v of E. Then if Kp ⊂ G(Qp) is the stabilizer
of a point in the extended Bruhat-Tits building of GQp

, there exists in the PEL-type case

an integral model SK(G,X) over OE,v. The study of these integral models has been the
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focus of interest for many years, with spectacular applications in arithmetic. Furthermore, in

recent years such models have been constructed even for Shimura varieties of abelian type,

comp. [KP18], [KZ21], see [Pa18]. In the present paper, we are concerned with a local p-adic

analogue of this mechanism.

We fix a prime number p. There is the notion of a local Shimura datum (G, b, µ) [RV14],

a p-adic analogue of the notion of a (global) Shimura datum. Here G is a reductive group

over Qp, and b ∈ G(Q̆p) and µ is a conjugacy class of minuscule cocharacters of G. Let

E = E(G,µ) be the local reflex field. In [RV14], it is postulated that there should be an

associated tower of rigid-analytic varieties (ShtK(G, b, µ) | K ⊂ G(Qp)) over the completion

Ĕ of the maximal unramified extension of E. This idea was put into reality by P. Scholze,

see [Sch18]. He defined functors on the category Perfdk of perfectoid spaces over the residue

field k of Ĕ and showed that they are representable by rigid-analytic spaces. Furthermore, if

G is a smooth model of G over Zp, Scholze defines a functorMint
G,b,µ on Perfdk which he shows

to be a v-sheaf. Let G be a quasi-parahoric group scheme, in the sense of [SW20, §21.5]; see
§2.2. This is a natural class of smooth group scheme models over Zp of G. In the analogous

function field case, T. Richarz [Ri16] has proved that quasi-parahoric group schemes can be

characterized as those smooth group scheme models of G for which the corresponding affine

Grassmannian is ind-proper. Scholze has conjectured thatMint
G,b,µ is representable by a formal

scheme MG,b,µ which is normal and flat and locally formally of finite type over OĔ . Assuming

this conjecture, Scholze-Weinstein [SW20] show that when G is a parahoric group scheme for G

and K = G(Zp), then MG,b,µ is an integral model of ShtK(G, b, µ) where K = G(Zp), i.e., the
rigid-analytic generic fiber M rig

G,b,µ ofMint
G,b,µ can be identified with ShtK(G, b, µ). In [SW20]

the representability conjecture is proved when (G, b, µ) is of EL-type, and in many cases when

(G, b, µ) is of PEL-type, by relating the functorMint
G,b,µ to Rapoport-Zink formal schemes. The

rigid-analytic variety ShtK(G, b, µ) is called the local Shimura variety (associated to the local

Shimura datum (G, b, µ) and the open compact subgroupK of G(Qp)) and the functorMint
G,b,µ,

resp. the formal scheme MG,b,µ the integral local Shimura variety (for the quasi-parahoric

group scheme G for G).

It is interesting to observe that the “classical” approach of [RZ96] proceeds in the reverse

way compared to the approach in [SW20]. Namely, when (G, b, µ) arises from (P)EL-data,

then for certain quasi-parahorics G for G one constructs a formal scheme MG,b,µ by posing

a certain moduli problem of p-divisible groups with additional structure on the category

NilpOĔ
. Then ShtG(Zp)(G, b, µ) is defined to be the generic fiber of MG,b,µ and the rest of the

tower ShtK(G, b, µ) is constructed by imposing level K structures on the p-adic Tate module

of the generic fiber of the universal p-divisible group over MG,b,µ. This definition depends

a priori on the choice of (P)EL data and is not obviously functorial in the triple (G, b, µ).
On the other hand, this approach has the dividend that the structure of the formal schemes

MG,b,µ can be studied by making use of the theory of p-divisible groups. The model for

such a structure result is Drinfeld’s description of his integral model of the Drinfeld p-adic

halfspace in [Dr77]. This approach has been used in a number of problems of arithmetic,

e.g. in applications to the Zhang Arithmetic Fundamental Lemma conjecture [Zha12] and

the Arithmetic Transfer conjecture [RSZ18] and to the Kudla-Rapoport Divisor Intersection

conjecture [KR11]. The Rapoport-Zink approach has been generalized to certain Hodge type

cases by W. Kim [Kim18], Howard-Pappas [HP17], Hamacher-Kim [HK19], and to some
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abelian type cases by Shen [Sh20]. Also, under a mild condition on b, there is a purely group-

theoretical definition by Bültel-Pappas [BP20] of the moduli problem on NilpOĔ
for MG,b,µ

for hyperspecial parahoric group schemes G. In the Hodge type case, it is shown in [BP20]

that this moduli problem, restricted to Noetherian test rings, is representable by a formal

scheme. It coincides with the formal schemes in [Kim18], [HP17] and [HK19].

The Scholze-Weinstein approach has the advantage that the input data are purely group-

theoretical and that the result is functorial. In this way, they are able in certain cases to

identify two RZ formal schemes for different (P)EL data which define closely related group-

theoretical data. For instance, using this approach they prove the conjectures of Rapoport-

Zink [RZ17] and of Kudla-Rapoport-Zink [KRZ20] which postulated such hidden identifica-

tions, cf. [SW20, §25.4-25.5]. The downside of this approach is that the global structure of

the formal schemes MG,b,µ is harder to study.

We note that one expects a precise relation between integral local Shimura varieties and

formal completions of global Shimura varieties along isogeny loci of their reduction modulo

p. This is provided by the theory of non-archimedean uniformization in the Rapoport-Zink

framework; something analogous is conjectured to hold in the general Scholze-Weinstein con-

text, and is known in the Hodge type case, cf. [PR21, Thm. 1.3.3].

In this paper, we are concerned with passing from the (P)EL case to the more general case

when the local Shimura datum (G, b, µ) is of abelian type. Here the definition of this last term

is modeled on the case of (global) Shimura varieties, cf. [HPR20], [HLR18]. Namely, (G, b, µ)

is of abelian type if the associated adjoint local Shimura datum (Gad, bad, µad) is isomorphic

to the associated adjoint local Shimura datum (G1,ad, b1,ad, µ1,ad) to a local Shimura datum

(G1, b1, µ1), where (G1, b1, µ1) is of Hodge type (i.e., (G1, µ1) admits an embedding into

(GLn, µd), where µd is a minuscule coweight of GLn). In particular, Gad is a classical group.

We prove that Scholze’s conjecture holds true when (G, b, µ) is of abelian type and either

p ̸= 2 or p = 2 and Gad is of type A or C. We allow here general quasi-parahoric group

schemes, even those outside the class singled out in [SW20, §25.3] (those for which the group

ΠG below is trivial). Allowing general quasi-parahorics is important for two related reasons:

moduli problems leading to Rapoport-Zink spaces often correspond to quasi-parahorics, and

allowing quasi-parahorics is important for devissage in the proofs.

We also show that MG,b,µ is an integral model of ShtK(G, b, µ), in the following sense. Let

ΠG = ker(H1
ét(Zp,G) −→ H1

ét(Qp, G)), (1.0.1)

a finite abelian group, cf. [SW20, 25.3]. To every β̄ ∈ ΠG , we associate a quasi-parahoric

group scheme Gβ for G over Zp such that K̆β = Gβ(Z̆p) is conjugate to K̆ = G(Z̆p) in G(Q̆p),
and we prove that

M rig
G,b,µ ≃

⊔
β̄∈ΠG

ShtKβ
(G, b, µ). (1.0.2)

This formula is reminiscent of the formula of Kottwitz [Ko92], according to which the generic

fiber of a PEL-moduli scheme in [Ko92] is a disjoint sum of copies of Shimura varieties

enumerated by ker(H1(Q, G)→
∏
v H

1(Qv, G)) (these copies are mutually isomorphic in types

A and C, but not necessarily in type D).
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In fact, we prove that the decomposition (1.0.2) comes by passing to the generic fiber of a

decomposition of functors

Mint
G,b,µ ≃

⊔
β̄∈ΠG

Mint
Go
β ,b,µ

/π0(Gβ)ϕ. (1.0.3)

Here Goβ denotes the parahoric group scheme associated to the quasi-parahoric group scheme

Gβ (the neutral connected component). This formula also gives a reduction of Scholze’s

conjecture from quasi-parahoric group schemes to parahoric group schemes.

We know quite a bit about the local structure of the formal scheme MG,b,µ. Indeed, let

Mloc
G,µ = Mloc

Go,µ be the local model associated to the parahoric group scheme Go associated to

G. Here the associated v-sheaf on Perfdk is defined in [SW20, §21] and the representability

by a weakly normal scheme Mloc
Go,µ flat over OĔ is established in the case of a general local

Shimura datum by J. Anschütz, I. Gleason, J. Lourenço, T. Richarz in [AGLR22]. In fact,

Mloc
Go,µ is always normal with reduced special fiber (by [AGLR22] and [GLo22] which settled

some remaining cases for p = 2 and p = 3). When p ̸= 2, this local model also coincides for

local Shimura data of abelian type with the local model in the style of Pappas and Zhu [PZ13]

(modified in [HPR20]), as extended to groups which arise by restriction of scalars from wild

extensions by B. Levin [Le01]. When p = 2 and Gad is of type A or C, this local model also

coincides with the local model obtained by taking the closure of the generic fiber in the naive

local model of [RZ96]. We also know that, if p ̸= 2, Mloc
G,µ is Cohen-Macaulay [HR19]. Then,

under our assumptions above, we prove that for every x ∈Mint
G,b,µ(k), there exists y ∈Mloc

G,µ(k)

and an isomorphism of formal completions

Mint
G,b,µ/x ≃Mloc

G,µ/y.

When G is a parahoric group scheme, Gleason ([Gl20, Gl21]) has defined the formal completion

Mint
G,b,µ/x as a v-sheaf. In our approach, we first show that his definition extends to the case

of an arbitrary quasi-parahoric group scheme and then show that Mint
G,b,µ/x is representable

(by the formal spectrum of a complete Noetherian local ring which is the completion of a

corresponding local model, as above). The representability of Mint
G,b,µ/x for all x is closely

related to the representability ofMint
G,b,µ. In fact, in [PR21], we show in the Hodge type case

under certain hypotheses that, conversely, if all formal completions are representable, then so

isMint
G,b,µ. Using this statement, we prove in [PR21] the representability ofMint

G,b,µ in many

cases of Hodge type by using global methods.

By contrast, the approach in the present paper is purely local and direct, with more general

results. The key case for p > 2 occurs for (G, b, µ,G) of Hodge type when the closed immersion

G ↪→ GLn extends to a closed immersion G ↪→ GL(Λ) for a Zp-lattice Λ ⊂ Qnp and satisfies

certain additional conditions. In this case, the representability of Mint
G,b,µ is established by

imitating the construction in [KP18], as extended in [KZ21], [KPZ24], of integral models of

global Shimura varieties of Hodge type. The crucial step here is the construction of a suitable

versal deformation of a p-divisible group equipped with crystalline tensors. This is done by

using Zink’s displays and requires the assumption p > 2. The general Hodge type case is

reduced to this case by devissage. In this devissage, there are two steps. In a first step, one

shows that the assertion is independent of the quasi-parahoric G within the class of all quasi-

parahorics sharing a fixed parahoric as their neutral component. In a second step, one shows



ON INTEGRAL LOCAL SHIMURA VARIETIES 5

that the assertion is independent of the group G within the class of all groups sharing the same

adjoint group. In these devissage steps one has to deal with affine Deligne-Lusztig varieties for

quasi-parahorics, as already considered by U. Görtz, X. He and S. Nie in [GHN20]. Finally,

the general abelian type is reduced to the Hodge type case by following Deligne’s analogous

reduction [De79] in the case of global Shimura varieties.

What remains to be done for the construction of integral local Shimura varieties and

Scholze’s representability conjecture in all generality? For local Shimura data of abelian type,

there are still cases open for p = 2. Some of these appear accessible but there are several

technical complications. Outside the abelian type cases, we have only cases that involve

exceptional groups of type E6 or E7, even orthogonal groups with cocharacters which are

“mixed” of type DR with DH, and trialitarian forms. These are more mysterious. Especially

the cases of exceptional groups are wide open, even though recently the representability of the

formal completionsMint
G,b,µ/x has been proved in the case that G is a hyperspecial parahoric

by S. Bartling [Ba22, Thm. 1.4] (for p ≥ 3) and K. Ito [It23, Thm. 5.3.5].

On the other hand, it is encouraging that the representability of (Mint
G,b,µ)red is known in

general (even when µ is not minuscule). More precisely, Gleason [Gl21] defines (Mint
G,b,µ)red as a

a scheme-theoretic v-sheaf and proves that it is representable by a perfect k-schemeXG(b, µ
−1)

contained in the Witt vector affine Grassmannian XG = LG/L+G (in [Gl21], Gleason assumes

that G is parahoric but the result holds for general quasi-parahorics, cf. Proposition 3.3.1).

Furthermore, XG(b, µ
−1)(k) can be identified with the corresponding affine Deligne-Lusztig

set, cf. (3.3.2). When µ is minuscule, one expects a natural deperfection of XG(b, µ
−1) as

a scheme locally of finite type over k but this seems only known as a consequence of the

representability ofMint
G,b,µ.

We thank P. Scholze for helpful comments, and R. Zhou for useful discussions about [KZ21].

The first author also acknowledges support by NSF grant #DMS-2100743.

2. Statements of the main results

2.1. Hodge and Abelian type. Let (G, b, {µ}) be a local Shimura datum over Qp, cf.

[RV14]. Recall that this means that G is a reductive group, that b ∈ G(Q̆p) and that {µ} is a
conjugacy class of a minuscule cocharacter µ : Gm/Q̄p

→ GQ̄p
. It is assumed that b is neutral

acceptable, i.e., the σ-conjugacy class [b] lies in B(G,µ−1). We will often omit the bracket

and simply write (G, b, µ).

We will be concerned with local Shimura data of a particular type.

Definition 2.1.1. The local Shimura datum (G, b, µ) is called of Hodge type if there is an

embedding

i : (G,µ) ↪→ (GLh, µd),

for some 0 ≤ d ≤ h, where µd(a) = diag(a(d), 1(h−d)) is the standard minuscule cocharacter

of GLh.

Remark 2.1.2. This is the local analogue of the corresponding terminology in the classical

theory of Shimura varieties, where one requires an embedding into a similitude symplectic

group.
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Definition 2.1.3. ([HPR20, §2.7], [HLR18, Def. 9.6]) The local Shimura datum (G, b, µ) is

called of abelian type if there is a local Shimura datum (G1, b1, µ1) of Hodge type and an

isomorphism (G1,ad, b1,ad, µ1,ad) ≃ (Gad, bad, µad). In this case, (G1, b1, µ1) is called a central

lift of Hodge type for (G, b, µ), cf. [HLR18, §9].

Note that the existence of b1 that lifts bad is automatic since B(G,µ) ≃ B(Gad, µad) by

[Ko97, (6.5.1)], so this is really a property of the pair (G,µ).

Remark 2.1.4. Note that this is weaker than the analogous notion in the global case,

where one asks that there is a morphism (G1, µ1) → (Gad, µad) such that the induced

morphism G1,der → Gad admits a factorization through Gder and induces an isomorphism

(G1,ad, µ1,ad) ≃ (Gad, µad), comp. [KP18]. In [HPR20], it is this stronger version that is im-

posed also in the local case; however, in the local case, this stronger notion seems unnecessary,

as pointed out in [HLR18].

2.2. Quasi-parahoric subgroups. Let Ğ be a reductive group over Q̆p. By definition, a

quasi-parahoric subgroup of Ğ(Q̆p) is a subgroup K̆ which is squeezed as

Ğ(Q̆p)0 ∩ StabF ⊂ K̆ ⊂ Ğ(Q̆p)1 ∩ StabF.

Here StabF is the stabilizer of a facet F in the building B(Ğad, Q̆p), and

Ğ(Q̆p)0 = ker(κ : Ğ(Q̆p) −→ π1(Ğ)I), Ğ(Q̆p)1 = ker(κ : Ğ(Q̆p) −→ π1(Ğ)I ⊗Q).

Here, κ is the Kottwitz homomorphism. Equivalently, it is a subgroup of finite index in

Ğ(Q̆p)1 ∩ StabF. Still another way of characterizing quasi-parahoric subgroups is to say that

they are of finite index in the stabilizer of a point in the extended building Be(Ğ, Q̆p). In the

case that the quasi-parahoric subgroup coincides with Ğ(Q̆p)1 ∩ Stabx, with x ∈ B(Ğad, Q̆p)
(equivalently, if it coincides with the stabilizer subgroup in Ğ(Q̆p) of a point in the extended

building Be(Ğ, Q̆p)), it is called a stabilizer quasi-parahoric. The parahoric subgroup K̆o =

Ğ(Q̆p)0 ∩ StabF is called the parahoric subgroup associated to the quasi-parahoric subgroup

K̆. Note that if π1(Ğ)I is torsion-free, then any quasi-parahoric is a parahoric.

By Bruhat-Tits theory [BTII], there is a unique smooth group scheme Ğ over Z̆p with

generic fiber Ğ such that Ğ(Z̆p) = K̆.

Now let G be a reductive group over Qp. Then, in analogy with the Bruhat-Tits definition

of a Qp-parahoric subgroup [BTII, right after Def. 5.2.6], there is the notion of a Qp-quasi-
parahoric subgroup of G. It can be equivalently defined as a quasi-parahoric subgroup K̆ of

G(Q̆p) which is invariant under Frobenius, or as a subgroup of finite index in G(Q̆p)1∩StabF,
where StabF is the stabilizer of a facet F in the building B(Gad,Qp). By descent from Z̆p to Zp,
we have a corresponding smooth group scheme G over Spec (Zp). Then G(Zp) = K̆ ∩G(Qp).

In the sequel, we simply call G a quasi-parahoric group scheme for G. Note that a parahoric

group scheme for G is uniquely defined by its associated subgroup G(Zp) of G(Qp), cf. [BTII,
Prop. 5.2.8]. However, for general quasi-parahoric group schemes for G, the association

G 7→ G(Zp) ceases to be injective (for instance Go(Zp) = G(Zp) when π0(G)ϕ is trivial, which

may happen even when π0(G) is non-trivial). Still, we write K = G(Zp) = K̆ ∩ G(Qp) and

sometimes use the notation K to refer to our choice of G. This does not lead to confusions.
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2.3. The local model. Recall1 the Scholze-Weinstein v-sheaf local modelMv
G,µ over Spd (OE)

(in [SW20] it is denoted by GrG,Spd (OE),≤µ).

Assume µ is minuscule. In this case, GrG,Spd (OE),≤µ = GrG,Spd (OE),µ and the v-sheaf local

model Mv
G,µ = GrG,Spd (OE),µ is given as the closure inside the Beilinson-Drinfeld style affine

Grassmannian GrG,Spd (OE) of the v-sheaf X
♢
µ associated to the symmetric space Xµ = GrG,µ

of parabolics of type µ over Spec (E). Then Mv
G,µ is representable by a normal flat projective

OE-scheme Mloc
G,µ with reduced special fiber. This was conjectured by Scholze-Weinstein

[SW20, Conj. 21.4.1] and was shown in [AGLR22] and [GLo22] (which settled the normality in

some remaining cases in characteristics 2 and 3). Here Mloc
G,µ is uniquely determined. Assume

in addition that (G,µ) is of abelian type and satisfies Condition (A) or (B), cf. Definition

2.5.2 below. Then the normality of Mloc
G,µ is given by [AGLR22, Thm. 7.23]. Furthermore,

in the case (A) Mloc
G,µ can be obtained by the procedure of [PZ13], extended to restrictions of

scalars from wild extensions in [Le01] and as modified in [HPR20] when p | |π1(Gder)|. This

statement uses Remark 2.5.3. In the case (B) of Definition 2.5.2, Mloc
G,µ can also be obtained

by taking the closure of the generic fiber in the naive local model of [RZ96]. There is no

difference when discussing quasi-parahorics because the natural map is an isomorphism,

Mv
Go,µ

∼−→Mv
G,µ, (2.3.1)

cf. [SW20, Prop. 21.4.3]. (This proposition assumes that µ is minuscule, but the argument

applies to general µ, see also [AGLR22, §4]). If µ is minuscule, this also yields an isomorphism

for the corresponding scheme local models,

Mloc
Go,µ

∼−→Mloc
G,µ.

2.4. The integral local Shimura variety Mint
G,b,µ. Let G be a smooth affine group scheme

over Zp with generic fiber a reductive group G, let b ∈ G(Q̆p), and let µ be a conjugacy class

of cocharacters of G. It is assumed that the Frobenius-conjugacy class of b lies in B(G,µ−1).

We call the triple (G, b, µ) an integral local shtuka datum and (G, b, µ) a rational local shtuka

datum. As usual, we denote by E the field of definition of µ and by Ĕ the completion of the

maximal unramified extension.

Then Scholze-Weinstein associate to (G, b, µ) an “integral” moduli space of shtukasMint
G,b,µ

over OĔ , [SW20, Def. 25.1.1]. It is given as a “v-sheaf moduli space” of certain G-shtukas
with one leg bounded by µ with a fixed associated Frobenius element, cf. [SW20, §§23.1, 23.2,
23.3], as follows.

Definition 2.4.1. The integral moduli space of local shtuka Mint
G,b,µ is the functor that sends

S ∈ Perfdk to the set of isomorphism classes of tuples

(S♯,P, ϕP , ir),

where

1) S♯ is an untilt of S over Spa (OĔ),

2) (P, ϕP) is a G-shtuka over S with one leg along S♯ bounded by µ,

1In fact, in [SW20, §20] only the case where G is reductive is considered; in [SW20, §21] the case where

G is an arbitrary parahoric and where µ is minuscule is considered. The general case is treated in [AGLR22,

§4.2].
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3) ir is a “framing”, i.e. an isomorphism of G-torsors

ir : GY[r,∞)(S)
∼−→P |Y[r,∞)(S) (2.4.1)

for large enough r (for an implicit choice of pseudouniformizer ϖ), under which ϕP is

identified with ϕb = b× FrobS .

Here, Y[r,∞)(S) is as defined in [SW20], [FS21, II]. We have denoted by GY[r,∞)(S) the

trivial G-torsor over Y[r,∞)(S) (denoted G× Y[r,∞)(S) in [SW20, App. to §19]), and by

ϕb = ϕG,b : ϕ
∗(GY[r,∞)(S)) = GY

[ 1
p
r,∞)

(S)
bϕ−→ GY[r,∞)(S) (2.4.2)

the isomorphism given by the ϕ-linear isomorphism induced by right multiplication by b

(denoted by b × Frob in [SW20, Def. 23.1.1]). In 3) we mean more precisely an equivalence

class, where ir and i′r′ are called equivalent if there exists r′′ ≥ r, r′ such that ir |Y[r′′,∞)(S)
=

i′r′ |Y[r′′,∞)(S)
. Also, in 2) the precise definition of “bounded by µ” is given via the local model

Mv
G,µ (see [SW20, Def. 25.1.1], [PR21, p. 46]).

Note that the formation ofMint
G,b,µ is functorial, i.e., for a morphism (G, b, µ)→ (G′, b′, µ′)

we have Mint
G,b,µ → Mint

G′,b′,µ′ ×Spd (OĔ) Spd (OĔ′). It is also compatible with products, i.e.,

Mint
G1×G2,b1×b2,µ1×µ2

is isomorphic to the product Mint
G1,b1,µ1

×Mint
G2,b2,µ2

after base changing

to the compositum of the reflex fields (in this, we omit the base changes from the notation,

for simplicity). In addition, the ϕ-centralizer group Jb(Qp) acts on Mint
G,b,µ by changing the

framing.

By loc. cit.,Mint
G,b,µ is a v-sheaf over Spd (OĔ). In fact, as in [Gl21, Prop. 2.23],Mint

G,b,µ is

a small v-sheaf. In addition, Mint
G,b,µ supports a Weil descent datum from OĔ down to OE ,

as explained in [PR21, §3.1, §3.2]. In this paper, even though this is not always pointed out

explicitly, the smooth group scheme G will always be a quasi-parahoric group scheme for G.

In fact, most of the time we are interested in the case that (G, b, µ) is a local Shimura datum,

i.e. we also assume that µ is minuscule. In addition, we take G to be a quasi-parahoric group

scheme for G. In this case we callMint
G,b,µ the integral local Shimura variety associated to the

local Shimura datum (G, b, µ) and the quasi-parahoric group scheme G.

2.5. Statement of the main results. Our concern is with the following conjecture.

Conjecture 2.5.1. (Scholze) Let (G, b, µ) be a local Shimura datum and G a quasi-parahoric

group scheme for G. There exists a formal scheme MG,b,µ which is normal and flat locally

formally of finite type over OĔ with

Mint
G,b,µ = M♢

G,b,µ,

as v-sheaves over Spd (OĔ). Then, MG,b,µ is unique ([SW20, Prop. 18.4.1]).

Our main result is a proof of this conjecture when (G, b, µ) is of abelian type under certain

mild hypotheses.

Definition 2.5.2. Let (G, b, µ) be of abelian type. We introduce two kinds of conditions on

p, G and µ.

(A) p ̸= 2.
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(B) p = 2 and Gad =
∏
iResFi/Qp

Hi, where for each i, Hi = B×
i /F

×
i with Bi a simple

algebra with center Fi, or Hi = PGSp2ni
, or the corresponding component µad,i of µad

is trivial.

Note that if G = T is a torus, T trivially satisfies (A) or (B).

Remark 2.5.3. Recall from [PR21, §5], comp. [KZ21, Def. 5.2.6], that G is called essentially

tamely ramified if Gad ≃
∏
iResFi/Qp

Hi, where Hi is absolutely simple and splits over a

tamely ramified extension of Fi. Note that G is automatically essentially tamely ramified if

p ≥ 5, cf. [PR21, §5]. Moreover, if p = 3, the condition of essentially tame ramification only

excludes groups whose adjoint groups contain a ramified triality group (type D
(3)
4 or D

(6)
4 ) as

a factor. We note that by Serre [Se79, §3, Cor. 2] this last possibility does not occur when

(G, b, µ) is of abelian type, unless the corresponding component of µad is trivial. In other

words, Condition (A) implies that the simple factors of Gad on which the projections of µad

are non-trivial, are essentially tamely ramified. Indeed, let (G1, µ1) be a central lift of Hodge

type for (G,µ). Let G′
1 be the minimal normal subgroup of G1 containing the conjugacy class

µ1. Then by [Se79, §3, Cor. 2], G′
1,ad contains no ramified triality group as a factor. On the

other hand, G′
1,ad =

∏
{i|µad,i ̸=1} ResFi/Qp

Hi, which proves the claim.

Theorem 2.5.4. Let (G, b, µ) be a local Shimura datum of abelian type satisfying Condi-

tion (A) or (B), and let G be a quasi-parahoric group scheme for G. Then Mint
G,b,µ satisfies

Conjecture 2.5.1.

Theorem 2.5.4 is closely related to the following result. In fact, it was shown in [PR21] that

the following result implies Theorem 2.5.4 in the Hodge type case under some mild additional

hypotheses, cf. [PR21, proof of Thm. 3.7.1].

Theorem 2.5.5. Let (G, b, µ) be a local Shimura datum of abelian type satisfying Condition

(A) or (B), and let G be a quasi-parahoric group scheme for G. For any Spd (k)-valued point

x ofMint
G,b,µ, there is a k-valued point y of Mloc

G,µ such that

Mint
G,b,µ/x ≃ (Mloc

G,µ/y)
♢, (2.5.1)

as v-sheaves over Spd (OĔ).

In this, y is a k-valued point of Mloc
G,µ obtained by fixing a trivialization of the G-torsor

underlying the G-shtuka at x (more precisely, y is in the orbit ℓ(x) given by (3.4.2)). The

notation Mint
G,b,µ/x stands for the formal completion of the v-sheaf Mint

G,b,µ at x, as defined

in [Gl20, Def. 4.18], cf. [PR21, §3.3.1], see also §3.4. On the RHS, (Mloc
G,µ/y)

♢ denotes the

v-sheaf attached to the adic space Spa (A,A), where A is the completion of the local ring of

the scheme Mloc
G,µ at y, taken with the topology defined by the maximal ideal.

The combination of these two results also gives

Corollary 2.5.6. Let (G, b, µ) be a local Shimura datum of abelian type satisfying Condition

(A) or (B), and let G be a quasi-parahoric group scheme for G. Let MG,b,µ be the formal

scheme that represents Mint
G,b,µ by Theorem 2.5.4. For any k-valued point x of MG,b,µ, there

is a k-valued point y of Mloc
G,µ such that MG,b,µ/x ≃Mloc

G,µ/y.
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Note here that, by the full-faithfulness result of [SW20, Prop. 18.4.1], the Weil descent

datum for the v-sheafMint
G,b,µ gives a corresponding Weil descent datum for the formal scheme

MG,b,µ, from OĔ down to OE .

The following result shows that MG,b,µ is an integral model of the local Shimura variety in

a certain sense. Recall from the introduction that to G is associated the finite abelian group

ΠG , and that to every β̄ ∈ ΠG , there is associated a quasi-parahoric group scheme Gβ over

Zp, as well as its associated parahoric group scheme Goβ , and the finite group of its connected

components π0(Gβ) with its action by the Frobenius ϕ. Also we let Kβ = Gβ(Zp).

Theorem 2.5.7. Let (G, b, µ) be a local Shimura datum of abelian type satisfying Condition

(A) or (B), and let G be a quasi-parahoric group scheme for G. There is an isomorphism of

rigid-analytic varieties over Ĕ,

M rig
G,b,µ ≃

⊔
β̄∈ΠG

ShtKβ
(G, b, µ).

This isomorphism is induced by an isomorphism of formal schemes

MG,b,µ ≃
⊔
β̄∈ΠG

MGo
β ,b,µ

/π0(Gβ)ϕ.

We finally mention the following result. Let (G, b, µ) be a local shtuka datum, and let G
be a quasi-parahoric group scheme for G. Consider the scheme-theoretic v-sheaf (Mint

G,b,µ)red,

cf. [Gl21]. Then (Mint
G,b,µ)red is representable by a perfect k-scheme XG(b, µ

−1) which can be

identified with the admissible set (3.3.2) contained in the Witt vector affine Grassmannian

XG = LG/L+G, cf. Proposition 3.3.1. The problem of determining the set of connected

components of XG(b, µ
−1) is of considerable interest.

Let G be a parahoric. Then there is a surjective map

XG(b, µ
−1) −→ cb,µ + π1(G)

ϕ
I , (2.5.2)

where cb,µ ∈ π1(G)I is a certain element unique up to π1(G)
ϕ
I , cf. [HZ20, Lem. 6.1]. By

a recent result of Gleason-Lim-Xu [GLX, Thm. 1.2], the fibers of (2.5.2) are the connected

components of XG(b, µ
−1) when (b, µ) is Hodge-Newton irreducible (proving a conjecture of

X. He). The map (2.5.2) is equivariant for the natural action of the ϕ-centralizer group Jb(Qp)
on source and target. We prove the following result.

Proposition 2.5.8. Assume that the center of G is connected. Then the action of Jb(Qp) on
cb,µ + π1(G)

ϕ
I is transitive. In particular, any two fibers of the map (2.5.2) are isomorphic.

Composing (2.5.2) with the specialization map (3.4.1) gives a Jb(Qp)-equivariant map

Mint
G,b,µ −→ cb,µ + π1(G)

ϕ
I , (2.5.3)

where the target is the corresponding constant v-sheaf. Hence, if the center of G is connected,

any two fibers of the map (2.5.3) are also isomorphic.

2.6. The plan of the proof. The proof of the main theorems proceeds in the following

steps.
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• Step 1. We develop a devissage procedure that allows us to pass

a) between G and Go.
b) between groups linked via an ad-isomorphism.

In most of the statements in this step, we deal with integral local shtuka data (G, b, µ), i.e.
we do not assume that µ is minuscule.

• Step 2. We show the results in “good” Hodge type cases: In such cases, the proof follows

from the case of GLn (already treated in [SW20] by relating to RZ formal schemes) and

from the constructions in [KP18], [KZ21], [KPZ24] (which use Zink displays and Breuil-Kisin

modules).

• Step 3. Using Step 1 we reduce the general case to:

a) the Hodge type cases handled in Step 2, (in case (A)),

b) EL/PEL cases for which we give directly MG,b,µ as a Rapoport-Zink formal scheme, (in

case (B)).

2.7. The lay-out of the paper. In §3, we generalize the Anschütz purity theorem from

parahoric group schemes to quasi-parahoric group schemes, and use this to transfer to this

more general context the formalism of specialization, formal completion and v-sheaf local

model diagram that Gleason had established for hyperspecial parahoric G. We also make

the link between the reduced locus of Mint
G,b,µ and affine Deligne-Lusztig varieties for quasi-

parahorics. In §4, we study the devissage step of varying the quasi-parahorics with a given

associated parahoric. We also prove at this point Theorem 2.5.7. In §5, we study the devissage

step of varying the groups with a given adjoint group. In §6 we treat the case when µad is

trivial. In §7 we consider the crucial Hodge type case mentioned in the introduction. In §7.2,
we develop methods to relate Hodge type cases and abelian type cases to the crucial Hodge

type case. Everything comes together in §8, where we give the proofs of Theorems 2.5.4 and

2.5.5; this is done separately for G satisfying Condition (A) and (B).

3. Preliminaries

3.1. Torsors under quasi-parahoric group schemes. Let Ω = ΩG = π1(G)I . We recall

the Kottwitz homomorphism

κ : G(Q̆p) −→ ΩG.

A parahoric subgroup lies in the kernel of κ and in fact, the kernel of κ is generated by all

parahoric subgroups, cf. [HR08, Lem. 17]. Also, for any quasi-parahoric subgroup K̆ of

G(Q̆p) with associated parahoric subgroup K̆o we have K̆o = ker(κ|K̆ : K̆ → Ω). Let G be

the corresponding quasi-parahoric group scheme and consider the injective map

π0(G) = K̆/K̆o ↪→ ΩG. (3.1.1)

In [SW20, 25.3.1], Scholze-Weinstein point out the importance of the finite abelian group

ΠG := ker(π0(G)ϕ −→ Ωϕ) (3.1.2)

Lemma 3.1.1. There is a natural isomorphism

ΠG ∼= ker(H1
ét(Zp,G) −→ H1

ét(Qp, G)).
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Proof. This is sketched in [SW20, 25.3]. The exact sequence 0 → K̆o → K̆ → π0(G) → 0

induces an exact sequence

H1
ét(Zp,Go) −→ H1

ét(Zp,G) −→ H1
ét(Zp, π0(G)).

Here the left term vanishes by Lang’s theorem. The second map is surjective since H1
ét(Zp,G) =

K̆/ϕK̆. We therefore obtain

H1
ét(Zp,G) ≃ H1

ét(Fp, π0(G)) ≃ H1(⟨ϕ⟩, π0(G)) ∼= π0(G)ϕ.

On the other hand, we have an injection

H1
ét(Qp, G) ↪→ H1(⟨ϕ⟩, G(Q̆p)) ∼= B(G) (3.1.3)

with the image landing in the basic elements B(G)basic ⊂ B(G), cf. [Ko97]. Now

B(G)basic ≃ π1(G)Γ = (π1(G)I)ϕ = Ωϕ,

and the map (3.1.3) induces an identification

H1
ét(Qp, G) ≃ Ωϕ,tors,

where Ωϕ,tors is the torsion subgroup of Ωϕ. It remains to observe that the following diagram

is commutative,

H1
ét(Zp,G) //

≃
��

H1
ét(Qp, G)

� � //

≃
��

B(G)basic

≃
��

π0(G)ϕ // Ωϕ,tors
� � // Ωϕ.

(3.1.4)

This commutativity follows from the fact that the vertical homomorphisms on the outer left

and the outer right are both induced by the Kottwitz homomorphism G(Q̆p) → Ω: this is

obvious from the construction for the outer left map and follows from [Ko97, §7.5] for the

outer right map. □

3.2. Purity of torsors. The following purity/extension result is crucial. It is a quick gener-

alization of the corresponding result for parahoric subgroups due to Anschütz ([An18]).

Proposition 3.2.1. Suppose G is a quasi-parahoric group scheme over Zp, and consider a pair

(C,C+) with C an algebraically closed non-archimedean complete field of characteristic p and

C+ an open and bounded valuation ring of C. Then every G-torsor over U = Spec (W (C+))\
V (p, [ϖ]) extends to a G-torsor over Spec (W (C+)) and hence is trivial.

Here ϖ denotes a pseudo-uniformizer of C+.

Proof. We have an exact sequence

1 −→ Go −→ G −→ i∗(π0(G)) −→ 1

of étale sheaves, where i : Spec (k) ↪→ Spec (Z̆p). Note U×Spec (Z̆p)
Spec (k) = Spec (C+[1/ϖ]) =

Spec (C). This gives the exact sequence

H1(U,Go) −→ H1(U,G) −→ H1(U, i∗(π0(G))) = H1(Spec (C), π0(G)) = (0).

By Anschütz’s theorem [An18], H1(U,Go) = (0) and the result follows. □
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This extends as follows to strictly totally disconnected affinoid perfectoids which are given

as “products of points”.

Proposition 3.2.2. Let (R,R+) be a “product of the points (Ci, C
+
i ), i ∈ I”, with all Ci

algebraically closed of characteristic p, i.e., R+ =
∏
i∈I C

+
i , R = R+[1/ϖ], with the ϖ-

topology, where ϖ = (ϖi)i, with ϖi pseudouniformizers of C+
i . Then every G-torsor over

Spec (W (R+)) \ V (p, [ϖ]) extends to a G-torsor over Spec (W (R+)) and is trivial.

Proof. In the parahoric case G = Go, the extension follow from [An18, Prop. 11.5], see also

[Gl21, Thm. 2.8]. Observe that all étale covers of

Spec (R+) = Spec (
∏
i∈I

C+
i )

split. Indeed, as in the proof of [BS17, Lem. 6.2], we can consider

Spec (
∏
i∈I

C+
i ) −→ π0(Spec (

∏
i

C+
i )) = π0(Spec (

∏
i

ki)) = βI

where ki = C+
i /mi is the (algebraically closed) residue field. Here, βI is the Stone-Čech

compactification of the discrete set I. Each connected component of Spec (R+) (i.e. fiber of

this map) is the spectrum of a valuation ring V with algebraically closed fraction field K; this

valuation ring is an ultraproduct of C+
i . It follows that all étale covers of Spec (V ) and then

also of Spec (R+) split. (We see that R+ is “strictly w-local” in the terminology of [BS15,

2.2], and, in fact, Spec (R+) is “w-contractible”, [BS15, Lem. 2.4.8].)

A similar picture holds for R = R+[1/ϖ]: in this case, we have

π0(Spec (R)) ≃ π0(Spec (R+)) ≃ βI

(by considering idempotents) and

Spec (R) −→ π0(Spec (R)) ≃ βI,

has every fiber isomorphic to Spec (V [1/ϖ]), with V [1/ϖ] a valuation ring with (algebraically

closed) fraction field K. Étale covers over each such Spec (V [1/ϖ]) split, and then étale covers

over Spec (R) also split.

Now it also follows that every G-torsor over Spec (W (R+)) is trivial. Indeed, since G
is smooth and W (R+) is p-adically complete, it is enough to show that all G-torsors over

R+ =
∏
i∈I C

+
i are trivial. As above, we see that all étale covers of Spec (R+) split and so this

follows using the smoothness of G; the same applies of course to Go-torsors. The argument

in the proof of Proposition 3.2.1 above now extends to U = Spec (W (R+)) \ V (p, [ϖ]), to

complete the proof. □

3.3. The affine Witt Grassmannian and affine Deligne-Lusztig varieties. Let

XG := GrWG = LG/L+G (3.3.1)

be the Witt vector affine Grassmannian for G, cf. [BS17, Zhu17]. Here LG(R) = G(W (R)[ 1p ])

and LG(R) = G(W (R)) for any perfect k-algebra R. Note that here G is only assumed to be

a quasi-parahoric group scheme, whereas in loc. cit. it is assumed that G is a parahoric group

scheme. Also, note that k-points of XG are given by isomorphism classes of pairs (P, α) of a
G-torsor P over W (k) with a trivialization α of its restriction to W (k)[1/p].
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Let (G, b, µ) be an integral local shtuka datum such that G is a quasi-parahoric group

scheme for G. Inside the Witt vector affine Grassmannian we consider the affine Deligne-

Lusztig variety XG(b, µ
−1) (the µ−1-admissible locus). This is a perfect scheme which is

locally (perfectly) of finite type (cf. [Zhu17], [HV20]) over k with

XG(b, µ
−1)(k) = {gK̆ ∈ G(Q̆p)/K̆ | g−1bϕ(g) ∈ AdmK(µ−1)} ⊂ XG(k). (3.3.2)

Here AdmK(µ−1) = K̆Adm(µ−1)K̆, where Adm(µ−1) ⊂ W̃ is the µ−1-admissible subset of

the Iwahori Weyl group of G.

Proposition 3.3.1. Let (G, b, µ) be an integral local shtuka datum such that G is a quasi-

parahoric group scheme for G. Then the reduced locus (Mint
G,b,µ)red is represented by the

perfect k-scheme XG(b, µ
−1), and hence

Mint
G,b,µ(Spd (k)) = XG(b, µ

−1)(k).

Proof. Here, the reduced locus Fred of a small v-sheaf F is a “scheme-theoretic” v-sheaf which

is defined as in [Gl20, Def. 3.12]. For parahoric G the proposition is shown in [Gl21], cf. [Gl21,

Prop. 2.30]. One main ingredient in the proof of this is the Anschütz purity theorem for G and

its extension to products of points. By Propositions 3.2.1 and 3.2.2, these purity statements

remain true for quasi-parahoric group schemes. Also, by [AGLR22, Thm. 6.16] combined

with (2.3.1), the reduced locus (Mv
G,µ)red is represented by the perfect k-scheme which is the

µ-admissible locus in XG . With these ingredients, the proof in [Gl21] now extends to this

case. □

Remark 3.3.2. In the identification of Prop. 3.3.1 above, the inverse µ−1 appears on the

RHS because of the convention in the definition of “bounded by µ” for G-shtuka, comp. [PR21,

2.4.4].

3.4. The specialization map and formal completions. Gleason explains certain condi-

tions on a small v-sheaf F to construct a continuous specialization map on the underlying

spaces,

spF : |F| −→ |Fred|,

cf. [Gl20, §4.2], see also [AGLR22, §2.3].
Futhermore, he proves that these conditions are satisfied when F = Mv

G,µ with G reductive

(hyperspecial parahoric). This result is extended to parahoric G by [AGLR22, Prop. 4.14].

In view of (2.3.1), it also holds for quasi-parahoric G. The scheme-theoretic v-sheaf (Mv
G,µ)red

is represented by a perfect k-scheme (by [AGLR22] this is the µ-admissible locus) which is a

closed subscheme of the Witt affine Grassmannian XG = GrWG .

By [Gl21, Prop. 2.30], these conditions are also satisfied in the case when F = Mint
G,b,µ

where G is a hyperspecial parahoric subgroup. Again, one main ingredient is the Anschütz

purity theorem for G and its extension to product of points. By Propositions 3.2.1 and 3.2.2,

these purity statements remain true for quasi-parahoric group schemes, and the proof extends.

In fact, by Proposition 3.3.1, (Mint
G,b,µ)red is represented by the affine Deligne-Lusztig variety

(ADLV) XG(b, µ
−1) in the Witt affine Grassmannian XG . Hence we get a continuous map

spMint
G,b,µ

: |Mint
G,b,µ| −→ |(Mint

G,b,µ)red| = |XG(b, µ
−1)|. (3.4.1)
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Using this, we define the formal completion ofMint
G,b,µ along a point x ∈Mint

G,b,µ(Spd (k)) =

XG(b, µ
−1)(k) as the sub-v-sheaf ofMint

G,b,µ, with

Mint
G,b,µ/x(S) = {y : S −→M

int
G,b,µ | spMint

G,b,µ
◦ y(|S|) ⊂ {x}}.

Similarly, we can define the formal completion Mv
G,µ/y of Mv

G,µ along a point

y ∈Mv
G,µ(Spd (k)) ⊂ XG(k) = G(W (k)[1/p])/G(W (k)).

Using the condition “bounded by µ”, we obtain a map

ℓ :Mint
G,b,µ(Spd (k)) −→ G(W (k))\Mv

G,µ(Spd (k)). (3.4.2)

The set of orbits which appears as the target of ℓ is the µ-admissible set for K. The image

of a point inMint
G,b,µ(Spd (k)) under ℓ is obtained by choosing a trivialization of the G-shtuka

and taking the coset given by the inverse of the Frobenius map.

If µ is minuscule, then Mv
G,µ is representable by the OE-scheme Mloc

G,µ ([AGLR22]), and the

formal completion Mv
G,µ/y is given as Spd (A,A), where A is the completion of the local ring

of Mloc
G,µ ⊗OE

ŎE at the corresponding point, taken with the topology given by the maximal

ideal. In this case, we also have

G(W (k))\Mv
G,µ(Spd (k)) = G(k)\Mloc

G,µ(k),

so ℓ(x) above can be also considered as a G(k)-orbit in Mloc
G,µ(k).

3.5. Change of base point. Note that, when b ∈ AdmK(µ−1), thenMint
G,b,µ has a canonical

Spd (k)-valued “base point” x0. Under the identificationMint
G,b,µ(Spd (k)) = XG(b, µ

−1)(k) ⊂
XG(k) it corresponds to the “base point” of the ADLV given by the trivial coset.

In general, let x ∈ Mint
G,b,µ(Spd (k)) = XG(b, µ

−1)(k) ⊂ XG(k) correspond to the isomor-

phism class of a pair (P, α), where P is a G-torsor over W (k) and

α : P[1/p] ∼−→ G × Spec (W (k)[1/p])

is a trivialization of the restriction P[1/p] of P to Spec (W (k)[1/p]) such that

ϕP = α−1 · ϕb · ϕ∗(α) : ϕ∗(P)[1/p]
∼−→ P[1/p]

has pole at p = 0 bounded by µ. Choose a trivialization of the G-torsor P over W (k). Then

α is given by g ∈ G(W (k)[1/p]) and ϕP by bx × ϕ : G[1/p]→ G[1/p] such that bx = g−1bϕ(g).

Hence we have bx = g−1bϕ(g) ∈ AdmK(µ−1). We obtain an isomorphism

τg :Mint
G,b,µ −→Mint

G,bx,µ, (P, ϕP , ir) 7−→ (P, ϕP , ir ◦ g−1)

which sends x to the base point x0 of Mint
G,bx,µ, cf. [PR21, proof of Prop. 3.4.1]. This gives

an isomorphism (depending on our choices)

Mint
G,b,µ/x ≃M

int
G,bx,µ/x0

. (3.5.1)

In particular, Mint
G,b,µ/x is representable (by a normal complete Noetherian local ring) for

given G and any b in a given ϕ-conjugacy class in B(G) and arbitrary x ∈Mint
G,b,µ(Spd (k)) if

and only if this holds for the base point x0 of Mint
G,b,µ, for given G and any b ∈ AdmK(µ−1)

in the given ϕ-conjugacy class. Note that, by He’s theorem [He16], any ϕ-conjugacy class

[b] ∈ B(G,µ−1) contains elements b ∈ AdmK(µ−1).
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3.6. A v-sheaf “local model diagram”. Let H be an affine group scheme over Z̆p. For an
affinoid perfectoid (R,R+) over k, consider

W+H(Spa (R,R+)) = H(W (R+)),

and

Ŵ+H(R,R+) = {h ∈ H(W (R+)) | h ≡ 1mod [ϖh]},
(here ϖh stands for some pseudo-uniformizer of R+ that depends on h).

These definitions extend to perfectoid spaces over k and define v-sheaves of groups W+H
and Ŵ+H on Perfdk. We set

L̂+
WH = Ŵ+H× Spd (Zp)

which is a v-sheaf of groups over Spd (Zp). (This definition appears in [Gl20, 2.3.15].) We

have

L̂+
WH(S) = {((S

♯, y), h) | h ∈ H(W (R+)), h ≡ 1mod [ϖh]}, (3.6.1)

where S = Spa (R,R+) and (S♯, y) is an S-valued point of Spd (Zp), and where ϖh is a

pseudouniformizer of R+ (that depends on h).

We will later need the following lemma.

Lemma 3.6.1. For each h ∈ Ŵ+H(R,R+), there is a unique λ ∈ Ŵ+H(R,R+) such that

h = λ−1 · ϕ(λ).

Proof. The ringW (R+) is complete and separated for the [ϖ]–topology, where ϖ is a pseudo-

uniformizer of R+. Set inductively λ0 = 1, η0 = h−1, and

ηn = λ−1
n ϕ(λn) · h−1, λn+1 = λn · ηn,

Then we have

ηn+1 = h · ϕ(ηn) · h−1.

Since η0 ≡ 1mod [ϖh], this gives ηn ≡ 1mod [ϖpn

h ]. Hence, ηn converges to 1 and λn converges

to an element λ with

h = λ−1ϕ(λ).

(cf. [Gl21, Lem. 2.15].) If λ = ϕ(λ) with λ ≡ 1mod [ϖ], then we easily see inductively

λ ≡ 1mod [ϖpn ] for all n, so λ = 1, so uniqueness follows. □

Let (G, b, µ) be an integral local shtuka datum such that G is quasi-parahoric. We define

as follows a functor L̂Gb,µ on Perfdk over Spd (OĔ), cf. [Gl21, §2.4]. It assigns to a affinoid

perfectoid S = Spa (R,R+) over k the set

L̂Gb,µ(S) = {isomorphism classes of ((S♯, y),P, ψ, σ)}

where

• (S♯, y) is an untilt of S over OĔ ,

• P is a G-torsor over Spec (W (R+)),

• ψ : P[1/ξR♯ ]
∼−→ G × Spec (W (R+)[1/ξR♯ ]), and σ : P ∼−→ ϕ∗(G × Spec (W (R+)))

are both G-isomorphisms such that:

1) (P, ψ) is bounded by µ along ξR♯ = 0,

2) there is a pseudo-uniformizer ϖ ∈ R+ such that ϕb ◦ σ ≡ ψmod [ϖ].
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Here, “bounded by µ” means, by definition, that the point of the BdR-affine Grassma-

nian GrG,Spd (ŎE) given by ((S♯, y),P, ψ) factors through the v-sheaf local model Mv
G,µ ⊂

GrG,Spd (ŎE). More precisely, choose (locally) a section τ : G ∼−→ P and consider g = ψ ◦ τ(1);
we ask that g−1G(B+

dR(S
♯)) lies in Mv

G,µ(R
♯).

As in [Gl21], we can see that L̂Gb,µ is a v-sheaf over Spd (OĔ) (this v-sheaf is denoted by

ŴSht
D,≤µ

in [Gl21, Def. 2.34 (3), (4)], and by LMint
G,b,µ/x0

in [PR21]).

It is useful to observe that by using the mapping

(P, ψ, σ) 7−→ h = (ψ ◦ σ−1)(1) ∈ G(W (R+)[1/ξR♯ ]),

we obtain the following simpler description:

L̂Gb,µ(S) = {((S♯, y), h) | h ∈ G(W (R+)[1/ξR♯ ]), h ≡ bmod [ϖh], [h
−1] ∈Mv

G,µ(S)}, (3.6.2)

where (S♯, y) is an untilt of S over OĔ , ϖh is a pseudo-uniformizer of R+, and [h−1] is the

S-point of the BdR-affine Grassmanian GrG,Spd (ŎE) defined by the coset h−1G(B+
dR(R

♯)).

Theorem 3.6.2. There is a diagram of v-sheaves over Spd (ŎE)

L̂Gb,µ
π•

zz

π⋆

$$

Mint
G,b,µ/x0

Mv
G,µ/x0

.

(3.6.3)

where both π•, π⋆ are L̂+
WG-torsors (for the v-topology) for two corresponding actions (see (d)

below).

a) Here x0 ∈ Mint
G,b,µ(Spd (k)) denotes the base point as in §3.5 above. Similarly x0 ∈

Mv
G,µ(Spd (k)) denotes the corresponding point of Mv

G,µ(Spd (k)) ⊂ XG(k) given by the pair

(G, b−1), i.e. by the coset b−1 G(W (k)). Also, Mint
G,b,µ/x0

, resp. Mv
G,µ/x0

, denotes the v-sheaf

given by the formal completion ofMint
G,b,µ, resp. Mv

G,µ, at these points. (See §3.4 above.)

b) The map π⋆ is given by

π⋆(((S
♯, y),P, ψ, σ)) = ((S♯, y),P, ψ).

c) The map π• is given by

π•((S
♯, y),P, ψ, σ) = ((S♯, y), (P, ϕP), ir).

Here, (P, ϕP) is the G-shtuka over S with leg at y given as follows: The G-torsor P is

(ϕ−1)∗(P) restricted to Y[0,∞)(S), i.e.

P = (ϕ−1)∗(P)|Y[0,∞)(S).

The Frobenius ϕP is given by a similar restriction of the composition

Φ : P[1/ξR♯ ]
ψ−→ G × Spec (W (R+)[1/ξR♯ ])

((ϕ−1)∗σ)−1

−−−−−−−−→ (ϕ−1)∗(P)[1/ξR♯ ].

(Note that ϕ∗(P) = P|Y[0,∞)(S).) The framing ir is constructed in [Gl21].

d) The v-sheaf of groups L̂+
WG acts on L̂Gb,µ on the right by

(P, ψ, σ) ⋆ g = (P, ψ, ϕ∗(rϕ−1(g)) ◦ σ), (P, ψ, σ) • g = (P, rg ◦ ψ, ϕ∗(rg) ◦ σ),
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where, ra is the map given by right multiplication by a, and, for simplicity, we omit the untilt

(S♯, y) from the notation.

Note that the composition Φ : P[1/ξR♯ ] → (ϕ−1)∗(P)[1/ξR♯ ] in c), is fixed under the

•-action. This follows from the identity

((ϕ−1)∗(ϕ∗(rg) ◦ σ))−1 ◦ (rg ◦ ψ) = (rg ◦ (ϕ−1)∗σ)−1 ◦ rg ◦ ψ = ((ϕ−1)∗σ)−1 ◦ ψ.

Proof. The statement of the theorem is shown by Gleason for G parahoric (see [Gl21, Thm.

2.33, Lem. 2.35, Lem. 2.36]). The proof generalizes to G quasi-parahoric by using Proposition

3.2.1 and its extension Proposition 3.2.2 to products of points. □

It is convenient to express the torsors π⋆, π•, using the description (3.6.2) of L̂Gb,µ. In the

description (3.6.2), π⋆ is given by projection to the coset [h−1] = h−1G(B+
dR(R

♯)), and π• is

given by sending h to the shtuka P(h) = G × Y[0,∞)(S) = GY[0,∞)(S) (the trivial torsor) with

Frobenius defined by ϕP(h) = ϕh = rhϕ : (ϕ∗GY[0,∞)(S))[1/ξR♯ ]
∼−→ GY[0,∞)(S)[1/ξR♯ ]. To check

this description of π•, note that, since ϕh = rhϕ = ψ ◦ σ−1, and Φ = ((ϕ−1)∗(σ))−1 ◦ ψ, the
following diagram commutes

P[1/ξR♯ ]
Φ //

σ

��

(ϕ−1)∗(P)[1/ξR♯ ]

(ϕ−1)∗σ

��

ϕ∗(GW (R+))[1/ξR♯ ]
ϕh
// GW (R+)[1/ξR♯ ].

Hence, the G-shtukas (P(h), ϕP(h)) and (P, ϕP) given above, are isomorphic.

Under the above isomorphism, the framing ir of (P, ϕP) corresponds to a framing ir(h)

of (P(h), ϕP(h)); this is given by the unique lift of the identity trivialization modulo [ϖh],

cf. Lemma 3.6.1. More precisely, for ((S♯, y), h) ∈ L̂Gb,µ(S), the framing of (P(h), ϕP(h)) is

given by the unique element ir(h) ∈ G(B[r,∞)
(R,R+)) with i(h) ≡ 1mod [ϖh] and the property

h = ir(h)
−1 · b · ϕ(ir(h)).

(See [Gl21, Lem. 2.15].) Finally, the actions correspond to h⋆g = g−1h and h•g = ϕ(g)−1hg.

Note that [(h ⋆ g)−1] = [(g−1h)−1] = [h−1g] = [h−1].

Remark 3.6.3. a) Gleason calls the diagram (3.6.3) a (v-sheaf) “local model diagram”. How-

ever, we warn the reader that (3.6.3) does not compare directly to the local model diagrams in

the theory of Shimura varieties and of Rapoport-Zink spaces; these are of a different nature.

In particular, the group acting there is G which is, in a sense, “finite dimensional”, while here

we have torsors for L̂+
WG.

b) The existence of the diagram (3.6.3) with the properties listed in the above theorem,

does not imply the isomorphism (2.5.1) of Theorem 2.5.5: for example, we cannot deduce

from general principles that the torsors π⋆ and π• split, since the formal completions are not

“sufficiently local” for the v-topology.

4. Parahoric vs Quasi-parahoric group schemes

4.1. The aim of this section. The aim of this section is to prove the following devissage

result.
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Theorem 4.1.1. Let (G, b, µ) be a local Shimura datum. The following are equivalent:

1) Mint
G,b,µ satisfies the representability conjecture 2.5.1, for all parahoric G.

2) Mint
G,b,µ satisfies the representability conjecture 2.5.1, for all stabilizer group schemes G,

3) Mint
G,b,µ satisfies the representability conjecture 2.5.1, for all quasi-parahoric G.

Here by a stabilizer group scheme we understand the BT-group scheme associated to the

stabilizer of a point in the extended building Be(G, Q̆p) (a particular type of quasi-parahoric

group schemes, cf. section 2.2). The proof proceeds by the comparing formal completions of

Mint
G,b,µ and ofMint

Go,b,µ (cf. Section 4.2) and of their underlying reduced schemes (cf. Section

4.3).

4.2. Formal completions. Let (G, b, µ) be an integral local shtuka datum such that G is

quasi-parahoric. For simplicity of notation, we set O = OĔ with residue field k = k̄E . We

consider the natural v-sheaf morphism

π :Mint
Go,b,µ −→Mint

G,b,µ (4.2.1)

over Spd (O).

Proposition 4.2.1. a) The map π is qcqs (quasi-compact quasi-separated [Sch17]).

b) The map π induces an isomorphism

Mint
Go,b,µ/x

∼−→Mint
G,b,µ/π(x)

for each x ∈Mint
Go,b,µ(Spd (k)).

Proof. (a) Observe that Go → G is an isomorphism on the generic fibers and can be iden-

tified with the dilation Gdil of G along its closed subscheme given by the neutral compo-

nent (G ⊗Zp
Fp)o of the special fiber G ⊗Zp

Fp. (Indeed, both Go and the dilation Gdil

are smooth, have the same generic fiber and the same Z̆p-points.) In particular, we have

OG ↪→ OGo = OG [f1, . . . , fm], and there is N ≥ 1, such that pNfi ∈ OG , for all i. Then the

argument in [PR21, proof of Prop. 3.6.2] applies to prove the claim.

(b) As in section 3.5 we have an isomorphism

Mint
G,b,µ/x ≃M

int
G,bx,µ/x0

(4.2.2)

and similarly for Go. Hence it is enough to show the isomorphism for the base point x = x0 ∈
Mint

Go,b,µ(Spd (k)) (at the cost of changing b = bx0
to bx). By Theorem 3.6.2

L̂G
o

b,µ −→Mint
Go,b,µ/x0

is a Ŵ+Go × Spd (OĔ)-torsor. Also, L̂G
o

b,µ is a Ŵ+Go × Spd (OĔ)-torsor over M
v
Go,µ/x0

, and

there are corresponding statements for G. By (2.3.1), the natural map Go → G induces an

isomorphism

Mv
Go,µ

∼−→Mv
G,µ.

On the other hand, it is easy to see that Go → G induces Ŵ+Go ∼−→ Ŵ+G and, hence,

L̂G
o

b,µ
∼−→ L̂Gb,µ. The result follows. □
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Remark 4.2.2. Suppose κ is an algebraically closed field over k and set O(κ) = OĔ ⊗W (k)

W (κ). We can consider the base change

(Mint
G,b,µ)O(κ) :=Mint

G,b,µ ×Spd (O) Spd (O(κ)),

and similary for Go. Given x ∈ Mint
Go,b,µ(Spd (κ)), we obtain a corresponding point x ∈

(Mint
Go,b,µ)O(κ)(Spd (κ)). The formal completions (Mint

Go,b,µ)O(κ)/x and (Mint
G,b,µ)O(κ)/π(x) now

make sense and the argument in the proof of (b) above also applies to give

(Mint
Go,b,µ)O(κ)/x

∼−→ (Mint
G,b,µ)O(κ)/π(x). (4.2.3)

4.3. ADLV for quasi-parahorics. In this subsection, we express the ADLV XG(b, µ) for a

quasi-parahoric G in terms of ADLV attached to parahoric subgroups. Note that the results

will eventually be applied for µ replaced by µ−1, to relate to integral local Shimura varieties

via Prop. 3.3.1.

Recall the Kottwitz map κG : G(Q̆p) → ΩG. This map can be enhanced to a morphism

LG→ ΩG which factors through XGo = LG/L+Go, and induces a map with connected fibers,

κG : XGo −→ ΩG, (4.3.1)

cf. [Zhu17, Prop. 1.21], comp. also [PR08, §5].
Recall π0(G) = K̆/K̆o ⊂ Ω, cf. (3.1.1). Then π0(G) acts on XGo by gK̆o 7→ gγ̇K̆o, where

γ̇ ∈ K̆ is a representative of a given element in π0(G). This action is permuting connected

components and the quotient is XG ,

XGo −→ XG = XGo/π0(G).

Each connected component of XGo maps isomorphically to a connected component of XG .

Recall that there exists cb,µ ∈ Ω with ϕ(cb,µ) − cb,µ = κG(b) − κG(µ), comp. [HZ20, §6].
Here κG(µ) ∈ Ω is the element associated to the conjugacy class µ, i.e., the residue class

of {µ} modulo the affine Weyl group. Furthermore, the class modulo Ωϕ of cb,µ is uniquely

determined.

Now XGo(b, µ) lies in the union of certain connected components of XGo . From −κG(g) +
ϕ(κG(g)) = −κG(b) + κG(µ), we obtain κG(XGo(b, µ)) ⊂ cb,µ + Ωϕ. In fact, by [HZ20, Lem.

6.1], we have an equality,

κG(XGo(b, µ)) = cb,µ +Ωϕ. (4.3.2)

We now extend these considerations to quasi-parahorics. Let C = CG = Ω/π0(G). Then

the Kottwitz homomorphism induces a map

κG : XG −→ CG . (4.3.3)

The image of XG(b, µ) in Cϕ is equal to the residue class of κG(b)− κG(µ), so

κG(XG(b, µ)) ⊂ c̄b,µ + Cϕ, (4.3.4)

where c̄b,µ ∈ CG is the image of cb,µ. This inclusion will turn out to be an equality, cf.

Corollary 4.3.6 below.

Recall ΠG = ker(π0(G)ϕ → Ωϕ), cf. (3.1.2). From the exact sequence 0 → π0(G) → Ω →
CG → 0 we have an exact sequence

0 −→ Ωϕ/π0(G)ϕ −→ CϕG −→ ΠG −→ 0. (4.3.5)
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Let β̄ ∈ ΠG . Take β ∈ π0(G) ⊂ Ω lifting β̄. Then

β = (1− ϕ)γ

for some γ ∈ Ω. Note that, since ϕ(γ) − γ is in π0(G), the image γ̄ of γ in C is ϕ-invariant

and maps to β̄ under the connecting homomorphism Cϕ → ΠG . Conversely, the image β̄ of

an element γ̄ ∈ Cϕ in ΠG is described as follows. Let γ ∈ Ω be a lift of γ̄. Then β̄ is the class

of β = ϕ(γ)− γ ∈ π0(G).
Recall that the quasi-parahoric subgroup K̆ is defined via a point x in the building of Gad.

Write the Iwahori-Weyl group as W̃ =Wa ⋊ Ω and

1 −→ T (Q̆p)0 −→ N(Q̆p) −→ W̃ =Wa ⋊ Ω −→ 1

with T = ZG(SQ̆p
) as in [HR08]. Here the choices are made such that x is in the base alcove

a0 of the apartment of S. Then T (Q̆p)0 ⊂ K̆o. When we consider Ω as a subset of W̃ , we

write the group law in a multiplicative way.

Lemma 4.3.1. Let β ∈ π0(G) be of the form β = ϕ(γ) − γ, for γ ∈ Ω. There is a lift

γ̇ ∈ N(Q̆p) of γ ∈ Ω ⊂ W̃ such that

ϕ(γ̇)−1γ̇ ∈ K̆.

Proof. Lift γ ∈ Ω to γ̇ ∈ N(Q̆p). Then ϕ(γ̇)−1γ̇ lifts β ∈ π0(G) ⊂ Ω. Now we use the exact

sequence

1 −→ T (Q̆p)0 −→ N(Q̆p) ∩ K̆ −→ π0(G) −→ 1.

This holds since, denoting by U = UKo the pro-unipotent radical of K̆o, we have K̆ ⊂
U ·N(Q̆p), cf. [HR08, proof of Prop. 8]. We can lift β to β̇ ∈ N(Q̆p)∩K̆. Then ϕ(γ̇)−1γ̇β̇−1 ∈
T (Q̆p)0. Since T (Q̆p)0 ⊂ K̆o, the result follows. □

For β, γ, γ̇ as above, it follows that

K̆γ̇−1 = K̆ϕ(γ̇)−1.

Consider now the conjugates of K̆, resp. K̆o,

K̆γ := γ̇K̆γ̇−1, K̆o
γ := γ̇K̆oγ̇−1. (4.3.6)

These subgroups of G(Q̆p) depend only on γ. Indeed, if γ̇ is replaced by γ̇δ̇, with δ̇ ∈ T (Q̆p)0,
then γ̇K̆oγ̇−1 is replaced by γ̇δ̇K̆oδ̇−1γ̇−1 = γ̇K̆oγ̇−1. We have

ϕ(γ̇K̆γ̇−1) = γ̇K̆γ̇−1, ϕ(γ̇K̆oγ̇−1) = γ̇K̆oγ̇−1.

Hence, K̆γ and K̆o
γ are rational, i.e., correspond to subgroups of G(Qp). The parahorics Ko

γ

are conjugate to Ko in G(Q̆p) but not necessarily in G(Qp).

Proposition 4.3.2. The G(Qp)-conjugacy class of K̆γ , resp. K̆
o
γ , only depends on the class

β̄ of β in ΠG.

Proof. We go through all choices made in the construction.

• independence of γ: If γ is replaced by γ′ = γ + δ, with δ ∈ Ωϕ, then as choice for γ̇′ we

can take γ̇′ = δ̇γ̇, where δ̇ ∈ N(Qp) (i.e., Qp-rational). This follows from [HR08, Rem. 9].

Hence γ̇K̆oγ̇−1 is replaced by δ̇γ̇K̆oγ̇−1δ̇−1, hence is conjugate under G(Qp) to K̆o
γ .
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• independence of β: If β is replaced by β + (ϕ − 1)δ with δ ∈ π0(G), then γ is replaced by

γ + δ. Then we may replace γ̇ by γ̇δ̇, where δ̇ ∈ N(Q̆p) ∩ K̆. Since δ̇ normalizes K̆o, the

parahoric K̆o
γ is unchanged.

This handles the case of K̆o
γ ; the case of K̆γ is the same. □

Remark 4.3.3. The above proof seems to use that we multiply γ̇ by δ̇ from the right instead

of from the left. However, Ω is an abelian group and what is being used here is that δ̇ ∈ T (Q̆p)0
acts trivially on a0, and that δ̇ ∈ N(Q̆p) ∩ K̆ preserves a0 and fixes x and hence also γ̇x, by

the commutativity of Ω.

In the sequel, we make a fixed choice of γ̇, for each element β̄ ∈ ΠG . We denote the

corresponding groups by K̆β , resp. Ğβ , resp. K̆o
β , resp. Ğoβ , by slightly abusing notation. We

consider the map

πγ : XGγ = LG/L+K̆γ = LG/L+(γ̇K̆γ̇−1) −→ LG/L+K̆ = XG ,

g(γ̇K̆γ̇−1) 7−→ gγ̇K̆.
(4.3.7)

Let us check the dependency of γ̇. If γ̇ is replaced by γ̇′ = γ̇δ̇ with δ̇ ∈ T (Q̆p)0, then

gγ̇′K̆γ̇′−1 ∈ XGγ′ is mapped under πγ′ to gγ̇′K̆ = gγ̇K̆; hence πγ = πγ′ under the identity

identification XGγ
= XGγ′ . Similarly, if γ is replaced by γ+δ with δ ∈ Ωϕ, then, choosing γ̇′ =

δ̇γ̇ with δ̇ ∈ N(Qp)∩K̆, we can identify XGγ
with XGγ′ via gK̆γ 7→ gδ̇−1K̆γ′ . The first element

is mapped under πγ to gγ̇K̆, the second element is mapped under πγ′ to (gδ̇−1)γ̇′K̆ = gγ̇K̆,

hence πγ = πγ′ . Note that δ̇ is not unique. But if δ̇ is replaced by δ̇′ = δ̇ε with ε ∈ T (Q̆p)0,
then the identification of XGγ

and XGγ′ is not affected. Finally, if β is replaced by β+(ϕ−1)δ

with δ ∈ π0(G), then γ is replaced by γ + δ. Then we may replace γ̇ by γ̇′ = γ̇δ̇, where

δ̇ ∈ N(Q̆p) ∩ K̆. Since δ̇ normalizes K̆o, the spaces XGγ
and XGγ′ are identified compatibly

with the maps πγ , resp. πγ′ .

Proposition 4.3.4. The above map defines by restriction a map

πβ : XGβ
(b, µ) −→ XG(b, µ).

Proof. Suppose that gK̆β ∈ XGβ
(b, µ), i.e.,

g−1bϕ(g) ∈ K̆βAdm(µ)K̆β = γ̇K̆γ̇−1Adm(µ)γ̇K̆γ̇−1.

Since Adm(µ) is stable under the conjugation action of Ω, we see that

K̆γ̇−1Adm(µ)γ̇K̆ = K̆Adm(µ)K̆.

Hence

g−1bϕ(g) ∈ γ̇K̆Adm(µ)K̆γ̇−1,

so

γ̇−1g−1bϕ(g)ϕ(γ̇) ∈ K̆Adm(µ)K̆γ̇−1ϕ(γ̇) ⊂ K̆Adm(µ)K̆,

since K̆γ̇−1ϕ(γ̇) = K̆. Hence

(gγ̇)−1bϕ(gγ̇) ∈ K̆Adm(µ)K̆,

i.e., gγ̇K̆ ∈ XG(b, µ), as had to be shown. □
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Composing the above map with XGo
β
(b, µ) → XGβ

(b, µ) and letting β̄ vary, we obtain the

map

π :
⊔
β̄∈ΠG

XGo
β
(b, µ) −→ XG(b, µ). (4.3.8)

In the sequel, we call a component of XGo
β
(b, µ), resp. of XG(b, µ), the non-empty fibers of

the Kottwitz map to Ω, resp. to CG = Ω/π0(G). In other words, we partition the points of

XGo
β
(b, µ), resp. of XG(b, µ), according to which connected component of XGo

β
, resp. of XG ,

they lie in.

Proposition 4.3.5. (i) For β̄1 ̸= β̄2, the images of XGo
β1
(b, µ) and XGo

β2
(b, µ) under π fall

into different components of XG(b, µ).

(ii) The map π is surjective.

Proof. For (i), let x1 ∈ XGo
β1
(b, µ) and x2 ∈ XGo

β2
(b, µ) be such that their images in CG are

the same. We deduce that

κG(x1) + γ1 = κG(x2) + γ2 mod π0(G).

On the other hand, κG(xi) = cb,µ − λi with λi ∈ Ωϕ, for i = 1, 2. We therefore get

γ1 − γ2 = λ1 − λ2 + µ, µ ∈ π0(G).

Applying 1− ϕ to this identity, we obtain

β1 − β2 = (1− ϕ)µ,

i.e., β̄1 = β̄2, as desired.

For (ii), let gK̆ ∈ XG(b, µ). By [GHN20, Lem. 5.10, (iii)],

K̆oAdm(µ)K̆ = K̆Adm(µ)K̆. (4.3.9)

Hence g−1bϕ(g) ∈ K̆Adm(µ)K̆ = K̆oAdm(µ)K̆. Write accordingly

g−1bϕ(g) = ko1ωk.

Apply κ : G(Q̆p)→ Ω to get

(ϕ− 1)κ(g) + κ(b) = κ(k) + κ(µ).

Hence we get

(ϕ− 1)κ(g) = κ(k)− (ϕ− 1)cb,µ. (4.3.10)

Let β = −κ(k) ∈ π0(G) and denote by β̄ ∈ π0(G)ϕ its image. Then the last equation shows

that β̄ ∈ ΠG . We write β = (1 − ϕ)γ with γ ∈ Ω and choose a lift γ̇ ∈ N(Q̆p) as in

Lemma 4.3.1. Then gγ̇−1(γ̇Koγ̇−1) is in Xγ̇Koγ̇−1(b, µ) and maps to gK ∈ XK(b, µ). Indeed,

(gγ̇−1)−1bϕ(gγ̇−1) lies in (γ̇Koγ̇−1)Adm(µ)(γ̇Koγ̇−1) because

(gγ̇−1)−1bϕ(gγ̇−1) = γ̇g−1bϕ(g)ϕ(γ̇−1) = γ̇ko1ωkϕ(γ̇
−1) =

= (γ̇ko1γ̇
−1)(γ̇ωγ̇−1)(γ̇kϕ(γ̇−1)).

The middle factor lies in Adm(µ) because conjugation by an element in Ω preserves Adm(µ).

The last factor lies in γ̇K̆γ̇−1. The result follows because the last factor lies even in γ̇K̆oγ̇−1

because κ(γ̇kϕ(γ̇−1)) = (1− ϕ)γ − β = 0. □

Corollary 4.3.6. The map κ induces a surjective map XG(b, µ)→ c̄b,µ + Cϕ.
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Proof. Let x = c̄b,µ+y, where y ∈ CϕG . Let us first assume that the image of y in ΠG is trivial,

then there exists ỹ ∈ Ωϕ mapping to y. Then

cb,µ + ỹ ∈ Ω

is a lift of x which, by (4.3.2), can be lifted to a point of XGo which then maps to a lift of x

in XG , as required.

In general, let β̄ ∈ ΠG be the image of x. Let Cϕ → ΠG be the natural surjective map from

(4.3.5), and let (Cϕ)β̄ be the fiber of this map over β̄ ∈ ΠG . Via our fixed choice of γ for β̄,

this can be identified with Ωϕ/π0(Gβ)ϕ. By (4.3.2), the set of components of the inverse image

of c̄b,µ + (Cϕ)β̄ in XGo
β
(b, µ) can then be identified with cb,µ +Ωϕ. The assertion follows. □

We introduce the intermediate group Ko ⊂ K ′ ⊂ K, corresponding to the subgroup π0(G)ϕ
of π0(G). We denote the corresponding group scheme by G′. Then we obtain a factorization

XGo −→ XG′ −→ XG .

Each of the maps induces an isomorphism of a component onto its image. In fact, the first

map is the quotient by the finite abelian group π0(G)ϕ, the second map is the quotient by

the finite abelian group π0(G)/π0(G)ϕ, and the composed map is the quotient by the finite

abelian group π0(G). Here the actions of these covering groups are trivial, in the sense that

they only permute connected components.

Similarly, for arbitrary β̄ ∈ ΠG , we introduce the intermediate subgroup Ko
β ⊂ K ′

β ⊂ Kβ ,

corresponding to the subgroup π0(Gβ)ϕ of π0(Gβ). We obtain a sequence of maps,

XGo
β
−→ XG′

β
−→ XGβ

, (4.3.11)

where the first map is the quotient by the finite group π0(Gβ)ϕ, the second map is the quotient

by the finite abelian group π0(Gβ)/π0(Gβ)ϕ, and the composed map is the quotient by the

finite abelian group π0(Gβ).

Proposition 4.3.7. Let (G, b, µ) be an integral local shtuka datum such that G is a quasi-

parahoric group scheme for G.

(i) The ADLV XGo
β
(b, µ) is invariant under the action of π0(Gβ)ϕ.

(ii) The map (4.3.8) induces an isomorphism

π̄ :
⊔
β̄∈ΠG

XGo
β
(b, µ)/π0(Gβ)ϕ

∼−→ XG(b, µ).

Proof. (i) Let h ∈ K̆ ′
β . Then ϕ(h) = hk, with k ∈ K̆o

β . The invariance follows from

(gh)−1bϕ(gh) = h−1g−1bϕ(g)ϕ(h) = h−1g−1bϕ(g)hk,

because the last element lies in K̆o
βh

−1Adm(µ)hK̆o
β = K̆o

βAdm(µ)K̆o
β .

(ii) The surjectivity follows from Proposition 4.3.5, (ii). For the injectivity, we note that

by Proposition 4.3.5, (i), this becomes a question one β̄ at the time. But if the components of

XGo
β
(b, µ) corresponding to λ1 and λ2 in Ω go to the same component of XG(b, µ), it follows

that λ1 − λ2 ∈ π0(G). But by (4.3.2), this element lies in Ωϕ, hence also in π0(G)ϕ. □
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Remark 4.3.8. Proposition 4.3.5 and Corollary 4.3.6 imply that the map XGo(b, µ) →
XG(b, µ) is surjective if and only if ΠG is trivial. The question of the surjectivity of this

map is also analyzed in [GHN20, §5]. By [GHN20, Prop. 5.11] it holds if there is a product

decomposition Ω = π0(G) × C into subgroups stable under ϕ (then, of course, ΠG = (0)).

In [GHN20, §5] it is also analyzed when XGo(b, µ) is the full inverse image of XG(b, µ) under

XGo → XG . By [GHN20, Prop. 5.13] this holds when π0(G)ϕ = π0(G) and Ωϕ → CϕG is

surjective (again, these conditions imply ΠG = (0)).

4.4. Integral moduli spaces of local shtukas. We first define a morphism of integral LSV

Mint
Gβ ,b,µ

−→Mint
G,b,µ. (4.4.1)

Recall that

Mint
Gβ ,b,µ

(S) = {isomorphism classes of (S♯,Pβ , ϕPβ
, ir,β)}.

Starting with a point (S♯,Pβ , ϕPβ
, ir,β) of Mint

Gβ ,b,µ
, we define a G-torsor P by twisting the

Gβ-action by γ̇,

g ⋆ x = (γ̇gγ̇−1) · x, g ∈ G,

where γ̇ is the fixed choice above. This makes sense since γ̇gγ̇−1 ∈ Gβ . Let ξ = ϕ(γ̇)−1γ̇.

Then ξ ∈ G(Z̆p), cf. Lemma 4.3.1. We define the new Frobenius ϕP as

ϕP(x) = ξ ⋆ ϕPβ
(x). (4.4.2)

This is indeed a morphism of G-torsors: on the one hand

ϕP(g ⋆ x) = ξ ⋆ ϕPβ
(g ⋆ x) = γ̇ξγ̇−1ϕPβ

((γ̇gγ̇−1)x) =

= γ̇(ϕ(γ̇)−1γ̇)γ̇−1(ϕ(γ̇)ϕ(g)ϕ(γ̇)−1)ϕPβ
(x) = γ̇ϕ(g)ϕ(γ̇)−1ϕPβ

(x).

On the other hand,

ϕ(g) ⋆ ϕP(x) = (γ̇ϕ(g)γ̇−1)(γ̇ξγ̇−1)ϕPβ
(x) =

= γ̇ϕ(g)(ϕ(γ̇)−1γ̇)γ̇−1ϕPβ
(x) = γ̇ϕ(g)ϕ(γ̇)−1ϕPβ

(x),

which proves the claim.

We define the framing ir as

ir(x) = ir,β(γ̇x). (4.4.3)

This is indeed an isomorphism of G-bundles ir : GY[r,∞]
→ P|Y[r,∞]

: on the one hand

ir(hg) = ir,β(γ̇hg) = γ̇hir,β(g).

On the other hand,

h ⋆ ir(g) = (γ̇hγ̇−1)ir,β(γ̇g) = (γ̇hγ̇−1)γ̇ir,β(g) = γ̇hir,β(g).

The framing ir is also compatible with the Frobenius: on the one hand,

ϕP(ir(g)) = ξ ⋆ ϕPβ
(ir,β(γ̇g)) = γ̇(ϕ(γ̇)−1γ̇)γ̇−1ϕPβ

(ir,β(γ̇g)) =

= (γ̇ϕ(γ̇)−1)ϕ(γ̇)ir,β(bϕ(g)) = γ̇ir,β(bϕ(g)).

On the other hand,

ir(bϕ(g)) = ir,β(γ̇bϕ(g)) = γ̇ir,β(bϕ(g)).
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The morphism (4.4.1) is now defined by sending (S♯,Pβ , ϕPβ
, ir,β) to (S♯,P, ϕP , ir). We

precompose (4.4.1) with the natural morphismMint
Go
β ,b,µ

→Mint
Gβ ,b,µ

to obtain a morphism of

integral LSV

Mint
Go
β ,b,µ

−→Mint
G,b,µ,

and hence a morphism

π :
⊔
β̄∈ΠG

Mint
Go
β ,b,µ

−→Mint
G,b,µ. (4.4.4)

This morphism is compatible, via the bijective map of Proposition 3.3.1, with the morphism

(4.3.8) for µ−1. Indeed, let (Pβ , ϕPβ
, iβ) be an object of Mint

Gβ ,b,µ
(Spd (k)), which gives a

Gβ-torsor Pβ over W (k), a Frobenius and a trivialization of Pβ over W (k)[1/p]. The image of

(Pβ , ϕPβ
, iβ) in XGβ

(b, µ−1) is given by the unique element gβ ∈ LG(k)/L+Gβ(k) such that

i−1
β (Pβ) = g−1

β · Gβ . Let (P, ϕP , i) ∈ Mint
G,b,µ(k) be the image of (Pβ , ϕPβ

, iβ) under (4.4.1).

Then i−1(P ) = γ̇−1i−1
β (Pβ). Hence the image g ∈ LG(k)/L+G(k) of (P, ϕP , i) is equal to

g = gβγ, as required.

Theorem 4.4.1. Let (G, b, µ) be an integral local shtuka datum such that G is a quasi-

parahoric group scheme for G. The morphism (4.4.4) induces an isomorphism

π̄ :
⊔
β̄∈ΠG

Mint
Go
β ,b,µ

/π0(Gβ)ϕ
∼−→Mint

G,b,µ,

where the quotient is for an action of π0(Gβ)ϕ which permutes connected components.

Let us first define the action of π0(Gβ)ϕ onMint
Go
β ,b,µ

. We use the exactness of the sequence

0 −→ Goβ(Zp) −→ Gβ(Zp) −→ π0(Gβ)ϕ −→ 0.

Let δ ∈ G(Qp) be in the normalizer of Goβ . Recall that

Mint
Go
β ,b,µ

(S) = {isomorphism classes of (S♯,P, ϕP , ir)},

where P is a Goβ-torsor, etc. We define a new Goβ-torsor P ′ = Pδ by twisting the Goβ-action by

δ,

g ⋆ x = (δgδ−1) · x.
The new Frobenius ϕP′ is taken to be identical to ϕP . This is indeed a morphism of Goβ-torsors
since

ϕP′(g ⋆ x) = ϕP((δgδ
−1) · x) = (δϕ(g)δ−1) · ϕP(x) = ϕ(g) ⋆ ϕP′(x),

where we used that δ ∈ G(Qp). Finally, the framing i′r is given by i′r(g) = ir(δg). This is

indeed an isomorphism of Goβ-bundles, since

i′r(hg) = ir(δhg) = ir((δhδ
−1)(δg)) = (δhδ−1) · ir(δg) = h ⋆ i′r(g).

The compatibility with the Frobenius follows from

ϕP′(i′r(g)) = ϕP(ir(δg)) = δϕP(ir(g)) = δir(bϕ(g)) = i′r(bϕ(g)).

Note that if δ ∈ Goβ(Zp), then the tuple (S♯,P ′, ϕP′ , i′r) is isomorphic to (S♯,P, ϕP , ir).
Indeed, the map x 7→ δ · x defines an isomorphism α : P → P ′ compatible with ϕP and ϕP′ ,

and with ir and i′r. For instance

ϕP′(α(x)) = ϕP(δ · x) = ϕ(δ) · ϕP(x) = δ · ϕP(x) = α(ϕP(x)).
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Therefore we obtain an action of the factor group NG(Qp)(Goβ)/Goβ(Zp) onMint
Go,b,µ. Restricting

this action to Gβ(Zp)/Goβ(Zp), we obtain the desired action of π0(G)ϕ onMint
Go,b,µ.

The same argument as the one above shows that δ ∈ Gβ(Zp) induces an isomorphism

between the images of (S♯,P, ϕP , ir) and (S♯,P ′, ϕP′ , i′r) in Mint
G,b,µ under (4.4.1), hence we

obtain a morphismMint
Go
β ,b,µ

/π0(Gβ)ϕ →Mint
G,b,µ. Letting now β̄ vary, we obtain a morphism

from the LHS to the RHS in Theorem 4.4.1.

Proof of Theorem 4.4.1: We deduce from Proposition 3.3.1 and Proposition 4.3.7 that the

morphism induces a bijection on the set of Spd (κ)-points, for all algebraically closed exten-

sions κ/k. Also it is qcqs by Proposition 4.2.1 (a). Using relative properness and [SW20, Cor.

17.4.10] we see it is enough to check that it gives a bijection on Spa (C,OC)-points. Note that

any Spa (C,OC)-point x̃ ofMint
G,b,µ factors through the formal completion (Mint

G,b,µ)O(kC)/x̄ of

the base change ofMint
G,b,µ by O(kC) = OĔ ⊗W (k) W (kC), at its specialization at x̄ = sp(x̃).

Here, kC = OC/mC is the residue field. The corresponding fact is also true for Spa (C,OC)-

points ofMint
Go
β ,b,µ

.

We can now complete the proof. First we show injectivity: Suppose x̃i, i = 1, 2, are two

points in (⊔β̄∈ΠG
Mint

Go
β ,b,µ

/π0(Gβ)ϕ)(C,OC), mapping by π̄ to the same point inMint
G,b,µ(C,OC).

By Proposition 4.3.7, these two points have the same specialization x̄ = x̄1 = x̄2. By the

above, they factor through the formal completion of (the base change) of Mint
Go
β ,b,µ

at a cor-

responding x̄, for some common β̄ ∈ ΠG . By (4.2.3) for κ = kC , we see that these two

points agree in the formal completion of Mint
Go
β ,b,µ

at x̄, and therefore x̃1 = x̃2. The proof of

surjectivity ontoMint
G,b,µ(C,OC) is by a similar argument. □

We define a map of v-sheaves

κG ◦ sp:Mint
G,b,µ −→ CG ,

where sp: |Mint
G,b,µ| → |XG(b, µ

−1)| denotes the (continuous) specialization map under the

identification (Mint
G,b,µ)red = XG(b, µ

−1), cf. Proposition 3.3.1. For τ ∈ CG , we denote by

Mint,τ
G,b,µ =Mint

G,b,µ ×CG {τ} ⊂ Mint
G,b,µ (4.4.5)

the fiber over τ . This is an open and closed v-subsheaf of Mint
G,b,µ. We call Mint,τ

G,b,µ the

component ofMint
G,b,µ corresponding to τ .

Corollary 4.4.2. Let (G, b, µ) be an integral local shtuka datum such that G is a quasi-

parahoric group scheme for G and let G → G′ be a morphism extending the identity morphism

of G in the generic fibers of quasi-parahoric group schemes for G with the same associated

parahoric group scheme. Then for every τ ∈ ΩG/π0(G), with image τ ′ ∈ ΩG/π0(G′), the

natural morphismMint
G,b,µ →Mint

G′,b,µ induces an isomorphism

Mint,τ
G,b,µ

∼−→Mint,τ ′

G′,b,µ

of v-sheaves. □

Proof of Theorem 4.1.1: For the representability conjecture, we assume that (G, b, µ) is a

local Shimura datum, i.e., µ is minuscule. NowMint
G,b,µ is representable if and only ifMint,τ

G,b,µ
is representable for every τ ∈ ΩG/π0(G). Hence the assertion follows from Corollary 4.4.2
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and the fact that every componentMint,τ
G,b,µ is isomorphic to a componentMint,τ̃

Go,b,µ ofMint
Go,b,µ

for τ̃ ∈ ΩG mapping to τ and, conversely, every component Mint,τ
Go,b,µ is isomorphic to the

componentMint,τ̄
G,b,µ ofMint

G,b,µ, where τ̄ ∈ ΩG/π0(G) is the image of τ . □

We also mention the following naturality statement which is used in §8. It concerns the

action of the Frobenius centralizer Jb(Qp) on Mint
G,b,µ. Recall that this action is via changes

of the framing, i.e.,

g : (S♯,P, ϕP , ir) 7−→ (S♯,P, ϕP , ir ◦ g−1), g ∈ Jb(Qp).

This action is compatible with the action of Jb(Qp) on c̄b,µ + Cϕ, via

g : τ 7−→ τ + κ̃(g),

where κ̃ is induced by the composition of maps Jb(Qp) ↪→ G(Q̆p)
κG−−−→ ΩG.

Proposition 4.4.3. Assume that the center of G is connected. Then the action of Jb(Qp) on
ΩϕG is transitive. In particular, if G is a parahoric, for any two τ, τ ′ ∈ c̄b,µ+ΩϕG, the v-sheaves

Mint,τ
G,b,µ andMint,τ ′

G,b,µ are isomorphic.

Proof. If b is basic, then Jb is an inner twist of G. Hence π1(Jb)
ϕ
I = π1(G)

ϕ
I , and the assertion

follows from the surjectivity of the map κH : H(Qp)→ π1(H)ϕI , valid for any reductive group

H over Qp, cf. [Ko97, §7.1].
Now let b be arbitrary. Let us first assume that G is quasisplit, and fix a maximal split

torus A and a Borel subgroup of G containing A, so that we have the notion of standard

parabolics and standard Levi subgroups of G. Then there exists a standard Levi subgroup

M and a basic element bM ∈ M(Q̆p) which is ϕ-conjugate to b and such that we have an

equality of ϕ-centralizer groups JM,bM = Jb, cf. [Ko85, Prop. 6.2]. By the basic case treated

above, we are reduced to proving the surjectivity of the map π1(M)ϕI → π1(G)
ϕ
I . Consider

the surjective map

π1(M) −→ π1(G).

The kernel of this map is equal to Q := coker(X∗(TM,sc) → X∗(Tsc)), where T , resp. TM ,

denotes the centralizer of A in G, resp. in M , and where the index “sc” denotes the inverse

image in the simply connected cover of the derived group of G, resp. M . But X∗(Tsc), resp.

X∗(TM,sc), has as basis the set of coroots of G, resp. of M . The coroots of G which are not

coroots of M give a permutation basis for the representation of Gal(Q̄p/Qp) on Q. It now

follows that the above map continues to be surjective after first taking the coinvariants under

the inertia I and then the invariants under ϕ.

Finally, let us drop the assumption that G is quasi-split. Let G0 be the quasi-split inner

form of G. Since the center of G is connected, there exists γ ∈ G0(Q̆p) and an isomorphism

Ψ : G0 ⊗ Q̆p
∼−→ G ⊗ Q̆p such that the bijection g 7→ Ψ(γg) is equivariant for the action of

the Frobenius on G0(Q̆p), resp. G(Q̆p). Let b0 be the preimage of b. Then this map induces

an isomorphism of the ϕ-centralizers J0,b0 and Jb. From the quasi-split case, we deduce a

surjection

Jb(Qp) = J0,b0(Qp) −→ π1(G0)
ϕ
I = π1(G)

ϕ
I ,

as desired. □
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4.5. Generic fibers. In this subsection, we interpret the induced decomposition in Theorem

4.4.1 in the generic fibers, in the case when µ is minuscule. Let (G, b, µ) be a local Shimura

datum and let G be a quasi-parahoric for G. We consider the generic fiber

(Mint
G,b,µ)η =Mint

G,b,µ ×Spd (OĔ) Spd (Ĕ)

ofMint
G,b,µ. Theorem 4.4.1 implies

(Mint
G,b,µ)η ≃

⊔
β̄∈ΠG

(Mint
Go
β ,b,µ

)η/π0(Gβ)ϕ (4.5.1)

Since Goβ is parahoric, it follows that

(Mint
Go
β ,b,µ

)η = Sht♢Go
β(Zp)

(G, b, µ),

cf. [SW20, §23.3, §25.3]. Here, Sht♢K(G, b, µ) denotes, for any compact open subgroup K ⊂
G(Qp), the diamond local Shimura variety, represented by a smooth rigid analytic variety over

Sp(Ĕ), cf. [SW20, §24.1]. We use the notation ShtK(G, b, µ) for the representing rigid-analytic

variety. The morphism

ShtGo
β(Zp)(G, b, µ) −→ ShtGβ(Zp)(G, b, µ)

is a Galois étale cover for the finite abelian group

Gβ(Zp)/Goβ(Zp) = (Gβ(Z̆p)/Goβ(Z̆p))ϕ = π0(Gβ)ϕ,

cf. [SW20, 23.3]. We deduce the following identification which is the desired interpretation

of the decomposition in Theorem 4.4.1 in the generic fiber.

Theorem 4.5.1. Let (G, b, µ) be a local Shimura datum and let G be a quasi-parahoric for

G. Then

(Mint
G,b,µ)η ≃

⊔
β̄∈ΠG

Sht♢Gβ(Zp)
(G, b, µ),

In particular, ifMint
G,b,µ is representable by the formal scheme MG,b,µ over OĔ, then

M rig
G,b,µ ≃

⊔
β̄∈ΠG

ShtGβ(Zp)(G, b, µ).

□

4.6. Interpretation in terms of local systems. Consider a perfectoid S → Spd (Ĕ), i.e.

with untilt S♯ in char. 0. Suppose r > 0 is sufficiently small, so that Y[0,r](S) avoids the

divisor corresponding to the untilt. A G-shtuka over S with leg at S♯, restricts to a vector

bundle over Y[0,r](S) with an isomorphism covering the action of ϕ−1 on Y[0,r](S); as in

[SW20, §22.1], we call this a ϕ−1 module over Y[0,r](S). We see that an S-point of Mint
G,b,µ

over Spd (Ĕ) gives an exact tensor functor

RepZp
(G) −→ ϕ−1-mod/ Y[0,r](S)

On the other hand, by [SW20, Prop. 22.3.2], we have an exact equivalence of tensor categories,

ϕ−1-mod/ Y[0,r](S)
∼−→ Zp-Loc(S).

Here, Zp-Loc(S) stands for the category of pro-étale local systems for Zp over S, i.e. Zp-
torsors for the pro-étale topology on S.
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Composing these two functors, we obtain an exact tensor functor

RepZp
(G) −→ Zp-Loc(S). (4.6.1)

The composition of this functor with Zp-Loc(S) → Q
p
-Loc(S) is pro-étale locally on S

isomorphic to the forgetful functor (so, pro-étale locally, it gives the trivial torsor), cf. [SW20,

Thm. 22.5.2].

This leads to an alternative description of the generic fiber analogous to [SW20, Prop.

23.3.1]. In the statement below, XFF,S := Y(0,∞)(S)/ϕ
Z denotes the Fargues-Fontaine curve

over S, [FS21]. We will denote by Eb ×Spd (k) S, or simply Eb, the descent of (GY(r,∞)(S), ϕb)

to XFF,S .

Proposition 4.6.1. The S-points of (Mint
G,b,µ)η over Spd (Ĕ) are in bijection with isomor-

phism classes of 5-tuples (S♯, E , α,P, ι) where
• S♯ is an untilt of S over Ĕ;

• E is a G-torsor over XFF,S, trivial at every geometric point of S;

• α is a G-torsor isomorphism

E|XFF,S\S♯
∼−−→ Eb|XFF,S\S♯ ,

which is meromorphic along S♯ and bounded by µ;

• P is an exact tensor functor

RepZp
(G) −→ Zp-Loc(S);

• ι is an isomorphism of the base change of P to Qp with the functor given by the G(Qp)-
torsor associated to E by [SW20, Thm. 22.5.2].

Proof. This follows by the argument in the proof of [SW20, Prop. 23.3.1]. Observe that, since

we do not assume that G has connected fibers, G-torsors over Spec (Zp) are not necessarily

trivial. So instead of G(Zp)-torsors as in loc. cit., we just obtain functors P as above, compare

also to [SW20, proof of Prop. 22.6.1]. □

We can use Proposition 4.6.1 to reinterpret the isomorphism in Theorem 4.5.1. For S

perfectoid over k, we can consider the fiber functor at s : Spa (C,OC)→ S,

Fs : Zp-Loc(S) −→ Zp-mod.

Given an S-point ofMint
G,b,µ over Spd (Ĕ) as above, the composition of (4.6.1) and Fs defines

an exact tensor functor

RepZp
(G) −→ Zp-mod. (4.6.2)

It defines a G-torsor Ts and we can consider the contracted product

Gs := Aut(Ts) = G ∧G Ts,

where G acts on itself by conjugation. Since G is smooth, we have

Gs ⊗Zp
Z̆p ≃ G ⊗Zp

Z̆p.

The class [Ts] of the torsor Ts lies in ker(H1(Zp,G)→ H1(Qp, G)) = ΠG , comp. Lemma 3.1.1.

A 4-tuple (S♯, E , α,P) ∈ (Mint
G,b,µ)η(S) defines now the function

S −→ ΠG , s 7−→ [Ts]. (4.6.3)
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Assuming a theory of pro-étale systems in this situation that resembles the classical theory of

(étale) Zp-local systems, it would follow that the isomorphism class of the torsor Ts is constant
on connected components of S. More precisely, if we choose another point s′ of S, then

Fs ≃ Fs′ (by a “path connecting s to s′) and this should give Ts ≃ Ts′ and Gs(Zp) = Gs′(Zp)
as subgroups of G(Qp). This would explain how to associate to a point s ∈ (Mint

G,b,µ)η(C,OC)

the index β̄(s) ∈ ΠG on the RHS of (4.5.1). It would also explain how to associate to s the

point of Sht♢Gβ(Zp)
(G, b, µ) on the RHS of (4.5.1) (note that Gs = Gβ(s)).

4.7. Comparison with Wintenberger’s theorem. Let us discuss “classical” points x :

Spd (F ) → (Mint
G,b,µ)η, where F/Ĕ is a finite field extension. Consider the crystalline period

map

πGM : (Mint
G,b,µ)η −→ (Xµ ×Sp(E) Sp(Ĕ))♢.

Under the identification of Theorem 4.5.1, it is the disjoint sum of the period maps, one for

each β̄ ∈ ΠG ,

πGM,β : ShtGβ(Zp)(G, b, µ) −→ Xµ ×Sp(E) Sp(Ĕ). (4.7.1)

On the image of πGM,β (the admissible locus), there is the corresponding local G(Qp)-system.

Let x ∈ ShtGβ(Zp)(G, b, µ)(F ). Specializing this local system at πGM,β(x) defines a Galois

representation

ρx : Gal(F̄ /F ) −→ Kβ = Gβ(Zp) ⊂ G(Qp). (4.7.2)

Recall the theorem of Wintenberger (comp. [KP18, Prop. 3.3.4]), according to which the

image of the Galois representation ρx lies in the neutral component Goβ(Zp), i.e.,

ρx : Gal(F̄ /F ) −→ Goβ(Zp) ⊂ G(Qp). (4.7.3)

This may be surprising at first glance, given the construction of (4.7.2). However, consider

the Galois étale cover for the group π0(G)ϕ,

π : ShtGo
β(Zp)(G, b, µ) −→ ShtGβ(Zp)(G, b, µ).

By our earlier discussion on connected components, this cover is totally split. This fits with

the above result of Wintenberger which directly implies that, for every F -valued point of

ShtGβ(Zp)(G, b, µ), the inverse image π−1(x) is split over F .

5. Ad-isomorphisms and integral moduli spaces of local shtukas

5.1. Ad-isomorphisms. Recall from [Ko97] that a homomorphism f : G → G′ is an ad-

isomorphism if the center ZG of G is mapped to the center ZG′ of G′ and the induced

homomorphism Gad → G′
ad between the adjoint groups is an isomorphism. Equivalently,

ker f is a central subgroup and Im f is a normal subgroup of G′ with torus cokernel.

Lemma 5.1.1. An ad-isomorphism is the composition of ad-isomorphisms of one of the

following types.

(i) f : G→ G′ is the inclusion of a normal subgroup with torus cokernel.

(ii) f : G → G′ is a surjection with kernel a central torus which is a product of induced tori

(a “quasi-trivial” torus).
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Proof. Let f : G→ G′ be an ad-isomorphism, and let Z = ker f . Find an embedding Z ↪→ T

where T is a quasi-trivial torus. Consider the push out of

1 −→ Z −→ G −→ G/Z −→ 1

by Z ↪→ T . This gives

1 −→ T −→ G′′ −→ G/Z −→ 1

and we can view G→ G′ as a composition of ad-isomorphisms

G ↪→ G′′ −→ G/Z ↪→ G′

where the first map is of type (i), the second map of type (ii) and the third map of type

(i). □

In this section, we consider an ad-isomorphism f : G → G′ and an extension of f to a

morphism f : G → G′ between quasi-parahoric group schemes. It is assumed that the corre-

sponding parahoric group schemes (the neutral connected components) Go and G′o correspond
to the same point in the common building of Gad and G′

ad. Let (G, b, µ) and (G′, b′, µ′) be two

integral local shtuka data such that f(b) = b′ and {µ′} = f({µ}). We then say that f is an

ad-isomorphism of integral local shtuka data. We obtain a morphism

f :Mint
G,b,µ −→Mint

G′,b′,µ′ ×Spd (O′) Spd (O) (5.1.1)

where O = OĔ and O′ = OĔ′ . Consider the commutative diagram

|Mint
G,b,µ| //

sp

��

|Mint
G′,b′,µ′ ×Spd (O′) Spd (O)|

sp

��

|XG(b, µ
−1)| // |XG′(b′, µ′−1)|.

(5.1.2)

Composing with the Kottwitz homomorphisms (4.3.3) gives a commutative diagram

Mint
G,b,µ

//

κ◦sp

��

Mint
G′,b′,µ′ ×Spd (O) Spd (O

′)

κ◦sp

��

CG // CG′ .

(5.1.3)

Recall the componentsMint,τ
G,b,µ for τ ∈ CG , resp. Mint,τ ′

G′,b′,µ′ for τ ′ ∈ CG′ , cf. (4.4.5). The aim

of this section is to prove the following theorem.

Theorem 5.1.2. Let f : (G, b, µ) → (G′, b′, µ′) be an ad-isomorphism of integral local shtuka

data. The morphism (5.1.1) induces an isomorphism,

f :Mint,τ
G,b,µ

∼−→Mint,τ ′

G′,b′,µ′ ×Spd (O′) Spd (O),

where τ ′ = f(τ) ∈ CG′ .

The proof proceeds in three steps. In subsection 5.3 we show that f induces an isomorphism

of formal completions; in subsection 5.4 we analyze the map on ADLV induced by f ; in

subsection 5.5 we complete the proof by showing that the map in question is qcqs.

We note first that for ad-isomorphisms of type (i) and for the claim of qcqs, there is no

need to consider components separately.
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Proposition 5.1.3. Assume that f is of type (i). Then the morphism

f :Mint
G,b,µ −→Mint

G′,b′,µ′ ×Spd (O′) Spd (O)

is qcqs. If in addition G(Z̆p) = G(Q̆p) ∩ f−1(G′(Z̆p)), it is a closed immersion of v-sheaves.

Proof. We first show that the morphism is qcqs. Quasi-separateness follows from Lemma

5.5.3 below and the fact thatMint
G,b,µ → Spd (OĔ) is qs (cf. [Gl21, Prop. 2.25]). It remains to

show quasi-compactness and the additional statement about closed immersions. Under our

assumption of type (i), we have a short exact sequence

1 −→ G −→ G′ −→ T −→ 1

with T a torus. This gives an exact sequence

1 −→ π1(G) −→ π1(G
′) −→ X∗(T ) −→ 0.

By taking I-coinvariants we obtain an exact sequence

ΩG = π1(G)I −→ ΩG′ = π1(G
′)I −→ X∗(T )I −→ 0

where the kernel of the first map is a finite abelian group. Hence, the inverse image Y of

π0(G′) ⊂ ΩG′ in ΩG is a finite group which contains the subgroup π0(G)

π0(G) ⊂ Y ⊂ ΩG.

Using this and Bruhat-Tits theory, cf. the construction of [BTII, Prop. (4.6.18)], we obtain a

quasi-parahoric G1 for G with neutral component Go1 = Go and π0(G1) = Y . Then, G1(Z̆p) =
G(Q̆p) ∩ f−1(G′(Z̆p)). We have

Go1 = Go ⊂ G ⊂ G1

and G → G′ factors as G ⊂ G1 → G′. By applying Proposition 4.2.1 to G and G1, we see that

it is enough to show quasi-compactness for the morphism induced by G1 → G′. Hence we may

assume from the start that G(Z̆p) = G(Q̆p) ∩ f−1(G′(Z̆p)). Then, as in [PR21, Lem. 3.6.1],

f : G → G′ is a dilated immersion of smooth group schemes, i.e. f identifies G with the Neron

smoothening of the Zariski closure Ḡ of f(G) in G′. Now the proof of [PR21, Prop. 3.6.2]

applies to show that under this assumption the morphism is a closed immersion. □

5.2. Ad-isomorphisms and generic fibers. If (G, b, µ) is a rational local shtuka datum

and G is a smooth group scheme model over Zp with connected special fiber, we set, for

K = G(Zp),
ShtK(G, b, µ) = (Mint

G,b,µ)η.

This is a locally spatial diamond over Spd (Ĕ), cf. [SW20, §23.3]. Note that here, in contrast

to section 4.5, ShtK(G, b, µ) denotes a diamond which is not representable by a rigid-analytic

space, unless µ is minuscule. We also set

Sht∞(G, b, µ) = lim←−
K

ShtK(G, b, µ),

as in [SW20, §23.3].
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Proposition 5.2.1. Let f : (G, b, µ) → (G′, b′, µ′) be an ad-isomorphism of rational local

shtuka data. The natural morphism

Sht∞(G, b, µ) −→ Sht∞(G′, b′, µ′)×Spd (Ĕ′) Spd (Ĕ)

induces an isomorphism of v-sheaves over Spd (Ĕ),

Sht∞(G, b, µ)
G(Qp)

× G′(Qp)
∼−→ Sht∞(G′, b′, µ′)×Spd (Ĕ′) Spd (Ĕ).

Proof. In the case of minuscule µ this is given by [PR21, Prop. 3.1.2]. The argument ex-

tends provided we explain that the corresponding admissible loci in the “Schubert varieties”

GrG,Spd (Ĕ),≤µ, resp. GrG′,Spd (Ĕ′),≤µ′ ×Spd (Ĕ′) Spd (Ĕ) agree. Recall that the latter objects

are spatial diamonds [SW20, Thm. 19.2.4] which are proper over Spd (Ĕ), cf. [SW20, Prop.

19.2.3]. The admissible loci are open subobjects, cf. [SW20, §23.3].
Since G→ G′ is an ad-isomorphism, the morphism

GrG,Spd (Ĕ) −→ GrG′,Spd (Ĕ′) ×Spd (Ĕ′) Spd (Ĕ)

induces an isomorphism between corresponding connected components. In particular, the

morphism

GrG,Spd (Ĕ),≤µ
∼−→ GrG′,Spd (Ĕ′),≤µ′ ×Spd (Ĕ′) Spd (Ĕ)

is an isomorphism. Therefore, by [Sch17, Prop. 11.15, or Prop. 12.9], it remains to show that

the induced map on admissible loci is bijective on points with values in Spa (C,C+), for any

algebraically closed non-archimedean field C and open bounded valuation ring C+. Consider

the following commutative diagram of (pro-systems of) locally spatial diamonds over Ĕ, in

which the vertical arrows are the period maps ([SW20, §23.3]),

Sht∞(G, b, µ) //

��

Sht∞(G′, b′, µ′)×Spa (Ĕ′) Spa (Ĕ)

��

GrG,Spd (Ĕ),≤µ
∼ // GrG′,Spd (Ĕ′),≤µ′ ×Spa (E′) Spa (Ĕ).

The images of the vertical maps are the admissible sets. We claim that under the lower hor-

izontal map the admissible sets correspond to each other. We have ShtK(G, b, µ)(C,C+) =

ShtK(G, b, µ)(C,OC) and ShtK′(G′, b′, µ′)(C,C+) = ShtK′(G′, b′, µ′)(C,OC), by their defini-

tions in terms of shtuka. Hence, it is enough to check that the Spa (C,OC)-points of the

admissible sets coincide. Now a point x of GrG,Spd (Ĕ),≤µ with values in Spa (C,OC) lies in

the admissible locus if and only if the corresponding modification Ebx at ∞ of the G-bundle

Eb over the FF curve is trivial, cf. [SW20, Thm. 22.6.2]. This in turn is equivalent to Ebx
being a semi-stable G-bundle on the FF curve (use [b] ∈ B(G,µ−1), cf. [PR21, proof of

Prop. 3.1.1]). The image of x lies in the admissible set in GrG′,Spd (Ĕ′),≤µ′ if and only if the

G′-bundle Eb′f∗(x) = f∗(Ebx) is a semi-stable G′-bundle on the FF curve. But since f induces a

bijection between parabolic subgroups of G, resp. G′, the semi-stability of f∗(Ebx) is equivalent
to the semi-stability of Ebx (apply this bijection to the Harder-Narasimhan parabolics and the

fact that semi-stability is equivalent to the fact that the HN-parabolic is the whole group).
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Our claim follows. Now consider the following diagram, where in the lower line appears the

isomorphism between admissible sets,

Sht∞(G, b, µ)
G(Qp)

× G′(Qp) //

��

Sht∞(G′, b′, µ′)×Spd (Ĕ′) Spd (Ĕ)

��

(GrG,Spd (Ĕ),≤µ)
adm ∼ // (GrG′,Spd (Ĕ′),≤µ′)adm ×Spd (E′) Spd (Ĕ).

Now the fibers of the left vertical arrow are identified with G(Qp) ×G(Qp) G′(Qp) = G′(Qp),
and hence map bijectively to the fibers of the right vertical arrow. □

Remark 5.2.2. In [PR21, proof of Prop. 3.1.1], there is a different argument for the proof of

the isomorphism between the admissible loci of the lower horizontal map in the last diagram.

5.3. Ad-isomorphisms and formal completions.

Proposition 5.3.1. Let f : (G, b, µ) → (G′, b′, µ′) be an ad-isomorphism of integral local

shtuka data. For each x ∈Mint
G,b,µ(Spd (k)), f induces an isomorphism

f̂ :Mint
G,b,µ/x

∼−→Mint
G′,b′,µ′/x′ ×Spd (O′) Spd (O),

where x′ = f(x).

Proof. As in [PR21, proof of Prop. 3.4.1] we have

Mint
G,b,µ/x ≃M

int
G,bx,µ/x0

and it is enough to show the isomorphism for the base point x = x0. By Lemma 5.1.1, it is

enough to show this when f is of type (i) or of type (ii).

Assume first that f is of type (ii). Then we have an exact sequence

1 −→ Z −→ G −→ G′ −→ 1,

with Z = T a quasi-trivial central torus. In this case, we have an exact sequence, where Z is

the flat closure of Z,

1 −→ Z −→ G −→ G′.
Note that since Z = T is quasi-trivial, i.e. Z ≃

∏
iResKi/Qp

Gm, we have that ΩZ = π1(Z)I
is torsion free and Z is an R-smooth torus in the sense of [KZ21, Def. 2.4.3]. By [KZ21, Prop.

2.4.12], cf. [PR08, Lem. 6.7], we conclude that Z is smooth and connected and, in fact, is

the connected Neron model of the torus T and that we have a short fppf exact sequence of

smooth connected group schemes between the parahoric neutral components,

1 −→ Z −→ Go −→ G′o −→ 1.

Note that in this situation Z ≃
∏
iResOKi

/Zp
Gm. The image of π0(G) ⊂ ΩG under ΩG → ΩG′

is a finite subgroup Y ′ of ΩG′ . We can find a short fppf exact sequence of (smooth) group

schemes

1 −→ Z −→ G −→ G′1 −→ 1,

where G′1 ⊂ G′ is a quasi-parahoric group scheme with the same neutral component G′0 and

π0(G′1) = Y ′. By Proposition 4.2.1, there is an isomorphism Mint
G′
1,b

′
x,µ

′/x′
0
≃ Mint

G′,b′x,µ
′/x′

0
.
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Hence we may replace G′ by G′1, i.e., we may assume from the beginning that G → G′ is

surjective.

Note that

Ŵ+G′ = Ŵ+G′0.

We obtain a short exact sequence of group v-sheaves

1 −→ Ŵ+Z −→ Ŵ+G −→ Ŵ+G′ −→ 1. (5.3.1)

The local models for (G, µ) and (G′, µ′) “agree”, i.e.

f : Mv
G,µ

∼−→Mv
G′,µ′ ×Spd O′ Spd O,

([SW20, 21.5.1]), so we have

f̂0 : Mv
G,µ/y0

∼−→Mv
G′,µ′/y0

×Spd O′ Spd O.

We now use Theorem 3.6.2 for G and G′: The morphism

L̂Gb,µ −→Mv
G,µ/y0

∼−→Mv
G′,µ′/y0

×Spd O′ Spd O

is a Ŵ+G × Spd (O)-torsor and

L̂G
′
b′,µ′ ×Spd (O′) Spd (O) −→Mv

G,µ/y0
∼−→Mv

G′,µ′/y0
×Spd O′ Spd O,

a Ŵ+G′ ×Spd (O′) Spd (O)-torsor. Hence, we have an isomorphism of Ŵ+G′-torsors,

L̂G
′
b′,µ′ ×Spd (O′) Spd (O) ≃ L̂Gb,µ ×Ŵ+G Ŵ+G′. (5.3.2)

It follows that, v-locally,

L̂Gb,µ = g0 · Ŵ+G, L̂G
′
b′,µ′ = g′0 · Ŵ+G′,

(after we choose a section g0 of the first torsor). By Theorem 3.6.2 also, we can recover

Mint
G,b,µ/x0

as the quotient of L̂Gb,µ by the ϕ-conjugation action of Ŵ+G × Spd (O). More

precisely,

L̂Gb,µ −→Mint
G,b,µ/x0

is a Ŵ+G × Spd (O)-torsor for the ϕ-conjugation action. The corresponding statement for

(G′, b′, µ′) also holds. The exact sequence (5.3.1) and the above now implies that the map f̂0
is v-locally surjective.

To show that f̂0 is injective, it is enough to check injectivity for ϕ-conjugacy classes as

follows (for simplicity, we omit the base change to O from the notation). Suppose that g0 · g1
and g0 ·g2 ∈ L̂Gb,µ(R,R+) map, after replacing (R,R+) by a v-cover, to the same ϕ-conjugacy

class (by Ŵ+G′(R,R+)) in L̂G
′
b′,µ′(R,R+). Then

g0 · g1 = ϕ(g′+)−1 · (g0 · g2) · g′+ ∈ L̂G
′
b′,µ′(R,R+) ⊂ G′(W (R+)[1/ξ]), (5.3.3)

for some g′+ ∈ Ŵ+G′(R,R+). Using (5.3.1), after further replacing (R,R+) by a v-cover, we

can lift g′+ to g+ ∈ Ŵ+G(R,R+). The identity (5.3.3) gives

z = [g1 · (g+)−1 · g−1
2 ] · g−1

0 · ϕ(g+) · g0 (5.3.4)
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in G(W (R+)[1/ξ]) with z ∈ Z(W (R+)[1/ξ]) (central in G(W (R+)[1/ξ])). In this, the term

k+ := g1 · (g+)−1 · g−1
2 in the bracket belongs to Ŵ+G(R,R+). Write the above

z = k+ · (g−1
0 · ϕ(g+) · g0).

We claim that this implies that z = z+ ∈ Ŵ+Z(R,R+). Indeed, for all m ≥ 1, we obtain

zm = (k+)m · (g−1
0 · ϕ(g+)m · g0).

Hence, there is N ≥ 1 depending on g0 only, such that zm ∈ Z(W (R+)[1/ξ]) has matrix

entries (after applying some faithful representation of G) with denominators which are powers

of ξ bounded by N , for all m. This implies that z ∈ Z(W (R+)). Indeed, write Z =∏
iResOKi

/Zp
Gm. Then, if zm ∈ (OKi

⊗Zp
W (R+)[1/ξ])× has bounded denominators for all

m ≥ 1, then z ∈ (OKi⊗ZpW (R+))×. We can see using (5.3.4) that we also have z ≡ 1mod [ϖ],

for some pseudo-uniformizer ϖ of R+. Hence, we conclude z = z+ ∈ Ŵ+Z(R,R+). By

applying Lemma 3.6.1 for Z to z+, we can write z+ = z+1 ϕ(z
+
1 )

−1. Set h+ = g+ · z+1 . Using

that Z is central, we can rewrite (5.3.4) as

g0g1 = ϕ(h+)−1 · g0g2 · h+.

This gives that g0g1 and g0g2 are ϕ-conjugate by h+ ∈ Ŵ+G(R,R+). This shows injectivity

and concludes the proof.

Assume now that f is of type (i). Using Proposition 4.2.1, we can replace G, G′ by their

parahoric neutral components Go, G′o. For these we have Go(Z̆p) ⊂ G(Q̆p) ∩ f−1(G′o(Z̆p))
with the intersection the Z̆p-points of a quasi-parahoric G̃ with G̃o = G. The morphism f

factors

Mint
G,b,µ −→Mint

G̃,b,µ
f̃−−→Mint

G′,b′,µ′ ×Spd (O′) Spd (O).

By Proposition 5.1.3 applied to G̃ → G′, the morphism f̃ is a closed immersion. Using [Gl20,

Prop. 4.20] we see that the base change of f̃ along the completion Mint
G′,b′,µ′/x′

0
→Mint

G′,b′,µ′

is the completion of f̃ at the base pointŝ̃
f0 :Mint

G̃,b,µ/x̃0
−→Mint

G′,b′,µ′/x′
0
×Spd (O′) Spd (O).

Hence, this is also a closed immersion. By Proposition 4.2.1 applied to the quasi-parahoric G̃
we see that the source of this morphism can be identified with M̂int

G,b,µ/x0
and the morphism

with f̂0. Hence, f̂0 is also a closed immersion.

Lemma 5.3.2. Suppose x̃1, x̃2 ∈ (Mint
Go,b,µ/x0

)η(C,OC) have the same image π(x̃1) = π(x̃2)

under the period map. Then there is g ∈ G(Qp)0 such that x̃2 = g · x̃1.

Proof. Since the period map π : (Mint
Go,b,µ)η −→ Gradm

G,Spd (Ĕ),≤µ is étale with geometric fibers

G(Qp)/Ko, there is g ∈ G(Qp) with x2 = g · x1. We have sp(x̃1) = sp(x̃2) = x and it remains

to show that κG(g) = 1. We first observe that the statement is true when G = T is a torus.

Indeed, in this case the period map is

(Mint
T o,b,µ)η −→ Spd (Ĕ)

with geometric fibers given by κT : T (Qp)/T o(Zp)
≃−→ ΩT while (M̂int

T o,b,µ/x0
)η ≃ Spd (Ĕ), see

[SW20, 25.2]. Then, the result follows when Gder is simply connected by applying functoriality
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to G → Gab = D and observing that, in this case, ΩG ≃ ΩD. Finally, we reduce the general

case to the case when the derived group is simply-connected by employing a z-extension

1 −→ Z −→ G̃ −→ G −→ 1

and lifting (Go, b, µ) to a corresponding triple (G̃o, b̃, µ̃). Here, G̃der is simply connected and

Z is a quasi-trivial torus. By case (ii) applied to G̃→ G we obtain

(Mint
G̃o ,̃b,µ̃/x0

)η
∼−→ (Mint

Go,b,µ/x0
)η,

and the admissible sets for G̃ and G coincide by the proof of Proposition 5.2.1. Since we are

assuming that the result holds for G̃, we deduce it for G. □

Lemma 5.3.3. The map f induces a surjection G(Qp)0/Ko → G′(Qp)0/K ′o.

Proof. For any reductive group G over Qp we have

G(Qp)0 = K · φ(Gsc(Qp)),

where K is an arbitrary parahoric subgroup of G(Qp) and ϕ : Gsc → Gder → G is the natural

map. Note that both factors on the RHS are contained in the LHS, and the second factor is a

normal subgroup, so the inclusion of the RHS into the LHS is clear. For the other inclusion,

we choose an apartment A♮ of the building over Qp as in [BTII] such that K fixes a facet in

A♮. Associated to A♮ is the smooth connected group scheme Z o over Zp. Now Bruhat-Tits

[BTII] prove the following two facts:

• G(Qp)0 = Z o(Zp) · φ(Gsc(Qp)), cf. last line of [BTII, (5.2.11)].

• Z o(Zp) ⊂ K, cf. first display in [BTII, (5.2.4)].

Hence, we also obtain the other inclusion. By applying the above to G′ and K ′o and G, noting

that φ′ : Gsc = G′
sc → G′ factors through f : G→ G′, we obtain

G′(Qp)0 = f(G(Qp)0) ·K ′o,

which gives the result. □

The above two lemmas, together with Proposition 5.2.1, imply that the map

(f̂0)η : (Mint
G,b,µ/x0

)η −→ (Mint
G′,b′,µ′/x′

0
)η

induced by f , gives a surjection on (C,OC)-points. Since it is also a closed immersion between

partially proper v-sheaves, it then follows that it is an isomorphism.

Both the source X :=Mint
G,b,µ/x0

and the target X ′ :=Mint
G′,b′,µ′/x′

0
of the closed immersion

f̂0 : X −→ X ′

are topologically flat by [PR21, Prop. 3.4.9], as extended in [PR21, Rem. 3.4.12] also for

the non-minuscule case (this extension uses the results of [AGLR22]). By the definition of

topological flatness, this implies that |Xη|, resp. |X ′
η|, is dense in |X|, resp. |X ′|. Since

(f̂0)η : Xη ≃ X ′
η is an isomorphism, we obtain |X| ≃ |X ′|. The result that f̂0 : X → X ′ is an

isomorphism now follows from [SW20, Lem. 17.4.1]. □
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5.4. Ad-isomorphisms and ADLV. Let f : (G, b, µ)→ (G′, b′, µ′) be an ad-isomorphism of

integral local shtuka data. We have a commutative diagram with surjective vertical arrows,

XGo //

κG

��

XG′o

κG′

��

ΩG // ΩG′

(5.4.1)

where the lower row are discrete schemes (which we treat like sets).

Lemma 5.4.1. The upper arrow induces an isomorphism between corresponding connected

components. The diagram is cartesian.

Proof. An ad-isomorphism induces an isomorphism fsc : Gsc
∼−→ G′

sc. This easily implies the

first assertion. The second assertion follows since π0(XGo) = ΩG and π0(XG′o) = ΩG′ . □

Let us consider the effect of an ad-isomorphism on Iwahori Weyl groups. An ad-isomorphism

induces maps N(Q̆p)→ N ′(Q̆p), and T (Q̆p)0 → T ′(Q̆p)0, and W̃ → W̃ ′ and an identification

of affine Weyl groups Wa =W ′
a, compatible with the semi-direct product decompositions,

W̃ =Wa ⋊ ΩG −→Wa ⋊ ΩG′ = W̃ ′.

Denoting by Ko, resp. K ′o the parahoric subgroups of G(Qp), resp. G′(Qp), we have sub-

groups WKo ⊂Wa and WK′o ⊂Wa. These subgroups of W̃ , resp. W̃ ′, can be identified.

The admissible sets are contained in a singleWa-coset and hence the map W̃ → W̃ ′ induces

a bijection

Adm(µ)
∼−→ Adm(µ′).

Similarly denoting by AdmKo(µ), resp. AdmK′o(µ′), the image of Adm(µ) inWKo\W̃/WKo

,

resp. of Adm(µ′) in WK′o\W̃ ′/WK′o
, we have a bijection

AdmKo(µ)
∼−→ AdmK′o(µ′). (5.4.2)

The commutative diagram (5.4.1) induces a commutative diagram, cf. (4.3.2),

XGo(b, µ) //

κG

��

XG′o(b′, µ′)

κG′

��

cb,µ +ΩϕG
// cb′,µ′ +ΩϕG′ .

(5.4.3)

Lemma 5.4.2. The upper arrow induces an isomorphism between corresponding components.

The diagram is cartesian, with surjective vertical arrows.

Proof. Here recall that by a component of XG(b, µ), we mean an intersection of XG(b, µ) with

a connected component of XG . The surjectivity of the vertical arrows follows from (4.3.2).

Let τ ∈ cb,µ + ΩϕG, with image τ ′ = f(τ) ∈ cb′,µ′ + ΩϕG′ . By Lemma 5.4.1, for every

g′K̆ ′o ∈ XG′o(b′, µ′) ∩ Xτ ′

G′o , there exists a unique point gK̆o ∈ Xτ
Go lying over it. We have

to compare the double cosets of h := g−1bϕ(g) in K̆o\G(Q̆p)/K̆o = WKo\W̃/WKo

and of

f(h) = g′−1b′ϕ(g′) in K̆ ′o\G(Q̆p)/K̆ ′o = WK′o\W̃ ′/WK′o
. But by (5.4.2) it follows that

the class of h lies in AdmKo(µ) if and only if the class of f(h) lies in AdmK′o(µ′). Hence

gK̆o ∈ XGo(b, µ)τ , as desired. □
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Now we pass from the parahorics Go and G′o to the quasi-parahorics G and G′. The

homomorphism f : G→ G′ induces homomorphisms

ΩG −→ ΩG′ , π0(G) −→ π0(G′), CG −→ CG′ , ΠG −→ ΠG′ .

Here recall that CG = ΩG/π0(G) and CG′ = ΩG′/π0(G′), and ΠG = ker(π0(G)ϕ → ΩG,ϕ)

and ΠG′ = ker(π0(G′)ϕ → ΩG′,ϕ). We obtain from Corollary 4.3.6 a diagram with surjective

vertical arrows,

XG(b, µ) //

κG

��

XG′(b′, µ′)

κG′

��

c̄b,µ + CϕG
// c̄b′,µ′ + CϕG′ .

(5.4.4)

Proposition 5.4.3. The upper arrow in (5.4.4) induces an isomorphism between correspond-

ing components. The diagram is cartesian, with surjective vertical arrows.

Proof. By Theorem 4.4.1 and the proof of Corollary 4.3.6, the diagram can be rewritten as⊔
β̄∈ΠG

XGo
β
(b, µ)/π0(Gβ)ϕ //

κG

��

⊔
β̄′∈ΠG′ XG′o

β′
(b′, µ′)/π0(G′β)ϕ

κG′

��⊔
β̄∈ΠG

(cb,µ +ΩϕG)/π0(Gβ)ϕ //
⊔
β̄′∈Π′

G
(cb′,µ′ +ΩϕG′)/π0(G′β′)ϕ.

The maps in this diagram respect the disjoint sum decompositions. Hence the assertion

follows from Lemma 5.4.2. □

5.5. Proof of Theorem 5.1.2. The plan of the proof is as follows. We will show in Propo-

sition 5.5.2 below that

fτ :Mint,τ
G,b,µ −→M

int
G′,b′,µ′ ×Spd (O′) Spd (O)

is qcqs. SinceMint,τ ′

G′,b′,µ′ →Mint
G′,b′,µ′ is an open and closed immersion,

fτ,τ
′
:Mint,τ

G,b,µ −→M
int,τ ′

G′,b′,µ′ ×Spd (O′) Spd (O)

is also qcqs (cf. the proof of Lemma 5.5.3 below). Assuming this, by [SW20, Cor. 17.4.10]

and the partial properness ofMint,τ
G,b,µ andMint,τ ′

G′,b′,µ′ over Spd (O), resp. Spd (O′), it is enough

to show the following statement.

Proposition 5.5.1. Under the above assumptions, fτ,τ
′
induces a bijection on Spa (C,OC)-

points.

Proof. By Proposition 3.3.1, if κ is a discrete, algebraically closed field of characteristic p, we

have bijections

Mint,τ
G,b,µ(Spd (κ)) = Xτ

G(b, µ
−1)(κ), Mint,τ ′

G′,b′,µ′(Spd (κ)) = Xτ ′

G′(b′, µ′−1)(κ)

and fτ,τ
′
(Spd (κ)) is identified with the corresponding map

Xτ
G(b, µ

−1)(κ) −→ Xτ ′

G′(b′, µ′−1)(κ). (5.5.1)

But this map is a bijection by Proposition 5.4.3. Hence, fτ,τ
′
induces a bijection on Spd (κ)-

points. We still have to treat Spa (C,OC)-points.
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Set O(κ) = O ⊗W (k) W (κ), and similarly for O′(κ). Note that the reduced locus of the

base change

(Mint,τ
G,b,µ)O(κ) :=Mint,τ

G,b,µ ×Spd (O) Spd (O(κ))

is Xτ
G(b, µ

−1)κ := Xτ
G(b, µ

−1)×Spec (k) Spec (κ), and similarly for (Mint,τ ′

G′,b′,µ′)O′(κ).

Now note that any Spa (C,OC)-point x̃ : Spa (C,OC)→Mint,τ
G,b,µ factors through the formal

completion (Mint,τ
G,b,µ)O(κ)/x of (Mint,τ

G,b,µ)O(κ) at x := sp(x̃), where κ is the residue field k(C) =

OC/mC . (Observe that x now gives a closed point of the reduced locus of (Mint,τ
G,b,µ)O(κ) which

is Xτ
G(b, µ

−1)κ.) Similarly, the corresponding fact is true for Spa (C,OC)-points ofMint,τ ′

G′,b′,µ′ .

If x, resp. x′, is a Spd (κ)-point ofMint,τ
G,b,µ, resp. M

int,τ ′

G′,b′,µ′ , we have

(Mint,τ
G,b,µ)O(κ)/x ≃ (Mint

G,b,µ)O(κ)/x, resp. (Mint,τ ′

G′,b′,µ′)O′(κ)/x′ ≃ (Mint
G′,b′,µ′)O′(κ)/x′ .

The result now follows from a simple extension of Proposition 5.3.1 to the base changes by

W (κ). Indeed, this gives

fτ,τ
′
: (Mint,τ

G,b,µ)O(κ)/x
∼−−→ (Mint,τ ′

G′,b′,µ′)O′(κ)/f(x) ×Spd (O′) Spd (O).

This, combined with the bijection (5.5.1) above for κ = k(C), implies the result. □

It remains to show the following statement.

Proposition 5.5.2. The map of v-sheaves

fτ :Mint,τ
G,b,µ −→M

int
G′,b′,µ′ ×Spd (O′) Spd (O)

is qcqs.

Proof. In the following, we occasionally just writeMint
G ,Mint

G′ , etc., for notational simplicity.

First we show that f :Mint
G →Mint

G′ ×Spd (O′) Spd (O) is quasi-separated (qs). This quickly

implies that the same is true for fτ . For this we use that f :Mint
G → Spd (O) is qs ([Gl21,

Prop. 2.25]) and the following lemma.

Lemma 5.5.3. Consider morphisms of small v-sheaves

X
f−→ Y

g−→ Z.

1) If g ◦ f is qc and g is qs, then f is qc.

2) If g ◦ f is qs, then so is f .

Proof. Note that, by definition, f : X → Y is called qs when the diagonal X → X ×Y X is

qc, cf. [Sch17, §8]. Also note that compositions and base changes of qc, resp. qs, maps are

also qc, resp. qs.

Part 1): Write f as the composition X → X×Z Y → Y , where the first map is id× f and

the second the projection. The projection is qc as the base change of the qc map X → Z,

while the first map is a section of the projection X ×Z Y → X; this projection is qs as

the base change of Y → Z. It remains to observe that a section s : S → T of a qs map

T → S is qc since it can be viewed as the base change of the qc diagonal T → T ×S T by

s× id : T = S ×S T → T ×S T .
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Part 2): Since g ◦ f : X → Z is qs, the map X → X ×Z X is qc. We can write this as a

composition

X −→ X ×Y X −→ X ×Z X.

Here X ×Y X → X ×Z X is an injection and hence it is qs, since then the diagonal map is

an isomorphism. We now apply (a) to this composition to deduce that X → X ×Y X is qc,

hence X → Y is qs. □

It remains to show that fτ is qc. For this we write again G → G′ as a composition of

ad-isomorphisms which are either of type (i), i.e. closed embeddings (with cokernel a torus),

or type (ii), i.e. fppf surjections with kernel a central quasi-trivial torus Z = T . Using

functoriality and the fact that compositions of qcqs morphisms are again qcqs, we see that

it is enough to treat these two cases separately. In the type (i) case the result follows from

Proposition 5.1.3. It remains to deal with cases of type (ii). Then we have an exact

1 −→ Z −→ G −→ G′ −→ 1

with Z = T a quasi-trivial torus. For a morphism G′1 → G′ of quasi-parahoric group schemes

corresponding to a fixed parahoric group scheme for G′, the morphism Mint
G′
1
→ Mint

G′ is qc.

Hence the argument in the proof of Proposition 5.3.1 (for type (ii)) shows that we may assume

that the sequence

1 −→ Z −→ G −→ G′ −→ 1

is exact.

To establish quasi-compactness we use a “sequence of points” argument (compare to [SW20,

proof of Thm. 21.2.1]). Let Y = Spa (R,R+) be affinoid perfectoid over k and let

Y −→Mint
G′,b′,µ′ ×Spd (O′) Spd (O)

be a morphism given by an untilt of Y over O and a G′-shtuka over Y[0,∞)(R,R
+) with a

framing. Consider also the small v-sheaf

X = Y ×(Mint
G′,b′,µ′×Spd (O′)Spd (O))M

int,τ
G,b,µ −→ Y.

Take I = |X| and, for each i ∈ I, choose a point of X given by xi : Spa (Ci, C
+
i ) →M

int,τ
G,b,µ

and yi : Spa (Ci, C
+
i )→ Y = Spa (R,R+), with matching compositions toMint

G′,b′,µ′ ×Spd (O′)

Spd (O), which corresponds to i ∈ I = |X|. Consider the product of points

(D,D+) = ((
∏
i∈I

C+
i )[1/(ϖi)],

∏
i∈I

C+
i ).

Here the pseudo-uniformizersϖi ∈ C+
i are given by a pseudouniformizer of R+. The collection

of yi extends to y : Spa (D,D+)→ Spa (R,R+). The compositions

Spa (Ci, C
+
i ) −→ Spa (D,D+) −→ Spa (R,R+) −→ Spd (O)

specify untilts of (Ci, C
+
i ) given by ξi ∈ W (C+

i ). So, we have a G′-shtuka P ′ with framing

over Spa (D,D+) obtained from

Spa (D,D+) −→ Spa (R,R+) −→Mint
G′,b′,µ′ ×Spd (O′) Spd (O),
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and a collection of G-shtukas Pi with framings over each (Ci, C
+
i ), and with legs at ξi, given

by xi. These are compatible via the pushout of torsors by G → G′. We want to show that

(xi) extend to

x : Spa (D,D+) −→Mint,τ
G .

Since the resulting map

Spa (D,D+) −→ X = Y ×(Mint
G′,b′,µ′×Spd (O′)Spd (O))M

int,τ
G,b,µ

is a v-cover, this fact will imply the quasi-compactness of X and hence of fτ .

In the above, using the partial properness ofMint
G andMint

G′ , we can replace C+
i by OCi .

Using Proposition 3.2.1, we see that the pairs (Φi, iri) of G-shtuka with framings given by

xi, are described by pairs (Φi, gi), where Φi ∈ G(W (OCi
)[1/ξi]) and gi ∈ G(Y[ri,∞](Ci, OCi

)).

We denote by (Φ′
i, g

′
i) the images of these pairs under the map induced by G → G′. We have

Φi = g−1
i · b · ϕ(gi). (5.5.2)

Set

Φ = (Φi) ∈
∏
i

G(W (OCi)[1/ξi]) = G(
∏
i

(W (OCi)[1/ξi])).

Since the ξi-denominators of Φi are uniformily bounded in terms of the coweight µ, we see

that

Φ ∈ G((W (
∏
i

OCi))[1/ξi]) ⊂ G(
∏
i

(W (OCi)[1/ξi])).

This says

Φ ∈ G(W (D+)[1/ξ]), with ξ = (ξi)i.

The element Φ defines a G-shtuka P(Φ) over Spa (D,D+). We claim that the corresponding

G′-shtuka P(Φ′) given by Φ′ is isomorphic to the G′-shtuka P ′, given by Spa (D,D+)→Mint
G′

above. Indeed, let P ′ be given by Ψ′ ∈ G′(W (D+)[1/ξ]) (Note that all G-torsors, resp. G′-
torsors, over W (D+) are trivial by Prop. 3.2.2.) By construction, the images Φ′

i, Ψ
′
i, or Φ′,

Ψ′, under the projections W (D+)[1/ξ]→W (OCi
)[1/ξi] satisfy

Φ′
i = h′i ·Ψ′

i · ϕ(h′i)−1

with h′i ∈ G′(W (OCi
)). Since

W (D+)[1/ξ] ↪→
∏
i

(W (OCi
)[1/ξi]).

this gives Φ′ = h′ ·Ψ′ ·ϕ(h′)−1, for h′ = (h′i)i in G′(W (D+)) =
∏
i G′(W (OCi

)), and the claim

follows.

It remains to show that the framings (iri)i extend to a framing of P(Φ) which lifts the

framing i′r of P(Φ′) given by our Spa (D,D+)-point ofMint
G′ . We can understand framings as

isomorphisms of corresponding G-bundles E , resp. G′-bundles E ′ over the Fargues-Fontaine

curve. Denote by Eb, resp. Eb′ , the G-bundle, resp. G′-bundle, over XFF,Spd (k) given by b,

resp. b′. Then we have isomorphisms of G-bundles on XFF,Spa (D,D+), resp. XFF,Spa (Ci,OCi
),

g′ : E ′ ∼−→ Eb
′
×Spd (k) Spa (D,D

+), gi : Ei
∼−→ Eb ×Spd (k) Spa (Ci, OCi),

and we would like to find

g : E ∼−→ Eb ×Spd (k) Spa (D,D
+)
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which lifts g′ and projects to gi by Spa (Ci, OCi
) → Spa (D,D+), for all i ∈ I. (Here, we

denote these framings again by g′, gi, hopefully this does not introduce confusion.) We first

show that the G-bundle E over XFF,Spd (D,D+) has all its geometric fibers isomorphic to Eb:
The G-bundle E gives f : Spa (D,D+)→ BunG and the desired statement follows if we show

that f(|Spa (D,D+)|) = {b} ⊂ |BunG| ∼= B(G).

Let T = Spa (D,D+). For i ∈ I, the projection (D,D+)→ (Ci, OCi) gives Spa (Ci, OCi)→
T . These combine to give an injection

I ↪→ |T |.

This identifies the discrete set I with a dense subspace of |T | and of π0(|T |). As in the proof

of [Gl20, Prop. 1.5], we see that

π0(|T |) ≃ βI

is the Stone-Čech compactification of the discrete set I.

Consider the composition f ′ : Spa (D,D+) → BunG′ of f with the natural map BunG →
BunG′ induced by G → G′. The construction of E gives that f ′(|T |) = {b′} ⊂ B(G′) and

that f(|Spa (Ci, OCi
)|) = {b}, for all i ∈ I. As above, the points |Spa (Ci, OCi

)|, i ∈ I, are
dense in |T | = |Spa (D,D+)|. The result will follow if we establish that any two points of

|BunG| ∼= B(G) which map to the same b′ ∈ |BunG′ | ∼= B(G′) and lie in the same connected

component of |BunG| as b, are equal to each other. To see this, we use the commutative

diagram

|BunZ | ∼= B(Z) //

κZ

��

|BunG| ∼= B(G) //

κG

��

|BunG′ | ∼= B(G′)

κG′

��

0 // X∗(Z)Γ // π1(G)Γ // π1(G
′)Γ // 0.

Under our assumptions, the second row is exact. The vertical arrows κZ , κG, κG′ are the

Kottwitz invariant maps which are locally constant by [FS21, Thm III.2.7]. Also, κZ is a

bijection B(Z)
∼−→ X∗(Z)Γ, the map B(G)→ B(G′) in the top row is surjective and its fibers

are identified with X∗(Z)Γ, see [Ko97, Prop. 4.10], cf. [FS21, Lem. III.2.10 and the comment

below that lemma]. The result now follows.

For a perfectoid space S over k and a G-torsor E over the FF curve XFF,S which has all

geometric fibers isomorphic to Eb, we can consider the torsors over S under G̃b = Aut(Eb),
resp. G̃′

b′ = Aut(E ′b′),

QS := Isomfil(E , Eb ×Spd (k) S), Q′
S := Isomfil(E ′, Eb

′
×Spd (k) S),

cf. [FS21, Thm. III.0.2(v)]. Note here that there is a HN filtration on E and E ′, see [FS21,

proof of Prop. III. 5.3], and we ask the isomorphisms to respect the filtrations. This preser-

vation is automatic over a point S = Spa (C,OC), and also for E ′ over S = Spa (D,D+) since

all the fibers have the same HN polygon given by b′, cf. [FS21, Thm. II.2.19]. We have a

map of torsors QS → Q′
S covering the homomorphism G̃b → G̃′

b′ By [FS21, proof of Prop.

III.5.3], these are G̃b-, resp. G̃
′
b′ -torsors which are trivial pro-étale locally on S.

In the description of G̃b and G̃′
b′ given by [FS21, Prop. III.5.1], we see that G̃b → G̃′

b′

induces an isomorphism G̃>0
b

∼−→ G̃′>0
b′ . Indeed, the central torus Z acts trivially on Lie(G)
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with the adjoint action and so for λ > 0, we have

(Lie(G)⊗Qp
Q̆p,Ad(b)σ)−λ = (Lie(G′)⊗Qp

Q̆p,Ad(b′)σ)−λ

with the notations as in loc. cit.. It follows by loc. cit. that the kernel of G̃b → G̃′
b′ is Z(Qp).

This is also the kernel of Gb(Qp)→ G′
b′(Qp).

Recall we let T = Spa (D,D+). By pulling back the map of torsors f : QT → Q′
T over T

along

q : T −→ Q′
T

given by g, we obtain a Z(Qp)-torsor Q = T ×Q′
T
QT → T . Since the perfectoid space T

is strictly totally disconnected, the Z(Qp)-torsor Q is trivial, cf. [FS21, Lem. III.2.6] (see

also the argument on top of loc. cit. p. 90.). The framings corresponding to gi, i ∈ I, give
Spa (Ci, OCi)-points qi of Q. We can think of (qi)i∈I as giving a section of Q over I.

On the other hand, we have a morphism ỹ : Q → Mint
G,b,µ which lifts the T -point y of

Mint
G′,b′,µ′ , i.e. it fits in a commutative diagram

Q
ỹ
//

��

Mint
G,b,µ

f

��

T
y
//Mint

G′,b′,µ′ .

(5.5.3)

The morphism ỹ is obtained by combining the G-shtuka P(Φ) with the framing provided by

the universal point of Q. We claim that there is an extension of the given section of Q over

I to a section of Q over T . This would give the desired lift g of the framing g′ and finish the

proof.

Since Q is the trivial torsor, such a section is given by a continuous function |T | → Z(Qp)
extending the given function I → Z(Qp). To construct it, we use a compactness argument.

Consider the composition

ω : |Q| |ỹ|−→ |Mint
G,b,µ|

κG◦sp−−−−→ CG = ΩG/π0(G).

Note that

ω(z · q) = κG(z) + ω(q)

for z ∈ Z(Qp).
Now observe that, since the points xi in our construction lie inMint,τ

G,b,µ(Spa (Ci, OCi)), the

corresponding points qi of Q satisfy ω(qi) = τ , for all i ∈ I. Set T := ω−1({τ}) ⊂ |Q|. This

is a quasi-compact subset of |Q| since |Q| ≃ |T | × Z(Qp), where |T | is quasi-compact, and

where the restriction Z(Qp) → CG of κG has compact fibers. The last fact follows because

ΩZ = Z(Qp)/Z(Zp) and ΩZ → ΩG → CG has finite kernel, so each fiber is given by a finite

union of cosets of Z(Zp) in Z(Qp).
Since π0(T) is compact, by the universal property of the Stone-Čech compactification

we see that the composed map I → T → π0(T), given by i 7→ qi, uniquely extends to a

continuous map βI ≃ π0(|T |) → π0(T) ⊂ π0(|T |) × Z(Qp). This corresponds to the desired

continuous extension |T | → π0(|T |) → Z(Qp). As above, this produces a section T → Q
whose composition with ỹ : Q → Mint

G,b,µ gives T → Mint
G,b,µ. This factors through the open

and closedMint,τ
G,b,µ ↪→Mint

G,b,µ and provides the desired x : T →Mint,τ
G,b,µ. □
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6. The case of trivial µad

In this section we prove Theorems 2.5.4 and 2.5.5 in the case when µad = 1 is trivial. Note

that when µad = 1 is trivial, B(G,µ−1) consists of the unique basic element contained in it.

In this section, b denotes a representative of this unique element.

6.1. The case of trivial µ. Let first G be a parahoric for G. It follows from the definition

that Mloc
G,1 = Spec (Zp). Furthermore, we have

Mint
G,1,1 ≃ G(Qp)/G(Zp) (6.1.1)

over Spd (Z̆p), cf. [SW20, Prop. 25.2.1] (in loc. cit. only the case of a torus group is considered

but the proof is valid in the general case). It follows thatMint
G,1,1 is representable by the formal

scheme

MG,1,1 =
∐

G(Qp)/G(Zp)

Spf (Z̆p),

and that the formal completion at a k-point is isomorphic to Z̆p. This proves Theorems 2.5.4

and 2.5.5 in the case when G is a parahoric group scheme. The case of a general quasi-parahoric

follows from Theorem 4.1.1, Proposition 4.2.1 and (2.3.1).

6.2. The general case. The case when µad = 1 is reduced to the case of the adjoint group,

as follows. Choose an extension G → G′ to quasi-parahorics of the natural morphism G →
G′ := Gad. Consider the corresponding morphism of v-sheaves

Mint
G,b,µ −→Mint

G′,1,1.

We now use the following functorialities:

• there is an isomorphism f : Mint,τ
G,b,µ

∼−→ Mint,τ ′

G′,1,1 ×Spd (Z̆p)
Spd (OĔ), for each τ ∈ CG ,

cf. Theorem 5.1.2. Hence the representability ofMint
G′,1,1 implies the representability of

Mint
G,b,µ.

• there is an isomorphism f̂ : Mint
G,b,µ/x

∼−→ Mint
G′,1,1/x′ ×Spd (Z̆p)

Spd (OĔ), for each x ∈
Mint

G,b,µ(Spd k), cf. Proposition 5.3.1.

• there is an isomorphism Mv
G,µ

∼−→ Mv
G′,1 ×Spd (Zp) Spd (OE), cf. [SW20, Prop. 21.5.1]

(attributed in loc. cit. to J. Lourenço).

Hence the case (G′, 1, 1) implies the case (G, b, µ).

7. The crucial Hodge type case

We now give the first non-banal cases when we can show the isomorphism of Theorem

2.5.5 and show representability of the formal completions. Let (G, b, µ) be a local Shimura

datum. Also, throughout this section, we let G = Gx be a stabilizer Bruhat-Tits group scheme

for a corresponding point x in the extended building. We denote by Go the corresponding

parahoric. We assume we are in case (A), so in particular p > 2.
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7.1. The crucial Hodge type case. Let ι : (G,µ) ↪→ (GLh, µd) be a Hodge embedding.

We assume that there is a Zp-lattice Λ ⊂ Qhp such that the homomorphism ι extends to a

closed immersion ι : G ↪→ GL(Λ). We then say that ι : (G, µ) ↪→ (GL(Λ), µd) is an integral

Hodge embedding. Then we also have

G(Z̆p) = G(Q̆p) ∩ ι−1(GL(Λ⊗Zp Z̆p)).

By [PR21, Prop. 3.6.2], this gives a closed immersion

ι :Mint
G,b,µ ↪→ (Mint

GL(Λ),ι(b),µd
)O :=Mint

GL(Λ),ι(b),µd
×Spd (W (k)) Spd (O),

where O = OĔ . The formal completion Mint
G,b,µ/x0

at the base point x0 fits in a cartesian

diagram

Mint
G,b,µ/x0

ι̂ //

��

(Mint
GL(Λ),ι(b),µd/ι(x0)

)O

��

Mint
G,b,µ

ι // (Mint
GL(Λ),ι(b),µd

)O.

(7.1.1)

Hence, we also have a closed immersion

ι̂ :Mint
G,b,µ/x0

↪→Mint
GL(Λ),ι(b),µd/ι(x0)

×Spd (W (k)) Spd (O).

Here, by [SW20, Thm. 25.1.2] (relating Mint
GL(Λ),ι(b),µd

to the RZ-space of EL-type MX of

p-divisible groups of dimension d and height h) and the definition of formal completion, we

have

Mint
GL(Λ),ι(b),µd/ι(x0)

×Spd (W (k)) Spd (O) ≃ Spd (R⊗W (k) O), (7.1.2)

where R ≃W (k)[[x1, . . . , xm]], for m = d(h− d). The point ι(x0) gives a p-divisible group G0

of height h over k and R is naturally identified with the universal formal deformation ring of

G0.

Proposition 7.1.1. There is a commutative diagram of morphisms of smooth rigid analytic

spaces over Sp(Ĕ),

(Mint
G,b,µ/x0

)η
ι̂η

//

πG

��

Spf (R)rig
Ĕ

πGLh

��

Xan
µ

ιan // Gr(d, h)an
Ĕ
.

(7.1.3)

The vertical maps are the restrictions of the étale period maps to the tubular neighborhoods.

The bottom horizontal map is the analytification of the Zariski closed immersion

Xµ ↪→ Gr(d, h)E ,

which is obtained from ι : G ↪→ GLh. The top horizontal map is a closed immersion.

Here Spf (R)rig is the rigid analytic generic fiber of Spf (R) (in Berthelot’s sense). For

simplicity, we use the same symbol for the v-sheaf (Mint
G,b,µ/x0

)η, and for the smooth rigid

analytic space over Sp(Ĕ) that represents it.
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Proof. Consider the commutative diagram of v-sheaves

(Mint
G,b,µ)η

ι //

πG

��

Mint
GLh,ι(b),µd

×Spd (Zp) Spd (Ĕ)

πGLh

��

X♢
µ

ι // Gr(d, h)♢ ×Spd (Qp) Spd (Ĕ).

(7.1.4)

In this, the two horizontal maps are closed immersions. In particular, the bottom horizontal

map is represented by a Zariski closed immersion. The two vertical period maps are given by

the étale period maps (on the left side we combine the period maps on the components, as in

Theorem 4.5.1). Their images are the corresponding open admissible sets and we have

Xadm
µ = (Gr(d, h)×Spd (Qp) Spd (Ĕ))adm ∩Xµ,

cf. [PR21, proof of Prop. 3.1.1]. Note that (Mint
G,b,µ/x0

)η ↪→ (Mint
G,b,µ)η is an open immersion

by the argument of [Gl20, Prop. 4.22], cf. [Gl21, Lem. 2.31 and its proof]. Hence, all the

v-sheaves in (7.1.3) are representable by smooth rigid analytic spaces. By full-faithfulness

[SW20, Prop. 10.2.3] the top horizontal map is also representable by a morphism of rigid

analytic spaces and the result follows. □

Theorem 7.1.2. Let (G, b, µ) be a local Shimura datum and let G be a quasi-parahoric sta-

bilizer group scheme for G. Suppose p > 2 and assume that there exists a Hodge embedding

ι : (G,µ) ↪→ (GLh, µd) and a Zp-lattice Λ ⊂ Qhp such that:

a) The homomorphism ι extends to a closed immersion ι : G ↪→ GL(Λ).

b) The Zariski closure Xµ of Xµ ⊂ Gr(d, h)E in Gr(d,Λ)OE
is normal.

c) The image ι(G) contains the scalars.

Then the following statements hold:

1) Mloc
G,µ ≃ Xµ.

2) For any x ∈Mint
G,b,µ(Spd (k)) there is y ∈Mloc

G,µ(k), such that

Mint
G,b,µ/x ≃ (Mloc

G,µ/y)
♢, (7.1.5)

provided that ι : (G, µ) ↪→ (GL(Λ), µd) is a very good integral Hodge embedding in the sense

of [KPZ24], see below. In the above, the orbit G(k) · y is equal to ℓ(x), cf. (3.4.2).

Proof. By section 3.5, we may assume that x = x0 is the base point. For simplicity, we write

Mint
/x0

=Mint
G,b,µ/x0

, Mloc = Mloc
G,µ.

We first show 1), i.e., Mloc ≃ Xµ. By [SW20, Thm. 21.2.1], ι induces a closed immersion

of v-sheaves over Spd (Zp),

ι : GrG,Spd (Zp) −→ GrGLh,Spd (Zp).

This gives a closed immersion of v-sheaves over Spd (OE),

Mv −→ Gr(d, h)♢OE
.

Indeed, Mv = Mv
G,µ is, by definition, the v-sheaf closure of X♢

µ in

Gr(d, h)♢OE
↪→ GrGLh

×Spd (Zp) Spd (OE).
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(See [AGLR22, 2.1] for a discussion of v-sheaf closures.) Since Mv = (Mloc)♢ and Mloc is

normal, we deduce from full-faithfulness (using [SW20, Prop. 18.4.1] and formal GAGA) that

the closed immersion Mv → Gr(d, h)♢OE
is represented by a morphism of schemes,

Mloc −→ Gr(d, h)OE
.

This morphism extends Xµ ↪→ Gr(d, h)E on the generic fibers. Now (Xµ)
♢ is topologically

flat ([PR21, Lem. 3.4.2]) and so it is the v-sheaf closure of the generic fiber X♢
µ in Gr(d, h)♢OE

.

We obtain an isomorphism

Mv = (Mloc)♢
∼−→ (Xµ)

♢ ↪→ Gr(d, h)♢OE
.

SinceMloc is normal and we are also assuming thatXµ is normal, the isomorphism (Mloc)♢
∼−→

(Xµ)
♢ is obtained from an isomorphism Mloc ∼−→ Xµ of OE-schemes, as claimed.

We now proceed to show 2). By [Ki10, Prop. 1.3.2], there is a finite set of tensors

{sa}a ⊂ Λ⊗, such that G is the scheme theoretic pointwise stabilizer of sa,

G = {g ∈ GL(Λ) | g · sa = sa,∀a}.

By the Tannakian formalism applied to G → GL(Λ), each G-torsor over an affine Zp-scheme

Spec (A) gives a finite projective A-module N of rank equal to rankZp(Λ) with tensors sa(N) ∈
N⊗.

Consider the universal G-shtuka over Mint
/x0

; its push-out by G → GL(Λ) is the shtuka

which is obtained from the Breuil-Kisin-Fargues module of the universal p-divisible group, as

in the proof of [SW20, Theorem 25.1.2]. By specializing to the base point x0 and using the

Tannakian formalism we see that the G-shtuka over Spd (k) that corresponds to x0 equips the

Dieudonné module D := D(G0)(Z̆p) of G0 with Frobenius invariant tensors sa,0 ∈ D⊗.

Write RG for the completion of Mloc⊗OE
O at the corresponding point y0 with orbit ℓ(x0)

and denote by mG the maximal ideal of RG. The O-algebra RG is normal and is a quotient

of the formal completion RE ≃ R ⊗W O of the local ring of Gr(d,Λ)O at y0. Note that,

since X̄µ ≃ Mloc, we see that Mloc ⊗OE
O is identified with the reduced Zariski closure of a

G-orbit G · y in Gr(d, h)O, where y is an F -point that corresponds to a filtration induced by

a G-valued cocharacter µy conjugate to µ−1. Here F is a finite extension of Q̆p.
Let us now briefly review certain constructions of [KP18], [KZ21], [KPZ24], and in partic-

ular the notion of a very good integral Hodge embedding; we will use the notations of these

papers. We continue to assume p > 2 and that (a), (b), (c) are satisfied.

Set M = Λ ⊗Zp RE and denote by ÎRE
M ⊂ M1 ⊂ M the unique Ŵ (RE)-submodule

corresponding to the universal RE-valued point of the Grassmannian. This gives a “Dieudonné

pair” (M,M1). We will denote by (MRG
,MRG,1) the Dieudonné pair of Ŵ (RG)-modules

which is obtained by base changing (M,M1) along RE → RG. We set

M̃RG,1 := Im(ϕ∗MRG,1 −→ ϕ∗MRG
).

Then M̃RG,1 is a finite free Ŵ (RG)-module and

M̃RG,1[1/p] = (ϕ∗MRG
)[1/p].

By the argument of [KP18, Cor. 3.2.11] (which extends to this situation using also the

main result of [An18], cf. Remark 7.1.5), the tensors

s̃a := sa ⊗ 1 = ϕ∗(sa ⊗ 1) ∈ Λ⊗ ⊗Zp Ŵ (RG) = (ϕ∗MRG
)⊗ ⊂ (ϕ∗MRG

)⊗[1/p] = M̃⊗
RG,1

[1/p]
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lie in M̃⊗
RG,1

and the scheme

T = Isom(s̃a),(sa)
(M̃RG,1,Λ⊗Zp

Ŵ (RG))

of isomorphisms that preserve the tensors is a (trivial) G-torsor over Ŵ (RG). The scheme T
is independent of the choice of the set of tensors (sa) ⊂ Λ⊗ that cut out G.

Set aG = m2
G + πERG ⊂ RG. There is a canonical isomorphism

c = cy0 : M̃0,1 ⊗W (k) Ŵ (RG/aG)
∼−→ M̃RG,1 ⊗Ŵ (RG)

Ŵ (RG/aG) (7.1.6)

([KP18, Lem. 3.1.9], [KPZ24]). Here, (M0,M0,1) is the Dieudonné pair of W (k)-modules ob-

tained from (MRG
,MRG,1) by the base change given by y∗0 : RG → k and M̃0,1 = Im(ϕ∗M0,1 →

ϕ∗M0).

We say that the tensors (s̃a) are preserved by c if we have c(s̃a,0 ⊗ 1) = s̃a ⊗ 1, for all a.

Then the isomorphism c uniquely descends to an isomorphism of G-torsors

cG : T0 ⊗W (k) Ŵ (RG/aG)
∼−→ T ⊗

Ŵ (RG)
Ŵ (RG/aG).

We say that the integral Hodge embedding (G, µ) ↪→ (GL(Λ), µd) is very good at y0, if there

are tensors (sa) ⊂ Λ⊗ cutting out G in GL(Λ) such that (s̃a) are preserved by c = cy0 . This

is equivalent to asking that c descends to an isomorphism of G-torsors cG , as above, and this

property does not depend on the choice of (sa). We say that (G, µ) ↪→ (GL(Λ), µd) is very

good, if it is very good at all y ∈Mloc
G,µ(k).

The following statement encapsulates a construction of [KP18], as extended in [KZ21],

[KPZ24].

Proposition 7.1.3. ([KP18], [KZ21]) Let (G, µ) ↪→ (GL(Λ), µd) be an integral Hodge em-

bedding which satisfies (a), (b), (c) of Theorem 7.1.2 and which is very good2 at a point

y0 ∈ Mloc
G,µ(k) corresponding to the base point x0 ∈ Mint

G,b,µ(Spd (k)). Let RE be the formal

completion of the local ring of Gr(d,Λ)O at y0. There exists a p-divisible group G univ over

RE which is a versal formal deformation of G0 and which satisfies the following property:

Let K/Ĕ be a finite field extension and x̃∗ : RE → OK a local O-algebra homomorphism

satisfying:

a) The filtration on D⊗Z̆p
K which corresponds to the deformation Gx̃ := x̃∗(G univ) of the

p-divisible group G0 to OK given by base change of G univ via x̃∗, is induced by a G-valued

cocharacter which is G-conjugate to µ−1;

b) The tensors sα,0 ∈ D⊗ correspond to tensors sα,ét ∈ TpG
∨⊗
x̃ under the p-adic (étale-

crystalline) comparison isomorphism.

Then the homomorphism x̃∗ : RE → OK factors through the quotient RE → RG.

Proof. Let us give a very quick overview to orient the reader. The construction of G univ

uses Zink’s theory of displays. By the argument of [KP18, §3.2.12] we obtain a “Dieudonné

display triple” (MRG
,MRG,1,ΨRG

), as in loc. cit. (see Remark 7.1.5 below and the proof

of [KZ21, Prop. 4.1.7] for the removal of Condition 3.2.2 in [KP18]). This triple gives, by

[KP18, Lem. 3.1.5], a Dieudonné display over RG and then one constructs also a versal display

2this condition was erroneously omitted in [KP18], [KZ21]; the fact that it is satisfied in all cases of interest

is shown in [KPZ24].
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(MR,MR,1,ΨR) over RE which lifts (MRG
,MRG,1,ΨRG

). The display (MR,MR,1,ΨR) gives

the desired versal formal deformation G univ of G0 over Spf (RE).

We can then see that the p-divisible group G univ, as constructed as above, has the property

stated in the proposition. For this first note that, by [KZ21, Prop. 4.2.4], a deformation Gx̃
of G0 which satisfies (a) and (b) is a “(G, µ−1)-adapted lifting” in the sense of [KZ21, Def.

4.1.4]. Then the claim follows from [KZ21, Prop. 4.1.7] (the same statement under additional

tameness hypotheses on G also appears in [KP18], see [KP18, Prop. 3.3.13]). □

The versal formal deformation G univ over RE of the p-divisible group G0 induces an identi-

fication of Spd (RE) withMint
GL(Λ),ι(b),µd/ι(x0)

×Spd (W ) Spd (O). We will now use Proposition

7.1.3 to check that the rigid analytic closed subspace

Spf (RG)
rig ↪→ Spf (RE)

rig = Spf (R)rig
Ĕ

agrees with the rigid analytic closed subspace (Mint
/x0

)η, under the identification induced by

diagram (7.1.3).

LetK/Ĕ be a finite extension. We will compare (Mint
/x0

)η(K) and Spf (RG)
rig(K) as subsets

of Spf (R)rig
Ĕ
(K).

Proposition 7.1.4. For all finite field extensions K/Ĕ, there is an inclusion

(Mint
/x0

)η(K) ⊂ Spf (RG)
rig(K).

Proof. A K-point x of (Mint
/x0

)η gives, after composing with (Mint
/x0

)η ↪→ Spf (RE)
rig, a formal

scheme morphism x̃ : Spf (OK)→ Spf (RE). The point x also gives a crystalline representation

ρx : Gal(K̄/K) −→ GL(Tp(Gx̃)
∨) (7.1.7)

on the linear dual of the Tate module of the p-divisible group Gx̃ obtained from G univ as

above, by pulling back by x̃. Take C = ̂̄K which supports a Gal(K̄/K)-action and consider

the corresponding point x̄ : Spa (C,OC) → Spd (K) → (Mint
/x0

)η which gives a (G, µ)-shtuka
(Px̄, ϕPx̄

) with framing. By Proposition 4.6.1 we obtain a functor

Px̄ : RepZp
(G) −→ Zp-Loc (Spa (C,OC)) ∼= Zp-mod

such that Px̄(Λ) = Tp(Gx̃)
∨. For γ ∈ Gal(K̄/K), there is an isomorphism Rx(γ) : Px̄ ≃ Px̄·γ =

Px̄ giving the Galois action (7.1.7), i.e., Rx(γ)(Λ) = ρx(γ).

The G-invariant tensors sa ∈ Λ⊗ give, by applying the functor P, corresponding tensors

sa,ét ∈ Tp(Gx̃)∨⊗; these are invariant under the action of Gal(K̄/K) through ρx. As in §4.7,
we see that the Galois representation ρx factors

ρx : Gal(K̄/K) −→ Goβ(Zp) ⊂ Gβ(Zp) ⊂ G(Qp),

where β̄ ∈ ΠG is such that x lies in the component ShGβ(Zp)(G, b, µ) of (Mint
G,b,µ)η, cf. Theorem

4.5.1. Note that

Gβ ⊗Zp
Z̆p ≃ G ⊗Zp

Z̆p.

Choose a uniformizer πK of K and a collection of roots π
1/pn

K in K̄ ⊂ C. We can now see, as

in [PR21, §3.5], [KP18, (3.3.3)], that the Breuil-Kisin module Mx̃ of Gx̃ obtained using these

choices can be refined to a Goβ-Breuil-Kisin module. By definition, this is a Goβ-torsor over

Spec (W (k)[[u]]) with meromorphic Frobenius structure, see loc. cit.. Refined here is meant
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in the sense that the push-out by Goβ ⊗Zp
W (k) → G ⊗Zp

W (k) → GL(Λ⊗Zp
W (k)) recovers

the GL(Λ ⊗Zp W (k))-torsor over Spec (W (k)[[u]]) which corresponds to Mx̃. By pushing out

the torsor by Goβ ⊗Zp
W (k) → G ⊗Zp

W (k), we obtain a G-Breuil-Kisin module PBK over

Spec (W (k)[[u]]). The tensors sa induce tensors s̃a ∈ M⊗
x̃ over W (k)[[u]], comp. [KP18,

(3.3.3)]. (Note that after base changing by W (k)[[u]] → W (OC) given by (π
1/pn

K )n, PBK

gives a G-Breuil-Kisin-Fargues module. By the proof of [PR21, Prop. 3.5.1], the restriction

of this G-Breuil-Kisin-Fargues module from Spec (W (OC)) to Y[0,∞)(C,OC) is isomorphic to

the initial (G, µ)-shtuka (Px̄, ϕPx̄
) which corresponds to the point x.) Recall that the tensors

sa also induce sa,0 ∈ D⊗, where, as above, D = D(G0)(Z̆p) is the Dieudonné module of the

special fiber G0 = Gx̃ ⊗OK
k. The existence of s̃a above, together with the compatibility

properties of the Breuil-Kisin functor (see for example, [KP18, Thm. 3.3.2, Prop. 3.3.8]),

implies that sa,ét and sa,0 correspond under the comparison isomorphism between p-adic-

étale and crystalline cohomology. It also implies that the Hodge filtration on D⊗Z̆p
K which

corresponds to the deformation Gx̃ is induced by a G-cocharacter. The above compatibility

of the G-Breuil-Kisin module PBK with the initial (G, µ)-shtuka (Px̄, ϕPx̄
) implies that this

cocharacter is conjugate to µ−1.

The conditions a) and b) of Proposition 7.1.3 are now satisfied for x̃∗ (the p-divisible

group Gx̃ is “(G, µ−1)-adapted”, in the terminology of [KZ21]). It follows that the morphism

x̃∗ : RE → OK inducing Gx̃ factors through RG → OK . This gives a K-valued point of

Spf (RG)
rig and hence x belongs to Spf (RG)

rig(K). □

Now (Mint
/x0

)η and Spf (RG)
rig are both smooth rigid analytic spaces over Sp(Ĕ) of the

same dimension, both closed in Spf (R)rig
Ĕ
. Since RG is normal, Spf (RG)

rig is connected, cf.

[deJ95, Lem. 7.3.5]. From Proposition 7.1.4 it now follows that, under our identifications,

(Mint
/x0

)η = Spf (RG)
rig. (7.1.8)

Let us now complete the proof. Both Spd (RG) ↪→ Spd (RE) and Mint
/x0

↪→ Spd (RE) are

closed immersions of v-sheaves. By Proposition 4.2.1 (b) and [PR21, Prop. 3.4.9], (Mint
/x0

)η

is “topologically flat”, i.e. |(Mint
/x0

)η| is dense in |Mint
/x0
|. Similarly, Spd (RG) is topologically

flat by [PR21, Lem. 3.4.2]. Since by (7.1.8), |(Mint
/x0

)η| = |Spd (RG)η|, we deduce that

|Mint
/x0
| = |Spd (RG)|. Hence, by [SW20, Lem. 17.4.1], comp. also [Sch17, Prop. 12.15 (iii)],

we have

Mint
/x0

= Spd (RG),

under the identification of Spd (RE) with Mint
GL(Λ),ι(b),µd/ι(x0)

×Spd (W ) Spd (O) induced by

G univ. (Compare to the argument in the proof of Prop. 5.3.1, case (i).) □

Remark 7.1.5. In [KP18, §§3.2, 3.3], there is always the blanket assumption that G splits

over a tamely ramified extension of Qp. This is because essential use is made of “purity” of

Go-torsors over Spec (W (k)[[u]]) \ {(u, p)} which was shown in [KP18, Prop. 1.4.3] under this

tameness hypothesis on G. This purity is now proven in all cases by Anschütz [An18]. With

this additional ingredient, the proofs go through, see [KZ21], [KPZ24]. Note that when G is

essentially tamely ramified, then in [PR21, §5] there is a simpler proof of the purity statement

in question.
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7.2. Reduction to the (very) good Hodge type case.

Proposition 7.2.1. Let (G, b, µ) be a local Shimura datum of abelian type and p > 2. Let G
be a quasi-parahoric group scheme of G and let x be a point in the building Be(G,Qp) such

that G◦ = G◦x ⊂ G ⊂ Gx. Write

(Gad, µad) ≃
m∏
i=1

(ResFi/Qp
Hi, µi), (7.2.1)

with all Hi absolutely simple. Assume that all µi are non-trivial. Then there exists a central

lift (G1, b1, µ1) of Hodge type for (G, b, µ) as in Definition 2.1.3 and a point x1 ∈ Be(G1,Qp)
with stabilizer group scheme G1 = Gx1,1, with the following properties:

1) The images of the points x1 and x in B(Gad,Qp) define the same parahoric subgroup

scheme of Gad.

2) E1 = Ead.

3) There is a integral Hodge embedding (G1, µ1) ↪→ (GL(Λ), µd) which satisfies (a), (b), (c)

of Theorem 7.1.2 and which is very good.

Proof. We first observe that we may assume that Gad is Qp-simple. Indeed, we can construct

first (G1, µ1) and then G1 and the integral Hodge embedding, by taking the product over the

factors in (7.2.1). From now on let Gad = ResF/Qp
(H), with H absolutely simple over F .

We index by I the set {ϕv}v∈I of embeddings ϕv : F ↪→ Q̄p. For each v ∈ I, we set Dv for

the Dynkin diagram of H ⊗F,ϕv
Q̄p. Also write

µ : Gm/Q̄p
−→ (ResF/Qp

H)⊗Qp
Q̄p =

∏
v∈I

H ⊗F,ϕv
Q̄p, µ = (µv)v∈I .

By the arguments in [De79, 1.3.6, 1.3.8], the condition that (Gad, µad) is of abelian type

implies that for each v ∈ I, µv is either trivial, or it corresponds to a node sv in the Dynkin

diagram Dv which is among the “encircled nodes” of the diagrams displayed in the table

[De79, 1.3.9]. In fact, (Gad, µad) is one of types A, B, C, DR, DH as described in [De79,

2.3.8], see also [Se79, §3, Annexe]. For example, if n > 4, DH means that each (non-trivial)

factor is (Dn, ω
∨
n ) or (Dn, ω

∨
n−1) and DR means that each factor is (Dn, ω

∨
1 ), cf. [HLR18, §5].

Note that, by [Se79, §3, Cor. 2], since µ is not trivial, H cannot be a trialitarian form D
(3)
4

or D
(6)
4 . Recall that we assume p > 2. Hence, it follows that H splits over a tamely ramified

extension of F .

Denote by Ic the set of v ∈ I for which µv is trivial and set Inc = I \ Ic. Set

D = ⊔v∈IDv.

The Galois group Γ = Gal(Q̄p/Qp) acts on D compatibly with its action on the set of em-

beddings I.

By our assumption µ is not trivial, so Inc ̸= ∅. Let S ⊂ D be a Galois stable subset such

that, for each v ∈ Inc, S ∩ Dv = {sv}, a node in Dv from the underlined nodes in the table
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[De79, 1.3.9] for (Dv, sv).
3 A node s ∈ S ∩Dv gives an irreducible representation

ρs : Gsc,Q̄p
−→ Hsc ⊗F,ϕv

Q̄p −→ GL(V (s))

over Q̄p. Here, Gsc and Hsc are the simply connected covers.

If (Gad, µad) is of type An we can choose sv, for v ∈ Inc, to be one of the two endpoint

nodes; these correspond to the standard representation of Hsc⊗F,ϕv Q̄p ≃ SLn+1 and its dual.

In fact, if H ≃ PGLm(D), with D a division algebra over F , then we can and will choose

every sv, for v ∈ Inc, to be the node that corresponds to the standard representation. Then,

sv is the node corresponding to the standard representation for all v. If (Gad, µad) is of type

DH
n , then sv, for each v, is the node given by the simple endpoint of the type Dn Dynkin

diagram.

In all cases, consider ⊕
s∈S

V (s)⊕n

which, for sufficiently divisible n, gives a representation V of Gsc defined over Qp; denote by

Vs the unique irreducible factor of VQ̄p
isomorphic to V (s)⊕n; the Galois group Γ permutes

the factors Vs by an action compatible with its action on S ⊂ D . There is a finite étale

Qp-algebra KS such that HomQp
(KS , Q̄p) ≃ S as Γ-sets and so the decomposition

V ⊗Qp
Q̄p ≃

⊕
s∈S

Vs

is induced by a corresponding KS-module structure on V which is such that on Vs, KS acts

via the map KS → Q̄p that corresponds to s. Note that since S → I is Γ-equivariant,

KS is naturally an F -algebra. It is a product KS =
∏
j Kj of field extensions Kj of F

which are all at most tamely ramified over F . The units K×
S =

∏
j K

×
j are the points of

a torus T ′ = ResF/Qp

∏
j Tj with Tj/F splitting over the tame extension Kj/F . We have

K×
S ⊂ GL(V ), i.e. T ′ ↪→ GL(V ), and this centralizes the map Gsc → GL(V ). Denote by G′

sc

the quotient of Gsc which acts faithfully on V ; then

Gsc −→ G′
sc ↪→ GL(V ).

The group G′
sc is the restriction of scalars G′

sc = ResF/Qp
H ′

sc, with H
′
sc a quotient of Hsc. In

fact, we see that H ′
sc = Hsc in all cases, except for groups of type D. In the case of type D,

the kernel of Hsc → H ′
sc is either trivial in type DR

n, or of order 2 in type DH
n . Set

G1 := G′
sc · T ′ ↪→ GL(V ).

We have G1 = ResF/Qp
H1, with H1 = H ′

sc · (
∏
j Tj). As in [De79], we see that µ : Gm/Q̄p

→
(Gad)Q̄p

lifts to a fractional cocharacter µ′ of G′
sc,Q̄p

. The composition of this fractional

cocharacter with G′
sc,Q̄p

↪→ GL(VQ̄p
)→ GL(Vs) is trivial when s maps to v ∈ Ic, in which case

we set Vs = Vs(0). When s maps to v ∈ Inc, then this composition has exactly two distinct

weights rv and rv − 1, with rv as indicated in the table [De79, 1.3.9], so that

Vs = Vs(rv − 1)⊕ Vs(rv).

3The table in [De79, 1.3.9] requires a small correction which is explained in the translation of the paper on

Milne’s webpage: on the first line (case A) all nodes should be underlined if p = 1. But in our construction

we do not use these omitted nodes anyway.
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We can now consider the direct sum decomposition of VQ̄p
into two summands: one, VQ̄p

(0),

given as the sum of all Vs(0) and all Vs(rv − 1), and the other, VQ̄p
(1), given as the sum of

all Vs(rv). This decomposition defines a cocharacter µ1 of GL(V )Q̄p
acting by weights 0 and

1 on these two summands and µ1 factors through (G1)Q̄p
= (G′

sc · T ′)Q̄p
. Then G1 ↪→ GL(V )

gives a Hodge embedding for (G1, µ1) and (Gad,1, µad,1) ≃ (Gad, µad).

We will see that the above construction produces a desired (G1, µ1) but we also need to

explain how to choose x1 and hence the corresponding stabilizer group scheme G1 for G1. We

let xad be the point corresponding to x in the building B(G,Qp) = Be(Gad,Qp). Choose a

“nearby” point xad ∈ B(G,Qp) which is generic in its facet and is such that the parahoric

group schemes of Gad for x′
ad and xad coincide, i.e. have the same Z̆p-points. Now lift x′

ad

to x1 under the canonical map Be(G1,Qp)→ B(Gad,Qp). This defines the stabilizer group

scheme G1 = Gx1,1.

We now verify that the pair (G1, µ1) and the point x1 ∈ Be(G1,Qp) satisfy the desired

conditions (1), (2) and (3). Conditions (1) and (2) follow immediately from the construction,

and it remains to explain Condition (3). This calls for the construction of a suitable integral

Hodge embedding ι : (G1, µ1) ↪→ (GL(Λ), µd); we will explain how this can be done by choosing

the lattice Λ in a representation obtained from V above.

If (Gad, µad) is of type A and H ≃ PGLm(D), with D a division algebra over F , then for

the above choices, V is isomorphic to a direct sum of copies of the representation of SLm(D)

given by the action on Dm, considered as a Qp-vector space; this extends to a representation

of G1 = ResF/Qp
GLm(D).

If (Gad, µad) is of type DH
n , then for the above choices, G1 = ResF/Qp

H1, with H1 the

neutral component of an orthogonal similitude group over F and V is isomorphic to the

restriction of scalars of its standard representation. More precisely, as in [PZ13, §5.3.8],
[T79], we see that H1 and V are as in one of the following cases:

a) There is an F -vector space V ′ ≃ F 2n and a perfect symmetric F -bilinear h′ : V ′×V ′ → F

such that H1 = GO+(V ′, h′) where, as usual, for an F -algebra R,

GO(V ′, h′)(R) = {GLR(V
′ ⊗F R) | h′(gw, gw′) = c(g)ψ(w,w′), c(g) ∈ R×},

and + signifies taking the neutral component. Then the representation space V is a direct

sum of copies of V ′ considered as an Qp-vector space by restriction of scalars.

b) There is a (left) D-module W ≃ Dn for a division quaternion F -algebra D and a non-

degenerate anti-hermitian form ϕ : W ×W → D for the main involution on D, such that

H1 = GU+(W,ϕ), where GU(W,ϕ) is a unitary similitude group defined as follows: Consider

the alternating F -bilinear form ψ :W ×W → F given by

ψ(w1, w2) = Tr0(ϕ(w1, w2)).

where Tr0 : D → F is the reduced trace (cf. [PZ13, §5.3.8], [RZ96, Prop. A.53], applied to

n = 1.) For an F -algebra R,

GU(W,ϕ)(R) = {GLD⊗FR(W ) | ψ(gw, gw′) = c(g)ψ(w,w′), c(g) ∈ R×}.

The representation space V is a direct sum of copies of W considered as an Qp-vector space
of dimension 4n by restriction of scalars.

The existence of an integral Hodge embedding ι : (G1, µ1) ↪→ (GL(Λ), µd) satisfying (a), (b),

and (c) and which is very good, now follows from [KPZ24], which extends the constructions
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of [KP18], [KZ21]. In all cases, Λ = ⊕ri=1Λi ⊂ V ⊕r is a lattice in a direct sum of r copies of

the representation V as given above, for some r ≥ 1. The lattice Λ is obtained by summing

up lattices Λi ⊂ V in a suitable lattice chain in V . □

8. Proofs of Theorems 2.5.5 and 2.5.4

In this section we prove our main theorems. We treat the cases (A) and (B) separately.

8.1. Proof of Theorem 2.5.5 in case (A). Let (G, b, µ) be of abelian type and of type

(A), and let G be quasi-parahoric. Write (Gad, bad, µad) =
∏
i(ResFi/Qp

Hi, bi, µi), where Hi is

absolutely simple. We split (Gad, bad, µad) into the product of two factors: in the first factor

we lump together all components (ResFi/Qp
Hi, bi, µi) where µi is trivial, and in the second

factor we lump together all components (ResFi/Qp
Hi, bi, µi) where µi is non-trivial. Let us

first assume that the first factor is trivial.

Write G0x ⊂ G ⊂ Gx, with Gx(Z̆p) the stabilizer in G(Q̆p) of a point x in the extended

building Be(G,Qp) of G(Qp). Using Proposition 7.2.1 we construct (G1, b1, µ1) of Hodge

type with G1 a stabilizer group scheme of G1 such that there is a (very good) integral Hodge

embedding

(G1, µ1) ↪→ (GL(Λ), µd)

satisfying all the conditions of Theorem 7.1.2. By the construction, we have a group scheme

homomorphism G1 → G′ad := Gad,x′
ad

extending G1 → Gad. We similarly have G → Gad :=

Gad,xad
, giving G→ Gad. Note G◦ad = G′◦ad.

First note the natural isomorphisms

Mloc
G,µ ≃Mloc

Gad,µad
×Spec (Oad) Spec (O) ≃Mloc

G1,µ1
×Spec (O1) Spec (O) (8.1.1)

obtained from [SW20, Prop. 21.5.1], and Mloc
G◦
1 ,µ1

≃ Mloc
G1,µ1

, Mloc
G◦,µ ≃ Mloc

G,µ, from [SW20,

Prop. 21.4.3]. These induce isomorphisms of corresponding formal completions.

We now apply Theorem 7.1.2 to (G1, b1, µ1) and obtain, for each x1 ∈ Mint
G1,b1,µ1

(Spd (k)),

an isomorphism

Mint
G1,b1,µ1/x1

≃ (Mloc
G1,µ1/y1

)♢,

where y1 is a corresponding point in Mloc
G1,µ1

(k) ≃ Mloc
G◦
1 ,µ1

(k) whose G1(k)-orbit ℓ(x1) is well-
defined and determined by x1, see (3.4.2). It then follows from Proposition 4.2.1 (b) that, for

x1 ∈Mint
G◦
1 ,b1,µ1

(Spd (k)), we also have

Mint
G◦
1 ,b1,µ1/x1

≃ (Mloc
G◦
1 ,µ1/y1

)♢.

On the other hand, Proposition 5.3.1 applied to the map (G◦1 , b1, µ1)→ (G′◦ad, bad, µad) induced

by G1 → G′ad, gives

Mint
G◦
1 ,b1,µ1/x1

∼−→Mint
G′◦
ad,bad,µad/x′

1
=Mint

G◦
ad,bad,µad/x′

1
,

where x′1 is the image of x1. Here, the last equality follows from G◦ad = G′◦ad. Combining these

we obtain isomorphisms

Mint
G◦
ad,bad,µad/x′

1
≃ (Mloc

G,µ/y′1
)♢ ≃ (Mloc

G◦
ad,µad/yad

)♢, (8.1.2)

for all points x′1 ofMint
G◦
ad,bad,µad

(Spd (k)) which are in the image ofMint
G◦
1 ,b1,µ1

(Spd (k)) under

the natural map induced by G◦1 → G◦ad. Here, y′1 and yad correspond to y1 above under

the isomorphisms given by (8.1.1). By §5.4, this set of points of Mint
G◦
ad,bad,µad

(Spd (k)) is
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the set of Spd (k)-points of a union of “components” Mint,τ
G◦
ad,bad,µad

, for a certain set of τ .

Using Proposition 4.4.3 applied to Gad and the fact that the map ℓ of (3.4.2) is constant on

each Jb(Qp)-orbit, we see that the same conclusion, i.e. the isomorphism (8.1.2), follows for

points in all components ofMint
G◦
ad,bad,µad

and, therefore, for all points inMint
G◦
ad,bad,µad

(Spd (k)).

We obtain that Theorem 2.5.5 holds for (Gad, bad, µad) and all parahoric subgroups of Gad.

Therefore, by the argument in the proof of Theorem 4.1.1 (which uses Theorem 4.4.1), the

result also holds for (Gad, bad, µad) and all quasi-parahoric subgroups of Gad. In particular,

it holds for Gad. Theorem 2.5.5 for (G, b, µ), G and x ∈Mint
G,b,µ(Spd (k)) now follows from the

above combined with Proposition 5.3.1 applied to (G, b, µ)→ (Gad, bad, µad) and (8.1.1).

This concludes the proof of Theorem 2.5.5 when the first factor of (Gad, bad, µad) is trivial.

Now let us consider the general adjoint case. Using the compatibility ofMint
G,b,µ and Mv

G,µ
with products (cf. §2.4), it suffices to consider each factor separately. The second factor has

been treated above. For the first factor the assertion follows from section 6. Now the passage

from the adjoint case to the general case follows by the same argument as above. □

8.2. Proof of Theorem 2.5.4 in case (A). Via the ad-isomorphism G → Gad it follows

using Theorem 5.1.2 thatMint
G,b,µ is representable by a normal formal scheme locally formally

of finite type over Ŏ, provided this representability holds for the adjoint group. As in the

above proof, we may consider separately the case where µad is trivial and the case where all

components of µad are non-trivial. The first case follows from section 6. Let us consider the

second case.

As in the above proof, using Proposition 7.2.1 we construct (G1, b1, µ1) of Hodge type with

G1 a stabilizer group scheme such that there is a (very good) integral Hodge embedding

(G1, µ1) ↪→ (GL(Λ), µd)

satisfying all the conditions of Theorem 7.1.2. Then, using Theorem 7.1.2 we deduce that

Mint
G1,b1,µ1/x

is representable by the formal spectrum of a noetherian normal complete local

ring, for any x ∈ Mint
G1,b1,µ1

(Spd (k)). The proof of [PR21, Thm. 3.7.1] now applies and we

obtain that Mint
G1,b1,µ1

is representable by a formal scheme which is normal and flat locally

formally of finite type over Ŏ. (Note that [PR21, Thm. 3.7.1] is stated for parahoric G.
However, given the construction of the specialization map for quasi-parahorics as in §3.4
above, the argument extends in a straightforward fashion to our situation, in which G1 is

quasi-parahoric. The argument in loc. cit. requires G1(Z̆p) = GL(Λ ⊗Zp
Z̆p) ∩ G1(Q̆p) and

this holds here since G1 ↪→ GL(Λ) is a closed immersion.) Since the maps G → Gad and

G1 → Gad are both ad-isomorphisms, it now follows using Theorem 5.1.2 twice, together with

Proposition 4.4.3 applied to Gad, that Mint,τ
G,b,µ, for each τ ∈ ΩG, is representable by such a

formal scheme. It follows thatMint
G,b,µ = ⊔τMint,τ

G,b,µ is representable by a formal scheme which

is normal and flat locally formally of finite type over Ŏ. □

8.3. Proof of Theorems 2.5.5, 2.5.4 in case (B). Recall that in case (B) we have p = 2

and Gad =
∏m
i=1 ResFi/Q2

Hi, with Hi = B×
i /F

×
i , or Hi = PGSp2ni

, or µi trivial. As in the

proofs of Theorems 2.5.4 and 2.5.5 in the case (A), we can easily reduce to the case thatm = 1

and assume Gad = ResF/Q2
H with H = B×/F×, or H = PGSp2n. In the first subcase, we
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take G1 = ResF/Q2
B×. In the second subcase, we first set

⟨v, w⟩ = TrF/Q2
(v, w)

where (v, w) is the standard perfect alternating F -bilinear form on F 2n. Then we take G1 = J ,

with the group J defined by

J(R) = {g ∈ GL2n(F ⊗Qp
R) | ⟨gv, gw⟩ = c(g)⟨v, w⟩, c(g) ∈ R×}.

In each subcase, we lift µad to a corresponding minuscule µ1.

The quasi-parahoric G gives a corresponding point x in the extended Bruhat-Tits building

Be(G,Q2), so that Go = Gox(Z̆2) ⊂ G(Z̆2) ⊂ Gx(Z̆2). Consider the stabilizer group scheme

G1 := G1,x1 of G1 which corresponds to a point x1 in Be(G1,Q2) that lifts the point xad in the

building B(Gad,Q2), as in the argument in the proof for the case (A) above. The devissage

results of §4 (Theorem 4.1.1 and its proof), allows us to replace G1,x1
by the stabilizer group

scheme of a point which is generic in the smallest facet that contains it, and still has the same

parahoric neutral component. Therefore, we can assume that x1 already has this “genericity”

property. We can now see, using [RZ96, App. to Chapt. 3] and the standard explicit

description of the buildings for these groups ([BT84], [BT87]), that there is a lattice chain

(L), resp. a self-dual lattice chain (L), such that the stabilizer group scheme above is given as

a scheme theoretic stabilizer of (L) in G1. The data (G1, b1, µ1) together with the lattice chain

(L) determine integral EL-, resp. PEL-data D as in [RZ96], see also [SW20, Def. 24.3.3].

Consider the corresponding RZ formal schemeMnaive
D (as defined in [RZ96]; the hypothesis

p ̸= 2 is not needed in this case). Then Mnaive
D is a formal scheme locally formally of finite

type over OĔ . Under our assumptions,Mnaive
D has formal completions at closed points which

agree with those of the naive local model Mnaive
D ([RZ96, Prop. 3.33]); recall that this follows

by Grothendieck-Messing deformation theory which applies for p = 2. Note that in general,

Mnaive
D andMnaive

D are not flat over OĔ (this accounts for the terminology “naive”.)

SetMD :=Mflat
D to be the closed formal subscheme ofMnaive

D given by chains of 2-divisible

groups which are “Mloc
G1,µ1

-admissible” in the sense of [SW20, Lect. 24, 25]. Note that under

our assumptions, Mloc
G1,µ1

is a closed subscheme of the “naive” local model Mnaive
D which is

identified with the flat closure of its generic fiber; in particular, this flat closure has reduced

special fiber. Indeed, in the case where G1 = ResF/Q2
B×, this follows from [PR05, Thm. 7.3]

(based on Görtz [G01]). In the case where G1 = J , this follows from [PR05, Thm. 12.4] (based

on [G03, G05]). (These two results also follow from the proof of the coherence conjecture by

Zhu [Zhu14].)

By [SW20, Cor. 25.1.3], we have

(MD)
♢ ≃Mint

G1,b1,µ1

as v-sheaves over Spd (OĔ). It follows that Mint
G1,b1,µ1

is represented by the formal scheme

MD. By its construction and the above discussion, we obtain that the formal scheme MD
has formal completions at closed points which agree with those of Mloc

G1,µ1
; in particular,MD

is normal and flat over OĔ since these properties hold for Mloc
G1,µ1

. Hence the representability

conjecture 2.5.1 holds and MG1,b1,µ1
=MD. We can now pass from (G1, b1, µ1) and G1, to

(G, b, µ) and G, by the same devissage as in the proofs in case (A). This completes the proofs

of Theorems 2.5.5 and 2.5.4 in case (B). □
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Remark 8.3.1. Our strategy for the proofs of Theorems 2.5.5 and 2.5.4 in case (B) could

be applied to more EL/PEL cases than the ones currently given, provided that in the corre-

sponding cases the results of [RZ96, App. to Chapt. 3] can be suitably modified for p = 2. An

example is given by the unramified unitary group, cf. [RSZ21, App. A]. On the other hand,

it is also reasonable to expect that the strategy of the proof in case (A) could be extended

to p = 2 (at least assuming that G is essentially tamely ramified), if the constructions of

[KP18], [KZ21] can be extended to cover p = 2. Such an extension was given in [KMP16] in

the hyperspecial case, i.e. when G is reductive over Z2.
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