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Introduction

In a series of papers [Dr 1, Dr 2], Drinfeld introduced analogues of Shimura
varieties for GL, over a function field F of characteristic p > 0. Decomposing their
/-adic cohomology under the action of the Hecke operators he constructed very
interesting Galois representations of F. In fact, for d =2 he showed that the
correspondence which to an automorphic representation associates the Galois
representation on its eigenspace is, up to a Tate twist, a Langlands correspondence
(equality of L-functions, s-factors etc.). This is completely analogous to the classical
case of modular curves over @ {the Shimura variety associated to GL,)}. The
essential difficulty in extending this result to general d lies in the non-compactness
of Drinfeld’s varieties. Qur purpose in the present paper is to construct compact
versions of Drinfeld varieties for central division algebras over F, to study their
/-adic cohomology and give applications to the global and local Langlands
correspondence.

Drinfeld constructed his varieties as moduli spaces for two equivalent but
different moduli problems, elliptic modules and elliptic sheaves. The equivalence of
these two concepts was proved by Drinfeld {Dr 3] and Mumford. The idea of
formulating variants of these moduli problems for a division algebra was proposed
several years ago by one of us (U.St.). Here we will concentrate on the generaliz-
ation of elliptic sheaves, to be called Z-elliptic sheaves. The concept of Z-elliptic
module is closely related to Anderson’s t-motives [An]; in spite of their elementary
nature they will not play a role in this paper (comp., however, Sect. 3) since
Z-elliptic sheaves are easier to study.

In the case of Drinfeld’s varieties for GL, the Galois modules obtained by
decomposing the cohomology can be characterized as having a certain simple
ramification behaviour at a distinguished place co of F (special representation)®.

" We do not discuss here Drinfeld’s moduli variety of Shtuka’s of rank 2 which, as Drinfeld has
shown, yields all Galois modules without restriction
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This distinguished place is part of the data needed to define Drinfeld’s varieties
(and our variants as well) and plays the role of an archimedian place. For general
d this characterization conjecturally should continue to hold. This can indeed be
proved [Lau 2] by a method due to Flicker and Kazhdan [FI-Ka], by making use
of certain unproved conjectures (Arthur’s non-invariant trace formula for function
fields, Deligne’s conjecture on the Lefschetz fixed point formula). By contrast, the
Galois modules obtained here from a division algebra have the ramification
behaviour mentioned above at the distinguished place <o, but are in addition
ramified at the places where the division algebra ramifies. (We impose that the
distinguished place co is not a ramification place of the division algebra.) It may
therefore be said that our variant of Drinfeld’s construction yields fewer Galois
modules but that due to the compactness of our varieties it can be pushed through
for arbitrary d.

We now proceed to explain our main results. We fix a central simple algebra
D of dimension d? over F and fix a place o outside the ramification locus, Bad, of
D. Let 2 be a maximal order of D. For an F-scheme S we introduce the concept of
a Z-elliptic sheaf over S: this is essentially a vector bundle of rank d* on X x S
equipped with an action of & and with a meromorphic Z-linear Frobenius, with
pole at oo and satisfying some periodicity condition. (Here X denotes the smooth
projective curve with function field F.) For a non-empty finite closed subscheme
I X\ {o0} we introduce the concept of a level-I-structure on a Z-elliptic sheaf
over S. We also define an action of Z on the set 67/ ., ;(S) of isomorphism classes
of Z-elliptic sheaves with level-I-structure over S. We denote by .#; the set-valued
functor on (Sch/F) which to an F-scheme S associates the factor set
My=Ex 1 (S)L. Our first main result (4.1, 5.1, 6.2) is that .#, is representable
by a smooth quasi-projective algebraic variety of dimension d — 1 over F and with
good reduction at every place o ¢ {0} U Bad U I. Furthermore, if D is a division
algebra, then | is a projective variety. The key tool in our proof of the above result
is the canonical filtration of Harder, Narasimhan, Quillen and Tjurin which
controls the instability of a vector bundle on an algebraic curve. For the compact-
ness assertion we check the valuative criterion through a method used by Drinfeld
in his analysis [Dr 8] of the degeneration behaviour of Shtuka’s of rank 2. We note
that if (D, 2) = (IMy(F), M4(0y)) the concept of a Z-elliptic sheaf is essentially
equivalent to Drinfeld’s concept of an elliptic sheaf of rank d (Morita equivalence).

From now on we assume that D is a division algebra. The projective schemes
A form for varying I a projective system on which the group (D®)* acts. (Here D*
denotes the adele ring of D outside oo.) This allows us to define an action of
Gal(F/F)x (D®)* on the /-adic cohomology groups

H"= lim H"(#,®:F,Q,).
1

Denote by (H")* the associated semi-simplification. For an infinite-dimensional
irreducible admissible representation n® of (D*}* denote by V. the n*-isotypical
component of (H")*. Our second main result (14.9, 14.12, 16.5) states that if there
exists n with V. = (0) then the representation IT = St, ® n® of Dj is automorphic.
(Here St denotes the Steinberg representation of DX ~GL,(F ,).) Conversely, for
an automorphic representation IT of the form IT = St, ® IT* we have dim(V45 ")
=m(I)-d and V. = (0) for n + d — 1. (Here m(IT) is the multiplicity of IT in the
space of automorphic forms.) Furthermore, V4= is the m(I1)-th power of an
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irreducible /-adic representation Wy such that for any place o + oc, o ¢ Bad for
which I1, is unramified, the Galois module W;- is unramified at o and we have for the
trace of a power of the Frobenius

tr(Frobl; W) = ¢~ V2 (z,(I1) + - - - + z,(11,)") ,

with |z;(I1,)| = 1,i =1, ..., d (Petersson conjecture). Here g, denotes the number
of elements in the residue field of o and z,(I1,), ..., z4(11,) are the Satake para-
meters of the unramified representation I1, of D) = GLy(F,). The proof of this
result is based on a description of the set of Z-elliptic sheaves in finite characteristic
similar to the one by Honda-Tate for abelian varieties in finite characteristic. We
follow closely Drinfeld [Dr 7] who obtained similar results in the case of elliptic
sheaves and Shtuka’s. We note that, due to the fact that GL, has no L-indistin-
guishability, this is much simpler than the corresponding problem for general
Shimura varieties. From this description we obtain an expression for the trace of
the action of a Hecke operator times a power of the Frobenius on cohomology in
terms of orbital integrals. This method, inaugurated by lhara and greatly de-
veloped by Langlands and Kottwitz, is now completely standard. We use the
Grothendieck-Lefschetz fixed point formula (which is simple since our varieties are
compact), but the “fundamental lemma” which allows one to convert a twisted
orbital integral into an orbital integral and is customarily invoked for Shimura
varieties at this point is used only implicitly. Instead we follow Drinfeld using his
classification of effective Dieudonné modules of height 1 and his calculation of the
orbital integrals of the Hecke function corresponding to a power of the Frobenius.
Another ingredient of our proof is the use of Kottwitz’ Euler-Poincaré functions
[Kot 2. We then apply the Selberg trace formula (which is simple for a division
algebra). At this point we obtain the assertions above as they pertain to the virtual
Galois module Y ( — 1)"V};.. However, to deduce the full result stated above we
have to invoke an additional argument on “weights” which is based on Grothen-
dieck’s functional equation for L-functions and Deligne’s purity theorems. In the
original version of this paper this argument was also based on the strong Lefschetz
theorem and used an ample invariant class. Since, as was pointed out to us by one
of the referees, the existence of such a class is not obvious we indicate briefly how it
follows from unpublished results of Drinfeld. Moreover, we rearranged our original
proof so that we can base the argument alternatively on the strong Lefschetz
theorem or on the classification of unitary representations of GL,4(F,) due to Tadi¢.
We note that for IT in the image of the global Jacquet-Langlands correspondence
between automorphic representations of D ; and GL4(A) (i.e, forall [Tif d = 2 or
d = 3 [Ja-Pi-Sh 1] and conjecturally all IT for arbitrary d) these complicated
arguments are not needed. Moreover, then m(IT1) = 1 and I and V{- " are up to
a Tate twist (d — 1)/2 in global Langlands correspondence. This in particular
applies to those IT used in our proof of the local Langlands correspondence. In our
statement of our second main result we have restricted ourselves to the cohomol-
ogy of the constant sheaf @ ,; we refer the reader to the main body of the text (13.8,
14.20) for a review of the problems posed by other local systems on our varieties.

Our third main result (15.7) is the local Langlands correspondence which
establishes a bijection between the set of isomorphism classes of irreducible /-adic
Galois representations of dimension d of alocal field F of characteristic p (with finite
determinant character) and the set of isomorphism classes of irreducible supercus-
pidal representations of GL4(F) (with finite central character). This correspondence
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has all desired properties: preservation of L-functions, e-factors (even of pairs), etc. Tt
is in fact characterized by its properties [He 5. To construct this correspondence
we embed the local situation in a global one defined by a division algebra D and
apply then our second main result. This method of obtaining a local correspond-
ence from a global one has deep historical roots: it was in fact the method of the
first proof of local class field theory, and has also been used by Deligne [De-Hu].
See also [Fl-Ka]. For the surjectivity of the correspondence we use Henniart’s
solution of the numerical Langlands conjecture.

We now describe briefly the contents of the various sections of this paper. After
reviewing some well-known facts on central division algebras and their orders in
Sect. 1 we introduce in Sect. 2 the concept of P-elliptic sheaves and their level
structures. Section 3 is not needed in the sequel. It contains Drinfeld’s description
of elliptic sheaves as vector bundles on the non-commutative projective line (or
rather our variant for Z-elliptic sheaves). In Sects. 4, 5, 6 we construct the moduli
space of Z-elliptic sheaves with level-I-structure and establish its geometric proper-
ties. Section 7 is devoted to the definition of Hecke correspondences. As in the
Drinfeld case [Dr 2], the moduli variety of Z-elliptic sheaves admits coverings
which replace the local systems on Shimura varieties given by a rational repres-
entation of the corresponding group. They are defined in Sect. 8. Sections 9 and 10
(together with Appendices A and B) give the description of the set of Z-elliptic
sheaves in finite characteristic. In Sect. 11 the number of fixed points is given as an
expression involving orbital integrals and in Sect. 12 the Lefschetz fixed point
formula is invoked and the result of Sect. 11 is generalized from the constant local
system to general local systems. In Sect. 13 this result is rewritten using the Selberg
trace formula and the local zeta function of .#; is determined at a place of good
reduction. Section 14 contains the proof of our global results and Sect. 15 their
application to the local Langlands correspondence. Finally, in Sect. 16 we give
some applications of our global results to the Tate conjectures for our varieties.

In the present paper we have left aside all questions related to places of bad
reduction; in particular no mention is made of non-archimedian uniformization at
the place oo (cf. however, (14.19)), or at a place where the Hasse invariant of D is
equal to 1/d. Also, we have restricted ourselves to the case of a maximal order
although many of our results have analogues for general hereditary orders
[(Cu-Re, (26.12)]. We hope to take up these questions in a sequel to this paper. We
also hope to return to the subject by developing a theory of &-Shtuka’s (which bear
the same relationship to Drinfeld’s Shtuka’s of rank d as @-elliptic sheaves to his
elliptic sheaves of rank d). We also do not touch here at all on rationality questions
(of eigenvalues of Hecke operators etc.).

List of notations

F global field of characteristic p > 0, with field of constants IF,.

X smooth projective irreducible curve over IF, corresponding to F.
| X| set of closed points of X, identified with the set of places of F.
O, F, completions of Oy , resp. of F (xe|X|)

K(x) residue field of xe|X|

qx cardinality of x(x)

Wy a uniformizer at xe|X|
x(t) valuation of te F, in xe|X|
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deg(x) = dimg, k(x)

A = |1 (F,, ©,) the adele ring of F
xelX|

AT =[] (F,, ©,) the adele ring outside a set of places T<|X|
YET

Ay =[]’ (Fx, ¢) the adele ring inside a set of places T<|X|
xeT

Fr = Ay if T is finite.

For a finite closed subscheme I <= X we use

deg(I) = dimg (0y)

M = M ®¢,0; for an Oy-module .4 .

The symbol D will stand for a central simple F-algebra of dimension d? over F.
We use

DA = D ®F A

DT = D ®F AT

DT =D ®F AT

inv, (D)  the Hasse invariant at xe|X |

n the reduced norm homomorphism rn: D* — F*
SL, (D) = Ker(rn).

A similar notation will be used for simple central algebras over other local or global
fields. For a ring R we denote by R°P the opposite ring and by IMy(R) the matrix
ring of size d with entries in R.

All schemes, as well as their products and morphisms between them, are
supposed to be over IF,. If X and Y are schemes we write X x Y for their product
over IF,. A similar notation is employed for the tensor product over F,. For
a scheme S, we denote by Froby its Frobenius endomorphism (over IF,), which is
the identity on the points and the g-th power map on functions. We also use

frob, € Gal(]?q/ IF,) the arithmetic Frobenius.
Frob, = frob, %#™ e Gal(IF,/x(x)) the geometric Frobenius (xe|X ).

In the later sections we fix an isomorphism @, ~C, where @, denotes an algebraic
closure of @, ¢ + p (this is harmless for the purposes of this paper since we do not
treat rationality questions; this apparent use of the axiom of choice can in fact be
avoided, cf. [De 2, 1.2.117).
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1 Central simple algebras over a function field

In this section we collect some well-known facts on orders in a finite-dimensional
simple algebra D over the function field F with center equal to F. Let

dlmpD = dz .
(1.1} Let M <D be a finite subset containing an F-basis of D. For every xe| X | let
M. cD®F,

be the @,-submodule generated by M. Then for almost all x the algebra D ® F, is
isomorphic to the matrix algebra IM,(F,) and .#, is a maximal compact subring.
(cf. [We, XI-1, Theorem 1]).

(1.2) Let oo e X be a fixed place and let A = I'(X \ {oc}, Ox) be the corresponding
ring. An order in D with respect to oo is a finitely generated A-algebra .#c D
containing an F-basis of D. For x€|X |, an order in D ® F,. is a finitely generated
O,-algebra #,=D ® F, containing an F,-basis of D ® F,. There is a one-to-one
correspondence between the orders .# in D with respect to oo and the set of orders
for all x #+

M. cDRQF,
such that there exists an F-basis M of D with
M= 0,M for almost all x+ oo .

This correspondence associates to .# the orders #, = # ® 40, and conversely to
(A ) xeix1. 1) the order

M=\ (M, D).

(1.3} The setof orders .4 ,c D ® F,for all xe|X | such that there exists an F-basis
M of D with .#, = 0, M for almost all x is in one-to-one correspondence with the
set of locally free coherent (y-algebra sheaves & with stalk at the generic point
equal to D. This correspondence associates to & the orders 2 ®., 0, for all closed
points x of X. Conversely, the set of orders #,, xe X, defines the Oy-algebra
2 with value on the open set U

W)= () (M, D).
xel
(1.4) We now fix once and for all, a sheaf of algebras £ as in (1.3). It follows from
(1.3), (1.2) and (1.1) that there is a finite set of places

Badc|X]|
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such that for all x ¢ Bad, D ® F, is the matrix algebra IM,(F,) and 2, a maximal
compact subring isomorphic to IM, (0, ). It then follows that locally around every
x e X \Bad in the étale topology, the (y-algebra sheaf & is isomorphic to M, (€y).
In other words the points in X \Bad are the unramified points for the pair (D, 2).
A point x can be ramified if D ® F, is not the matrix algebra, or if 2, is not
a maximal order.

(1.5) In the sequel we shall always assume that the distinguished place oo is
unramified for (D, ), i.e. 0 e X \Bad. Furthermore we shall make the blanket
assumption that &, is a maximal order for all x. Much of what follows can be done
under the assumption that 9, is a hereditary order for all x, and we shall point this
out at the appropriate places.

2 The concept of a Z-elliptic sheaf. Level structures

(2.1) We fix a sheaf of Oy-algebras & with generic fibre D as in the previous
section and such that the distinguished place oo is unramified with respect to (2, D)
(cf. (1.4)). Let S be a scheme { = IF -scheme).

(2.2) Definition. A @-elliptic sheaf over S is a sequence (&, j;, t;), i€ Z, where &; are
locally free @y, s-modules of rank d? equipped with a right action of & compatibie
with the Oy-action and where

Jir€i—> vy

478 > 8
are injective Oy, s-linear homomorphisms compatible with Z-actions. Here
‘8. = (idy x Frobg)*&;. The following conditions should hold:

(i) The diagrams )
& —— Eina

i1 Tt

&y AR 8

are commutative.

(1) €t d-degior) = Fi(0) 1= &, R, (Ox(0) K O5) and the composite &; <. ..
5 & 44-deg(ey 18 induced by the canonical injection Oy = @x(cc).

(iii) The direct image of &;/&;_, by prs: X xS — S is a locally free ¢s-module of
rank d.

(iv) Coker t; is supported by the graph of a morphism iy: S — X and is the direct
image of a locally free module on § by its graph S USRS &% S; moreover i,
satisfies io(S)c X ':= X\ {co}\ Bad. The morphism i, is called the zero of the
“-elliptic sheaf .

+2.3) Remarks. (a) We often write a Z-elliptic sheaf in the form

Je
s & o Siny —
t, tiy1 7
o,
o & o vy &
and refer to the first and second row of it.
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(b) Since oo is an unramified place, Z ®,, (o) = M,(k(0)). If § — S is a geomet-
ric point, &;/&;. is a module over
Mu(x(0) ®p, k)= B Ma(k()) -

Hom({k(oc),x(5))

Therefore condition (iii) implies that the action factors through one factor and
&:/&;_ is the unique simple module of the corresponding matrix ring. Consider the
support of &;/&;_ (the closed subscheme of X x S defined by the annihilator ideal)
and its pullback over 5. It is contained in o0 x § = Spec ( D uomuio) 1ty K(5)) and
corresponds actually to the factor singled out before. Therefore we see that supp
(€:/&;- 1) maps isomorphically to S and we may reformulate condition (iii} as
follows:

(iii") &;/&;-, is a locally free sheaf of rank d on the graph of a morphism
iiiS =2 X
which factors through Spec(x(w0)) = X.
Note that the condition i, ;(S) = {0} is automatic since
SUpp(&i+1/6:) = supp(6i(0)/&;) = 0 xS .

Also the condition on the rank can be weakened; it suffices to require that
(£))s % (6i-1), for all se8S, because
d-deg()

Y, dim(6i/8i-1), = d*- deg(c0)

i=1
and because &;/&;-,, being a representation of the matrix ring, has dimension
divisible by d.
(c) Similar remarks apply to condition (iv). Indeed, if se S then iy(s)e X’ and hence
i5(2),~My(x(s)). Therefore condition (iv) is equivalent to the following condition

(iv') The direct image of Coker ¢; is a locally free Os-module of rank d. The support
of Coker ¢ is disjoint from ({c0} u Bad)xS.

(d) Since the inclusion &;_; = &;is an isomorphism over (X \ {o0}) x § the data of
all homomorphisms ¢; are equivalent to giving a single one of them. This argument
also shows that the morphism i, in condition (iv) is independent of the index i.
(e} Since the support of Cokert; is disjoint from oo x S, we have isomorphisms

(EifEi—1) = Eivr]/ 6
In particular for the morphisms i, ;: S — X we obtain

igioFrobs =i, ;s -
Note that, since i, ;(S)={c0}, we have

ico,i = iao,i+deg(oo) .

(f) Suppose that (D, @) is of the form (M, (D), M,(Z)) where dim (D) = (d/e)*-
Then the concept of P-elliptic sheaf can be interpreted, via Morita equivalence
(cf. (9.5)) as “F- -elliptic sheaf of rank e (over 9)”, the definition of which is left to the
reader. When & = 0y (e = d), these objects were introduced by Drinfeld.
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(2.4) Denote by &4y ,(S)=: 6/£,(S) the category whose objects are the
Z-elliptic sheaves over S and whose morphisms are the isomorphisms between
9-elliptic sheaves. If S” — S is an S-scheme, then a @-elliptic sheaf (&, j;, t;) defines
by pull-back a Z-elliptic sheaf over S’. This defines a fibered category

S+ 8Ly ()

over the category of IF,-schemes, which obviously is a stack for the fppf-topology.
The functor which associates to (&}, ji, t;)€ ob &4/, (S) the morphism iy:S — X
defines a morphism of stacks

ze10: 6l x. 9 > X
which factors through X' X.

Remark. By imposing the condition that zero factors through X’ we avoid prob-
lems connected with bad reduction; including the place oo would have meant
dealing with “uniformisation a la Drinfeld”; including the ramified primes would
have meant dealing with situations analogous to bad reduction in the number field
case [Ra]. We hope to return to these questions in future work.

Similarly to iy, the morphism i ,,_, above defines a morphism ¢/, — X which
factors through Spec(x(o0)). This is called the pole morphism,

pole: 8¢/x 4 — Spec(k{0)) .
The group Z acts on the stack ¢/ , by [n1(&, ji, t:) = (€1, ji, t) with & = &1,
Ji=Jitns ti=tisn. On Spec(k(oo)) the group (Z/deg(wo)Z) acts, 1 acts by
Frob,, and we have the canonical group homomorphism Z <> Z /deg(w) Z.

Then the diagram
ng//)(’_a[ - gf/x,f/
l ¢ x pole l, pole
Z/deg(0)Z x Speck(o0) —  Speck(w0)

where the rows are given by the group actions is commutative.

(2.5) Let IcX be a finite closed subscheme with oo ¢ I and let (&, ji, ti)z be
a Z-elliptic sheaf with zero in i,(S) disjoint from I. Then &, and t;,, are
independent of ieZ. Let us denote them by &;.s and ;5! ‘61«5 = &)1xs. More-
over, t,;,s is an isomorphism. We consider the functor

E;:Sch/S — H°(I, %)-right-modules
T/SHKCI(HO(IXT, t”xS_idd ))

(where 7,;, 5 is considered as a g-linear map from &, s into itself).

Ix§

(2.6) Lemnma. E, is representable by a finite étale scheme over S in free H°(I, 2)-
modules of rank 1.

Proof. To any locally free sheaf of Os-modules & of constant finite rank n equip-
ped with an isomorphism ¢:(Frobg)* # = & there is associated a functor
K(#, ¢) to the category of abelian groups

T/S+— Ker(H°(Ix T, p —idy)
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{where we have again considered ¢ as a g-linear map from & into itself), comp.
[Dr 6]. This functor is representable by a finite étale commutative group scheme
over S of order ¢”. Indeed, locally on S for the Zariski topology, # = 0%, ¢ is given
by a matrix ®eGL,(H?(S, 0s)) and K(F, ¢) is representable by the group
scheme

X1
X=|"'@|eG,slPd X=X
xn
where
x1
tX= :
X

Then it follows that our E, is representable by a finite étale scheme in H°(I, 9)-
modules of order |H®(I, 2)|. It remains to show that this module is locally free of
rank 1 over H°(I, 2) and for this we can assume that the support of I is a single
point x. It is easy to see that

E.:= lim E;(x(x))
T

where I runs through all finite closed subschemes of X with support x, is a
9 ,.module such that

E;(k(x))=E, ®,.0; .

(0; is a quotient of O, as the support of I is x.) A standard argument [Dr 1, 2.2]
shows therefore that the fact on the order of E; already established implies that E,
is a free O,-module of rank d2. Since 2, is a maximal order it follows that E, is
a free Z,-module of rank one (comp. [Cu-Re, 26.24(iii)]). O

(2.7) Definition. Let I« X be a finite closed subscheme. A level-I structure on
a D-elliptic module (&;, t;, j;) over S is an isomorphism of ¢;, ;-modules

l:gl X (Os-; éaiIxS

compatible with the actions of 2, (by right translations on 2, X @5) and such that
the following diagram is commutative:

1
Exs S Elixs
T, !
2, K Us.

By definition, if the zero iy (S) of a Z-elliptic sheaf (&}, j;, t;) meets the support of I,
then (£;) does not possess any level-I-structure in our sense (but see [Dr 1]).

Denoting by 6//x » ; the corresponding stack of @-elliptic sheaves with level-
I-structure we obtain a commutative diagram of morphisms of stacks

gl/x]g” mand X/\I

l"l P

©ro

&xa — X\{oo,Bad} =X’

(where r; is the omission of the level-I-structure.)
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For any pairs I «J = X \{o0} of finite closed subschemes, we have a morphism
of stacks

Tty g5 = 8Ly 41
by restricting to I the level-J-structure and the obvious diagram commutes.
(2.8) By definition é¢¢x , ; enters in a 2-cartesian diagram of stacks
8y 51 — Veck o

! 1 d, Froty

Heckex o —— Yeck o x¥eck o

!
X\I.

Here vec% .., = Vec, ; is the stack classifying the sequences (&;, j;) as in the first
row of a Z-elliptic sheaf satisfying the conditions (2.2)(ii) and (iii) together with
a level-I-structure (definition obvious) and Hecke, ; classifies the commutative
diagrams

s
= & o G C—> cee
o &l &y e .
such that (&, j;) satisfies the conditions (2.2)(ii) and (iii) and such that the ¢,’s satisfy

the condition (2.2)(iv), together with a level-I-structure. Then it is clear that the
sequence (&}, j) together with the level-I-structure belongs to ¥ec? ;.

(2.9) Let (&}, ji, t;) be a D-elliptic sheaf over S and let £ be an invertible sheaf
on X. Then it is clear that

(g:’ ];’t:) = (éﬂi®€s$5 ji®(’sidfl” ti®(’sid-‘/’)

is again a P-elliptic sheaf. So we have an action of the group Pic(X) on the stack
&ty .. Similarly, if (€}, t;) is equipped with a level-I-structure and if % is equipped
with a level-I-structure (i.e. an isomorphism of Ox-modules .#; =, ¢;), then we
obtain a level-I-structure on the new Z-elliptic sheaf (&, ji, t;). So we have an
action of the group Pic;(X) on the stack &/ ;.

Note that for all se S

deg (67); = deg(&:), + d*-deg (&)
and similarly for the Euler-Poincaré characteristics:
A(EDs = 1(E:)s + d* - deg(Z) .

3 Z-elliptic sheaves and vector bundles on the non-commutative projective line

In [Dr 3] Drinfeld shows that there is an equivalence of categories between the
category of elliptic sheaves over S and the category of elliptic modules over S. In
this section we consider the analogous question for 9-elliptic sheaves. Whereas in
the case of elliptic sheaves one has to deal with the endomorphism ring of the
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additive group G, we are here lead in a natural way into dealing with the
endomorphism ring of G¢. Therefore, there is an obvious relation to Anderson’s
t-motives [An]. Throughout this section we fix a base field L which we suppose
perfect.

(3.1) We first recall briefly some basic facts about the skew polynomial ring L[]

in the case that L is perfect, the commutation relation being as usual b = b?r.
The ring L[7] admits a left and right Euclidean algorithm. Therefore, any left or

right ideal is principal, and hence any finitely generated torsion-free module is free.

(3.2) Lemma. The ring L[] satisfies the left and the right Ore condition. Hence it
possesses a left and right skew field of fractions.

Proof. The left Ore condition [Her] demands that for given f, ge L[z] we find
x, ye L[1] such that

xf=yg.

Consider the homomorphism of left L[t]-modules
@: L[] - L[1]

(. y)—>xf-yg.

For each non negative integer n, let
L[<], = {aeL[]; deg.(@) < n}
where deg. (a) is the degree of the skew polynomial a. Then
dim; (L[t],)=n+1

and

(P(L[T]deg(g)+n @ L[T]deg(f)+n)CL[T]deg(f)+deg{g)+n .

Therefore
Ker (@) N (L[t]deg(gr+1n D L{tlacgsry+n) F (0} .

Hence, Ker (¢) is non-trivial, as had to be shown. By a similar argument we get the
right Ore condition for [t]L = {} t"a,} which is equal to L[t] as L is perfect.
The fraction field is then formed as the ring of elements of the form a™! - b or of the
formc-d™Y, a,b,c,de L[1], a ¥ 0, d % 0, comp. [Her, Theorem 7.1.1]. O

(3.3) Similar statements are true for the ring of skew power series L{[t]]. Its
skew field of fractions may be identified with the field of skew Laurent series L((7)).

(3.4) Let E = (&4, ji, ti)z be a D-elliptic sheaf over Spec(L). We consider
P=H((X\{0})® L, &).

This is clearly independent of i since supp(&:/&:—()c={oo} x Spec(L). It is an
L[t]-module, where the operation of t is induced from ¢;:°&; > &+ .

(3.5) Lemma. The L{t}-module P is free of rank d.
Proof. We choose i large enough, such that the canonical homomorphism
MX®L,&)»TNX®L,&8/8-1)
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is surjective. This is possible because of the periodicity of (&}, ji,t;) and the
ampleness of the line bundle Ox(o0). We choose an L-basis e;,...,e, of
(X ® L, &;) such that e,,..., e; go to a basis of I'(X ® L, &;/&;_,) under the
above map.

Then it is immediate to check the following points:

(i} for all j20 tle,..., t'e, are sections in I'(X ® L, &), such that their

images in '(X ® L, &;4;/€;+-,) form again a basis.

(i) {e1,...,e}u{tle/l £h<j,1<i<d} form a generating system of

I'X®L,&;;)as an L-vector-space.

(iii) {ey,..., e} is a generating system of P = P—IP-» I'X®L,&;:+;)over L[t].
J9

Therefore in particular P is a finitely generated module over L[1]. Next we show
that P is a torsion free L[t]}-module. Suppose f (t)e L[t]\ {0} and ee P\ {0}. We
canfind ieZ such thateeI'(X, &;)and e ¢ I'(X, &;_;). ThentieecI'(X, &;,;) and
tle ¢ I'(X;, &+j-,)for jeN. Suppose the degree of f(r) as a polynomial in 7 is m.
Then f(r)eel'(X,&4m) and f(e ¢ I'(X, ivm-1). In particular f(t)e=+0.
Therefore P is a torsion free L[t]-module of finite rank. Consequently, P is a free
L[t]-module of finite rank. Now P/tP is isomorphic to &;/t;- (*6;- () (for any i}.
Therefore P/t P is a d-dimensional L-vectorspace, and this shows that P is a free
L[1}-module of rank d. |

(3.6) Let Op = H°(X\ {0}, 2). It is an order of D over 4 = H°(X\ {0}, Ox).
Then P has a natural structure of right Op-module which commutes with the left

action of L{t]. The underlying 4 ® L-module is locally free of rank d2. Let us
denote by

(,D:O(;)p - EndL[,](P)

the corresponding homomorphism of I, -algebras. We obtain a commutative
diagram of homomorphisms

0¥  _*, End.y(P)
i !
0¥®,L — End,(P/tP).

Here 4 — L is the zero of the @-elliptic sheaf and the lower horizontal arrow is
given by the operation of Op, on &;/t;—, ("€;-1).

(3.7) Lemma. For any ac Op ~ D* the map ¢(a): P — P is injective and its coker-
nel P{o(a)P is a finite dimensional vector space over L of dimensionlog,|0p/0p " al.

Proof. The map ¢(a) is A® L-linear and ¢(a)®4idp:P@4F - P®4F is
bijective. (Note that a is invertible in O, ® ,F = D.) So ¢(a) is injective and
dim;(P/@(@)P) < 0. Now it is immediate to see that the map
Op n D" 2a v+ dimy (P/e(a)P) =: f(a) satisfies f(ab) = f(a) + f(b). Therefore it
extends to a homomorphism

D*-Z.
The same holds true for the map

Op " D*3a+>log,|0p/0p-q|.
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Both maps agree on F* < D” because they obviously agree on A\ {0} and both
maps factor over D*/[D*,D*]. But by a well known result [Wa]
[D*,D*] = SL,(D) and the reduced norm D*-—- F* by Eichler (cf. [Re,
Theorem 34.87) is in our situation surjective. Therefore we can factor our two maps
through maps from F* to Z which are identical on (F*)¢< F* . But then they agree
on F* itself. (I

Remark. (i) With a little more effort it would be possible working first locally to
avoid the somewhat difficult theorems above but we wanted a quick proof.
(ii) The lemma implies that ¢: 0% — End,(P) is injective.

(3.8) Corollary. Let L(t) be the skew-field of fractions of L[t] and put
V = L(t) ® Ly P. The homomorphism

@:0F — End;(P)
extends in a unique way to a homomorphism
(P:Dup g EndL(t)(V) .

Proof. L(t)is the union of free L[t]-modules and is therefore a flat module. Since
for ac0p ~ D* the homomorphism ¢(a) is injective, it follows that also

id®pa):L(t) ® P - Lz) @ P
Lt} L{r]
is injective. Since these are finite dimensional L(r)-vector-spaces it follows that
id ® ¢@(a) is bijective and therefore we can extend ¢. O

(3.9) Recall that L[] is the ring of IF,-linear endomorphisms of the additive
group G, over L (z is the Frobenius endomorphism relative to IF,). It follows that
the functors

E — Homy, (E, G,)

and
P+ Hom (P, G,)

are anti-equivalences of categories between unipotent groups over L, with
IF,-module structures, isomorphic to G} for some N and free left L[t]-modules of
finite rank. Therefore, fixing a basis of P as an L[t]-module, we can rewrite ¢ as an
embedding

@:0p — Enleq(Gg,L)
of IF,-algebras.

(3.10) Proposition. For ac O, n D* the endomorphism ¢(a) of Gf | is surjective
with kernel a finite group scheme over Spec(L) of order |0,/0p - a|. Moreover this
kernel is etale over Spec(L) if and only if the zero of the @-elliptic sheaf is disjoint
from the divisor div(rn(a)).

Proof. For any commutative L-algebra R, the R-valued points of Ker(¢(a)) are
given by

Ker(¢(a)) (Spec R) = Hom;(P/9(a)P, R)
= {ueHom(P/@(a)P, R); u(tx) = u{x)?} .
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Consider the finite-dimensional L-vector-space P/¢(a)P as a locally free sheaf of
rank log, |0,/0p - al on Spec(L). The operation of T endows this with the structure
of a ¢-sheaf on Spec(L) in the sense of Drinfeld [Dr 6] and Ker ¢(a) is precisely the
finite group scheme associated by Drinfeld to this ¢-sheaf, as follows from the
description above. To see then that all our assertions follow from Proposition 2.1 of
loc. cit. it suffices to remark that

t:P/p(@P - P/o(@)P

is bijective if and only if ¢(a): P/rP — P/1P is bijective, ie. if and only if the last
condition in the assertion is satisfied. ]

(3.11) Let &, ., = H°(Spec(0, ®L),éﬂ»). This is independent of i. Since ¢; :
6o 81,0 18 an isomorphism, we obtain via the inclusions
Jiiw:€i n s &1ty a T -linear endomorphism of &, ,,. We therefore obtain on
&« the structure of a L[t~ ']-module. This action is obviously continuous for the
77 1-adic topology on L[t~ !] and the oo-adic topology on &; , and therefore
& » is even a L[t~ ']]-module (for any i€ Z). Nakayama’s lemma and the fact
that &; ./t '&; o is a d-dimensional L-vectorspace imply that &; ., is a free
L[{r~']]}-module of rank d. In addition &, , is a right-@ -module so that we get
an IF,-algebra homomorphism

Q0 DE — Endp-11(65 )
which is injective as before.
(3.12) Proposition. There are canonical isomorphisms

Foo ®(’§ai,w‘;‘L((Tﬁl)) ® ((01004"—[‘ ))® P.
‘., L[z 11 Lir]

Proof. To define the left arrow we shall first define the structure of a L{(x~1!))-
module on F,, ®, & . Let ®,, denote a uniformising element at co. From the
periodicity condition we have

T_d‘deg(w)éﬂi o = wm'gi o
Therefore, if e £;, ,,, we define e’ €&, ,, by

T—d~deg(oo)e/ —_ moo ‘e
(6:.  is a free L[[t™']]-module) and put
il Qe =a,'®e’ .

Since L((z™1) = | t/ 448 L[[t~*]], this defines a L((z~'))-linear map
=1
LE) ® fio=Fu® b
L[z~

extending the identity map of §; . It is obvious that the map is surjective. On the
other hand, any L((z™!))-submodule of L((t™")) ® f[.~11; &1, has a non-trivial
intersection with &; , and hence the kernel of this map is trivial. The first
isomorphism is established. It also shows that the middle term is independent of i.
The second arrow is induced from the inclusion

PCUéai.oo=Foo®éai,w:Foo®P~
i €. A
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The argument used in the proof of Corollary 3.8 shows that the operation of 4 on
P extends to an operation of F on L({z ™)) ® .1 P. The topology on F, ®,_ &, 5
defined by t7™"* &, o, n— o0, coincides with the topology defined by ©%, &;, .,
n— co. Since the image of the second arrow is a L({t~'))-subvector space it is
a closed subset. On the other hand it is clearly stable under the operation of F via
its embedding in F,,. Therefore, by continuity, the image is stable under F, and
therefore must be all of Fo, ® 4P = L((t ™)) ®Li1-11; i, - But both sides of the
second arrow are L({(t ™ '))-vector-spaces of dimension d, therefore the surjectivity
of the map implies the injectivity. l

The following definition was suggested by Drinfeld in a letter to one of us [Dr 5].

(3.13) Definition. Let L be a perfect field. A vector bundle of rank r over the
non-commutative projective line over L,PPl(1), is a free L[t]-module P of rank
r together with a free L[[t~']]-submodule W, < L((t™')) ® ;P such that the
induced map

L(t™Y)) ® W, L) ®P

Li[z-']] Lz

is an isomorphism. A homomorphism of vector bundles (P, W ) — (P', W) is
a pair of module homomorphisms

QPP We—o W,
making the obvious diagram commutative

id@e

L") ® P L) ® P
L[] L[z}
1 1
Lc™) ® W, —25% L(c™) ® W,
Li[t-']1 Lifz~'1

Note that the vector bundles of variable rank over the non-commutative projective
line over L form an exact category. We also need the following definition.

(3.14) Definition. A coherent right 9@-action on a vector bundle (P, W) over the
non-commutative projective line is a commutative diagram of ring homomorphisms

0 ;))p —> End L) P

Nl |

Fuo ® 0?)p=Foo ® @oo — EndL((:“))(L((T_l)) ® P)
A O

Lid
Ul 1

900 — EndL[[r—ln (ch))

where the vertical arrows are the canonical ones and where, of course,
Endy -1 (L") ® P)= Endp -1y L™y ® W,).
Li Lit=-11

To go further, we need some important properties of vector bundles over the
non-commutative projective line.
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(3.15) Definition. The cohomology groups of a vector bundle E = (P, W) over
P}(z) are

(i) H°(P*(z), E) = (P n W,,) (intersection inside L((t ~!)) ®; P using the identi-
fication map).
(i) H' (P'(x), E) = L((t™ ) ®La P/(P + W)

Remarks. (i) Given an exact sequence of vector bundles
0-E,-E—>E,—»0
on IP!(7), it is an exercise to see that we have an exact cohomology sequence
0— H°(P'(v), E;) > H°(P* (1), E) > H°(P' (1), E;) -
—-H'(P'(z}, Ey) > H'(P'(x), E)> H'(P'(z), E;) > 0 .

Here the connecting homomorphism sends an element se HO(P!(7), E,) =
P(E,) n W4(E;) into the residue class of §—3,eL((t™Y))®pPE)/
(P(E,) + W,(E,)), where e P(E)is a lifting of se P(E,)and §, € W (E) is a lifting
of se W, (E,).

(ii) We denote by O(n)(ne Z) the vector bundles ¢(n) = (L{t], ""L[[t~11]), with
" L[[t™ 1< L{(z™1)). One has

0 for n <0
n+1 fornz=0

dimLH‘(]P‘(‘r),(O(n)):{O fornz —1

dim, HO (P (), O(n)) = {

—n—1 forn< —1.

More generally, for any vector bundle E = (P, W) on P*(r) we denote by E(n)
(neZ) the twisted vector bundle (P, 1" W,).

(3.16) Proposition. (i) Any vector bundle of rank one is isomorphic to precisely one
of the form O(n).

{(il) Any vector bundle of rank r is isomorphic to a direct sum of vector bundles of
rank one.

(iii) For any vector bundle E over P(z) the cohomology groups are finite dimen-
sional L-vector-spaces.

Proof. (i) is trivial and (iii) is true for rank one bundles by the remark above. In
general then (ii) implies (iii).

We prove (ii) by induction on the rank exactly as in the commutative case
[Ok-Sch-Sp, Theorem 2.11]. Given a bundle E of rank r, we can find an exact
sequence of vector bundles

0>0m—->E—-E —-0.

But E' @ @!Z] 0(n;) by induction hypothesis. This shows immediately that the
possible m are bounded from above for if we had some other line subbundle

Om)-E,

it would either factorize through ¢(m) and then m' < m or it would give a non zero
homomorphism (by composing) @(m') — €(n;) for some i, 1 <i <r — 1, and then
m'’ § n;.
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Therefore by rescaling, we can assume that the m above is maximal and m = 0.
Twisting by @( — 1), we obtain an exact sequence of vector bundles

r—1

0-0(—1)—»E(-~1)»E(-1)=@ 0(n;—1)~0.
i=1

By assumption H® (IP* (1), E( — 1)) = O (otherwise we would have (1)< E). Fur-
thermore by the remark (ii) above, H! (IP! (1), ©( — 1)) = 0. But then the long exact
cohomology sequence implies that

H°<1P‘(T),rC_—Bl Ofn; - 1)) = E_Dl H°(®'(z), O(n; — 1)
i=1 i=1
=(0).

Therefore n; £ Oforalli=1,...,r — 1. But the extensions like
0-0—-E—-E -0

are classified as in the commutative case by the L-vector-space
r—1
@ H'(P'(2), 0(~ n)) = (0)
i=1

by remark (ii). This means that the sequence for E splits, therefore

r—1

E=0® @ 0n). O
i=1

(3.17) Theorem. The functor
(gh jia ti)xel = (P= HO(X\{OO}’ 6)0)’ Wco = gO,oo)

defines an equivalence of categories between the category of D-elliptic sheaves over
L and the full subcategory of the category of vector bundles over P} (z) with coherent
right @-action which satisfy the following conditions:

(i) The induced homomorphism

A - 0% —2>End;,(P) - End,(P/P)

equips P/tP with an action of A which factors over the (central) action of L on P/tP
(and is therefore given by a ring homomorphism A — L).

(ii) P is finitely generated as an A ®y, L-module.

(ili) W, is finitely generated as an O, @y, L-module.

(iv) We have 140 =g W,_.

Proof. It is by now clear that the functor in question has its image in this
subcategory. From the description of a locally free sheaf on a curve through lattices
in its generic fibre, it follows easily that the functor is fully faithful. We have to
prove the essential surjectivity.

Let (P, W) be given. Let

PocL(™h)) ® P

L[]
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be the F,-subspace generated by P (the structure of a F,-vector-space on
L{(t™ ")) ®p; P comes from its (F,, ® 4 Op)-right module structure). Since P is
finitely generated as (4 ®y, L}-module, P, is a finitely generated (F,, ®p L)-
module. Since W, is a finitely generated (€, ®y, L)-module, so is (W, n P,).

Claim. W, n P is an (0., ®g, L)-lattice in P, ie. the canonical map
Foo @ Wy nPy)— P,

0.
is an isomorphism.

First of all, because W, n P, is a finitely generated (0, ®p, L)}-module
contained in the F,, ® y, L-module P, the map above is injective. If surjectivity
did not hold, then P, /(W n P,) would contain a (F,, ® g, L)-module of positive

dimension and therefore would have uncountable dimension as a L-vector-space.
On the other hand

Py/(We nPCL((t™ ) ®rLig P/We = (L™ LIt 1D ®ripe-1 Weo
has countable L-dimension, a contradiction, whence the claim above.
Claim. P is an A ® g, L-lattice in P, i..

Fy, & P-P,
A

is an isomorphism.

Surjectivity is immediate from the definition of P . Just as in the previous claim we
have that for every n

T "W, n P,

is a (0, @, L)-lattice in P,
Since

N @"Wen Py)=(0)

nz0

we see that "W, 0 P, n — oo, form a fundamental system of neighbourhoods
of 0in P, considered as a topological (F., ®, L)-module. If now injectivity did
not hold, then P< P, would not be discrete and hence

Prn(x™"W,n Py)%(0)
for all n. However, Proposition 3.16 above implies that
Pnt "W, =(0)

for n = ng, ng sufficiently large, a contradiction. This proves the second claim.
We can now define vector bundles &; over X ®p L for all ieZ by

H°((X\{oo})®,FqL,éﬁ~)=P
Eiw=TWynPocF,®,P.

The inclusions &;=&;,, are defined by the inclusions "W, n P,c
YW, ~ P, and the homomorphisms t;:°¢; — &;+ from multiplication by T,

i i+1
T T Wy NPyt "W Py .

The action of 2 on &; comes from the operation of & on (P, W,).
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It remains to show that (&}, t;) is a Z-elliptic sheaf and that (P, W) is the
image of (&, t;) under the functor in question. However,

EiJEi 1 =T We NP t" W, A P,

is an L-subvector-space of t' W /1"t W,. Since P, is stable under the operation
of F,®,0p, this subspace is stable under the operation of %,. Since
T W, /7:‘ YW, is a simple 2., ®r, L-module, so is &;/&;_ . The remalnmg condi-
tions on a P-elliptic sheaf (perlodlcxty, ‘tangent space” condition on Cokert;)
follow easily from the conditions imposed on (P, W,,). The rest is clear. g

4 Moduli space: Smoothness

Our aim in this section will be to prove the following theorem.

(4.1) Theorem. &/¢, 5 , is an algebraic stack in the sense of Deligne-Mumford
(¢f. [De-Mul) which is smooth of relative dimension (d — 1) over X'\ I.

For the smoothness assertion in this theorem we shall apply the following lemma
to the diagram in (2.8).

(4.2) Lemma. Let S, U, V be smooth IF;-schemes and let o: V > U x U, f: ¥V — § be
IF,-morphisms. We form the cartesian square

w Lou

j p P i = (Froby, idy)
g V l) UxU

7l
S.

Let we W and put v = j(w). Assume that
(f,prica):V—-SxU
is smooth, of relative dimension n in v. Then g is smooth of relative dimension n in w.

Proof. Let u = f(w) and i(u) = (v', u). We have to check the transversality condi-
tion
T(u’,u)(U X U) = Tu’(U)x Tu(U)
= T,() (T,(V/S)) + T.(1) (T.(U)) .
However,
T, (T, U) = {0} x T(U

and the composition

T.(V/S) =B T.(U)xT,W)
M « pry
Tu‘(U)

is surjective by hypothesis, whence the assertion. O
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(4.3) We shall first construct an open substack of 77y ,; which will become
“bigger” as deg(l) grows. Denote by &//% » ; the open substack of Z-elliptic
sheaves (£;) over S such that & is stable as a vector bundle with level-I-structure
i.e. such that for all geometric points s in S and for all locally free ¢y, ,-modules
& properly contained in (£,), we have

deg(F) — deg(l) _deg((€0);) — deg(])
k (#) rk ((€o)s)

(comp. [Se, 4.1. Définition 2]).

Denote by ¥ecy ; = ¥ec, the stack of vector bundles of rank d* with level-
I-structure. Then the subfunctor #ecs' of such vector bundles which are stable in
the above sense is representable by a disjoint union of quasi-projective schemes
over F, which at every point is smooth of dimension d*(g — 1 + degl) if
deg(I) > O (cf. [Se, 41I1]). The condition on the degree of I is needed to eliminate
non-trivial automorphisms. Since this point is not explicit in loc.cit., we indicate the
proof. Let f be an automorphism of a stable vector bundle & with level-I-structure
such that f; is the identity of &;. We consider the obvious diagram

A o & L, g
! J
€ = 54
(" = kernel, ¥ = coimage, J = image for f— ids). Then we have
length (#/¥€) = length ((#/€);) = deg(I) 1k (%)

and by the stability conditions for the submodules # and .# of &, we get that f is
equal to the identity. Let ¥ecy 4 ; = ¥ec, ; be the stack classifying the vector
bundles with an action of 9 (compatible with an action of ¢0y) and with a Z-linear
level-I-structure and denote by #ec} ; the inverse image of # e} under the obvious
morphism from ¥ec, ; to ¥ec; (after fixing a base of 2; as ¢;-module).

(4.4) Lemma. The morphism
VYecyq = Vecy
is relatively representable and affine.

Proof. To give a right Z-action on a vector bundle & on X x § is equivalent to
giving a homomorphism of 0y, s-algebras

DPROs—> Endy,, (8).
In particular, the morphism of stacks
Vecq = Vec,
factors through the morphism of stacks
Z - Ve,

where & is the stack classifying the vector bundles & over X x § with a level-
I-structure and a homomorphism of Oy, s-modules

2°° ® Os— é’%d@“s(éﬂ)
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and the resulting map
Vec N Bad 4

is relatively representable and a closed immersion (the conditions that the above
homomorphism be one of algebras and the @-linearity on the level structure are
clearly closed conditions). Now the morphism of stacks

F - Vec,

is relatively representable and affine. To see this, let S — ¥%ec; be a morphism
corresponding to a vector bundle & on X x §. It is sufficient to show that the
functor which to an S-scheme T associates the set

H®(X xT, End o, (E1)Q 0, D)

is representable. Here &1 = &,x . r. Let pry: X x T — T be the projection morphism
and put F = &nd,,, (6} Dy, 2" . The above set is equal to H(T, prr, (% 1)). By
Grothendieck duality (one-dimensional fibres of pry)

Rp174(F 1) = R om (Rprr(F5 ® Q4 [11), Or) .
It follows that
HO(T, prry(# 1)) = H(T, Rprry(F 1))
= H°(T,R #om((Rprr,(F 7 ® Qx[1]), Or))
= Hom (Rprr.(# 1 ® Qx[11), Or)
= Hom (R! prr (F¥ ® Q}), 07) .

However, this is precisely the set of points of Grothendieck’s functor V(%) with
values in T (cf. [Gro]), for 4 = R prs,(F ¥ ® Q%) because R!pr, commutes with
base changes T — S. The functor V(%) on (Sch/S) is always representable by an
affine scheme over S (loc. cit.). U

We conclude that #ec | is representable by a disjoint union of quasi-projective
schemes if deg(1) > 0.

(4.5) Lemma. The stack ¥Vecg  is smooth over IF,.

Proof. We show this first for ¥ ec itself. Let S be the spectrum of a local artin ring
R and let S S be a closed subscheme defined by an ideal J with J2 = 0. Let (£, 7)
be a vector bundle on X x § with a @-action. The obstruction to extending (£, ) to
(X x §) lies in the cohomology group Ext% (&, & ®,,J) [11, Chap. IV, Proposition
3.1.5]. Consider the local-global spectral sequence for Ext. Since &, is a maximal
order, &, is a projective module of rank 1 over 2, ® R/J. It follows that all higher
local Ext-groups Ext}, (&, & ® J,) vanish for i > 0. Since dim(X) =1 the ob-
struction group is trivial. This shows that ¥%ec, is a smooth stack over IF,. But
Vecy  — Vecy is a torsor under the smooth group scheme given by the functor
T (2;® 0r)". Therefore ¥ecy  is also smooth over IF,. O

Remark. The argument above still works if we only assume that &, is a hereditary
order for all x (every 2 ,-module which is free as an ¢ ,-module is projective [Cu-Re,
26.12 (ii)]. Therefore the results of the present section can be extended to this case.
In particular, ¥c% o ; is representable by a smooth quasi-projective scheme if
deg(I)>0.
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(4.6) Lemma. The natural morphism (cf. (2.8))
(€5, Ji) — &0, Yeck a1 = Veex g,
is relatively representable by a flag variety. In particular it is smooth.

Proof. Let &, on (X x §) be given. Then the chain (&), z corresponds because of
the periodicity condition (ii) to a flag of sub-sheaves

{0} c &1 ... &t uegiamr-1 < Eal0)/ 6o

such that the successive quotients are locally free as (Og-sheaves and which are
stable under the action of 2, i.e. under the action of Z ®,, k(00) = M, (x(0)).
But under Morita equivalence this flag corresponds to a complete flag of locally
free O, ;. s-sub-modules of a locally free ¢, ,,,.s-module of rank d such that the
successive quotients are locally free. |

We conclude that the open substack #'ec’ of #ec, ; is representable by a disjoint
union of smooth quasiprojective schemes over IF, if deg(I) > 0.

(4.7) Lemma. The morphism
Heckey o ;= (X'\I)x ¥eck% a1

(given by the zero morphism and the first row) is relatively representable and smooth
of relative dimension (d — 1).

Proof. An object of ((X'\I)x ¥ecy ) (S) corresponds to a morphism iy:S —» X
factoring through (X' \ I) and a chain of vector bundles with Z-action on (X x S},

RNl 3 = FIR —

with a level-I-structure. To complete this by a second row (&) with homomor-
phisms
6:8 > &4y

satisfying the required conditions is equivalent to giving a locally free Oy, -
submodule &’ = &, which is stable under the operation of 2 and such that &,/&" is
a locally free sheaf of rank d on the graph of i;. Here we used the fact that
oo ¢ iy(S) (cf. (2.3), remark (d)). Let iy:S « (X x S) be the closed embedding
defined by the graph of i,. Then the choice of &’ <= &, corresponds to the choice of
an Og-submodule which is locally a direct summand of rank d(d — 1)

& = (1o)*(6)
and which is stable under i, *(2). Since i, (S) misses all ramified places, i *(2) is an
Azumaya algebra. It therefore follows that the scheme classifying the possible &' is

locally in the étale topology isomorphic to IP“~! (a Brauer-Severi scheme of
dimension (d — 1) over S). In particular it is smooth over S. 0

Summarizing the above lemmas, an application of Lemma 4.2 shows that the open
substack 877%, 4, ; of ¢(x 4,1 1s representable by a disjoint union of quasi-projective
schemes which is smooth of relative dimension (d — 1) over X'\ I if deg(I) > 0.

(4.8) We now finish the proof of Theorem 4.1. For any two closed finite sub-
schemes I < I’ = X' with deg(I') > 0 we have the morphism of stacks

Fport g{[gvl' - éo[f@,l
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which associates to a level-I’-structure its restriction to I. Thanks to (2.6), over
(X'\I') this morphism is a torsor under the finite group

Ker (GL; (H®(I’, 2)) > GL,(H°(1,2))) .

(Note that the multiplicative group of the algebra acts on the set of level structures
via

logiglxs "q—’ 9I><S —l‘* (éai)IxS .
Clearly
(rp, D7t (665,1) c 6645 .

Therefore, the open substack &#/% ;. which is stable under [Ker(GL,(2;)—
GL,(2))), gives as a quotient in the sense of stacks [De-Mu] an open substack

&6 v/ [Ker (GL(21) » GL(2/))] < 65,

which contains 6775 X (x\ (X \I'}). It clearly is an algebraic stack in the sense of
Deligne-Mumford which is smooth of relative dimension (d — 1) over X'\I'.
Letting now I’ vary over all finite closed subschemes of X’ containing I, these open
substacks cover ¢/ 5 ;. (Every vector bundle becomes stable for a sufficiently high
level structure.) . O

(4.9) Remark. One could also consider the scheme which is the quotient of
&% 0, by Ker(GL,(2)) > GL{(Z/)). This is the coarse moduli scheme for the
algebraic stack &4/%. 4, 1 /[Ker(GL{(2,)— GL,(2,))]. These coarse moduli
schemes glue together and yield a coarse moduli scheme Elly , ; of 6¢¢ 5 ;. The
morphism of algebraic stacks

Ellx 9.1~ E”X,@,I
is an isomorphism over 4£% 5, if deg (1) > 0 (see (4.3)).

(4.10) Remark. The representability and smoothness of 64/« » ; over X'\ I may
also be seen by checking Artin’s conditions [De-Ra, III, Théoréme 2.3], the main
point being to check by deformation-theoretic methods that the morphism
845 1 — X'\I is formally smooth. We sketch the argument. Let S be the spectrum
of a local artin ring and let § < S be the closed subscheme defined by an ideal J of
square zero. Let (&£, ji, £,1) € &¢5 1(S) and let

10:S =X’

be an extension of the “zero” 1y: S — X of (£;). We have to show that we may lift
(&) into (&4, ji, t;, 1) over S with zero section 1y. For this we first note that the
Frobenius Frobg:S — S factors through S < §. Denoting by Frobss:S — S the
resulting morphism we must have for a lifting &; of &;

€, = (idy x Frobs §)*(&;) .

Therefore lifting &; to &; is equivalent to finding an injective @-linear homomor-
phism of locally free Oy, s-modules

t-l:t(op_l —’(go
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which lifts 7_, and such that Coker{t_,) is a locally free sheaf of rank d on the
graph of iy. Indeed, since o0 ¢ i(S), the rest of the data is then uniquely deter-
mined. Denoting by i5:S — X x § the section defined by the graph of iy, giving
t-, is equivalent to giving

io*("€ - 1)~ ig*(&0o)

which is i%(2)-linear and such that the cokernel is a locally free Og-module of
rank d which lifts the corresponding homomorphism of ¢s-modules.

However i § (2) is an Azumaya algebra. Therefore by Morita-equivalence the
problem may be considered as that of lifting a given direct summand of (0;— into
a direct summand of 4. There is no obstruction to doing this. O

5 Moduli space: Boundedness

The aim of this section is to prove the following theorem.

(5.1) Theorem. The algebraic stack &(/x 4, is the disjoint union of algebraic stacks
of finite type over X'\ I. In fact, the substack of @-elliptic sheaves (&, t;) with fixed
degree deg(&), which is open and closed in ¢y 1 is of finite type over X'\ I, and
actually is for I £ § a quasi-projective scheme.

For the proof of this theorem we inspect the proof of the existence of 47y , ; in
Sect. 4. We had represented 67/ , ; as an increasing union of open substacks of
the form

ép/f?,@,r/ [Ker(GL,(2;) - GL.(2)))]

where we may take the finite subschemes I’ to range over the finite subschemes
(ordered by inclusion) with supp(I’) = supp(I}. However, for I % @, there are no
automorphisms, this action is free and the quotient is in fact a scheme quasi-
projective over X'\ I. Therefore Theorem 5.1 is a consequence of the following
result.

(5.2) Theorem. There exists a constant ¢ with the following property. Let I < X' be
a finite closed subscheme of degree > c. Let L be an algebraically closed field and let
(&, ji» ti, 1) be a D-elliptic sheaf with level-I-structure over Spec(L). Then &, is
stable as a vector bundle with level-I-structure.

(5.3) For the proof of Theorem 5.2 we need some general results from the theory
of vector bundles on a smooth projective curve X over an algebraically closed field
L which we proceed to recall. The term “vector bundle” will here be used as
synonymous for locally free @x-module of finite rank. By a subbundle of a vector
bundle & we understand an Ox-submodule # < & such that &/ is again a vector
bundle. Recall that there is a one-to-one correspondence between the subbundles of
& and the sub-L(X)-vector spaces of the generic fibre &,: to a subvector space
V < &, we associate the maximal submodule # of & with generic fibre equal to V.
(The stalk of # at a point x of X is equal to V' n &,~intersection inside &,). Recall
{Gr, Sect. 3] that the slope of a non zero vector bundle & is defined as

deg&
k&

we) =
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and that a vector bundle & is called semi-stable if for all non zero subbundles %
of &

WF) = ué).

A remark which will be used repeatedly below is that if § = £ is an inclusion of non
zero vector bundles of the same rank then

degé’ = degé + dim(8'/8)
and hence
dim (&'/&)
tk &’

(5.4) Let & be a vector bundle on X. Then there exists a unique filtration of & by
subbundles

1(E') = u(&) +

0M=69csWVe... ... cePW=¢
with the following two properties

(i) 89/6U~Y is semi-stable for all j=1,...,r
(i) (& P/EUD) > w(@H gD forall j=1,...,r— 1.

This filtration is called the Harder-Narasimhan filtration or canonical filtration of
& [Gr]. This filtration also has the following two properties [Gr, Proposition 3.3].
Put for an arbitrary vector bundle & + (0)

Bmax(€) = max {u(F); (0) + F =&}
Hmin(€) = min{u(&/F); F g &}

(iii) £'9/€0U"1D is the largest subbundle of &/6/~Y with slope equal to
Hmax (/6T 1), ,

(iv) £~V is the largest quotient bundle of &Y with slope equal to
umin(éa(j))'

We also have to use the following result.

(v) Let F <&, # =+ (0), & be a subbundle with

#max(éa/g:)<”min(g)'
Let
0) =9V, . c69=F
and
O =EYF Y'Y Fa, . . c8F =8/F

be the canonical filtrations of # and &/ % respectively. Then
0)=E60ctWVe. . cC Vg =Fc&b .. .c6P=¢
is the canonical filtration of &.
Let & be a vector bundle and # <& a subbundle. We introduce
Jump, (F) = pmin(F) — pmax(6/F) -

A consequence of the previous results is
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(vi) A subbundle # of & appears in the canonical filtration of & if and only if
jump,(#) > 0.

(5.5) Let ¥ be a line bundle on X, ie. an invertible ¢ x-module. Then for a non
zero vector bundle &

WER L) = (&) + deg &,
and for a subbundle & of &
jumpy (F) = jumps g ¢ (F @ £) .
In particular, if (0) = § @ <&M <. ..c & = & is the canonical filtration of &, then
0=6VRFctVRFc.. c6VRL=6QF
is the canonical filtration of & ® £ .

(5.6) We now return to the proof of Theorem 5.2. We choose a finite set
di,...dgel(X\ {00}, @) which generates this I' (X \ {c0}, Ox)}-module. Since the
orders of the poles are bounded we find a constant t = 1 with

del(X,9(t o) (j=1,...,R).

We now consider a Z-elliptic sheaf (&, t;) over Spec(L). Since the field L plays no
role in the arguments we drop it from the notation. Let us set m:= deg{oc0). Since
£i+d-m = é”,(oo) we find

dj'(g)ic@@i+tdm
forall j=1,...,Rand ieZ.

(5.7) Proposition. Let (&;, t;) be a @-elliptic sheaf. Then for every i€ Z and every non
zero proper subbundle & —&; one has

jump, (F) < (t+ 2)d> m

Proof. We argue by contradiction and assume that there is an i, and a non-zero
proper subbundle # of & = &, with

jump(F) > (t +2)-d>-m

Let # ;< &, be the subbundle with generic fibre #, (cf. (5.3)). By making use of the
remark made at the end of (5.3) it follows easily that for i with i, <i < i, + dm — 1

|jumpa,(97i) — jump, (F)] £ 2:d*m

Here we used that dim(&;/&;-1) = d. Using the periodicity of the &; and the
remark on tensoring with a line bundle in (5.5) we conclude that this estimate holds
for all ieZ. Using our assumption on & < ¢& we conclude that for all i

jumpg (F;) > t-d* m
In particular (cf. (5.4) (vi)), & ; occurs in the canonical filtration of &;.
(5.8) Lemma. Z, is stable under the operation of @ on &;.
Proof. Consider the multiplication maps

(‘dj)ifgi“’éoi+zdm~
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Consider the canonical filtrations of &; and &;
O)ceWe.. .cev =6,
Oycg® <. .cg®

i+tdm iheam = Citedm -

We know that % ; and &, 4, appear in these filtrations,

Fi= ‘g)(ia)a F it tam = ‘g)gg)mm .

Let # ;< & be the subbundle with the same generic fibre as §{£*1). Then FcF,
and

|W(F /) — w(EPED 8D ) < td®m

i+tdm i+tdm

again using the fact that dim(&;,,/4;) = d. On the other hand, by property (5.4)
(iii) of the canonical filtration,

W(FJF) S pE D /EW)
<pu(@W /€ V) — td*m
by our estimate on the jump at & ;. Taking these two estimates together we obtain

”((g’(ﬂ*’l)/g(ﬁ) )< #((g(.a)/éﬂ(a—l))_

i+etdm i+tdm

Using property (5.4) (i) of the canonical filtration it follows for all terms preceding

F; =& and all terms following & 411 that

REDEL0) > (B0, /60N

i+tdm i+tdm

(l=1,...,0and k=8+1,...,s). Now we use the fact that for semi-stable
bundles & and # with u(&) > u(F) we have

Hom(&, #)=20.
By an easy induction (ascending in [ and descending in k) we conclude

dj'éa(.a)Cép(B)
i

i+tdm ?
ie. A FicFivam (i=1,...,R).

Since the elements d; generate D over the function field it follows that (%), is
a D-stable subspace of (&;),. Since &; is @-stable it therefore follows that #; is
2-stable as well. The lemma is proved. i

(5.9) We now consider the behaviour of &; under the pull back by Frobenius.
Since the pull back of a semi-stable bundle under Frobenius is again semi-stable
and with the same slope it follows from the characterization of the canonical
filtration ((5.4) (i), (ii)) that the pull back of the canonical filtration is the canonical
filtration of the pull back. It follows that “#; occurs in the canonical filtration of
6 F i =(6W)="6". Let y be such that #,,; = £!?),. Similar arguments to
those used in the proof of Lemma 5.8 show now that
CEDLETT) = u(EPIETI) > u(E T ED),)
We again conclude as in the proof of Lemma 5.8 that

LCF ) F iy
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(5.10) We now claim that the inclusions # ;< %, are strict for all i. Indeed
Fie1/Fand F i, /t;(CF ;) are torsion sheaves with disjoint supports. Therefore

Figq=F,+4,(°%;) foralli.
If now #; = #,., for some i, then it would follow that

Fivr=Fisr + i (Fivy)
=F+ (" F)=F i1 =F,
and similarly for i + 3,... . This contradicts the equality
Fivim = Fi(0),

since #; + (0). Since &;. (/& is a simple 2 ® x(o0)-module we therefore conclude
that &, /%, = &;+,/&; and

dim(F 4 /F;)=d
for all i. It follows that

Am(F ;4 g/ F ;) = d’m
On the other hand,

dim(F 1 4m/F 1) = dim(F;(00)/ F ;) = 1k (F ;) m

It follows that rk(%;) = d® = rk(&;), hence #; = &; and this contradiction proves
the Proposition 5.7.

Proof of Theorem 5.2 As our constant ¢ we take
c=(d*>—1)2(t +2)-d*m

Let I be a finite closed subscheme of degree > c. Let # be a non zero proper
subbundle of &,. We have to show that

deg # — degl < deg &y — deg!
tk F k&, ’

ie. that

1 1
F)— B A
u(F ) — u(éo) < degl (rkﬁ d2>'

However p(F ) £ fimas (o) = 1(&0V), the slope of the first term in the canonical
filtration of &,. Using the trivial estimate

1 1 1
= (d? = 1)t + 2)d®
degI(rk d2>>cd2(d2—1) ( )@+ 2)d*m
we therefore are reduced to proving
BES) — (o) S (d ~ 1)(t +2)d’m

However, if (0) = &V cé’c...c &y’ = &, is the canonical filtration of &, we
have

R(EY) Z 1(o) Z u(8o/ET V)



246 G. Laumon et al.

and
p(EY) — u(o) £ p(€Y) — u(o/Ey 1)

r—1
= T (RE/8G70) — wEy* V/E))
J

= Z jumpy, (@@(oj))

i=1

<(d* — D)+ (t + 2d?m .

_ e

Here we used the fact that r is at most d? = 1k(&,) and the estimate of Proposition
5.7. The theorem is proved. 1

6 The valuative criterion of properness

Our aim in this section is to prove the following theorem.
(6.1) Theorem. Assume that the algebra D is a division algebra. Then the morphism
(¢f 24)
Sy 2/Z— X' = X\ {oc}\ Bad
is proper.

Since the natural morphism é¢7y o, ; — 677 x , when restricted over X'\ [ is finite,
we may formulate the following corollary.

(6.2) Corollary. Let I be a finite closed subscheme contained in X' = X\ {c0}. The
morphism

El y o /L= X'\ 1
is proper.

We shall prove Theorem 6.1 by checking the valuative criterion of properness.
Consider the open substack of D-elliptic sheaves (&%) with
0 £ x(X,,(&)s) < d?deg(co) — 1. The tensor operation by @x(c0) (cf. (2.9)) allows
us to present &4 x 5 as a disjoint sum of copies enumerated by the integers of this
open substack. Therefore, by Sect. 5, it follows that 677 x »/Z is of finite type over
X'. From its construction (Sect. 4) it follows that 7/ x . is an increasing union of
separated open substacks, hence is separated and therefore the morphism
8l x o — X' is separated.

(6.3) We introduce the following notations. Let ¢ = IF, be a complete discrete
valuation ring with perfect residue field k. Let K be its field of fractions and denote
by @ a uniformizing element. Let @’ be the local ring of the generic point of the
curve X ® k, considered as a point of the scheme X ® ¢. Then O’ is a discrete
valuation ring (not complete), with w as uniformizing element. The residue field
k' = Frac(F ® k) of (' is the function field of X ® x and the field of fractions
K’ = Frac(F ® K) is the function field of X ® K.
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X®«r
0 1 0®0
0| e

Pal

X®0

X
. — ey 0
F K K

(6.4) Since the direct image and inverse image functors for the inclusion induce an
equivalence of the categories of locally free sheaves on the punctured and unpun-
ctured spectrum of a two-dimensional regular local ring we have an equivalence of
categories between the category of locally free sheaves & on X ® ¢ and the
category of pairs (#, N) where & is a locally free sheaf on X ® K and where N is
an ('-lattice in F . (cf. [Dr8,3.1]). (To % corresponds # = % |X ® K and
N = H%(Spec(©), #).) An 0'-lattice in a finite dimensional K'-vector space is
a ('-submodule of finite type containing a K’'-basis.

(6.5) Let (&}, ji, t;) be a D-elliptic sheaf over K. Then (&, )g- is independent of
i and will be denoted by V. The morphisms ¢; induce an (idr ® Frobg)-linear
endomorphism ¢ of V with K- @(V)= V. Then Vis a free D ® rK’-module of
rank 1 and ¢ is D-linear. Our aim will be to construct (0’-lattices adapted to ¢. Let
V be any finite-dimensional K'-vector space with a (idr ® Frob y)-linear endomor-
phism ¢ with K'-@(V) = V.

We recall [Dr 8,3.1] that Drinfeld calls an ¢'-lattice M < V admissible if o(M)cM
and if the induced endomorphism

¢:M/sM - M/sM

is not nilpotent, ie. if ™) MdtwM. Note that a ¢-invariant lattice is not
admissible if and only if p"(M) — 0 as n — oo (i.e. for any lattice N there exists an ng
such that " (M)< N for n = ny).

(6.6) Proposition (Drinfeld [Dr8, 3.2]). (i) There exists a ¢-invariant lattice My V
containing all other @-invariant lattices. If My is not admissible then there are no
admissible lattices in V.

(ii} After replacing K by a finite extension L (and V by V®xL and ¢ by
© @Frony Froby ) there exist admissible lattices in V.

Remark. In fact the proof of Drinfeld is formulated only in the case when
dim(V) = 2 (the case of interest to him) but it is perfectly valid in general.

(6.7) Letnow (&,, j;, t;) be a @-elliptic sheaf over K and consider (¥, ¢) as before.
After replacing K by a finite extension, we may assume that the maximal
o-invariant lattice M, V is admissible. Since ¢ is D-linear it follows from the
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maximality of M, that M, is D-stable. Using now the equivalence of categories
mentioned in (5.4) we obtain a commutative diagram of homomorphisms of locally
free sheaves on X ®g, O (note that °&; = (°€;) ~.)

I ég '_.—> éat +1 -_— év; +2 T

— rg — éaz+1 - éa:+2 —
Since (Z ® K)~ = 2 ® O, these sheaves are equipped with a Z-action and all
homomorphisms are %-linear. Furthermore, (S’,Mdeg(w) =&, ;(o0). Hence the
homomorphlsms Ji are injective and the argument in (2.3.b}, counting the dimen-

sions of the representations (&;/&;_ ;) ® K of IM(, (k(00)), implies that these dimen-
sions are all equal to d and therefore &;/&;_, is a free @-module of rank d.

(6.8) We now assume in addition that the zero morphism i, : Spec K — X’ extends
to a morphism ig: Spec 0 — X'. We distinguish two cases

First case 0 p(My) =M,
Second case O o(My) < M, .

(6.9) Lemma. In the first case (&;, Ji, T) is a @-elliptic sheaf over Spec®. If D is
a division algebra the second case does not occur.

Proof. Assume that we are in the first case. It only has to be checked that Coker f; is
a locally free sheaf on the graph of i,. However, the stalk at the generic point

Spec(x') of X ® x of Coker {; is equal to the cokernel of the induced endomorphism
of MQ = M()/m'Mo,

(p : M o M 0 -
Since we are in the first case and using the fact that x is perfect, ¢ is surjective.

Hence Spec(x’) ¢ Supp Coker f;, which implies that Supp Cokerf; is the graph of
io. Comparing Euler-Poincaré characteristics

dim, Cokerf, ® « = X(é?i+1®’<)— X('&@K): 1(Eir1) — 1 (°6;)
= dimy Cokert; ,

we conclude that Coker i, is a flat @®-module of finite rank, which proves our claim
in this case.

We now assume that we are in the second case. Then the endomorphism @ of
the x’-vector space M, (recall that @ is id; ® Frob,-linear) is neither surjective nor
nilpotent.

We consider the flag of x’-subvector spaces

My 2 Im(p) 2 Im(@?) 2 ... 2 Im(¢") =Im(¢"*")=... 2 (0).

*

The sequence becomes stationary with non-trivial end term.

On the other hand, Im(3*)/Im(@** 1) is a D ® p k’~-module, hence its dimension
as a vector space over k' = F ® « is divisible by d. Hence it follows thatn < d — 1,
and that putting N = Im(¢"),

dmN=rd, O<r<d.
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Let &; be the restriction of &, to the special fibre X ® x. Its stalk at the generic
point is M,. Let

y;icé?i

be the locally free Oy g ,-submodule generated by N, i.e. the maximal locally free
Oy & -submodule of &; with generic stalk equal to N< M,. (The stalk of &, at
a point x’ of X @ k is equal to (&;) - ~ N-intersection inside M,.) By the maximal-
ity property of &, this is 2 2 ® x-submodule of & and we have a cartesian square

iy 1

I S
c? 3

S Sy

5

— i+ 1

and  F_jgeg0) = Fi( — ). The successive quotients F,;/#, ; are
(2 ® k(w0)) ® x-modules. Counting dimensions and taking into account that
red-deg(oc) = dim(F;/ F( — ©)) < dim(&;/&;( — o)) = d? - deg(o0)

we conclude that there exists an index i with #; = %, . Consider the following
commutative diagram

-E-‘ D SEmmene— EH»]
?|—l ?.
r—g—i—l rSI
-.7—'-, p——— ?Hrl
4 -
Ed e
Ve i
e g s ’
'fl—l e —————— 'fl

Here the broken oblique arrows arise from the maximality properties of & and
Z .+1. We therefore obtain a homomorphism

t1F > F
whose stalk at the generic point is equal to
$IN:N->N.
This last homomorphism is bijective, therefore ¢ is injective. Since deg(.%#;)

=deg("#,;), we conclude that ¢ is an isomorphism. Applying now Drinfeld’s
Galois descent lemma [Dr 7, Proposition 1.1]) we conclude that & is of the form

9?,':.?/@’(,
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where &’ is a locally free sheaf on X. Furthermore # ' is a Z-module and its rank
over Oy is equal to r-d = dim N. Then the generic stalk %} is a D-module of
dimension rd < d? over F. If D is a division algebra such a module cannot exist and
this contradiction proves the lemma. 0

Therefore, £¢¢ x »/Z — X' satisfies the valuative criterion of properness and the
Theorem 6.1 is proved.

7 Hecke correspondences

(7.1) Let T be a finite set of places containing {oc}. We form

El o= lim &lfyor.
—_—
InT=9
This is again an algebraic stack and even a scheme. The canonical morphism

E4¢% 5 X\ {oo} factors through the morphism X 1)\ {0} — X\ {00}, where
Xy X is the localization of X along T. Let

0" =[] 0. cp™ =] (F,, 0,).
x¢T x¢T
We embed F* diagonally into (AT)>.
A section of &4/% , over S is equivalent to the data of a Z-elliptic sheaf
(&, ji, t;) over S and a Z-linear isomorphism

T2 ®0, 0T)R U5 — &, (0T R O5)

with an obvious compatibility with its pullback under . There is an obvious right
action of (2 @, 0" Y on £¢¢% 5 (composition with i7 of the action of (2 ®,, OT)*
on 9 ®,, 07 by left multiplication).

(7.2) Let Picy, ((IF,;) be the set of invertible sheaves on X with a level-I-structure.
We had defined in (2.7) an operation of Picy, ((IF,) on /¢, ;. Let

Pic(F,) = lim Picy ().
-
InT=9
We obtain in the same way an action of Pic} (IF,) on 677 L. We let (F*)7 be the set

of elements of F*, which are units at all places contained in 7. Denoting
07 =1lxser OF we have the identification

PicI(F,) = F* \ A0}
= (F*)T\(AT)"
and obtain an action of (F*)T\(AT)* on &¢¢% 5. (Under this identification, the
idéle with component in xe|X |\ T equal to a uniformizing element w, and all

other components equal to 1, corresponds to the invertible sheaf Ox( — x) with the
obvious level structures outside x and the level structure induced by ®, at x.)

(7.3) We shall define an action of the semigroup I' = (D¥)* n (2 ® 0T ) which
extends the action of (2 ® 07 )*. We leave to the reader to check that the actions of
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I and (F*)"\(AT)* agree on (AT)* n I = (A7) n ©7. So, the actions of
(2® 0T) and (F*)"\(AT)* come from an action of (DT)* on &£¢% ,.

(74) Let g=g¥el and (&, ji,t;,17)e&45(S). We wish to define
g(&, Jir i, 1) =1(E4 i t], (iT)'). We have the diagrams (for all ie Z)

gi@(CXXS((OTE(OS) (T (9@({)61‘)[2’(05
Li=1a] le

gi®c“s(@r®(9s) o~ (@@thCOT)IZ(OS

where we can fill in the broken arrow [g] in a unique way. We consider the
cartesian diagrams

a’ o
& éai@ﬁxxs(@TE(pS)
By Lo
(g)i —_— gi®(’x”((9T®(gs)'
can

They define &/, i€ Z. The definition of j; and t} is obvious. The level structure (7 )’
is defined as the composition

(2®, 0T)R Os — & ®c, (0T K U5) «1—5 Ei®e,,, (0T R Us) .
1 % @1

We therefore obtain a commutative diagram
ary
(@@, 0T)ROs —> &i®, (TR 05)
gl lboid

T

@R, OTVROs — 6@, (07K O5).

This defines the action of I' on /£ . If ge I is even an element of (2 ® @ T)*, the
g° above and therefore also [g] is an isomorphism, which implies that the f3; are
also isomorphisms and therefore the action of ge(2 ® ©7)* coincides with that
defined in (7.1).

(7.5) Let KT<(DT)* be an open compact subgroup and let gTe(DT)*. On
a finite level the above construction defines a correspondence over Spec(F)

ELT/KTA(gT) ' KTgT

4 C2

' N
ELLIKT —— &L /KT

where the morphism ¢, (resp. c¢,) is induced from the inclusion

KT n(g") 'KTgTcKT (resp. KT n (gT) 1K TgT & KT).

These morphisms are extended over Spec Oy, ., x€ X \ 7, as soon as the x-compon-
ent of ¢ is trivial, and are then finite and étale.
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8 Level structures at infinity

In [Dr 4] Drinfeld gives a construction of a pro-Galois covering of the moduli
stack of elliptic sheaves and relates it to the corresponding covering of the moduli
stack of elliptic modules [Dr 2]. In this section, we show that the same construction
works in our context. As a matter of fact, since the ¢ -algebra 2, splits, up to
Morita equivalence, we are in Drinfeld’s framework.

Throughout this whole section we fix a uniformizer w,, of ¢/, and an isomor-
phism of ¢ -algebras 2, ~M,(0,).

(8.1) Let S be ascheme (over IF;)and let E = (&}, Ji, t;)..z be a @-¢elliptic sheaf over
S. For each ieZ, let

égiv = meahs((gn @Xxs)
be the dual of &; and let
M;=&1(XxS),.

Here (X x §) is the completion of X x § along {0} x S and M is a locally free
0, ® 0s- module of constant rank d2. The j;’s define an inductive system

. QMi Q;Mi+1 [eunSEN

and we shall denote by N its limit. Then N is a locally free F, & Os-module of

constant rank d>. We identify the M,’s with their images in N. The ;s induce
compatible isomorphisms

M.’ — t1\"’Il'+1 = (O ®IF,, FrObS)*(Mi+1)

(ie Z) and in the limit an isomorphism

N —= N = (F, ®g, Frobs)*(N)

which maps M, onto *M;.,. We define
l/; N> N
as the inverse of the above isomorphism We have
‘#(rM )— -1 M;

for each ieZ. .

The right actions of 24 on the &,’s induce a left action of 2, on N. This action
commutes with ¥ and, for each i€ Z, stabilizes M; < N. Thanks to our identifica-
tion of 2, with IM,(0, ), we get canonical splittings

(N, gy =(N", ")
and
= (M)
Now, N’ is a locally free F,, ® Os-module of constant rank d and M leN' is

a locally free 0, ® Os-submodule of constant rank d, for each i€ Z. It follows from
the properties of Z-elliptic sheaves that we have

Wy, M’ M;_ deg(0)d & - - M = M;
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UMY ="My
so that
o, Micy ("Mi)=M;,
and that the quotient x(o0) ® Os-module
M jwo, Mi— M) (*M})

(viewed as an O, ,s-module) is supported on the graph of a IF,-morphism of
schemes

iw,i:S - {OQ}

and is locally free of constant rank one on its support, for each i€ Z. Moreover, for
cachieZ,

i, i+1 =l ;o Frobg
and i, ¢ is the pole of E (see (2.2) and (2.3})).
(8.2) Let S be a scheme with an IF,-morphism of schemes
ig.0:S— {0} .
Then any other IF,-morphism of schemes from § to {co} is equal to
iw.i = .00 FTObY
for a unique ieZ/deg(o0)Z.
We will associate to (S, i, o) as before a triple
(N, lﬁ, M) = ( Nd, 1 (ieo,())a l/’d. 1 (ico,O)! Md,l (iao,()))
where N is a free F,, ® Os-module of constant rank d, where
YN~ N
is an isomorphism of F & 0s-modules and where M is a free O & Og-sub-
module of constant rank d such that
B My (M)cM
i desl) (ALY — g M
and such that the quotient k(o) ® Os-module
M/e M-—->»>MMN(M)
is supported on the graph of
i.0:8— {00}

and is free of constant rank one on its support.
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For N we simply take

deg{o0)—1

N = (Fw ®an 05)d = @ (Foo ®x(oc),l;,..@s)d

i=0
with canonical basis (€;;)o < < degeo) - 1.1 <j < d-
Then we define Y by its effect on the canonical basis:
Yle;)=eivr,; (Vi=0,...,deg(e0) =2, Vj=1,...,4d)
and

_ Wy €0,d4 1f]= 1
‘/’(e‘“g‘w’”)_{eo,,-_l ifj=2,....d.

Finally, we set
R deg(w0)—1 R
M= ((Qoo ®l[~‘,,(95)d = @ ((900 ®x(oo),t;‘, (Os)d .
i=0
(8.3) Let kx(o0), be an extension of degree d of k(o0). Let us set
Foa=Fq ®K(oo)K(°0)d
and
On,d= Foo ®K(OO) ffobgeg(w) .

Let F, 4[t,] be the polynomial algebra over F, ,; in the non commutative
variable 1, with commmutation rule

T =054 1,

for each aeF, ;. The element 1% — @, of F, 4[1,] is central. It is well known
that

ﬁoo = Foo,d[":m]/(r‘:o — W)
is “the” central division algebra over F,, with invariant — 1/d and admits
goo = (Qw,d[roo]/(‘[‘:o - moo)

as maximal order. Here 0, ;< F 4 is the ring of integers.
If A:S - Spec(k(w0),) is a IF,-morphism of schemes, we can construct an
embedding of F,-algebras

A*:Dy s End(Ny,1(iw,0)s ¥a,1(ix,0))
in the following way. Here i, , is the composed map
S —*, Spec(r(o0)g) —<22 {o0}
and End(N, ) is the F ,-algebra of F, ®,F Os-linear endomorphisms of N com-

mutmg with . For any aek(o0),, the image of 1 ® a€F,, ;< D, by this embed-
ding is given by

(1@ ) (ey) = (1 ® 2* (frobl 1) (g))) e,
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(Vi=0,...,deg(w0) — 1;Vj=1,...,d) and the image of 1, D, by A* is given
by

Wy €54 1fj= 1

A*(Tm)(e‘f)z{e.. , ifj=2,....d
i, j— 3ty

(Vi=0,...,deg(oc)— 1)
If 2 and A" are two IF,-morphisms of schemes from S to Spec (k(<0),) which lift
i, 0, WE have

A = Ao Frobjhdee(=
for some neZ/dZ and it is easy to see that
A = A*¥o Ad(r ") .

For any 1 as before, it is also clear that 1*(D ) maps M, 1 (i,0) =Ny, 1 (ie,0) into
itself.

(8.4) Definition. Let E = (£, ji, t;)icz be a Z-elliptic sheaf over S. Let M 0> 1/;’ and
i, be defined as in (8.1). Then a level structure at infinity on E is a pair (4, «) where

A:S — Spec(k(o0)y)
is a [F;-morphism of schemes which lifts the pole i, o of E and where

“:Md,1(ioo,o)——-—> Mb

is an isomorphism of @ ®1F, Os-modules such that the following diagram com-
mutes
o 3
er,l(ioo,O) — ‘M
Verlino) 4 . Ly
My 1 (ix,0) — M.

We have an obvious notion of isomorphisms between Z-elliptic sheaves over
§ with level structure at infinity. Let 877 x,2(S)(resp. 7 x.2.1(S8)) be the category of
2-elliptic sheaves over S with a level structure at infinity (resp. with a level-
I-structure and a level structure at oo; here I is a finite subscheme of X\{c0}).
Then, the obvious notion of pullback gives us a fibered category

S > 67x 4 (S)
(resp. S > %X,@,I(S))

over the category of IF,-schemes S, which is clearly a stack for the fpqc topology.
We will denote this stack by &rt x.2 (T€SP. & x.2.1)- We have a forgetful morphism
of stacks

Ellx.a = &Ly

(resp. %XQ == Ll x,9,1)
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which maps (E, (4, «)) into E and a morphism of stacks

ElF x5 —— Spec(k(a0)4)
(resp. Elly 5.1 21, Spec(ic(0),))

which maps (E, (4, o)) into 4 and which lifts i, ¢°r, where i, o is the pole.
Itis clear that r, ; is the base change of r, by the canonical morphism of stacks

rl:g[f)(,_@’l had éa//X,Q .,

Therefore, if IcJ<X\{co} are two finite closed subschemes, we have a
2-commutative diagram of stacks

;5;?2)(,@,1 ___>F“ ,é-a?zx,@,l ~—r’—-+ gb?zx,@

Fos d road ol
Eltxa, M, Ellxar — Ellxs
with 2-cartesian squares. Moreover
Ap=A°fy.

(8.5) The stack /é-'?’?X,_@ (and therefore the stack 277){, 1) has a natural structure of
pro-stack. Indeed, to give the isomorphism

0‘31\44:1,1(1'00,0)—N—+ M6

of 0, ® Os-modules is the same as to give the projective system

(2, = a modulo &%), 5,

of isomorphisms of 0, /(w"} ') ® Os-modules and « commutes with the y’s if and

only if each «, commutes with the y’s modulo =" !. In other words, 3@/\7)(,@ is the

projective limit of the stacks of Z-elliptic sheaves with a level structure at infinity
modulo ©%" . From the definitions, it is clear that the projections ., ;. 7 and

F;,; are continuous morphisms of pro-stacks.

(8.6) On the pro-stack 3?7)(, o (and therefore on the pro-stack Q?ZX, 2.1), we have
continuous right actions of the pro-finite group % and the finite group
Z/dZ:5e 2% maps (E, (4, «)) into (E, (4, oo A*(6))) and ne Z/dZ maps (E, (4, x))
into (E, (1o Frob%9e&*) 4)), As we have

(A Frobgdeel=hy* = 1*xo Ad(z ")
these two actions induce a continuous right action of the profinite group
D =ZdZ .

Here ne Z/dZ acts on 2 X by Ad(z;"). But we can identify this semi-direct product
with the pro-finite group B

D5 [w%
(w.eF% < Dy):we identify (6, meZ ;> Z/dZ with 6t ;"€ D} modulo ®%. So we
get a continuous right action of the pro-finite group D2 /wZ on the pro-stack
@Zx,@ (and therefore on the pro-stack ;’77)(, 2.1)-
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__From its definition, it follows that this right action of DX /wZ on @7}' 2 (resp.
é’f/x ,1) commutes with the projection r,, (resp. r,, ;) and that the projection
A (resp Ap) is equivariant if we let D /®Z act on Spec(x(o0)4) through its quotient

—~cormn:DY /ol »Z/dZ
(Gal{x(00)4/k(00)) = Z/dZ). Here rn denotes the reduced norm.

_ For each IcJcX\{o} as before, it is also clear that 7, ; is
D’ /wZ-equivariant.

(8.7) Let cvoe T<|X| be a finite set of places. Let us denote by
Y7 Y Y

the projective limit of the r,, ; for I n T = @ (see (7.1)), with its continuous right
action of D} /w%. Using that rL is the base change of r, by the canonical
projection

T8, > E

we get a continuous right action of (27 )* on 87T ¥ o which lifts the action of (27)*
on &/£% , and which commutes with the right action of D} /wZ%.

Using isogenies prime to T as in (7.4) we can extend this action of (27)* on
3’7’2’;9 to a continuous right action of the semi-group (DT)* n %7 on 8’72’;’(9
which lifts the action of the same semi-group on &7/ ; defined in loc. cit. Indeed, if
E, —> E, is an isogeny prime to T between two Z-elliptic sheaves over S,
u induces an isomorphism of F w@,ﬁ Os-modules

~ N,l

which commutes with the l// s and which maps M; 2,0 _0nto M 1.0 (see (8.1)).
Obviously, the actions of D /w? and of (DT)* ()27 on 72 % 2 commute.
On the other hand, we can also lift the action (7.2) of

Pick(F,) = (F*)"\(AT)"

onétly 4 to 877 ¥.2- Indeed, if we tensor a @-elliptic sheaf E over S by a line bundle
& over X with a canonical identification of %, with @, this has no effect at all on
the triple (N’ \// Mo) (see (8.1)).

Now arguing as in (7.4), we get easily:

(8.8) Proposition. There is a continuous right action of (DT)* on 372’},9 which
lifts the action of (DT)* on &4£% .4 deﬁned in (7.4) and which commutes with the

continuous right action of DX /w% on &7 X9
Moreover, if we consider the product of these two actions, the subgroup

(F)T=(Dg/mZ)x(DT)"

(diagonally embedded; (F*)Tc(AT)Y*<(DT)* and (F*)"<FXcDJ) acts trivially
on &Ly 4.
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As in (7.5), for any open compact subgroup KT < (D7)* and any gTe(D7)*, we
have a Hecke correspondance
8% 5/ (KT (g") 1KT¢T)

¢ C3

'4 N
8L 5JKT ——— &UL L /KT.

(8.9) On 8¢y » (resp. /(x5 ;) we also have the action of Z by translation
(see 2.4)). It can be lifted to &¢¢x o (resp. 3’77&@, ;) in the following way. Let

(E, (4, o)) be a Z-elliptic sheaf with a level structure at infinity over §. Then 1eZ
maps E = (&, ji, ti)iez ONt0 EY = (8,41, jir1, tis1)icz. Let us set
At = JoFrobg .
From a we get an isomorphism of (Ooo@,ﬁ Os-modules
o1 Y4, 1li,0) ("M 1 (i 0)) — ¥ (*Mo) = M,

which commutes again with the y’s. But we have an isomorphism of ¢, ®,Fq(95-
modules

can:My 1 (in,1) " Y41 (i, 0) "My, 1 (i, 0))

which commutes with the ¢’s. It is defined by
can(e; ;(1)) =e;41,;(0)(Vi=0,...,deg(w0) -2, Vj=1,...,d)
and
ﬁ!weo‘d(()) if ] =1
eo,j-10) ifj=2,...,d

where (e; ;(0)) and (e; ;(1)) are the canonical bases of N, 1(i,0) and Ny (s, 1)
respectively {see (8.2}}. So we can set

Can(edeg(oo)—Lj(l)) = {

af = q ocan .
Then we let 1€ Z act on &% x, o (T€SP. 7 x.@.1) bY
(E, (4, 2)) = (E*, (2", a")) .

We let the reader check that this action of Z on &7 x.9 (resp. 87/ &7t x.a, ,) commutes
with the action of DX /wZ,. As this action of Z on the stacks 7 x,2,1’S commutes
with the transition maps 7 and 7y ;, we get for any finite set of places coe T<|X|
an action of Z on &777 { %, » which lifts the action of Z on &1L 5 and which commutes
with the action of (D /wL)x (DT)*.

(8.10) Theorem. The morphism of pro-stacks
Fo: Z’?ZX,Q hd g[{X,Q

with the continuous right action of the pro-finite group D3 /o% is representable and is
a pro-finite, pro-etale and pro-Galois covering with pro-finite Galois group D2 jm% .

(8.11) Corollary. The same statement is satisfied by
roo.lz/g??x,ﬂ,l 8 x a1 -

Moreover, :3‘72,(, o (resp. @Z’ZX, 2,1) is a scheme.
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Proof of the theorem. We can factor r,, through
~— (ro 4
Thxo — 8ty 3 @iy K(00)a = ElLy o

where &4/ x , is viewed as a x(oo)-stack by the pole map. Therefore, it is enough to
prove that the morphism of pro-stacks

(reos /1)32'7/)(,9 =8l x g (o) K(D0)4

is representable and is a pro-finite, pro-etale and pro-Galois covering with pro-
finite Galois group 2.

Let us begin with the representability. et S be a scheme (over IE),
let E = (&}, ji. ti).cz be a Z-elliptic sheaf over S and let 4:S — Spec(k(x0)y) be a
IF,-morphism of schemes which lifts the pole i, o:S — {00} of E. For each non-
negative interger n, let J, be the fppf sheaf

Fdom g /(B ) B, O (Mg, (i, 0)/11!"“ M, , (ioo,o), M’o/m:';l M5)
over §. We can organize the J,’s into a projective system
e T e e e e R )

where the transition map J,;; — J, is the reduction modulo w%"!. The J,’s are
clearly representable by S-schemes and the transition maps are all affine and locally
finitely presented. The sheaf of level structure at infinity modulo w* on (E, 1) is
the subsheaf

G,cJ,

defined by the commutation with the y’s. Therefore, G, is representable by a closed
subscheme of J, and the ideal of @, defining G, is locally of finite type. If we
organize the G,’s into a projective system

=Gy Go - 2G GG =S

where the transition map G,4,; — G, is induced by the transition map J,+; = J,,
we see that

(i) each G, is representable by a S-scheme and the transition maps are all affine
and locally finitely presented;

(i) the projective limit of this system, which is the sheaf of level structures at
infinity on (E, 4) is representable by a S-scheme, affine over S.

Now, in order to finish the proof of the theorem, it suffices to check the following
assertions for any S, E and 4 as before:

(a) locally for the fpge topology on S, (M ’O,l,(;’) is isomorphic to

Md 1(t0)s ll’d 1 ()
(b) the sheaf of F-algebras

End (My,1(10), Ya,1(t0))
for the fpqc topology on the category of S-schemes is constant with value & .

These two assertions are well known (if S is the spectrum of a field, see (B.3) and
(B.10) for a reformulation and references). O
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9 Z-elliptic sheaves of finite characteristic: Description up to isogeny

Let o be a place of F which is distinct from co. In [Dr 2] and [Dr 7], Drinfeld gives
a description of the set of isomorphism classes of elliptic modules of characteristic
o and shtukas with pole c0 and zero o over an algebraically closed field. In this
section, our purpose is to give a similar description of the set of isomorphism
classes of Z-elliptic sheaves of characteristic o over an algebraically closed field, at
least when o ¢ Bad.

In the whole section the place 0 of F, 0 & oo and o ¢ Bad, is fixed. We denote by
k an algebraic closure of k(o). We identify (D,, 2,) with (IM,(F,), M,;(0,)) for
X = 0,0.

(9.1) From now on, we shall use the term Z-elliptic sheaf of characteristic o over
k to mean Z-elliptic sheaf over Spec(k) such that the zero is the canonical
morphism

Spec(k) — Spec(k(0))=s X .

Let us recall that such an object is given by a sequence (&}, ji, t;),cz, Where &; is
a locally free Oy o, -module of rank d?, equipped with a right action of 2 which

extends the Ox-action, and where
Jii€ios iy
L6 6ivy

are injective  P-linear homomorphisms  (°6; = (X ®g frob,)*&;  where
frob, e Gal(k/IF,) is the arithmetic Frobenius element with respect to IF,). More-
over, for each ieZ, the following conditions hold:

(i) The diagram
& < &
Lo Le
g

ey —— 6

commutes;
(1) &isa gegiw) = €: @o, Ox(00) and the inclusion
st P+l
S bivy oy ... C—’éai+d~deg(ao) =&, ®mx@x(00)

is induced by the canonical one Oy = Ox(0);
(iti) dim, H%(X ® k, Coker j,) = d;
(iv) the support of Cokert; is the image of the graph of the canonical morphism

Spec(k) — Spec(k(0)) = X .

To each Z-elliptic sheaf (&, ji, t;);cz of characteristic o over k, we can attach
a p-space (V, @) and an F-algebra homomorphism

1:D° - End(V, )
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in the following way. (The terminology is that of Appendix A.) Let ¥ be the generic
fibre of &, ie. the fibre of &, at the generic point n ® k of X ® k. Tt is a free
D ® k-module of rank 1. Thanks to the j;’s we can identify V" with the generic fibre
of &; for any ieZ. Then, the ¢;’s induce a bijective F ® frob,-semilinear map
¢:V—Vand (V, ) is a @-space over k. The action of D on ¥V commutes with
¢ and gives the required homomorphism :.

(9.2) Definition. The triple (V, ¢, 1) is called the generic fibre of the D-elliptic sheaf
(&, ji» t:)iez. Two D-elliptic sheaves (of characteristic o) over k are said to be
isogeneous (or in the same isogeny class) if their generic fibres are isomorphic.

If x is a place of F, to any Z-elliptic sheaf (of characteristic o) over k,
(i, jir t:)ez, We can also attach a Dieudonné F,.-module (V,, ¢.) with an
F,-algebra homomorphism

1,: D - End(V,, ¢.)

and a 9 ,-lattice (i.e. a lattice M, <V, which is stable under 1. (2%)). If (V, ¢, 1) is
the generic fibre of the Z-elliptic sheaf, by definition, we have (V,,¢,)=
(Fy®pV,F,®ro), 1, is induced by 1 and we have M, = H®(Spec(0, ® k), &,).

(9.3) Lemma. The Dieudonné F .-modules (V,, ¢,) and the lattices M, have the
following properties:

(1) if x = o0, we have
¢ (My)>M,,
LI (M ) = ©, ' M.,
dlmk((pw(Moo)/Mco):d

for any uniformizer o, of O;
(i1) if x = o, we have
@M, =@,(M,)=M,

Sor any uniformizer w, of 0, and the k(0) ® k-module M,/¢,(M,) is of length d and is
supported on the connected component of Spec(x(0) ® k) which corresponds to the
given embedding k(o) k;
(iii) if x # o0, 0, we have

ox(My) = M,;

(iv) some (and thus each) basis of the F ® k-vector space V belongs to and generates
the O, ® k-submodules M, of V for all except finitely many places x # 0,0 of F.
Conversely, we let the reader check that:

(9.4) Proposition. The above constructions define a bijection between the set of
isomorphism classes of D-elliptic sheaves (&, Ji, t; }icz (of characteristic o) over k and
the set of isomorphism classes of pairs (V,¢,1), (M )ccix|) Where (V, @) is a
p-space of rank d* over F®k, 1:D°® — End(V, @) is an F-algebra homomorphism
and (M,).ex; is a collection of D,-lattices in the Dieudonne F,.-modules
(Ve 0,) = (F. @ V, F, & @) which satisfy the properties (9.3) (i) to (9.3) (iv).

Now we will classify all the isogeny classes of Z-elliptic sheaves (of characteristic o)
over k. Let (&;, ji, t;);c2z be a D-elliptic sheaf (of characteristic o) over k and let
{(V, ¢, 1) be its generic fibre.
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(9.5) Let R be a unitary ring and let e be a positive integer. Let us denote by
E"YeM,(R) the clementary matrix with the (i, j)-th entry equal to 1 and all other
entries equal to 0. If M is a right R-module we can view (M)¢ as a right
M. (R)-module (IM,(R) acts by right multiplication on row vectors with entries in
M). Then, the functor M +— M*® from the category of right R-modules to the

category of right M (R)-modules is an equivalence of categories with quasi-inverse

Mw— MEY
(the map
M - (ME!1)*
m— (mE'',. .., mE')

is an isomorphism of right IM, (R)-modules.) (Morita equivalence.)

(9.6) Lemma. The @-space (V, @) is isotypical, i.e. isomorphic to (W, )" for some
irreducible @-space (W, ) and some positive integer n.

Proof. We can assume that D is of the form IM, (D) where D is a central division
algebra over F with dimj (D) (d/e)" for some positive integer e. For simplicity we
shall also assume that & is of the form M (@), where 9 is a sheaf of (DX algebras
with generic fibre D such that &, is a maximal order for all x. Then, via Morita
equivalence,

((9@1’9 ji7 ti)tel = ((gaia .fis fi)tel)e
where (&, Ji, f;).cz is a “@-elliptic sheaf of rank e (of characteristic o) over k” and
V0,0 =(V,8,7)

where (¥, @, 7) is the generic fibre of (£;, Jitidiez

Now, the argument is very similar to the one used to prove Theorem 6.1, Let
(W lp) be a non trivial ¢-subspace of (7, @). For each mteger i let &, cé” be
the unique coherent (9X®k -submodule such that (./',),, (€)y 1s equal to WV
and such that é“ /%, is torsion free. Obviously, we have j; (FhcFis,
/1+deg(oo)(d/e) = :/' ®ax (9}((@) and t (Tg/' )C i+1 for each ie Z.

Now, let us assume that Wc: ¥ is stable under the action of D. Then % céﬁ is
stable under the action of & for each ieZ. But

H°(Spec(0 ® k), gi/gi—l)
is a simple & ,-module and
HO(Spec (0o ® k), F¢/F1-1)=H® (Spec(0,, & k), 3/&- 1)

isa @w-submodulg. Therefore either F._y=4,or the length of # FF s dle.
As the length of & 4eg(o0)(a1e)/F o is €qual to

dimy o 4 (W) deg(c0) < (d/e)* deg(w0) ,

there exists at least one ie{l,..., (d/e)-deg(c0)} such that #,_| = %,.
Now, if %,_ y = % ; for some 1eZ we have

Zi-l(rg?i—l)cg}i = g:_iq
and, by comparing the degrees, we get

Ei—1(t=0/’—i—1)= yi—l .
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In other words, %, is endowed with descent data from k to IF, in the sense of
[Dré6 (1.1)]. Moreover by hypothesis the descent data are compatlble with the
-action. Therefore, by loc. 01t there exists a unique coherent (y-module
F;_q with a F-action such that #,_ , with its -action and descent data is the base
change of #,_, from I, to k. In particular, there exists a unique D-module of finite
type W(=(F._1),) such that

(W, $) = (W®gk, W ®g, Frob,) .

But D is a central division algebra of dimension (d/e) over F, so dimg (W) is
a multiple of (d/e)*. This contradicts our hypothesis that Wisa non trivial subspace
of V. Therefore, the triple (¥, @, ) is irreducible and the pair (7, @) is isotypical.
The lemma follows. U

(9.7) Let x be a good place of F for the pair (D, 2) and let us fix an identification
of the pair (D, 2,) with (IM,(F,), M,(0,)). Then the Dieudonné F,-module
(V, @) and its lattice M, (see (9.3)) admit a canonical splitting

(Ve @) = Vi, 95)*
Mx = M:i
where (V7 ¢’) is a Dieudonné F,-module and M’ = V", is a lattice in such way that
the action 1, of D, (resp. &, ) on (V,, ¢, ) (resp. M) becomes the natural right action

of M, (F,) (resp. M4(0,)) on (V7, ¢%)? (resp. M'?). In particular, for x = 00, 0 we
get, using the terminology of Appendix B:

(9.8) Lemma. (i) The Dieudonné F  -module (V'y,@',) is isomorphic to
(Nu,—1,Va,-1) and the lattice M',, = V', satisfies the following properties:

Myco', (M)

(@) ¢ ¥ (M) = ' MY,

dimy (¢ (M')/ M',) =1
Jor any uniformizer w,, of 0.
(i) The Dieudonne F,-module (V' ®.) is isomorphic to (N o, ¥,0)* "'®
(Nh, 1, ¥, 1) for some integer h with O < h £ d and the lattice M, V', satisfies the
Jollowing properties:

{ w,M,cpo(My)=M,
dimy (M /@, (M,)) =1

for any uniformizer w, of O, and the support of M,/@,(M,) is the connected
component of

Spec(x(0) ® k)< Spec(0), ® k)
which corresponds to the given embedding k(o)< k.

Proof. The properties of the lattices M, and M, follow immediately from the
corresponding properties of the lattices M, and M, (see (9.3)). Then the lemma
follows from (B.7) and (B.8). U

(9.9) Proposition. Let (F IT) be the @-pair which is associated to the @-space (V, @)
(see (A.4)). Then (F, IT) has the following properties:
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(i) Fisa Sfield and [ F:F] divides d;

(i) F, ®FF is a field and, if  is zhe unique place of F which divides oo, we have
deg(OO)OO(H)— — [F:F1/d;

(iii) there exists a unique place 6 + © of F such that 8(IT) = 0; moreover, &
divides o; 3 ~

(iv) we have h = d[F;:F, /[ F:F] where h is the positive integer of (9.8) (ii).

Moreover, if (W, ) is the irreducible @-space which corresponds to (F, 1) (see (A.6))
then the @-space (V, @) is (non-canonically) isomorphic to (W, )%

Proof. Let n and (W, ) be as in (9.6) and let (F, IT) be the @-pair which is
associated to (W, /) (see (A.4)). Then, thanks to (A.6},

d*n = dimg o (W) = d(INF:F1,

Fis a field and End(W, ) is a central division algebra over F of dimension d(IT)?
and, for each place % of F,

invy(End(W, y)) = — deg(%)%(IT) (modulo Z) .

From the diagonal embedding FcEnd(W, ¢)c M, (End(W, y)) = End(V, ¢) we
get an embedding F, @ F cEnd(Vw, ¢)- But, w1th the notatlons of (9 8), we
have End(V,, 0) = ]M,,(End(Vw, [ )and F. ®rFcM,(End(V',, ¢’,)) com-
mutes with D% = M,(F )< IMy((End(V", w)) Therefore, we have

Fo, ®5 F<End(V,, (PLO)CIMa(End(V’ ?))

and F, ®rF is a field over F,, of a degree which divides d. (End(V, qow) is
a central division algebra over F with invariant 1/d.) Moreover, (W, ¥ ,,) is non
canonically isomorphic to (V',, @' )¢ for some positive integer e and d = ne (the
category of Dieudonné F -modules is semi-simple and (V' , ¢, ) is irreducible, see
(B.3) and (9.8) (i)). So, thanks to (B.4), we have

— 1/d = deg(®) () /[F:F],

where & is the unique place of F which divides oo ([F: F,,] = [F:F]). The parts
(i) and (ii) of the proposition are now proved.

Similarly, we have

F,®y F cEnd(V,, ,) = M (End(V, 0.))

End(V5, 5) ~End(Ny, 1, ¥n,1) X My—i(F,)
(see (9.8(ii)) and

F,®p F <My (End(Ny, 1, ¥, 1)) X Ma (M, (F,))
commutes with
D3P = IM(F,) = My (End(Ny, 1, Y 5)) x Ma(IMy_4(F,)) .
Therefore we have
Fo®p F<End(Ny, 1, ¥s,1) x My_4(F,)
and there exists one and only one place & of F dividing o such that
F;End(Ny, 1, ¥, 1)
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and

(V35 05) = (Nip, 12 Wi, 1) -

Moreover (W3, ;) is non canonically isomorphic to (V;, ¢;)¢ where e = d/n
(n divides d). So, thanks to (B.4), we have

1/h = deg(6)6 (IT)/[F;:F,]

and
he = d(II)[F,;:F,].

If % is a place of F which is distinct of & and &, then (W, ;) is some positive
power of (N o, ¥,0) (if X divides o, (W, ;) is isomorphic to (V%, %)°; if X does
not divide o, the lattice M, = V, (see (9.3)) satisfies (px(M ) = M, and we can apply
(B.6) and (B.3)). So, thanks to (B.4), we have X(IT) =

The part (iii) and (iv) of the proposition are also proved (deg(5)3(IT) =
— deg(%) & (IT) = [F:F1/d).

The last assertion of the proposmon is now easy to prove: d(IT) is the L.c.m. of
the denominators of deg(c) & (IT) and deg(3)6(IT), but

deg(6)6(T) = — deg(c) & (IT) = 1/d/[F:F]),
sod(T)=d/[F:F],e=1(de=d(T)[F:F])and n =d. O
(9.10) Corollary. Let (F, IT) be the @-pair which is associated to the p-space (V, ¢)
(see £A.4)). Then End(V, @, 1) is a central division algebra over F of dimension
(d/[F:F1)? and with invariant
[F:F1/d if =&
inve(End(V, @,1)) ={ — [F:F]/d if $=0
[F::F.]inv,(D) otherwise

for each place x of F and each place % of F dividing x.
In particular, for each place x of F and each place % of F dividing x, we have

(d[F.:F.1/[F:F]inv,(D)e Z .
Proof. By definition, End(V, ¢, 1) is the centralizer of :(D°?) in End(V, ¢). But
End(V, ¢) = My (End(W, y))

and End(W, y) is a central division algebra over F of dimension (d/[F: F])? and
with invariants

[F:F1/d if 8= &

inv;(End(W,y)=( —[F:F]/d if =6

0 otherwise
for each place X of F (see (9.9) and (A.6)). Therefore, End(V, ¢, 1) is a central simple
algebra over F of dimension (d/[F:F1])? and with invariants as required (see
[Re]). Such a central simple algebra over F is obviously a division algebra

(Fy @:End(V, 9,1) and F;®zEnd(V, ¢,1) are division algebras) and the
corollary follows. |
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(9.11) Definition. A (D, o0, 0)-type is a @-pair (F, IT) which satisfies the following
propertles

(i) Fisa field and [F:F1] divides d;

(i) Fo, ®pF is a field and, if & is the unique place of F which divides oo, we have

deg(d) () = — [F:F1/d;

(iii) there exists a unique place & + & of F such that §(IT) % 0; morcover &
divides o; ~
(iv) for each place x of F and each place X of F dividing x, we have

(@d[F;:F.1/[F:F])inv,(D)eZ .

We have seen how to associate a (D, o, o)-type to_the generic fibre of a Z-elliptic
sheaf (of characteristic 0) over k. Conversely, let (F II)bea (D, o, 0)type.

(9.12) Construction. We will associate to (F, IT) a triple (V, ¢, 1) (well defined up
to isomorphism) where (V, ¢) is a @-space (over k) and :: D°® - End(V, @) is
a F-algebra homomorphism.

Let (W, y) be “the” irreducible ¢-space which corresponds to the ¢-pair (F, M)
(see (A.6)) and let 4 be “the” central division algebra over F with invariants

[F:F1/d if 8=
inved={ —[F:F]/d if =05
[F::F Jinv, (D) otherwise
for each place x of F and each place % of F dividing x. Thanks to (9.11) (iv), we have
dimz(4) = (d/[F:F1)* .

Then, D°? ® p 4 and M, (End(W, ')) are central simple algebras over F of the same
dimension d*/[F: F]? and with the same invariants

[F:F1/d if X=&
—[F:F]/d if $=¢6
0 otherwise

for each place % of F (see (A.6)). Therefore, these two F-algebras are isomorphic
and, thanks to the Skolem-Noether theorem, an isomorphism between them is
unique up to an inner automorphism of M, (End(W, )). Let us choose such an
isomorphism

a: D @p4 —— M, (End(W, )

and let us set (V, @) = (W, ¥)?. Then

3

2228 DR @pd o My (End(W, ) = End(V, 9)

1:D°®

is a F-algebra homomorphism and the commutant of ((D°?) in End(V, ¢) is the
image of 4 by the F-algebra homomorphism

22183 por @, 4 s M,(End(W, ) = End(V, ¢) .

A



Z-elliptic sheaves and the Langlands correspondence 267

The isomorphism class of the triple (¥, ¢, 1) is clearly independent of the choices of
(W, ), 4 and a. O

(9.13) Theorem. The composed map
(& Jis tica > (V. 9,0 = (F, 1T,

where (8, ji, ti)c z is a D-elliptic sheaf (of characteristic o) over k, (V, @,1) is its
generic fibre and (F,IT) is the corresponding (D, oo , 0)-type, induces a bijection
from the set of isogeny classes of D-elliptic sheaves (of characteristic o) over k onto
the set of isomorphism classes of (D, oo, 0)-types.

Moreover, the inverse bijection is induced by the construction (9.12).

Proof. Most of the theorem is already proved. The only non trivial part which is
left is the surjectivity of the map. More precisely, let (F M)bea(D, «©,0)- -type and
let (V, @, 1) be “the” triple which corresponds to (F, IT) by the construction (9.12).
We want to prove that there exists at least one Z-elliptic sheaf (&}, ji, t; ), z (of
characteristic o) over k with generic fibre isomorphic to (V, ¢, 1).

Thanks to (9.4), we are reduced to finding a collection (M,), . x, of Z,-lattices
which satisfy the properties (9.3) (i) to (iv). Let us fix a basis of the F ® k-vector
space V. Then there exists a finite set of places X of F containing oo, 0 and Bad
such that, if x e | X|\ X, the O -submodule M, of V, generated by this basis is
a 9. lattice with ¢ (M,)=M,. If xe Z\{o0,0}, (V,, ¢,) is isomorphic to
(Ve=® k, Ve ® frob,) (see (9.11) (iii), (B.4) and (B.6)) and any finitely generated
2.-submodule of the free D,-module of rank one, V¢, induces a 2,lattice
M, < V,_such that ¢, (M, )= M,. Finally,if x = oo (resp. x = 0), we have seen that

(Vooa (poo) - (Voo:v (Poo)
(resp. Vs 90) = Vo, 95)%)
as a module over D, = IM,;(F ) (resp. D, = IMy(F,)). But thanks to (B.4), we have

(Vwa¢m) (Nd,—l’llld,“l)
and

Vo, #0) =~ (Ny.0, lP1,0)d_h ® (Nu 1, Y1)
where
h=d[F;:F,]/[F:F]
and thanks to (B.8) there exists a lattice M/, = V', (resp. M, < V) such that
M, < 9f(My)
(@) 4 M) = B, MY,
dimy (@ (M%) /M) = 1
(resp. w,M;, < @, (M) = M,
dimy (M /@, (M) = 1
and the support of M, /¢, (M) is the connected component of
Spec(x(0) ® k) « Spec(@, ® k)
which corresponds to the given embedding k(o) = k)
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for some uniformizer ®,, (resp. ®,) of ¢, (resp. 00,). We can take M, = M2
(resp. M, = M%) to complete our collection of 9,-lattices. O

10 Z-elliptic sheaves in finite characteristic: Description of an isogeny class

Let us fix a (D, o0, o)-type (F, IT). We will describe the set
L x,9,0(K)F i1y = EL x, 9,0(k)

of isomorphism classes of Z-elliptic sheaves (of characteristic 0) over k which are in
the isogeny class corresponding to (F, IT).

(10.1) Let us fix a ¢-space with D-action (V, @,1) with (D, oo, 0)-type (F, 1)
(see (9.12)) and let 4 = End(V, ¢, 1). For each place x of F we have the correspond-
ing Dieudonné F,-module with D.-action

(V;u(pxalx)Z(FX®FVan®F(p9Fx®Fl)'

Let %, be the set of @,-lattices M, in ¥, which satisfy the property (9.3)(i) if x = oo
(resp. (9.3)(ii) if x = o, resp. (9.3)(iii) if x #+ o0, 0) and let

wproe 1 %

X% 0,0

be the set of families of lattices which satisfy the extra condition (9.3)(iv). Then we
have a natural left action of 4” on the set

Wy o= xYs°xY,
and it follows from (9.4) that we have a natural bijection
¢ x,9,0(k)E 1)—=> 4" \a g .

(10.2) Now, we will give a more concrete description of %, 4. Let us begin with its
part #3°-°. Let D**° be the restricted product of the D,’s with respect to the 2,’s for
all places x & 00, 0. Let (M, < V), + »,, D¢ a base point of #°. Then, we can form
the restricted product (V**°, 9*°) of the (V, ¢,)’s with respect to the M,’s for all
places x # co,0. Thanks to the condition (9.3)(iv), this restricted product
(V*-°, = °) is independent of the choice of the base point (M, < V) « o,, and,
thanks to the condition (9.3)(iii), the canonical map

(Vao,o)ww'" ®1Fq k — V®o°

is bijective. Obviously, (F*:°)®™" is a free right D**°>-module of rank one. Let us fix
a basis of this D***-module. Then we get a left action of (D**°)* on #§*° (D acts
by left multiplication on the right D*>°-module V*'° = D®° ® k). As

goo= ] o

x+ w,0

is a maximal order of D®'°, this action is transitive and our choice of a base point of
@ gives an identification

@53.0__:_)(1)00,0) X/(@w,o)x .
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Moreover, the action of 4 on the right D*°-module (V®:°)?™" = D®° gives an
embedding 4 = D*'° through which the left action of 4 on #§° factors in an
obvious way if we use the above description of #§-°.

Next, let us consider #,,. We have a canonical splitting

Vo 9) = (Voo 0')*

thanks to the action of D, = My(F,) and %, can be identified with the set of
lattices M, in V7, such that

My co(My)

(@) DM L) =w M,

dim, (¢’ (M%)/ M) = 1.
But, thanks to (B.10), this set of lattices is a principal homogeneous set under
Z (meZ maps M, into (¢')"(M',)). Let us identify (non canonically) %, with Z.

Moreover, the action of 4 on (V,,, ¢,,) commutes with the action of D, = M (F,,)
and is therefore induced by an action of 4 on (V,,, ¢’,). So we get an embedding

A End(Ve, @) -
Thanks to (B.11), End (V,,, ¢’,) acts on %, through the homomorphism
End (V. @)% 2 F 2@, 7,
Therefore, 4™ acts on %, through the homomorphism
A* < End (Vy, @)% -0 F X~ 7
which is nothing else than the homomorphism
JEROY M LW

The description of %, with its left action of 4* is similar and we let the reader check
the details. Using the action of D, = IM,(F,) we can split (¥, ¢,) into

Vo 00) = (Vo 00)* .
Using the action of F we can split (V,, ¢}) into
Var 90) = (V5 02) D (Vi, 05) -
Now, we can identify %, with the product A x W, where %2 is the set of lattices
M7 in V?? such that o X
M) = M}
and where %; is the set of lattices Mj in V5 such that
B, M5 (M5)=M;
{dimk(M%/q)% (M3) =1
and the support of Mj/¢5(M5) is the connected component of
Spec(x(0) ® k)< Spec(¥, ® k)

which corresponds to the given embedding x(0) = k (see (B.8)). Then, as for #-°,
we get an identification X
Y o—5GLy-y(F,)/GLy-4(0,)
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and an embedding of algebras
A=y My _W(F,)

through which the action of 4 on % factors in an obvious way if we use the above
identification. Here . B
h=[F:F1d/[F:F]

(see (9.9)). As ¥, %; is a principal homogeneous set under Z (meZ maps M} into
(5)™ 9°2@ (M), the extra component deg(o) comes from the condition on the
support and we can identify (non canonically) #; with Z. The action of 4 on
%; = Z factors through the homomorphism

4% = End(V3, 95)" " F 2207,
which is nothing else than the homomorphism

AX o F“’x deg (0)/deg(0))o(—) Z .

(10.3) We can summarize the above results in the following way. Let us start with
our (D, o0, 0)-type (F, IT) and our algebraic closure k of x(0). Then we have the two
places &, é of F, the integer h = [F; : F,]d/[F: F], “the” central division algebra 4
over F with invariants

[F:F]/d if 5=
invy(4) = { —[F:F]/d if x=0

[F::Flinv.(D) otherwise

for each place x of F and each place % of F dividing x.
Then, let us arbitrarily fix an embedding of A*°-algebras
220 @ F =, D,
an embedding of F-algebras
F~5o < End(Ny -1, ¥4,-1) »

where End (N, -1, ¥4 —1) is “the” central division algebra over F,, with invariant
1/d, an embedding of F,-algebras

F o My_u(F)
and an embedding of F,-algebras
ia < End(Nh,I’ Wi 1) s

where End (N, 1, ¥y, 1) is “the” central division algebra over F, with invariant —1/h
(this is always possible and different choices of these embeddings are conjugate).
Now, we can and we will identify A*:° ®F 4 (resp. 45, resp. 47, resp. 4;) with the
centralizer of the image of A®° ®pF (resp. Fg, resp. F, resp. F;) by the above
embedding. In particular, we get group homomorphisms

A <y (D*%)*

4% < End (N -, g, -1)* 2 FX 20801200 7

A% = GLy-4(F,)

4% < End (Ny, 1, Y1) =25 FX 220, 7
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(the second and the last ones coincide with

AX n F~x — deg(0)o(—) Z
and

Ax 0 F"'x deg(d)/deg(0))o(—) Z

respectively) through which 4> acts on

Y‘go,o - (Doo,u)X/(@oo,o)X

Y, =2
Y} = GL;_4(F,)/GL4-(0,)
,=2Z

and therefore on
Yo=Y x Y& °xYoxY;.

The above constructions give a (non canonical) bijection
Eltx, a,0k) i iy——> 4" \Yay .

In itself this statement cannot be used. But we will now make it more precise and
more useful by looking at the structures that we have on §#/x, g (k). ).

(10.4) Let us begin with the action of the Hecke operators. Let I < X be a finite
closed subscheme such that I n {00, 0} = @ and let # < Oy be the corresponding
ideal. Then we have a Galois etale finite covering

"1,0,03gf/x,@,l,o—’éaffx,.@,a
with Galois group
KPP =Ker((2%:°) = (F2°G°\@2°) ).
In terms of the description (9.4) of 6#¢x.4,,(k), the map
t1.0,0(k): 8¢x, 3,1,0(k) = E4x, 3.0(k)

can be described in the following way. The set §4/x, .1 ,(k) is the set of isomor-
phism classes of triples

((V’ @, l)a (Mx)xE|X|a (‘xx)xEI)
where (V, @, 1) and (M, ), x, are as in (9.4) and where
Ut I DN\Dx—> IS M I\ M ¢

is an isomorphism of right 2 ,-modules for each xe I (recall that, for each x # o0, o,
the canonical map

(ng ®]Fq k, M?‘ ®l§-‘q fIObq) g (Mx’ (Px)
is an isomorphism); r, 4 ,(k) maps

. ((Vs ®, l)a (Mx)xeles (ax)xel)
Into

((V7 @, l)9 (Mx)xelXI) .
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Therefore, in terms of the above description of the isogeny class /¢x, 5 ,(k) ), the

restriction
rl,@,a(k)(ﬁ - Etty, Q,I,o(k)(i, i Etty, g,o(k)(i, i

of r,4,(k) to this isogeny class can be described in the following way. There is
a (noncanonical) bijection between é/¢x, 4 1 o(k) i1y and the quotient set,

4"\Ya
where
Ya =Y. xYP°xYixY;
and
Yo = D>y /Kp*

(4™ acts through the embedding 4* < (D™ %) on Y{° and as before on
Yem YZ, },'a')’ rI,@,n(k)(f,ﬁ) maps

a4 [mco’ hoo,oK;o,o’ thLd—h(@o)y mﬁ]
into
4 x [mcm hoo,oKooo,o’ thLd—-h((Oo)’ ma]

(K = (@=7)%).

Morever, if J = X is another finite closed subscheme such that J n {0, 0} = 0
and if I =J, we have a Galois etale finite covering

Lo 6% 9,00 = 8 a.1,0
with Galois group
Kp oK
such that

T80 =T10,0° 510 -

Then, r;; ,(k) maps &¢¢x. o 4,0(k)¢ 1) into 40y, g 1,0(k)# iy and it is clear that we can
choose the bijections

SEtty, @,I,o(k)(f, m—-4 * \Ya:
and

Eltx. 9,5,0(K) i, 1y~ A" \Ya1

as above in such way that the restriction r; ; (k)i iy of 7, ,,a(~k) is induced by the
canonical map Y5 — Y ° and the identity maps of Y,,, Y7 and %;.
Finally, let T be a finite set of places of F containing {c0, 0}. Let us set

(g’”}, @,a(k)(i,fz) = Jiﬂ_(év/fx, Q,I,o(k)(f,ﬁ), rJ,l,o(k)<F',ﬁ)) .
InT=49¢

Then we leave it to the reader to check that we can find a bijection of §£% 4 ,(k)s )
on the quotient set
A*\Y}
where
Yi=Y xYooTxYixy;
and
Yool = (D% DE (w.0p = (DT X DH\ 0,0/ D\ (0, 01)
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such that the right action of (DT)* on §#£%, 4, ,(k)# i1, which is described in (7.4) is
identified with the obvious right action of (DT)* on A*\Y] (here (DT)* acts by
right translation on itself and by the identity on the other factors of Y1)

Now let K*=(D")* be an open compact subgroup. For any g7e(D7)*, the
Hecke correspondence

800%,9,0/(KT A (gT) 1 KTgT)
¢ [
8%, 2.0/KT ——— 6% 9.0/K” ,
which is described in (7.5), induces a correspondence
EUE, 2,0K) 5 m /(KT (g7)'KTgT)
e 2
8T, 2,0k 1) /KT —~—8ULR, 9.00) 5.7/ KT .
Then, this last correspondence is isomorphic to the correspondence

ANYZ /(KT (g") ' K™g")

J \e

ANYL/KT = A\ Y /KT
where ¢, is induced by the identity of Y% and c, is induced by the right action of
(")  on Y.
In practice, we will take 7' = {0, 0}.

(10.5) In terms of the description &¢/x, ¢ (k)i 1y—— 4\ ¥, or
8% 9,0(k) ¢ ;i —=> A\ Y, the pole map is simply induced by the canonical map
Y, =Z-—»Z/dZ = Spec(x{(x0))(k)
(as we have fixed an origin in Y,, we have a corresponding origin in
F[OHIIFq — alg (K(OO), k)) K 5
Similarly, the action of Z by translations of the indices on the moduli space of

Z-elliptic sheaves is induced by the action by translations of Z on Y,, = Z. Indeed,
in terms of the description (9.4) of the moduli space, neZ maps

. ((Va @, l)a (Mx)x€|X‘)
into

((V’ @, l), q’go(Mco)’ (Mx)xele\{oo}) .

Let Frob,eGal(k/k(0)) be the geometric Frobenius (Frob, = frob, 4#®). It acts on
the Z-elliptic sheaves of characteristic o over k by

(égi’ji’ ti)tel = 1:'km](éoi:jia ti)iel .
So, in terms of the description (9.4), it maps

. (( Va @, l), (Mx)xE|X|)
nto

((V, 0,0), q’goeg(n)(Mco)’ (Mx)xE}XI\{oo,o}a @geg(o)(Mo)) -
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Therefore, in terms of the description &%, 9,o(k)¢ iy —=— 4"\ Ya 01 8%, 5..(k)7 i)
—~»A4*/YT, the action of Frob, is induced by the translation of (deg(o), 1) on
Yo xY;=ZxZ.

(10.6) Let us now consider the level structures at infinity on Z-elliptic sheaves of
characteristic 0 over k. We have a pro-finite, pro-etale and pro-Galois covering

Fao: 600x, 9,0 = 03,9,
with pro-finite Galois group DX /wZ% . In terms of the description (9.4), the map
Too,o(k): E22x, 3.0(k) = &%, 7,0(K)

can be described in the following way. For each

((V, @, 1), (My)xe x)) € Ly, 9,0(K)
let

iw,0:Spec(k) — Spec(x( o))

be the pole of this Z-elliptic sheaf, ie. the support of the x(o0)® k-module
@M w)/M », and let M’ be the dual of the free 0, & k-module of constant rank d,

M, and (//00 M o = M v be the restriction to M ' of the F,, ® frob,-semilinear
map (¢L,) LV - Vi,

Here we have split (V,,, ¢,,) and M, into (V},, ¢%)* and (Mm)" using the
identification 9., = M,(0,) and ¢, : V', — V., is the dual map of ¢’,. Then, the
set &¢(x, a,,(k) is the set of isomorphism classes of triples

((V9 Q, l)a (Mx)xe 1X» (l’ a))
where ((V, ¢, 1), (M,)xc|x|) belongs to &7y, g (k) and
A:Spec(k) — Spec (k{0 )y)

is a lifting of i, o and .
oMy (e, 0) = My

is an isomorphism of 0,, ® k-modules which commutes with the ’s; r,, ,(k) maps
((Va @, l), (Mx)xE|X|’ (A’ (X))

((V: o, l)’ (Mx)xelXI) s

= §X=T/dZ

acts on the pair (4, «) as described in (8.6).
Therefore, in terms of the description 4 *\Y, 4 of the isogeny class 6¢¢x, ,,(k)# i),
the restriction

into

and

roo,o(k)(i,ﬁﬂ@zx, 2,0k i1y = 6%, 2,0k & i)
of r,, o(k) to this isogeny class can be described in the following way. We set
Y, =Y, x(D%/al)=Zx(DX/ob)
with the action by nght translations of D} /w2, on its second factor. We let 4* act

on ¥, (left action) in the following way. We have fixed an embedding of
algebras

4 < End(Ny -1, Y4~ 1) -
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Let us identify End (N, -y, ¢4 —1) with (D,)° (both are central division algebras
over F,, with invariant 1/d), so that we get an embedding of algebras 4 —, (D)
and an embedding of groups 4% <, ((D,,)°?)* —=~>DX.

Here the last isomorphism is given by g — g~ '. Then 4~ acts on the first factor
Y, = Z by translations through the group homomorphism

A oy DX U px _dea=e) g

and on the second factor D 5 /w% by left translations through the group homomor-
phism 4> =, DJ. Note that the group homomorphism

A% s End (Ng 1, o, )" 0 F2 _0020) g

coincides with the one given above.
Again, we leave it to the reader to construct a bljectlon of gffx a,0(k)# i) onto
the quotient set AX\YA o, Where ¥, o= ¥, x Y&°x Y3x X, such that the right

action of DX /wZ on &‘ZX 2.0(k)# i) is induced by the right action of D} /w% on Y
that we have described above and such that the map r, ,(k) 7 is induced by the
projection of ¥, onto its first factor ¥,,.

Similarly, we have (D} /wZ% )-equivalent (non canonical) bijections

Elx. 91,000, m— 4 \Ta s

and
EITY oK) 1y A\TS

for any finite closed subscheme I<=X\{o0, o} and any finite set T of places of
F containing {0, 0}. Here, we have set

Tpr= Yo x YPox Yix Y,
and
PIl=7 xY®oTxYixY,.

The maps r,, 1,,(k)# iy and r% (k)¢ i) are induced by the projection of ¥, onto its
first factor Y,,. The maps F, .(k)z iy and more generally 7y, ,(k)z, 7y are induced by
the canonical maps Y7°—» Y3 and Y% Y>°. The action of (DT)* on
é”/Z’X @.0(k)# ) 1s induced by the action of (DT)* on YT,

As in (10.4), we can give an explicit description of the Hecke correspondences
for ;”?Z),T( 4,0 in each isogeny class.

The map

Aok} i) éaf/x 2,0(K)z, ;1) = Spec(x(00)q)

and the similar maps 4 ,(k) 7, and A (k)¢ i are induced by the map
Y, =ZxD%/m% »Z/d-deg(0)Z
which sends (», 8) into
n — deg{ooyoo(rn(d)) (modulo d-deg(oo)Z)

(as we have fixed an origin in Y,, we have a corresponding origin in
Homﬂ’q alg (K(Oo):h k))

The action (8.9) of Z on é”//x @,0(k)# i1y OT O cSWx a.1,0k)¢ i oron é”//x 2, o(k)(p i)
is induced by the action by translations of Z on the first factor Y,, = Z of ¥,,.
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The action of the geometnc Frobenius Frob, on é%’x 2,0(K)# 7y or on

é”f/x 2.1,0(k)# 1) OT On &7 x, 2,0(k)# 1) 1s induced by the translation of (deg(o), 1) on
Y xYb=ZxZc Y x L.

11 Counting fixed points

As in Sects. 9 and 10, we fix a place o + o0, 0 ¢ Bad, of F and an algebraic closure
k of k(o). We fix an open compact subgroup K> "t:(D"o °y* and an open normal
subgroup K,cDX/wZ. We assume that K< is small enough: for example,
we assume that K*°=K{° for some non empty finite closed subscheme
I X\{w, 0}.

We consider the proper and smooth scheme

M = G710 /(I x K, x K™°)

over k(o) (see (8.9)). On M we have a right action of the finite group (D% /wZ%)/K ,
and a right action of the Hecke correspondences

where _
M(g™?) = EIEY5 /(@ X Ry x (K™ 0 (g™%) 1K =09 ™))

and ¢g*-° runs through (D*°)* (see (8.8)). These two actions commute.

On the set M(k) of k-rational points of M we also have an action of the
geometric Frobenius Frob,eGal(k/x(0)) which commutes with the actions of
(DX /w%)/K, and the Hecke correspondences.

Let us fix §,eD /w2 and g* °c(D®°)*. For any non negative integer r, let us
denote by

Fix (G, 9°)

the fixed point set of the product of the actions of §., K ., the Hecke correspond-
ence associated to ¢*°° and Frob}. In other words, Fix,(§.,, g ) is the set of
meM (g*°)(k) such that B

Frobg(c1(m) §o Ko = c2(m) .

(11.1) Lemma. If r > O, the fixed point set Fix, (G, g™'°) is finite. Moreover, each
fixed point in Fix, (g, g™'°) has multiplicity one.

Proof. If r > 0, the graph of Frobj, is transversal to any correspondence

/\

M e——
with ¢ and ¢} etale. ]
Our goal in this section is to compute the number of elements

Lefr(gw’ gm,o)

of Fix,(J., g°'°) when r > 0. From now on we will assume r > Q.
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(11.2) Let us recall that M (k) can be decomposed into isogeny classes. For each
(D, w0, 0)-type (F, IT) we have a corresponding isogeny class
M (k) 7y = M (k)
and a non canonical bijection
M) y— A\TRNZ x R o x K20,
where
Vi = Zx (D3 /w%) x (D) x (GLy-(F,)/GLa-(C,) x Z
Here, the action of Z (resp. K, =D %/w?%, resp. K*°<(D*°)*) on ool is the
action of right translations on the factor Y, = Z (resp. D% /@Z, resp. (D™°)).

Moreover, the action of Frob} on M (k) g, is induced by the translation (r deg(o),
r) on the factor Y, x ¥; = Zx Z of ¥4, the correspondence

M (g™ *)(k)e. 1y
/

¢ &)
M), my = —M(k)# 1)
is induced by the correspondence
(D= (K™ (™) K ="g =)
e ¢

(Doo,o)X/Koo.a - 7(DOO’0)X/KDO’0
where
Cl(hoo.o(Keo,am(goo,a)—lKoo,ugoo,u)) — hoo,oKoo.o

Cz(hoo,a(Koo,a rW(goo.cl)—11(00,0ga(>,a)) — hm,o(gw.u)—lKoo,o

on the factor (D*°)* of ¥ and the action of (D% /®w%)/K, on M(k)z ) is
induced by the action by right translations of D /wZ on itself.
In particular, we can also decompose Fix,(g.,g>°) into isogeny classes
Fix,(§u, 9% We iy = M(g™*)(K)r, i1y
and
A% [ K oy R (K20 A (g™°) T K™ g™ %), B{GLy-4(0,), m;]

is in Fix,(§., ¢* °) m if and only if there exists de4*, k€K, k*°€K>° and
ki EGLd h((Q ) such that

R = SRk

R0 = §hoo(g @ o)~ k=0

he = Sh2k?

m; + r = (deg(6)/deg(0))o(rn(d)) + m;
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i.e. if and only if there exists e4™ such that
(heo,o)— l(shoo,oeKoo,ogw.o
(hg)_léthGLdfh(@o)
deg(0)3(rn{d)) = rdeg(o) .
(11.3) Lemma. For any h*°e(D*°)*, heGLy_4(F;), the only 6€4* such that
(hao,o)— 1 6hoo,oEKoo,o
(h3)™16hieGL,4(0,)
o(rn(8)) =0
is the identity element (recall that K®*° is small enough).
Proof. See [Lau 2, (3.2.6)]. (1

(11.4) Let A be a system of representatives of the conjugacy classes in 4. Let us
say that ded™ is r-admissible {at the place o) if

deg(0)o(rn(d)) = r deg(o)

and é is conjugate to an element of GL,_,(0,) in GL,_,(F,). Clearly, this is
a property of the conjugacy class of §. For each ded ™, let

45 ={0'ed*|8'6 = 85"}

be its centralizer in 4*. The map
hoo,o(Koo,ﬂ A (goo,o)—lKoo,agoo,o) — hoo,oKoo,a

from the set of classes satisfying

(h™°)"16h>°e K™ °g™"°
to the set of classes satisfying

(h™°) " 1oh ™2 K™ 2g 00K *-°

is clearly bijective. Therefore we have proved:

(11.5) Proposition. For each (D, c0, o)-type (F, IT), Fix,(§.,, g%\, ) is the disjoint
union over the &'s in Ay which are r-admissible of the sets of double classes

A5 [he Koo, h*°K® %, B3GLy-1(0,), m3]
which satisfy
(heo) 10h € K
(hw,o)—léhw,oeKoo,ogoo,oKoo,a
(k)™ '0h3eGL4-1(0,) .

(11.6) For each ded™, let (Do)s (resp. (D), resp. GL,—4(F,);) be the cen~tra1-
izer of 6 in D (resp. (D™°)*, resp. GL,_,(F,)). Let dh,, (resp. dh**°, resp. dh)) be
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the Haar measure on D} /w% (resp. (D=°)*, resp. GL,_,(F,)) which is normalized
by _
vol(K ,, dh,) =1

(resp. vol(K*°, dh™°) = 1
resp. vol(GL,_,(0,), dh%) = 1) .
Let dm; be the counting measure on Y; = Z. Let dh,,, 5 (resp. dhg>*°, resp. dh? s)be an

arbitrary Haar measure on (D, )X/m (resp. (D™°)§, resp. GLd #(F,)s)- Let do' be
the counting measure on 4. Note that all the above groups are unimodular.

Let f, (resp. f=°, resp. f3) be the characteristic function of §, K., in DX /w%
(resp. K®:°g*°K*"* in (D*'°)*, resp. GL;_,(0,) in GL,_,(F,)).

We can introduce the orbital integrals

o - - dh,
Oﬁ(fooadhooad) = j foo((hoo)_léhoo) dﬁ

(D;\DY 058
©,0 ©,0 ©,0 0,0y 1 ooodhw’o
O™ dhr)y= [ fme((hme) i oh ) T
(D=2 N (D= 0) "

and i

0] o (1,0~ 15},0 dhz

Oé( 09 dho:&) = j fo((ho) 5ho) dne

GLa-n(F5),\GLa-n(Fo) 0,8

They are absolutely convergent.
We can also introduce the volume

D dhoy,s x dhg* x dh 5 x dm;
V°l<""x\[“’3w)a*/m§o)x(Dw"’);xGL,,_h(Fo)asz, T m>.

dé’
(11.7) Lemma. For each r-admissible 6 A*, the embeddings of F-algebras
A4 = DP¥
A =, D®°
and
4= Md—h(Fa)

induce group isomorphisms between the centralizers of 6
(42)5 — (D2)S

(4=20); =5 (D™);
and i
(45); —> GLy-n(F,)s -

In particular, the Haar measure dh,, 5% dh§? x dh? 5 induces a Haar measure dé’
on (4%);5/wZ = ((d,)5/®L) x (4°°°)5 x (43); and the above volume is equal to

do” x dmg
vol (A,;\[((AO) /mm)xll“‘i‘”)

Proof. See [Lau 2, (3.3.4)]. o

Then it is clear that the Proposition 11.5 implies:
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(11.8) Proposition. For each (D, o, o)-type (F, IT), the number
Lef (G, 97 %)z 1)
of elements of FiX,(Gw, 9% )7 i1y is equaf to
dé” x
dé’

where & runs through the set of all r-admissible elements in A

2 vol <A§ \[(4%);/a%) < Z], ) O faos Ao, ) O5(f %, ) O£, dM?, 5)
4

(11.9) Let D be a system of representatives of the conjugacy classes in D*. Let
yeD™ and let F' = F[y]<D. Let us say that 7 is elliptic at the place oo of F if
F,, ®¢F'is a field, i.e. if there exists only one place oo’ of F’ dividing oo. Let us say
that y is r-admissible at the place o of F if o(det y) = r and there exists a place o’ of F’
dividing o such that

()0 and x'(y)=0

for all other places of F’ dividing 0. As in [ Lau 2, (3.4)], we have a natural bijection

{yeDj |y is elliptic at oo and r-admissible at o0}
— [] Be4y |5 is r-admissible at o}
(F.II)
where (F, IT) runs through a system of representatives of the isomorphism classes of
(D, o, 0)-types such that [F:F] divides d and where 4 is attached to (F, IT) as
before.

It is defined as follows. Let ye Dy be elliptic at co and r-admissible at o. Let
F' = F[y] with its two places o’ and o’ as before. Let II'eF’ be such that

o'(II'Y+£0, o'(II'Y*+0 and x'(II')=0
for all other places x’ of F’. We set
F= () FIII'""}cF’
50

and we denote by & and & the places of F which are induced by o’ and o’
respectively. There exists neZ, n = 0, such that II'"cF and we set

I=I"®e«wF*®Q,
where ae@) is determined by the condition
deg(s0)so (i) = —[F:F]/a .

Then (F, IT) is a (D, 00, 0)-type and [F: F] divides d. Let 4 be the corresponding
central division algebra over F. The invariants of 4 are given by

[F:F1/d ifx=&
invg(d)={ —[F:F}/d if x=0
[F::F.Jinv,(D) otherwise

and we have
dimz(4) = (d/[F:F1)*.
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Therefore, as

F;®sF' =F, and F;®F =F)
are fields and as F’' < D, we can find an embedding of F-algebras F' =, 4 and all
these embeddings are conjugate in 4. In particular, we get de 43 which is conjugate

to the image of yeF’ in 4 by the above embedding. The desired bijection maps
y into ((F, IT), §) (see loc. cit. for more details).

(11.10) Let ye Dy be elliptic at co and r-admissible at o and let ((F, IT), &) be the
corresponding triple (see (11.9)).

At the place oo of F, we can view D as an inner twist of DX = GL,(F,,) and if
jeDg is the transfer of yeDX by the inner twisting (7 is well defined up to
conjugacy), J and the image of de 4™ in D7 are conjugate in D. Moreover, we can
identify the centralizer (D)} of 7in D2 with (4,); .

As A*° is the centralizer of F in D*°, the centralizer (D*'°); of y in (D*-°)*
coincides with (4*°°)5 (we have FcF = F[v] = F[é]cA)

At the place o, the situation is more complicated. As o’ is the unique place of F’
which divides 6, we have

d[F.,:F,]/IF:F]1=d[F;:F,}J[F:F]=h.
As y is r-admissible at o, up to conjugacy we can assume that

7 = (7% 70)€GLy-4(F,) x GL4(F,) = GL4(F,)
where
Fo[y5 ] =(F'); = My-x(F,)
and
Folyy] = FycMy(F,) .
Here, GL,-(F,)x GL4(F,) is viewed as a standard Levi subgroup of GLu(F,).

Now, as 42 is the centralizer of F%in GL,_,(F,), the centralizer GL,_,(F, ) -of 2 in
GL,.,(F,) coincides with (49)5.

(11.11} We can rewrite the formula (11.8) for Lef, (g, g*°) as follows. Let us fix
arbitrary Haar measures dh., 5, dh?° and dhg, on (D)}, (D**°); and GL4-,(F, )y
respectively. Thanks to (11.10), they induce a Haar measure

465 = dh,, ;% dh®° x dh3

on X
(42);/0% = (4)5/m%) x (47°); x(43);

and we can consider the volume

dé'’ xd
vol( AL(49);/m2) < Z], —X~'—"—>

We also have the orbital integrals

- - ~ dh
Os(fordhos) = | fuollha) 'Fhe) ==

(B.)3\D dhy, s

dhCO » 0
0,(f° dhy°) = § feo(he0) tyh=) T
D=0
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and

o 110" o rrron—1 o 1o ARG

Oy:'(fu ’ dho,y) - _‘. fo ((ho ) Vo ho ) W 5

GLan(F.)s \GLa(F,) o7

where fw, £, dh,,, dh™° are defined as before and f2', dh? are new notations for
o, dh? respectively. Then:

(11.12) Propeosition. Lef, (g, 9> °) is equal to

) 48" x dm;
Y vol (A;\[((A“);/mé) x 2], #)
Y
<05 Foor ARy 50, ( £0°, )0, (£, dHE. )

where y runs through the set of elements in Dy which are elliptic at oo and
r-admissible at o.

(11.13) Let yeDy be elliptic at oo and r-admissible at o and let F' = F[y]l<D
with its two places oo’ and o’ as before. Then we have

F,cFy = F,[7,1cMy(F)
and if we choose an isomorphism of F,-vector-spaces
Fho (FL)WIE )
we get an identification of the centralizer of y,. in IM,(F,) with
Myir;. . (Foy = M, (F,) -

In particular, the centralizer GL,(F,),, of y,- in GL,(F,) has a natural structure
of Fy-group scheme and is non canonically isomorphic to GL 5.5 (F,) as a
F,-group scheme.

If ((F, IT), 6) is the image of y by the bijection (11.9), the centralizer (4;); of 4 in
A¥ also has a structure of F..-group scheme (F, = F;[6]) and is an inner twist of
GL,(F,),, as a Fy-group scheme. Let dh,. , be the Haar measure on

GL(F,),, ~GLyF; .51 (F3)
which is normalized by
vol(GLyr; £3(C5), dhy ) =1

(here 0,. < F, is the ring of integers). Let dd; be the transfer of the Haar measure
dh,. ,from GL4(F,), to its inner twist (43), (over F) (see [Kot 2]). Thanks to {Ro]
(see also [ Lau 2, (4.6.4)]), dd; is the Haar measure on (4;); which gives the volume

1
u= (g%5©) — 1) - (qOR@ IR D -1 q)

to the group of units of the maximal order of (45); = {§'€4;16'0 = 48}

(11.14) Lemma. Let ddp be the Haar measure 6% x dsy on (4,)F/8% =
((4°)5/w%)x (45)5 . Then

vol (A;\[((A");/mfo) <23, M)

do’
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is equal to
deg(o') déy
1{ 45\(4,)5/®L, —= ).
deg(0) Vo 3\4e)s /0% a5
Proof. We have a 4;-equivariant group homomorphism

(Aﬁ); rn (F,:)X (deg(o’)/deg(0))o’(~) /A

with kernel the group of units of the maximal order of (4;); and with cokernel
deg(o}Z/deg(o")Z. ((4;)s is a central division algebra over F, and for 6'e(4;); <
A%, we have

deg(o')o'(tnd') = deg(6)d(rnd’)

where rn is the reduced norm for the central division algebra (4;); over F, on the
left side of the formula and rn is the reduced norm for the central division algebra
A5 over F; on the right side of the formula). O

(11.15) Following Drinfeld (sece [Ka] or [Lau 2, (4.2.5)]), let us consider the
function

fo:GL4(F) - Z
such that
folgs) =0

unless g,eM,(0,) N GL,(F,) and o(detg,) = r and such that
folgo) =1 — qdeg(u)) coe(l = qdeg(o)(p—l))

if g,eMy(0,) " GL4(F,), o(detg,) =r and p is the nullity of the reduction
Fo€ M,(x(0)) of g, modulo the maximal ideal of ¢),. Let us recall that f, is the Hecke
function on GL,(F,), i.e. the GL 4(0,)-bi-invariant function with compact support
on GL4(F,), such that its Satake transform is equal to

f3(2) = g TR 4 4 2))
(see [Lau 2, (4.2.6)]).
Drinfeld has computed the orbital integrals of f,. Let us review his results. Let
dh, be the Haar measure on GL,(F,) which is normalized by

vol (GL4(0,), dh,) = 1.

For any yeGL(F,), let dh, , be an arbitrary Haar measure on the centralizer
GL(F,), of yin GL4(F,) (this centralizer is always unimodular, see [ Lau 2, (4.8.6)]).
Then we can consider the orbital integral

dh,
0,(fo> dhy,,) = ) fo(hg yh,) I

GLAF)\GLy(F) o
(it is always absolutely convergent, see [De-Ka—-Vi] or [Lau 2, (4.8.9)]).
(11.16) Theorem (Drinfeld). (i) The orbital integral O,(f,, dh, ) vanishes unless

there exists a positive integer h < d, an elliptic element y'eGL{(F,) with o(dety’) = r
and an element y"€GL,_,(0,) such that y is conjugate to

(y 0,,> €GL4(E)
0 v

in GL4(F,)
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(ii) Let h be a positive integer with h <d. Let y'eGL(F,) be elliptic with
o(dety’) = r and let y"eGL,_,(0,). Let

y= (7 0,,>eGLd(Fo) .
0 v

We can identify GL (F,), with the product of the centralizers
GLh(Fa)y' X GLd~h(Fo)y“ s
and we can identify GL,(F,),  with
GLyr::£3(Fg)
where Fi, = F,[v'1<MM(F,). Let us normalize dh, , in the following way. We take
dh, , =dh, ,xdh;,

where dh;, , is the Haar measure on GLyr... 1(F,) which gives the volume one to the
maximal compact subgroup

GLh/[F; :EJ (@) GLh/[F,’ :F) (Fy)

and where dh, , is an arbitrary Haar measure on GL;_,(F,),. Then

, . ey, deg(o’)
= (1 — g98@)). . . (] — ge@ N H/[Fs Fol)—1) A7 dh”
0y o)) = (1 = q**@) - (1 — g ) degie) Or o ah)
where fo is the characteristic function of GL,;_,(0,) in GL,4_(F,).
Proof. See [Lau 2, (4.6.1) and (4.8.13)]. O

Note that we need this theorem only for closed y in GL4(F,) (i.e., y semi-simple but
not necessarily geometrically semi-simple). Indeed, if ye D* = D) = GL(F,), F,[y]<
IM,(F,) is a product of fields (F, is separable over F). Therefore, GL,(F,), is
obviously unimodular and the orbital integral O,(f,, dh,_,)is obviously convergent
(the orbit of y in GL(F,) is closed).

(11.17) 1t follows from (11.14) and (11.16) that we can rewrite the formula (11.12)
for Lef, (g, 9> °) in the following way

’

= x x do ra 1, @ ©
Lefr(gco’ goo,u) = z V01 (Aé \(AA)J/mfoa “E‘,ﬁ)ew(y)oi(fcos dhoo,*_/)oy(f s dhy )
v
where y runs through the set of elements in D; which are elliptic at co. Here we
have set f° = f=<°f, with f, as in (11.15) and

dh® = dh?° x dh3., x dh,,
and the sign
Ew('y) = ( _ 1)(d/[Fw[y]:Fm])_ 1

is the Kottwitz sign at oo of y (see [Kot 1]). Indeed, for any ye Dy which is elliptic at
o0, we have
0,{f,, dh,,) =0

unless y is r-admissible at 0. Moreover, if y is r-admissible at o, we have
deg(o”)

Oy(f;n dho,y) = 80(7) deg(o)u

0. (f2,dhs.) ,
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where
£o(7) = (—1)W/Fo:FoD -1
is the Kottwitz sign at o of y. But
h=d[Fy;: F]/[F:F]
(see (11.10)) and
[F':F]=[Fy,:F.]
as oo’ is the unique place of F’ = F[y] which divides 0. So

£o(7) = €(7)

(product formula for &!, see [Kot 1]).

(11.18) If yeDy is elliptic at oo and r-admissible at o and if ((F, IT), 4) is its
image by the bijection (11.9), the centralizer D} of y in D™ and 4 have both
a natural structure of group scheme over F' = F [y] = F[6] and D} is an inner
twist of 45 over F'. The same is true locally. The Haar measure dh°O on (D)) is
obviously the transfer of the Haar measure dé’'® on (4*); by this inner twisting.
Let dh,, , be the transfer of the Haar measure dh,, , from (4,,);/®% to its inner
twist (D,);/w%. Then it follows from Weil’s computations of Tamagawa numbers
of A5 and D; that

vol (45 a)ifo%, 52) = vol (0704 /02, S

where dh, is the counting measure on D (see [Lau 2, (3.5)] for example). There-
fore, we get:

(11.19) Theorem. Let f,, be the characteristic function of G K . < D% /w2, let f*-°
be the characteristic function of K*°g*°K*° in (D™*°)* and let f, be the Hecke
Junction on GL,(F,) with Satake transform

fov (z) — qdeg(o)r(d*l)/Z(zr1 + - 4 25) .
We set

fo=1"%-.

Let dh,, be the Haar measure on D% /w2 which is normalized by vol(K , dh,) =1
and let dh™ be the Haar measure on (D®)* which is normalized by vol(K*°x 9,
dh*) = 1.

For each ye Di which is elliptic at oo, let

dhy, , = dho, ,x dh?

be an arbitrary Haar measure on its centralizer (D)} /®% in Dy /®% and let dh., be
the counting measure on D}. We can transfer the conjugacy class of y in DX to
a conjugacy class in the inner twist D% of D2 (as a F, w-group schemey, let yeDX be
a representative of this conjugacy class. The centrahzer (Dw)y of 3 in D3 is an inner
twist of (D,,)y (as a Fo[y]-group scheme); let dhy, 3 be the transfer of the Haar
measure dh, ., from (DL,C,)y/usz to its inner twist (D, ) /o%. Let

£ () = (—1)@/TED1FD - 1

be the Kottwitz sign at oo of y.
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Then we have

dh,

where 7y runs through the set of elements in D, which are elliptic at .

ha
Lef, (g, 9™ ")—ZVOI <DX\(DA)§/wm,d > 80s (103 faos dhoy 5)0, (1, dhT)

12 The Lefschetz fixed point formula

From now on we assume that D is a division algebra. We fix a prime number
¢ distinct from the characteristic p of I, and we fix an algebraic closure @, of the
field Q, of /-adic numbers. We fix an irreducible representation

pw:Di/wl, — GL(L)

on a finite dimensional @, -vector space L which is defined over a finite extension
E; of ®, in Q, and which is continuous for the pro-finite topology on D% /wZ and
the Z-adic topology on GL(L). Then, it is well known that p,, factors through
a finite quotient (D%/w%)/K, of D}/w? (K, is a normal open subgroup of
D;/v?).

We fix a non empty finite closed subscheme I of X\{c0}. Then we have the
proper and smooth scheme of pure relative dimension d — 1

&ty 9.1/ Z - X\({o} uBad UI)
and its pro-finite, pro-etale, and pro-Galois covering
o, 1"(9@?2)( 2, I/Z i éa//X g I/Z

with pro-finite Galois group D} /m%. Here Z acts by translation of the indices on
the Z-elliptic sheaves (see (2.4)). The pair (v, 1, p.,) defines a locally constant
Q;-sheaf &, , on 1% 9.1/ Z.

If # = Spec(F) is the generic point of X and if F is an algebraic closure of F, we
can consider the /-adic cohomology groups

Hy = H"((6ltx,2,14/Z) ®r F, Z5..1)

(n€Z). Each H? ; is a finite-dimensional @Q-vector space, with a rational structure
over E, induced by the rational structure of p,, over E;. In fact, H} ; = 0 unless
0 =n <2d - 2.0Oneach Hj ;, we have an action of Gal(F/F) which i 1s ‘defined over
E; , and continuous for the Krull topology on Gal(F/F) and the /-adic topology
on Hj ;.

Let o7 be the Q-algebra of locally constant functions with compact supports

f2:D?)Y - Q
which are K{-bi-invariant (i.e. invariant by left and right translations under Ky°).
Here the product is the convolution product with respect to the Haar measure dh”
on (D*)* which gives the volume 1 to the open compact subgroup Ky <(D®)".
A basis of # as a @-vector space is given by the characteristic functions
lkrg=kr
of the double classes KPg®KP <(D®)* when g® runs through a system of
representatives of these double classes. For each g*e(D®)*, we have a Hecke
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correspondence (see (8.8))

EL ) (EX(KE A (g7) ' KPg™)

VAR

SUPK N (XX KY) —— ET 0 (T KT) .

This correspondence acts on each H; ; and this action depends only on the double
class K?g*K . In fact we get an action of the Q-algebra # on Hy ; if we let
lx#4=k act by this correspondence. This action of #7° on H ;is also defined over
E;. The actions of Gal(F/F) and # on the H}p s commute.

Our goal is to determine the virtual representation

#,12 Z (—1)" :,1

neZ

of Gal(F/F) x #¢. For this it suffices to compute its trace. This is the purpose of
this section.

(12.1) Thanks to the proper base change theorem and the local acyclicity of
smooth morphisms, the action of Gal(F/F) on the H? /s (neZ) is unramified at
each place o + 00, 0¢ Bad, 0 ¢ I of F.

More precisely, let o = o0, 0o ¢ Bad, o ¢ I be a place of F and let us choose
a diagram
F c F o 0, » &k
) U U U

F « F, o 0, » k(o)

where F, is an algebraic closure of F,, @, is the normalization of @, in F, and k is the
residue field of the local ring @, (k is an algebraic closure of x(0}). We can consider
the /-adic cohomology groups

Hi = H"(6llx.2.1,0/ L) ®xwks Lp..s)

(neZ). Each H” , is a finite dimensional @ ,-vector space, with a rational structure
over E; induced by the rational structure of p,, over E;. In fact, Hj ; = O unless
0 £n<2d -2 Oneach H%; we have an action of Gal(k/k(0)) which is defined
over E; and continuous for the Krull topology on Gal(k/k(0)} and the Z-adic
topology on H} ;.

Then, we have a canonical isomorphism of @,-vector spaces

o ol s

for each neZ, which is compatible with the rational structures over E; and the
actions of Gal(F,/F,) (we have a canonical embedding Gal(F,/F,)= Gal(F/F) and
a canonical epimorphism Gal(F,/F,)—» Gal(k/k(0)); see [SGA 4, XVI (2.2)]).

On each H! ; we also have an action of the Hecke operators. In fact, as we have
not studied the bad reduction of the modular varieties of Z-elliptic sheaves, we do

not have an action of the full Q-algebra 7 on Hj ; but only an action of its
Q-subalgebra #° < # of locally constant functions with compact support

foo (D= = @
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which are Kj°-bi-invariant. Here the product is the convolution product with
respect to the Haar measure dh;>° on (D*'°)* which gives the volume 1 to the
open compact subgroup KP:°<(D*?)* and the embedding #7°< #° maps
[ onto f*°lgL,@,) The characteristic function

lK;U'ogw‘”K;""’

acts on H} ; as the Hecke correspondence

I (X (KFe 0 (g) K g™?))

o/ \#

ST (I XK o) ——— GOSN (T x K o)

for each g*°e(D*°)* and each neZ. It is clear that the action of J#{° on the
H} /s (neZ) is defined over E, and commutes with the action of Gal(k/x(0)). It is
also clear that the above isomorphisms H} ; =~ H} ; (ne€Z) are #';°-equivariant
(7 °cH7). In other words, for each place 0+ oo, o ¢ Bad, 0¢ 1, of F, the
restriction of the virtual representation H¥ ; of Gal(F/F)x # to

Gal(F,/F,) x #7°c Gal (F/Fyx #¢
is uniquely determined by the alternating traces
tr(Frob} x 1geogeogre; HY f)

(reZ, g=°e(D>°)*), as Z is dense in Z and as the characteristic functions
lgpogmog po generate 7% as a Q-vector space. It is even enough to know these
traces for all positive integers r and all g*-°e(D*°)*. Here we have set

Hi, =) (-1

neZ

(12.2) Let usfix a place o & o0, 0 ¢ Bad, 0 ¢ I, of F and a positive integer r. Let us
consider the /-adic cohomology groups

Hy = Hi(E0x,9,1../(Z % K ) ® ok, Qy)

(neZ) where K, is an open normal subgroup of D% /w2, _on which p,, is trivial
Each H,',’ ;isa ﬁnlte dimensional @,-vector space and H" ; = 0 unless 0 < n <
2d — 2. On each A ; we have commuting actions of the finite group (D% /@ m) /Kw,
of Gal(k/x(0)) and of #§'°. The action of (D% /wZ)/K , is induced by the action of

D% /w% on Z"Z’Z’&wgoio, the action of Gal(k/x(0)) is continuous for the Krull topology

on Gal (k/k(0)) and the Z-adic topology on H” ; and the action of #7§° is induced
by the Hecke correspondences as before. B
By definition of %, ,, we have canonical isomorphisms of @Q,-vector spaces

Hy = (Hp ; ®q, L)Ds/o%)/Ka
where (D% /wZ)/K,, acts through p,, on L. In particular, we have
tr (Frob; X lK;n.ngas,nK;a.a; o,l)
1

T Ds/et)/K.)| )) tr(§ X Frob} x Iggogeogpe; HE D (0o(Goo)) -

§=KoeDs/wl)/K.
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(12.3) Now, thanks to (11.1), we can apply the Lefschetz trace formula [SGAS,
111(4.11.3)] to compute the traces

tr (g X Frobg x 1gp.e eegee; HE )

and we get that this trace is equal to

Lef,(§u» 9°)
with the notation of (11.1). Therefore, we have proved:

(12.4) Proposition. With the above notations, we have

1
tr (Frob! x 1gwngeogmo; H¥ ) = —=————
t kiegeoxr s Hod) = y5eioay g ]

) Lef (Goor NI (Do (F0))
GoKe(D%/wl)/K.,

for each positive integer r and each g*-°(D*?)*.
Replacing Lef, (g, g™} by its formula (11.19), we get finally
(12.5) Theorem. We have

dh
tr (Frobf, X IK'mvongoK;o.o; H:J) = Z vol (D;\(DA); mfo, —”d“;;:‘z>
Y Y

'em(’V)O?(f_ooa d}_’w,)’)oy(fw’ dh;O)

where y runs through the set of elements in D which are elliptic at c. Here, the Haar
measures dh”, dhy ,, dhy®, dh, ,, dh, and the functions f*°, f,, f* are chosen as in
(11.19) for K®:° = K{**°. Now the Haar measure dh,, is arbitrary and we have set

f ________Xpw—__
" vol(D%/wk, dh,,)’
where ., is the character of the representation p,, (a locally constant function on
D /w%).
Note that the product f, dh,, is independent of the choice of dh.,.

13 The Selberg trace formula

In this section we shall replace the factor ¢,,(7) O5(fw, dhy,,) in the expression
(12.5) by an orbital integral of a function f,, on D% /wZ% . We shall suppose that p
is the trivial representation. (For the general case, compare the remarks (13.8) at the
end of this section). We shall show in this case that one may take for f,, the weakly
cuspidal Euler-Poincaré function of [Lau 2, Sect. 5]. (It follows a posteriori that
any of Kottwitz’s Euler-Poincaré functions [Kot 2, Sect. 2], which depend on the
choice of a set of representatives of the orbits of D}, /w% on the set of facets in the
building, will have the required properties and this is indeed proved in Kottwitz’s
paper [Kot 2, Theorems 2 and 2'], in the case of a p-adic field). We briefly recall the
results of [ Lau 2, Sect. 5].
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(13.1) We choose an identification D, ~IM,(F,). Let T denote the group of
diagonal matrices and B the group of upper triangular matrices in GL,. Let 4 be
the set of simple roots of (7, B). To any subset I — 4 there is associated a standard
parabolic subgroup Py, as well as a standard parahoric subgroup 2 contained in
GL,(0,). (We have 2§ = #° the standard Iwahori subgroup and 2% = GL4(0,,)
the standard maximal compact subgroup.) Let &; denote the normalizer of 27 in
GL,(F,). The group GL ,(F,) acts on the building of SL,(F,)) and 2% (resp. ;) is
the pointwise stabilizer (resp. the stabilizer) of a facet g;. Let

P - {11}

be the sign character of the permutation representation afforded by the vertices of
or. We extend y; to all of GL,(F,,) by setting it zero outside of #;. The weakly
cuspidal Euler-Poincaré function [ Lau 2, 5.1.2], is defined by the following expression

= ¥ ()41l 22
foo IEC:A( ]) (!A_I|+1)'V01(c@?adhoo)

It is a function on GL,4(F,) whose value in g only depends on the image of g in
PGL,(F,). If the Haar measure dh, on GL,(F,) is multiplied by a scalar the
function f,, is divided by that scalar.

(13.2) Theorem. For some Haar measure dh,, on D} /w2, let
1
vol(D% /w2, dh.)’
a constant function on DX /w2, and define f,, as above (since D} /wZ% is an inner

twisting of D% /®% as an F,-group scheme we could take the Haar measure dh ,, to be
the transfer of dh.,, but this does not matter).

fo=

(i) The orbital integrals of f,, for non-elliptic elements are 0. Let ye D, be elliptic and
let je DX be its transfer by the inner twisting (3 is well-defined up to conjugacy). Then
the centralizers (D,); and (D,); are inner twistings of one another (as
F,[y] = F,[]-group schemes) and we choose Haar measures dh, , and dh, ; on
them which are transfers of one another. Then

£ (7)

Ov(foos dhco,y) = 800(:}})' O;(fw’ dﬁw,?) = VOI((DX )'/ﬁjl dﬁ ‘) .

Here as before &,(y) = &, (7) is the Kottwitz sign
€w(y) = (—1)UEDTRI-1

(Note that both sides of the above identity are independent of the choice of Haar
measures dh,, and dh,,.)

(ii) Let n,, be a unitary irreducible representation of D} /o . Then tr n(f,) =0
except in the following two cases: the trace of f,, on the trivial representation is 1 and
the trace of f., on the Steinberg representation St is (—1)" 1.

Proof. For (i) we refer to [Lau 2, 5.1.3(i), (ii))]. For (ii) we refer to [Kot 2.
Theorem 2'], noting that the blanket assumption made in that paper that the
characteristic of the ground field be zero is not used in its proof. In [Kot2].
Kottwitz considers D /F%, not D}, /w2 . However, this latter case reduces immedi-
ately to the former. Indeed, f,, is invariant by translation under F}/wZ, hence if
tr e, ( f,,) = 0 it follows that n., factors through D} /FZ%. C
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(13.3) Recall from the list of notations that we have fixed an isomorphism Q,=C.
We now insert the above expression for the factor &,(y)-05(f,,dh,) in the
formula of (12.5). Putting f'= f, - f* we obtain therefore the following expression

dh
(134) tr(Frobfy X Igse. geo.gpo; HE )= Y. vol(Dvx\(Dﬂ)yX wl, d;;”)
yeD; y

~0,(f, dhy ).

This is indeed the formula of (12.5) since, due to the vanishing of the orbital
integrals of f,, on non-elliptic elements of D, this sum eflectively only ranges over
those ye D which are elliptic at co.

The sum appearing above is nothing but one side of the Selberg trace formula.
More precisely, let o/ (D*\Dj /wZ) be the space of locally constant functions,
equipped with the right regular representation of D /wZ. Since D is a division
algebra the coset space D*\Dj/wZ is compact. (Note that the coset space
F*\A*/mZ is finite). Therefore this space is admissible and decomposes as a direct
sum of irreducible admissible representations with finite multiplicities,

A (D*\Dg/w%) =D ml)-II .
i3

Here IT ranges over the irreducible admissible representations of D /wZ and m(IT)
denotes the multiplicity. If m(JT) > O then IT is called automorphic. The compact-
ness of the coset space also implies that the operator induced by a locally constant
function with compact support on D} /w% has a trace. The usual manipulation
(integration of the kernel function over the diagonal) yields the Selberg trace
formula. For any feCZ (D} /w%) of the form f = 1xs- fs where S is a finite set of
places with {oo} U Bad =S so that (D5)* = GL4(&%), where K® = [T, , s GL,(0x)

is the canonical maximal compact subgroup and where fseCZ(D3/w?), we have
(13.5)

r (f; o (D*\D;/wi; d;’-,:)) =2 mIt(f)
n

dhy

dhy ) ‘ Oy(f; dhA,y) )

= 3, vol <D?\(DA)~7/0350,

yeDn

with the choice of f as in (13.4) and the same choices of Haar measures (dh, is the
counting measure on D). Putting together (13.4) and (13.5), we get:

(13.6) Proposition. We keep the notations of (12.5) and introduce the function
f={fo:f® on D} /wl with f, asin (13.2). Then
tr (Frob} X lgp.o.googeo; Hi ) =Y m{IT)-tr I(f) .
n

Using (13.2) (i) we therefore obtain the following conclusion.

(13.7) Corollary. Let I be a non-empty finite closed subscheme of X\{oo} and let
0% o, o¢Bad, o¢ I be a place of F. For an automorphic representation II
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occurring with multiplicity m(I1) in of (D*\ D} /w%) we introduce

1 if I, is the trivial representation
YoUT) = x(IIo) = < (=14~ if I, is the Steinberg representation
0 in all other cases .

and
X OUT) = (T2, K %) = dim ([T = *)K7*) -

Then for the local factor at o of the Hasse-Weil zeta function of 8/fx 9,1/ Z there is
the following expression

Z,(8lx,9.1/Z, 5) = (det (1 — g~ 9** - Frob,; RI((644x,9,1,0/Z) @k, Q) ™"

= [T L, s—(d— 1)/2)mWreun-zeean
I, dim (I7%0) =1
The factors on the right hand side are the standard L-functions of unramified
representations of GL4(F,) and K, = GL4(0,) is the canonical maximal compact
subgroup.

Proof. The (completely standard) proof proceeds by regarding both sides as formal
power series in T = g~ 8% and taking T - & log of both sides, and finally compar-
ing coefficients in front of 7", r = 1. This reduces the assertion to proving for every
r=1

tr(Froby; H¥;) = > m(IT)- x o (IT) - 3 °(I)

I, dim (T Xe)=1
(o@D Lz (I1) + - + z4(IT,)")) .

Here (z,(I1,), - - - , z4(1,))e(C*)%/6, is associated as usual to the unramified rep-
resentation, cf. [Ca, 4.4], (comp. (14.5) below) and we have used the definition of the
standard L-function in the unramified case. However, x> °(I)=
tr [1°"°(1g.), as we have normalized the Haar measure on (D*:°)* such that
K¢ gets volume 1, and by (13.2) x,(IT) = tr I1.(f,). Finally, as we have nor-
malized the Haar measure on D) such that the maximal compact subgroups get
volume 1, we have for f, as in (11.15),

L, (f;) = q** @ V2 (2, (T + - - - + z(1))

cf. [Ca, 4.4], (comp. (14.5) below). Therefore the right hand side of the identity
above is equal to Y m(IT)-tr [1(f) and the assertion follows from (13.6). O

(13.8) We conclude this chapter with some remarks on the case of a general
representation p,. We do not claim to have a proof for all of the statements below but
rather hope that the specialists in this area can provide us with guidance to the
literature. For each representation p, of DJ/wZ there should exist a unique
irreducible square-integrable representation n,, of DX /w% uniquely characterized
by the following relation between characters on elliptic regular elements. If
yeDZ /w2 is elliptic regular (i.e. F, [y] is a separable field extension of degree d of
F,) and if y corresponds to yeD}/w% under the inmer twisting (as F,-group
scheme), then

Yra(D) = (=D)L y, (5)
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(generalized Jacquet-Langlands correspondence, compare [De-Ka-Vi; Ro; He 1,
Appendix]). Following [Be-Ze 2], we can represent this representation n as
a generalized Steinberg representation. More precisely, given n,,, there exists
a positive integer d' and te3Z with (2t + 1)d’ = d and a supercuspidal representa-
tion 7', of GL,(F,) such that =, is the unique irreducible submodule St,,, ,(7',)
of the induced representation

()X - xal,(—t)

(comp. [Mo-Wa, I 3]). The numbers in parentheses refer to the powers of the twist
by |det|. Furthermore, this induced representation has a unique irreducible quo-
tient module which we shall denote by Speh ;.1 (2, ). It is unitary. (In loc. cit., L.5.,
this is denoted by I(n',, —t, t). It is a special case of the p-adic analogue of a Speh
module). There are two extreme cases to this construction. If n, is supercuspidal,
thent = 0 and =, = Speh, (n,) = St,(n,). If n,, is the Steinberg representation, or
equivalently, p,, is the trivial representation, then d’ = 1, n’, = 1/, is the trivial
representation, n,, = Sty(1',) = St, and Speh,(1,) = 1, is the trivial representa-
tion.

The analogue of the function f,, of Theorem 13.2 would be a function f,_ on
D} /w2, locally constant with compact support, and with the following properties.

(i) The non-elliptic orbital integrals of f;, are zero. For elliptic ye D, with corres-
ponding ye D} _
Oy(fnun dhco.y) = Em(?)'oi(fm, dhoo,?) .

Here f,, is defined as in (12.5) and the Haar measures are chosen as in (13.2).
(i) For a unitary irreducible representation #,, of DX /wZ we have

(-1t if Tomy = Styr1(n)
tr i (fr,) = < (=172 if @, ~Spehyis (%)
0 in all other cases .

Furthermore, if ., is supercuspidal it should be possible to take for f,  a matrix
coefficient of n,. (In the case of characteristic O this is indeed the case, cf. [Ro].)

Assuming all this, the conclusion of (13.6) holds without further modification,
with the understanding that H} ; denotes cohomology with coefficients in the local
system %, , corresponding to p,, (cf. the beginning of Sect. 12.). Similarly, corollary
{13.7.) holds where on the left side there appears the L-function of %, , (in various
degrees of cohomology) and where on the right hand side the definition of x ., (IT)
has to be modified in the obvious way (cf. (ii) above).

14 On the construction of global Galoeis representations associated
to automorphic representations of the division algebra

We recall (cf. beginning of Sect. 12) that, starting from an irreducible representation
P of DX /w2 in a finite-dimensional @ -vector space we had constructed a locally
constant @Q,-sheaf %, ; on &¢{x 4 /Z, for any non-empty finite closed sub-
scheme I of X\{oc}. We denote the corresponding /-adic cohomology groups
by H? ; (cf. loc. cit). Each HJ ; is a representation of Gal(F/F)x # P where
H# 7 denotes the Hecke algebra over Q of K-biinvariant functions with compact
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supports on (D®)*. We denote by (Hj ;)* the associated semi-simplification as
representation of Gal(F/F)x # ¢ (the direct sum of all irreducible subquotients)
and consider the virtual representation

HY =3 (= 1'Hy =)= Iy (H )™

n n

A formula for the trace of this virtual representation on certain elements was given
in Sect. 12.

(14.1) Recall that each g®e(D*)* defines a Hecke correspondence on the tower
formed by

Ellx oan O+ I1cX\{x}).
We therefore obtain an action of Gal(F/F) x (D®)* on the direct limit

n.__ 13 n
Hy:= lim H7},.
1

Here the index system is formed by the non empty finite closed subschemes
I=X\{oo} and the transition homomorphisms are injective (existence of the trace
morphism in étale cohomotogy).

Fix I. We consider Hj ; as a subvectorspace of H,. The action of Gal (F/F)on
H} 1 is the induced action. We have

P
na = (Hp™

(subspace of invariants). The action of #° on Hj ; coincides with the induced
action of # P on the KP-invariant vectors. The finite-dimensionality of the co-
?Ic))oror;i)logy groups H, ; implies therefore that H} is an admissible representation of

(14.2) We also introduce the semi-simplification (Hy)* of the representation Hy of
Gal(F/F)x(D*)*. Since passing to the invariants under a compact group in
a representation over a field of characteristic 0 is an exact functor, we have

(HRy® = lim (H7 )*.
H

We decompose (H7)* into isotypic components under the action of (D*)":
(HIy* = P Vie®@n™ .
Here n® ranges over the irreducible admissible representations of (D*)* and
V:.w = Hom(Dm)x (TCOO, (H;)Ss)

is a semi-simple Gal(F/F)-module. We call V- the (global) Galois representation
associated to the irreducible admissible representation n® of (D*)*. We also intro-
duce the virtual Galois representation

V,’too2= Z(— 1)" :,oo.
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Then
Hy:=Y (= Hy=Y (= 1y (H)* =% V&@r"

as virtual representations of Gal(F/F) x (D*)*.

(14.3) Let o # oo, 0 ¢ Bad, be a place of F. Then we have the equality of subspaces

lim HY ;= (H)Sa),
oé¢l

Here we have chosen an identification D, ~M4(F,); any other choice would replace
the subspace on the right by a conjugate under D,*. It follows from (12.1) that this
Galois module is unramified at o. Therefore, appealing to the isotypic decomposi-
tion in (14.2) above we obtain the following statement:

(14.4) Lemma. Let n® be an irreducible admissible representation of (D*)* and let
0 % o0, 0 ¢ Bad, be a place of F such that the local component ¥ of =™ at o is
unramified (existence of a vector invariant under a maximal compact subgroup of D).
Then the Galois representation Vo is unramified in o, for every n.

(14.5) Fix a place o, and choose an identification D,~IM,(F,). Let =, be an
irreducible admissible representation of D, which is unramified, i.e. possesses
a non-zero vector invariant under GL,(¢@,). Then dim(n&**“*) = 1 and =, is the
unique unramified component of an induced representation of the form

Ind(GLd(Fo)s B(Fa);“la 5”11)5

where Bc GL, is the standard Borel subgroup of upper triangular matrices and
where py, ... , 4 are unramified quasi-characters of F,. The d-tuple (uq, ... ,uy) is
uniquely determined up to permutation, and hence so is the d-tuple of elements

of €,
(Zl(no)’ »Zd(no)):= (lh(ﬁ’o)a ’.ud(mo))-

Moreover, this d-tuple up to permutation is independent of the identification of D,

with IMy(F,). Furthermore, if f, is a Hecke function, i.e. a GL4(0,)-biinvariant

function with compact support on GL,(F,), with Satake transform f,’, then
tra,( ) =15 (z1(7), ... s 2a(m,))

(cf. [Ca]). Here the Haar measure dg, on GL,(F,) is normalized so that GL4(®,)

gets volume 1.

(14.6) Starting from now and till the end of (14.19) we assume that p, is the trivial
representation of D .

Fix a place 0 # 0, 0 ¢ Bad, and let K, <D, be a maximal compact subgroup. We
consider the virtual representation of Gal(F,/F,) x(D*°)* on

(HyYe =3 (= D) (HFy™.

n
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The isotypic decomposition (14.2) yields

HD = T Vi@no
wg * (o)
(recall that dim(znf°) = 1 if nk¥° + (0)).

Fix a finite set T of places of F. For each finite set S of places of F such that
S~ T = B, we consider the convolution algebra ¥ (D3 ) of locally constant functions
with compact support on D3. We have fixed a Haar measure dg” on (D7)* and
a splitting of dg” as a product of local Haar measures so that we have a splitting
dgT =dgs dgTV5. If S=S',8' T =0, we have a homomorphism of algebras

€2 (D5) > 62 (Ds) -k 1k, -

We have fixed a compact subgroup K = IXIKx of Dy such that K, is a maximal

compact subgroup for almost every x and we assume that vol(K,,dg,) =1 for
almost every x. The Hecke algebra #((DT)*) is the direct limit of the algebras
%> (Ds) for these transition homomorphisms. Then we can view each admissible
representation of (DT)* as a non degenerate #((DT)*)-module.

(14.7) Proposition. Let f°e #((D*°)*). For any r € Z, there is an equality of
traces

Y tr@® o (f ) tr(Frobj; Vi)
nﬁ»n:(O)

= Y T )mUD) eI (f20)) gt @D @ (TLY + - + z,(11,))
e~ II‘],,orStm
% + (o)
where IT runs through the automorphic irreducible representations of Dy /wZ,. Here
xUIy) =1 if I, is isomorphic to the trivial representation 1, of Dy and
¥( ) = (— 1Y if O, is isomorphic to the Steinberg representation St of DX.

Proof. Fix a finite closed subscheme I « X\{o0,0}. The lemma immediately
follows from its variant where » > 0, where f°® is K f’”-biinvariant and where on
both sides we impose in addition the existence of K {*°-invariant vectors. But then
we may take f'° to be equal to lgps oo ke and we may normalize the Haar
measure so that it gives K, the volume 1 for each place x & oo of F. The left hand
side in this variant equals the left hand side of the identity in (13.6). We use the
determination of the traces of f, in (13.2) (ii). The lemma therefore follows from
(13.6), bearing in mind (cf. (14.5)) that, for our choice of function f, (cf. (11.19)), we
have

trIT,(f) = q**@r @™ V2 (2 (IL)" + -+ + z4IT,)"). O

(14.8) Lemma. Let IT be an automorphic irreducible representation of D /w%, and let
T be a set of places of F such that T ¢ Bad. Then the following conditions are
equivalent:

() I is 1-dimensional and there exists a character y. F*\A* /&% — C* such that
IT ~ yodet;
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(i) Iy is finite dimensional.
Moreover, if they are satisfied, we have m(IT) = 1.

Proof. This lemma is well known. Let us recall its proof. Obviousty (i)=>(ii).
Conversely, if ITy is finite dimensional, there exists a place x ¢ Bad of F such that
11, is finite dimensional. As D ~GL,(F,), this implies that I1, is 1-dimensional, so
that IT, is trivial on SL,(F,)cGL,(F,)~D;. Now, if fell c.o/(D*\D} /o),
we have f(yg.9)=f(99™ "' g.9) = (1(g™" 9.9)(f))(g) =f(g) for all yeKer(nr:
D* —» F*),allg,eKer(nr:D; — F;)and all geD;. (Note that Ker(nr: D] — F})c
Dy = Dj is a normal subgroup). But

Ker(nr:D* — F*)Ker(nr: D) —» FYYcKer(nr:D; — A™)
is dense (strong approximation theorem). We therefore have, by the admissibility of 11,
(@) M) =f(g9'y =S (999" 9)=f(g)
for any geD; and any g'eKer(nr:Djs — A™), (Ker(nr: Dy — A™) is a normal
subgroup of Dy ), and IT factors through Dy LY

Finally, if II=~ycdet for some character y:F*\A*/oZ —» C*, any
fell < & (D*\D} /wZ) is of the form f= @onr for some peof (F*\A* /w?) and
m(Il) = 1 as o (F*\ A* /%) is multiplicity free. O

(14.9) Theorem. Recall that we are assuming that p., is the trivial representation of
D% Let IT be an automorphic irreducible representation of Dy /&% and let n® be an
irreducible admissible representation of (D®)*.

(i) If I, ~1, (the trivial representation of D), then there exists a character
x: FX\A*/FY — C* such that IT~y°tn (in particular, I1® is 1-dimensional) and
there exists at least one integer n such that V7, % (0). Moreover, for almost all places
0 % o0, o ¢ Bad, such that I1, is unramified (i.e. y,(€;) = {1}), we have

tr(Frobl; VE,) = 1,(®,) (1 + g*5@" 4 . 4 g%5@r@= Dy (VreZ)
(cf. (14.4) and (14.5)).

Conversely, if ™ is finite dimensional and if there exists at least one integer n such
that V" = (0), then 1, @7 is an automorphic representation of D /©% (in particu-
lar 1 is 1-dimensional and there exists a character y:F*\A™/F% — C* such that
P> y®orn),

(ii) If I, ~St,, (the Steinberg representation of D), then there exists at least one
integer n such that V- + (0). Moreover, for almost all places o + o, o ¢ Bad, such
that I1, is unramified, we have

tr(Frob;; Vﬁw) — ( _ 1)«1—1 m(n)qdeg(o)r(d—l)/l (ZI(Ho)r 4 e 4 zd(Ho)') (VreZ)

(cf (14.4) and (14.5)).
Conversely, if ©° is infinite dimensional and if there exists at least one n such that
Vi % (0), then St,®n™ is an automorphic representation of D} /&%,

Proof. We closely follow [Kot 3]. Let I« X\({oo}wBad) be a non empty
closed subscheme such that (IT°)%7 + (0) and (z®)%: = (0). Let (II,, ... ,I1,) be
a system of representatives of the isomorphism classes of automorphic representa-
tions of D} /wZ which have a non-zero fixed vector under K and which have
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a local component at oo isomorphic to 1, or to St,,. We have 4 < + oo as
D*\Dy /% %% K is finite, where %%, is the Iwahori subgroup of D. Similarly, let
=y, ... ,n>) be a system of representatives of the isomorphism classes of admiss-
ible irreducible representations of (D™)™ which have a non-zero fixed vector under
K7 and which occur in H for at least one integer n. We have a < + oo as Hy  is
finite dimensional for every n and is zero for n < 0 or n > 2d — 2. We can assume
that IT = I, (we are only considering IT’s such that IT,~1_ or IT,~St,) and
that z¥ = n®. Let Fee A ((D®)) (resp. f eA#((D™)™)) be K[°-biinvariant and
such that

tr(IIP(F*)) =1 (resp. tr(ny(f*)) = 1),

such that tr(ITP (F*)) =0 (VJ =2, . A) (resp. tr(z*(f*)=0(Vj=2, ... ,a))
and such that tr(z(F*)) =0 unless n} is isomorphic to II® forall j=1, ... ,a
(resp. tr(IT? ( f*)) = O unless II7 is 1somorphic ton® forall J=1,...,4)

Now let 0 + o0, 0 ¢ Bad, 0¢ I be a place of F such that we can split F*®
(resp. f*) into
=1g -F*° (resp. [ =1k +f ©*°).

Obviously, almost all places 0 + o0, o ¢ Bad, of F such that I, (resp. n.°) is
unramified have these properties. Then we can apply (14.7) to F*°e# ((D*°)*)
(resp. f* e ((D*°°))) and we get that there exists one (and only one)
je{l, ... ,a} (resp. Je{l, ... ,A}) such that x> ~ IT® (resp. I ¥ ~n*) and such that

A ) m(IT) g2 @™ D2 (z (1) + - + 24(11,)") = tr(Froby; V¥-)

(resp.

tr(Froby; Vi) = (11, ) m(I1,) g = V2 (2, (I )" + -+ + 24(I15,,)"))
for all reZ.

Here we are using the fact that

A1)y m(IT) q°8@" @™ D2 (2 (I1,)" + -+ + 24(11,)")
(resp.
tr(Frob}; V¥,))

cannot be zero for all reZ. Indeed, take r =0 (resp. apply Deligne’s purity
theorem).

Therefore, the theorem follows from lemma 14.8 and the fact that St is infinite
dimensional if d > 1. O
(14.10) Corollary. Let y:F*\A*/F} — C* be any character. Then V= is the
one-dimensional representation of Gal(F/F) which corresponds to y by abelian class
field theory (in particular, for each place x of F such that x.(05)= {1}, V%
unramified at x and

10m‘

tr(Frobl; Vs, ) = yx(w,)
for all reZ). For m = 0,1, ... ,d — 1, the representation
Vlworn
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of Gal(F/F) is isomorphic to
Vi —m)
Ifn¢{0,2, ...,2d — 2}, we have
2% 0 = (0).

Proof. Any character y:F*\A*/F, —> @C" is of finite order as F*\A™/F} is
compact. Since V'« is pure of weight n the assertion follows from (i) of the
previous theorem. 0

(14.11) Corollary. If I is any automorphic irreducible representation of Dy /&% such
that IT , >~St,,, then we have the following properties.
(i) Ve =0 unless n=d — 1 (mod 2), so that (— 1y'~' Vi« is the virtual repres-
entation associated to a true (graded) representation of Gal(F/F). Put

Viw:= @ V"

(i) dimg,(Ve) = m(Il)d.
(iif} For each place x of F, there exists A,eC” and B,eZ such that

LV T)  _ oa [ Llg¢"T) 7m0
Lx(VEw,q;dT_l) x Lx(Hv’qx—(d+1)/2T—1) »

where L,(Vyo, T) (resp. L,(II, T), L,(I¥, T')) is the local Galois (resp. automorphic)
L-factor at x of Vi« (resp. I, the contragredient ITV of IT) and where q, = q***'*.

We stress that L(V §w, T) = [ [, L(V}iw, T) is not an alternating product.

Proof. Thanks to the theorem, there exists a finite set S of places of F, containing
w0, Bad and all the ramified places of I, such that

[] L.V, Ty = L (I, g~ 112 Tymun

for all places x ¢ S of F.

The right hand side of this equality is the inverse of a polynomial of degree
m(Idin1 + TQ,[ T]. So the same must be true for the left hand side. But this left
hand side is a quotient of two polynomials in 1 + 7Q,[T] and, thanks to Deligne’s
purity theorem, there cannot be any non trivial common factors in the numerator
and the denominator of this rational function (recall that V' j;e is unramified at any
place x ¢ S of F for any integer n). Therefore, the numerator must be equal to 1 and
the assertions (i) and (ii) follow immediately.

The assertion (iii) is obvious if x ¢ S. Moreover, we have functional equations
for the global L-functions

L(Vio, T) = [ Lu(Vio, T4®)
and

L1, T) =[] L1, T4*%)
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of the following form

L(Vho,T)

—— T _eC*T?
LViwrg °T

and

L(I1,T) S
L. -1T-1)€“3 T,
(cf. [Gro] and [Go-Ja, (5 1)]). Here we are using the fact that the dual representa-
tion V%« of Gal(F/F) is canonically isomorphic to V2% 27" (d — 1) (Poincaré
duality).

Now the assertion (iii) can be proved in the same way as [He 1 (4.1)] (cf.
Remarks 1 and 2 following loc. cit.) Note that Henniart proves a stronger
statement for which he needs the theory of local e-factors for Vy;w; at this point in
our argument this is not needed and Grothendieck’s functional equation is suffi-
cient, cf. however (15.13). 0

(14.12) Theorem. If II is any automorphic irreducible representation of Dy /@~ such
that IT, ~ St then we have the following properties.

(i) Vo =0 unless n=d — 1 and dimg, (V') = m(Il)d.

(i) Let 0 + o0, o ¢ Bad, be a place of F such that I, is unramified (cf. (14.5)), then
V4! is an unramified representation of Gal(F,/F,) and

tr(Frobf; Vi) = m(IT) g @ 4= D2 ¢, (IT,) + -+ + z(11,)
for each r € Z. Moreover, we have
lz;(II,)l =1 (Vj=1,..,d).

(iii}y The Frob-semisimplification of the restriction of V&x' to Gal(F,/Fy) is
isomorphic to

6°(Stay" .

Here 6°(St,) (up to a Tate twist of 421 the so-called d-dimensional special /-adic
representation of Gal(F,/F)), is the unique Frob,-semisimple indecomposable
¢-adic representation of Gal(F /F ) such that

jtd-1

grj-"ao(Std)={g—2’(_ 7—) fj=d—1(mod 2) and |jl<d~1

otherwise
(¢f. [De 1]).
Remark. The proof of Theorem 14.12 is very simple if we know that the local
component II, at the place o appearing in (ii) is generic (conjecturally this is

automatically true). Indeed, in this case, IT, being unitary and generic, we have
[Ja-Sh 2, Ta]

|z,(IL,)| < g** @2 (Vj=1,...,d).

Combining this estimate with Deligne’s purity theorem then allows one to
deduce from Theorem 14.9 that |z;(I1,)| = 1,j = 1, ... ,d and the assertions (i) and
(i) of (14.12). Then, (14.12) (iii) follows (cf. (14.11) (iii)).
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Without the assumption of genericity, the proof is more delicate. Firstly, we
shall classify all the “pure” and “integral” representations V'* of Gal(F,/F)
having the properties (14.11) (i), (ii) and (iii). Then, we shall conclude using either
Deligne’s hard Lefschetz theorem or Tadic’s classification of unitary representa-
tions of GL4(F,) for some unramified place o + o0, 0 ¢ Bad.

(14.13) Let

Vi

W
R
C_D !
N

Ve =

i=0

be a graded Frob-semisimple Z-adic representation of Gal(F,/F,). We shall
say that V*is pureif for i = 0, ... ,2d — 2 and each j, gr¥ V' is pure of weight i + j
(M is the monodromy filtration). We shall say that V* is integral if

2d~2 .
Lo(Ve,T)= ] L,(V\T)
i=0
has no pole at T = g% for each n > 0. We shall say that V* is selfdual if
(Vi)v — VZd—Z—i(d_ 1)

foreach i=0, ... ,2d — 2.
If V* is pure, integral and selfdual, any direct summand of V* isomorphic to

a°(St:) (=)
occurs in degree i + 2j — 1 and such a direct summand can exist only if
1<i<d
and
0<j<d-1

(Recall that ¢°(St;)( — j) is pure of weight i + 2j — 1 in the sense of the monodromy
filtration, admits 1/(1 — g/, T) as local L-factor and admits ¢°(St;) (i +j — 1) as
dual representation). The following three examples of graded Frob-semisimple
¢-adic representations of Gal(F,/F,) will be of particular importance for us. For
each sequence (ig, ... ,is) of positive integers satisfying

2(10 + -+ is_1)+is=d

(resp.
2o+ - +ig)=d,
resp.
ip+ - +i;=4d),
let us set
U'llo, ... ,iy) = ;@_j) @St ) (—ip— - — 5@t )(—d +io + - + 1))

@St ) (—io — = —is-1)
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(resp.
U(ios . i) =,-:@0 (@°(St:,) (—do — - — i ) @GSt ) —d + o+ -+ +1))),
resp.
Ulio, ... ,i) = ](-_BO (@°St:) (—ig— + — ij_)@® (St )(—d +ip + -+ + i)

(a°(St;)( —j) in degree i + 2j — 1 for each i,j). Then U'(iq, ... ,is), U"(io, ... ,i)
and Uiy, ... ,i) are pure, integral and selfdual. The dimension of U’ (i, ... , i) or
U’ (ig, ... ,iy) (resp. Ui, -.. ,is)) is d (resp. 2d). Moreover, for

Ve =U'(io, ... ,is) or U"(ig, ... ,iy)

(resp.
Ve = U, ... ,i))
we have
Loo(V'» T) 1 - qo_odT _
x TZ
LT 1-1 ¥
(resp.
LoV, T) 1—q T\ -
S TZ.
Lm(V',q;"T-l)e( -7 )%

Iff(T), g(T)e Q,(T), we shall write

S(T)~g(T)
if the orders of the zero (or pole) at T = ¢%, of f(T') and g(T') are equal for each
neZ.

(14.14) Lemma. Let us fix non-negative integers m and m’ such that m' divides m. Let
V*® be a pure, integral, selfdual graded Frob-semisimple £-adic representation of
Gal(F ,/F ) (cf. (14.13)). We assume moreover that

Lo (V*,T) 1—g2'T\"
Lo(V*q5'T™Y) -7

and that
Lo(ViT) 'e(l + TQ[T]™
Joreachi=0,...,2d — 2. Then, there exists a direct summand W* of V* of the form

w* = <@ W;)@(@ W;),

aeA BeB
with Wy (resp. W3) isomorphic to U'(ig, ... ,i)™ or U’(ig, ... ,ig)™ (resp.
Uiy, ... ,is)™) for some sequence (iq, ... ,i;) for each o« € A (resp. B € B), such that

m = (|A] + 2|B|)m'.
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Proof. We make an induction on m. For m = 0 there is nothing to prove. Let us
assume m > 0 and therefore m = m’. Then, the only thing that we need to prove is
the existence of a direct summand W* of V* such that W* is isomorphic to
U'(igy - i)™, U(g, ... »ig)™ or Ui, ... ,i;)™ for some sequence (i, ... , i) (then
the lemma will follow by applying the induction hypothesis to V*/W*).

We consider L,(V°, T)" . We have

d
Lo, T) " ~ [] (1 — g% T)%x

n=0
with
on€Z, 0,20 (Vn)epo=m
and
m'leg,, (V).

From eq o = m > 0, we deduce that there exists a special representation 6°(St;,)
occurring in V*. By purity, it necessarily occurs in ¥*°~! and, by integrality, we
necessarily have 1 < iy < d (cf. (14.13)). As we are assuming

LoV L, Ty Ye(l + TQ,[TI".

the multiplicity of o°(St; ) in V' is at least m’. Finally, by duality, }>*~! 7%
contains a direct summand isomorphic to

(0°(Ste,) (—d + io)".

Now, we have three cases:
(1) io=d;
@ io=1%
B)1gipsd—-1io+4%

In the first case, we set
W* = (a°(Sty)™ = U'(d)™
and we are done. In the second case, we set
W* = (a°(St)@a°(Ste)(~ )™ = U (D)™

{obviously, this case can occur only if d is even) and we are also done. In the third
case, we set

W* = (6°(Sti, )®0°(Stiy) (— d + i)™

and we continue the proof. o
Let us assume that we have found a sequence (i, ... ,i;- ;) of positive integers
(j = 1) with

ip + - +ij__1 <d

2ip+ - +ij-g) i1 *+d
and

. . d
fg+ +lj__1 *E
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and a direct summand W$_, of V* which is isomorphic to the m'-th power of the
pure, integral, selfdual, graded, Frob-semisimple £-adic representation

UO(Stio)@Uo(Stil)( — i) @D - @UO(Stij_,)( — g — = —ij-3)
@Sty )(— d + ip)®®(St; ) —d + ig + i)
@ @a%(St;,_)(—d+io+ - +ijy)

of Gal(F,/F ). Then, we have
L (V./ 1,T) 1——q;dT m—m' l_qgo—io—w—i,-lT m’
Ly (V./WJ 1,qde 1) 1-T 1__qig+-~+i1—1T

with no further simplifications as ig + -+ +i;-; <d and io + -+ + i;—; #4. It
follows

d
LoV /W5, T) '~ ] (1 — g5 Ty

n=0
with
e n€Z,e, =0 (Vn)
ejo=m—m'
€jio+ - +ij- 12 m'
and

m'le; » (Yn).

From ej;,, .. 1i,., =m >0, we deduce that there exists a twisted special
representation ao(St )( — o — - —i;—,) occurring in V*/W$_,.By purity, it
necessarily occurs in degree 2(ip + -+ +i;-1) +i;— 1 and, by integrality we
necessarily have

ISig+ig+ - +isd
(i; = 1) (cf. (14.13)). As we are assuming
L (V20o+ = +i-0%i—t Ty"1 (] 4 TQ,[T])™
and as, obviously,
Lo (W2ls+ = +L-0%6=1 Ty~teq 4 TQ,[TIY,

the multiplicity of O'O(St,J) (—io— - —ij—y)in V*/W?$_, is at least m’. Finally,
by  duality V'/ Wi- contains a  direct summand (in  degree
2d —1—=2(ig+ - +1i;- 1) i;) isomorphic to
(St )(—d +ig + - + i)
Now, we have four cases:

(1) 2o+ - i) +i;=4d;
@ io+ -~ +ij=%
B) i+ - +ij=4d;
(4) none of the above.
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In the first case, we set

W =

= W?-l@(UO(Stij)( —~ig— = — ij~1))m'
= U'lig, i)™

and we are done. In the second one, we set
W= W; 1 ®(@° (St ) —io—

T ij—1)@0'0(Sti,)( -
= U”(io’ ..

T ij)m,

(obviously, this case can only occur if d is even) and we are also done. In the third
case, we set

W =

Wi 1@ (0°(Sti))( —io — - — ij- )@ a° (St )(O)™
= Ulig, - i)™
and we are done too. In the last case, we set

W= Wi 1®(°(St; ) )( —ip —

i — )@t ) (—d +ip + - + i)™
and we conclude by induction on j.

|
(14.15) Lemma. Let W be a pure {-adic representation of Gal(F/F) and let m be
a positive integer. We assume that

LW, T)" el + TQ [T,

for almost all places o of F where W is unramified. Let x be an arbitrary place of F and

consider the monodromy filtration M for the restriction of W to Gal(F/F,) and its
decomposition into primitive parts, (cf. [De 2, (1.6.4)])

i+
gwy= @ B~
j21i]
jsi(mod 2)
Then we have

det(1 — T-Frob,; P_)e(l + TQ,[TDH",
for all Frobenius elements Frob, € Gal(F,/F,), and all j 2 0.

Proof. 1t is clear that dimg (W) = me for some non-negative integer e. Let us
. . 4
consider the algebraic map

_ P: Ay, — A%‘i
given by
Q+aT+ - +aT)=1+ Y Pyay, ...,a)T"
n=1
Then, P is a closed embedding (if n = 1, ... ,e, we have

Pn(al’ ’ae) = may, + Qn(ala ~"9an—1)
for some polynomial Q,{a;,

,a,_)). Therefore, the set of g € Gal(F/F) such that
det(1 — Tg; W)e(l + TQ[T]™
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is closed for the Krull topology. But, by hypothesis, this set contains the Frobenius
elements for almost all places of F. By Chebotarev’s theorem, it follows that
det(l — Tg; W)e(l + TQ,[T])™
for all g € Gal(F/F).
By Deligne’s theorem on the purity of the monodromy filtration (cf. [De 2,
(1.8.4)]), grM (W) is pure of weight i. Therefore it follows that

det(1 — T*Froby;gr}(W)) e (1 + TQ,[T]"

for all Frobenius elements Frob, € Gal(F,/F,) and all i. The assertion now follows
from the primitive decomposition by descending induction on j.

(14.16) Let II be as in the statement of Theorem 14.12. We denote by V* the
Frob-semisimplification of the restriction of V- to Gal(F./F.). Then V* is
a gréaded /-adic representation which (by Deligne’s theorem on the purity of the
monodromy filtration) is pure in the sense of (14.13), is integral by Deligne’s
theorem on the integrality of L-functions (cf. [SGA 7, II, XXI, app., (5.2.2) and
(5.3)(1)]) and is selfdual by Poincaré duality. Furthermore, specializing (14.10) (ii) to
x = o0 we obtain

L,(V*,q°T™") 1-T
as the local L-factor of St ~ Sty is equal to
1
[—ql 927"

We may therefore apply Lemma 14.14 to V* with m’ = 1, m = m(II). It follows
that V'* contains a direct summand W* of the form

v -(@m)e(@w)

m(IT) = | A| + 2+|B.

Since we have dim W, =d (x e A) and W = 2d (f € B) (cf. (14.13)) and since
dim V* = m(IT)- d (cf. (14.10) (ii}) we conclude that we have equality V* = W*. In
particular each V' is of the form

Vi= (0"t ) @@ (St ) (— ) @ -
for suitable exponents f'¢. Therefore the j-th primitive part of V! is equal to

P = Q. 58, 0 <j<Lii=j(mod 2)
- 0 otherwise.

LoV"T) [1—q;dT-l]m<m

(cf. (14.14)) with

By theorem 14.9 (ii) and Deligne’s purity theorem we may apply Lemma 14.15
to each V- It follows that all exponents f; are divisible by m = m(IT) and hence
LWViT) ‘el + TQ,[T1)™ all i. We may therefore reapply Lemma 14.14 to
V*® with m’ = m = m(IT). It follows that V* contains a direct summand W* of the

form
-(gn)e(m)

aeAd peB
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where dim W, = md(x € A), dim Wy = 2md(f € B). Comparing dimensions we
therefore obtain the following statement.

(14.17) Proposition. Let IT be as in the statement of Theorem 14.12. Then the Frob-
semisimplification of the restriction of V= to Gal(F ./F ) is isomorphic to either

Vo = (VeSS o Ui, oo, i)™ 00, 2(ip 4+ 4 ig_q) + iy =d
or

Vo = (V)77 > U (i, -+, i)™ ", 2010 + -+ + i) = d,
(cf. (14.13)).

(14.18) Remark. Assume that s = 0 in the above statement. Then the two alter-
natives given by the proposition are

V* ~ g%(Sty,)™ ™ or V* ~ [6°(St)® o°(Sta)( — HHI"™" .

We note that in the second case ¥* has a non-trivial component in degrees
d/2 — 1and 3d/2 — 1. The difference between these two numbers is equal to 2 if and
only if d = 2 in which case

V' =[Q,eQ (- HI"™

in degrees 0 and 2.
Assume now s > 0 and let i, --- , i, be a sequence of positive integers such that

20ip + -+ + ig_q) + i =d (resp. 2(io + -+ + i) =d).
Then we have a chain of inequalities
io—1<2ig+i; —1< v <Aip+ - +ig-)+ig—1=d—1
<2d—1—~2g+ -+ Figon)—ds—y < -+ <2d—1—2ip —iy <2d—1—1
(resp.
ig—1<2ig+i;—1< v <2g+ =+ +ig-q)+i—1
<2d—1—=204 - +igq)—ig< - <2d—=1—2ig—iy <2d—1—1p.)

Furthermore the difference between consecutive members of this chain is
always of the form i; + i;_, (resp. i; + i;—, or 2i,). Therefore in both cases these
differences are all equal to 2 if and only if iy = i; = --- =i, = 1, in which case d is
odd and s = (d — 1)/2 (resp. d is even and s = d/2). Furthermore, in the first case we
have

V' =[QeQ (- )& - Q(~d+1]""

in degrees 0,2, ... ,2d — 2, whereas the second case does not in fact arise since
when d is even the graded representation is concentrated in odd degree,
cf. (14.10)(i).

(14.19) Proof of Theorem 14.12 1t suffices to prove the statement (iii). Indeed, it
then follows from Proposition 14.17 that V;;- only contributes to the middle degree
cohomology from which (i) follows. The statement (ii) follows from (i) and (14.9) (ii}
by Deligne’s purity theorem. We shall present now two arguments for proving (iii),
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one based on the strong Lefschetz theorem and one based on the classification of
unitarizable irreducible admissible representations of GL,(F,) due to Tadic [ Ta].

First argument. In this argument we use the fact that there exists a class h e HZ(1)
invariant under the action of (D*)* and of Gal(F/F) such that the iterated cup
product maps
Vi pasttiG), i=0,1, ...

are isomorphisms. In fact, there is such a class induced by the canonical bundle on
6¢¢x 4.1,/ Z which is ample for deg I > 0. This last assertion can be roughly seen
as follows (details omitted). A modification of the method of Drinfeld [Dr 4] allows
one to formulate a moduli problem defining &4/, 4.1,,/Z over X\I and to show

that its restriction to Spec @, is represented by a finite disjoint sum of schemes of
the form

ne,
where Q is Drinfeld’s upper half space of dimension d — 1 relative to the local field
F, and where I < PGL,(F,) is a (sufficiently small) cocompact discrete subgroup.
For such varieties the ampleness of the canonical bundle of the generic fibre has
been established by Mustafin [Mu]. Using the existence of h the proof of (14.12) (ii)
is now very simple. By the “strong Lefschetz” property of h we have the implication
Vi (0= V"2 £ (0),ifn+1<d— 1.

Therefore, Proposition 14.17 and the Remark 14.18 imply that if (14.12) (iii)
does not hold, then the restriction of V3= to Gal(F,/F,) for a place 0 + o0, 0 ¢ Bad
such that I1, is unramified is of the form

V;T” ~ [W()@ W2® @WZd—Z]m(n)’
with W2 of dimension 1 and pure of weight i, 0 <i <d — 1. By the strong
Lefschetz property we even have
Wi WO —1), i=0,...,d~1.

But then by (14.9) we can order the Hecke eigenvalues of 11, in such a way that

(1—d)/2
z1(I,) = %" g, !

3-d)/2
ZZ(HO) = Ofo'sz u

zally) = a,°q5 12

where o, is the eigenvalue of Frob, on W°. Thanks to the classification of
unramified irreducible representations of GL,(F,) (cf. (14.5)) it follows that IT, is the
1-dimensional representation

1o°det: GLy(F,) - T*,

where y, is the unramified character of F such that y,(w,) = ao. But IT, =~ St is
infinite-dimensional (d > 1). So, by (14.8), I1, cannot be finite-dimensional and we
have derived a contradiction.

Second argument. In this argument we are going to use the classification theorem
of Tadic [Ta]. In the case of positive characteristic the proof of Tadic uses the fact
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that the Zelevinsky involution carries irreducible representations again into irredu-
cible representations. This has been announced by L. Bernstein but his proof was
never published. Since, however, a proof of this assertion will be contained in
a forthcoming paper by P. Schneider and one of us (U. Stuhler) there seems no
harm in using it. According to this classification a unitarizable irreducible admiss-
ible representation IT, of GL4(F,) for a local field F, is of the form

I, = Spehy, (Sty, (p1))(A1) x -+ x Spehy (St (05)) (4),

(comp. [Mo-Wa, 1. 10]). Here ay, ... ,a,, by, ... ,bg, dy, ... ,d, are positive integers
with a,bydy + -+ + a,byd, = d, p; is a unitarizable irreducible supercuspidal rep-
resentation of GL,, (F,) and 4; €] — 1/2, 1/2 [is a real number (i = 1, ... ,5) and we
used the notation introduced in (13.8). The product sign refers to the (normalized)
induced representation from the standard parabolic P,.4,, ... 4.5.4.(Fo) tO
GL4(F,) which turns out to be irreducible. We apply this theorem to the local
component of our automorphic representation I at the place o of F witho & o0,
o ¢ Bad where 11, is unramified. Then by Deligne’s purity theorem we have
Ay = -+ = A, = 0 and the fact that I, is unramified forces I, to be of the form

I1, = Spehy, (x1) x -+ x Spehy (1)
= X1 Odetdl X e X Xsodetds

for suitable unitary unramified characters y,, ...,y of F, and a partition
(dy, ... ,dy) of d. Here det,,:GL,(F,) - F, denotes the determinant map. The
Hecke eigenvalues of I, are yy(@,) g% 2 ., xi(m,) gt 42, .,
¥s(®o) - q P12, .y (w,) qit 42, By Deligne’s purity theorem it is possible to
determine the trace of Frobj on Vi~ from (x4, ... , %) and (dy, ... ,d;). In particular
we again have the implication

VrEQ)=V"*2+£(0), fn+1<d—1
and one concludes as before.

(14.20) We conclude this section with some remarks on the case of a general
representation p,. They will not be used in the next sections.

We take up the notations and the assumptions introduced in (13.8). In this case
(14.7) has to be modified in the obvious way: the sum of the right hand side is over
the set of all automorphic irreducible representations of D} /w% such that IT, is
either isomorphic to Speh,, . ,(r, ), in which case y(IT,) = ( — 1)~ 1~ %, or isomor-
phic to 7., = Sty 4 (1), in which case y(IT,) = (— 1)

(14.21) Conjecture Let IT be an automorphic irreducible representation of Dy /w2,
and let n° be an irreducible admissible representation of (D®)*.
() If II, ~Spehy, . (7)), then Vi==0 unless n=d — 1+ 2t — 2i for some
0<ig2,

pzi+a=2i _ pdotta

Jorany ieZ,0 <i <2t For all places 0 + oo, 0 ¢ Bad, such that I, is unramified
and such that I, is the unique irreducible quotient of the induced representation
m,(t) x Lt — 1) x --- x 7w, — t) where T, is an unramified unitary representation of
GL, (F,), we have

tr(Frobj; V4=1*2) = m(IT)g#*s@r =1+ 202 (2, (m, ) + - + 24 ()

for all r € Z. Furthermore, |z;(n})] = 1,j' = 1,... ,d".
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Conversely, if there exists at least one integer n % d — 1 such that V7= =+ (0), then
Spehy, . (', )®n® is an automorphic irreducible representation of D /w2 .
() If Oy 27, = Sty4q(nly), then Vi-=0 unless n=d— 1. For all places
0+ o0, 0 ¢ Bad, such that I1, is unramified,

tr(Froby; Vij=') = m(I) g =@ D2 (zy (IL,)" + -+ + zy(I1,)")

for all r e Z. Furthermore, |z;(I1,)| = 1,j=1, ... ,d.
Conversely, if V= =(0), for all n4d — 1 and V=1 % (0), then n,®7® is an
automorphic irreducible representation of D /wZ.

(14.22) The method that we have used to prove (14.9), (14.10) and (14.12), i.e. the
case p,, trivial of the above conjecture, does not extend to the non trivial p,’s.
But, under the local assumptions of (13.8), it is not difficult to deduce the conjecture
from the following hypothesis (we leave the details to the reader).

(14.23) Hypothesis. Let IT be an automorphic irreducible representation of D}, /w%
and let 0 = oo, 0 ¢ Bad be a place of F such that I, is unramified.

(i) If I1, ~ Spehy, 1 (ny), then I, is the unique irreducible quotient of the induced
representation m,(t) X w,{t — 1)x -« x w,( — t) where m, is an unramified generic
unitary representation of GL4.(F,).

(i) If I, ~ o = Sty 41(n'y), I, is generic.

(14.24) Remark. In the extreme case where n,, is supercuspidal, (14.23) (i) and
(14.23) (ii) coincide. In the other extreme case where 7., = St (t = 454, d' = 1,7, is
the trivial character of F, and Speh,, (7)) = 1), (14.23) (i) is trivially satisfied
(cf. (14.8)) and (14.23) (ii) is a consequence of (14.12) (i) (we have even proved that
11, is tempered).

We also note that, if a fully worked out global Jacquet-Langlands corres-
pondance existed between D* and GL,(F), (14.23) (ii) would hold and (14.23) (i)
would follow from the results of [Mo-Wa IV]. Indeed, any automorphic irredu-
cible representation of GL,{A)/®% (or GL,(A)/w'2*Z) with a discrete series
local component at oo is cuspidal and all unramified local components of
any cuspidal automorphic irreducible representation of GL,(A)/w% (or
GLy (A)/w'2*YZ) are generic (cf. [Sh]). In particular, thanks to the results of
[Ja-Pi-Sh 11, Conjecture 14.21 holds true in the cases d =2 and d = 3.

15 A global proof of the local Langlands conjecture in characteristic p

In this section we shall make use of the results of the previous chapter to give
a proof of the local Langlands conjecture in a strong form. In the beginning we
shall depart from the notations used elsewhere in the paper. We now let F denote
a local field of characteristic p. We denote by 0, ®,x ~ IF, the ring of integers,
a uniformizer and the residue field of F. Recall from the list of notations that we
have fixed an isomorphism @, ~ C.

(15.1) We start by recalling some facts about /-adic representations. Let %(d) be
the set of isomorphism classes of #-adic representations of dimension d of Gal(F/F)
with determinant character of finite order and let ¥2(d) = %¢(d) be the subset of
isomorphism classes of irreducible representations.
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(15.2) Remark. Bach o e %2(d) is automatically Frob-semisimple (cf. [De 1,
Sect. 8]). Indeed, o factors through a finite quotient of Gal(F/F). Conversely, any
/-adic representation ¢ whose associated Frob-semisimple representation ¢’ is
irreducible is itself irreducible. Indeed, since ¢’ is irreducible, the restriction of ¢’
and therefore of ¢ to the inertia group of Gal(F/F) factors through a finite
quotient. But in this case, ¢’ is just the associated semi-simple representation to a,
hence if ¢’ is irreducible then so is o and ¢’ ~ 0.

(15.3) We denote by Sp,(1) = ¢°(St,) (:33) (cf. (14.12)) the special representation
of dimension n of Gal(F/F). It is an indecomposable representation which
is a successive extension of one-dimensional representations Q.(15,
Q.+ 1), ..., Q.5 with Q,(*32) as the unique irreducible submodule and
with Q,(}5%) as the unique irreducible quotient module. For any ¢ € %;(d) its
Frob-semisimplification ¢¥™°*~* can be written in a unique way as a direct sum

O.Fmb—ss — @ C_D @ (Spn(1)®p/)m,,,,,,
nzl 1=d'2d p'e 9)(d)
(cf. [De 3, (3.1.3) (ii)]).

Here m, , € N, and m, , = 0 for all but finitely many pairs (n, p"). Then for the
L-function (which we regard here as a function of a complex parameter) there is the
expression {cf. [De 1, 8.12])

L,s)=Le™ =)= [l 1 LSp1)®p' s)me

nzl 1=d'=d p'Egg(d')

S R R

nzl 1sd'sd p’egg(d’)

Note that for p’ e ¥2(d’) we have L(p',s)=1 unless d' =1 and p’ = y is an
unramified character of finite order. In the latter case, the L-function L(y, s) has no
zero’s and all poles of L(y,s) are on the line Re(s) = 0 and there is in fact a pole at
s = 0if and only if y is trivial. Applying the above formula to ¢ = p; ®p, it therefore
follows that for pi, p;, € 92(d,), 95(d,) we have L(p;®p,,s)# 1 if and only if
d, = d, and if there exists an unramified character y of finite order with p, ~ p, - y.
Here and in the sequel we denote by p the contragredient of a representation p and
o x the tensor product p®y. We are going to use the formula [De 2, (1.6.11)]

inf(ny, n2)—1
SPr,(D®Sp,() = @D SPuy+m-1-25(1).
i=0

It follows that for 6,0, € 4r(d) with their Frob-semisimplifications decom-
posed as above,

L(e1®03,5) = ][] [1

nyp.n2=1

inf(ny,n2)—1

15d,d,5d i=0

P, € 92,0, € UL,

n,+n . Minipy M2mp,
L(p&@p'z,s + = - —1)

inf(n1,n2)—1 ny +n2 Min o M2.0,.5
SR 1 I 1 | 7 PR Y .
ny,n221 1sd'sd g j=0
p'e%d)
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Here y ranges over the unramified characters of finite order. In particular, since
Sp.(1)Y 2 Sp,(1) [De 2, (1.6.11)], we obtain for ¢ € 9(d),

inf(ny,n2)—1

- + My o0 May,prg=?
Leosng= 11 I1 I 11 L(x,s+"‘2”2—1—j) :
i=0

ng,m2zl1 15d'sd g
P e S
(15.4) Corollary. Let o€ %9p(d). Then o€ 9%(d) if and only if the L-function
L(o®a,s) has all its poles on the line Re(s) = 0 and a simple pole at s = 0,

Proof. The part “only if” has already been proved. Let us check the part “if”. Let o”
be the associated Frob-semisimple representation. Then ¢’®¢’ is the associated
Frob-semisimple representation to ¢®¢ and L(c®4¢,s) = L(a'®a’,s). From the
previous formula we deduce that ¢’ is irreducible, and the part “if” of the corollary
follows from Remark 15.2. O

(15.5) We next recall some facts from the theory of local L-functions of pairs
[Ja-Pi-Sh, Sects. 8,97. For every pair (r, n’) consisting of an irreducible admissible
representation 7 of GL,(F) and an irreducible admissible representation n’ of
GL, (F) there is an L-function L(r x 7', s), and an e-factor s(n x ', 1, s) depending
on the choice of a non-trivial additive character y of F. We note that implicit here is
the choice of a Haar measure on F which will always be taken to be selfdual with
respect to . We shall need the following analytic properties of the L-functions.
Assume that 7 and =’ are both supercuspidal representations with central character
of finite order. Then

Lnxn',s) =[] L{x,s),

where the product ranges over all unramified characters of finite order such that
7’ ~y. Here ny = n® (xodet). In particular, L(zxn’,s)= 1, if d +d and
L(n x 7, s) has all its poles on the line Re(s) = 0, and there is in fact a simple pole at
s = 0. In what follows we let .7 2(d) be the set of isomorphism classes of irreducible
supercuspidal representations of GL,(F) with central character of finite order.

(15.6) Proposition. We assume given for any me s/3(d) a non-empty subset
2. < %r(d) with the following properties:

(i) Forall n, n' € s£%(d) and 6 € X, ¢’ € £, we have
L6e®¢6',s) = L{nm x 7', s).
{ii) Forall me S/ 2d), if 6 € X, thenae 3.

Then for all m € o 2(d) the set X, consists of one element o, and o, € 93(d). Further-
more, the map

Ad) > %2d):n 0,
is injective.
Proof. Let ne o/2(d) and 6 € Z,. Then

L(c®a,s) = L(n x 7, 5)

has all its poles on the line Re(s) =0 and a simple pole at s =0 (cf. (15.5)).
Therefore, by (15.4), o € 92(d).
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Let 64,0, € X, for me o/%(d). Then o, 6, € 43(d) and
L(o,®6,,5) = L(nx 7,s) = L(6,®7y, s).

Both L-functions, on the left and on the right, are of the form IT L(y, s). For the
left L-function the product is over all unramified characters y of finite order such
that ¢, ~ g,%, and for the right L-function the product is over all y such that
a, =~ o). The identity of L-functions implies that these two index sets coincide.
Since the trivial character appears in the product on the right, it follows that
01 = 03.

To prove the injectivity of the constructed map from Z%(d) to 4%(d), let n,,
nyesfpd)and let 6€ 2, N X, . Then

L(n, x73,8) = L(6®6,5) = L(n, x Ty, 5).
An identical argument to the one just employed shows that n; ~ 7,. O
The following theorem is the main result of this section.
(15.7) Theorem. For each d = 1 there exists a bijective map
Hed) > F3d): 0,

with the following properties.
(i) For any 7, n’ € o 2(d),

L6, ®0,,s) = L(nxn',s)
(il) For any n e o 2d),
Gy = G,

Furthermore, this collection of maps (for variable d) has the following properties.
(ii) For any ne #2(d), n' € A2(d),

L(6,®0,,5) = L(nx,s)
e(0,00,,,8) = e(mx 7', Y, s)

(iv) For any n € £ $(d), the determinant of o, corresponds to the central character of
n under local class field theory.
(v) For any n e £2(d) and any character y of finite order of F*,

61:)( = 0gX
(correspondence under local class field theory).

(15.8) Remark. The restriction we imposed on the central character (resp. the
determinant character) is merely made to simplify our exposition and allows us to
avoid the use of the Weil group. Also, it is well-known [He 4] how to extend this
map to include all irreducible admissible representations of GL,(F) on the one
hand and all d-dimensional Frob-semisimple representations of the Deligne-Weil
group on the other hand. As a matter of fact, we shall need some version of this
extension below, cf. (15.18). We refer to the appendix by Henniart [He 5] for
a proof of the fact that there is at most one collection of such maps. This appendix
also contains a discussion of the influence of the choice of the isomorphism @, = €
on this correspondence.
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(15.9) We note that by Proposition 15.6 the map appearing in (15.7), if it exists, is
automatically injective. Our next objective will be to use global methods to
construct subsets I, « 93(d) as in (15.6). We therefore return, for the global
arguments, to the notation used elsewhere in this paper. We let F denote a global
field and xo a place of F such that F, is isomorphic to the Jocal field under
consideration. Let o0 = xo,X; * Xo, 00 #+ Xx; be two other places. Let D be a cen-
tral division algebra of dimension d? over F with invariants

1/d if x=x¢
nv,(D)y=¢( —1/d if x=x,
0 otherwise.

Let 2 be a sheaf of maximal orders of D over the smooth projective model X of
F. The corresponding moduli scheme /7y, 5 ;/Z over Spec(F ) has good reduction
outside 1L { 00, xg,X, } for every non-empty I < X\ {0 }.
OLet 7 be a fixed representative of the isomorphism class of a given element of
A, (d).
*o

(15.10) Lemma. Let x, be a place of F with x, ¢ { 00, x4, x, }. There exists a cuspidal
automorphic representation IT < o .y, (GLy(F)YF3,\GL4(A)) such that

n, ~St,
I, ~n
Il and II,, are supercuspidal admissible irreducible representations.

Proof (cf. [Ar-Cl, (1.6.5)] for a closely related result in the number field case). Let
X3 ¢ { 00, X0, X1, X3} be another place of F. We wish to apply the Deligne-Kazhdan
simple trace formula to a function f = f, fi £, fo, fx, f 0" e €2 (GL4(R)).
We take f,, = the weakly cuspidal Euler-Poincaré function considered in Sect. 13.
We fix supercuspidal irreducible representations n,, = 7, n,,, 7, at the places x;,
i=0, 1, 2. We choose open compact subgroups K, < GL,(F x;) such that
n&= % (0). Then by [Be-Ze 1 2.4.2], there exists a function f, € €2°(GLy(F,,)) such
that for the induced operator on any irreducible admissible representation n’ of
GL4(Fy,)
, e y) i xmg,
"(ﬁ‘*)‘{o if w7, .
In particular
trog ( fy,) = dimafz + 0.

We recall briefly the construction of f,,. It is based on the two maps of
GL(F,,) x GL,(F, )-modules

End(V)® —%2(GLy(F,)) —=End(V)>.

Here ¥ denotes the representation space of ,, and the upper index oo are the
smooth vectors and

@(A)(g9) = tr(n, (g™ ") °4), AeEnd(V)".
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The composition 7, °¢ is a scalar ¢ % 0. Then
fu=c T plm (Ix,,))
has the asserted properties. From this expression we conclude that
L) =ctrtrm, (1, )=c ' -dimzfx + 0.

This fixes the choice of f;, for i =0, 1, 2. For f,, € €°(GL4(F;,)) we take
a function with support contained in the regular elliptic set. Then for any
foorroxxnXs e @R (GL (AP 1 *2%3)) we have the simple trace formula, as

follows
L u(mongt)

1T & sl euip (GLo(F) FI\GL4(A)) ©

d d
- ¥ vol(GLd(F)y FA\GL(A),, —9—?> 0, (f, —g>
re GLd(F)hl dz,, dg,
v elliptic regular

(cf. [De-Ka-Vi] and [He 3]).

It suffices to prove that both sides of this identity are non-zero. Indeed, any
IT on the left hand side with tr(IT( f')) + 0 will have, by the choice of the function
fepi=10,1,2, component [T, =~ =, . Furthermore IT,, ~ St,, by Theorem 13.2 since
the other possibility for a unitary representation, 1T, = trivial representation, is
excluded for a cuspidal representation I7.

First step. For i =0, 1, 2 there exists a non-empty open subset V; of GLy(F,)
consisting of reqular elliptic elements and invariant under conjugation by GL4(Fy,),

dg
such that O, <ﬁ, ):l:Oforally,eV
dg,

Indeed, fix an elhptlc maxima] torus T' < GL,(F, ) and denote by T’ the subset
of regular elements of T (F). Then there is the germ expansion (comp. [He 3, A.3])

d
o,<f, a—i) = L I,0-0,(f), teT’

valid for all t € T’ close to 1. Here o ranges over the unipotent orbits. Furthermore,
there is the following homogeneity property for the germ I',. f t =1 + ye T' is
regular elliptic sufficiently close to 1, then [He 3, A.3.4]

T,(1 +ay)=a| %2 T (1 +y), ae0;, .

Here d(0) denotes the dimension of the unipotent orb1t o. Furthermore, 0 = {1}
is the unique orbit with d(o) = 0. Therefore, if O.( f; .3 ) 0 then I'y(t) £(1) =
However, I';(t) is constant = O for all ¢ sufficiently close to 1 ([He 3, A.3]). On the
other hand we know that £ (1) % 0, whence a contradiction. It follows that there
ex1sts a neighbourhood U; of 1 in T such that for all te 7'~ U; we have

O.(f, ,dg,) #+ 0. However, the map

GLd(in) xT' — GLd(Fx‘)

-1

X, —>x""tx
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is submersive and hence open [H-C], therefore T’ n U; generates by conjugation
under GL4(F, )} an open subset V; with the required properties.

Second step. There exists an element y e GL4(F) such that y is regular elliptic in
GL,(Fy) and in GL4(F,) for i =0, 1, 2, 3 and such that

0y<fw,j§°°>=k0, Oy(ﬂc..,;j")#o i=0,1,2
Ve VX,

Indeed, let Pi(T)e F, [T] be the characteristic polynomial of an element
yi€ Vi, i =0, 1, 2. The fact that y; is regular elliptic in GL(F ) is equivalent to the
fact that P,(T) is separable and irreducible. Let P(T)e F[T] be a polynomial
which is close to P{(T)in F,, [ T'],i = 0, 1,2, and which is an Eisenstein polynomial
in F,[T] and in F, [T]. Then any y € GL,(F) with characteristic polynomial
P(T) will lie in V;, i =0, 1, 2 and also will be regular elliptic in GL4(F,) and in
GLy(F,). The assertion about the orbital integral of £, follows therefore from
Theorem 13.2 and the assertion about the orbital integrals of f, , i = 0, 1, 2 from the
definition of V.

Third step. We may choose the functions f,, and f©**"*+*2:%3 gych that in the sum on
the right hand side of the simple trace formula there is precisely one non-vanishing
term.

We choose a y € GL(F) as in the previous step. Let f,, be the characteristic
function of an open compact neighbourhood of y in the set of regular elliptic
elements of GL,(F,,) and let f<-¥-*1-*2:*2 be the characteristic function of an open
compact neighbourhood of y in GL (A% *0-*1-*2-*2) which in all but finitely many
places is the canonical maximal compact subgroup. Now the set of non-vanishing
terms in the sum is finite and contains at least y. By shrinking the support of £, or
f@roexx% we can arrange that the term corresponding to v is the only one
non-vanishing. O

To pass from GL, to D™ we quote from [He 1, A.4], the following result.

(15.11) Lemma. Let IT be as in (15.10). Then there is one and up to isomorphism only
one I1 < o4 (D*FX\D}) such that

ﬁy =11, y¥F x0,%;.
Furthermore, the multiplicity m(ﬁ) in o/ (D*F3\Df)is 1.

(15.12) Theorem. Let IT be a cuspidal representation in of .,,(GL4(F) F,\GL,(A))
with I, ~ St,, and which satisfies the conclusions of Lemma 15.11. There exists
a semi-simple {-adic representation, unique up to isomorphism,

3:Gal(F/F) -» GL,(Q,)
such that

(i) = is unramified outside { o0, xo,x,} W T where T = {x e |X|; OISL4*) = (0)}
(note that x, € T if IT is as in (15.10)).
(ii) For every r = 0,

tr(Frob; X) = z, (I} + -+ + z,(I1,)"
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with
z;(I) =1, j=1,...,d
Jor any x ¢ { o0 ,x0,x,J U T.

Proof. Let H be the automorphic representatlon of Dy defined by Lemma 15.11.
Since I7,, ~ St,, we can take X = Vi 1( 1), of. (14.12). The uniqueness
follows from the Chebotarev density theorem O

Remark. We note that by [Sh] the local components IT,, y £ x,, x; are generic. We
are therefore in the range of applicability of the remark after the statement of
(14.12), which allows us to avoid in our proof of the local Langlands conjecture the
use of the more subtle arguments needed for establishing (14.12).

(15.13) Proposition. Let n € .o/, (d) and denote by II(n) the set of cuspidal auto-
morphw representations IT < ,sz{ cusp(GL‘,(F YFINGL4(A)) such that there exists
X & { 00, X, X, } for which II satisfies the conditions of Lemma 15.10. For II € II(m)
denote by XZ(II) the d-dimensional £-adic representation associated to II by Theorem
15.12. For a place x, denote by X(II), the restriction of Z(IT) to the decomposition
group at x.

(i) The determinant character of X(II) is of finite order, and corresponds via global
class field theory to the central character of II.

(i) If I1 € (), then Il € 1 (%) and X(IT) = Z(II).

(iil) If Hell(n) and y is a character of F*F\A", then IT1-ye H(ny,,) and
Z(I-y) = Z(Ih)x (correspondence via global class field theory).

(iv) Let ne o/} (d), n'e s/}, (d') and Il € (n), II' € II(n). Then we have

Lnxn',s) = LIZ(IT),®@Z(I')y,, s)
(X, Yy, 8) = &2 (), @2 )z, Y x5 8),
for any non-trivial additive character V. of Fy,.

Proof. Part (i) The second statement implies the first. To prove the second state-
ment it suffices by the Chebotarev density theorem to prove the desired equality
locally at almost all places of F. However at an unramified place x (ie. in the
notation of theorem 15.12 x ¢ { o0, xo, x;} U T) the central character of II is given
by

d

wllx(wx) = H ZJ(H

(here m, denotes a uniformizer at x) and the determinant character of £(IT) at x is
given by (15.12) (ii), as

d
det Z(IT) (Frob,) = [] z,(11,) .
j=1
Parts (ii) and (iii) Just as for assertion (i) it suffices to prove these statements locally
at the unramified places where they again follow from (15.12) (ii).
Part (iv) By (15.12) (i) for every place x¢ { o0, xo, x;} where IT and I’ are
unramified we have

LI, s) = LZ(D)x, 3)
LT}, s) = L(Z(IT"),, s) .
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Therefore, by [He 1, 4.1] we obtain for any non-trivial additive character v, of
F

XQ*
(I, % Iy, Wiy, 8)* L(IT < IT, 1—5)
L, x1I,,5)

_ SN, ®ZUT )y, Yo ) LEUD 3, ® 2T )y 1 —)
L)o@ Z T )x, 5) '

Here we make use of the fact that for the Z-adic representations Z(/7) and Z(IT")
a local theory of e-factors exists [De 1], so that the proof of loc. cit. goes through
(compare Remark 1 immediately following 4.1 in loc. cit.). We wish to apply
Lemma 4.4 of loc. cit. through Proposition 4.5 of loc. cit. to deduce the assertion
(iv). We have to show (considering the L-functions as inverse polynomials in an
indeterminate T) that L(IT,,x %, T) and L(Il,,x II;,,q"* T~ ') have no com-
mon pole and similarly for L(Z(IT),,®Z(I'),,, T) and L(Z(1)y,@Z(I1")x,,
q~*T ™). For the first pair this follows from loc. cit. 4.5(ii) since the representations
n~IM,, n" ~II, are supercuspidal. Here we used the notation L(II,,T) =
L.(IT, T4#™) (cf. Sect. 14) and similarly for the L-functions of pairs. Put
X = Z(IH®Z(II'). Then X is a dd’-dimensional #-adic representation of Gal(F/F)
unramified outside a finite set S of places of F and for y ¢ S the restriction X, to the
decomposition group at y is an unramified representation pure of weight 0 (all
cigenvalues of Frob, have complex absolute value 1). But then by [De 2, (1.8.1)] (a
form of the “purity of the monodromy filtration™) we conclude that all eigenvalues
of Frob,, operating on the invariants under the inertia subgroup at x, have
absolute values < 1. It follows that all poles of the L-function L(Z,,, T) have
absolute value = 1. For the same reason all poles of the L-function
L(Z,,,q 'T™') have absolute value < ¢ '. Therefore common poles cannot
occur. tl

(15.14) Corollary. Let ne%&(d) and define X, < %r_(d) by
Z,={Z(),,; HOelm}.

Then X, satisfies the conditions (i) and (ii) of Proposition 15.6, and hence consists of
one element o, 92(d). The map © — &, is injective and has all properties (i)-(v) of
Theorem 15.7.

(15.15) To finish the proof of Theorem 15.7 it remains to prove the surjectivity of
the constructed map. Since our proof of this will be purely local we switch back to
the notation used in the beginning of this section (hence F is again a local field etc.).
We are going to reproduce the relevant parts of Henniart’s proof of the numerical
Langlands conjecture [He 2]. (This method, introduced by J. Tunnel and by
H. Koch, partitions the source and the target of the map in question into finite
subsets which are mapped into each other and consists in showing that corres-
ponding finite subsets have the same number of elements.)

(15.16) We recall that to a representation g€ %;(d) there is associated its Artin
exponent a(s) = 0 and its Swan conductor.

sw(6) = a(o) — (dim g — dim o'*) .
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{(Here I denotes the inertia subgroup.) There is a close relation to the e-factor. Fix
an additive character of conductor 0. Then (comp. [Ta (3.4.6)]),

g(o, ¥, 8) =cq s ceC*.

If x is an unramified character, sw(py) = sw(p). We are also going to use the
formula

sw(Sp.(1)®p") =n-sw(p’), p'e%p(d).

There is an analogous theory for irreducible admissible representations 7 of
GL,(F). Again for y of conductor 0, write

e(my,s)=crq ™ ceC*.

Then a(n)eZ, = 0 and depends on 7 alone [Ja-Sh 1], and is called the Artin
exponent of z. Put again

sw(n) = a(n) — (d — degr(L(n, T)™1)) .
There is a compatibility with the formation of the generalized Steinberg module
sw(St,(p")) =n-sw(p’), p'eslPd).

Again for an unramified character y we have sw(ny) = sw(n). Furthermore, if
7 is square-integrable (more generally, if 7 is generic), then a(n) < j for some integer
j 2 0if and only if 7 has a non-zero invariant vector under a certain open compact
subgroup K; < GL,(F), [Ja-Sh 1, (5.1)] (K, = congruence subgroup modulo @’ of
the standard “mirahoric” subgroup).

Let D be a central division algebra of dimension d? over F with invariant 1/d.
Let p be an irreducible admissible representation of D*. There is again an e-factor
&(p, ¥, s) associated to p[Go-Ja] and an Artin exponent a(p) and a Swan conduc-
tor sw(p) as before. Let j 2d — 1. Then a(p) <j if and only if p|1 + pi7 @ Y s
trivial (as usual 1 + pJ := 2*.). Here p, denotes the maximal ideal in the maximal
order 2 of D.

Since we have established compatibility of the constructed map .« (d) —» £ (d)
with twisting by characters and with e-factors (even ¢-factors of pairs) the following
theorem may be applied to finish the proof of Theorem 15.7.

(15.17) Theorem (Henniart [He 2, 1.2]). Every injective map
AR (d)— 4P (d)

which preserves conductors and is compatible with twisting by unramified characters
of finite order is bijective.

For the convenience of the reader, we are going to reproduce the combinatorial
part of Henniart’s proof reducing this theorem to its key points. The proof will be
based on Propositions 15.18 and 15.20 below. We introduce the following nota-
tions. Let I'r = Gal(F/F) be the inertia subgroup and let Frob e Gal(F/F) be a fixed
representative of the geometric Frobenius so that

Gal(F/F) = Iy > FrobZ .

For an integer j = 1 we let #2(d) = %x(d) be the subset of isomorphism classes
of indecomposable Frob-semisimple d-dimensional Z-adic representations ¢ with
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det o(Frob) = 1 and sw(s) < j. (Note that the condition det o(Frob) =1 auto-
matically implies that deto is of finite order) We also put %P(d) =
42(d) N GZ(d)? = the set of isomorphism classes of irreducibles in %2 (d)’.

Similarly, we introduce the set /2(d)’ of isomorphism classes of square-
integrable irreducible admissible representations = of GL,(F) with w,(w) = 1 and
with sw(n) £j. (Here w, denotes the central character of n.) We put also
AR(d) = AP (d) 0 A @d)Y

Finally, let 95(d)’ be the set of isomorphism classes of irreducible admissible
representations p of D* with w,(@) = 1 and with sw(p) < j. Here D denotes the
central division algebra of dimension d? over F with invariant 1/d.

(15.18) Proposition. The sets Z2(d)’, Z2(d)’ and G(d)’ are finite. For their car-
dinality there is the formula

d - s - . — ) d t .
Z E'm{g(d')[d” = | ZE(dY) = | Dr(d)| = 2;2_ Z“(‘) (g — 1)glm
d'ld tal” sp \S

Here u denotes the Mobius function.

Proof. The fact that Z{d)’ is finite is easy to see (for any open compact normal
subgroup K of D*, the factor group D*/K -w? is finite) and the formula for its
cardinality is due to Koch [Ko]. In fact, Koch showed the above formula for the
cardinality of @¢(d) for any local field F of arbitrary characteristic equipped with
a uniformizer .

We use the Bernstein-Zelevinsky classification which sets up a bijection be-
tween the set of isomorphism classes of square-integrable irreducible representa-
tions of GL,(F) with central character of finite order and the set | [, , /£ (d"), given
by p’ — Sty (p'). Since the central character of the Steinberg module St,(p’) is
wp and by the compatibility of the formation of the Steinberg module with the
Swan conductor, cf. (15.16), we obtain a surjection

( [ Z2@ )+ )x {x: Gal(F/F)/Iz > Q; ¥ = 1} - T3y
d'|d
(o', 1) = Sty (p')x -

Furthermore, two elements (pj, x;) and (p3%, x,) of the left hand side have the
same image if and only if d; = d} and p} = p} y1 ' y2. It follows that

o d, - 24
|F7@)| = T 1@
d’|d d
Let now F’ be a local field of characteristic zero, with the same residue field as
F, and equipped with a uniformizer @'. Then, if the valuation of the prime number
p in F’ is sufficiently large, there is a bijection

AE(dY = A} (dY
(cf. [He 2, (2.7)]; this is based on the idea of Kazhdan of comparing representations
of groups over close local fields and on the determination of certain Hecke algebras

by Howe). By the local Jacquet-Langlands correspondence [ De-Ka-Vi, Ro], pro-
ved for any local field of characteristic zero, there is a bijection

AEY = D@y .
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Taking into account the remark made previously that | Zy(d)/| = | ZF.(d)’| the
result follows. O

(15.19) Remark. If the Jacquet-Langlands correspondence were proved in char-
acteristic p the recourse to characteristic zero could be avoided and our proof of the
local Langlands correspondence would proceed purely in characteristic p. This is in
contrast to Henniart’s proof of the numerical Langlands conjecture where the cases
of characteristic p and characteristic zero are intricately intertwined.

(15.20) Proposition. The sets G7(d)’, %¢(d)’ are finite. For their cardinalities there is
the formula

S L1 = 19y =T S (5)@ — 1)t

ita d aat” s \S
Proof. The restrictions of all elements ¢ of 42(d)’ 10 a certain ramification group
are trivial. Since det o(Frob) = 1 the finiteness assertions follow easily. The first
identity is proved just as the corresponding identity in Proposition 15.18, replacing
in its proof the Steinberg module St,(p’) by the special representation Sp,(1)Qp'.

We introduce the notation

%P (d, s)) = {ceGP(dY; o|IF has precisely s irreducible components} .
Note that by Frobenius reciprocity the s irreducible components of oI have
the same dimension d/s. Then
Gy = [1%°, sy .
sid
Let F; be the unique unramified extension of degree s of F in the fixed algebraic
closure of F. Let
1,: Gal(F/F,) - Gal(F/F,): g — Frob™! gFrob .
Note that (1,)° is an inner automorphism.
We introduce, for each integer ¢t = 1 dividing s,
GP(d, 1) = {ce%R(d, 1); 6°1! ~ 6 and t is minimal among integers = 1 with this
property} .
Therefore
Grd, 1Y =11 45, 1) .
tis

(15.21) Lemma. For every s|d we have

_ i 1] . /d Lils]
|49 (d, s)| =~ p(1<—, 1)
s s s
and hence
_ ) 1] ., /d Lifs]
gy = L g( 1) |
) s s

Proof. We have a surjective map

_/fd U ,
@’ﬁ(—, 1) - %42, sy
N

s

¢’ Indf (6') .
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The fibre of this map through ¢’ is equal to
{6, °15,...,0 (1)1}

and hence has always s elements. For all these assertions one uses Frobenius
reciprocity for Gal(F/F) = Gal(F/F,;) > Z/dZ. Details are left to the reader. [

(15.22) Lemma. For t|s|d we have
|9, Dil =92, 1)i] .

Proof. Define %42(d,1){ just as #%2(d,1)], except that the condition on
det(Frob') = 1, is changed into

det(Frob')* = 1.
Then there is a surjection
98, 1)l ~ F(d, 1)
6 — o|Gal(F/F,)

(the irreducibility of ¢ | Gal(F/F;) follows from the irreducibility of ¢ | Iz, = o |I,).
Furthermore, the elements of the fibre of this map through ¢ correspond in
a one-to-one way to the intertwining maps

B:o'o(t) ~0o
with given (s/t)-th power
B = ¢'(Frob®): ¢’ o (1, ~ ¢’ .
Here ¢’ = ¢|Gal(F/F,). (B = image of Frob'). It follows that

_ . ) R .
|94, 1] = —+198(d, Dl .
s/t

On the other hand, it is easy to see that
~ . S ,
|98, Dl = P 9pd, 1)) .

The lemma is proved. O

End of the proof of Proposition 15.20 We obtain from Lemma 1522 and the
decomposition of 4P(d, 1)’ preceding Lemma 15.21 for any d”, any j” and any s

|GR.@", 1) =3, 19", DI .
t|s
Applying the Mdébius inversion formula we obtain
= t e
g, 171 = Tl ) 19 171
sit

for any d”, any j” and any t.
Plugging this into Lemma 15.21 we get for any 4’ and any j’

— " 1 _ 4 Lirnm
aavi-$1sul)- |a(t)).

t|d’ sit
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By the first identity of Proposition 15.20 (which is already proved) we obtain

, [
d d
#(51)

Y 4
=Y " () > =19yt

tld sit

s d 1
Z2(d)) = . .
|G (@) dmw X Zu&)

t|d’ t s|t

@ = d'Jt).

Here we used the fact that for xelR, x >0and teZ,t 2 1, %c = [%C—]—}

Now we use the main theorem of [He 2, 1.3] which yields

1 sdr .
Y SR D =g - 1)
4'\d d
(The proof of this formula uses the geometric Fourier transform [Lau 1]; to deduce
the above formula from the one of loc. cit. note that the expression appearing in
loc. cit.

> TG, k)
k2t
ksdj

is, in our notation, equal to Zil_’ | G&(d, 1)[&41] |, cf. [He 2, 2.2(c)])

Applying this identity to F instead of F and d/t instead of d and [j/t] instead of
j and inserting the resulting expression in the sum above we obtain the desired
formula. !

Proof of theorem 15.17 From Propositions 15.18 and 15.20 we deduce that
d ja’
T 41 = 5 S
d’'|d d'|d
Let X be the set of unramified characters of finite order, either of the multiplicative
group F* or of the Galois group Gal(F/F). Let 42 (d)’ resp. /¢ (d)’ be the set of
elements in %9(d) and .2/2(d) with Swan conductor < j. Then X acts on %7 (d)’
and .o/f (d)’. There is a surjective map
GR(dY x Xp > G (dY: (0, ) > oy

and the elements in the fibre through an element o € %°(d)’ are parametrized by the
factor group

{xeXp; ¥*=1}/{xeXp, 0 =0}.
It follows that the quotient X \% (d)’ is finite. The same holds for &/ (d)’ instead
of 2(d)’. However, we have, by the hypotheses of (15.17), inclusions
ALY <« G2y, Xp\AP(d) < Xp\%P(W) .

and the number of elements in the inverse image under the above map of an
element of X 5\ (d)’ and of the corresponding element of Xz\%g (d) is the same.
Therefore we deduce from the equality of the two sums above that there has to be
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termwise equality, yielding
XP\ARdY = Xp\GPdY .

Since any element of %2(d) lies in %2 (d)’ for some j the surjectivity of the map
H2(d) - 42(d) follows. O

16 Further remarks on the global Galois representations

In this section we give some complements on the global Galois representations
Vi=! associated to an automorphic representation IT of D /@% with IT, ~ St,
cf. (14.12). Note that, by definition, V! is a semi-simple /-adic representation of
Gal(F/F). The arguments will all be based on the fact that the Frob, -semisimplifi-
cation of the restriction of Viiz! to Gal(F,/F ) is isomorphic to (St """, where
o%(St,) is, up to a Tate twist, the special representation of dimension d,
cf. (14.12)(iii). Throughout this section a representation IT as above is fixed.

(16.1) Proposition. Assume that m(IT) = 1. Then Vji=' is an irreducible representa-
tion of Gal(F/F).

Proof. Since the special representation is indecomposable the hypothesis implies
that the Frob,-semisimplification of the restriction of V! to Gal(F/F,) is
indecomposable. But then the same is true of the restriction of Vfiz! to Gal(F/F )
and therefore the semi-simplicity of Vgx!' as Gal(F/F)-module implies the
result. O

We note that we have encountered in (15.11) representations IT satisfying the
hypothesis of the previous proposition. Also, for d = 2 and d = 3 the hypothesis is
automatically satisfied [Ja-Pi-Sh 1].

(16.2) Proposition. Let E/F be a finite extension contained in the fixed algebraic
closure F of F. Assume d = 2. Then for all i

(V! (@)% 7 = (0)
(Galois invariants).

Proof. We argue by contradiction. If (V3= (i) F/® £ 0, then there exists an
injective Gal(F/E)-module homomorphism

Q(—-i)~ Vgo_ol

whose image is a direct summand (semi-simplicity). Let E,, be the completion of
E in a place dividing oo €| F|. But the Frob-semisimplification of the restriction
of Viz! to Gal(F/E,,) is, up to a Tate twist, a power of the special representation
Spa(1). (The restriction of the special representation of Gal(F,/F,,) to Gal(F,/E.,)
is the special representation of Gal(F,/E,).) It follows easily that the
Frob,,-semisimplication of the restriction of V&' to Gal(F,/E) cannot contain
a direct summand of dimension one and therefore the same is true of the restriction
of Viz' to Gal(F ,/E,) itself. This contradiction proves the claim. 0

We note that it is not difficult to deduce from the previous proposition and
standard facts on poles of L-functions the Tate conjectures on algebraic cycles of
arbitrary codimension over F on /x4 /Z.
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(16.3) Let S be a finite set of places of F containing Bad and all the places x ¢ Bad
such that IT, is ramified (in particular, oo €S). Then, for each x ¢S, the local
Lfactor

d
. 1
Ll x1,,T)=T] =
( xX ) Lie1 1 — Zi(nx)zj(Hx) 1Tdeg(x)

is well-defined and we can form the partial L-function
DS, T)= [] LW x 1, T).
x¢S
Since
lz(l) =1, i=1,...,d,

for all x ¢S (cf. (14.12) (ii)), this product is absolutely convergent for |T| < g~ ! (we
have

|{x¢S; deg(x) = n}| = 0(q") .
The following lemma must be well known to the specialists.

(164) Lemma. The holomorphic function LS(IIxI1, T) on the disk {TeC;
| T| < g~ '} has a meromorphic extension to the whole complex plane.

Proof. Let G = GL,(D) and let P = MN its obvious standard parabolic subgroup
(M ~D*xD* and N ~D). Then H®II is a “cuspidal” representation of
M(&)~ Dy xDj. Let wg: M(A)— €~ be the quasicharacter defined by

w5(g1, g2) = ltn(g1)/rn(g2)°,

for each se €. We consider the Eisenstein series which are parabolically induced
from (H®II) w, and let M(s, [I®II) be the corresponding global intertwining
operator which is a priori only defined for Re(s) > 0. For each place x of F, we have
a corresponding local intertwining operator

M(s, T, x I1,): Indg¥3 (M, @11,)w,)
- Indp$3 (.M )w-,),

a priori defined for Re(s) » 0. If x¢ S, the above induced representation is un-
ramified. Let f° be its unique GL,,(0,)-fixed vector, up to a scalar
(GL,(D,) =~ GL,,4(F,)). A standard computation [La] shows that

LU x4, 459 o
LT, x 1T, q;4*%) "
(comp. [Mo-Wa, 1.1]). It follows that, for any

= (11)-(11)

in the global induced representation

Ind§in (M®Mw,),

M(s, O I1) (f) =
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we have (Re(s) > 0)

LS(IT x 11,4 (

M(s, I xIT =—

( ) = T oty

T M(s, I, x Hx)(fx)> N ( Tl f,s) .

xeS x¢S

Then, the lemma follows from two fundamental results:

(1) the local intertwining operators M (s, I, x I1,) have a meromorphic continua-
tion to the whole complex plane (comp. [Sha, Corollary to Theorem 2.2.27).

(2) the global intertwining operator M (s, IT x IT) has a meromorphic continuation
to the whole complex plane and satisfies the functional equation

M(—s,IIx)eM(s, I xII)=1id,
(cf. [Mo]). O

(16.5) Proposition. There exists an irreducible £-adic representation Z(II), unique up
to isomorphism, with

Vi (45) = 2 = BTy

Moreover, Z(IT) has the following properties: B
() for any place 0 ¢S, E(IT) is an unramified representation of Gal(F,/F,) with

tr(Frob}; E(I1)) = z,(I1,Y + -+ + z,(I1,), Vr;

(i) the restriction of E(I) to Gal(F ,,/F ,,) is isomorphic to the special representation
Spa(1).

Proof. Let
I =PveEm m>0,
i=1

be the decomposition of Z(IJ) into irreducibles, where V; are pairwise non-isomor-
phic irreducible /-adic representations of Gal(F/F). Since the Frob,-semisimplica-
tion of the restriction of X (I1) to Gal(F,/F,) is a power of the special representation

Spa(1), the same is true for each ¥, i=1,...,s (Sp,(1) is indecomposable), i.e.
V;|Gal(F,,/F,,) ~ Sp,(1)™
for n; >0,i=1,...,s Counting dimensions, we get the relation
Y. min;=m(II).
i=1

On the other hand, we have
LEM).®IM)s, T) = LT x 11, T

for all x¢ S (cf. (14.12) (ii)), so that we get the equality of partial L-functions
LSEUN®ZUT), T) = L3I x I, Ty"™”,

Therefore it follows from Lemma 16.4 that

[l L@V, Ty = LSEmeE), T)

1

L7
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has a pole of order divisible by m(IT)? at T = q~ . But, each V; defines a smooth
/-adic sheaf 77 on X\ S, pure of weight O (cf. (14.12) (ii)) and, for each i, j = 1,. . ., s,
we have (cf. [De 2, (1.4) and (3.3.4)])

_ det(1 — T'Frob; H)

S . V~ =
Lren,T) det(1 — T Frob; H?)

with
H! = H (X\S)®r,F,, ¥i®7))
mixed of weights < | and
H} = H((X\5)®¢,F,, ¥/®7))
= HomGal(i_‘/F-Fq)(Vi’ I/])\/( - 1).

Therefore, the order of the pole at T=q * of L5(V;®V,, T) is equal to the
multiplicity of the eigenvalue 1 for Frob acting on

HomGax(F/F-qu)(Vi, Vi),

1e. to 1 if i=j and 0 otherwise (recall that the irreducibles V; are pairwise
non-isomorphic). Then, we have proved that m(IT)* divides

s
2, mi
j=1

and this implies that s = 1, ny = 1 and m; = m(II). Putting
Emy=n

IIA

S
Y munymyn; = m(IT)?
=1

it follows that Z(IT) satisfies all the requirements of the proposition. The unique-
ness assertion follows from the Chebotarev density theorem. 0

Remark. We let the reader check that a stronger form of the Lemma 16.4 (including
the definition of L(II x IT’, s) and its functional equation for I, [1’ automorphic
representations of Dj/F)) would imply that, for each x,¢{ o0} U Bad such that
I1,, is supercuspidal, the restriction of Z(I1) to Gal(F,/F,,) is isomorphic to
o1, (use the techniques of Sect. 15).

A @-spaces and Dieudonné F,-modules (following Drinfeld)

The definitions and the results of this appendix are taken from [Dr 7]. Let F be
a function field with field of constants IF,. Let k be an algebraic closure of the field
IF, and let us denote by frob, the arithmetic Frobenius element in Gal(k/IF,). For

each positive integer n, k contains a unique subfield IF,. with ¢" elements (the fixed
field of frob} in k).

(A.1) Definition. A @-space (over k) is a finite-dimensional F ®r, k-vector space
which is endowed with a bijective F®g, frob,-semilinear map ¢: V' — V. A mor-

phism o between two @-spaces (V1, @) and (V, ¢,)is a F®g, k-linearmap V; 5 ¥,
such that g, ca = 0o @,.
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Obviously, the ¢-spaces and their morphisms form a category which is F-linear,
abelian, noetherian and artinian.

(A2) Definition. A @-pair is a pair (F 1) where F is a commutative finite-
dimensional F-algebra and where H e F* ®@Q satisfies the following property: for
any proper F-subalgebra F’ of F, IT does not belong to F'* ®@Q < F* ®Q.

(A.3) Lemma. If(F II) is a @-pair and if N is any non zero integer such that IYeF~
(more correctly, IT belongs to the image of F* in F*®Q), then F = F[IT"].

Proof. Let F' = F[IT¥]  F, then [Te F/* ®@. Therefore F' = F. O

(A.4) To each non zero ¢-space (V, ¢) Drinfeld associates a @-pair (Fy ,, )
in the following way.

Any ¢@-space (V, ¢) (over k) is defined over IF,. for n divisible enough. So, we can
choose a positive integer #', a finite-dimensional F @ IF,.-vector space V7, a bijec-
tive F®g, frob,-semilinear map ¢': ¥’ — V" and an isomorphism of ¢-spaces

V,o)=(V', 0" )®p,. k
Then ¢'™: V' — V'’ is a bijective F ®g, Fyr-linear map and the F-subalgebra
Flo'"'] < Endpgy i, (V')

is a commutative finite-dimensional F-algebra. If II': V' — V' is the F®p, k-linear
extension of ¢'"(I1' = '™ ®|ﬁ, k), the F-subalgebra

= F[II'] < Endgg, (V)

is isomorphic to F[¢'"] and therefore is also a commutative finite-dimensional
F-algebra. Moreover, II' commutes with ¢, so

F’ < End(V, ¢) = End g i (V)

(ring of endomorphisms in the category of ¢-spaces.)
Now, if (0", V", ", (V, @) = (V", ¢")®g,. k) is another choice, there exists some
positive integer m such that IT""™ = [1"" m . Therefore, the F-algebra

F= () F[O'™]
Nz1
is independent of the choices of ', V7, ¢" and (V, @) ~ (V', ¢")®, k. As FcF,F
is also a commutative finite-dimensional F-algebra and there exists a positive
integer N such that F = F[IT'N]. Let us choose one such N. As IT'™: ¥ = V is
bijective, 'V e F* and we can set

H = (HrN)lln’Neﬁx ®Q .

Again it is easy to see that iis independent of the choices. o

The pair (F, ) is clearly a @-pair. We set (Fy ), v, ) = (F, IT).

By definition, Fy ,, is a F-subalgebra of the center of End(V, ¢) (F[o'"'] is
contained in the center of End(V’, ¢') < Endrg, g, (V')).

Drinfeld uses the construction (A.4) to prove that the category of g-spaces is
semi-simple and to classify its simple objects.

(A.5) Lemma. If (F,M)isa @-pair, F is an étale F-algebra, i.e. is a product of finitely
many separable finite field extensions of F.
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Proof. 1t suffices to check that F = F[F?]. But, if we set F' = F[F?], F' is
a F-subalgebra of 17, I:["eF’X®Q and ﬁeF’X®Q. Therefore, F' = F. O

(A.6) Theorem. (i) The abelian category of @-spaces (over k) is semi-simple.

(ii) The map (V, @) — (Fw, o, v, ) induces a bijection between the set of isomor-
phism classes of irreducible @-spaces and the set of isomorphism classes of o-pairs
(F 1'[) where Fis a field.

(ii1) IfF is a finite field extension of F and lfHeF ®Q, let us denote by d(H) the
common denominator of the rational numbers deg( x)x(I'I ) where X runs through the
set of places of F and where deg(X) is the degree of the residue field of % over T,. Then,
for any irreducible @-space (V, ), we have

dimpg, x (V) = [Fi, o F1d(Iy, )

and End(V, @) is a central division algebra over Fy ,, of dimension d(Il v ,)* with
invariant

invy(End(V, ¢)) = — deg(X)X(l1,,) (modulo Z)
at each place X of Fy .

Proof. Let us begin with two remarks.

If (V, @) is a non zero ¢-space, any non trivial idempotent of Fy ,, is also a non
trivial central idempotent of End(V, ¢). Therefore, if (V, ¢) is indecomposable,
Fy. , is a field. Let

Oa(Vla q)l)_}(Vs (p)_)(VZa qDZ)_}O

be a short exact sequence of non zero ¢-spaces. We can find a positive integer n’
such that this exact sequence is defined over IE,». Moreover, if

01, 91) >V, ¢) = (V2,02) > 0
is an IF»-structure for the above exact sequence we can assume that
Fo, o M. ) = (FUT'L, T'H)
and
(Fwi o0 M o0) = (FUL;Y, 1)

where I1' = ¢'" ®g,k and II] = ¢;"®g,k (i=1,2). It follows that we have
a surjective homomorphism of F-algebras Fy ,,— F, ,., which maps I, ,, into
iy, ., U] is induced by II') (i = 1, 2). In particular, if Fy ,, is a field, the ¢-pair
(Fw,, 0> Hv,, 4y) is canonically isomorphic to the ¢-pair (Fi, ), Iy, ) (i = 1, 2).

Now, let (F, IT) be a ¢-pair such that F is a field and let & be the following full
subcategory of the category of ¢-spaces: the objects of & are the ¢-spaces (V, o)
such that either V = 0 or (Fy,,), Iy, ,) is isomorphic to (F, IT). Thanks to the
above two remarks, to prove the theorem it suffices to prove that, for any ¢-pair as
before, & has the following properties:

(1) any indecomposable object of & is an irreducible object of &,

(2) there is one and only one isomorphism class of irreducible objects in &,

(3) if (¥, ) is an irreducible object of &, the dimension of ¥ and End(V, ¢) satisfy
the requirements of the theorem.
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To prove these properties of &, Drinfeld gives a new description of &. Let I be
the set of palrs (n IT'), where n' is a positive integer and II'€ F*, such that

I'®1 =1M"in F* ®@. On I we have the partial order which is defined by
(ny, I7) < (n3, IT5)
if and only if n; divides n5 and IT, = T/,
If (n}, I1}), (n3, IT5) € I, then there exists (', I1')e I such that
(', 1I') 2 (i, II})

fori=1,2. For each (n,IT')el, let & ) be the category of finite-dimensional
F®p,Fp--vector spaces V', which are endowed with a bijective F®p, frob,-

semilinear map ¢": V' — V7, such that either ¥’ = 0 or the pair (F[¢™], ¢'™) is
isomorphic to the pair (F, IT’). If (ny, IT}) < (n, IT,), we have a functor
Ew.my = Em.nys (Vi 1) — (V1. 01)®p,, Fp:
and we get in this way a direct system of categories. The functors
éa(n',ﬂ’) - g’ (V" 90') lad (V’a (P/)®1Fq,.rk
((n', I")eI) induce an equivalence of categories
lim én(n"n')—'\—i(gj .
I

But, for each (0, IT')e 1, &, 1) Is equivalent to the category of left modules of finite
type over the ring

Ro, iy = (FOEEp [THA1®1)" — (IT'®1))

(IE;~[] is the non-commutative polynomial ring over ]Fq.. in the variable t with
commutation rule 1+ 4 = /1" tif AeIF,.). The ring R, ) is clearly a central simple
algebra of dimension n'? over F with invariant

invsRo ) = — w — _deg(®)%() (modulo Z)

at each place % of F. Therefore, the category &, i+ is semi-simple, has only one
irreducible object (V', ¢’} up to isomorphism and End(V’, ¢') is a central division
algebra over F with invariant

inv;(End(V", ¢"))
at each place % of F. Moreover
dimz(V’) = n'(dimp(End(V", ¢')))"/*

If

— deg(%)%(I) (modulo Z)

1e.
dimg(V') = n'd(Il)
and
dimre,, (V") = [F: F1d(IT) .
The theorem follows. (|
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B Dieudonné F .-modules (following Drinfeld)

The definition and the results of this appendix are taken from [Dr 7). Let F and
k be as in Appendix A. Let x be a place of F. We denote by F, the completion of F at
x, by 0, the ring of integers of F,, by x(x) the residue field of ¢, and by deg(x) the
degree of k(x) over TF,.

(B.1) Definition. A Dieudonné F.-module (over k) is a F, ®,F k-module N of finite
type which is equipped with a bijective F, ®,F frob, -semilinear map ¥: N > N.
A morphism o between two Dieudonné F.~-modules (N 1 x/z yand (N, ¢5)isa F ®r., k-
linear map Ny 4 N, such that Y00 = aoi.

Obviously, the Dieudonné F,-modules and their morphisms form a category
which is F,-linear, abelian, noetherian and artinian.
We have an exact and F-linear functor
(Va (P) = (Vx) pr) = (Fx®F V’ Fx®F(p)
from the category of ¢-spaces to the category of Dieudonné F,-modules.

(B.2) Remark. Let 15: k(x) =k be a fixed embedding of I,-algebras. Put
1; = frobj o 1o(j€ Z/deg(x)Z). Then we have a canonical splitting

F:c@ll-},k= H Fx®x(x),xjk

JjeZideg(x)Z
(rc(x) is naturally embedded in F,) and each factor is a field. Therefore, to give
a Dieudonné F,-module (N, ) is equivalent to giving finite-dimensional vector
spaces N; over F,®.(),, k and bijective semilinear maps ;: N; - N, over
Fo® 0 frob,: Fy® () kS F @y, y0 K

for all je Z/deg(x}Z which, in turn, is equivalent to giving a finite-dimensional
vector space No over F,®, (..o k and a bijective F,®, () , frobd*t™-semilinear
map

'Po=!pdeg(x)—1°l//deg<x)—z°"'°¢05N0“’N0- O

Let us fix an embedding 1, as in (B.2) and a uniformizer w, of 0,. Let d, r be two
integers such that d = 1 and (d,r) =1 (if r = 0, this means that d = 1). Let us
consider the finite dimensional vector space

Ny = (Fx®x(x),lo k)d
over Fx®,<(x), ok with its standard basis e;,...,e; and let ¥5:Ng— N, be the
bijective F,®, ., frobd®*-semilinear map which is defined by
whey; ifi=1
€;_y lfl=2,,d

The pair (N, ¥,) defines a Dieudonné F,-module (see (B.2)). We will denote it by
(Ng4,r» Wq,.)- Its isomorphism class does not depend on the choices of i, and w,.

Pole;) = {

(B.3) Theorem. (i) The abelian category of Dieudonné F,-modules (over k) is semi-
simple.
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(il) The Dieudonné F,-modules (Ny,,,Y4,,)(d, 7€Z,d = 1,(d, ¥) = 1) are irreducible
and any irreducible Dieudonné F,.-module is isomorphic to one and only one of them.
(iii) For eachd,reZ,d= 1,{d,r)=1, End(Ny,,, ¥4,.) is a central division algebra
over F, with invariant — r/d (modulo Z).

(B.4) Proposition. Let (V, @) be an irreducible ¢-space and let (F, 1Ty =
(Fv, o Hv, ) be the corresponding ¢-pair. For each place X of F which divides x, let
(Vs 03) = Fs®#(V, 0) .

The canonical splitting Fx®pﬁ = Hﬂx F; induces a splitting

(Vx’ (px) = @(V:E’ (pi)

Zlx
of (Vy, ©.) as a Dieudonné F -module. Then, for each place X of F which divides x,
(Vz, @3) is (non canonically) isomorphic to

(Nd,;, rss lpd;‘, r;c)s’-C
where the integers dg, ry and sy are uniquely determined by the following relations
di: Sz g 1
(ds,rs) =1
ra/ds = deg(X)X(IT)/[Fs: Fi]
dyss = d(IT)[Fx: F.].
Proof. Let s:(d,r) be the multiplicity of the irreducible Dieundonné F,-module
(Ny,,» Y4.,) in the Dieudonné F,-module (V;, @;) for each place % of F which divides

x and each pair (d, r) of integers with d = 1 and (d, r) = 1. It follows from (A.6) (iii)
that

(*) Y Y dssd,r) = dimp g, (V) = dUD)[F: F1.
Xlx(d,r)

It also follows from (A.6) (iii) that F,® #End(V, ¢) is a central simple algebra over
F; of dimension d(IT)* and with invariant — deg(%)%(IT) (modulo Z), for each
place £ of F dividing x. B

Now, let us consider the natural homomorphism of F;-algebras

F:®¢End(V, ¢) - Endp(Vz, 05) ,

where Endz (Vs, @z) is the commutant of f’; in End(Vg, @z). It is automatically
injective. If we compare the dimensions over F; of the source and the target, we get
the inequality

d(ITy? < dimp, (Endp,(Vs, 0s)) -
But, we have
dimy (End(V;, ¢3))
[F:: F,J?

dimF;(EndFi( Ve (Pi)) -

= Y (ds:(d, r)/[ Fs: F.1)?

. r)
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(see [Re]). Therefore, we have
(#%) dTy £ 3 (ds<(d, r)/[Fs: F)
@n

for each place X which divides x.

Finally, it is an elementary exercise to prove that the equality (%) and the
inequalities ( ** ) are compatible if and only if, for each place X of F which divides x,
there is at most one (d, r) with s:(d, r) + 0. The proposition follows. 0

(B.5) Let x be a place of F and let (N, ) be a Dieudonné F.-moduie (over k).
A lattice M in N is a free 0 ®,F k-submodule of N of finite type which generates
NasaPF ®,F k-module. Tt follows from (B.2) that N is a free F ®,F k-module (of
finite type). Therefore it always contains lattices. Let

N¥ ={neN|y(n)=n}.

It is easy to see that N ¥ is a finite dimensional F,-subvector-space of N and that
the canonical map N¥ &g, k — N is injective. In fact, for each pair of integers (d, r)
withd = 1 and (d, r) = 1, we have

(N, e {Fx if r=0
d,r =

0  otherwise
and the canonical map
N r®lF k— Ny,
is either an isomorphism (if » = 0} or zero (otherwise).
(B.6) Lemma. The following properties of (N, s} are equivalent:

(i) there exists a lattice M in N with (M) =

(ii) the canonical map N "’®,Fqk — N is bijective;
(ili) any irreducible Dieudonné F,-submodule of (N, ) is isomorphic to (N o, ¥1.0)
(i.e. (N, V) is isomorphic to (N o, W, o)* for some integer d = 0).

Moreover, if these conditions are fulfilled then for any lattice M in N withy(M) = M
MY¥ = M NNV is a lattice in the finite dimensional F.-vector space N¥ and the
canonical map

MY'@p k> M
is an isomorphism.
(B.7) Lemma. The following properties of (N, /) are equivalent:

(i) there exists a lattice M in N such that y(M)c M (resp. M < y(M)),
Y"(M) < w M (resp. M < w, y"(M)) for any uniformizer w, of (0, and some positive
integer n and

dim(M/y(M)) =1 (resp. dim;(y(M)/M) = 1)

(ii) (N, ) is isomorphic to (Ng 1,44 1) (resp. (Ng, —1,¥4 -1)) for some positive
integer d.

(B.8) Lemma. The following properties of (N, ) are equivalent:
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(i) there exists a lattice M in N such that y(M) < M(resp. M < Yy(M)) and
dim, (M/yy(M)) =1 (resp. dim,(y(M)/M) = 1)
(ii) (N, ) is isomorphic to
(N1,0> V1,0 "@®(Ni, 1, ¥ 1) (resp. (N1,0,¥1.0)" "@(Nn, 1, ¥h, -1))

for some integers d, h withd = h > 0.

Moreover, if these conditions are fulfilled, then any lattice M in N with
Y (M) = M (resp. M <= y(M)) has a unique decomposition into a direct sum of two
free 0.® r, K-submodules

M = M*@®M?®, such that y(M%) = M*
and
Y(M) = M®  (resp. M* = y(M?)),

Y (M) ca M (resp. M® < w Yy "(MF))
for any uniformizer w, of O, and some positive integer n and
dim, (MY (M®)) =1 (resp. dim, (Y (M°)M®)=1).

(B.9) Remark. If the equivalent conditions (i) and (ii) of (B.8) are fulfilled and if
M is any lattice in N such that (M) < M (resp. M < (M)), we automatically
have

dim (MY (M)) =1 (resp. dim,(y(M)/M) =1},
(N, %) 1= (Fe®o M*, Y| F,®0 M*)
is the sum of all Dieudonné F,-submodules of (N, ) which are isomorphic to
(N1,0,¥1,0) and
(N §°) = (Fe®o M"Y | Fx @0, M°)

is the sum of all Dieudonné F.-submodules of (N, ) which are isomorphic to
(Ng,rs ¥a,,) for some pair of integers (d,7) with d = 1,(d,r) =1 and r > O (resp.
r < 0). We will say that (N®, *) is the etale part of (N, ¥) and that (N°, ¢} is its
connected part. O

(B.10) Proposition. Let us assume that there exists a lattice M in N such that

Yy(M)cM M < (M)
Y"(M) c oM (resp. { M = @ y"(M)
dim (M/§(M)) = 1 dim,( (M)/M) = 1)

for any uniformizer w,, of O, and some positive integer n. Then any other lattice M’ in
N such that

YyM'Yc= M’ (resp. M' = y(M'))

is equal to Y™ (M) for one and only one meZ.
In other words, if (N, ) is isomorphic to (N4, 1, a4 1) (resp. (N4, 1, W4, -1)) for
some positive integer d, the set of lattices M in N such that

Yy(M)= M (resp. M = (M)
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is a principal homogeneous space over Z (meZ acts on this set of lattices by
M — y™(M)). Moreover any lattice in this set satisfies

{w"(M) coM {M < w.y"(M)
dim M) =1 " \dimi(y(MY/M) = 1)

for any uniformizer @, of O, and some positive integer n.

(B.11) Remark. Under the hypothesis of (B.10), End(N, ¥) is a central division
algebra over F, with invariant — !/d(resp. 1/d) (see (B.7) and (B.3)). Now, the
natural action of the multiplicative group of End (N, ) on the set of lattices M in
N such that

Yy(M)c M (resp. M = y(M))

can be described in the following way. We have a group homomorphism

End(N,lp)X m F: deg(x) x(—) Z,

(resp. End(N, )2 F 1 280 x(7), 77y

where 1n is the reduced norm and d e End(N, ¢)* maps the lattice M into the lattice
Y™ (M) where

m = deg(x)x(rn(d)) (resp. m = — deg(x)x(rn(3))) .
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