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Drinfeld proved that the p-adic upper half space Ωd
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1. Introduction

Let F be a finite extension of Qp, with ring of integers OF and uniformizer
π. In [5], Drinfeld defines a certain moduli problem of formal OF -modules.
Let us recall Drinfeld’s theorem.

A formal OF -module over a scheme S such that p is locally nilpotent in
OS is a p-divisible formal group X over S with an action of OF ,

ι : OF −→ EndX .

If X is defined over an OF -scheme S, the Lie algebra LieX is naturally an
OF -module. If this coincides with the OF -module structure given by dι we
call X a strict formal OF -module.

LetD be a central division algebra of invariant 1/n over F , with maximal
order OD. Drinfeld defines a special formal OD-module over an OF -scheme
S to be a strict formal OF -module of height n2[F : Qp] equipped with an
action ι : OD → End(X) of OD that extends the action of OF and such
that, in each geometric point of S, the eigenspaces of LieX under the action
of an unramified extension OF̃ of OF of degree n contained in OD are all
one-dimensional.

It is easy to see that if S = Spec k̄ is the spectrum of the algebraic closure
of the residue field of OF , there is a unique special formal OD-module X over
S, up to OD-linear isogeny.

Let OF̆ be the ring of integers in the completion of the maximal unram-

ified extension F̆ of F . Drinfeld defines as follows a set-valued functor M
on the category NilpOF̆

of OF̆ -schemes S such that the ideal sheaf πOS is
locally nilpotent: the functor associates to S ∈ NilpOF̆

the set of isomor-
phism classes of triples (X, ι, ρ), where (X, ι) is a special formal OD-module
over S and where ρ : X ×S S̄ → X ×Spec k̄ S̄ is a OD-linear quasi-isogeny of

height 0. Here S̄ = S×SpecOF̆
Spec k̄. Drinfeld’s theorem is that this functor

is representable by a very specific formal scheme, namely,

(1.1) M � Ω̂n
F ×Spf OF

Spf OF̆ .

Here Ω̂n
F is the formal scheme over Spf OF defined by Deligne, Drinfeld and

Mumford, cf. [5]. It has as generic fiber (associated rigid-analytic space)
Drinfeld’s p-adic halfspace associated to F ,

(Ω̂n
F )

rig = Pn−1
F \

⋃
H/F

H.

Here H ranges over the hyperplanes of Pn−1
F defined over F .
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Drinfeld’s theorem has many applications, in particular to the p-adic
uniformization of Shimura varieties, cf. [21]. It also has applications to arith-
metic, e.g. [16, 23].

The generic fiber of Drinfeld’s formal moduli space admits a tower of
finite étale coverings (via level structures on the Tate module of the universal
p-divisible group). As such it is a prominent example of a local Shimura
variety, cf. [20].

Let G be a reductive group over the local field F , let b be an element
of G(F̆ ) and let {μ} be a conjugacy class of minuscule cocharacters of GF .
One requires that the σ-conjugacy class [b] of b is neutral acceptable, i.e.,
[b] ∈ B(G, {μ}), cf. [10]. The triple (G, b, {μ}) is called a local Shimura
datum over F , cf. [20]. One expects to be able to attach to these data a
local Shimura variety which satisfies obvious functorial properties and more.
This is a tower of rigid-analytic spaces M(G, b, {μ}) = {MK | K ⊂ G(F )}
indexed by the open compact subgroups of G(F ), defined over the reflex field
E = E(G, {μ}), cf. [20]. By [21], local Shimura varieties exist in many cases.
In the PEL case, local Shimura varieties are related to Shimura varieties
by non-archimedean uniformization, cf. [21, Thm. 6.36]. One also expects
to have integral models over OE of MK , for judicious choices of the open
compact subgroup K, i.e., formal schemes over Spf OĔ with Weil descent
datum to Spf OE whose associated rigid-analytic space is MK .

In Drinfeld’s case G = D×, (the linear algebraic group over F associated
to) the multiplicative group of D. The cocharacter {μ} of GF � GLn,F is
(1, 0, . . . , 0) and b is a representative of the unique element of B(G, {μ}).
Drinfeld’s theorem says not only that the memberMK , for the level subgroup
K = O×

D, is the Drinfeld p-adic upper half space attached to F , but also
that the moduli problem M defines an integral model of MK , which is even
a π-adic formal scheme with semi-stable reduction.

In the theory of local Shimura varieties, the following question arises.
Assume that b is a representative of the unique basic element of B(G, {μ}).
Let ε be a central cocharacter of G defined over F , and set {μ′} = {με}.
Then E(G, {μ}) = E(G, {μ′}). Let b′ be a representative of the unique basic
element of B(G, {μ′}). The question is whether the local Shimura varieties
M(G, b, {μ}) and M(G, b′, {μ′}) are Galois twists of each other (unramified
twists if the connected center of G splits over an unramified extension).

In a similar vein, start with a local Shimura datum (G, b, {μ}) over F
such that b is basic. Let G′ = ResF/Qp

(G). Then G′ ⊗Qp
Q̄p is a product of

G ⊗F Q̄p indexed by the embeddings of F in Q̄p. We fix an embedding by
choosing an isomorphism F̄ ∼= Q̄p. Define the conjugacy class {μ0} ofG′ to be
{μ} for this fixed embedding and to be trivial for all other embeddings. Then
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E(G′, {μ0}) ⊂ E(G, {μ}) with respect to the chosen isomorphism. Let ε be a
central cocharacter of G′ defined over F ⊂ Q̄p. We set {μ′} = {μ0ε}. We still
have E(G′, {μ′}) ⊂ E(G, {μ}). Let b′ be a representative of the unique basic
element in B(G′, {μ′}). The question is whether the local Shimura varieties
M(G, b, {μ}) and M(G′, b′, {μ′}) ⊗E(G′,{μ′}) E(G, {μ}) are Galois twists of
each other (unramified twists if the connected center of G′ splits over an
unramified extension of F ).

The goal of this paper is to prove that this last question has an affirma-
tive answer for the Drinfeld datum (G, b, {μ}). But, even better, we construct
integral models for the members corresponding to the natural maximal level
subgroups of both local Shimura varieties and show that they are isomorphic,
at least when F/Qp is unramified1. These integral models are constructed
by posing a moduli problem of p-divisible groups. This is substantially dif-
ferent from Drinfeld’s moduli problem (unless F = Qp), which is a moduli
problem of strict formal OF -modules. This contrast between relative and
absolute Rapoport-Zink spaces is important also in other contexts: in the
work of A. Mihatsch on the Arithmetic Fundamental Lemma [15] and in
joint work of us with S. Kudla [13] on p-adic uniformization of Shimura
curves. In fact, the approach in [13] is modelled on the present paper, but
involves in addition a polarization.

There is another well-known local Shimura datum (G, b, {μ}), referred
to as the Lubin-Tate datum. Here G = GLn, {μ} = (1, 0, . . . , 0), and [b] ∈
B(G, {μ}) is the unique basic element. In this case, the corresponding local
Shimura variety again has an explicit integral model for its member MK ,
where K = GLn(OF ). For this local Shimura variety, we also give a positive
answer to the question raised above, again in the strong form pertaining
to integral models. This theorem is applied in the work of B. Smithling,
W. Zhang and the second author on the Arithmetic Gan-Gross-Prasad con-
jecture [22].

It should be pointed out that the two cases of integral models of MK

considered here are essentially the only ones known explicitly, which justifies
singling out these special cases of a general problem.

The lay-out of the paper is as follows. In section 2 we formulate our
moduli functor and state our main results. In section 3, we discuss the con-
ditions on the Lie algebras in the formulation of the moduli problem. In
section 4 we establish an isomorphism between our moduli functor when

1In his talk 14 July 2016 in the Bonn Arbeitsgemeinschaft Arithmetische Ge-
ometrie, P. Scholze explained his proof of Conjecture 2.6 below, i.e., how to remove
the unramifiedness hypothesis. His proof is based on our Theorem 2.8, but uses in
addition the integral p-adic Hodge theory of B. Bhatt, M. Morrow and P. Scholze
(arXiv:1602.03148), and more. Scholze will publish his proof elsewhere.
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restricted to k̄-schemes with the original Drinfeld moduli functor. The main
tool here is the theory of displays. In section 5 we determine the local struc-
ture of our moduli scheme. Here the main tool is the theory of local models
of Rapoport-Zink spaces. In section 6 we prove the compatibility theorem
with the Drinfeld moduli functor in the generic fiber. This proof is due to
P. Scholze, and uses his theory of p-divisible groups over OC , cf. [24]. In
section 7 we prove our integral representability conjecture in the case where
F/Qp is unramified. The proof uses the theory of relative displays of T. Ah-
sendorf. In the final section 8 we give the Lubin-Tate variant of our main
theorem.

2. Formulation of the main results

Let F be a field extension of degree d of Qp. We denote by OF the ring of
integers and by κ the residue field. We write f = [κ : Fp] for the inertia
index and d = ef .

Fix n ≥ 2. Let Φ = HomQp
(F, Q̄p) be the set of field embeddings. We

fix an embedding ϕ0 : F → Q̄p. Let r : Φ → Z be a function such that

(2.1) rϕ =

{
1, if ϕ = ϕ0

0 or n, if ϕ 	= ϕ0.

The reflex field E ⊂ Q̄p of r is characterized by

Gal(Q̄p/E) = {σ ∈ Gal(Q̄p/Qp) | rσϕ = rϕ for all ϕ}.

We have ϕ0(F ) ⊂ E, and we consider E as a field extension of F via ϕ0.
Let D be a central division algebra of invariant 1/n over F . We will

consider p-divisible groups X of height n2d over OE-schemes S, with an
action of the ring of integers OD in D,

ι : OD −→ End(X).

We will need to impose conditions on the induced action of OD on LieX.
The first condition is the Kottwitz condition

(2.2) char(ι(x)|LieX) =
∏

ϕ
ϕ
(
chard (x)(T )

)rϕ , ∀x ∈ OD .

Here chard(x) denotes the reduced characteristic polynomial of x, a polyno-
mial of degree n with coefficients in OF . The RHS is a polynomial in OE [T ].
It becomes a polynomial with coefficients in OS via the structure morphism.
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As we will show (cf. Proposition 2.2), the Kottwitz condition is all we
need to yield a good moduli problem when F/Qp is unramified. When F/Qp

is ramified, the Kottwitz condition is too weak. To state the additional
condition we impose, we need some preparation.

Let F t be the maximal unramified subfield of F . We will write Ψ =
HomQp

(F t, Q̄p) for the set of field embeddings. Let ψ0 = ϕ0|F t . For an

embedding ψ : F t → Q̄p we set

(2.3)
Aψ = {ϕ : F → Q̄p | ϕ|F t = ψ, and rϕ = n}
Bψ = {ϕ : F → Q̄p | ϕ|F t = ψ, and rϕ = 0}.

Also, let aψ = |Aψ| and bψ = |Bψ|. For any OE-scheme S we have a decom-
position of OF t ⊗Zp

OS-modules

(2.4) OF t ⊗Zp
OS =

⊕
ψ∈Ψ

OS ,

where the action of OF t on the ψ-th factor is via ψ. Hence for (X, ι) over S,
we obtain a decomposition into locally free OS-modules,

(2.5) LieX =
⊕

ψ∈Ψ
LieψX .

The rank of LieψX is given by (2.2) as

(2.6) rank LieψX = aψn
2 + εψ n ,

where εψ is equal to 1 if ψ = ψ0, and is equal to 0 if ψ 	= ψ0.

Let π be a uniformizer in OF . Consider the Eisenstein polynomial Q(T )
of π in OF t [T ]. We consider the image Qψ(T ) of Q(T ) in Q̄p[T ] under ψ, for
ψ ∈ Ψ. In Q̄p[T ] this has a decomposition into linear factors,

(2.7) Qψ(T ) =
∏

{ϕ| ϕ|Ft=ψ}
(T − ϕ(π)).

Note that Gal(Q̄p/E) acts on the index set of this product, as is clear since
the LHS is a polynomial in OE [T ]. We therefore obtain a decomposition in
OE [T ]

(2.8)
Qψ0

(T ) = Q0(T ) ·QAψ0
(T ) ·QBψ0

(T ), resp.

Qψ(T ) = QAψ
(T ) ·QBψ

(T ), for ψ 	= ψ0.
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Here

Q0(T ) = T −ϕ0(π), QAψ
(T ) =

∏
ϕ∈Aψ

(T −ϕ(π)), QBψ
(T ) =

∏
ϕ∈Bψ

(T −ϕ(π)).

Indeed, the action of Gal(Q̄p/E) stabilizes the corresponding subsets in the
index set on the RHS of (2.7). Using the structure morphism OE → OS ,
we obtain an endomorphism QAψ

(ι(π)) of the OS-module Lieψ X that we
denote by QAψ

(ι(π)|Lieψ X). We similarly define QBψ
(ι(π)|Lieψ X) and

Q0(ι(π)|Lieψ0
X) = ι(π)|Lieψ0

X − ϕ0(π)IdLieψ0 X .
The additional conditions we impose, that we call the Eisenstein condi-

tions, are now the following identities of endomorphisms

(2.9)

(
Q0 ·QAψ0

)
(ι(π)|Lieψ0

X) = 0,

n+1∧ (
QAψ0

(ι(π)|Lieψ0
X)

)
= 0,

QAψ
(ι(π)|LieψX) = 0, ∀ψ 	= ψ0.

Remark 2.1. We note that the Eisenstein conditions only depend on the
restriction of the OD-action to OF . It will follow a posteriori from Corol-
lary 5.9 (flatness) that the moduli problem formulated using the Eisenstein
conditions is independent of the choice of the uniformizer π.

We first note the following statement.

Proposition 2.2. If F/Qp is unramified, the Eisenstein conditions are im-
plied by the Kottwitz condition.

Proof. When F = F t is unramified over Qp, the uniformizer π lies in F t

and Q(T ) = T − π is a linear polynomial. Furthermore, Aψ has at most one
element for ψ 	= ψ0, and Aψ0

= ∅. Let ψ 	= ψ0. If Aψ = ∅, then Lieψ X = (0)
and the Eisenstein condition relative to the index ψ is empty; if Aψ has one
element, the Eisenstein condition relative to the index ψ is just equivalent to
the definition of the ψ-th eigenspace in the decomposition (2.5). Something
analogous applies to the index ψ0.

The following statement shows that the moduli problems considered in
this paper are indeed generalizations of Drinfeld’s moduli problem. We call
the Drinfeld function the function r◦ with r◦ϕ = 0, ∀ϕ 	= ϕ0. In this case
Er◦ = F .

Proposition 2.3. Assume that r = r◦. Then a p-divisible group (X, ι)
as above, i.e., satisfying the Kottwitz condition (2.2) and the Eisenstein
conditions (2.9), is a special formal OD-module in the sense of Drinfeld [5].
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Proof. In this case, Aψ = ∅, ∀ψ. Hence Lieψ X = (0) for ψ 	= ψ0, and
Lieψ0

X is a locally free OS-module of rank n. Also, the endomorphism
QAψ0

(ι(π)|Lieψ0
X) is the identity automorphism. Hence the first Eisenstein

condition implies that Q0(ι(π)|Lieψ0
X) = 0. Since Q0(T ) = T − ϕ0(π), it

follows that ι(π) acts on Lieψ0
X through the structure morphism OE → OS .

The same is true for all elements of OF t . Hence X is a strict formal OF -
module. Now the Kottwitz condition (2.2) tells us that the action of OD on
X is special, which proves the claim.

Definition 2.4. Fix a function r : Φ → Z≥0, with corresponding reflex field
E = Er. A p-divisible group X with action ι by OD over a OE-scheme S is
called an r-special OD-module, if X is of height n2d and (X, ι) satisfies the
Kottwitz condition and the Eisenstein conditions relative to r.

Hence the previous proposition shows that a r◦-special formal OD-mod-
ule is just a special formal OD-module in the sense of Drinfeld [5].

For the formulation of the moduli problem we will make use of the
following lemma. The lemma follows from section 4, more precisely, Corollary
4.13. Alternatively, the lemma follows from the fact that B(G, {μ}) has only
one element, cf. [10], §6. Here G = ResF/Qp

(D×) is the linear algebraic group
over Qp associated to D×, and {μ} is the conjugacy class of cocharacters
with component (1, 0(n−1)) for ϕ0 and component (1(n)), resp. (0(n)) for
ϕ 	= ϕ0, depending on whether rϕ = n or rϕ = 0.

Lemma 2.5. Fix r. Let k̄ be an algebraic closure of the residue field κE of
OE. Any two r-special p-divisible groups over k̄ are isogenous by a OD-linear
isogeny (which may be taken to be of height 0).

Now fix such a pair (X, ιX) over k̄. Denote by OĔ the ring of integers
in the completion of the maximal unramified extension of E. Then k̄ is the
residue field of OĔ . We consider the following set-valued functor Mr on
NilpOĔ

. It associates to S ∈ NilpOĔ
the set of isomorphism classes of triples

(X, ι, �), where (X, ι) is an r-special OD-module over S, and where

(2.10) � : X ×S S̄ −→ X×Spec k̄ S̄

is a OD-linear quasi-isogeny of height zero. Here S̄ = S ⊗OĔ
k̄. Our main

conjecture can now be stated as follows.

Conjecture 2.6. 2 The functor Mr is represented by Ω̂n
F ⊗̂OF

OĔ.

Our main results towards this conjecture are the following.

2See the footnote 1.
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Theorem 2.7. The conjecture is true if F/Qp is unramified.

If F/Qp is ramified, we can still prove the following properties of Mr

which are analogous to the properties of Ω̂n
F ⊗̂OF

OĔ .

Theorem 2.8. The formal scheme Mr is flat over Spf OĔ, and is π-adic.
All its completed local rings are normal. Furthermore,

(i) there is an isomorphism between the special fibers

Mr ×Spf OĔ
Spec k̄ � Ω̂n

F ×Spf OF
Spec k̄.

(ii) there is an isomorphism between the generic fibers

Mrig
r � (Ω̂n

F ×Spf OF
Spf OĔ)

rig.

Here the proof of point (ii) is due to P. Scholze.

We also prove the following variant of this theorem in the Lubin-Tate
context. Let F and ϕ0 be as before, fix an integer n ≥ 2 and let r and E = Er

have the same meaning as before. We now consider p-divisible formal groups
X of height nd over OE-schemes S with an action ι : OF −→ End(X). We
impose the following Kottwitz condition,

(2.11) char (ι(x) | LieX) =
∏

ϕ
(T − ϕ(x))rϕ , x ∈ OF .

In addition, we impose Eisenstein conditions (where the second condition in
(2.9) is changed into

2∧(
QAψ0

(ι(π)|Lieψ0
X)

)
= 0,

see (8.2)).

We fix a pair (X, ιX) over k̄ as above. It is easy to see that X is unique
up to OF -linear isogeny. We may therefore define a functor MF

r on NilpOĔ

analogous to the functor Mr above. The formal scheme representing this
functor will be denoted by the same symbol. If r = r◦ is the Drinfeld func-
tion, then MF

r◦ can be identified with the Lubin-Tate deformation space
(this follows from Proposition 2.3). Our main result in this context is that
this continues to hold for arbitrary r.

Theorem 2.9. The functor MF
r is representable by Spf OĔ [[t1, · · · , tn−1]].



238 Michael Rapoport and Thomas Zink

3. The Kottwitz and Eisenstein conditions

In this section, we analyze the conditions that can be put on a locally free

module with OD-action. We continue with the same notation as before. In

addition, let Ẽ ⊂ Q̄p be a normal extension of Qp which contains the images

of all Qp-algebra homomorphisms F̃ → Q̄p. We have E ⊂ Ẽ.

We denote by Nrdϕ : D ⊗F,ϕ Ẽ → Ẽ the reduced norm. Using it, we

define the polynomial function

(3.1) Nrdr : D ⊗Qp
Ẽ ∼=

∏
ϕ

D ⊗F,ϕ Ẽ

∏
ϕ Nrd

rϕ
ϕ−→ Ẽ.

If M is a quasicoherent sheaf on a scheme S we denote by VS(M)(T ) =

Γ(T,MT ) the corresponding flat sheaf on the category of S-schemes T . This

sheaf is representable by a scheme over S if M is a finite locally free OS-

module.

We write simply V(D) for the affine space over Qp associated to D. Then

we may regard Nrdr as a polynomial function (= morphism of schemes). It

is defined over E,

(3.2) Nrdr : V(D)E → A1
E .

Clearly this function is homogeneous of degree
∑

ϕ nrϕ.

Let OD be the ring of integers of D. Let F̃ ⊂ D be an unramified

extension of F of degree n. We denote by τ ∈ Gal(F̃ /F ) the Frobenius

automorphism. Then we may write

(3.3) OD = OF̃ [Π], Πn = π, Πa = τ(a)Π, for a ∈ OF̃ .

Here Π is a prime element of OD and π is a prime element of OF .

We denote by V(OD) the corresponding affine space over Zp. We will

now define an integral version of (3.2).

We begin with a general remark. Let S be an OE-scheme and let L be

a finite locally free OS-module with an action of OD, i.e. a morphism of

Zp-algebras

(3.4) ι : OD → EndOS
(L).

We will call (L, ι) an OD-module over S.
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If T is an S-scheme and α ∈ Γ(T,OD ⊗Zp
OT ), we can take the determi-

nant det(α|LT ). This defines a morphism

det L : V(OD)S → A1
S .

Let ϕ ∈ Φ. We define an embedding

OD ⊗OF ,ϕ OẼ → M(n× n,OẼ).

For this we choose an embedding ϕ̃ : F̃ → Q̄p which extends ϕ and define
for x ∈ F̃ ,
(3.5)

x �−→

⎛⎜⎜⎝
ϕ̃(x) 0 . . . 0
0 ϕ̃(τ(x)) . . . 0

. . .
0 0 . . . ϕ̃(τn−1(x))

⎞⎟⎟⎠ , Π �−→

⎛⎜⎜⎝
0 1 0 . . . 0
0 0 1 . . . 0

. . .
ϕ(π) 0 0 . . . 0

⎞⎟⎟⎠ .

Consider the standard M(n × n,OẼ)-module On
Ẽ
. Via restriction of

scalars

OD ⊗Zp
OẼ → OD ⊗OF ,ϕ OẼ → M(n× n,OẼ),

we obtain a OD ⊗Zp
OẼ-module Pϕ. We define the OD ⊗Zp

OẼ-module

Pr =
⊕

P rϕ
ϕ .

This module defines a polynomial function Nrdr : V(OD)OẼ
→ A1

OẼ
,

Nrdr(ξ) = det(ξ|Pr ⊗OẼ
R), ξ ∈ OD ⊗Zp

R,

where R is an arbitrary OẼ-algebra. Similarly, the module Pϕ defines a poly-
nomial function Nrdϕ : V(OD)OẼ

→ A1
OẼ

. The polynomial function Nrdr is

invariant under Gal(Ẽ/E) and therefore defines a polynomial function

(3.6) Nrdr : V(OD)OE
→ A1

OE
.

It follows from (3.5) that Π acts on Pϕ ⊗OẼ
κẼ as zero. Therefore the latter

is a module over (OD/ΠOD) ⊗OF̃
κẼ . We see that the base change Nrdϕ

factors through a polynomial function

(Nrdϕ)κẼ
: V(OD/ΠOD)κẼ

→ A1
κẼ

.

We obtain that (Nrdr)κẼ
factors too,

(Nrdr)κẼ : V(OD/ΠOD)×Spec Fp
SpecκẼ → A1

κẼ
.
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The affine algebra on the left hand side is an integral domain. Therefore
(Nrdϕ)κẼ

is a non zero-divisor as an element of this algebra. This remains
true after base change to any κẼ-algebra R.

Definition 3.1. Let S be an OE-scheme and let (L, ι) be an OD-module
over S. We say that (L, ι) satisfies the Kottwitz condition (Kr) with respect
to r, if

(3.7) det L = (Nrdr)S ,

where the right hand side is the base change with respect to S → SpecOE .

Remark 3.2. By [9], Prop. 2.1.3, the condition is equivalent to the identity
of polynomials in OS [T ] (comp. (2.2))

(3.8) char(ι(x)|L) =
∏

ϕ
ϕ
(
chard (x)(T )

)rϕ , ∀x ∈ OD ;

(this uses Amitsur’s formula, comp. [4], Lemma 1.12).

It is clear that the Kottwitz condition is a closed condition. If the Kot-
twitz condition is fulfilled, we have

rankS L = n
∑
ϕ

rϕ,

because Nrdr is homogeneous of this degree.
Recall the maximal unramified subfield F t ⊂ F and its residue field κ.

We denote by κ̃ the residue field of F̃ . The maximal unramified subfield
of F̃ is denoted by F̃ t. In addition to Ψ = HomQp

(F t, Q̄p), we introduce

Ψ̃ = HomQp
(F̃ t, Q̄p).

We now introduce another condition which will turn out to be weaker
than the Kottwitz condition. Let R be an OẼ-algebra. Let (L, ι) be an OD-
module over R. Then we have the decompositions

(3.9) L =
⊕
ψ∈Ψ

Lψ, L =
⊕
ψ̃∈Ψ̃

Lψ̃.

For example, the second of these decompositions is induced by

OF̃ t ⊗Zp
OẼ =

∏
ψ̃∈Ψ̃

OẼ .

For ψ ∈ Ψ let Φψ the set of all embeddings ϕ : F → Q̄p whose restriction
to F t is ψ. We define
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(3.10) rψ =
∑
ϕ∈Φψ

rϕ

Definition 3.3. Let R be an OẼ-algebra. We say that an OD-module (L, ι)

over R satisfies the rank condition (Rr) with respect to r if, for all ψ̃ ∈ Ψ̃,

(3.11) rankR Lψ̃ = rψ,

where ψ denotes the restriction of ψ̃ to F t. We will write rψ̃ := rψ.

The rank condition is obviously an open condition (the rank goes up
under specialization). It is also a closed condition since

∑
ψ̃ rankR Lψ̃ =

rankL is constant on the base. To check the rank condition it is enough to
check it for the geometric points of SpecR. If R is an arbitrary OE-algebra,
we say that the rank condition is fulfilled, if it is fulfilled with respect to
any base change R → R̃ and an extension of the OE-algebra structure to an
OẼ-algebra structure on R̃. The rank condition is then independent of the
last choice.

Remark 3.4. The rank condition is independent of the choice of the chosen
isomorphism (3.3). Indeed let U ⊂ D be an unramified extension of degree
n of F . Then we could reformulate the rank condition using the action of
OU t ⊗Zp

OẼ . However, this yields the same condition. Indeed, since U and F̃
are isomorphic field extensions of F , there is by Skolem-Noether an element
u ∈ D, such that uF̃u−1 = U . Replacing u by uΠm for a suitable integer m,
we may assume that u ∈ O×

D. We denote by L[u] the R-module L with the
new OD-action

a ·new � = uau−1�.

But the decomposition (3.9) for L[u],

L[u] =
⊕
ψ̃∈Ψ̃

(L[u])ψ̃ ,

is exactly the decomposition coming from the OU t-action on L. Since the
multiplication by u L → L[u] is an isomorphism of OD-modules we obtain
the independence.

We denote by κẼ the residue class field of OẼ . We consider a polynomial
function over a reduced κẼ-algebra R,

(3.12) χ : V(OD)R → A1
R,
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which is multiplicative with respect to the ring structures of these schemes.
We are given for each R-algebra A a multiplicative map

(3.13) χA : OD/pOD ⊗Fp
A → A.

Let a, b ∈ OD/pOD ⊗Fp
A. We claim that

(3.14) χ((a+ (Π⊗ 1)b)) = χ(a).

We regard this as an identity of polynomial functions on V(OD)R×RV(OD)R.
We consider the units of OD as a subscheme G ⊂ V(OD)R. This is dense in
each fiber over R. Therefore it suffices to show (3.14) in the case where a is
a unit. By multiplicativity it suffices to show that

(3.15) χ((1 + (Π⊗ 1)b)) = χ(1).

We may restrict our attention to the universal case where A = R[Y1, . . . , Yt],
which is also reduced.

We have

(1 + (Π⊗ 1)b)p
s

= 1p
s

for some p-power ps. Since A is reduced and χ is multiplicative, we deduce
(3.15).

Therefore (3.13) is equivalent to a functorial map

OD/ΠOD ⊗Fp
A → A.

We have κ̃ = OD/ΠOD. Therefore for each ψ̃ ∈ Ψ̃ = HomFp
(κ̃, κẼ) =

HomQp
(F̃ t, Q̄p), we obtain a polynomial function

(3.16) χψ̃ : OD → κ̃
ψ̃→ κẼ → A.

If SpecR is connected and reduced, we deduce that the only multiplicative
polynomial functions (3.12) have the form

(3.17)
∏
ψ̃

χ
eψ̃

ψ̃
,

for suitable exponents eψ̃. These functions are also defined ifR is an arbitrary
κẼ-algebra.

Lemma 3.5. Let R be a reduced κE-algebra. Let (L, ι) be an OD-module
over R. In particular L is a finitely generated locally free R-module.
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Then the Kottwitz condition (Kr) for (L, ι) is equivalent to the rank
condition (Rr). For an arbitrary OE-algebra R the condition (Kr) implies
the condition (Rr).

Proof. To prove this we make a base change R �→ R ⊗OE
OẼ which is

reduced if R is a reduced κE-algebra. Therefore we may assume that R is a
OẼ-algebra.

The first assertion follows because a polynomial function is uniquely
determined by the numbers eψ̃ in (3.17).

The last assertion depends only on the geometric fibers. In this case
we have either a κẼ-algebra or an OE-algebra of characteristic 0. We have
already seen the first case. The characteristic 0 case is clear.

Proposition 3.6. Let us assume that r = r◦, i.e., rϕ = 0 for ϕ 	= ϕ0. Let R
be a κẼ-algebra. Let (L, ι) be a OD-module over R. Then (L, ι) satisfies the
condition (Kr) iff π annihilates L and the rank condition (Rr) is fulfilled.

The rank condition says in this case that for all ψ̃ : κ̃ → κẼ

rankLψ̃ = 1, if ψ̃|F t = ψ0 = ϕ0|F t , rankLψ̃ = 0, else.

Proof. By Lemma 3.5 we already know that the Kottwitz condition implies
the rank conditions. If a ∈ (OD/pOD)⊗R we have Nrdr(aπ) = 0. Therefore
the Kottwitz condition implies det(π|Lψ̃) = 0. Since Lψ̃ has rank 1, this
shows that π annihilates L.

Assume conversely that the ranks are as indicated and that π annihilates
L. Then we deduce the result from the following Lemma.

Lemma 3.7. Let R be a ring, such that pR = 0. Let n be a natural number.
Let L1, . . . , Ln be locally free R-modules of rank 1. Assume we are given a
chain of homomorphisms Πi : Li → Li+1 and Πn : Ln → L1 such that

Πn ◦Πn−1 ◦ . . . ◦Π1 = 0.

We set L = L1
⊕

. . .
⊕

Ln, and Π = Π1
⊕

. . .
⊕

Πn. This is an endomor-
phism of L such that Πn = 0.

Let v ∈ M(n× n,R) be a diagonal matrix. It induces an endomorphism
v : L → L. We consider an endomorphism of L of the form

v0 + v1Π+ v2Π
2 + . . .+ vn−1Π

n−1,

where the vi are diagonal matrices.
Then

(3.18) detF (v0 + v1Π+ v2Π
2 + . . .+ vn−1Π

n−1) = detF v0.
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Proof. We may assume Li = R. Then Πi is the multiplication by some
element yi ∈ R. Our assumption says

ynyn−1 · . . . · y1 = 0.

One deduces that Πn = 0. We note that Πv = v′Π, where v′ is another diag-
onal matrix, which is obtained from v by cyclically permuting the diagonal
entries.

We may reduce to the universal case where R is the quotient of a polyno-
mial ring R = Fp[xij , yk]/y1 · . . . ·yn, where i ∈ [0, n−1], j ∈ [1, n], k ∈ [1, n].
For fixed i, the xij are the diagonal entries of vi. In this case the ring R is
reduced.

Consider first the case where v0 = E is the unit matrix. We take the
universal case where the ring R is reduced (as above but no indeterminates
x0j). Then we have two commuting operators ρ = v1Π+v2Π

2+. . .+vn−1Π
n−1

and v0. Therefore

(E + ρ)p
s

= Eps

+ ρp
s

But ρp
s

= 0 for ps > n. This implies det(E+ρ)p
s

= 1. Because R is reduced
in the universal case, this implies (3.18) in the case where v0 = E. Clearly
this shows also the case where v0 is an invertible diagonal matrix.

In the general case we consider the universal R as above and its local-
ization,

R ⊂ R[x−1
01 , x

−1
02 , . . . , x

−1
0n ].

Over the bigger ring v0 becomes invertible and therefore the relation (3.18)
holds. Hence it holds also over the subring R.

Let us recall the Eisenstein conditions. We recall the following notation:
For an embedding ψ : F t → Q̄p we set

Aψ = {ϕ : F → Q̄p | ϕ|F t = ψ, and rϕ = n}
Bψ = {ϕ : F → Q̄p | ϕ|F t = ψ, and rϕ = 0}.

We set ψ0 = ϕ0|F t . This gives a partition of the set Φψ,

Φψ0
= Aψ0

∪Bψ0
∪ {ϕ0}, Φψ = Aψ ∪Bψ for ψ 	= ψ0.

Let aψ = |Aψ|, bψ = |Bψ|. Then we have

aψ + bψ + εψ = e = [F : F t],

where εψ = 0 if ψ 	= ψ0, and εψ0
= 1.
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We find (compare (3.10)) that

(3.19) rψ =

{
naψ + 1 if ψ = ψ0

naψ if ψ 	= ψ0.

Let Q(T ) ∈ OF t [T ] be the Eisenstein polynomial of a fixed prime element
π ∈ F . We set Qψ(T ) = ψ(Q(T )) ∈ OE [T ]. We set

QAψ
(T ) =

∏
ϕ∈Aψ

(T − ϕ(π)), QBψ
(T ) =

∏
ϕ∈Bψ

(T − ϕ(π)).

These are polynomials in OE [T ]. Moreover we set Q0(T ) = T −ϕ0(π). Then
we have the decompositions

(3.20)
Qψ(T ) = QAψ

(T ) ·QBψ
(T ), for ψ 	= ψ0

Qψ0
(T ) = Q0(T ) ·QAψ0

(T ) ·QBψ0
(T ).

Let R be an OE-algebra. We will introduce the Eisenstein condition on
a OD-module (L, ι) over R. We have decompositions

OF t ⊗Zp
OE

∼=
∏
ψ∈Ψ

OE , OF t ⊗Zp
R ∼=

∏
ψ∈Ψ

R.

This gives a decomposition

L =
⊕
ψ∈Ψ

Lψ.

Definition 3.8. We say that (L, ι) satisfies the Eisenstein condition (Er)
with respect to r if

(3.21)

((Q0 ·QAψ0
)(ι(π))|Lψ0

) = 0,∧n+1(QAψ0
(ι(π)|Lψ0

)) = 0,

(QAψ
(ι(π))|Lψ) = 0, for ψ 	= ψ0.

This definition applies to any OE-scheme S and any OD-module (L, ι) over
S.

Remarks 3.9. (i) The condition (Er) only depends on the restriction to
OF of the action ι of OD on L. The condition depends on the choice of the
uniformizer π.
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(ii) Let r = r◦, i.e., rϕ = 0 for ϕ 	= ϕ0. In this case E = F . We have two

actions of OF on L. The first is given by OF
ϕ0−→ OE → OS and the second

by ι. By the Eisenstein condition these actions coincide. Indeed, L = Lψ0
,

and aψ0
= 0 for all ψ ∈ Ψ. Therefore the Eisenstein condition (3.21) implies

that ι(π) acts on L as ϕ0(π). The conditions (3.11) imply moreover that ι(a)
for a ∈ OF t acts via ϕ0(a) on L.
(iii) Let F/Qp be unramified, i.e., F = F t. Then the first and the last
Eisenstein conditions are empty. The second Eisenstein condition just says
that rankLϕ0

≤ n.

(iv) Let us assume that S is a κE-scheme. The images of the three polyno-
mials QAψ

(T ), QBψ
(T ) and Q0(T ) in κE [T ] are respectively

T aψ , T bψ , T.

Therefore the Eisenstein conditions are in this case:

(3.22)

ι(π)aψ0+1 = 0 on Lψ0
,

∧n+1(ι(π)aψ0 ) = 0 on ∧n+1 Lψ0
,

ι(π)aψ = 0 on Lψ for ψ 	= ψ0.

Definition 3.10. Let (L, ι) be a OD-module over an OE-scheme S. We say
that (L, ι) satisfies the Drinfeld condition (Dr) with respect to r if it satisfies
the Eisenstein condition (Er) and the rank condition (Rr).

The rank condition makes sense by the remark after Definition 3.3.

Lemma 3.11. Assume that r = r◦, i.e., rϕ = 0 for ϕ 	= ϕ0. Let S be a
κE-algebra.

Then the condition (Dr) implies (Kr).

This is a reformulation of Proposition 3.6.

4. Formal OD-modules

Definition 4.1. Let S be an OE-scheme such that pOS is a nilpotent ideal
sheaf. A p-divisible OD-module over S is a p-divisible group X of height
[D : Qp] = n2d with an action

(4.1) ι : OD → EndX.

In this case LieX is an OD-module in the sense of (3.4). We say that X sat-
isfies (Kr) (3.7), resp. (Rr) (3.11), resp. (Er) (3.21), resp. (Dr) (Definition
3.10) if the OS-module LieX with the OD-action dι does.
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A p-divisible OD-module X which satisfies (Dr) is called an r-special
formal OD-module. The name is justified because we will prove that X has
no étale part. A formal OD-module which satisfies (Dr◦) is also called a
special formal OD-module.

Remarks 4.2. (i) The definition of a special formal OD-module above
coincides with Drinfeld’s definition in [5]. Indeed, in this case r = r◦,
and it follows from Remarks 3.9, (ii) that X is a strict formal OF -module
(the induced action of OF on LieX is via the structure morphism OF =
OE → OS).

(ii) Let A be a p-adic OE-algebra. Let X be a p-divisible group over A
with an action (4.1). Then we define LieX = lim←−LieX ⊗ A/pn. It is still a
OD-module and the definition above makes sense.

Assume that p is locally nilpotent on S. We denote by D(X) the covariant
crystal associated to X. The evaluation D(X)S at S coincides with the Lie
algebra of the universal extension of X.

Let a ∈ OD. We will often write simply a when we mean the action ι(a)
on D(X)S , or the derived action dι(a) on LieX.

Proposition 4.3. Assume that pOS is a locally nilpotent ideal sheaf. Let X
be a r-special formal OD-module of height n2d.

Then D(X)S is locally on S a free OD⊗Zp
OS-module of rank 1. Moreover

X is a formal Lie group.

Proof. We begin with the case where S = Spec k where k is a perfect
field with a κẼ-structure. Let W (k) be the ring of Witt vectors and M =
D(X)W (k) be the covariant Dieudonné module.

We have a bijection of field embeddings

Ψ̃ = Hom(κ̃, k) = Hom(F̃ t,W (k)⊗Q).

We regard ψ̃ ∈ Ψ̃ as a homomorphism ψ̃ : OF̃ t → W (k). We set

Mψ̃ = {m ∈ M | ι(a)m = ψ̃(a)m, for a ∈ OF̃ t} .

We have a direct decomposition

(4.2) M =
⊕

Mψ̃, ψ̃ ∈ Ψ̃.

We denote by σ the Frobenius acting on W (k). The Verschiebung induces a
map

V : Mσψ̃ → Mψ̃.
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Therefore the rank of the W (k)-module Mψ̃ is independent of ψ̃ and there-

fore equal to ne. For each ψ̃ : F̃ t → W (k)⊗Q we have ψ̃τ = σf ψ̃, where τ
is from (3.3). Since rψ̃ depends only on the restriction of ψ̃ to F t, we find
rψ̃ = rψ̃τ . Obviously Π induces a map

Π : Mψ̃τ → Mψ̃.

We consider the commutative diagram

(4.3)

Mσψ̃τ
Π−−−−→ Mσψ̃

V

⏐⏐� ⏐⏐�V

Mψ̃τ
Π−−−−→ Mψ̃ .

By the rank condition, the cokernels of the vertical maps are k-vector spaces
of dimension rψ̃τ = rψ̃. Therefore the lengths of the cokernels of both hori-
zontal ι(Π) are also the same. On the other hand we have∑

ψ̃
lengthMψ̃/ΠMψ̃τ = lengthM/ΠM = nf.

The last equality holds since by assumption lengthM/pM = n2d. We con-
clude that

lengthMψ̃/ΠMψ̃τ = 1, for ψ̃ ∈ Ψ̃.

The last equation tells us that M/ΠM is a free OD/ΠOD ⊗Fp
k-module

of rank 1. By Nakayama’s lemma it follows that M is a free OD ⊗Zp
W (k)-

module. This completes the proof of the first assertion in the case S = Spec k.
To show that X is a formal group we have to show that V is nilpotent

on M/ι(Π)M . We consider the map induced by V on the cokernels of the
horizontal maps of the diagram (4.3). For each ψ̃ this map is either a bijection
or it is zero. It suffices to see that this map is zero for some ψ̃. If not, we
would have a bijection for each ψ̃. We denote the cokernels of the vertical
maps by Lieψ̃ X. Then

LieX =
⊕
ψ̃

Lieψ̃ X.

We conclude that ι(Π) : Lieψ̃τ X → Lieψ̃ X is bijective for each ψ̃. This is
a contradiction since ι(Π) is nilpotent on LieX. Therefore X is a formal
group.

A base change argument shows that our result is true if S is the spectrum
of a field. In the general case we consider a point s ∈ S. We fix a basis m of
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the OD ⊗ κ(s)-module D(X)S ⊗ κ(s). We may assume that S = SpecR and
that m is the image of an element n ∈ D(X)R. It follows from Nakayama’s
Lemma that the homomorphism induced by n

OD ⊗R → D(X)R

is an isomorphism in an open neighbourhood of s.

We state the following consequence separately:

Corollary 4.4. For each ψ̃ ∈ Ψ̃ the cokernel of

Π : D(X)S,ψ̃τ → D(X)S,ψ̃

is a locally free OS-module of rank 1.

Proposition 4.5. Let A be an OE-algebra. Assume moreover that A is a
p-adic integral domain, with fraction field of characteristic 0. Let X be an
r-special formal OD-module over A.

Then LieX satisfies (Kr).

Proof. Let K denote the fraction field of A. By Proposition 4.3, H = D(X)K
is a free OD ⊗K-module of rank 1. We consider the decomposition

H =
⊕
ψ∈Ψ

Hψ.

We can assume that A is a OẼ-algebra. Let ϕ ∈ Φ be an extension of ψ.
We write ϕ|ψ. Then π acts semisimply on Hψ and has eigenvalues ϕ(π)
for ϕ|ψ, each with multiplicity n2. Now L = (LieX)K is a quotient of H.
It has the decomposition L =

⊕
Lψ. Assume first that ψ 	= ψ0. By the

Eisenstein condition, the eigenvalues of π acting on Lψ are among ϕ(π) with
ϕ ∈ Aψ. The multiplicity of the eigenvalues is at most n2. But since by (3.11)
rankLψ = n2aψ, each of these eigenvalues must have exactly multiplicity
n2. We assume now that ψ = ψ0. Then again the eigenspaces of ϕ(π) have
dimension ≤ n2. But the second of the Eisenstein conditions says that for
ϕ = ϕ0 this multiplicity is ≤ n. Since rankLψ0

= aψn
2+n, this implies that

the multiplicity of ϕ(π) is n2 for ϕ ∈ Aψ0
and is n for ϕ = ϕ0. Altogether the

multiplicity of the eigenvalue ϕ(π) of π acting on L is rϕn. This implies the
Kottwitz condition on LK . Since (Kr) is a closed condition, the assertion
follows.

We will now assume that S is a κẼ-scheme. The OD-module OD ⊗ OS

defines a polynomial function
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ρ : V(OD)S → A1
S .

The module OD ⊗OS has a composition series with factors

OD/ΠOD ⊗κ̃,ψ̃ OS ,

where ψ̃ ∈ Ψ̃. This last module defines the polynomial function χψ̃ from
(3.16). One deduces easily that the determinant of the module OD ⊗OS is

ρ =
∏
ψ̃∈Ψ̃

χne
ψ̃

=
∏
ϕ∈Φ

Nrdnϕ .

Analogously to (4.2) we have a decomposition

D(X)S =
⊕
ψ̃∈Ψ̃

D(X)S,ψ̃,

where all summands are locally free OS-modules of rank ne. We set for
ψ ∈ Ψ

D(X)S,ψ =
⊕
ψ̃∈Ψ̃

D(X)S,ψ̃,

where the sum runs over all ψ̃ such that ψ̃|F t = ψ. It follows from Proposition
4.3 that we have locally free OS-modules with ranks

rankD(X)S,ψ̃/π
iD(X)S,ψ̃ = ni, for 0 ≤ i ≤ e.

We note that the OS-modules D(X)S,ψ̃ are defined for each OẼ-scheme with
p locally nilpotent.

Proposition 4.6. Let (X, ι) be a p-divisible OD-module over a κE-scheme
S. There are natural surjective maps

(4.4) D(X)S,ψ → Lieψ X, for ψ ∈ Ψ.

(i) Assume that (X, ι) is r-special. Then the maps (4.4) induce isomorphisms

(4.5)
D(X)S,ψ/π

aψD(X)S,ψ → Lieψ X, for ψ 	= ψ0

D(X)S,ψ0
/πaψ0D(X)S,ψ0

→ Lieψ0
X/πaψ0 Lieψ0

X.

In particular, the cokernel of any power of π on LieX is a locally free
OS-module.
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(ii) Conversely, assume that the following conditions on (X, ι) are satisfied.

1. LieX satisfies the rank condition (Rr).

2. The natural map D(X)S → LieX induces isomorphisms (4.5)

3. Lieψ0
is annihilated by πaψ0+1.

Then X is r-special.

We will prove this together with the following Corollary:

Corollary 4.7. An r-special formal OD-module X over a κE-scheme S
satisfies the Kottwitz condition (Kr).

Remark 4.8. In the case where r = r◦, this corollary follows from Lemma
3.11.

Proof. Clearly we can restrict to the case where S is a scheme over κẼ .
We first prove (i). The last condition of (3.22) says that for ψ 	= ψ0

the first arrow of (4.5) exists. By (3.11) we have on both sides locally free
OS-modules of the same rank. Therefore this arrow is an isomorphism.

For the second line in (4.5), we begin with the case where S = Spec k.
The second condition of (3.22) says that the rank of the following homomor-
phism of vector spaces

πaψ0 : Lieψ0
X → Lieψ0

X

is at most n. This shows

dimk(Lieψ0
X/πaψ0 Lieψ0

X) ≥ dimk Lieψ0
X − n = aψ0

n2.

Therefore the second arrow of (4.5) is an isomorphism because on the left
hand side we have a vector space of dimension n2aψ0

.
It follows that the OS-module Lieψ0

X/πaψ0 Lieψ0
has in each point of S

the same rank n2aψ0
. This already proves assertion (i) in the case where S

is a reduced scheme.
The general case is a consequence of Lemma 4.9 below, applied to L =

Lieψ0
X, f = πaψ0 , r = aψ0

n2, m = aψ0
n2 + n, and s = n.

Now we prove the corollary. We remark that the Kottwitz condition
(Kr) is satisfied for LieX. This is clear by the first isomorphism of (4.5)
for the part Lieψ X, for ψ 	= ψ0. By the second isomorphism it suffices to
show that the determinant morphism for the OD-module πaψ0 Lieψ0

X is

Nrdϕ0
=

∏
ψ̃ χψ̃, where ψ̃ extends ϕ0. But it follows from the isomorphism

(4.5) and (3.11) that rankπaψ0 Lieψ̃ X = 1 for each ψ̃ ∈ Ψ̃ which extends
ϕ0. Therefore we conclude by Lemma 3.7.
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Now we prove (ii). We have to prove the Eisenstein conditions. For
ψ 	= ψ0 they are clear. We denote by Kψ0

the kernel of the natural map
D(X)S,ψ0

→ Lieψ0
X. We obtain πaψ0D(X)S,ψ0

⊃ Kψ0
⊃ πaψ0+1D(X)S,ψ0

.
Then the rank condition shows that

πaψ0D(X)S,ψ0
/Kψ0

= πaψ0 Lieψ0
X

has rank n. This proves the second condition of (3.22). The other Eisenstein
conditions are trivially satisfied.

In the preceding proof, we used the following lemma.

Lemma 4.9. Let R be a local ring with residue field k. Let L be a finitely
generated free R-module of rank m. Let f : L → L be an endomorphism.

Let r = dimk(L/f(L))⊗ k and let s = m− r. We assume that

s+1∧
f = 0.

Then L/f(L) is a free R-module of rank r.

Proof. The exact sequence

L⊗ k → L⊗ k → (L/f(L))⊗ k → 0

shows that there is a basis of L⊗ k of the form

(4.6) f(ȳ1), . . . , f(ȳs), ē1, . . . , ēr ,

where ȳ1, . . . , ȳs, ē1, . . . , ēr ∈ L ⊗ k, and where the images of ē1, . . . , ēr in
(L/f(L))⊗ k form a basis.

Lifting the elements ȳ1, . . . , ȳs, ē1, . . . , ēr to L we obtain a basis of this
R-module,

f(y1), . . . , f(ys), e1, . . . er.

The elements ȳ1, . . . , ȳs ∈ L⊗ k are linearly independent. Therefore we find
a second basis of L,

(4.7) y1, . . . , ys, x1, . . . , xr.

We write the matrix of f with respect to the basis (4.6) and (4.7) as a
(s+ r)× (s+ r) block matrix: (

Es A
0 B

)
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The assumption
∧s+1 f = 0 implies that the matrix B is zero. We find

f(xi) =
∑
j

ajif(yj), aji ∈ R.

We set zi = xi −
∑

j ajiyj ∈ Ker f . Clearly

y1, . . . , ys, z1, . . . , zr

is also a basis of L, i.e., we may assume WLOG that xi = zi. But then the
matrix of f becomes (

Es 0
0 0

)
.

From this our assertion is obvious.

Before continuing, we add a lemma needed later which is proved in the
same manner.

Lemma 4.10. Let n, m, and r be natural numbers. Let R be a commutative
ring. Let W be a locally free R-module of rank n. Let f : W → W be an
endomorphism such that Coker f is a locally free R-module of rank r.
Let V ⊂ W be a direct summand of rank m. We assume that s = m− r ≥ 0
and that

s+1∧
(f|V ) = 0.

Then Ker f ⊂ V .

Proof. We note that the assumptions of the lemma are compatible with
base change R → S. The situation of the lemma is always defined over a
noetherian subring. Therefore we may assume that R is noetherian. The
desired inclusion may be checked over the localizations of R. Therefore we
may assume that R is a local noetherian ring with maximal ideal m. Finally
the matrix of Ker f → W/V is zero if it is zero modulo mt for all t ∈ N.
Therefore we may assume that R is an artinian local ring. We also note that
under the assumptions Ker f is a direct summand of W of rank r.

If R is a field, the assumption of the lemma implies rank f|V ≤ s. Hence
dimKer f|V ≥ r = dimKer f . This implies Ker f|V = Ker f and the lemma.

Now let (R,m) be any artinian local ring. Let e1, . . . , er be a basis of
Ker f . It follows from the case of a field that V has a basis of the form

(4.8) v1, . . . , vs, e1 + ρ1, . . . , er + ρr,
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where ρi ∈ mW . If the lemma is false we can choose t ∈ N maximal such
that there is a basis of the form (4.8) with ρi ∈ mtW .

By assumption f(v1), . . . , f(vs) are linearly independent modulo m.
Therefore we find a basis of V of the form

(4.9) f(v1), . . . , f(vs), u1, . . . , ur.

We write the matrix of f|V with respect to the matrices (4.8) and (4.9) as a
block matrix, (

Es ∗
0 X

)
.

By the assumption ∧s+1(f|V ) = 0 all determinants of (s+1)×(s+1) minors
of this matrix are zero. Therefore the matrix X is zero. We obtain equations

f(ρi) = f(ei + ρi) =
∑
j

ajif(vj).

Since the left hand side is in mtW we conclude that aji ∈ mt. We find
ρi −

∑
j ajivj ∈ Ker f . We may write

ρi −
∑
j

ajivj =
∑
k

ckiek,

where necessarily cki ∈ mt. The last equation gives:

(ei + ρi)−
∑
j

ajivj −
∑
k

cki(ek + ρk) = ei −
∑
k

ckiρk.

The RHS is an element of V . But this shows that we may replace in (4.8)
the element ei + ρi by ei + ρ′i with ρ′i =

∑
k ckiρk ∈ m2tW . This is a contra-

diction.

Remark 4.11. If R is a local ring such that each element of the maximal
ideal m is nilpotent, we can replace the condition that “Coker f is a free
R-module of rank r” by the weaker assumption that “Ker f ⊂ W is a direct
summand of rank r”. Indeed, over R any free submodule of a free module is
a direct summand. This shows that Coker f is free. The weaker assumption
also suffices if R is a ring such that R →

∏
Rp is injective, where p runs

over all minimal prime ideals of R, since then we may reduce to R = Rp.

We will now study the display of a formal OD-module over a κE-scheme
S which satisfies (Dr). To ease the notation we will assume that S = SpecR.



Drinfeld moduli problem 255

We denote by P = (P,Q, F, Ḟ ) the display of X. We use the notation I :=
IR := ker(W (R) → R). Recall that D(X)R = P/IP .

Again write Ψ = Hom(κ, κE) for the set of field embeddings. We obtain
the decompositions

P =
⊕
ψ∈Ψ

Pψ, Q =
⊕
ψ∈Ψ

Qψ.

By Proposition 4.6 we obtain:

(4.10)
πaψ0+1Pψ0

+ IPψ0
⊂ Qψ0

⊂ πaψ0Pψ0
+ IPψ0

,

Qψ = πaψPψ + IPψ, for ψ 	= ψ0.

The maps F and Ḟ induce maps

Fψ : Pψ → Pψσ, Ḟψ : Pψ → Pψσ.

Here σ denotes the Frobenius automorphism of F t over Qp. We set Q′
ψ = Pψ

for ψ 	= ψ0 and we define Q′
ψ0

to be the unique submodule of Pψ0
such that

Pψ0
⊃ Q′

ψ0
⊃ Qψ0

and such that Q′
ψ0
/Qψ0

is the kernel of the homomorphism

πaψ0 : Pψ0
/Qψ0

→ Pψ0
/Qψ0

.

By Lemma 4.9 we know that this kernel is a direct summand of Pψ0
/Qψ0

.
We set

Q′ =
⊕
ψ

Q′
ψ, F ′

ψ = Fψπ
aψ , Ḟ ′

ψ = Ḟψπ
aψ .

We obtain Frobenius-linear homomorphisms

(4.11) F ′ =
⊕
ψ

Fψπ
aψ : P → P, Ḟ =

⊕
ψ

Ḟψπ
aψ : Q′ → P.

We claim that the quadruple P ′ = (P,Q′, F ′, Ḟ ′) is the display of a special
formal OD-module.

Theorem 4.12. Let R be a κE-algebra. We assume that the nilradical of R
is a nilpotent ideal. Let Cr,R be the category of r-special formal OD-modules,
and let C0,R the category of special formal OD-modules (Definition 4.1).

The construction P �→ P ′ is an equivalence of categories

(4.12) Cr,R → C0,R.
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Proof. We begin with the case S = Spec k, where k is a perfect field. Let
the covariant Dieudonné MX be identified with P . In this case (4.10) is
equivalent with

(4.13)
πaψ0+1Mψ0,X ⊂VMψ0σ,X ⊂ πaψ0Mψ0

,

V Mψσ,X = πaψMψ,X for ψ 	= ψ0.

We define

(4.14)
V ′ = π−aψV : Mψσ,X → Mψ,X

F ′ = πaψF : Mψ,X → Mψσ,X .

Then the Dieudonné module (MX , F ′, V ′) corresponds to the display
above. From this we see that P ′ is the Dieudonné module of a special formal
OD-module. Indeed, by the remark after (3.22) we need only to verify (Rr)
(3.11) for P ′. But this follows easily from (3.19) and (4.13).

If conversely (M,F ′, V ′) is the Dieudonné module of a special formal
OD-module, then we find

F ′Mψ0,X ⊂ πe−1Mψ0σ,X , F ′Mψ,X ⊂ πeMψσ,X , for ψ 	= ψ0.

This follows because V ′Mψσ = Mψ for ψ 	= ψ0 and Mψ0
/V ′Mψ0σ is anni-

hilated by π. Therefore the formulas V = πaψV ′ and F = π−aψF ′ define a
Dieudonné module structure on M such that (4.13) is satisfied. This shows
that (M,F, V ) is the Dieudonné module of an r-special formal OD-module.
This proves the theorem in the case of a perfect field.

In the general case we need first to verify that P ′ is a display. The only
non-trivial property is that Ḟ ′ is a Frobenius-linear epimorphism. To show
this, we take locally on SpecR a normal decomposition of P ′ and consider
the matrix of F ′⊕ Ḟ ′. We have to show that the image of the determinant
of this matrix in R is a unit. But this property follows since we know it for
a perfect field. The same argument shows that P ′ is nilpotent. Therefore we
have defined a functor (4.12).

We construct first a quasi-inverse functor in the case that the ring R is
reduced. Let P ′ be the display of a special formal OD-module. We note that
P ′/IP ′ is a locally free OD ⊗ R-module of rank 1. In particular, it has a
filtration by direct summands as R-modules,

0 = πe(P ′
ψ/IP

′
ψ) ⊂ πe−1(P ′

ψ/IP
′
ψ) ⊂ . . . ⊂ π(P ′

ψ/IP
′
ψ) ⊂ P ′

ψ/IP
′
ψ

The multiplication by π gives an isomorphism between the subquotients of
this filtration.
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If we have a direct R-module summand L ⊂ P ′
ψ/IP

′
ψ with the property

that π(P ′
ψ/IP

′
ψ) ⊂ L ⊂ P ′

ψ/IP
′
ψ, we obtain therefore a direct R-module

summand πaψ+1(P ′
ψ/IP

′
ψ) ⊂ πaψL ⊂ πaψP ′

ψ/IP
′
ψ.

This gives the possibility to invert our construction P → P ′. We set

P = P ′. We note that Q′
ψ = P ′

ψ if ψ 	= ψ0. We set in general

(4.15) Qψ = πaψQ′
ψ + IPψ.

We want to define F and Ḟ by the formulas

Fψ = π−aψF ′
ψ, Ḟψ = π−aψ Ḟ ′

ψ.

We note that F ′
ψQ

′
ψ = pḞ ′

ψQ
′
ψ. This implies for ψ 	= ψ0 that F ′

ψPψ ⊂ πePψσ.

From πP ′
ψ0

⊂ Q′
ψ0

we conclude that F ′
ψ0
Pψ0

⊂ πe−1Pψ0σ. Since R is reduced,

π operates injectively on W (R) and therefore the definition of Fψ makes

sense. From (4.15) we see that also the definition of Ḟ makes sense. We have

to show that P = (P,Q, F, Ḟ ) is indeed a display. But this follows from the

case of a perfect field treated above.

Now we treat the case of a nonreduced ring R. We assume that we have

a divided power thickening R → S, and that the theorem is already known

for S. We denote by X an r-special formal OD-module over S, and by X ′ the
corresponding special formal OD-module over S. We show that our functor

gives a bijection between the liftings of X to an r-special formal OD-module

over R and the liftings of X ′ to a special formal OD-module over R. This

will prove the theorem by induction. By Grothendieck-Messing, the liftings

of X correspond to liftings of the Hodge-filtration,

(4.16)

D(X)R,ψ −−−−→ Lψ⏐⏐� ⏐⏐�
D(X)S,ψ −−−−→ Lieψ X .

If ψ 	= ψ0 we have no choice for Lψ because, by Proposition 4.6, Lψ =

D(X)R,ψ/π
aψD(X)R,ψ. As a special case this holds also for X ′. Now let

ψ = ψ0. Let Q̄R and Q̄S the kernels of the two horizontal maps in (4.16).

Then we have πaψD(X)R,ψ ⊃ Q̄R ⊃ πaψ+1D(X)R,ψ. We replace Q̄R by

Q̄′
R := π−aψQ̄R. This makes sense because we have a bijection

D(X)R,ψ/πD(X)R,ψ
πaψ

−→ πaψD(X)R,ψ/π
aψ+1D(X)R,ψ.
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Then L′ = D(X)R,ψ/Q̄
′
R is a lifting of Lieψ X ′ which defines a lifting of

the special formal OD-module X ′. This sets up the desired bijection of lift-

ings.

Corollary 4.13. Let k be an algebraically closed field which is at the same

time a κE-algebra. Any two r-special formal OD-modules over k are isoge-

nous by a OD-linear isogeny.

Proof. By Theorem 4.12, we are reduced to the case of special formal OD-

modules, i.e., the case r = r◦. In this case, the assertion follows from [5], §2,
comp. [3], Prop. 5.2.

Let Ĕ the completion of the maximal unramified extension of E. Its

residue class field k̄ is an algebraic closure of κE . We fix an r-special formal

OD-module (X, ιX) over k̄ (a framing object).

Definition 4.14. We define the set-valued functor Mr on the category

of OĔ-schemes as follows3. Then Mr associates to scheme S ∈ (Sch/OĔ)

the set of isomorphism classes of triples (X, ι, ρ). Here (X, ι) is an r-special

formal OD-module over S, and ρ denotes a OD-linear isogeny X ×SpecOĔ

Spec k̄ → X×Spec k̄ S of height zero.

We write Mr for the restriction of this functor to k̄-schemes S. Theorem

4.12 now implies the following corollary.

Corollary 4.15. The functor Mr is representable by a scheme over k̄ which

is isomorphic to Mr◦ . Hence there is an isomorphism Mr � Ω̂n ⊗OĔ
k̄.

Proof. The isomorphism Mr � Mr◦ follows from Theorem 4.12. The last

assertion follows from [5], which also implies that Mr◦ is a scheme.

5. The local model

In this section we consider the local structure of the formal scheme Mr

(Definition 4.14). By the general theory [18], this comes down to considering

the local model of Mr. Let us define it.

Recall that D is the central division algebra with invariant 1/n over F .

Let V be a D-vector space of dimension 1 and let Λ be an OD-lattice in V .

The local model in question represents the following functor on (Sch/OE):

3We will prove in Proposition 5.8 that this definition coincides with the one in
section 2.
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Mr(S) = {F ⊂ Λ⊗Zp
OS | OD-stable OS-submodule, locally on S a

direct summand, (Λ⊗Zp
OS)/F satisfies

conditions (Rr) and (Er)}.

Lemma 5.1. The functor Mr is representable by a projective scheme over
SpecOE. The geometric generic fiber is isomorphic to Pn−1.

Let S be an E-scheme. Consider a OS-submodule F ⊂ Λ⊗Zp
OS which

is locally a direct summand and which is OD-stable. Then (Λ ⊗Zp
OS)/F

satisfies conditions (Rr) and (Er) if and only if it satisfies the condition
(Kr).

Proof. The first assertion is obvious since the rank condition is a closed
condition, cf. the remark after Definition 3.3.

The implication “ ⇒ ” in the last assertion follows as in Proposition 4.5.
To show the converse, let R be a Q̄p-algebra and S = SpecR. Let F be a
direct summand of Λ⊗Zp

R that is OD-stable and such that (Λ⊗Zp
OS)/F

satisfies (Kr). There are decompositions

Λ⊗Zp
R =

⊕
ϕ
Λϕ , F =

⊕
ϕ
Fϕ ,

where ϕ runs through the embeddings of F into Q̄p. Here OF acts on the
summand corresponding to ϕ via ϕ : F → Q̄p → R. Each summand is stable
under the action ofD. The condition (Kr) just says that rank Λϕ/Fϕ = nrϕ,
in which case Λϕ/Fϕ is locally on S isomorphic to the direct sum of rϕ
copies of the simple representation Fn ⊗ϕ R of D ⊗F,ϕ R � Mn(R). On the
summand Λϕ/Fϕ, ι(π) acts as ϕ(π) IdFϕ

. Let ψ = ψ0. It then follows that
QAψ0

(ι(π)) annihilates all summands Λϕ/Fϕ, for those ϕ with ϕ|Ft
= ψ0 and

ϕ 	= ϕ0, and QAψ0
(ι(π)) induces an isomorphism on Λϕ0

/Fϕ0
, which implies

the second Eisenstein condition. The first and third Eisenstein conditions
are proved in an analogous way.

For ϕ with ϕ|Ft
	= ψ0, the subspace Fϕ is trivial, i.e., either equal to

(0) or to Λϕ. On the other hand, using Morita equivalence, the Mn(R)-
stable summand Fϕ0

of Λϕ0
corresponds to a hyperplane of Fn ⊗F,ϕ0

R.
It now follows that the geometric generic fiber of Mr is isomorphic to the
projective space of hyperplanes in Q̄n

p , i.e., to Pn−1 (Grothendieck’s conven-
tion).

The geometric special fiber Mr = Mr ⊗OE
k̄ can be described as follows.

Let Wψ = Λ ⊗OFt ,ψ k̄, an en2-dimensional vector space with its endomor-
phism Π = ι(Π). Let S = Spec R, for a k̄-algebra R, and let (Fψ)ψ∈Ψ
be a point in Mr(S). Let first ψ 	= ψ0. By the third Eisenstein condition,
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Fψ is a direct summand of rank (e − aψ)n
2 containing the image of Πaψn.

Since these two submodules are direct summands of the same rank, they are
equal.

Now let ψ = ψ0, and set W0 = Wψ0
and a0 = aψ0

. Then, due to the
action of OF̃ , we obtain a Z/n-grading

(5.1) W0 =
⊕

k∈Z/n
W0,k,

and Π is an endomorphism of degree one. Forgetting the subspaces Fψ with
ψ 	= ψ0, we have an identification

Mr(S) = {F0 ⊂ W0 ⊗k̄ OS | Π-stable graded direct summand,

rank (W0,k,S/F0,k) = a0n+ 1 , ∀k ∈ Z/n,

and 1′) and 2′)} .

Here we have set W0,S = W0 ⊗k̄ OS and W0,k,S = W0,k ⊗k̄ OS , and 1′)
and 2′) are as follows:

(5.2)

1′) Π(a0+1)n|(W0,S/F0) = 0

2′)
n+1∧

(Πa0n|(W0,S/F0)) = 0.

Of course, we have used here (3.22).
Let us now apply Lemma 4.10 to the OS-dual W

∗
0,S , its endomorphism

f induced by (Π∗)a0n and its submodule V = (W0,S/F0)
∗, in which case

rankW ∗
0,S = en2, and rankV = (a0n + 1)n, and r = a0n

2, and s = n. We
conclude that Ker(Π∗)a0n ⊗k̄ OS ⊂ V . Translated back into F0, we obtain a
chain of inclusions of direct summands of W0,S ,

(5.3) Im(Π(a0+1)n)⊗k̄ OS ⊂ F0 ⊂ Im(Πa0n)⊗k̄ OS .

In the Drinfeld case r = r◦ we have a0 = 0. Let us write M◦ for Mr◦ .
Let us identify ImΠ(a0+1)n/ ImΠa0n with W0/ΠW0. Associating now to

an S-valued point F0 of Mr the locally direct summand

F0/ Im(Π(a0+1)n)⊗k̄OS ⊂ (ImΠa0n/ ImΠ(a0+1)n)⊗k̄OS =(Λ⊗OF ,ϕ0
k̄)⊗k̄OS ,

we have obtained an S-valued point of the local model M◦, more precisely an
S-valued point of M◦⊗OF ,ϕ0

OE⊗OE
k̄. Letting S vary, this induces obviously

an isomorphism of schemes over k̄,
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(5.4) Mr ⊗OE
k̄ � M◦ ⊗OF

k̄.

Therefore we obtain from the Drinfeld case:

Corollary 5.2. The geometric special fiber Mr ⊗OE
k̄ is a reduced scheme,

which has n irreducible components, all of which have dimension n − 1.
Furthermore, the local rings of closed points of Mr ⊗OE

k̄ are isomorphic to
localizations in closed points of the k̄-algebra k̄[X1, . . . , Xn]/(X1·. . .·Xn).

Remark 5.3. We point out that M◦ coincides with the standard local model
for the triple (G, {μ},K) consisting of GLn and μ(1,0(n−1)) and the Iwahori
subgroup, after extension of scalars to SpecOĔ , cf. [7], comp. also [17, 18].

Corollary 5.4. Mr is flat over OE.

Proof. Since the special fiber is reduced, it suffices by [8], Prop. 14.16 to
show that a generic point of an irreducible component of the special fiber is
in the closure of the general fibre. Since the general fiber and the special fibre
of Mr have the same dimension n− 1 and since Mr is proper it follows that
at least one irreducible component of the special fiber is contained in the
closure of the generic fiber. The claim therefore follows from the following
lemma.

Lemma 5.5. There is an action of Z/n on Mr ⊗OE
OĔ, which induces a

transitive action on the set of irreducible components of Mr ⊗OE
k̄.

Proof. The action is given by sending F = ⊕ψ̃∈Ψ̃Fψ̃ to F ′ with

(F ′)ψ̃ = Fψ̃τ , ψ̃ ∈ Ψ̃ .

Here τ is taken from the presentation of OD in (3.3). Indeed, since the
OF -structure of (Λ ⊗Zp

OS)/F ′ coincides with that of (Λ ⊗Zp
OS)/F , the

Eisenstein conditions are satisfied for (Λ⊗Zp
OS)/F ′, since they are satisfied

for (Λ⊗Zp
OS)/F . On the other hand, for any ψ ∈ Ψ,

rank(F ′)ψ =
∑
ψ̃∈Ψ̃ψ

rank(F ′)ψ̃ =
∑
ψ̃∈Ψ̃ψ

rankFψ̃τ =
∑
ψ̃∈Ψ̃ψ

rankFψ̃ = rψ.

Therefore, F ′ also satisfies the condition (Rr).
That the action of Z/n on the set of irreducible components of Mr⊗OE

k̄
is transitive, follows from the corresponding fact for M◦ (the Drinfeld case)
(the isomorphism (5.4) is obviously equivariant for the action of Z/n).

Corollary 5.6. The scheme Mr is normal.
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Proof. Indeed, Mr is flat over OE , with normal generic fiber (even regular,
cf. Lemma 5.1), and reduced special fiber. These properties imply that Mr

is normal, cf. [19], Prop. 9.2.

Remark 5.7. If the Conjecture 2.6 were true, it would follow that Mr has
semi-stable reduction, in particular Mr would be regular. However, we are
unable to prove these stronger assertions.

Let M′
r be the closed formal subscheme of Mr which is given by the

Kottwitz condition (Kr). By Corollary 4.7 the special fibers of Mr and M′
r

are identical.

Proposition 5.8. The two formal schemes Mr and M′
r are identical. Both

are p-adic and flat over Spf OĔ, with special fiber Mr×Spf OĔ
Spec k̄ a reduced

scheme. All their completed local rings are normal.

Proof. We use the local model diagram

M̃r

ϕ ψ

Mr M̂r ,

where M̂r denotes the formal completion of Mr ×SpecOE
SpecOĔ along its

special fiber. Here M̃r and the morphism ϕ is obtained from Mr by adding
to (X, ι, ρ) an OD ⊗Zp

OS-linear isomorphism with the value at S of the
covariant crystal associated to X,

α : Λ⊗Zp
OS −→ D(X)S .

The morphism ψ maps the S-valued point (X, ι, ρ, α) of M̃r to the sub-
module α−1(Ker(D(X) → LieX)) of Λ⊗Zp

OS . The theory of local models
[21] tells us that the completed local ring of a point x ∈ Mr is isomorphic

to the completed local ring of ψ(x̃), where x̃ is any point of M̃r mapping
under ϕ to x. Hence all completed local rings of points of Mr are isomorphic
to completed rings of points of Mr ×SpecOE

SpecOĔ . Hence by Corollaries
5.4 and 5.2, the formal scheme Mr is flat over Spf OĔ with all completed
local rings normal. That Mr×Spf OĔ

Spec k̄ is a reduced scheme follows from
Corollary 4.15. Now the equality of M′

r and Mr follows from Proposition
4.5.

Corollary 5.9. The definition of Mr is independent of the choice of the
uniformizer π of OF .
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Proof. Consider the formal scheme Nr that represents the moduli problem
where the Kottwitz condition (Kr) is imposed but the Eisenstein conditions
(Er) are dropped. Let π̃ be another uniformizer, and let M̃r be the corre-
sponding formal scheme defined using the Eisenstein condition for π̃ instead
of π. What has to be shown is that the formal subschemes Mr and M̃r of
N are identical. Let Nr be the local model corresponding to Nr; then the
local models Mr and M̃r of Mr and M̃r are closed subschemes of Nr. It
suffices to prove that Mr = M̃r. But by Lemma 5.1 the generic fibers of
Nr,Mr and M̃r all coincide and, by Corollary 5.4, Mr and M̃r are equal to
the flat closure of the generic fiber inside Nr.

6. The generic fiber (after Scholze)

In this section, we prove the last point in Theorem 2.8, in the following form.
For convenience, we introduce for a function r : ϕ �→ rϕ the formal scheme
M̃r over Spf OĔ that represents the same moduli problem as Mr, except
that we drop the condition that the height of ρ be zero. Then our original
formal scheme Mr is an open and closed formal subscheme of M̃r.

Let r◦ be the Drinfeld function, i. e., r◦ϕ = 0, ∀ϕ 	= ϕ0. We write M̃◦ =

M̃r◦ .
We will prove the following theorem. We use the embedding F̆ ↪→ Ĕ

defined by the natural map F̆ = F ⊗F t Q̆p
ϕ0⊗id−→ E ⊗Et Q̆p = Ĕ.

Theorem 6.1. There is an isomorphism of adic spaces over Spa(Ĕ, OĔ),

(M̃r)
ad � (M̃◦⊗̂OF̆

OĔ)
ad

This theorem implies the last point in Theorem 2.8. Indeed, passing to
the open and closed sublocus where the universal quasi-isogeny � has height
zero, we obtain a similar isomorphism when M̃r is replaced by Mr and M̃◦

by M◦ (the proof of Theorem 6.1 will show that the isomorphism in question
is compatible with the decompositions according to the height). Since by
Drinfeld’s theorem (M◦)ad � Ωn

F , we deduce the desired isomorphism

(Mr)
ad � Ω̂F ⊗F Ĕ = (Ω̂F ⊗OF

OĔ)
ad .

In the proof of Theorem 6.1, we will use the following notation. We denote
by (X, ιX) the framing object for the moduli problem M̃r. Let M(X)Qp

be
its rational Diendonné module.

Let V be a free D-module of rank one, and let Λ be an OD-lattice in
V . Let G = GLD(V ), considered as a linear algebraic group over Qp. The
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function r defines a G-homogeneous projective variety F over E. If R is
a Q̄p-algebra, then F(R) parametrizes D-linear surjective homomorphisms
into locally free R-modules

V ⊗Qp
R −→ F

such that under the decomposition F =
⊕

ϕFϕ, we have rank(Fϕ) =
rϕn. In other words, F coincides with the generic fiber of the local model,
Mr ×SpecOE

SpecE, cf. Lemma 5.1.
Let K0 ⊂ G(Qp) be the stabilizer of the lattice Λ. For any open subgroup

K ⊂ K0, we obtain the corresponding member MK of the RZ-tower over
(M̃r)

ad. These coverings of (M̃r)
ad parametrize level-K-structures on the

universal object X/M̃r,

α : Λ −→ T (X) modK .

We denote by

πK : MK −→ (F ⊗E Ĕ)ad

the crystalline period maps, which are compatible with changes in K.
In [24] Scholze and Weinstein define a preperfectoid space M∞ by im-

posing a full level structure on T (X). In particular, there is a morphism

M∞ −→ lim←−MK ,

which induces a bijection for any algebraically closed extension C of Q̄p

which is complete for a p-adic valuation,

M∞(C) � lim←−MK(C) .

We denote by π∞ : M∞ −→ (F ⊗E Ĕ)ad the induced period mapping. In
[24], the following description of M∞(C) is given. Let OC be the ring of
integers in C.

Let B+
cris = Acris(OC/p) ⊗Zp

Qp be Fontaine’s ring attached to C. The
Fargues-Fontaine curve4 is defined as Y = ProjP , where P is the graded
ring

P =
⊕
d≥0

(B+
cris)

φ=pd

.

4The Fargues-Fontaine curve is usually denoted by X; since this notation is
already in use for the universal p-divisible group, we use the notation Y instead.
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Then Y is a connected separated regular noetherian scheme of dimension 1,
equipped with the point ∞ ∈ Y corresponding to Fontaine’s homomorphism

θ : B+
cris −→ C .

In [24] appears a description of p-divisible groups X over OC , in terms of
two vector bundles, E and F . Here

• F = T ⊗Zp
OY ,

• E corresponds to the graded P -module
⊕

d≥0(MQp
)φ=pd+1

.

Here T = T (X) denotes the Tate module of the generic fibre of X, and
MQp

= M(X)Qp
the rational Dieudonné module of the reduction modulo p

of X.
We now apply this description to the fibers of the universal p-divisible

group X at points of M∞(C), noting that the universal full level structure
induces an isomorphism T (X) = Λ, and the universal quasi-isogeny an iso-
morphism of rational Dieudonné modules M(X)Qp

= M(X)Qp
⊗

Q̆p
B+

cris.
Accordingly we set F = Λ ⊗Zp

OY , and let E correspond to the graded
module (⊕

d≥0

M(X)Qp
⊗

Q̆p
B+

cris

)φ=pd+1

.

We also fix a D-linear isomorphism M(X)Qp
= V ⊗Qp

Q̆p. The Scholze-
Weinstein description therefore implies the following fact, cf. [24], Cor. 6.3.10
(and its extension to the EL-case in Thm. 6.5.4).

Theorem 6.2. There is an identification of M∞(C) with the set of injective
D-linear homomorphisms of vector bundles on Y ,

f : F −→ E

such that supp(Cokerf) = {∞} and such that mY,∞ kills Cokerf and such
that the induced surjective map

E ⊗OX,∞ C = M(X)Qp
⊗

Q̆p
C = V ⊗Qp

C
ϕf−→ Coker f

defines a point in F(C). Furthermore, the period morphism π∞ sends the

point corresponding to f to [V ⊗Qp
C

ϕf−→ Cokerf ].

It will be convenient to reformulate this last description. Let YF =
Y ×SpecQp

SpecF . This is a finite étale cover ψ : YF −→ Y of degree d,
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and the fiber ψ−1({∞}) can be identified with {∞ϕ | ϕ : F −→ Q̄p}. Since
the vector bundles F and E are equipped with F -actions, they are of the
form F = ψ∗(FF ) and E = ψ∗(EF ), with vector bundles FF and EF over YF .

Corollary 6.3. There is a natural identification of M∞(C) with the set of
D-linear injective morphisms of vector bundles on YF ,

fF : FF −→ EF ,

such that suppCokerfF ⊂ ψ−1({∞}), with CokerfF killed by mYF ,∞ϕ
∀ϕ,

and such that

dimC(CokerfF )∞ϕ
= rϕ · n , ∀ϕ .

Furthermore, the period morphism π∞ sends the point corresponding to fF
to the family of surjections [EF ⊗YF ,∞ϕ

C = V ⊗F,ϕ C −→ (CokerfF )∞ϕ
],

considered as a point in F(C).

Now we compare the previous descriptions for the given function r, and
for the Drinfeld function r◦. Let X◦ denote the framing object for M̃r◦ . Then
we may choose D-linear isomorphisms

V ⊗Qp
Q̆p = M(X◦)Qp

= V ⊗Qp
Q̆p = M(X)Qp

such that for the respective Frobenius endomorphisms

F = πm · F ◦ ,

where

m = #{ϕ | rϕ = n} .
For the corresponding vector bundles on YF , we get

EF = E◦
F ⊗OXF

Lm ,

where L is the line bundle on YF corresponding to the graded module⊕
d≥0

(F ⊗Qp
B+

cris)
φ=πpd

.

We have a natural identification

FF = Λ⊗OF
OYF

= F◦
F .

On the other hand, we have a natural identification

F = F◦ ⊗F E .



Drinfeld moduli problem 267

Here, for a Q̄p-algebra R, a point [V ⊗Qp
R −→ F ] = [{V ⊗F,ϕR −→ Fϕ | ϕ}]

of F is sent to [{V ⊗F,ϕ R −→ F◦
ϕ | ϕ}], with

F◦
ϕ =

{
Fϕ0

if ϕ = ϕ0

V ⊗F,ϕ R if ϕ 	= ϕ0 .

The general case of an E-algebra R follows by descent. We point out that,
by Morita equivalence, F◦ ∼= Pn−1

F .

Lemma 6.4. For a given ϕ, there exists a global section

LTϕ ∈ Γ(YF ,L) = (F ⊗Qp
B+

cris)
φ=π

such that LTϕ vanishes to first order at ∞ϕ and is non-vanishing at all other
points. Furthermore, LTϕ is unique up to F×.

Proof. The homomorphism LTϕ : OYF
−→ L corresponds in the Scholze-

Weinstein description to the Lubin-Tate formal group corresponding to the
triple (F,ϕ, π).

Lemma 6.5. Let i : GF −→ EF be the injection of vector bundles on YF ,

GF = {x ∈ EF | x ≡ 0 mod ∞ϕ , ∀ϕ with rϕ = n} .

Then the map x �−→ x ·Π{ϕ|rϕ=n}LTϕ defines an isomorphism E◦
F � GF .

Proof. The map

x �−→ x
∏

{ϕ|rϕ=n}
LTϕ

obviously identifies E◦
F with a subbundle of GF . Comparing the degrees of E◦

F

and G, the result follows. (There is a formalism of degrees of vector bundles
on Y resembling the usual theory over smooth projective curves.)

Proposition 6.6. Under the identification E◦
F = GF and FF = F◦

F , the
map sending f◦

F ∈ Hom(F◦
F , E◦

F ) to fF = i ◦ f◦
F ∈ Hom(FF , EF ) defines a

bijection M◦
∞(C) = M∞(C) which commutes with the period map π◦

∞, resp.
π∞, to F◦(C) = F(C).

Proof. It is clear that Coker f◦
F has support in {∞ϕ0

} ∪ {∞ϕ | rϕ = n},
and that for ϕ with rϕ = n, one has that (Coker f◦

F )∞F
= EF ⊗OYF

,∞ϕ
C.

Conversely, any fF ∈ M∞(C) has to factor through GF and has the correct
cokernel at ∞ϕ0

. The assertion regarding the period map is obvious from
the way that F(C) is identified with F◦(C).
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Corollary 6.7. Under the identification Fad = (F◦⊗F E)ad, the images of
the period morphisms π∞ and π◦

∞ ⊗F̆ Ĕ, coincide.

Proof. All maps are partially proper [6], hence it suffices to prove for all
algebraically closed complete extensions C of Q̄p that

Im π∞(C) = Im π◦
∞(C) .

This follows from the previous proposition.

Proof of Theorem 6.1. We need to construct an isomorphism

MK0
� M◦

K0
⊗F̆ Ĕ .

It suffices to construct the isomorphism on the open and closed subloci M
(n)
K0

,

resp. M
◦(n)
K0

, where the height of � is a fixed integer n. But the fibers of the

period morphisms πK0
, resp. π◦

K0
, through M

(n)
K0

, resp. M
◦(n)
K0

, can both be
identified with G(Qp)

◦/K0, where under the identification G(Qp) = D×, we
have

G(Qp)
◦ = {x ∈ D× | ord detx = 0} .

Since K0 = G(Qp)
◦, the period maps identify M

(n)
K0

and M
◦(n)
K0

with open

adic subsets of (F ⊗E Ĕ)ad = (F◦ ⊗F Ĕ)ad. The assertion therefore follows
from Corollary 6.7.

7. The unramified case

In this section we prove Theorem 2.7. Hence in this section F/Qp is unram-
ified. Since we fixed an embedding ϕ0 : F −→ Q̄p, we may identify

HomQp
(F, Q̄p) = {σi | i ∈ Z/d} .

In particular, E = F , via ϕ0. We abbreviate

ri = rϕ0◦σi , i ∈ Z/d .

Let S be a OF -scheme, such that p is nilpotent on S. We have a decompo-
sition

OF ⊗Zp
OS =

⊕
i∈Z/d

OS ,

where the action of OF on the i-th summand is via σi. If (X, ι) is a formal
OD-module over S, we correspondingly obtain a decomposition,
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LieX =
⊕
i∈Z/d

LieiX ,

where t ∈ LieiX iff ι(x)(t) = σi(x) t, ∀x ∈ OF .

Lemma 7.1. The condition (Rr) implies the conditions (Kr) and (Er).

Proof. For the implication (Rr) ⇒ (Er), we refer to Remarks 3.9, (iii). The
condition (Dr) implies (Kr) by Proposition 5.8.

We will now consider the display of X. To simplify the notation, we
assume that S = SpecR, where R is an OF -algebra. Let W (OF ) be the ring
of Witt vectors of OF , and define a ring homomorphism by

λ : OF −→ W (OF ) , wm(λ(x)) = σm(x) .

Then λ is Frobenius equivariant, i.e., λ(σ(x)) =F (λ(x)). For a OF -algebra
R, we obtain

λ̄ : OF −→ W (OF ) −→ W (R) .

Let

λ̄(i) = λ̄ ◦ σi =F i◦λ̄ : OF −→ W (R).

Let P = (P,Q, F, Ḟ ) be the display of X over R. Hence P is a finitely
generated projective W (R)-module, and Q is submodule of P , and

F : P −→ P , Ḟ : Q −→ P.

The action of OF on P defines decompositions,

P =
⊕

Pi , Q =
⊕

Qi ,

where OF acts on the i-th summand via λ̄(i). The operators F and Ḟ are of
degree 1 with respect to this Z/d-grading,

F : Pi −→ Pi+1 , Ḟ : Qi −→ Pi+1 .

Then rank Pi = n2, ∀i, by Proposition 4.3. The rank condition says:

(7.1)
P0/Q0 is a locally free R−module of rank n

Pi = Qi if ri = 0 , IR · Pi = Qi if ri = n .

We choose a normal decomposition,

Pi = Ti ⊕ Li , for all i .
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Then

F ⊕ Ḟ : Ti ⊕ Li −→ Pi+1

is a F -linear isomorphism, for all i. Let i 	= 0. When ri = 0, then Pi = Qi

and we obtain an isomorphism

(7.2) Ḟ# : W (R)⊗F,W (R) Pi −→ Pi+1 .

When ri = n, then Li = (0), and we obtain an isomorphism

(7.3) F# : W (R)⊗F,W (R) Pi −→ Pi+1 .

We now define F d

-linear homomorphisms,

F#
rel : P

(pd)
0 −→ P0 , Ḟ#

rel : Q
(pd)
0 −→ P0 ,

as compositions,

F#
rel : P

(pd)
0

F#

−→ P
(pd−1)
1 −̃→ . . . −̃→P

(p)
d−1−̃→P0 ,

resp.

Ḟ#
rel : Q

(pd)
0 −→ P

(pd−1)
1 −̃→ . . . −̃→P

(p)
d−1−̃→P0 .

Here the isomorphisms in the last two lines are either (7.2) or (7.3). We
note that P0 is a finitely generated projective W (R)-module, that Q0 is a
submodule and Frel and Ḟrel satisfy the following relations,

(7.4)
Ḟrel(

V ξx) =F d−1

ξ · Frel(x), x ∈ P0 .

p · Ḟrel(y) = Frel(y), y ∈ Q0 .

Indeed, the first identity reflects the F d-linearity of Ḟrel; the second identity
comes from the fact that a similar identity holds for Ḟ and F . The quadruple
(P0, Q0, Frel, Ḟrel) is a d-display in the following sense:

Definition 7.2. Let d ≥ 1 be a natural number. Let R be a ring such that
p is a nilpotent in R. An d-display over R is a quadruple (P,Q, F, Ḟ ), where
P is a finitely generated projective W (R)-module, Q a submodule of P and
F : P → Q and Ḟ : Q → P are F d

-linear maps such that the following
properties are satisfied:

1. IRP ⊂ Q, and P/Q is a direct summand of the R-module P/IRP .
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2. The linearization of Ḟ ,

Ḟ 	 : W (R)⊗F d,W (R) Q −→ P

is surjective.

3. For x ∈ P and w ∈ W (R),

Ḟ (Vwx) =F d−1

wF (x).

We will now use the theory of relative Witt vectors and relative displays.
We denote by q = pd the number of elements in the residue class field κ of
OF . Also, when we use OF as a subscript, we simply write O. For an OF -
algebra R, we denote by WO(R) the ring of relative Witt vectors defined by
the Witt polynomials

w′
n(x0, . . . , xn) = xq

n

0 + pxq
n−1

1 + · · ·+ pnxn.

We have a canonical morphism u : W (R) → WO(R) such that

u(F
d

ξ) =F ′
u(ξ)

u(V ξ) =V ′
(u(F

d−1

ξ)) ,

cf. [5], Prop. 1.2. Here we denoted by a prime the operators on WO(R).

We now show how to associate to (P0, Q0, Frel, Ḟrel) a relative display
(P ′, Q′, F ′, Ḟ ′) with respect to WO(R) (replace the Witt vectors by the rel-
ative Witt vectors in the definition of a display).

We set

P ′ =WO(R)⊗u,W (R) P0

Q′ =Ker
(
WO(R)⊗u,W (R) P0 −→ P0/Q0

)
.

Here the last homomorphism is given by the composition

WO(R)⊗u,W (R) P0 −→WO(R)/IO(R)⊗u,W (R) P0 = R⊗u,W (R) P0

= P0/I(R)P0 −→ P0/Q0 .

F ′ =F ′⊗Frel : P
′ −→ P ′ .

Note that this makes sense because of (7.4), and defines a F d

-linear endo-
morphism of P ′. It remains to define Ḟ ′ : Q′ −→ P ′ with the following
properties,
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(7.5)
Ḟ ′(V

′
ξx) = ξ · F ′(x), x ∈ P ′

Ḟ ′(ξ ⊗ y) =F ′
ξ ⊗ Ḟred(y), y ∈ Q .

More precisely, consider the normal decomposition P0 = T0 ⊕ L0. Then

Q′ =
(
IO(R)⊗W (R) T0

)
⊕
(
WO(R)⊗W (R) L0

)
.

We define Ḟ ′ on the first, resp. second summand by

Ḟ ′(V
′
ξ ⊗ t0) = ξ ⊗ Frel(t0) , t0 ∈ T0

Ḟ ′(ξ ⊗ l0) =
F ′
ξ ⊗ Frel(l0) , l0 ∈ L0 .

Claim: The identities (7.5) are satisfied.

We start with the second identity. Let

y =V ′
η · t0 + l0 , t0 ∈ T0, l0 ∈ L0 .

For the second summand, the identity to be checked is the definition of Ḟ ′.
So we may take l0 = 0. Now

ξ ⊗V ′
η · t0 = ξ · u(V ′

η)⊗ t0 = ξ ·V ′
u(F

d−1

η)⊗ t0

=V ′
(F

′
ξ · u(F d−1

η))⊗ t0 .

Hence the LHS of the identity to be checked is

Ḟ ′(ξ ⊗ V ′
η t0) =

F ′
ξu(F

d−1

η)⊗ Frel(t0)

=F ′
ξ ⊗F d−1

η · Frel(t0)

=F ′
ξ ⊗ Ḟrel(

V ′
η t0) ,

where in the last equation we used (7.4). The second identity of (7.5) is
proved.

Now we check the first identity. It suffices to check that

Ḟ ′(V
′
ξ ⊗ x) = ξ ⊗ Frel(x) , x ∈ P0 .

If x = t0 ∈ T0, this holds by definition. Let x = l0 ∈ L0. Then

Ḟ ′(V
′
ξ ⊗ l0) = pξ ⊗ Ḟrel(l0) = ξ ⊗ pḞrel(l0)

= ξ ⊗ Frel(l0) ,

where in the last equation we used (7.4).
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We now have checked that (P ′, Q′, F ′, Ḟ ′) is a relative display relative to
OF . By functoriality this relative display has an OD-action. Its Lie algebra
P ′/Q′ coincides with Lie0X = P0/Q0. Therefore the action of OD on P ′/Q′

is special in the sense of Drinfeld (satisfies condition (Rr◦)), i.e., we are
in the case of Proposition 3.6. This implies automatically that the relative
display is nilpotent.

Let R be an OF -algebra where πR is a nilpotent ideal. By a theorem
of Ahsendorf [1], Thm. 5.3.8, there is an equivalence of categories between
the category of p-divisible formal OF -modules over R and the category of
nilpotent relative displays (this holds even without the hypothesis that F/Qp

is unramified). We therefore obtain a formal OF -moduleX ′ over S = SpecR,
which is a special formal OD-module because LieX ′ = P ′/Q′.

Applying the above construction to the framing object (X, ιX), we obtain
a special formal OD-module (X′, ιX′) that we use as a framing object for the
Drinfeld functor Mr◦ . Since the above construction is functorial in S, we
obtain a morphism of formal schemes over Spf OF̆ ,

(7.6) Mr −→ Mr◦ .

Theorem 7.3. The morphism (7.6) is an isomorphism. In particular, there
is an isomorphism of formal schemes over Spf OF̆ ,

Mr � Ω̂n
F ⊗̂OF

OF̆ .

Proof. Let R be a κF -algebra. We have (compare (4.11)) described a functor
P �→ P ′ which associates to the display of a formal OD-module with condi-
tion (Dr) the display of a special formal OD-module with condition (Dr◦).
In the unramified case we take π = p. Since aψ = 0 or 1, we see that

Ḟ ′
ψ = Ḟψ, or Ḟ ′

ψ = pḞψ = Fψ.

Therefore starting from P or P ′ the construction (7.4) yields the same d-
display. Therefore over κF the functor morphism (7.6) factors

Mr ⊗OF
κF −→ Mr◦ ⊗OF

κF −→ Mr◦ ⊗OF
κF .

The first morphism is given by Theorem 4.12 and the second morphism is
defined by associating to a display of a formal OD-module satisfying (Dr◦)
the display relative to OF . Therefore the last morphism is the identity. Since
the first arrow is an isomorphism by Theorem 4.12, we deduce that (7.6) is
an isomorphism over κF . But since both schemes are flat by Proposition 5.8,
it is an isomorphism.
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The only thing we use of Ahsendorf’s work is: to each relative display
P ′ there is a formal group BT (P ′). Let X be a formal OD-module satisfying
(Dr◦). Let P be the display of X. Let P ′ be the relative display given by
construction (7.5). Then BT (P ′) is canonically isomorphic to X.

8. The Lubin-Tate moduli problem

In this section we sketch that a modification of our method is applicable to
a variant of the Lubin-Tate moduli problem. Let again F be an extension
of degree d of Qp. We again fix an embedding ϕ0 : F −→ Q̄p. We also fix
an integer n ≥ 2, and function r : Φ −→ Z≥0 with the same properties as in
(2.1). Let E be the corresponding reflex field.

Let S be an OE-scheme. Let (L, ι) be a locally free OS-module of finite
rank with an action by OF . We say that (L, ι) is an OF -module over S.

Let Ẽ be the normal closure of E. Then each ϕ ∈ Φ factors through
ϕ : OF → OẼ . The induced homomorphism OF ⊗Zp

OẼ → OẼ defines a
map

Nmϕ : V(OF )OẼ
−→ A1

OẼ
.

We set Nmr =
∏

ϕNm
rϕ
ϕ , comp. (3.6). This is a polynomial function defined

over OE ,

Nmr : V(OF )OE
−→ A1

OE
.

We use the notations Ψ, aψ from (2.3). For an OE-module L we have a
natural decomposition

L =
⊕
ψ∈Ψ

Lψ.

We say that (L, ι) satisfies the rank condition (RF
r ) if

(8.1) rankOS
Lψ0

= aψ0
n+ 1, rankOS

Lψ = aψn, forψ 	= ψ0.

This implies rankOS
L =

∑
ϕ∈Φ rϕ. With the notations (2.8) we introduce

the Eisenstein conditions (EF
r ) (compare Definition 3.8):

(8.2)

((Q0 ·QAψ0
)(ι(π))|Lψ0

) = 0,∧2(QAψ0
(ι(π)|Lψ0

)) = 0,

(QAψ
(ι(π))|Lψ) = 0, for ψ 	= ψ0.

We say that L satisfies (LTF
r ) if (R

F
r ) and (EF

r ) are satisfied.
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We say that an OF -module (L, ι) over an OE-scheme S satisfies the
Kottwitz condition (KF

r ) if

(8.3) NmL = Nmr ,

an equality of two morphisms from V(OF ) ×SpecZp
S to A1

S . The condition
is equivalent to the identity of polynomials with coefficients in OS ,

(8.4) char (ι(x) | L) =
∏

ϕ
(T − ϕ(x))rϕ , ∀x ∈ OF ,

cf. Remark 3.2.
We will consider p-divisible groups X of height nd over OE-schemes S

with an action ι : OF −→ End(X). We assume that the action on LieX
satisfies the condition (LTF

r ). We will also say that X is of type r.
Let us assume that S = Spec k is the spectrum of a perfect field of

characteristic p. Let M be the Dieudonné module of X. We obtain a decom-
position

M =
⊕
ψ∈Ψ

Mψ,

where Mψ is a free W (k)-module of rank n[F : F t]. By the condition (LTF
r )

we find (compare Proposition 4.6):

πaψ0+1Mψ0
⊂ VMσψ0

⊂ πaψ0Mψ0
,

V Mσψ = πaψMψ, for ψ 	= ψ0.

If we replace (M,F, V ) by (M,⊕πaψF,⊕π−aψV ), we obtain a Dieudonné
module of a p-divisible group Y of type r◦ for the Drinfeld function r◦. We
see that X is a formal p-divisible group if and only if Y is. Then (Y, ι) is
of Lubin-Tate type, cf [5], i.e., Y is a strict formal OF -module of dimension
one and OF -height n. We conclude that over an algebraically closed field k̄
there is up to isomorphism a unique formal p-divisible group (X, ι) of type
r.

In general we say that (X, ι) over a scheme S is a Lubin-Tate group of
type r if it is a formal p-divisible group of height nd such that the action of
OF on LieX satisfies (LTF

r ).

Remark 8.1. In the case r = r◦, the Eisenstein conditions (EF
r ) in (LTF

r )
are redundant. This follows from the flatness of the naive local model in [17],
in the case where d = n, r = 1 in the notation of loc. cit. But it is also easy
to see this directly.

From the case r = r◦ we deduce:



276 Michael Rapoport and Thomas Zink

Proposition 8.2. Any Lubin-Tate group (X, ι) of type r over k̄ is isoclinic.
Any two Lubin-Tate groups of type r over k̄ are isomorphic. Any OF -linear
quasi-isogeny of height zero between Lubin-Tate groups of type r is an iso-
morphism.

More generally the proof of Theorem 4.12 shows the following fact.

Proposition 8.3. Let S be a k̄-scheme. Then there is an equivalence between
the category of Lubin-Tate groups of type r and the category of Lubin-Tate
groups of type r◦.

We fix a Lubin-Tate group (X, ιX) of type r over the residue class field k̄
of Q̄p. It is unique up to isomorphism. We may therefore define a functorMF

r

on NilpOĔ
. Namely, fixing a framing object (X, ιX) over k̄, MF

r associates
to S ∈ NilpOĔ

the set of isomorphism classes of triples (X, ι, ρ) where (X, ι)

is a Lubin-Tate group of type r over S and ρ : X ×S S̄ → X×Spec k̄ S̄ is an
OF -linear quasi-isogeny of height zero. The formal scheme representing this
functor will be denoted by the same symbol.

The main theorem in this section is the following.

Theorem 8.4. The formal scheme MF
r is isomorphic to the formal spec-

trum of OĔ [[t1, . . . , tn−1]]. A Lubin-Tate group of type r satisfies the Kottwitz
condition (KF

r ).

We will show now how this follows from the results of previous sections.
The Kottwitz condition follows as in the proof of Proposition 4.5. We first
note the following consequence of Corollary 8.2.

Corollary 8.5. MF
r (k̄) = {pt}, hence MF

r is the formal spectrum of a local
OĔ-algebra R w.r.t. its maximal ideal.

In order to complete the proof of Theorem 8.4, it remains to show that
MF

r is formally smooth of relative dimension n−1 over OĔ . This will follow
from the theory of local models.

Let V be a F -vector space of dimension n and Λ an OF -lattice in V . Let
MF

r be the functor on (Sch /OE) such that

MF
r (S) = {F ⊂ Λ⊗Zp

OS | OF -stable direct summand such that

(Λ⊗Zp
OS)/F satisfies (RF

r ) and (EF
r )}.

Then R is isomorphic to the completion of MF
r at a point of MF

r (k̄).
Hence Theorem 8.4 follows from the next lemma.

Lemma 8.6. MF
r is smooth of relative dimension n − 1 over OE. In fact,

MF
r ⊗OE

k̄ � Pn−1
k̄

.



Drinfeld moduli problem 277

Proof. The last statement implies the first. Indeed, then the general and the
special fibre are smooth and irreducible of the same dimension n − 1. The
flatness of MF

r follows as in Corollary 5.4. This proves smoothness.

To study the geometric special fiber MF = MF ⊗OE
k̄, we follow the

method of section 5. Let W0 = Λ ⊗OFt ,ψ0
k̄. Let a0 = |Aψ0

|. Then, as in
(5.2), we have an identification

MF (S) = {F0 ⊂ W0 ⊗k̄ OS | π-stable direct summand,

rank W0,S/F0 = a0n+ 1, and 1′), 2′)}

Here we have set W0,S = W0 ⊗k̄ OS and 1′) and 2′) are as in (5.2), i.e.,

(8.5)
1′) π(a0+1)|(W0,S/F0) = 0

2′) ∧2 (πa0 |(W0,S/F0)) = 0.

Applying Lemma 4.10, we obtain that for F0 ∈ MF (S), there is a chain
of inclusions,

W a0+1
0 ⊗k̄ OS ⊂ F0 ⊂ W a0

0 ⊗k̄ OS ,

where W a0

0 = Imπa0 , resp. W a0+1
0 = Imπa0+1, is a k̄-subspace of dimension

(e− a0)n, resp. (e− a0 − 1)n of W0. Associating now to F0 the submodule
F0/(W

a0+1
0 ⊗k̄ OS) of (W

a0

0 /W a0+1
0 )⊗k̄ OS , we obtain a direct summand of

codimension one, i.e., an S-valued point of P(W a0

0 /W a0+1
0 ). Since this associ-

ation is functorial and bijective, the last assertion of Lemma 8.6 follows.
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248.

Michael Rapoport

Mathematisches Institut der Universität Bonn

Endenicher Allee 60

53115 Bonn

Germany

E-mail address: rapoport@math.uni-bonn.de

Thomas Zink

Fakultät für Mathematik

Universität Bielefeld

Postfach 100131

33501 Bielefeld

Germany

E-mail address: zink@math.uni-bielefeld.de

Received December 14, 2015

mailto:rapoport@math.uni-bonn.de
mailto:zink@math.uni-bielefeld.de

	Introduction
	Formulation of the main results
	The Kottwitz and Eisenstein conditions
	Formal OD-modules
	The local model 
	The generic fiber (after Scholze)
	The unramified case
	The Lubin-Tate moduli problem
	Acknowledgements
	References

