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The purpose of this note is to discuss the geometry of moduli stacks of various types

of bundles over a curve. We suggest that the main elements of the theory of moduli of

G-bundles for a constant reductive algebraic group G as developed by Beauville, Laszlo,

Faltings and other authors should extend to a theory of moduli of G-torsors for a large class

of algebraic group schemes G which are not necessarily constant over the curve. The class

we consider is that of smooth group schemes over the curve with reductive generic fiber

which have the property that each place of the curve the completion of the group scheme

is a “parahoric group scheme” of the type constructed by Bruhat-Tits. In addition to the

classical case above, the corresponding moduli stacks include the moduli of parabolic G-

bundles but also other interesting examples such as the moduli of Prym line bundles (Prym

varieties) or moduli of bundles together with (not always perfect) symplectic, orthogonal

or hermitian pairings. Our approach uses the theory of loop groups.

In [PR], we introduced and studied the loop group attached to a linear algebraic group

over a Laurent series field k((t)) where k is an algebraically closed field. To a (connected)

reductive algebraic group H over k((t)) there is associated the ind-group scheme LH over

k, with points with values in a k-algebra R equal to H(R((t))). If P is a parahoric subgroup

of H(k((t))), Bruhat and Tits have associated to P a smooth group scheme with connected

fibers over Spec (k[[t]]), with generic fiber H and with group of k[[t]]-rational points equal

to P . Denoting by the same symbol P this group scheme, there is associated to it a group

scheme L+P over k, with points with values in a k-algebra R equal to P (R[[t]]). The fpqc-

quotient FP = LH/L+P is representable by an ind-scheme, and is called the partial affine

flag variety associated to P . In [PR] we studied these affine flag varieties and obtained

results about some of their basic structural properties. In particular, we showed

1.) π0(LH) = π0(FP ) = π1(H)I . Here π1(H) denotes the algebraic fundamental group

of H in the sense of Borovoi, and I = Gal(k((t))/k((t))) the inertia group.

2.) If H is semi-simple and splits over a tamely ramified extension of k((t)), and if

(char(k), |π1(H)|) = 1, then LH and FP are reduced ind-schemes.
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In the case when H comes by extension of scalars from a constant algebraic group H0 over

k, these properties and more have been shown in Faltings’ paper [Fa2] (and much of it

was known before, thanks to the work of Beauville, Laszlo, Sorger, Kumar, Littelmann,

Mathieu, and others, comp. the references in [Fa2] and [PR]). In [Fa2], Faltings goes on

to use these local results to prove global results on the moduli space of H0-bundles on a

smooth projective curve over k, in particular about its Picard group. The main tool is

the “uniformization theorem” [BL], [DS], that expresses the moduli stacks (for semisimple

groups) as a certain quotient of the affine Grasmannian for H. In the present note we

present some conjectures on how to generalize these results in the framework of [PR]. As it

turns out, the results of Laszlo and Sorger in [LS] can be interpreted as a confirmation in

special cases of our predictions.

After an older version of this paper was circulated, Heinloth posted the preprint [He]

where he proves a good part of these conjectures. We hope that there is still some interest

in our paper and that progress can be made in answering the rest of these questions. We

also hope that our point of view can be a useful framework in generalizing the enormous

body of results for split groups to this more general case. For example, the correct extension

of the Verlinde formula [S1] in this context is still a mystery to us.

We thank G. Faltings and C. Sorger for helpful discussions. We also thank J. Heinloth

and E. Looijenga for correcting some statements in the original version of this paper.
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Let k be an algebraically closed field, and let X be a smooth connected projective curve

over k. Let G be a smooth affine group scheme over X with all fibers connected. In addition,

we assume that the generic fiber Gη is a connected reductive group scheme over K = k(X),

and that for every x ∈ X(k), denoting by Ox the completion of the local ring of X at x and

by Kx its fraction field, G(Ox) ⊂ G(Kx) is a parahoric subgroup of Gηx(Kx) in the sense of

[BTII], see also [T]. We will call such a G a parahoric group scheme over X. Recall that

by [BTII], given a parahoric subgroup Px ⊂ Gηx(Kx) there is a unique affine smooth group

scheme GPx over Ox with the following propreties: Its generic fiber is Gηx , it has connected

special fiber and satisfies GPx(Ox) = Px.

Let MG/X denote the stack of G-torsors on X. The usual arguments show that this is

a smooth (Artin) algebraic stack over k. We are going to state four conjectures on the

geometry of MG/X but in this section we will first discuss several examples.

2.a. Let G be connected reductive group scheme over k. Then G×Spec (k) X is an example

of the kind of group schemes we consider. This is the case of a constant group scheme.

We may generalize this as follows. Let x ∈ X(k). Then the parahoric subgroups in

G(Kx) contained in G(Ox) are in one-to-one correspondence with the parabolic subgroups

of G. More precisely, if P ⊂ G is a parabolic subgroup, then the corresponding parahoric
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subgroup P is equipped with a morphism of group schemes over SpecOx,

(2.1) P → G×Spec (k) Spec (Ox)

which in the generic fiber is the identity of Gηx and which in the special fiber has image

equal to P .

Suppose now that G is a group scheme equipped with a morphism G → G ×k X which,

when localized at x is of the previous nature for all x ∈ X(k). Hence there is a finite set of

points {x1, . . . , xn} such that this morphism is an isomorphism outside this finite set, and

parabolic subgroups P1, . . . , Pn such that the localization of G at xi corresponds to Pi in

the sense explained above. Then there is an equivalence of categories between the category

of G-torsors on X and the category of G-torsors on X with quasi-parabolic structure of

type (P1, . . . , Pn) with respect to (x1, . . . , xn), in the sense of [LS]. For such group schemes

some of the questions here have been considered in the literature, although not always in

our formulation.

2.b. Let S be a torus over k(X); then the connected Neron model G = S0 of S over X

is another example of a parahoric group scheme. This kind of G-bundle occurs in various

other contexts that we mention here briefly.

Suppose that π : Y → X is an irreducible finite flat and generically unramified covering.

Then k(Y )/k(X) is a finite separable field extension and we can take S to be the torus

Resk(Y )/k(X)(Gm), with parahoric extension G over X equal to ResY/X(Gm). Then a G-

bundle on X is simply a line bundle L on Y . By associating to L its direct image π∗(L),

we obtain a vector bundle of rank n on X, where n = [k(Y ) : k(X)]. This construction

of vector bundles on X is analyzed in [BNR]. If Y is the curve associated in the sense of

[BNR], §3 to a line bundle M and sections {si ∈ Γ(X,Mi) | i = 1, . . . , n}, then the vector

bundles obtained by this construction have a canonical Higgs structure (wrt. M), such that

Y is the associated spectral curve.

We also mention the following variant, cf. [D], [DG]. Suppose that G is a connected

reductive group with maximal torus T , normalizer N of T , and Weyl group W . Let π : Y →

X be a unramified Galois covering with Galois group W . Assume that the characteristic of

k does not divide the order of W . We can consider the group scheme

G = (ResY/X(T ×k Y ))W

on X, where W acts diagonally on T ×k Y . Then, thanks to our assumption on the

characteristic of k, G is a parahoric group scheme on X, cf. [E], Thm. 4.2. Each G-

torsor over X gives an element in H1(Y, T )W = HomW (X∗(T ),Pic(Y )) (here W acts on

both source and target). In general, if M is a T -torsor over Y whose class belongs to

H1(Y, T )W , we can consider the group NM of automorphisms of M which commute with

the action on Y of some w ∈W . This affords an extension

1 → T → NM →W → 1 .
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Suppose now that there is a T -torsor M0 in (H1(Y, T ))W such that the corresponding

extension NM0
is isomorphic to the extension given by the normalizer N of T in G. Then

for each G-torsor on X, corresponding to the T -torsor L on Y , π∗(L ⊗OY
M0) gives an

N -torsor over X that can be induced to give a G-bundle on X ([D], [DG]). This G-bundle

is an “abstract” Higgs bundle with unramified cameral cover π : Y → X, loc. cit. This

is a protypical result in the theory of Higgs bundles and the Hitchin fibration. Here the

(not precise) catch-phrase is that the sufficiently generic fibers of the Hitchin map are –

non-canonically– isomorphic to moduli varieties of G-torsors for a suitable commutative G

(a version of the above works even when π is ramified, see [D], [DG], [N]).

As an example consider the case G = SL2. Then W = Z/2Z, and T = Gm with W

acting by inversion. Suppose that char(k) 6= 2 and that π is an unramified double cover

with involution σ. The parahoric group scheme G above is then the kernel of the norm

NormY/X : ResY/X(Gm) → Gm. In this case, the above amounts to a Prym construction

which goes as follows (cf. [D] 5.2). We can see that G-torsors over X are given by line

bundles L on Y such that NormY/X(L) is trivial. We can also see (in accordance with

Conjecture 3.1 below) that the coarse moduli of G-bundles has two connected components;

the neutral connected component is the classical Prym abelian variety ker(1+σ∗)0 ⊂ Jac(Y );

here σ∗ : Jac(Y ) → Jac(Y ) is the induced involution on the Jacobian. Fix a line bundle M

on Y which satisfies NormY/X(M) ≃ det(π∗(OY ))−1 (then σ∗M ≃ M−1 and such a line

bundle corresponds to M0 as above). If L is a line bundle over Y with NormY/X(L) ≃ OX

(so that it corresponds to a G-torsor), then

det(π∗(L ⊗M)) ≃ det(π∗(OY )) ⊗ NormY/X(L ⊗M)

≃ det(π∗(OY )) ⊗ NormY/X(L) ⊗ NormY/X(M) ≃ OX .

This shows that if L is a G-torsor, the sheaf π∗(L ⊗M) gives a SL2-bundle on X.

2.c. Suppose that char(k) 6= 2 and that π : X̃ → X is a (possibly ramified) double cover

with involution σ. Consider the moduli stack of pairs of (E , ψ) of a SLn-bundle E over

X̃ ×k S together with a perfect OX×kS-bilinear pairing

(2.2) ψ : π∗(E) × π∗(E) → π∗(OX̃×kS)

which is σ-hermitian in the sense that it satisfies ψ(a · v,w) = ψ(v, σ(a) · w), ψ(w, v) =

σ(ψ(v,w)) for a ∈ π∗(OX̃×kS). Set G := SUn(X̃/X) = (ResX̃/XSLn)σ; here σ acts on

g ∈ SLn(OX̃) by g 7→ Jn · σ(gtr)−1 · J−1
n where Jn is the anti-diagonal unit matrix of size

n. Then the special unitary group G is a parahoric group scheme over X and we can see

that MG/X is the moduli stack of pairs above. This group scheme G is not of the “constant

type” considered in §2.a.

3

We continue with the assumptions and notations of Section 2. The first conjecture

concerns the set of connected components, and is of Kottwitz style.
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Conjecture 3.1. Denote by π1(Gη̄) the algebraic fundamental group of Gη̄ in the sense of

Borovoi. Then

π0(MG/X) = π1(Gη̄)Γ.

Here on the right hand side are the co-invariants under Γ = Gal(η̄/η).

Remarks 3.2. In particular, if Gη̄ is semi-simple and simply connected, then MG/X should

be connected. This would follow from Conjecture 3.3 below and the fact that LH is con-

nected for any semi-simple simply connected groupH over k((t)), cf. 1.) in the Introduction.

If G is constant, i.e comes by extension of scalars from a group scheme G over k, then the

action of Γ on π1(Gη̄) is trivial. Over C the statement then follows from the topological

uniformization theorem, [S3], Cor. 4.1.2. �

The second conjecture concerns the uniformization of MG/X .

Conjecture 3.3. Let x ∈ X(k). Let P be a G-torsor over X ×k S. If Gη is semi-simple,

then after an fppf base change S′ → S, the restriction of P ×S S
′ to (X r {x}) × S′ is

trivial.

Of course, one can also state a version of this conjecture involving a non-constant family of

smooth connected projective curves, but this version would suffice to obtain a uniformization

of MG/X . Namely, assuming Gη semi-simple, and choosing a uniformizer at x, we would

have an isomorphism

(3.1) MG/X = ΓXr{x}(G)\LGηx/L
+Gx.

Here ΓXr{x}(G) denotes the ind-group scheme with k-rational points equal to

ΓXr{x}(G)(k) = Γ(X r {x},G) .

More precisely, the expression (3.1) represents the affine partial flag variety Fx = LGηx/L
+Gx

as a ΓXr{x}(G)-torsor over MG/X . We will denote by px the uniformization morphism,

(3.2) px : Fx → MG/X .

Remarks 3.4. In the constant case G = G ×Spec k X, this is the theorem of Drinfeld and

Simpson [DS]. In the case S = Spec (k), the statement in this special case was proved much

earlier by Harder [Ha]. Even in the context of the examples in 2.a, derived from constant

group schemes, the conjecture is not trivial. �

The third conjecture concerns the Picard group of MG/X . For this we assume that Gη

is semi-simple, simply connected, and absolutely simple. Let us also assume that Gηx splits

over a tamely ramified extension of Kx = k((t)). We recall from the theory of twisted loop

groups [PR] that there is a natural homomorphism

(3.3) cx : Pic(Fx) → Z,
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the central charge (at x). Denoting by X∗(G(x)) the character group of the fiber G(x) =

G ×X Spec (k(x)) of G at x, we have an exact sequence

(3.4) 0 → X∗(G(x)) → Pic(Fx)
cx−→ Z → 0 ,

which comes about as follows. There is a central extension L̃Gx of LGx by Gm which acts

on all line bundles on Fx. Let L̃+Gx be the restriction of this central extension to L+Gx.

This defines a central extension L̃+Gx of L+Gx by Gm, and an isomorphism

(3.5) X∗(L̃+Gx)
∼

−−→ Pic(Fx) .

On the other hand, the reduction homomorphism L+Gx → G(x) defines the exact sequence

(3.6) 0 → X∗(G(x)) → X∗(L̃+Gx) → Z → 0 ,

which together with (3.5) yields the exact sequence (3.4).

Note that if Gx is a special maximal parahoric group, then G(x) is an extension of a

semi-simple group by a unipotent group, and so X∗(G(x)) is trivial; this applies to all but

finitely many points x ∈ X(k). If Gx is a hyperspecial maximal parahoric group, then

G(x) is semi-simple. Let us denote by Bad(G) the set of points x ∈ X(k) where Gx is not

hyperspecial.

Conjecture 3.5. Let Gη be semi-simple, simply connected and absolutely simple. We also

assume that Gηx splits over a tamely ramified extension of Kx, for all x ∈ X(k).

(i) For any x ∈ X(k), consider the homomorphism

p∗x : Pic(MG/X) → Pic(Fx)

induced by the uniformization morphism. Composing with cx, we obtain a homomorphism

Pic(MG/X) → Z. If x is not in Bad(G) then this homomorphism is non-zero and indepen-

dent of x. Let us denote this homomorphism by c or cG/X .

(ii) Denote the kernel of cG/X by Pic(MG/X)0. There is a natural isomorphism

Pic(MG/X)0 ≃
⊕

x∈X(k)

X∗(G(x)).

Remarks 3.6. 1) In the case that G = G ×Spec k X, the point (i) was proved by Sorger

[S1] for k = C and by Faltings [Fa1] for arbitrary k. In this case, (ii) states that the

homomorphism Pic(MG/X) → Pic(Fx) is injective, which is also proved in these papers. In

the case that G is derived from a constant group scheme, as described at the end of section

2.a, the point (ii) is proved by Laszlo and Sorger in [LS].

2) For any x ∈ X(k), we can consider the homomorphism cG/X,x : Pic(MG/X) → Z

obtained by composing p∗x and cx as above. As was pointed out by Heinloth (see also

[He], Remark 15 (4)) we can have cG/X,x 6= cG/X if x is in Bad(G). Indeed, suppose that

G = SUn(X̃/X) as in §2.c where π : X̃ → X is a ramified double cover and suppose

that x ∈ X(k) is a branch point. Then G(Ox) is a special but not hyperspecial parahoric

subgroup. Set H = ResX̃/XSLn. Then MH/X ≃ MSLn/X̃ and the Picard group of MH/X is
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isomorphic to Z with generator given by the determinant of cohomology of the universal SLn-

bundle over X̃. Denote by δ the image of this element under Pic(MH/X ) → Pic(MG/X).

Suppose that y ∈ X(k) is not a branch point. Then Hy ≃ SLn × SLn, Gy ≃ SLn, with

the embedding Gy →֒ Hy given by A 7→ (A, Jn · (Atr)−1 · J−1
n ). The corresponding map

on Picard groups Pic(FHy ) → Pic(FGy ) is therefore given by the sum Z × Z → Z. Hence,

we can see that cG/X,y(δ) = 2. Assume now that n is even. Since x is a branch point, by

[PR] 10.4, the morphism FGx −→ FHx given by Gx →֒ Hx induces an isomorphism on Picard

groups. Hence, we can see that cG/X,x(δ) = 1. �

We now come to the conformal blocks. Before this, we recall some facts from [PR] §10

about the Picard group of a partial affine flag variety F = LH/L+P . Here we are assuming

that the group H over k((t)) is semi-simple, simply connected and absolutely simple, and

that H splits over a tamely ramified extension of k((t)). Let {αi | i = 1, . . . , r} be the set of

affine roots corresponding to the walls bounding the facet in the Bruhat-Tits building fixed

by the parahoric P . For each i there is a closed embedding of a projective line into F ,

P1
αi

→֒ F .

By associating to each line bundle on F the degree of its restriction to P1
αi

for i = 1, . . . , r,

we obtain an isomorphism (cf. [PR] Prop. 10.1),

(3.7) deg : Pic(F)
∼

−−→
⊕r

i=1
Z · ǫi .

A line bundle L on F is called dominant if its image under (3.7) has all coefficients ≥ 0.

Assume now that char(k) = 0. Then the Lie algebra of the universal extension L̃H acts

on the space of global sections H0(F ,L), and if L is dominant, this representation is the dual

of the integrable highest weight representation corresponding to the element deg(L). More

precisely, we choose a minimal parahoric subgroup contained in P (corresponding to an

alcove in the Bruhat-Tits building containing the facet fixed by P ) and set the coefficients

of all simple affine root αi not occurring in (3.7) equal to zero. Then deg(L) is a dominant

integral weight λ in the sense of Kac-Moody theory, and by Kumar and Mathieu [Ku1],

[Ku2], [Ma],

(3.8) H0(F ,L) = (Vλ)∗ ,

where on the RHS appears the dual of the integrable highest weight representation attached

to λ.

Let us spell out the above remarks in the standard case: assume that H is constant, i.e.,

H = G = G0 ×k k((t)). To simplify notations, let us assume also that the parahoric P is an

Iwahori subgroup which is contained in the maximal parahoric subgroup P0 = G0 ×k k[[t]].

Hence F is the full affine flag variety. The target of the degree homomorphism can then be

written in terms of the fundamental weights,

(3.9) deg : Pic(F)
∼

−→
⊕l

i=0
Z · ǫi .
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Let us fix a maximal torus T in the Borel subgroup of G0 corresponding to P in the sense

of section 2.a. We consider T as a subgroup of L+P0, and let T̃ be the inverse image of T

in L̃G. Then the definition of L̃G is such that each character of T̃ defines a line bundle on

F and that in this way we obtain an isomorphism

(3.10) X∗(T̃ )
∼

−→ Pic(F) .

There is a unique splitting of the central extension L̃G over L+P0. Hence we can write

canonically T̃ = T × Gm, and

(3.11) X∗(T̃ ) = X∗(T ) ⊕ Z .

In terms of this decomposition the composed map X∗(T̃ )
∼
−→ Pic(F)

∼
−→

⊕

Z · ǫi, is given

as follows,

(3.12) λ = (λ(0), ℓ) 7→
∑l

i=1
ni · ǫi +

(

ℓ−
∑l

i=1
niri

)

· ǫ0 .

Here λ(0) =
∑l

i=1 niǫi and the positive integers r1, . . . , rl are the labels of the vertices of

the dual Dynkin diagram (denoted a∨i in Kac’s book [Kac], p. 79). Note that (λ(0), ℓ)

is dominant if and only if λ(0) is dominant and ℓ −
∑l

i=1 niri ≥ 0. The last inequality

can also be written in terms of the coroot θ∨ for the highest root in X∗(T )R. Indeed,

θ∨ =
∑l

i=1 riα
∨
i , in terms of the simple coroots α∨

1 , . . . , α
∨
l . Hence the second condition for

being dominant can be written in the familiar form,

〈θ∨, λ(0)〉 ≤ ℓ .

We now return to the global situation and a general parahoric group scheme G over X.

A line bundle L on MG/X is called dominant if p∗x(L) is a dominant line bundle on Fx for

every x.

Conjecture 3.7. Let char(k) = 0, and assume as before that Gη is semi-simple, simply

connected and absolutely simple, and that Gηx splits over a tamely ramified extension of Kx

for all x ∈ X(k). Let S be a non-empty finite subset of X(k) containing Bad(G). Let L be

a dominant line bundle on MG/X such that the central charge cG/X,x(L) is constant for x

in X. There is a canonical isomorphism of finite-dimensional vector spaces

H0(MG/X ,L) ≃

[

⊗

x∈S
H0(Fx, p

∗
x(L))

]H0(X\S,Lie(G))

.

Here the action of H0(X \ S,Lie(G)) comes from the fact that the homomorphism

H0(X \ S,Lie(G)) →
⊕

x∈S
Lie(Gηx)

lifts uniquely to the factor space of
⊕

x∈S Lie(L̃Gηx) where the central elements in the central

extensions for all x ∈ S are identified (here the assumption that S ⊃ Bad(G) enters). It is

known [B], cor. 2.4, cf. also [S1], Prop. 2.3.2, that if S is enlarged to S′ ⊃ S, the RHS does

not change.
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Remarks 3.8. In the “classical” theory, when G is constant, i.e., where G = G ×Spec k X,

one considers data which formally look very similar to the data above. Indeed, in the

classical theory, just as here, one also fixes a finite set S of points, and dominant integral

weights, one for each point xi ∈ S. These are written traditionally as in (3.12) above in the

form λi = (λ
(0)
i , ℓ), where λ

(0)
i is a dominant weight for G and ℓ ∈ Z is the central charge

with 〈θ∨, λ
(0)
i 〉 ≤ ℓ. These additional points and dominant integral weights are introduced

to formulate and prove the fusion rules, which ultimately lead to an explicit determination

of the dimension of the vector spaces in Conjecture 3.7.

On the other hand, in [LS] the set S and the dominant integral weights λi appear for

essentially the same reason as here (namely, to describe H0(Fxi
, p∗xi

(L)) for xi ∈ Bad(G)),

except that here the situation is more general. In particular, in [LS], Thm. 1.2., the set

S consists of Bad(G) and one additional point. In [BL], the parahoric group scheme G is

the constant group scheme SLn and the set Bad(G) is empty, and S consists of an arbitrary

point of X, comp. also [B], Remarks in (2.6).

Beauville in [B], Part I, treats formal properties of the spaces of conformal blocks which

appear in [LS] and only mentions in passing the geometric interpretation by the LHS in

Conjecture 3.7. �

In the classical case, when G = G×Spec k X, the dimension of the RHS in Conjecture 3.7

has been calculated by Faltings [Fa1], [Fa3] by using the factorization rules and the fusion

algebra, at least when G is a classical group or of type G2, comp. also [B], Part III. It would

be interesting to have a Verlinde type dimension formula in the case of a general parahoric

group scheme. Also, in the light of [Te], it should be possible to go beyond the case of

dominant line bundles on MG/X and also consider higher cohomology groups.
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