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Introduction 

In a series of papers [Dr 1 ,Dr  2], Drinfeld introduced analogues of Shimura 
varieties for GLe over a function field F of characteristic p > 0. Decomposing their 
,(-adic cohomology under the action of the Hecke operators he constructed very 
interesting Galois representations of F. In fact, for d = 2 he showed that the 
correspondence which to an automorphic representation associates the Galois 
representation on its eigenspace is, up to a Tate twist, a Langlands correspondence 
(equality of L-functions, z-factors etc.). This is completely analogous to the classical 
case of modular curves over Q (the Shimura variety associated to GL2). The 
essential difficulty in extending this result to general d lies in the non-compactness 
of Drinfeld's varieties. Our purpose in the present paper is to construct compact 
versions of Drinfeld varieties for central division algebras over F, to study their 
•-adic cohomology and give applications to the global and local Langlands 
correspondence. 

Drinfeld constructed his varieties as moduli spaces for two equivalent but 
different moduli problems, elliptic modules and elliptic sheaves. The equivalence of 
these two concepts was proved by Drinfeld [Dr 3] and Mumford. The idea of 
formulating variants of these moduli problems for a division algebra was proposed 
several years ago by one of us (U.St.). Here we will concentrate on the generaliz- 
ation of elliptic sheaves, to be called Y-elliptic sheaves. The concept of Y-elliptic 
module is closely related to Anderson's t-motives [An]; in spite of their elementary 
nature they will not play a role in this paper (comp., however, Sect. 3) since 
@-elliptic sheaves are easier to study. 

In the case of Drinfeld's varieties for GL2 the Galois modules obtained by 
decomposing the cohomology can be characterized as having a certain simple 
ramification behaviour at a distinguished place oo of F (special representation) 1. 

We do not discuss here Drinfeld's moduli variety of Shtuka's of rank 2 which, as Drinfeld has 
shown, yields all Galois modules without restriction 
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This distinguished place is part of the data needed to define Drinfeld's varieties 
(and our variants as well) and plays the role of an archimedian place. For general 
d this characterization conjecturally should continue to hold. This can indeed be 
proved [Lau 2] by a method due to Flicker and Kazhdan [F1-Ka], by making use 
of certain unproved conjectures (Arthur's non-invariant trace formula for function 
fields, Deligne's conjecture on the Lefschetz fixed point formula). By contrast, the 
Galois modules obtained here from a division algebra have the ramification 
behaviour mentioned above at the distinguished place co, but are in addition 
ramified at the places where the division algebra ramifies. (We impose that the 
distinguished place oo is not a ramification place of the division algebra.) It may 
therefore be said that our variant of Drinfeld's construction yields fewer Galois 
modules but that due to the compactness of our varieties it can be pushed through 
for arbitrary d. 

We now proceed to explain our main results. We fix a central simple algebra 
D of dimension d 2 over F and fix a place oo outside the ramification locus, Bad, of 
D. Let @ be a maximal order of D. For an F-scheme S we introduce the concept of 
a @-elliptic sheaf over S: this is essentially a vector bundle of rank d 2 on X x S 
equipped with an action of ~ and with a meromorphic ~-linear Frobenius, with 
pole at oo and satisfying some periodicity condition. (Here X denotes the smooth 
projective curve with function field F.) For a non-empty finite closed subscheme 
I ~ X \ {~} we introduce the concept of a level-I-structure on a ~-elliptic sheaf 
over S. We also define an action of 77 on the set g(r of isomorphism classes 
of @-elliptic sheaves with level-l-structure over S. We denote by ,///t the set-valued 
functor on (Sch/F) which to an F-scheme S associates the factor set 
J/g1 = g(~x,~,t(S)/iE. Our .first main result (4.1,5.1,6.2) is that J~f l is representable 
by a smooth quasi-projective algebraic variety o f  dimension d - 1 over F and with 
good reduction at every place o r {oo} u Bad ~ I. Furthermore, (f D is a division 
algebra, then ~#~ is a projective variety. The key tool in our proof of the above result 
is the canonical filtration of Harder, Narasimhan, Quillen and Tjurin which 
controls the instability of a vector bundle on an algebraic curve. For the compact- 
ness assertion we check the valuative criterion through a method used by Drinfeld 
in his analysis [Dr 8] of the degeneration behaviour of Shtuka's of rank 2. We note 
that if (D, ~ )  = (IMd(F), IMd((gx)) the concept of a ~-elliptic sheaf is essentially 
equivalent to Drinfetd's concept of an elliptic sheaf of rank d (Morita equivalence). 

From now on we assume that D is a division algebra. The projective schemes 
JP/t form for varying I a projective system on which the group (D+)• acts. (Here D + 
denotes the adele ring of D outside oo.) This allows us to define an action of 
Gal(F/F)  x (D+) • on the (-adic cohomology groups 

H" = l im H" (Jr |  ~+)  �9 
I 

Denote by (H") ss the associated semi-simplification. For an infinite-dimensional 
irreducible admissible representation n + of (D+) x denote by V'~. the n~ 
component of (H") ss. Our second main result (14.9, 14.12, 16.5) states tha t / f  there 
exists n with V~.~ ~- (0) then the representation/1 = St~ | n ~ o f  D2, is automorphic. 
(Here St~ denotes the Steinberg representation of D~-~ GL~(F~).) Conversely, for 
an automorphic representation 1I o f  the f o r m / 7  = St+ |  we have dim(Vd; ~) 
= m(Fl)" d and V'n~ = (0) for n 4: d - 1. (Here m(17) is the multiplicity of/7 in the 

space of automorphic forms.) Furthermore, v d ;  ~ is the m(II)- th  power o f  an 
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irreducible d-adic representation Wn~ such that for any place o 4: 0% o (~ Bad Jor 
which 17o is unramified, the Galois module WH, is unramifled at o and we have for the 
trace of  a power of the Frobenius 

tr(Frob~; W~) = qr(d-1)/2 (Zl ( l Io)r  -I- " ' "  -t- Zd( l l o ) r )  , 

with Izi(IIo) [ = 1, i = 1 . . . . .  d (Petersson conjecture). Here qo denotes the number 
of elements in the residue field of o and zl (/70) . . . .  , z,(/7o) are the Satake para- 
meters of the unramified representation 17o of D2 = GLd(Fo). The proof of this 
result is based on a description of the set of Y-elliptic sheaves in finite characteristic 
similar to the one by Honda-Tate for abelian varieties in finite characteristic. We 
follow closely Drinfeld [Dr 7] who obtained similar results in the case of elliptic 
sheaves and Shtuka's. We note that, due to the fact that GLa has no L-indistin- 
guishability, this is much simpler than the corresponding problem for general 
Shimura varieties. From this description we obtain an expression for the trace of 
the action of a Hecke operator times a power of the Frobenius on cohomology in 
terms of orbital integrals. This method, inaugurated by Ihara and greatly de- 
veloped by Langlands and Kottwitz, is now completely standard. We use the 
Grothendieck-Lefschetz fixed point formula (which is simple since our varieties are 
compact), but the "fundamental lemma" which allows one to convert a twisted 
orbital integral into an orbital integral and is customarily invoked for Shimura 
varieties at this point is used only implicitly. Instead we follow Drinfeld using his 
classification of effective Dieudonn6 modules of height 1 and his calculation of the 
orbital integrals of the Hecke function corresponding to a power of the Frobenius. 
Another ingredient of our proof is the use of Kottwitz' Euler-Poincar6 functions 
[Kot 2]. We then apply the Setberg trace formula (which is simple for a division 
algebra). At this point we obtain the assertions above as they pertain to the virtual 
Galois module ~ (  - 1)" V~ .  However, to deduce the full result stated above we 
have to invoke an additional argument on "weights" which is based on Grothen- 
dieck's functional equation for L-functions and Deligne's purity theorems. In the 
original version of this paper this argument was also based on the strong Lefschetz 
theorem and used an ample invariant class. Since, as was pointed out to us by one 
of the referees, the existence of such a class is not obvious we indicate briefly how it 
follows from unpublished results of Drinfeld. Moreover, we rearranged our original 
proof so that we can base the argument alternatively on the strong Lefschetz 
theorem or on the classification of unitary representations of GLe(Fo) due to Tadi6. 
We note that for /7  in the image of the global Jacquet-Langlands correspondence 
between automorphic representations of D~, and GLe(A~) (i.e., for a l l /7  if d = 2 or 
d = 3 [Ja-Pi-Sh 1] and conjecturally all H for arbitrary d) these complicated 
arguments are not needed. Moreover, then m(l l )  = 1 a n d / 7  and Vfr ~ are up to 
a Tate twist ( d -  1)/2 in global Langlands correspondence. This in particular 
applies to those H used in our proof of the local Langlands correspondence. In our 
statement of our second main result we have restricted ourselves to the cohomol- 
ogy of the constant sheaf ~ ; ;  we refer the reader to the main body of the text (13.8, 
14.20) for a review of the problems posed by other local systems on our varieties. 

Our third main result (15.7) is the local Langlands correspondence which 
establishes a bijection between the set of  isomorphism classes of irreducible E-adic 
Galois representations of  dimension d of  a local field F of characteristic p (with finite 
determinant character) and the set of  isomorphism classes of  irreducible supercus- 
pidal representations of  GLd(F)(with finite central character). This correspondence 
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has all desired properties: preservation of L-functions, e-factors (even of pairs), etc. It 
is in fact characterized by its properties [He 5]. To construct this correspondence 
we embed the local situation in a global one defined by a division algebra D and 
apply then our second main result. This method of obtaining a local correspond- 
ence from a global one has deep historical roots: it was in fact the method of the 
first proof of local class field theory, and has also been used by Deligne [De-Hu]. 
See also [F1-Ka]. For  the surjectivity of the correspondence we use Henniart 's 
solution of the numerical Langlands conjecture. 

We now describe briefly the contents of the various sections of this paper. After 
reviewing some well-known facts on central division algebras and their orders in 
Sect. 1 we introduce in Sect. 2 the concept of Y-elliptic sheaves and their level 
structures. Section 3 is not needed in the sequel. It contains Drinfeld's description 
of elliptic sheaves as vector bundles on the non-commutative projective line (or 
rather our variant for Y-elliptic sheaves). In Sects. 4, 5, 6 we construct the moduli 
space of Y-elliptic sheaves with level-I-structure and establish its geometric proper- 
ties. Section 7 is devoted to the definition of Hecke correspondences. As in the 
Drinfeld case [-Dr 2], the moduli variety of Y-elliptic sheaves admits coverings 
which replace the local systems on Shimura varieties given by a rational repres- 
entation of the corresponding group. They are defined in Sect. 8. Sections 9 and 10 
(together with Appendices A and B) give the description of the set of Y-elliptic 
sheaves in finite characteristic. In Sect. 11 the number of fixed points is given as an 
expression involving orbital integrals and in Sect. 12 the Lefschetz fixed point 
formula is invoked and the result of Sect. 11 is generalized from the constant local 
system to general local systems. In Sect. 13 this result is rewritten using the Selberg 
trace formula and the local zeta function of ~ ' t  is determined at a place of good 
reduction. Section 14 contains the proof of our global results and Sect. 15 their 
application to the local Langlands correspondence. Finally, in Sect. 16 we give 
some applications of our global results to the Tate conjectures for our varieties. 

In the present paper we have left aside all questions related to places of bad 
reduction; in particular no mention is made of non-archimedian uniformization at 
the place oo (cf. however, (14.19)), or at a place where the Hasse invariant of D is 
equal to lid. Also, we have restricted ourselves to the case of a maximal order 
although many of our results have analogues for general hereditary orders 
[(Cu-Re, (26.12)]. We hope to take up these questions in a sequel to this paper. We 
also hope to return to the subject by developing a theory of @-Shtuka's (which bear 
the same relationship to Drinfeld's Shtuka's of rank d as Y-elliptic sheaves to his 
elliptic sheaves of rank d). We also do not touch here at all on rationality questions 
(of eigenvalues of Hecke operators etc.). 

List of notations 

F 
X 
IXI 
(9~, Fx 
~:(x) 
qx 
Wx 
x(t) 

global field of characteristic p > 0, with field of constants lFq. 
smooth projective irreducible curve over IFq corresponding to F. 
set of closed points of X, identified with the set of places of F. 
completions of (gx, x resp. of F (x e IX I) 
residue field of x ~ IX I 
cardinality of x(x) 
a uniformizer at x ~ IX [ 
valuation of t e Fx in x e IX L 
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deg(x) 
A 

A T 

AT 

Fr 

= dimF, K(x) 
= l-I '  (Fx, Cx) the adele ring of F 

xelXl 

= H '  (F~, C~) the adele ring outside a set of places T c  IX t 

= [ I '  (F~, ( f ' )  the adele ring inside a set of places T c I X  [ 
x ~ T  

= A r  if T is finite. 

For  a finite closed subscheme I ~ X we use 
deg( I )  = dim~q ((9i) 
J~I = Jr174 Ct for an  Cx-module  ~ .  

The symbol  D will s tand for a centra l  simple F-a lgebra  of d imens ion  d 2 over  F. 
We use 
Da 
D r 

Dr  
invx(D) 
r n  

SLI(D) 

= D @F~t 

= D |  r 
= D | A r  

the Hasse invar ian t  at  x~lXI 
the reduced n o r m  h o m o m o r p h i s m  rn: D • ~ F • 
= Ker(rn) .  

A similar  no t a t i on  will be used for simple central  a lgebras over  o ther  local or global  
fields. F o r  a ring R we denote  by R ~ the opposi te  r ing and  by lMd(R) the mat r ix  
ring of size d with entries in R. 

All schemes, as well as their  p roduc t s  and  morph i sms  between them, are 
supposed to be over  IFq. If X and  Y are schemes we write X x Y for their  p roduc t  
over IFq. A similar no t a t i on  is employed  for the tensor  p roduc t  over IFq. Fo r  
a scheme S, we denote  by F r o b s  its F roben ius  e n d o m o r p h i s m  (over IFq), which is 
the ident i ty  on  the points  and  the q-th power  m ap  on  functions.  We also use 

frobq E Gal(~q/lFq) the a r i thmet ic  Frobenius .  
Frobx = frob~ -aeg(x) ~ Gal(~q/K(x)) the geometr ic  F roben ius  (x e IX }). 

In the la ter  sections we fix an  i somorph i sm ~ / ~ -  II;, where Q / d e n o t e s  an  algebraic 
closure of Qe, ? + p (this is harmless  for the purposes  of this paper  since we do not  
treat ra t ional i ty  quest ions;  this appa ren t  use of the axiom of choice can in fact be 
avoided, cf. [De  2, 1.2.11]). 
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1 Central simple algebras over a function field 

In this section we collect some well-known facts on orders in a finite-dimensional 
simple algebra D over the function field F with center equal to F. Let 

d i m v D  = d z . 

(1.1) Let M ~ D  be a finite subset containing an F-basis olD, For  every x ~  IX} let 

dt'x ~ D | F~ 

be the (gx-submodule generated by M. Then for almost  all x the algebra D @ F~ is 
isomorphic to the matrix algebra IMa(F~) and J l x  is a maximal  compact  subring. 
(cf. [We, XI-1, Theorem 1]). 

(1.2) Let oo e X  be a fixed place and let A = F(X \ {oc}, Cx) be the corresponding 
ring. An order in D with respect to oo is a finitely generated A-algebra J c D  
containing an F-basis of D. For  x ~ IX I, an order in D | F~ is a finitely generated 
C~-algebra ~  ~ D @ Fx containing an F~-basis of D | F~. There is a one-to-one 
correspondence between the orders dg in D with respect to oo and the set of orders 
for all x 4: 

Jg'x ~ D | F~ 

such that  there exists an F-basis M of D with 

~ ' x  = (gx" M for almost  all x # oo . 

This correspondence associates t o / r  orders JC/x = , ~  |  Cx and conversely to 
(dc'x)x~lxl./~} the order 

~ =  N(~,x ~ D) 
x 

(I.3) The set of  orders ~ ' x  c D | F~ for all x ~ IX } such that  there exists an F-basis 
M of D with ~r = (gx" M for almost  all x is in one-to-one correspondence with the 
set of locally free coherent  (gx-algebra sheaves ~ with stalk at the generic point 
equal to D. This correspondence associates to @ the orders ~ |  (9 ,  for all closed 
points x of X. Conversely,  the set of orders J~'~, x e X ,  defines the (gx-algebra 

with value on the open set U 

~ ( U ) =  n (~,#x ~ D ) .  
x ~ U  

(1.4) We now fix once and for all, a sheaf of algebras @ as in (1.3). It  follows from 
(1.3), (1.2) and (1.1) that there is a finite set of places 

B a d ~ [ X l  
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such that for all x ~ Bad, D | F~ is the matrix algebra IMd(Fx) and ~ a maximal 
compact subring isomorphic to llVId (C~). It then follows that locally around every 
x ~ X \Bad in the 6tale topology, the Cx-algebra sheaf 9 is isomorphic to ~qla (Cx). 
In other words the points in X \Bad  are the unramified points for the pair (D, 9 ) .  
A point x can be ramified if D | F~ is not the matrix algebra, or if 9~ is not 
a maximal order. 

(1.5) In the sequel we shall always assume that the distinguished place oo is 
unramified for (D, 9 ) ,  i.e. oo ~X \Bad. Furthermore we shall make the blanket 
assumption that ~ is a maximal order for all x. Much of what follows can be done 
under the assumption that 9~ is a hereditary order for all x, and we shall point this 
out at the appropriate places. 

2 T h e  c o n c e p t  o f  a @-e l l ip t i c  shea f .  L e v e l  s t ruc tures  

(2.1) We fix a sheaf of Cx-algebras 9 with generic fibre D as in the previous 
section and such that the distinguished place ~ is unramified with respect to (9 ,  D) 
(cf. (1.4)). Let S be a scheme ( = IF:scheme). 

(2.2) D e f i n i t i o n .  A 9-elliptic sheaf over S is a sequence (~i, Ji, ti), i e Z, where ~i are 
locally free Cx • s-modules of rank d E equipped with a right action of 9 compatible 
with the Cx-action and where 

j i : ~ i - - r  ~ i + /  

t i : ~ i ~  ~ i+1 

are injective Cx• homomorphisms compatible with C~-actions. Here 
~r (idx x Frobs)*o~i. The following conditions should hold: 

(i) The diagrams 

are commutative. 

Jt 
$i ' 8i+1 

~8i- 1 7, t ~ ~ i  

(ii) o~+a.dog(oo)= ~i(oo):=o~|215 and the composite d i c - ~ . . .  
~i+d.aog(~o) is induced by the canonical injection Cx c_~ Cx(OV). 

(iii) The direct image of o~i/~_ 1 by p r s :X  • S ~ S is a locally free Cs-module of 
rank d. 
(iv) Coker tg is supported by the graph of a morphism io : S ~ X and is the direct 

image of a locally free module on S by its graph S (,.,,d~, X • S; moreover io 
~atisfies i o ( S ) c X ' : =  X \  {0o} \Bad .  The morphism io is called the zero of the 
'/-elliptic sheaf. 

,2.3) Remarks. (a) We often write a 9-elliptic sheaf in the form 
,J, 

�9 �9 �9 ~ ~ i  ~ " Y i + l  ~ �9 �9 �9 

t, ,~ 6+, ,'~ 
7, 

�9 . .  ~ ~ i  c _ +  ~o~i+1 c_~ . . .  

and refer to the first and second row of it. 
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(b) Since oo is an unramified place, 9 | x(oo) ~ ~/id (X(OO)). Ifg ~ S is a geomet- 
ric point, g i / g ~ - 1  is a module over 

~,~(~(oo) @~ ~(~) --- 0 ~,~(~(~)) �9 
Hom(~ioo),KIg)) 

Therefore condition (iii) implies that the action factors through one factor and 
g~/g~_ 1 is the unique simple module of the corresponding matrix ring. Consider the 
support of 8 i / g l -  1 (the closed subscheme of X x S defined by the annihilator ideal) 
and its pullback over g. It is contained in oe x g = Spec (0)HomI~l~),~t~)) X(g)) and 
corresponds actually to the factor singled out before. Therefore we see that supp 
(g~/g i - l )  maps isomorphically to S and we may reformulate condition (iii) as 
follows: 

(iii ') g~/g~_ a is a locally free sheaf of rank d on the graph of a morphism 

i oo , i :S  ~ X 

which factors through Spec (x(oo)) c_~ X. 

Note that the condition i~,~(S) = {oo} is automatic since 

supp (~ i  + 1/ 'Yl) ~ supp (~i(oo)/~i) = ~ x S . 

Also the condition on the rank can be weakened; it suffices to require that 
(~i)~ 4: (~i-1)~ for all s ~ S ,  because 

d'deg(~) 

d i m ( g i / g i - 1 ) ~  = d2"deg(~)  
i=~ 

and because d ~ i / g i - 1 ,  being a representation of the matrix ring, has dimension 
divisible by d. 
(c) Similar remarks apply to condition (iv). Indeed, if s ~ S then io (s )~  X '  and hence 
i* (9 )  ~ -~ Rr (x (s)). Therefore condition (iv) is equivalent to the following condition 

(iv') The direct image of Coker t~ is a locally free Cs-module of rank d. The support 
of Coker ti is disjoint from ({or} w Bad)x S. 

(d) Since the inclusion g i -  1 ~ d~i is an isomorphism over (X \ { ~ } ) x S the data of 
all homomorphisms t~ are equivalent to giving a single one of them. This argument 
also shows that the morphism i0 in condition (iv) is independent of the index i. 
(e) Since the support of Coker t~ is disjoint from ov • S, we have isomorphisms 

~ ( S i / g i -  1 ) --" gi  + 1 / ~  �9 

In particular for the morphisms i~o,~:S ~ X we obtain 

ioo,i~ F r o b s  = ioo,i+ x �9 

Note that, since i ~ , ~ ( S ) =  {oo}, we have 

i ~ , i  ---- /cc,i+deg(o~) �9 

(f) Suppose that (D, 9 )  is of the form (lMe(/)), ~I~(~))  where dimv(/~) = (d/e)  2. 
Then the concept of 9-ell iptic sheaf can be interpreted, via Morita equivalence 
(cf. (9.5)) as "9-elliptic sheaf of rank e (over ~)" ,  the defni t ion of which is left to the 
reader. When 9 = r  (e = d), these objects were introduced by Drinfeld. 
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(2.4) Denote by g~dx.~(S)=: g(f~(S)  the category whose objects are the 
~-elliptic sheaves over S and whose morphisms are the isomorphisms between 
~-elliptic sheaves. If S' ~ S is an S-scheme, then a ~-elliptic sheaf ( ~ ,  j~, t~) defines 
by pull-back a ~-elliptic sheaf over S'. This defines a fibered category 

S ~ ~ f x , ~  (S) 

over the category of Fq-schemes, which obviously is a stack for the fppf-topology.  
The functor which associates to (gl, Jl, ti)e ob ~##~ (S) the morphism io:S--* X 
defines a morphism of stacks 

zero : gddx,~ ~ X 

which factors through X ' c X .  

Remark. By imposing the condition that zero factors through X '  we avoid prob- 
lems connected with bad reduction; including the place 0o would have meant 
dealing with "uniformisation ft la Drinfeld ' ;  including the ramified primes would 
have meant dealing with situations analogous to bad reduction in the number field 
case IRa]. We hope to return to these questions in future work. 

Similarly to i0, the morphism i ~o,o above defines a morphism gddv ~ X which 
factors through Spec(K(c~)). This is called the pole morphism, 

pole: ocddx,~ --* Spec(K(~)) .  

The group Z acts on the stack oCddx,e by I-n] (g~, Ji, q) = (o~, J~, t'i) with d~ = gi+, ,  
J'i = j i + . ,  t~ = ti+,. On Spec(K(c~)) the group (7//deg(oo)7/) acts, 1 acts by 
Frob~ and we have the canonical group homomorphism Z - G  ~ 7//deg(oo)7/. 

Then the diagram 

~, e x pole ,L pole 

7 / /deg (~ )7 / •  Specx (~ )  ~ Spec~:(~) 

where the rows are given by the group actions is commutative. 

(2.5) Let l m X  be a finite closed subscheme with 0o r 1 and let (8~, j~, t~)~z be 
a ~-elliptic sheaf with zero in io(S) disjoint from I. Then g~l~• and t~11• s are 
independent of i ~ 7/. Let us denote them by 81~ • s and tl~ • s : ~eglt • s --* gl~ • s. More- 
over, tl,• is an isomorphism. We consider the functor 

Et : Sch/S ~ H ~ (1, ~)-right-modules 

T/S  ~ Ker(H~ (I x T, tli• - id,l~s )) 

(where tl~• is considered as a q-linear map from glt• into itself). 

(2.6) Lemma. EI is representable by a finite btale scheme over S in free H ~ (I, ~ ) -  
modules of  rank 1. 

Proof To any locally free sheaf of (gs-modules f f  of constant finite rank n equip- 
ped with an isomorphism ~0:(Frobs)*ff-v~ff  there is associated a functor 
K ( ~ ,  q~) to the category of abelian groups 

T/S  ~-~ Ker(H~ (I  x T, q~ - ida)  
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(where we have again considered ~0 as a q-linear map from ~ into itself), comp. 
[Dr 6]. This functor is representable by a finite &ale commutative group scheme 
over S of order q". Indeed, locally on S for the Zariski topology, ~- = (9" s, ~0 is given 
by a matrix ~ e G L , ( H ~  Cs)) and K ( ~ - ,  q~) is representable by the group 
scheme 

where 

Then it follows that our E~ is representable by a finite 6tale scheme in H ~ (I, 3 ) -  
modules of order IH ~ (I, 3 ) [ .  It remains to show that this module is locally free of 
rank 1 over H ~  N)  and for this we can assume that the support o f / i s  a single 
point x. It is easy to see that 

Ex :=  lim El (X(x ) )  
< I 

where I runs through all finite dosed subschemes of X with support x, is a 
N~-module such that 

Ei(~c(x) ) = Ex | f P l  . 

((91 is a quotient of (9~ as the support of I is x.) A standard argument [Dr 1,2.2] 
shows therefore that the fact on the order of Ex already established implies that E~ 
is a free (9~-module of rank d 2. Since N~ is a maximal order it follows that E~ is 
a free N~-module of rank one (comp. [Cu-Re, 26.24(iii)]). [] 

(2.7) Definition. Let I c X be a finite closed subscheme. A level-I structure on 
a O-elliptic module ( ~ ,  ti, j l)  over S is an isomorphism of (gz• 

t :Nt  [] Cs - ~ ,  or215 

compatible with the actions of @t (by right translations o n  N I [] (9s) and such that 
the following diagram is commutative: 

~llxS tltxs~ ~162 

Nz [] (9 s. 

By definition, if the zero io (S) of a N-elliptic sheaf (~i, ji, h) meets the support of I, 
then (80 does not possess any level-I-structure in our sense (but see [Dr 1]). 

Denoting by #E(x,e,~ the corresponding stack of O-elliptic sheaves with level- 
/-structure we obtain a commutative diagram of morphisms of stacks 

&~ 1 , X '  \ I 

+r, ? 
gffx,~ zero, X \  {oe, Bad} = X '  

(where rt is the omission of the level-l-structure.) 
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F o r  any pairs I c J c X \ { ~ } of finite closed subschemes, we have a morphism 
of stacks 

rx, j : U : x , ~ , j  ~ ~g(x,2,s  

by restricting to I the level-J-structure and the obvious d iagram commutes�9 

(2.8)  By definition g::x ,~,~ enters in a 2-cartesian d iagram of stacks 

g : :  x,~,x ' ~'ec'x,~. l 

+ + (id, F rob)  

Heckex,~,~ ~ �9 > ecx,~, t  x ~ec'x,~,s  

+ 

X ' \ I .  

Here ~ec*x,~,s = ~/ec~,,  is the stack classifying the sequences (g~, J0 as in the first 
row of a Y-elliptic sheaf satisfying the condit ions (2.2)(ii) and (iii) together with 
a level-I-structure (definition obvious) and Hecke~,1 classifies the commuta t ive  
diagrams 

L 
� 9  c_-+ ~i  c_+ 8i+1 c__+ . . .  

. . .  ~-~ ~'~ ~ ~ + ~  ~-~ . . .  

such that  ( ~ ,  j i )  satisfies the condit ions (2.2)(ii) and (iii) and such that  the t~'s satisfy 
the condi t ion (2.2)(iv), together  with a level-l-structure�9 Then it is clear that  the 

t . # ~//: �9 sequence (Ez, j~) together  with the level-l-structure belongs to eco.,~. 

(2.9)  Let (gi, j~, t~) be a Y-elliptic sheaf over S and let Lf be an invertible sheaf 
on X. Then it is clear that  

( ~ ,  j'~, t}) = ( ~  |  Sfl, j~ | id~,, t, |  

is again a Y-elliptic sheaf. So we have an action of the group Pic(X)  on the stack 
d: :x ,2 .  Similarly, if (g~, t,) is equipped with a level-I-structure and if 5r is equipped 
with a level-I-structure (i.e. an isomorphism of (gx-modules 5~ ~ (9,), then we 
obtain a level-I-structure on the new Y-elliptic sheaf (g~, j~, t~). So we have an 
action of the group Pic~(X) on the stack g::~,s .  

Note  that  for all s e S 

deg (g'~)~ = deg (~)~ + d 2. deg ( ~ )  

and similarly for the Euler-Poincar6 characteristics: 

Z(~'i)s = Z(~i)s + d 2 . deg (Sq) .  

3 Y-el l ipt ic  sheaves  and vector bundles on the non-commutat ive  projective line 

In [Dr  3] Drinfeld shows that  there is an equivalence of categories between the 
category of elliptic sheaves over S and the category of elliptic modules over S. In 
this section we consider the analogous  question for Y-elliptic sheaves. Whereas  in 
the case of elliptic sheaves one has to deal with the endomorph i sm ring of the 
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additive group ~ ,  we are here lead in a natural way into dealing with the 
endomorphism ring of ~3~. Therefore, there is an obvious relation to Anderson's 
t-motives [An].  Throughout this section we fix a base field L which we suppose 
perfect. 

(3.1) We first recall briefly some basic facts about the skew polynomial ring L[z]  
in the case that L is perfect, the commutation relation being as usual zb = bqT. 

The ring L[z l  admits a left and right Euclidean algorithm. Therefore, any left or 
right ideal is principal, and hence any finitely generated torsion-free module is free. 

(3.2) Lemma. The ring L[z]  satisfies the left and the right Ore condition. Hence it 
possesses a left and right skew field of fractions. 

Proof The left Ore condition [Her]  demands that for given f ,  g e L [ r ]  we find 
x, y ~ L [ z ]  such that 

x f =  y g .  

Consider the homomorphism of left L[r]-modules 

q~:L[z] 2 -~ L[z] 

(x, y) w* x f -  yg . 

For  each non negative integer n, let 

L[z ] ,  = {aeL[z] ;  degda) _-< n} 

where deg,(a) is the degree of the skew polynomial a. Then 

dimL(L[z],)  = n + 1 

and 

Therefore 

q~(L[Z]d~glg)+, (~ L[z]a,gcS)+,)cL[z]a,g(f)+d~g~o)+, �9 

Ker ((p) c~ (L[z]aeg~0)+, 03 L[z]deg~r # (0). 

Hence, Ker (q~) is non-trivial, as had to be shown. By a similar argument we get the 
right Ore condition for [z]L  = { ~  z"a,} which is equal to L [ r ]  as L is perfect. 
The fraction field is then formed as the ring of elements of the form a -  a. b or of the 
form c" d-1, a, b, c, d ~ L[z],  a 4: O, d 4= O, comp. [Her, Theorem 7.1.1]. 

(3.3) Similar statements are true for the ring of skew power series L I l t ] ] .  Its 
skew field of fractions may be identified with the field of skew Laurent series L((z)). 

(3.4) Let E = (d'~, Ji, ti),~z be a @-elliptic sheaf over Spec(L). We consider 

P = H ~ ( ( x \  {oo}) | L, 8,).  

This is clearly independent o f /  since supp(d~ x Spec(L). It is an 
L [z]-module, where the operation of r is induced from t i : ' g l  --* g~. ~. 

(3.5) Lemma. The L[Q-rnodule P is free of rank d. 

Proof We choose i large enough, such that the canonical homomorphism 

F ( X  | L, gi)  ~ F ( X  | L, gi /gi-1)  
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is surjective. This is possible because of the periodicity of (8i, Ji, ti) and the 
ampleness of the line bundle (fx(~) .  We choose an L-basis el . . . . .  e, of 
F(X | L, ~ )  such that el . . . . .  ea go to a basis of F(X | L, ~i/8i-1) under the 
above map. 

Then it is immediate to check the following points: 
(i) for all j > 0 zJei . . . . .  zJea are sections in F ( X  | L, ~ + j ) ,  such that their 
images in F ( X  | L, 6i+j/~i+j- 1) form again a basis. 
(ii) {el . . . . .  er} u {zheill < h < j ,  1 < i <- d} form a generating system of 
F(X | L, $i+j)  as an L-vector-space. 

(iii) {el . . . . .  e,} is a generating system of P = l i ra  F ( X  | L, ~i+~) over L[z]. 
]8l  

Therefore in particular P is a finitely generated module over L [z]. Next we show 
that P is a torsion free L[z]-module .  Suppose f (z)~ L [ r ]  \ {0} and e ~ P \ {0}. We 
can find i ~ 2g such that e ~ F(X,  6~) and e ~ F(X,  ,~_ 1). Then zJe ~ F ( X ,  ~+j )  and 
zJe ~ F(Xi ,  '~i +j- 1 ) for j ~ IN. Suppose the degree of f (z) as a polynomial  in z is m. 
Then f (z)eeF(X,d~i+m) and f ( z ) e  ~ F(X,~ i+m-1 ) .  In particular f ( z )e  # 0 .  
Therefore P is a torsion free L[z] -module  of finite rank. Consequently,  P is a free 
L Ix] -module of finite rank. Now P/zP is isomorphic to gi / t i -  1 ( ~ i  - 1 ) ( for any i ). 
Therefore P/zP is a d-dimensional L-vectorspace, and this shows that P is a free 
L[ r ] -modu le  of rank d. [] 

(3.6) Let OD = H ~  ~) .  It is an order of D over A = H ~  (gx). 
Then P has a natural  structure of right OD-module which commutes with the left 
action of L[z] .  The underlying A | L-module is locally free of rank d 2. Let us 
denote by 

(~0 : O ~  p --'~ EndLH (P) 

the corresponding homomorphism of lFq-algebras. We obtain a commutative 
diagram of homomorphisms 

O~ p ~ ~ End L[~I (P)  

O~ |  , EndL(P/rP). 

Here A ~ L is the zero of the @-elliptic sheaf and the lower horizontal  arrow is 
given by the operation of Ov on r ~(~g~_ 1). 

(3.7) Lemma.  For any a e Oo r~ D • the map q~(a): P ~ P is injective and its coker- 
nel P/q)(a)P is a finite dimensional vector space over L of dimension logq IOo/OD" a[. 

Proof The map ~0(a) is A |  and q ~ ( a ) @ a i d v : P | 1 7 4  is 
bijective. (Note that a is invertible in O o |  = D.) So q~(a) is injective and 
dimL(P/~o(a)P) < ~ .  Now it is immediate to see that the map 
(90 c~ D • ~ a ~-~ dimL (PAo(a)P) =:  f(a) satisfies f (ab)  = f(a) + f(b) .  Therefore it 
extends to a homomorphism 

D •  

The same holds true for the map  

Oo n D • ~a ~ logqlOo/Oo'a[ . 
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Both maps agree on F • c D • because they obviously agree on A \ {0} and both 
maps factor over D•215215 But by a well known result [-Wa] 
[D • • = SLx(D) and the reduced norm D • r, , F  • by Eichler (cf. [Re, 
Theorem 34.8]) is in our  situation surjective. Therefore we can factor our two maps 
through maps from F • to 7/which are identical on (F•  • . But then they agree 
on F • itself. [] 

Remark. (i) With a little more effort it would be possible working first locally to 
avoid the somewhat difficult theorems above but  we wanted a quick proof. 
(ii) The lemma implies that q~ : O~ p --* EndL(P) is injective. 

(3.8) Corollary. Let L(r) be the skew-field of  fractions of  L[z] and put 
V = L(z) | The homomorphism 

~o:O~ p --+ EndLm(P)  

extends in a unique way to a homomorphism 

~p:D ~ --* EndL~)(V).  

Proof L(r) is the union of free L[ r ] -modules  and is therefore a flat module. Since 
for a~OD n D • the homomorphism ~o(a) is injective, it follows that also 

i d |  ~o(a):L(r) @ P ~ L(r) @ P 
L[~] L[r] 

is injective. Since these are finite dimensional  L(z)-vector-spaces it follows that 
id | ~o(a) is bijective and therefore we can extend ~0. [] 

(3.9) Recall that L [ r ]  is the ring of lFq-linear endomorphisms of the additive 
group ~ ,  over L (r is the Frobenius  endomorphism relative to IFq). It follows that 
the functors 

E ~ H o m ~ ( E ,  G , )  

and 
P w. HOmL[~I(P , Ca) 

are anti-equivalences of categories between unipotent  groups over L, with 
Fq-module  structures, isomorphic to 113~ for some N and free left L [z]-modules of 
finite rank. Therefore, fixing a basis of P as an L [r]-module,  we can rewrite q) as an 
embedding 

(~0:0 D ~ End~,(G,d,L) 

of IFq-algebras. 

(3.10) Proposition. For a ~ (9D c~ D • the endomorphism q)(a) of  II3~,L is surjective 
with kernel a finite group scheme over Spec(L) of order lOt)/OD'al. Moreover this 
kernel is ~tale over Spec(L) i f  and only i f  the zero of  the ~-elliptic sheaf is disjoint 
from the divisor div(rn(a)). 

Proof For  any commutat ive L-algebra R, the R-valued points of Ker(~o(a)) are 
given by 

Ker(q~(a)) (Spec R) = HomLm(P/q)(a)P, R) 

= {u s HomL (P/q)(a)P, R); u(~x) = u(x) q } . 
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Consider  the finite-dimensional L-vector-space P/~p(a)P as a locally free sheaf of 
rank logq I0o/0o"  al on Spec(L). The operat ion of z endows this with the structure 
of a q~-sheaf on Spec (L) in the sense of Drinfeld [Dr  6] and Ker  ~0 (a) is precisely the 
finite group scheme associated by Drinfeld to this q~-sheaf, as follows from the 
descript ion above. To see then that  all our assertions follow from Proposi t ion 2.1 of 
loc. cit. it suffices to remark that  

z: P/qg(a)P ~ e/q~(a)P 

is bijective if and only if ~p(a) : P/TP ~ P/zP is bijective, i.e. if and only if the last 
condi t ion in the assertion is satisfied. [] 

(3.11) Let g i ,~  = H~ Q L ) , 6 i ) .  This is independent  of i. Since ti,~: 
~gi,~ ~ g i + l , o ~  is an isomorphism, we obtain via the inclusions 
J~, ~ : ~ ,  ~ ~ g~+ 1, ~ a z -  l- l inear endomorphism of gi, ~. We therefore obtain on 
gl, ~ the structure of a L [z-X]-module.  This action is obviously continuous for the 
r - l - a d i c  topology on L[z  -1]  and the ~ - a d i c  topology on g~,~ and therefore 
g i ,~  is even a L [ [ r - 1 ] ] - m o d u l e  (for any i~ 77). Nakayama ' s  lemma and the fact 
that  g ~ , ~ / z - l g ~ , ~  is a d-dimensional  L-vectorspace imply that  g / ,~  is a free 
L [ [ z - l ]  ] -module  of rank d. In addi t ion gi, ~ is a right-@ ~-module  so that  we get 
an F : a l g e b r a  homomorph i sm 

q ~ : ~ o p  ~ EndLH~-~II(~i,~) 

which is injective as before. 

(3.12) Proposition. There are canonical isomorphisms 

F ~  Q g i ,~  , ~ L( (z -1) )  (~ ~~ ~ ~ L ( ( r - 1 ) ) Q  P .  
6:~ L[[~: t l ]  L i t ]  

Proof. To define the left ar row we shall first define the structure of a L( (z -1) )  - 
module  on Fo~ | g~,~. Let ~ denote a uniformising element at ~ .  F rom the 
periodicity condi t ion we have 

" c - d ' d e g ( ~ ) ~ i , ~  ~ t i J~  " 9(~i, ~ 

Therefore, if e ~ C~, ~, we define e' z d~, ~ by 

" c - d ' d e g ( ~ )  et -~ lYJ~ " e 

(r ~, is a free L [ [ z - 1 ] ] - m o d u l e )  and put  

Z~'d~ | e) = ~ 1  | e ' .  

Since L((z-1))  = 0 z~ '~ 'd~  , this defines a L((z-1))- l inear  map  
j = l  

L [ [ t -  ~]] t':, 

extending the identi ty map  of gi, ~. It is obvious that  the map  is surjective. On the 
other hand, any L( (z -  ~))-submodule of L ( ( z -  1)) |  ~ n 6~i, ~ has a non-tr ivial  
intersection with g~,~ and hence the kernel of this map  is trivial. The first 
i somorphism is established. It also shows that  the middle term is independent  of i. 
The second ar row is induced from the inclusion 

P c  U #i,o~ =Foo (~) 5~,,~o = F~o(~) e .  
i e~ A 
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The argument used in the proof of Corollary 3.8 shows that the operation of A on 
P extends to an operation of F on L ((z-1)) | P. The topology on F~ | ~ ,  | 
defined by z-"'g~,oo, n ~ o% coincides with the topology defined by ~g~,o~ ,  
n ~ oo. Since the image of the second arrow is a L((z- 1))-subvector space it is 
a closed subset. On the other hand it is clearly stable under the operation of F via 
its embedding in F~. Therefore, by continuity, the image is stable under F~ and 
therefore must be all of Foo |  ~ L((z-1)) | But both sides of the 
second arrow are L((r-~))-vector-spaees of dimension d, therefore the surjectivity 
of the map implies the injectivity. [] 

The following definition was suggested by Drinfeld in a letter to one of us [Dr 5]. 

(3.13) Definition. Let L be a perfect field. A vector bundle of rank r over the 
non-commutative projective line over L, IP[(z), is a free L[z]-module P of rank 
r together with a free L i l t - 1 ]  ]-submodule W~o ~ L((z-a)) |  such that the 
induced map 

L(('r- 1)) (~ Woo -~ L((z- 1)) (~ p 
L[[~- l]] L[z] 

is an isomorphism. A homomorphism of vector bundles (P, W~)--+ (P', I4: ' )  is 
a pair of module homomorphisms 

--~ t qg:P P,~oo~:W~ ~ W "  

making the obvious diagram commutative 

L((z_l) ) Q P id|  L ( (_1 )  ) (~) p,  
L [r] L [r] 

L((27_ 1) ) (~) Woo i d |  L((~._ 1) ) (~) W~o. 
L[[~- J]] L[[~- 1]] 

Note that the vector bundles of variable rank over the non-commutative projective 
line over L form an exact category. We also need the following definition. 

(3.14) Definition. A coherent right ~-action on a vector bundle (P, Woo) over the 
non-commutative projective line is a commutative diagram of ring homomorphisms 

O~ p ' EndL[~l P 

F~ ~ O~ = F ~  | ~oo , EndLtI~-,))(L((z-1)) (~ P) 
A ~ | L ix] 

UI T 
~oo , EndLt[~- 2]j (Woo) 

where the vertical arrows are the canonical ones and where, of course, 

Endt.(~-~)) (L((z-1)) (~) P) = EndL{(~-,)) (L((T-1)) (~) W~).  
L[~] L[[r- a]] 

To go further, we need some important properties of vector bundles over the 
non-commutative projective line. 
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(3.15) Definition. The cohomology 9roups of a vector bundle E = (P, Woo) over 
PI,(z) are 

(i) H ~ (Pl(z), E) = (P c~ Woo) (intersection inside L((z-  1)) | P using the identi- 
fication map). 
(ii) H i (p  a(z), E) = L((z-  1)) @LH P / (P  + W~). 

Remarks. (i) Given an exact sequence of vector bundles 

O-+ Ei--~ E ~ E2--~ O 

on P l(z), it is an exercise to see that we have an exact cohomology sequence 

0 --* H ~  (~ 1 (z), E l )  -+ H ~  1 (z), E) ~ H ~  1 (z), E2) 

H i (IP 1 (z), El)  -~ H 1 (P ,  (z), E) -~ H 1 (]I)1 ('C), E 2 ) -~ 0 .  

Here the connecting homomorphism sends an element sEH~ = 
P ( E 2 ) ~  W o o ( E 2 ) i n t o  the residue class of ~ - - ~ L ( ( z - 1 ) ) |  
(P(E 1 ) + Woo (E 1 )), where ~ ~ P (E) is a lifting of s ~ P(E2 ) and ~oo e Woo (E) is a lifting 
of S~ Woo(E2). 

(ii) We denote by (~(n)(neZ) the vector bundles (9(n) -- (L[z] ,  z"L[[z-1]]) ,  with 
z"L[[z -1]]cL( ( z -1 ) ) .  One has 

H o (p  1 (z), O(n)) = ~ 0 for n < 0 
dimL ( n + l  for n_->0 

dimLH 1 (p1 (z), (fi(n)) = f 0 for n >_- - 1 
( - n - 1  for n <  - 1 .  

More generally, for any vector bundle E = (P, Woo) on IP 1(~) we denote by E(n) 
(n 6 Z)  the twisted vector bundle (P, z ~ W~). 

(3.16) Proposition. (i) Any vector bundle of rank one is isomorphic to precisely one 
of the form (9(n). 
(ii) Any vector bundle of rank r is isomorphic to a direct sum of vector bundles of 
rank one. 
(iii) For any vector bundle E over Ipi(z) the cohomology groups are finite dimen- 
sional L-vector-spaces. 

Proof. (i) is trivial and (iii) is true for rank one bundles by the remark above. In 
general then (ii) implies (iii). 

Wc prove (ii) by induct ion on the rank exactly as in the commutat ive case 
[Ok-Sch-Sp, Theorem 2.11]. Given a bundle E of rank r, we can find an exact 
sequence of vector bundles 

O --* ~(m) -~ E -~ E' ~ O . 

But E ' g  @[2-I (~(n~) by induct ion hypothesis. This shows immediately that the 
possible m are bounded from above for if wc had some other line subbundle  

(9(m') - ,  E ,  

it would either factorize through O(m) and then m' __< m or it would give a non  zero 
homomorphism (by composing) O(m') -~ (9(n~) for some i, 1 < i --% r - 1, and then 
m' ~ ni. 
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Therefore by rescaling, we can assume that the m above is maximal and m = 0. 
Twisting by (9( - 1), we obta in  an exact sequence of vector bundles 

r--1 
0--* ( 9 ( -  1 ) ~  E ( -  1 ) ~  E ' ( -  1) = ( ~  (9(n,-  1)--, 0 .  

i=i  

By assumption H ~ (P1 (z), E( - 1)) = 0 (otherwise we would have C(1)c  E). Fur-  
thermore by the remark (ii) above, H 1 (F 1 (T), (9( - 1)) = 0. But then the long exact 
cohomology sequence implies that 

H 0 ~ 1  (T), O (9(n i - -  l )  = ~ H ~  (T), (9(n i - -  1)) 
i=1 

= (0).  

Therefore nl < 0 for all i = 1 . . . . .  r - 1. But the extensions like 

O ~ (9 --~ E ~ E' --* O 

are classified as in the commutative case by the L-vector-space 

r--1 
O H1 (~'1 (~), (9( - nl)) = (0) 
i=1 

by remark (ii). This means that the sequence for E splits, therefore 

r--1 
= ( 9 |  �9 (9(n,) .  [ ]  

i=l  

(3.17) Theorem. The functor 

(~,, ji, t,),~z ~ ( P : =  H ~  g~o), W ,  :=  go .~)  

defines an equivalence of categories between the category of ~-elliptic sheaves over 
L and the full subcategory of  the category of vector bundles over 1PL1 (~) with coherent 
right 9-action which satisfy the following conditions: 

(i) The induced homomorphism 

A --'* O~ p ,o , EndLt,] (P) ~ EndL(P/zP) 

equips P/zP with an action of  A which factors over the (central) action of L on P/zP 
(and is therefore given by a ring homomorphism A -~ L). 
(ii) P is finitely generated as an A |  L-module. 
(iii) W~ is finitely generated as an (9o0 | L-module. 
(iv) We have "C -d 'deg(~) W ~  ~- ~[]Qo Woo. 

Proof. It is by now clear that the functor in question has its image in this 
subcategory. From the description of a locally free sheaf on a curve through lattices 
in its generic fibre, it follows easily that the functor is fully faithful. We have to 
prove the essential surjectivity. 

Let (P, W~o) be given. Let 

Poo=L((z-1)) (~ P 
L [~] 
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be the F~-subspace generated by P (the structure of a F~-vector-space on 
L((z-1)) |  comes from its (F~ | (2D)-right module structure). Since P is 
finitely generated as (A | Po~ is a finitely generated (F~ |  
module. Since W~ is a finitely generated ((9~ | so is (W~ n Po~). 

Claim. Woo n P~ is an ((9oo |  L)-lattice in P~,  i.e. the canonical map 

F~ Q (W~ n P ~ ) ~ P ~  
0~ 

is an isomorphism. 

First of all, because W~ n P~ is a finitely generated ((9~ |  L)-module 
contained in the F~  @ ~-0 L-module P~,  the map above is injective. If surjectivity 
did not hold, then P~/ (W~ n P~) would contain a (F~ | F~ L)-module of positive 
dimension and therefore would have uncountable dimension as a L-vector-space. 
On the other hand 

P ~ / ( W ~  n P ~ , ) ~ L ( ( z - 1 ) ) |  ~-(L((z-1)) /L[[z-1]])QLII~ ']1 W~ 

has countable L-dimension, a contradiction, whence the claim above. 

Claim. P is an A | ~0 L-lattice in P~,  i.e. 

F~ @ P - * P ~  
A 

is an isomorphism. 

Surjectivity is immediate from the definition of P~. Just as in the previous claim we 
have that for every n 

~ Woo n Po~ 

is a ((9| |  L)-lattice in P~.  
Since 

n (z-"Woo n P ~ ) = ( 0 )  
n_>0 

we see that z-"  Woo c~ P~,  n ~ ~ ,  form a fundamental system of neighbourhoods 
of 0 in P~,  considered as a topological (F~ @F, L)-module. If now injectivity did 
not hold, then P ~ P ~  would not be discrete and hence 

P n (~-" W~ n P~) 4: (0) 

for all n. However, Proposition 3.16 above implies that 

P n z - " W ~  =(0)  

for n > no, no sufficiently large, a contradiction. This proves the second claim. 
We can now define vector bundles ~ over X |  for all i ~ 7 / b y  

/-/~ ((X \ {oo}) |  ~,) = P 

gi, o~ = z i Woo ~ P~ ~Foo G a P .  

The inclusions g~cg~+ 1 are defined by the inclusions "r~Wooc~P~oc 
~+ x Woo n P~ and the homomorphisms t~:~g~ --, g~+ ~ from multiplication by v, 

z : z i W ~  n Po~--~zi+lW~ n P| . 

The action of @ on g~ comes from the operation of ~ on (P, Woo). 
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It remains to show that (g~, t~) is a ~-elliptic sheaf and that (P, Woo) is the 
image of (8,, q) under the functor in question. However, 

~i /~ i_ l  = riwo~ ('3 Poo/'c i - 1  Woz (5 P~  

is an L-subvector-space of ~ W ~ / ,  ~- ~ W . .  Since P~ is stable under the operation 
of F~ |  this subspace is stable under the operation of ~ .  Since 
~ W ~ / z  ~- ~ W ~  is a simple ~oo @F, L-module, so is ~ / ~ _  1. The remaining condi- 
tions on a ~-elliptic sheaf (periodicity, "tangent space" condition on Coker t~) 
follow easily from the conditions imposed on (P, Woo). The rest is clear. [] 

4 Moduli space: Smoothness 

Our aim in this section will be to prove the following theorem. 

(4.1) Theorem. 8dEx,~,l is an algebraic stack in the sense of  Deligne-Mumford 
(cf. [De-Mu])  which is smooth of  relative dimension (d - t) over X ' \  I. 

For the smoothness assertion in this theorem we shall apply the following lemma 
to the diagram in (2.8). 

(4.2) Lemma. Let S, U, V be smooth lFq-schemes and let ct : V ~ U • U, f :  V ~ S be 
Fq-morphisms. We form the cartesian square 

w ~ u 

' f j v  ~ ? i=(Frobv,idv) 
G( g ~ U x U  

Let w e  W and put v = j(w). Assume that 

( f ,  prl o~): V ~ S x  U 

is smooth, o f  relative dimension n in v. Then g is smooth of  relative dimension n in w. 

Proof. Let u = fl(w) and i(u) = (u', u). We have to check the transversality condi- 
tion 

T( . , , , ) (Ux  U) = T,,(U) x T~(U) 

= T~(~) (T~(V/S)) + Tu(i) ( T , ( U ) ) .  

However, 

and the composition 

T~(i)(T~U) = {0} x T~(U) 

Tv(V/S) 
Tv(~) 

) 

T.,(U) 

Tu,(U)x T.(U) 

/prx 

is surjective by hypothesis, whence the assertion. [] 
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(4 .3)  We shall first construct an open substack of gddx,9,+ which will become 
"bigger" as deg(l)  grows. Denote by o~(~,~,/ the open substack of Y-elliptic 
sheaves (gi) over S such that go is stable as a vector bundle with level-I-structure 
i.e. such that for all geometric points s in S and for all locally free (gx • 

properly contained in (g0)s we have 

d e g ( Y ) -  deg( I )  deg( (o%)s) -  deg ( l )  < 
rk ( ~ ) rk ((~o)+ ) 

(comp. [Se, 4T D6finition 2-]). 
Denote by "Uecx,1 = Y/'ecz the stack of vector bundles of rank d z with level- 

/-structure. Then the subfunctor Vec~ t of such vector bundles which are stable in 
the above sense is representable by a disjoint union of quasi-projective schemes 
over IFq which at every point is smooth of dimension d 4 ( 9 -  1 + degI )  if 
deg ( l )  > 0 (cf. [Se, 4.III]) .  The condition on the degree o f / i s  needed to eliminate 
non-trivial automorphisms. Since this point is not explicit in loc.cit., we indicate the 
proof. Let f be an automorphism of a stable vector bundle g with level-I-structure 
such that f /  is the identity of St.  We consider the obvious diagram 

y 

(Jr  = kernel, cg = coimage, J = image for f -  ide). Then we have 

length ( J / ~ )  > length ( ( J / ~ ) j )  = deg (I )  rk (<~) 

and by the stability conditions for the submodules ~ and ~r of ~, we get that f is 
equal to the identity. Let ~ e c x , ~ , z  = ~irece,~ be the stack classifying the vector 
bundles with an action of ~ (compatible with an action of (gx) and with a Y-linear 
level-I-structure and denote by ~l/~ec~, ~ the inverse image of ~ec~  t under the obvious 
morphism from V e c e , ~  to ~ e c t  (after fixing a base of ~ as C~-module). 

(4.4) Lemma. The  morphism 

~t/'ecx,~, t ~ ~ e c x ,  x 

is re lat ive ly  representable  and affine. 

Proof. To give a right Y-action on a vector bundle r on X • S is equivalent to 
giving a homomorphism of Cx • s-algebras 

~op | (gs -+ 8+d+, +(8) . 

In particular, the morphism of stacks 

"l/'ec ~, I ~ 3Uec l 

factors through the morphism of stacks 

~ "Uecl 

where ~ is the stack classifying the vector bundles 8 over X x S with a level- 
/-structure and a homomorphism of (gx • s-modules 

~op | ~s -* 8+d+,,,~+ (8) 
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and the resulting map 
Uece,~ ~ 

is relatively representable and a closed immersion (the conditions that the above 
homomorphism be one of algebras and the ~-l ineari ty on the level structure are 
clearly closed conditions). Now the morphism of stacks 

is relatively representable and affine. To see this, let S--* Yecl be a morphism 
corresponding to a vector bundle 6 ~ on X x S. It is sufficient to show that the 
functor which to an S-scheme T associates the set 

H ~  x T, ~d(,,~,(~T) ~) 6x~ v) 

is representable. Here g r  = glx • T. Let prT : X x T---} Tbe  the projection morphism 
and put o ~ = g ~ d e N  (g) |  ~ v .  The above set is equal to H ~ (T, prT, ( f i r ) ) .  By 
Grothendieck duality (one-dimensional fibres of prT) 

RprT , (~- r )  = R ~%~,~ ( R p r T , ( ~ -  | f2~ [1]) ,  CT) �9 

It follows that 

H ~ (T, prT,(~-r))  = H ~ (T, R p r T , ( f f T ) )  

= n ~ (T, R W ~  (RprT, (Y~ | f2] [1]), CT) ) 

= Hom(RprT, (~-~  @ O~[1]) ,  CT) 

= Hom(R 1 prT,(ff~" | O1), (gT) �9 

However, this is precisely the set of points of Grothendieck's functor V(f#) with 
values in T (cf. [Gro]) ,  for c~ = R 1 prs,(,~-~ | Olx) because R l p r ,  commutes with 
base changes T ~  S. The functor V(fr on (Sch/S) is always representable by an 
affine scheme over S (loc, cit.). 

We conclude that Vec~, ~ is representable by a disjoint union of quasi-projective 
schemes if deg(I) > 0. 

(4.5) Lemma. The stack ~/Yece, t is smooth over lFq. 

Proof. We show this first for Uec~ itself. Let S be the spectrum of a local artin ring 
R and let S ~ S  be a closed subscheme defined by an ideal J with j2  = 0. Let (~, ~) 
be a vector bundle on X • Swith a ~-action. The obstruction to extending (o ~, ~) to 
(X • S) lies in the cohomology group Ext~(o ~, g |  [I1, Chap. IV, Proposition 
3.1.5]. Consider the local-global spectral sequence for Ext. Since ~ is a maximal 
order, ~ is a projective module of rank 1 over ~ | R/J .  It follows that all higher 

Ext~(g~,  ~ |  J~) vanish for i >  0. Since d i m ( X ) =  1 the ob- local Ext-groups 
struction group is trivial. This shows that ~ec~  is a smooth stack over Fq. But 
~ece.~ ~ ~/ec~ is a torsor under the smooth group scheme given by the functor 
T ~ (~ t  | Cr)  • . Therefore ~ece.  ~ is also smooth over ]Fq. [] 

Remark. The argument above still works if we only assume that ~ is a hereditary 
order for all x (every ~ - m o d u l e  which is free as an (9x-module is projective [Cu-Re, 
26.12 (ii)].  Therefore the results of the present section can be extended to this case. 
In particular, ~e~] ,e , t  is representable by a smooth quasi-projective scheme if 
deg ( I )  > 0. 
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(4.6) Lemma. The natural morphism (cf. (2.8)) 

(~i ,  j i )  ~ gO, Uec'x,~,~ ~ U*ex,~,~ 

is relatively representable by a flag variety. In particular it is smooth. 

Proof  Let 8o on (X x S) be given. Then the chain (gi),~ z corresponds because of 
the periodicity condition (ii) to a flag of sub-sheaves 

{0} ~ ~1 c . . .  ~ ~d-~o,(~)-i ~ ~ o ( ~ ) / g o  

such that the successive quotients are locally free as Cs-sheaves and which are 
stable under the action of 9 ,  i.e. under the action of ~ | ~c( ~ ) - IMd(~ ( ~ )). 
But under Morita equivalence this flag corresponds to a complete flag of locally 
free (9 / ~ I • s-sub-modules of a locally free (9 / ~ 1 • s-module of rank d such that the 
successive quotients are locally free. [] 

We conclude that the open substack Y~ec~;,~ of ~ec~, ~ is representable by a disjoint 
union of smooth quasiprojective schemes over lFq if deg(I )  > 0. 

(4.7) Lemma. The morphism 

Heckex, ~, i ~ (X '  \ I ) x Y/'ec'x, ~, 1 

(given by the zero morphism and the f irst  row) is relatively representable and smooth 
o f  relative dimension (d - t). 

Proof  An object of ((X'  \ I ) x  ~ec'~,~) (S) corresponds to a morphism io:S ~ X 
factoring through ( X ' \  I)  and a chain of vector bundles with Y-action on (X x S), 

�9 .. c gi c ~i+1 ~ . - .  

with a level-I-structure. To complete this by a second row (~'~) with homomor- 
phisms 

ti :8"~ -* ~ffi+l 

satisfying the required conditions is equivalent to giving a locally free Cx• 
submodule ~ '  ~ o% which is stable under the operation o f ~  and such that ~ o / ~ '  is 
a locally free sheaf of rank d on the graph of io. Here we used the fact that 

r io(S) (cf. (2.3), remark (d)). Let ~'o:S ~ - - , ( X x S )  be the closed embedding 
defined by the graph of i0. Then the choice of ~ '  c go corresponds to the choice of 
an (gs-submodule which is locally a direct summand of rank d(d - 1) 

~ '  = (To)* (~) 

and which is stable under io *(9).  Since io(S) misses all ramified places, io *(9)  is an 
Azumaya algebra. It therefore follows that the scheme classifying the possible ~ '  is 
locally in the &ale topology isomorphic to IW -~ (a Brauer-Severi scheme of 
dimension (d - 1) over S). In particular it is smooth over S. [] 

Summarizing the above lemmas, an application of Lemma 4.2 shows that the open 
substack o~Ef~, 9, ~ of ~dfx, ~, t is representable by a disjoint union of quasi-projective 
schemes which is smooth of relative dimension (d - 1) over X '  \ I  if deg( l )  > 0. 

(4.8) We now finish the proof of Theorem 4.1. For  any two closed finite sub- 
schemes I ~ I'  ~ X '  with deg( I ' )  > 0 we have the morphism of stacks 

rr, i : gfE~, i' ~ 8 f f~ ,  r 
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which associates to a level-l'-structure its restriction to I. Thanks to (2.6), over 
( X ' \  I ' )  this morphism is a torsor under the finite group 

Ker (GL~ (H~ ', 9) )  ~ GL1 (H~ 9 ) ) ) .  

(Note that the multiplicative group of the algebra acts on the set of level structures 
via 

g" 1 
~~215 , 9~• , (o*i)~• �9 

Clearly 

fir, I)- i (g~t ~, i) c 8tt~, i'. 

Therefore, the open substack ~ff~,r which is stable under [Kcr(GL1(gr)-+ 
GLI (9~)), gives as a quotient in the sense of stacks [Dc-Mu] an open substack 

st ~d~,r/[Ker(GL1 (91,) --+ GLI (91))] c ~f~,l 

which contains ~Ef~, r x {x ~r)(X \ I' ). It clearly is an algebraic stack in the sense of 
Deligne-Mumford which is smooth of relative dimension (d- I) over X'\I'. 
Letting now I' vary over all finite closed subschemes of X' containing I, these open 
substacks cover 8f~, i. (Every vector bundle becomes stable for a sufficiently high 
level structure.) [] 

(4.9) Remark. One could also consider the scheme which is the quotient of 
~fE st by K e r ( G L l ( g r ) ~  GL1 (9i)). This is the coarse moduli scheme for the covi X,.@,I'  

algebraic stack d~dd~ ,~ , r / [Ker (GLl (g r )~GLl (g l ) ) ] .  These coarse moduli 
schemes glue together and yield a coarse moduli scheme Ellx,~,t of gdf~,~. The 
morphism of algebraic stacks 

is an isomorphism over r if deg (I) > 0 (see (4.3)). 

(4.10) Remark. The representability and smoothness of gffx,~.1 over X ' \  I may 
also be seen by checking Artin's conditions [De-Ra, III, Th6ordme 2.3], the main 
point being to check by deformation-theoretic methods that the morphism 
,~dd~,x ~ X ' \ I  is formally smooth. We sketch the argument. Let S be the spectrum 
of a local artin ring and let S ~ S be theclosed subscheme defined by an ideal J of 
square zero. Let (~ ,  j~, ~, ~) ~ d'dt~,~(S) and let 

lo:S-'* X '  

be an extension of the "zero" 7o : S-~ X of (bT~). We have to show that we may lift 
(g~) into (g~, j~, h, ~) over S with zero section t0- For this we first note that the 
Frobenius F robs :S  ~ S factors through S ~ S. Denoting by Frobs,~:S ~ S the 
resulting morphism we must have for a lifting ~ of ~ 

~gi = (idx x Frobs, g)*(~i) . 

Therefore lifting ~ to ~ is equivalent to finding an injective 9-linear homomor- 
phism of locally free Ox • s-modules 

t-x :~8-1 -~8o 
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which lifts {_ 1 and such that Coker(t_ 1) is a locally free sheaf of rank d on the 
graph of iv. Indeed, since oo ~ iv(S), the rest of the data is then uniquely deter- 
mined. Denoting by ~o : S --* X x S the section defined by the graph of i0, giving 
t_ 1 is equivalent to giving 

?o* (~e- ,) -~ ?o* (8o) 

which is ['* (~)-linear and such that the cokernel is a locally free (;s-module of 
rank d which lifts the corresponding homomorphism of (gg-modules. 

However 7"* (@) is an Azumaya algebra. Therefore by Morita-equivalence the 
problem may be considered as that of lifting a given direct summand of (9~- into 
a direct summand of (0~. There is no obstruction to doing this. [] 

5 Moduli space: Boundedness 

The aim of this section is to prove the following theorem. 

(5.1) Theorem. The algebraic stack 8::x,e,z is the disjoint union of algebraic stacks 
of finite type over X ' \  I. In fact, the substack of @-elliptic sheaves (gi, tl) with fixed 
degree deg(8o), which is open and closed in g::x,~,t is of finite type over X ' \  I, and 
actually is for I ~ 0 a quasi-projective scheme. 

For  the proof of this theorem we inspect the proof of the existence of 8::x,~,t in 
Sect. 4. We had represented 8::x,~,~ as an increasing union of open substacks of 
the form 

8( : ] ,~ .  r / [ K e r  (GL1 ( ~ r )  --* GL,  (~ t ) ) ]  

where we may take the finite subschemes I '  to range over the finite subschemes 
(ordered by inclusion) with supp( l ' )  = supp(l) .  However, for I 4= 0, there are no 
automorphisms, this action is free and the quotient is in fact a scheme quasi- 
projective over X ' \ I .  Therefore Theorem 5.1 is a consequence of the following 
result. 

(5.2) Theorem. There exists a constant c with the following property. Let I ~ X '  be 
a finite closed subscheme of degree > c. Let L be an algebraically closed field and let 
(8i, Ji, ti, t) be a ~-elliptic sheaf with level-I-structure over Spec(L). Then 80 is 
stable as a vector bundle with level-I-structure. 

(5.3) For the proof of Theorem 5.2 we need some general results from the theory 
of vector bundles on a smooth projective curve X over an algebraically closed field 
L which we proceed to recall. The term "vector bundle" will here be used as 
synonymous for locally free Cx-module of finite rank. By a subbundle of a vector 
bundle 8 we understand an (gx-submodule o~ c 8 such that ~ / ~  is again a vector 
bundle. Recall that there is a one-to-one correspondence between the subbundles of 
~' and the sub-L(X)-vector spaces of the generic fibre 8, :  to a subvector space 
V c 8 ,  we associate the maximal submodule ~ of 8 with generic fibre equal to V. 
(The stalk of o~ at a point x of X is equal to V c~ gx-intersection inside 8,).  Recall 
[-Gr, Sect. 3] that the slope of a non zero vector bundle 8 is defined as 

deg 8 
p (8 )  = rk 8 
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and that a vector bundle 6 is called semi-stable if for all non  zero subbundles ~- 
of 8 

~ ( : )  __< ~ ( 6 ) .  

A remark which will be used repeatedly below is that if 8 c 8 '  is an inclusion of non  
zero vector bundles of the same rank then 

and hence 

deg 8 '  = deg 8 + dim (8 ' / 6 )  

dim (6 ' / 8 )  
~,(6 ')  = # ( 6 )  + 

rk 8 '  

(5.4) Let 6 be a vector bundle on X. Then there exists a unique filtration of 6 by 
subbundles 

(0) = 8 (0) ~ 8 ")  c . . . . . .  ~ 6 ") = 6 

with the following two properties 

(i) 6(J)/6 tg-1) is semi-stable for all j = 1 . . . . .  r 
(ii) #(6(J)/8tJ-1))  > #(StJ+l)/6(J)) for all j = 1 . . . . .  r - 1. 

This filtration is called the Harder-Narasimhan filtration or canonical filtration of 
6 [Gr].  This filtration also has the following two properties [Gr,  Proposi t ion 3.3]. 
Put  for an arbitrary vector bundle 6 4= (0) 

( i i i )  6(J)/6 (j-l) is 

(iv) 8(J)/6 (j-~) is 
~min (6 ( J ) ) .  

We also have to use the following result. 

(v) Let ~ c 6, ~-  4= (0), 6 be a subbundle  with 

~ m a x ( ~ / : )  < ~ m i . ( : )  �9 
Let 

(0) = 6 ( ~  ~) = 

and 
(0) = 6 ~ ) 1 ~  c 8 I~+ 1 } / y  c . . .  ~ 8 ( ' ) / ~  = 8 1 ~ -  

b e  the canonical  filtrations of ~ and 6/~ ' -  respectively. Then 

(0) = r 1 7 6  1 ) c ~  ~ = ~ 6 ( ~ + ~ ) c . . . c 6  (') = 6 

is the canonical  filtration of 6. 

Let 8 be a vector bundle and  ~" c r a subbundle.  We introduce 

jumpe ( ~ )  =/~m~.(~)  -- # m ~ ( 6 / ~ )  - 

A consequence of the previous results is 

pmax(8) = max {p(W);  (0) 4: ~ c 8 }  

J,/min(8) = m i n { # ( 6 / ~ ) ;  , f f ~ 6 }  

the largest subbundle  of 8/8 (~-1) with slope equal to 

the largest quotient  bundle  of 8 (j) with slope equal to 
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(vi) A subbundle o~ of ~ appears in the canonical filtration of ~ if and only if 

jumpe(~- )  > 0 . 

(5.5) Let ~ be a line bundle on X, i.e. an invertible (gx-module. Then for a non 
zero vector bundle 

/~(d ~ | 2 ' )  = #(~)  + d e g 5  a , 

and for a subbundle o ~ of 

jumpe (o ~ )  = jump~ | f (,~ | 5 v ) . 

In particular, if(O) = g ( ~  c g  (r) = g is the canonical  filtration of g, then 

(0) = g (o ) |  ~ g ( l ~ |  ~ c . . . c g ( r ) |  2" = 4 ~ |  2" 

is the canonical filtration of E @ 2". 

(5.6) We now return to the proof  of Theorem 5.2. We choose a finite set 
d l . . . .  dR e F ( X  \ { ao }, 9 )  which generates this F (X \ { oo }, ($x)-module. Since the 
orders of the poles are bounded we find a constant t => 1 with 

d j e F ( X , ~ ( t ' o o ) )  ( j =  1 . . . . .  R ) .  

We now consider a Y-elliptic sheaf (gi, ti) over Spec(L).  Since the field L plays no 
role in the arguments  we drop it from the notation. Let us set m : = deg(oe). Since 
gi+e.~ = gi(~ we find 

dj" gi ~ ~ i +,~,, 

for all j = 1 . . . . .  R and i e 7/. 

($.7) Proposition. Let (Fo ~, t~ ) be a g-elliptic sheaf Then for every i r ~ and every non 
zero proper subbundle ~ c $~ one has 

j u m p e , ( Y )  < (t + 2 ) ' d 2 " m .  

Proof  We argue by contradict ion and assume that there is an io and a non-zero 
proper  subbundle ,~  of g = d~o with 

j u m p e ( ~ )  > (t + 2 ) ' d 2 " m .  

Let ~-~ c g~ be the subbundle with generic fibre ,~-, (cf. (5.3)). By making use of the 
remark made at the end of(5.3) it follows easily that for i with io < i < io + d m  - 1 

] jumpe (~-~i) - j u m p e ( ~ ) l  < 2"d  2 "m . 

Here we used that d im(g~/g~_~)=  d. Using the periodicity of the gi  and the 
remark on tensoring with a line bundle in (5.5) we conclude that this estimate holds 
for all i6 7/. Using our  assumption on o~ c ~ we conclude that for all i 

jumpe, ( ~ i )  > t" d 2" m . 

In particular (cf. (5.4) (vi)), ~ i  occurs in the canonical filtration of $i. 

(5.8) Lemma. o~- is stable under the operation of  ~ on gi. 

Proof  Consider the mult ipl icat ion maps 

( ' d j ) : g i  -+ g i + t d m  �9 
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Consider the canonical filtrations of gi and 8i+td,, 

(0) c e ( , ,  c . . .  c e l .  = e ,  

(o )~e , /+) ,  ~ . .  . c e l ~ , .  = r  

We know that ~ and ~+ ta , ,  appear in these filtrations, 

i ~ ~ i + t d m  = - - i + t d m  " 

g(~+l) Then f f i = ~ j  Let ff-i = g; be the subbundle with the same generic fibre as --~+,d,, �9 
and 

[ ] , l ( o ~ i / ~ i ) -  H t r  ~[ < t d 2 m  
t ~  i + t d m  t i + t d r n Z l  = 

again using the fact that dim(g~+ ~/r = d. On the other hand, by property (5.4) 
(iii) of the canonical filtration, 

( ~ , / ~ , )  <__ ~ (~I "+ ') /el'~) 

< 1~(8(i')/gl "-1))  -- td2m 

by our estimate on the j ump  at ~ i -  Taking these two estimates together we obtain 
(~) (~ - . I g (~+~) /g (~ )  ~ < # (  ~ /8~ 1)) 

t ~  i + t d m  I i + t d m  I 

Using property (5.4) (ii) of the canonical filtration it follows for all terms preceding 
~ = ~ ' )  and all terms following ~(e+~+,a,.1) that 

r~x  i + t d m  I i + t d m  

(I = 1 , . . . ,  ~ and k = fl + 1 . . . . .  s). Now we use the fact that for semi-stable 
bundles ~ and ~ with/~(8) > p(~-)  we have 

Horn(g,  ,~-) = 0 .  

By an easy induction (ascending in I and descending in k) we conclude 

d~" g'i') c g'i~+',d~ , 

i.e. d j '~ - i=~- i+ ,a , .  ( j  = 1 . . . . .  R) .  

Since the elements d~ generate D over the function field it follows that (~-i), is 
a D-stable subspace of (r Since 8~ is ~-stable  it therefore follows that ~ is 
~-stable  as well. The lemma is proved. [] 

(5.9)  We now consider the behaviour of ~-~ under the pull back by Frobenius. 
Since the pull back of a semi-stable bundle under Frobenius is again semi-stable 
and with the same slope it follows from the characterization of the canonical 
filtration ((5.4) (i), (ii)) that the pull back of the canonical filtration is the canonical 
filtration of the pull back. It follows that ~ occurs in the canonical filtration of 
~ i : ~ i  = ~(~I ~)) = ~o~I ~). Let 7 be such that ~ i+1  = ~(~i+1" Similar arguments to 
those used in the proof of Lemma 5.8 show now that 

~( ~ / ~  ) > ~t~~+l ~/o~+~). 

We again conclude as in the proof of Lemma 5.8 that 

t i ( ' ~ i ) C ~ i +  1 . 
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(5.10) We now claim that the inclusions ~ g c ~ + ~  are strict for all i. Indeed 
~i+ i /~i  and ~i+ 1/t~(~i) are torsion sheaves with disjoint supports. Therefore 

" ~ i + 1  = ~ q- t i ( z ~ i )  for all i . 

If now Y~ = ~,~+ 1 for some i, then it would follow that 

"~-i+2 = ~ i + l  -It- t i + l ( r ~ i + l )  

= ~-i + h ( ~ i )  = g i + l  = ~ i  

and similarly for i + 3 . . . . .  This contradicts the equality 

Yi+a,~ = ~ i ( o o ) ,  

since ~ 4: (0). Since 8~+ ~/8~ is a simple ~ | K(o~)-module we therefore conclude 
that ~-i+ 1 / ~ i  = 8i+ 1/8i and 

dim(~V-i + x / ~ )  = d 

for all i. It follows that 

dim(o~i+d,,/o~i) = d2m . 
On the other hand,  

dim(o~i+n,,/o~i) = dim(o~i(oe)/ ;~i)  = r k ( ~ - i ) ' m  . 

It follows that r k ( ~ i )  = d 2 = rk(Sg), hence o~i = 8~ and this contradict ion proves 
the Proposit ion 5.7. 

Proof of Theorem 5.2 As our constant  c we take 

C = (d 2 - 1 ) 2 " ( t  q- 2)" d'*m . 

Let I be a finite closed subscheme of degree > c. Let Y be a non  zero proper 
subbundle  of 80. We have to show that 

deg ,~  - deg I deg 80 - deg I 

rk ~ rk 80 

i.e. that ( '  ') 
/ ~ ( ~ - ) -  #(80)  < deg l"  rk-o~ d2 . 

However/~ (o~) < Pm,x (gO) = M S 0 m ) ,  the slope of the first term in the canonical  
filtration of go. Using the trivial estimate 

(1 ,) , 
d e g l  rk~  ~2 > C ' d 2 ( d  2 _ 1 ) - -  ( d 2 - 1 ) ( t + 2 ) d z m  

we therefore are reduced to proving 

/~ (8~o 1~) - / ~  (8o) __< (d 2 - 1)(t + 2)'d2m. 

However, if (0) = ~ (~  .C8~o r~ = go is the canonical  filtration of go we ~ 0  ~ 0  ' ' 

have 

#(8~o " ) >_- #(8o) ~ ~,(8o/8~0 "-'~) 



246 G. Laumon et al. 

and 
#(e~o " )  - ~ , (eo)  _-< u(g~o *~) - # (eo/e~o "-~')  

r - -1  
= ~ (J) ( j -  ( ~ l e o / C o  ~,) - . ( e ' j §  

j = l  

r - 1  

= ~, jumP~o(g~o i)) 
j=t  

< (d 2 - 1)-(t + 2)dZm. 

Here we used the fact that r is at most d e = rk(~o) and the estimate of Proposition 
5.7. The theorem is proved. [3 

6 The valuative criterion of properness 

Our aim in this section is to prove the following theorem. 

(6.1) Theorem. Assume that the algebra D is a division algebra. Then the morphism 

(cf (2.4)) 

e ( ( x , ~ / Z  ~ X '  = X \ {oc} \ Bad 

is proper. 

Since the natural morphism g#Ex,~, i -* g ~ x , e  when restricted over X ' \  I is finite, 
we may formulate the following corollary. 

(6.2) Corollary. Let I be a finite closed subscheme contained in X ' = X \  {oo}. The 
morphism 

is proper. 

We shall prove Theorem 6.1 by checking the valuative criterion of properness. 
Consider the open substack of @-elliptic sheaves (gi ,J , t~)  with 
0 < x ( X ,  (d~ _-< d 2 deg(oo) - 1. The tensor operation by (gx(OO) (cf. (2.9)) allows 
us to present d~ as a disjoint sum of copies enumerated by the integers of this 
open substack. Therefore, by Sect. 5, it follows that g#~x,~/7l is of finite type over 
X' .  From its construction (Sect. 4) it follows that gg'Ex, e is an increasing union of 
separated open substacks, hence is separated and therefore the morphism 
~ f x , ~  ~ X '  is separated. 

(6.3) We introduce the following notations. Let (9 _ Fq be a complete discrete 
valuation ring with perfect residue field x. Let K be its field of fractions and denote 
by • a uniformizing element. Let C' be the local ring of the generic point of the 
curve X | x, considered as a point of the scheme X | C. Then (9' is a discrete 
valuation ring (not complete), with w as uniformizing element. The residue field 
x '  = Frac(F  | x) of ~ '  is the function field of X | x and the field of fractions 
K '  = Frac(F @ K)  is the function field of X @ K. 
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(6.4) Since the direct image and inverse image functors for the inclusion induce an 
equivalence of the categories of locally free sheaves on the punctured and unpun- 
ctured spectrum of a two-dimensional  regular  local ring we have an equivalence of 
categories between the category of locally free sheaves • on X | (9 and the 
category of pairs ( ~ ,  N) where ~ is a locally free sheaf on X | K and where N is 
an C'-latt ice in ~ K '  (cf. [ D r 8 ,  3.1]). (To ~ corresponds ~ = J I X |  and 
N = H~ J ) . )  An C'-latt ice in a finite dimensional  K ' -vec tor  space is 
a (9 '-submodule of finite type containing a K'-basis .  

(6.5) Let (gi, Ji, t~) be a ~-el l ip t ic  sheaf over K. Then (g~)K, is independent  of 
i and will be denoted by V. The morphisms t~ induce an ( i d r |  FrobK)- l inear  
endomorphism q} of V with K "  ~p(V) = V. Then V is a free D |  of 
rank 1 and ~p is D-linear. Our  aim will be to construct  6 ~'-lattices adapted to ~o. Let 
Vbe any finite-dimensional K ' -vec tor  space with a (idv @ FrobK)-l inear  endomor-  
phism ~o with K'.q}(V) = V. 

We recall [Dr  8,3.1] that  Drinfeld calls an C'-latt ice M ~ V admissible if ~o ( M ) c  M 
and if the induced endomorph ism 

?p : M / ~  M -~ M / w M  

is not  nilpotent,  i.e. if q}dlm~v)MdgvJM. Note  that  a q}-invariant lattice is not 
admissible if and only if {o"(M) ~ 0 as n ~ ~ (i.e. for any lattice N there exists an no 
such that  q } " ( M ) c N  for n > no). 

(6.6) Proposition (Drinfeld [Dr8, 3.2] ). (i) There exists a qg-invariant lattice Mo c V 
containin9 all other ~o-invariant lattices. I f  Mo is not admissible then there are no 
admissible lattices in V. 
(ii) After replacing K by a finite extension L (and V by V Q K L  and q} by 
~0 | FrobL) there exist admissible lattices in V. 

Remark. In fact the proof  of Drinfeld is formulated only in the case when 
dim(V) = 2 (the case of interest to him) but  it is perfectly valid in general. 

(6.7) Let now (gi, j~, t~) be a ~-el l ip t ic  sheaf over K and consider (V, ~o) as before. 
After replacing K by a finite extension, we may assume that  the maximal  
9- invar iant  lattice Mo c V is admissible. Since r is D-linear it follows from the 
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maximality of Mo that Mo is D-stable. Using now the equivalence of categories 
mentioned in (5.4) we obtain a commutative diagram of homomorphisms of locally 
free sheaves on X | (9 (note that ~8, = (~8,)~ .) 

�9 . .  ' L _ '  L + i  ' L+2  ' . - .  

. . . .  ~L , ~L§ , ~ , , 2  . . . .  

Since (@ | K) ~ = ~ | (9, these sheaves are equipped with a @-action and all 
homomorphisms are ~-linear.  Furthermore, 8,+ddeg(| o7/(OO). Hence the 
homomorphisms f~ are inject iveand the argument in (2.3.b), counting the dimen- 
sions of the representations ( 8 i / 8 , -  l) ~ x  of IMd (x( ~ )), implies that these dimen- 
sions are all equal to d and therefore 8~/8~_ 1 is a free (9-module of rank d. 

(6.8) We now assume in addition that the zero morphism io : Spec K ~ X '  extends 
to a morphism ~o : Spec (9 ~ X'. We distinguish two cases 

First case (~" ~o(Mo) = Mo 

Second case (9" q~(Mo) ~ Mo �9 

(6.9) Lemma. In the first case (~,, ~,  7,) is a ~-ell iptic sheaf over Spec (9. I f  D is 
a division algebra the second case does not occur. 

Proof. Assume that we are in the first case. It only has to be checked that Coker ~, is 
a locally free sheaf on the graph of ~o. However, the stalk at the generic point 
Spec(x')  o fX @ x of Coker ?~ is equal to the cokernel of the induced endomorphism 
of J~o = Mo/~" Mo, 

~ : M o  --~ M o  . 

Since we are in the first case and using the fact that ~ is perfect, 0 is surjective. 
Hence Spec(x')  r Supp Coker {,, which implies that Supp Coker ?i is the graph of 
To. Comparing Euler-Poincar6 characteristics 

dim ~ Coker ~ | x = :~ ( ~  + 1 | re) - Z ( ~ | ~c) = Z (8, + 1 ) - Z ( ~8, ) 

= dimK Coker t , ,  

we conclude that Coker ~, is a fiat (9-module of finite rank, which proves our claim 
in this case. 

We now assume that we are in the second case. Then the endomorphism 0 of 
the x'-vector space ,Qo (recall that 0 is idr | Frob~-linear) is neither surjective nor 
nilpotent. 

We consider the flag of x'-subvector spaces 

Mo ~ Im(O) ~ Im(O 2 ) ~  . . .  ~ I m ( O " ) = I m ( O  "+1) . . . .  ~ (0). 

The sequence becomes stationary with non-trivial end term. 
On the other hand, Im(O') / Im(O '+ 1) is a D |  x'-module, hence its dimension 

as a vector space over ~' = F | ~c is divisible by d. Hence it follows that n < d - 1, 
and that putting N = Im(O"), 

dim A7 = rd, O < r < d .  
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Let ff~ be the restriction of ~ to the special fibre X | x. Its stalk at the generic 
point is Mo. Let 

~ i ~ o~i 

be the locally free (9 x | ~-submodule generated by/V, i.e. the maximal locally free 
Cx| of ~ with generic stalk equal to N ~ M o .  (The stalk of ~ at 
a point x '  ofX | x is equal to (~v i )~, c~ N-intersection inside -~o.) By the maximal- 
ity property of o~ this is a ~ | x-submodule of d7~ and we have a cartesian square 

~ i  ~ ~ i + 1  

b b 

and ~ = ~ i ( -  oo). The successive quotients o~i/ff~-i  are 
(~ | x(oo)) @ x-modules. Counting dimensions and taking into account that 

r" d" deg(oo) = dim(~-i/~-i( - ~))  < dim(gi/&i( - oo)) = d2. deg(oo) 

we conclude that there exists an index i with g i  = ~ +  ~. Consider the following 
commutative diagram 

t~ l - -  1 

jr, 

d / 
/ 

/ 
i 

I 

/ 

ar 

f 
/ 

f 
J 

I 

L+, 

3,+, 

Here the broken oblique arrows arise from the maximality properties of ~ i  and 
-r We therefore obtain a homomorphism 

whose stalk at the generic point is equal to 

( o I N : N - - *  N . 

This last homomorphism is bijective, therefore t is injective. Since deg(o~) 
- - -degC~) ,  we conclude that t is an isomorphism. Applying now Drinfeld's 

Galois descent lemma [Dr 7, Proposition 1.1]) we conclude that o~ is of the form 
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where o~' is a locally free sheaf on X. Furthermore Y '  is a D-module and its rank 
over (gx is equal to r -d  = dim N. Then the generic stalk ~ k  is a D-module of 
dimension rd < d 2 over F. IfD is a division algebra such a module cannot exist and 
this contradiction proves the lemma. [] 

Therefore, gYEx, v/Tt ~ X'  satisfies the valuative criterion of properness and the 
Theorem 6.1 is proved. 

7 Hecke correspondences 

(7.1) Let T be a finite set of places containing {oo}. We form 

gEfxT~ = lim g((x,~,1. 
t 

I n T = O  

This is again an algebraic stack and even a scheme. The canonical morphism 
~ ~, ~ ~ x \ { o0 } factors through the morphism X ~ ,  \ { ~ ) -~ X \ ( ~ ), where 
XCr ) ~ X is the localization of X along T. Let 

(gT = H (9~ =AT = H '  (F~, (9=,). 
xr x C T  

We embed F • diagonally into (A r)• 
A section of g(g~,~ over S is equivalent to the data of a D-elliptic sheaf 

(gi, jl, ti) over S and a D-linear isomorphism 

/ r : ( D |  (9r )~(9  s ~,g~-ex~( (gT~(gs )  

with an obvious compatibility with its pullback under z. There is an obvious right 
action of (2  | c~ O r)  • on Cl~xr ~ (composition with i r of the action of (D | ~x (9 r)• 
on ~ |  (9 T by left multiplication). 

(7.2) Let Picx, i (Fq) be the set of invertible sheaves on X with a level-I-structure. 
We had defined in (2.7) an operation of Picx, r (lFq) on ~{(~,l. Let 

PicxT(IFq)= lim Picx,,(IFq). 
tl n T=O 

We obtain in the same way an action of Picxr (lFq) on o~fE~. We let (F • )r be the set 
of elements of F • which are units at all places contained in T. Denoting 
(9~ = Hx~r (9; we have the identification 

Picxr (IFq) _~ F • \A• 

_ ( F •  • 

and obtain an action of ( F •  (At)• on 8Efxr ~. (Under this identification, the 
id61e with component in x ~ IX [ \ T equal to a uniformizing element wx and all 
other components equal to 1, corresponds to the invertible sheaf Cx( - x) with the 
obvious level structures outside x and the level structure induced by wx at x.) 

(7.3) We shall define an action of the semigroup F = (DT) • c~ (D | O r)  which 
extends the action of(D | (9 T)• We leave to the reader to check that the actions of 
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F and ( F •  • agree o n  cAT) • (3 F = ( A r )  • c~ (fiT. So, the actions of 
(~  | c r )  • and (F • ) r k ( ~ r ) •  come from an action o f ( D r )  • on ~(fxr v. 

(7.4) Let g = g r e F  and (o~, j~, h, l r ) s g { F ( S ) .  We wish to define 
g(C, Ji, ti, ~r) = : ( g , , j , ,  t'~, ( i t ) ' ) .  We have the diagrams (for all ieTZ) 

r ((fir @6's) ~ (~  [ o T ) [ ~ ( g s  

where we can fill in the broken arrow [g ]  in a unique way. We consider the 
cartesian diagrams 

~,  - - - - ,  g~ |  

g i  ) ~"~i @ r x• ((fiT []  (fiS) �9 
can 

They define 6~/', i e ~ .  The definition ofj'~ and t'~ is obvious. The level s t r u c t u r e  (l T)' 
is defined as the composit ion 

( ~ @ r  ( ~ O~i@(rx• ~OT[~ (~S)" 
IT ,~t | id " 

We therefore obta in  a commutat ive diagram 
(,T), 

(~  | ~x6~r) [] (gs , ~ i | 1 7 4  

g" $ ~ fl,| id 
l T 

( ~ ( ~ e x ( ~ r ) ~ ( ~ s  ) ~i@~x• 6 'T~  (~S)" 

This defines the action o f F  on r . I f g ~ F  is even an element o f ( ~  | 6~T) • , the 
g" above and therefore also [g ]  is an isomorphism, which implies that the fl~ are 
also isomorphisms and therefore the action of g ~ (~  | C T)• coincides with that 
defined in (7.1). 

(7.5) Let K T ~ ( D T )  • be an open compact subgroup and let gre (DT) •  On 
a finite level the above construction defines a correspondence over Spec(F) 

~ r  / K  T (-~ (gT)- 1 KTgT 

T ~ ( t ~ / K  r , ~ f E ~ / K  r 

where the morphism cl (resp. c2) is induced from the inclusion 
Ad(g r ) 

K T N ( g T ) - I K T g T c K T  ( resp .  K T ~ ( g T ) - I K T g T  c- ~ KT) .  

These morphisms are extended over Spec (gx, x, x ~ X \ T, as soon as the x-compon-  
ent of g is trivial, and are then finite and &ale. 
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8 Level structures at infinity 

In [Dr 4] Drinfeld gives a construction of a pro-Galois covering of the moduli 
stack of elliptic sheaves and relates it to the corresponding covering of the moduli 
stack of elliptic modules [-Dr 2]. In this section, we show that the same construction 
works in our context. As a matter of fact, since the (9~-algebra Noo splits, up to 
Morita equivalence, we are in Drinfeld's framework. 

Throughout this whole section we fix a uniformizer ~ of (5% and an isomor- 
phism of (9~-algebras N~ -~ lMa (r?~). 

(8.1) Let S be a scheme (over lFq) and let E -- (~/, j/, tl),~z be a N-elliptic sheaf over 
S. For  each ie7/, let 

~ = ~ c , ~ , ~  (~i, (gx • s) 

be the dual of o#i and let 

~ ,  = ~~ : , l ( x  x s ) ~ .  

Here (X x S)~ is the completion of X x S along {oo} x S and ~/i is a locally free 
(9~ @ (9 s- module of constant rank d 2. The j~'s define an inductive system 

. . .  ~ ,  ~ , . ~  ~ . . .  

and we shall denote by N its limit. Then IV is a locally free F~ (~ (fls-module of 
constant rank d 2. We identify the /~i's with their images in /~. The ti's induce 
compatible isomorphisms 

d~i  ~ ~ " m i + l  = ((rico @~;q Frobs)*()~i+x) 

(i~ 77) and in the limit an isomorphism 

~r ~ , @ = (F~ @v, Frobs)*(N) 

which maps -Mi onto ~Mi+ 1. We define 

as the inverse of the above isomorphism. We have 

for each i e 7/. 
The right actions of N~ on the gi 's  induce a left action of N~ on 1~. This action 

commutes with ~ and, for each ie 77, stabilizes _M~ c/V. Thanks to our identifica- 
tion of N~ with IMa((9~), we get canonical splittings 

and 

Now, N-' is a locally free F~ ~ (gs-module of constant rank d and ~ c N '  is 
a locally free 0~ (~ (gs-submodule of constant rank d, for each i e 7/. It follows from 
the properties of N-elliptic sheaves that we have 

= M i - d e g ( ~ ) d C . . . c M i _  1 ~M~ 
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0'(~M'~) = *  , M i - 1  , 

so that  

253 

v r  ~ !  T ~ l  

and that  the quotient  K(~)  | Cs-module  

Mi/vJ~M,--,,~ M~/~'(~M'i)  

(viewed as an (9~/•  is supported on the graph of a IFq-morphism of 
schemes 

i~,,:s--, {~} 

and is locally free of constant  rank one on its support ,  for each i �9 7/. Moreover,  for 
each i �9 7I, 

ioo,i+1 = i~o,i~ 

and i~,o is the pole of E (see (2.2) and (2.3)). 

(8.2) Let S be a scheme with an lFq-morphism of schemes 

i~o,o:S--+ {oo} . 

Then any other IFq-morphism of schemes from S to {oo} is equal to 

im,i = i~,o o Frob~; 

for a unique i � 9  7//deg(oo)71. 

We will associate to (S, i~,o) as before a triple 

(N, ~b, M)  = ( Nd, l (i~,o), 0e, 1 (i~o,o), Md, 1 (ioo,o)) 

where N is a free F~o ~) (gs-module of constant  rank d, where 

~:~N ~ , N  

is an i somorphism of F ~  ~ Cs-modules and where M is a free (9~ ~ (.9s-sub- 
module of  constant  rank d such that  

w ~ M c ~ ( ~ M ) c M  

~k~'a~gr ~" ...... M )  = w ~ M  

and such that  the quotient  ~(oo) | Cs-module 

M/~J ~ M ~ ,  M / ~  (~M) 

is suppor ted  on the graph of 

i~,o:S--, {oo} 

and is free of constant  rank one on its support .  
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F o r  N we simply take 

d e g ( o o ) -  1 

N = ( F ~ o ~ v ,  Os) e =  @ ( F ~ ( ~ ) , , ; , , ( g s )  ~ 
~=o 

with canonical  basis ( eu )o ~ ~ <= d~g(~) - l,J <= s <= d. 

Then we define 0 by its effect on the canonical  basis: 

O(ei)) = e~+l,s (Vi = 0 . . . . .  d e g ( o o ) -  2, Vj = 1 . . . . .  d) 

and 

Finally,  we set 

~Wo~eo,a if j =  1 
0(ed~g(~) l,j) = ( e o d - 1  if j = 2 . . . . .  d . 

d e g ( ~ )  - 1 

M ((90o ^ e = |  = @ (e~| ~. 
i=O 

(8.3) Let x(oo)a be an extension of degree d of K(~) .  Let us set 

and 

a~,d = F~ ~(o~) ffob~ ~g(~) �9 

be the polynomia l  algebra over F~,d in the non commutat ive  

and End(N,  0 )  is the Foo-algebra of F~o ( ~ ,  @s-linear endomorphisms  of N com- 
mut ing  with 0. F o r  any e ~ x(oo)a, the image of 1 ~ c~ s F~,d c D~ by this embed-  
ding is given by 

2"(1 ~ ~) (eli) = (1 ~) 2* (frob~ -~d~'(| (a)))e u 

Let  F~,d [Z~] 
variable zoo, with commmuta t ion  rule 

�9 ~ "a = ~ ; ,~d(a)"  ~ 

for each a e F~,d.  The element z~  -- w~ of F~,d [z~]  is central. I t  is well known 
that  

/)~o :--- F~,e  [ z ~ ] / ( z ~  - moo) 

is "the" central  division algebra over F ~  with invariant  - l id  and admits  

as maximal  order. Here Coo,dCF~,a is the ring of integers. 
If 2 : S ~ S p e c ( K ( o o ) a )  is a Fq-morphism of schemes, we can construct  an 

embedding of F~-a lgebras  

2* :/)o~ ~ End(Na,  1 (ioo,o), 0d, 1 (io~,o)) 

in the following way. Here i~,o is the composed map  

S x , Spec (x (~ )d )  can {(3(3} 
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(Vi = 0 . . . . .  deg (~ )  - 1; Vj = 1 . . . . .  d) and the image of z~ ~/5~ by 2* is given 
by 

S~J~ei,d i f j  = 1 
2* (Zoo)(eij) 

e l , j -1  if j = 2  . . . . .  d 

(vi = 0 . . . . .  d e g ( ~ )  - 1)  

If 2 and 2'  are two lFcmorphisms of schemes from S to Spec (x(~)d)  which lift 
i~.o, we have 

2' = 2 o Frob~ deg{~) 

for some n ~ 7Z/d7l and it is easy to see that 

2'* = 2* o Ad(z ~" ) . 

For  any 2 as before, it is also clear that 2* (/5oo) maps M~, 1 (ioo, o ) c  Nn, 1 (ioo, o) into 
itself. 

(8.4) Definition. Let E = (g~, j~, t~)~z be a Y-elliptic sheaf over S. Let Mb,  ~,' and 
i~,o be defined as in (8.1). Then a level structure at infinity on E is a pair (2, ~) where 

2 : S  ~ Spec(x(oo)a) 

is a 1Fq-morphism of schemes which lifts the pole i oo,o of E and where 

~ m o  ~;Md.1(i00.0)  , ~ '  

is an isomorphism of C~ ~F,  (gs-modules such that the following diagram com- 

*Md.l(i00.o) ~ ' *M'o 

~ M o  Ma, l ( i ~ , o )  ' " '  �9 

mutes 

We have an obvious not ion  of is%~morphisms between~ Y-elliptic sheaves over 
S with level structure at infinity. Let g(Ex, ~ (S) (resp. g((x, ~, ~ (S)) be the category of 
Y-elliptic sheaves over S with a level structure at infinity (resp. with a level- 
/-structure and a level structure at oo; here I is a finite subscheme of X\{oo}) .  
Then, the obvious not ion  of pullback gives us a fibered category 

S ~ ~ t ( x , ~ ( S )  

(resp. S w-~ ~ ~ x , ~ , 1 ( S ) )  

over the category of IFq-scheme._ss S, which i~s clearly a stack for the f pqc  topology. 
We will denote this stack by gf?x,~ (resp. gfdx,~,~ ). We have a forgetful morphism 
of stacks 

~'EX ~ r~ 

(resp. ~'{x,~, I . . . .  ' ~ffffX,-@, I ) 



256 G. Laumon et al. 

which maps (E, (),, ~)) into E and a morphism of stacks 

~ - ~ x  ~ 2 , , Spec(~:(~)~) 

(resp. gYgx,~, t , Spec(x(m)~)) 

which maps (E, (2, ~)) into 2 and which lifts i~,o ~ r~ where io~,o is the pole. 
It is clear that r~,~ is the base change ofro~ by the canonical morphism of stacks 

Therefore, if I ~ J c X \ { o o }  are two finite closed subschemes, we have a 
2-commutative diagram of stacks 

g f f  x,~, ~ > , g f f  x,~ 

with 2-cartesian squares. Moreover 

2~ = 2 o ~ .  

(8.5) The stack gf fx ,~  (and therefore the stack gffx ,~, t )  has a natural structure of 
pro-stack. Indeed, to give the isomorphism 

Mo ~t:Md, t(i~o,O ) , ~,  

of (9o~ ~ (gs-modules is the same as to give the projective system 

(0~. = 0~ modulo ~ o  + 1 ), _~ 0 

of isomorphisms of (_9~/(w~o + 1) ~ (gs_module s and ~ commutes with the $ ' s  if and 

only if each ~. commutes with the $ ' s  modulo w "+1 . In other words, ~'~x,~ is the 
projective limit of the stacks of Q-elliptic sheaves with a level structure at infinity 
modulo ,+1 moo . From the definitions, it is clear that the projections ro~, r| ?t and 
rs,t are continuous morphisms of pro-stacks. 

(8.6) On the pro-stack ~E"gx,~ (and therefore on the pro-stack g"~x,~, t), we have 
continuous right actions of the pro-finite group ~ and the finite group 
Z / d Z  : 6 ~ ~ maps (E, (2, ~)) into (E, (2, ~ o 2* (6))) and n ~ 7l/dTl maps (E, (2, ~)) 
into (E, (2 o F rob ]  deg~~176 c~)). As we have 

(2 o Frob~ d~~176 = 2" o Ad(z L ' )  

these two actions induce a continuous right action of the profinite group 

~ ~ ~ 7Z/dTZ . 

Here n e Z/dT! acts on ~ L  by Ad(T~o'). But we can identify this semi-direct product 
with the pro-finite group 

- - •  Z 

(~ooeFo~ • c D~-• )." we identify (6, n)e~o~ >~ Z/dTZ with 6~ L"e OL modulo r~ zoo. So we 
get a continuous right action of the pro-finite group -• z Do~/w~ on the pro-stack 

g#gx,e (and therefore on the pro-stack gggx,~, t). 
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F r o m  its definition, it follows that  this right act ion o f / ) ~ , / ~  on ~-~x.e (resp. 
&::x,e,1) commutes  with the project ion ro~ (resp. ro~,i) and that  the projection 
2 (resp. 2~) is equivariant  if we l e t / ) L / ~  act on Spec (x (~)a )  through its quotient  

o �9 - •  Z 
- ~ r n . D ~ / m ~ , ~ / d T ~  

(Gal (x(~)~ /x(o~) )  = 71/d7Z). Here rn denotes the reduced norm. 

F o r  each I c J c X \ { o o }  as before, it is also clear that  rs, 1 is 
D ~ / ~ - e q u i v a r i a n t .  

(8.7) Let ov e T~[XI  be a finite set of places. Let us denote by 

" - " - "  T 

the projective limit of the r~,i for I c~ T = 0 (see (7.1)), with its cont inuous right 
action of D~/w~.-x z Using that  r~r is the base change of r~ by the canonical  
project ion 

r r: r  ~ #::x ,e  , 

we get a cont inuous right action of (D r ) • on ~-~xr,e which lifts the action of (D r )  • 
on # E : r e  and which commutes  with the right act ion o f / 5 ~ / ~ .  

Using isogenies prime to T as in (7.4) we can extend this action of ( D r )  • on 

~-~xr e to a cont inuous right action of the semi-group (Dr)  • c~ D r on ~-'~xr~ 
which lifts the action of the same semi-group on 8::xr e defined in loc. cit. Indeed, if 
E~ ~ , E2 is an isogeny prime to T between two D-elliptic sheaves over S, 
u induces an i somorphism of F ~ o ~ ,  (gs-modules 

which commutes  with the ~ ' s  and which maps  _~t~ 0 onto ~/~ o (see (8.1)). 
Obviously,  the actions o f / 5 ~ / w ~  and of (Dr)  • ~ D r on ~-~,~,e commute.  

On the other hand, we can also lift the action (7.2) of 

Picxr(~,q) = (F • 2 1 5  

on g : : x  r, ~ to 8 : :  r, 9. Indeed, if we tensor a D-elliptic sheaf E over S by a line bundle  
5r over X with a canonical  identification of L#~ with (9~ this has no effect at all on 
the triple (N' ,  r  M~) (see (8.1)). 

Now arguing as in (7.4), we get easily: 

(8.8) Proposition. There is a continuous right action of (Dr) • on ~['~,~ which 
lifts the action of (DT) x on 8::~:,~ defined in (7.4) and which commutes with the 

continuous right action of D~/w~ on ~:~r,~. 
Moreover, if we consider the product of these two actions, the subgroup 

( F •  x (Dr)  • 

(diagonally embedded; ( F • 2 1 5  • and • r • -• (F ) c F ~  cDo~) acts trivially 
on ~'Z?~,~. 



258 G. Laumon et al. 

As in (7.5), for any open compact  subgroup K T ~ ( D r )  ~ and any g r e ( D T ) ~ ,  we 
have a Hecke correspondance 

~ ' ~ r , ~ / ( K T  c~ (gT ) -  1KTgT) 

c,r ,,~2 

8 f - ~ . ~ / K  r +- - - -  " ~ T . e / K T  " 

(8.9) On ~ : :x ,~  (resp. d~[:x.~.~) we also have the act ion of 7/ by t ransla t ion 
(see 2.4)). It can be lifted to ~ - : x , e  (resp. ~-:-:x,e,~) in the following way. Let 
(E, (4, ~)) be a ~-el l ip t ic  sheaf with a level structure at infinity over S. Then 1 ~7/ 
maps  E = ( ~ ,  j~, ti)i~z onto  E* = (8~+~, Ji+~, ti+~)~a. Let us set 

21 = 2 o F r o b s .  

F r o m  = we get an i somorphism of Co~(~w, (gs-modules 

~ :@d,t(io~,o)(~Ma,~(ioo,o)) ~ ~'(~/1'o) = ~1'_ > 1 

which commutes  again with the ~b's. But we have an i somorphism of (-9o~ ( ~  (gs- 
modules 

can:Md,~( i~ ,~)  ~ , ~kd, 1 (i~.o)(~Md, i(i| 

which commutes  with the ~,'s. It  is defined by 

can(ei . i(1))  = e i+ l , j (0 ) (Vi  = 0 . . . . .  d e g ( ~ )  - 2, Vj = 1 . . . . .  d) 
and 

~'w~eo, d(0) if j = 1 
can(edegto~)_l.j(1))= l e o , j - l ( 0 )  i f j = 2 , . . . , d  

where (ei, i(O)) and (el, j(1)) are the canonical  bases of  Nd, l(ioo.o) and N~.l(i~o,0 
respectively (see (8.2)). So we can set 

a t = ~1 ~ c a n .  

Then we let l~7Z act on ~f::x,~ (resp. o~::x,e,j)  by 

(E, (2, ~)) ~ (E?, (21, ~ ) ) .  

We let the reader  check that  this act ion of 7 / o n  ~-~x,~ (resp. 8 ~ x , e , ~ )  commutes  
with the action of -• z Do~/wo~. As this act ion of Z on the stacks ~ : :x ,~ , t ' s  commutes  
with the transi t ion maps  fx and rj,~, we get for any finite set of places oo ~ T c  ]X I 
an act ion o fT /on  g'f':~:, ~ which lifts the act ion of 2g on dY:~r and which commutes  
with the action of (/3o~/m z )  x (Dr)  • . 

(8.10) Theorem. The morphism of  pro-stacks 

with the continuous right action o f  the pro-finite group -~ z D~/~o~ is representable and is 
a pro-finite, pro-etale and pro-Galois covering with pro-finite Galois group Do~/~J~. -• z 

(8.11) Corollary.  The same statement is satisfied by 

r~o,1: ,~ff  x,~,~ "-* C f f  x,~, i �9 

Moreover, ~ f :x ,~  (resp. ~ f f  x,~,~) is a scheme. 
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P r o o f  o f  the theorem. We can factor r~ through 

where gfEx, e is viewed as a K(oo)-stack by the pole map. Therefore, it is enough to 
prove that the morphism of pro-stacks 

(r~, 2): ~Tx,~ --, ~Efx,~ | x ( ~ ) d  

is representable and is a pro-finite, pro-etale and pro-Galois covering with pro- 
finite Galois group @o~.-• 

Let us begin with the representability. Let S be a scheme (over IFq), 
let E = (~i, j~, t~),~z be a ~-elliptic sheaf over S and let 2:S ~ Spec(x(~)d) be a 
lFq-morphism of schemes which lifts the pole i~ ,o :S  ~ {~} of E. For each non- 
negative interger n, let J.  be the f p p f  sheaf 

, t ~ ,O)/~iI~  Me,  1 (ion,o), ~,, o/rn oo ~rb) 

over S. We can organize the J . ' s  into a projective system 

" "  ~ J n + i  ~ J . ~  ' ' .  ~ d ~ J o ~ J - 1  = S  

where the transition map J .+i  ~ J.  is the reduction modulo w~+~. The J . ' s  are 
clearly representable by S-schemes and the transition maps are all affine and locally 

.+l  (E, 2) is finitely presented. The sheaf of level structure at infinity modulo ~ ~ on 
the subsheaf 

G . ~ J .  

defined by the commutation with the ff's. Therefore, G. is representable by a closed 
subscheme of J .  and the ideal of (gs. defining G. is locally of finite type. If we 
organize the G.'s into a projective system 

�9 ..  ~ G . + i ~ G . ~  . . .  ~ G i ~ G o ~ G _ l  = S  

where the transition map G.+ 1 --+ G. is induced by the transition map J.+ ~ ~ J. ,  
we see that 

(i) each G. is representable by a S-scheme and the transition maps are all affine 
and locally finitely presented; 

(ii) the projective limit of this system, which is the sheaf of level structures at 
infinity on (E, 2) is representable by a S-scheme, affine over S. 

Now, in order to finish the proof of the theorem, it suffices to check the following 
assertions for any S, E and 2 as before: 

(a) locally for the fpqc  topology on S, (Mb,~b') is isomorphic to 
(Md, 1 (lo),  ~/d, 1 (/0)); 
(b) the sheaf of Foo-algebras 

8~d(Ma, a (to), ~ka, 1 (to)) 

for the fpqc  topology on the category of S-schemes is constant with value ~ .  

These two assertions are well known (if S is the spectrum of a field, see (B.3) and 
(B.10) for a reformulation and references). [] 



260 G. Laumon et al. 

9 Y-elliptic sheaves of finite characteristic: Description up to isogeny 

Let o be a place of F which is distinct from oo. In [Dr  2] and [Dr  7], Drinfeld gives 
a descript ion of the set of i somorphism classes of elliptic modules of characteristic 
o and shtukas with pole oo and zero o over an algebraically closed field. In this 
section, our  purpose is to give a similar descript ion of the set of i somorphism 
classes of Y-ell iptic sheaves of characterist ic o over an algebraical ly closed field, at  
least when o r Bad. 

In the whole section the place o o fF ,  o 4: ~ and o r Bad, is fixed. We denote by 
k an algebraic closure of K(o). We identify (D~, @~) with (~Vln(F~), ~4Id(Cx)) for 
X ~ O0, O. 

(9.1) F r o m  now on, we shall use the term Y-ell iptic sheaf of characterist ic o over 
k to mean Y-ell iptic sheaf over Spec(k) such that the zero is the canonical  
morphism 

Spec(k) ~ Sp e c (~ : (o ) )~  X . 

Let us recall that  such an object is given by a sequence (g~, j~, t~),~z, where g~ is 
a locally free (9 x | of rank d 2, equipped with a right action of ~ which 
extends the Cgx-action, and where 

Ji: ~i ~--* ~i+ 1 

ti : ~ i  ~'~ ~ i + 1  

are injective Y-l inear  homomorph i sms  ( ~  = (X |  frobq)*r where 
frobq 6 Gal(k/lFq) is the ari thmetic Frobenius  element with respect to lFq). More-  
over, for each i e 7Z, the following condit ions hold: 

(i) The d iagram 
J, 

commutes;  
(ii) ~i+d.deg(co) = ~ i  (~d~ 0X(00 )  and the inclusion 

~ i  ~"~ ~ i + l  r , " ' "  ~--~ ~i+d,deg(oo)~--- ~iQ~xOX(00) 

is induced by the canonical  one Cx ~---~ (-gx(~); 
(iii) dimkH~ | k, Coker  ji) = d; 
(iv) the suppor t  of Coker  ti is the image of the graph of the canonical  morphism 

Spec (k) --* Spec (x(o)) ~ X . 

To each Y-ell iptic sheaf (#~, j~, t i )~z  of characterist ic  o over k, we can at tach 
a cp-space (V, ~o) and an F-a lgebra  h o mo mo rp h i sm  

t: D ~ ~ End(V,  (p) 
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in the following way. (The terminology is that  of Appendix  A.) Let V be the generic 
fibre of go,  i.e. the fibre of ~o at the generic point  r / |  k of X | k. It is a free 
D | k-module of rank 1. Thanks  to the Jz's we can identify V with the generic fibre 
of ~ for any i~TZ. Then, the h's induce a bijective F | frobq-semilinear map  
q~ : V ~ V and (V, q~) is a O-space over k. The action of D on V commutes with 
~o and gives the required homomorph i sm t. 

(9.2) Definition. The triple (V, ~o, t) is called the generic fibre of the g-elliptic sheaf 
(o~, j ,  t~),~z. Two g-e l l ip t ic  sheaves (of characteristic o) over k are said to be 
isogeneous (or in the same isogeny class) if their generic fibres are isomorphic.  

If x is a place of F, to any g-e l l ip t ic  sheaf (of characterist ic o) over k, 
(gi, j~,t~),~z, we can also at tach a Dieudonn6 F~-module (V~,~0~) with an 
F~-algebra homomorph i sm 

t~:O ~ ~ End(Vx, q)~) 

and a gx-lat t ice  (i.e. a lattice M~ ~ V~ which is stable under t~ (goo)). If (V, ~0, t) is 
the ~eneric fibre of the g-e l l ip t ic  sheaf, by definition, we have (V~, q ~ ) =  
(F~ |  V, F~ @vq~), t~ is induced by t and we have M~ = H ~  (Spec(C~ | k), 8o).  

(9.3) Lemma.  The Dieudonnb F~-modules (V~, q~) and the lattices M~ have the 
following properties: 

(i) / f x  = oo, we have 

rp~ ~eg<+) (M+)  = w~ 1 Moo 

dimk (go ~ (M | ~ ) = d 

for any uniformizer w~ of C~; 
(ii) / f x  = o, we have 

woMo c ~oo(Mo)~ Mo 

for any uniformizer Wo of Co and the ~(o) | k-module Mo/~Oo( Mo) is of length d and is 
supported on the connected component of SpecOc(o) |  k) which corresponds to the 
given embedding to(o) ~ k; 
(iii) /f x ~ ~ ,  o, we have 

rp~(M~) = Mx; 

(iv) some (and thus each) basis of the F | k-vector space V belongs to and generates 
the (9 x Q k-submodules Mx of Vx for all except finitely many places x 4: oe, o of F. 
Conversely, we let the reader  check that: 

(9.4) Proposition. The above constructions define a bijection between the set of 
isomorphism classes of g-elliptic sheaves (oei, Ji, ti )i~z (of characteristic o) over k and 
the set of isomorphism classes of pairs ((V, q~, l), (M~)x~lxl) where (V, ~o) is a 
~o-space of rank d 2 over F | k, z: D ~ --* End(V, ~o) is an F-algebra homomorphism 
and (Mx)~txt^is  a collection of ~x-lattices in the Dieudonnb Fx-modules 
(Vx, ~ox) = (Fx |  V, Fx ~rtP)  which satisfy the properties (9.3) (i) to (9.3) (iv). 

Now we will classify all the isogeny classes of g-e l l ip t ic  sheaves (of characterist ic o) 
over k. Let ( 8 ,  ji ,  ti)i~z be a g-e l l ip t ic  sheaf (of characterist ic o) over k and let 
(V, ~0, z) be its generic fibre. 
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(9.5) Let R be a unitary ring and let e be a positive integer. Let us denote by 
E ~  llVIe(R) the c lement ly  matrix with the (i, j)-th entry equal to 1 and all other 
entries equal to 0. If M is a right R-module we can view (~)e  as a right 
lx~Je(R)-module (IMe(R) acts by right multiplication on row vectors with entries in 
M). Then, the functor ~t ~ M e from the category of right R-modules to the 
category of right IMe(R)-modules is an equivalence of categories with quasi-inverse 

M ~-~ M E  11 
(the map 

M ~ (ME11)  e 

m ~-~ (mE 11 , . . .  , mE al) 

is an isomorphism of right IMe(R)-modules.) (Morita equivalence.) 

(9.6) Lemma. The (p-space (V, (p) is isotypical, i.e. isomorphic to (W, ~)" for  some 
irreducible (p-space (W, ~) and some positive integer n. 

Pro o f  We can assume that D is of the form lMe(/5) where 15 is a central division 
algebra over F with dime (15) = (d/e) r for some positive integer e. For simplicity we 
shall also assume that ~ is of the form IM~(~), where ~ is a sheaf of Cx-algebras 
with generic fibre/5 such that ~ is a maximal order for all x. Then, via Morita 
equivalence, 

(gi, j i ,  ti),~z = ((~i, Ji, ti),~z) e 

where (~i, f ,  tl),~z is a "~-elliptic sheaf of rank e (of characteristic o) over k" and 

( V ,  (p , l ) = (17 ,  ~9 , "[ ) e 

where ( I7, ~, ~) is the generic fibre of (~7/, j-~,//),~z. 
~ Now, the argument is very similar to the one used to prove Theorem 6.1. Let 

(W, ~k) be a non trivial (p-subspace of (17, (~). For each integer i, let J - i = ~ i  be 
the unique coherent Cx | k-SUbmodule such that (J ' i ) ,  =(gl ) ,  is equal to W= V 
and such that ~7/~i  is torsion free. Obviously, we have f ( ~ / ) = J / + l ,  
~',+dog(~)r = ~ / |  (gx(~ and t i ( ' c ~ i ) C ~ i + l  for each ie7/. 

Now, let us assume that I ~  17 is stable under the action of/5. Then ~ ~ ~i is 
stable under the action of ~ for each i e 7/. But 

H~ Q k), g,/g,_~) 
is a simple ~ - m o d u l e  and 

H~ (Spec((9o~ Q k ), , ~ , / ~ ' , _ ~ ) c H ~  ~ k), g,/Y,_ ~) 

is a ~ - submodu le .  Therefore either ~ i - 1  = ~'~ or the length of J ' ~ / ~ i - a  is d/e. 
As the length ~ of ~or o is equal to 

direr | k (if')" deg(o~) < (d/e)" deg(o~), 

there exists at least one i~ {1 . . . .  , (d /e) 'deg(o~)}  such that J'~_ t = J'~. 
Now, if ~ ,_~ = J~i for some ieT/, we have 

and, by comparing the degrees, we get 
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In other words, ~ _  ~ is endowed with descent data from k to IFq in the sense of 
[Dr6  (1.1)]. Moreover by hypothesis the descent data are compatible with the 
~-action. Therefore, by loc.cit., there exists a unique coherent Cx-module 
~ i -  1 with a ~-action such that ~-~i- ~ with its ~-action and descent data is the base 
change of g~_ 1 from lFq to k. In particular, there exists a unique/~-module of finite 
type I~( = (o~_ ~),) such that 

(if', (~) ~- ( W |  k, I~ |  Frobq).  

But /5 is a central division algebra of dimension (d/e)2~ over F, so dime(if ')  is 
a multiple of (d/e) 2. This con~adicts our hypothesis that W is a non trivial subspace 
of V. Therefore, the triple (V, ~, ~') is irreducible and the pair ( V, ~) is isotypical. 
The lemma follows. [] 

(9.7) Let x be a good place of F for the pair (D, ~ )  and let us fix an identification 
of the pair (Dx, ~x) with (IMd(Fx), D~d(Cx)). Then the Dieudonn6 Fx-module 
(Vx, ~Ox) and its lattice Mx (see (9.3)) admit a canonical splitting 

(v~, ~x) = ( v ' ,  ~o') d 

M ~ = M f  

where (V~,, q~,) is a Dieudonn6 Fx-module and M~, ~ V~ is a lattice in such way that 
the action tx ofDx (resp. ~ )  on (V~, q~x) (resp. Mx) becomes the natural right action 
of ~/[d(F~) (resp. lMd(Cx)) on (V~, ~o') a (resp. M'~d). In particular, for x = ~ ,  o we 
get, using the terminology of Appendix B: 

(9.8) Lemma. (i) The Dieudonnb Fo~-module ( V ' , q / ~ )  is isomorphic to 
(Nd,-1, ~d,-1) and the lattice M "  ~ V'~ satisfies the following properties: 

{ M ' ~ o ' ~ ( M ' ~ )  

(~o-)a-d~g~)(M-) = ~ 1  M~ 

dimk(~o'~(M'~)/M'~) = 1 

for any uniformizer m~ of Coo. 
(ii) The Dieudonnb Fo-module (V'o, qg'o) is isomorphic to (Nl ,0 ,~ l ,0 )d-h~  
(Nh, 1, ~bh, 1) for some integer h with 0 < h < d and the lattice M'o ~ V" satisfies the 
following properties: 

VJoM'ocqg'o(M'o)cM'o 
dimk(M'o/~o'o(M'o)) = 1 

for any uniformizer vJ o of Co and the support of M'o/~O'o(M'o) is the connected 
component of 

Spec(~c(o) | k )=  Spec(Co | k) 

which corresponds to the given embedding i t ( o ) ~  k. 

Proof. The properties of the lattices M'~ and M'o follow immediately from the 
corresponding properties of the lattices Mo~ and Mo (see (9.3)). Then the lemma 
follows from (B.7) and (B.8). [] 

(9.9) Proposition. Let (if,/7) be the q~-pair which is associated to the ~o-space (V, ~o) 
(see (A.4)). Then (if, 11) has the following properties: 
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(i) _ff is a field and [ i f : F ]  divides d; 
(ii) Foo |  is a field and, if ~ is the unique place o f .  ~ which divides o% we have 
d e g ( ~ ) ~  (/7) = - IF  : F ] /d ;  
(iii) there exists a unique place 6 4= ~ of  ff such that 6(17) 4= 0; moreover, 6 
divides o; 
(iv) we have h = d [ f f o : F o ] / [ f f  :F] where h is the positive integer of (9.8) (ii). 

Moreover, if ( W, ~9 ) is the irreducible qg-space which corresponds to (F, II) (see (A.6)) 
then the q)-space (V, q~) is (non-canonically) isomorphic to (W, ~ )d 

Proof. Let n and (W, r be as in (9.6) and let (F , / / )  be the ~p-pair which is 
associated to (W, r  (see (A.4)). Then, thanks to (A.6), 

d E/n -- dimF | k (W) = d(H) IF : F ] ,  

is a field and End(W, ~,) is a central division algebra over ff of dimension d(/~) 2 
and, for each place ~ of if, 

inv,(End( W, ~,)) - - deg(~):~(/7) (modulo 7t). 

From the diagonal embedding f f c  End(W, ~b)c IM,(End(W, ~b)) = End(V, ~0) we 
get an embedding F~o |  q~).  But, with the notations of (9.8), we 

' ' |  ~o')) com- have End(V~o, ~0~) = IMa(End(V~, ~o~)) and F~ ~ 
mutes with D ~  = RCld(F~o)~IMa((End(V~, tp ' )) .  Therefore, we have 

F~o |  F =  End(V~, ~o~) ~ Rqld(End(V~, ~0")) 

and F~ | is a field over Fo~ of a degree which divides d. (End(V~o, ~o~) is 
a central division algebra over F~ with invariant 1/d.) Moreover, (Woo, r is non 
canonically isomorphic to ( V ' ,  ~p'~)~ for some positive integer e and d = ne (the 
category of Dieudonn6 F~-modules is semi-simple and (V~, ~o" ) is irreducible, see 
(B.3) and (9.8) (i)). So, thanks to (B.4), we have 

- -  1 /d  = d e g ( ~ ) ~ ( l l ) / [ f f  : F ]  , 

where ~ is the unique place of ff which divides oo ( [kT~ : F~ ] = [ ff: F ] ). The parts 
(i) and (ii) of the proposition are now proved. 

Similarly, we have 

Vo |  i f=  End(Vo, ~0o) = IMd(End(V'o, ~O'o)) 

End(V'o, ~o'o)~-End(Nh, t, Ch, 1) • ~Vla-h(Fo) 

(see (9.8(ii)) and 

Fo |  ff ~ R4Id (End(Nn, 1, ~bh, 1 )) x IMa (RvSd-h(Fo) ) 

commutes with 

D~ v = Ma (Fo) ~ ~/ia (End(Nh, 1, ~Oh, 1 )) x 1~[~ (RaIa_h(Fo)) . 

Therefore we have 

Fo |  f f  c End(Nh, 1, Ch, ~ ) x ~vld_~(Fo) 

and there exists one and only one place O of F dividing o such that 

floe End(Nh. a, ~Oh. a) 
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and 

( V', ~p;) ~ (Nh, 1, g/h,,). 
Moreover (W~, ~,~) is non canonically isomorphic to 
(n divides d). So, thanks to (B.4), we have 

1/h = d e g  (6) 6 (/7) / [~'~ : Fo ] 

( V;, ~0o) e where e = d/n 

and 

he = d(17)[F~: f o] . 

If )? is a place of .Y which is distinct of ob and 8, then (W~, 0~) is some positive 
power of (N 1, o, 01, o) (if 2 divides o, (W~, 0~) is isomorphic to (V',  q/)e; if ~ does 
not divide o, the lattice Mx ~ Vx (see (9.3)) satisfies ~0x(Mx) = M,  and we can apply 
(B.6) and (B.3)). So, thanks to (B.4), we have ~(H) = 0. 

The part (iii) and (iv) of the proposition are also proved (deg(6)5(/I)= 
- deE( ~ ) o~ (/I) = [ f f :F]/d) .  

The last assertion of the proposition is now easy to prove: d(/1) is the 1.c.m. of 
the denominators of deg(oS)o~ (/1) and deg(6)6(/I), but 

deg(g)g(/7) = - deg(o~) o~ (/I) = 1/(d/[if: F ] ) ,  

so d(/1) = d / [ F : f ] ,  e = 1 (de = d ( / I ) [ f f : f ] )  and n = d. [] 

(9.10) Corollary. Let (F, H) be the (p-pair which is associated to the O-space (V, q~) 
(see (A.4)). Then End(V, q), t) is a central division algebra over ff of  dimension 
(d/ IF:F])  2 and with invariant 

( [ ~ : F ] / d  i f  ~ = So 

invx(End(V, rp, t)) = I - [ff:  F ] / d  if ~ = 
/ 

[ [ff~: fx]inv~(D) otherwise 

for each place x of F and each place 2 of F dividing x. 
In particular, for each place x of F and each place Y~ of F dividing x, we have 

(d[ F~:F~]/[F : F ])inv~(D) e 7Z . 

Proof By definition, End(V, tO, l) is the centralizer of t(D ~ in End(V, q~). But 

End(V, rp) = ~VIe(gnd(W, 0)) 

and End(W, O) is a central division algebra over F of dimension (d / [F:F  ])2 and 
with invariants 

( [ f f : F ] / d  if 2 = 

i n v ~ ( E n d ( W , O ) ) = < - - [ F : F ] / d  if ~ = O  

(o otherwise 

for each place 2 of/~ (see (9.9) and (A.6)). Therefore, End(V, (p, t) is a central simple 
algebra over ff of dimension (d/[if: F 1)2 and with invariants as required (see 
[Re]). Such a central simple algebra over ff is obviously a division algebra 
(F~ |  t) and ff~|  are division algebras) and the 
corollary follows. [] 
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(9.11) Definition. A (D, ~ ,  o)-type is a go-pair (F, H) which satisfies the following 
properties: 
(i) F is a field and I F : F ]  divides d; 
(ii) F| |  i is a field and, if ~ is the unique place of i which divides ~ ,  we have 

deg(o~)o~(/7) = - [ff: F]/d; 

(iii) there exists a unique place 6 ~= ~ of f such that 0(/1) =~ 0; moreover 6 
divides o; 
(iv) for each place x of F and each place ~ of f dividing x, we have 

(d[f ~: Vx]/[i :F])invx(D)~ 7l . 

We have seen how to associate a (D, oo, o)-type t o t h e  generic fibre of a g-elliptic 
sheaf (of characteristic o) over k. Conversely, let (F,/7) be a (D, oo, o)-type. 

(9.12) Construction. We will associate to ( ( , / I )  a triple (V, go, t) (well defined up 
to isomorphism) where (V, go) is a go-space (over k) and l :D ~ ~ E n d ( V ,  go) is 
a F-algebra homomorphism. 

Let (W, ~) be "the" irreducible go-space which corresponds to the go-pair (F, 17) 
(see (A.6)) and let A be "the" central division algebra over F with invariants 

[i:V]/d if ~ = o~ 

inv~A = - [ f f : F ] / d  if s  

[ /~ :  Fx]invx(D) otherwise 

for each place x of F and each place ~ of ff dividing x. Thanks to (9.11) (iv), we have 

dim~ (A) = (d/[i: F ] )2 . 

Then, D ~ ~)F A and ~Vid (End(W, #J)) are central simple algebras over i of the same 
dimension d4/[i: F]  2 and with the same invariants 

{ [ f f : F ] / d  if ~ = o~ 

o[F:F] /d  if # = 6  
otherwise 

for each place s of i (see (A.6)). Therefore, these two if-algebras are isomorphic 
and, thanks to the Skolem-Noether theorem, an isomorphism between them is 
unique up to an inner automorphism of lMd(End(W, #J)). Let us choose such an 
isomorphism 

o::D~174 , ~[d (End(W, ~b)) 

and let us set (V, go) = (W, #/) d. Then 
Gt 

t : D O  p 6 ~ - ~ 6 |  DOP~rA , ~Vid(End(W, #J)) = End(V, go) 

is a F-algebra homomorphism and the commutant of/(D ~ in End(V, go) is the 
image of A by the F-algebra homomorphism 

6 ~---~ 1 |  
A , D ~ | , IMd(End(W, #J)) = End(V, go). 
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The isomorphism class of the triple (V, q~, t) is clearly independent of the choices of 
(W, qJ), A and ct. [] 

(9.13) Theorem. The composed map 

(r jl, ti), ~ z w-~ (V, q, t) ~ (V, 11),  

where (r Ji, t i ) , ~  is a ~-elliptic sheaf (of characteristic o) over k, (V, q), t) is its 
generic fibre and (F, 11) is the corresponding (D, oo, o)-type, induces a bijection 
from the set o f  isogeny classes o f  @-elliptic sheaves (of characteristic o) over k onto 
the set o f  isomorphism classes of  (D, oo , o)-types. 

Moreover, the inverse bijection is induced by the construction (9.12). 

Proof  Most of the theorem is already proved. The on lynon  trivial part which is 
left is the surjectivity of the map. More precisely, let (F, H) be a (D, oo ,o)-type and 
let (V, q~, t) be "the" triple which corresponds to (F, H) by the construction (9.12). 
We want to prove that there exists at least one ~-elliptic sheaf (g~, Ji, ti), ~ z (of 
characteristic o) over k with generic fibre isomorphic to (V, ~0, z). 

Thanks to (9.4), we are reduced to finding a collection (M~)~ixl of ~x-lattices 
which satisfy the properties (9.3) (i) to (iv). Let us fix a basis of the F | k-vector 
space V. Then there exists a finite set of places ~ of F containing oo, o and Bad 
such that, if x ~ I X I \ X ,  the C~-submodule M~ of V~ generated by this basis is 
a ~x-lattice with q~(M~)= M~. If x E X\{ oo ,o}, (V~, ~o~) is isomorphic to 
(Vx ~ ~ k, V~" ~ frobq) (see (9.11) (iii), (B.4) and (B.6)) and any finitely generated 
~x-submodule of the free Dx-module of rank one, V~ ~, induces a ~- la t t ice  
M~ ~ V~ such that ~o~(M~) = M~. Finally, ifx = oo (resp. x = o), we have seen that 

(v~ ,  q ~ )  = (v;~, ~o~,) ~ 

= (Vo, q~o) ) (resp. (Vo, q~o) , , d 

as a module over D~ = IMa(F| (resp. Do = ~4Id(Fo)). But thanks to (B.4), we have 

( V ' ,  cp~ ) ~- (Na.-1, ~9d.-1) 
and 

(V', qo) -~ (NLo, d-h ~bl,o) G (Nh, 1, t~h, 1) 

where 

h = dE~:Fo]/EZ~:FI 
and thanks to (B.8) there exists a lattice M "  c V "  (resp. M'o ~ V'o) such that 

M "  = ~ (M'~)  

( r 1 7 6  = wg 1 M "  

dimk(qg~(M'~)/M'~)  = 1 

(resp. woM'o c (P'o(M'o) ~ M'o 

dimk (M'o/q" (M ' ) )  = 1 

and the support of M'o/q~'o (M'o) is the connected component of 

Spec(K(o) | k) c Spec(Co | k) 

which corresponds to the given embedding x(o) ~ k) 
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for some uniformizer w~ (resp. t%) of (9o0 (resp. (9o). We can take Moo = M ~  
(resp. Mo = Mo d) to complete  our collection of ~ - l a t t i c e s .  [] 

10 g-elliptic sheaves in finite characteristic: Description of an isogeny class 

Let us fix a (D, o% o)-type (F,/7).  We will describe the set 

~ f  d x,~,o(k )lL ~) ~ ~ f  d x,~,o(k) 

of i somorphism classes of g-e l l ip t ic  sheaves (of characterist ic o) over k which are in 
the isogeny class corresponding to (F, H). 

(10.1) Let us fix a ~o-space with D-act ion (V, q), t) with (D, oo, o)-type (F, F/) 
(see (9.12)) and  let A = End(V,  q), t). F o r  each place x o f F  we have the correspond-  
ing Dieudonn6 F~-module with D~-action 

(Vx, ~o~, l~) = (F~ ~)F V, Fx Qv~o, Fx Q v ' ) -  

Let Yr be the set of @.-lattices M.  in Vx which satisfy the proper ty  (9.3)(i) if x = oo 
(resp. (9.3)(ii) if x = o, resp. (9.3)(iii) if x + 0% o) and let 

~g,o= [I e/x 
x ~  oD,o 

be the set of families of lattices which satisfy the extra condi t ion (9.3)(iv). Then we 
have a natura l  left action of A • on the set 

~,~,~: = ~|  x o~~176 x .% 

and it follows from (9.4) that  we have a natura l  bijection 

g t f  x,~,o(k)lp,~ ) ~ ,  A • \~/~,~ . 

(10.2) Now, we will give a more concrete descript ion of ~ , ~ .  Let  us begin with its 
par t  ~g.o .  Let D ~176 be the restricted product  of the D~'s with respect to the ~x's  for 
all places x ~= ~ ,  o. Let (M~= V~)x + o~,o be a base point  o f ~  '~ Then, we can form 
the restricted product  (V ~'~ opt,o) of the (V~, r with respect to the M~'s for all 
places x =k ~ , o .  Thanks  to the condi t ion (9.3)(iv), this restricted product  
(V ~176 ~o ~176 is independent  of the choice of the base point  (M~c  V~)~, ~,o and, 
thanks  to the condi t ion (9.3)(iii), the canonical  map  

(V~176 'p~'~ ~w. k -+ V ~176 

is bijective. Obviously,  (V ~ ~ e|176 is a free right D ~' ~ of rank one. Let us fix 
a basis of this D~176 Then we get a left action of (D~176 • on ~ [ , o  (D~.O acts 
by left mult ipl icat ion on the right D~176 V ~'~ = D ~176 (~ k). As 

~ ' ~  I-I ~x 
x ~6 c t )  , o 

is a maximal  order  of D~176 this action is transit ive and our  choice of a base point  of 
~ , o  gives an identification 

~ . o  ~ (D~,O)•215 . 
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Moreover, the action of d on the right D~176 ( V ~ ' ~  'p~''~ = D ~'~ gives an 
embedding A ~ D ~'~ through which the left action of A • on ~g,o  factors in an 
obvious way if we use the above description of YCg'~ 

Next, let us consider ~ .  We have a canonical splitting 

(v,~, ~o~) = ( v - ,  ~o'~) d 

thanks to the action of D~ = IIVId(F~) and o ~  can be identified with the set of 
lattices M "  in VL such that 

M 2  c q~ ' (M2)  

d i m k ( q ;  ( M ' ~ ) / M ' ~  ) = 1 . 

But, thanks to (B.10), this set of lattices is a principal homogeneous set under 
77 (m~7/maps M~ into (q~'~)m(M~)). Let us identify (non canonically) . ~  with 77. 
Moreover, the action of A on (V| q~) commutes with the action of D~ = ~VId(F~) 
and is therefore induced by an action of A on (VL, ~0'~). So we get an embedding 

A~--, End(l/L, ~0~). 

Thanks to (B.11), End (VL, ~p~) acts on ~o~ through the homomorphism 

End(VL, q~'~) . . . .  , F ~  - deg(~)~(-) , ~,. 

Therefore, A • acts on ~ through the homomorphism 

A • ~ E n d ( V L , ~ o ~ )  • ~n F ~  -dogt~)~(-)  7/, 

which is nothing else than the homomorphism 
r n  

A x >if• -d~g(~)~(-) 77, 

The description of ~ with its left action of A • is similar and we let the reader check 
the details. Using the action of Do = ]I~(Fo) we can split (Vo, (Po) into 

(Vo,~Oo) = (vo, ~O'o) ~ 

Using the action of/~ we can split (l/~, ~O'o) into 

( v ' ,  q~') = ( v  "~, q~)) ~D (vo,  ~ ) .  

Now, we can identify ~do with the product ~o ~ x Y/~, where ~ is the set of lattices 
~ ~ 

M~ ~ in V~ ~ such that 
r  M'o ~ 

and where ~ is the set of lattices Mo in V/ such that 

{ ~ o M o  c ~p" (M '~ )~  M'~ 

dimk (Mo/~oo (Mo))  = 1 

and the support of Mo/~Oo (Mo)  is the connected component of 

Spec(~(o) | k )c  Spec((9 o | k) 

which corresponds to the given embedding t o ( o ) ~  k (see (B.8)). Then, as for ~J~'~ 
we get an identification 

off~ ~ ~- ) GLd_h(Fo) /GLa_h( (9o)  
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and an embedding of algebras 
A ~ R41a-h(Fo) 

through which the action ofA • on ~J~o factors in an obvious way if we use the above 
identification. Here 

h = [ff~:Fo]d/[ff:F] 

(see (9.9)). As Y/w, ~J~ is a principal homogeneous set under Z (m~Z maps Mo into 
(~o') "deg(~ (M'); the extra component deg(o) comes from the condition on the 
support and we can identify (non canonically) ~ with 7Z. The action of A • on 
~Ja = 2~ factors through the homomorphism 

, r n  x o ( - )  A • c ~  End(V~, q~o) • )Fo ,7 / ,  

which is nothing else than the homomorphism 

A x r n  fix d e g ( o ) / d e g ( o ) ) o ( - )  7~ ) ) . 

(10.3) We can summarize the above results in the following way. Let us start with 
our (D, ~ ,  o)-type (F,/7) and our algebraic closure k of K(o). Then we have the two 
p l a c e s ~ ,  5 of if, the integer h = [/~ :Fo ] d~ [ f f : F  ], "the" central division algebra A 
over F with invariants 

f [F:F]/d  if ~ = o5 

inv,(A) = < - [ f f : F ] / d  if x = o 
/ 

( [P~ : Fx]invx(D) otherwise 

for each place x of F and each place # of/~ dividing x. 
Then, let us arbitrarily fix an embedding of &o~, O_algebra s 

Ak~,o | ff ~..~ D ~,~ , 

an embedding of F~-algebras 

/7~ ~_~ End (Nd,- 1,  ~ d , -  1 ) ,  

where End (Nd,- ~, t~d,- ~) is "the" central division algebra over F~ with invariant 
1/d, an embedding of Fo-algebras 

t ~ ~ ll~-h(Fo) 

and an embedding of Fo-algebras 

F~ ~ End(Nh,1, @h, 1), 

where End (Nh. ~, ~l'h, x) is "the" central division algebra over Fo with invariant - 1/h 
(this is always possible and different choices of these embeddings are conjugate). 
Now, we can and we will identify A ~'~ |  (resp. A~, r esp. A~ resp. A~) with the 
centralizer of the image of A ~'~ |  (resp. F~, resp. Fo ~ resp. F~) by the above 
embedding. In particular, we get group homomorphisms 

f A• ~ (D~'~215 r n  ILr• -dcg(oo)~(-) A • c- .End(Nd,-1,~d,-1)  • )ro~ ,7Z 

A • ~ GLd-h(Fo) 
A • ~ End(Nh, l,~bh,0• ~.) Fo ~ o ( - )  Z 
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(the second and the last ones coincide with 

A x  r n ) f f •  - d e g ( c ~ ) ~ ( - )  ) 7~ 

and 
A X rn ) i f •  deg(~)/deg(o))o(-) ) 7/ 

respectively) through which A • acts on 

{ g~,o = (O.,O)• /(~o~,o)• 

Y~o = GLd-h(Fo)/aLd-h((9o) 

Y~ = 7/ 

and therefore on 
Y~,o= Y| Y ~ ' ~  Y~o• Y~ . 

The above constructions give a (non canonical) bijection 

~:dx,~,o(k)l~,~ ) ~ ,  A • Y*,o �9 

In itself this statement cannot  be used. But we will now make it more precise and 
more useful by looking at the structures that we have on g::x,e.o(k)(:,o). 

(10.4) Let us begin with the action of the Hecke operators. Let I c X be a finite 
closed subscheme such that I n {oo, o} = 0 and let J c  (gx be the corresponding 
ideal. Then we have a Galois etale finite covering 

rt, o,o: ~::x,e,l,o ' ~::x,~.o 

with Galois group 

Kf,O = Ke r ( (~ . , o ) •  ~ ( j . , o ~ o o , o \ ~ , o ) •  

In terms of the description (9.4) of 8::x,~,o(k), the map 

rl, o,o(k):~::x,~,1,o(k) ~ 8::x,~.o(k) 

can be described in the following way. The set 8::x,~,l,o(k) is the set of isomor- 
phism classes of triples 

((V, tp, O, (Mx)x~lXl, (~)x~1) 

where (V, q~, t) and (M~)~lx I are as in (9.4) and where 

~ x : J x ~ x \ ~ x  ~ , J ~ M ~  \ M ~  

is an isomorphism of right @ : m o d u l e s  for each x ~ l  (recall that, for each x 4: 0% o, 
the canonical  map 

( M ~ ~ @w~k, M ~ ~ ~w~ frobq) --* (M~, ~Ox) 

is an isomorphism); rl, o,o(k) maps 

((V, qg, O, (Mx)xelxI, (o~)xEt) 
into 

((V, cp, t), (M:,):,~IXl). 
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Therefore, in terms of the above description of the isogeny class ~::x,  ~,o(k)(:, ~), the 
restriction 

rl, o,o(k)(:, ~ )  : ~::x,  ~d,o(k)(:, r~) ~ ~::x,  ~,o(k)(:, ~) 

of h,e,o(k) to this isogeny class can be described in the following way. There is 
a (noncanonical)  bijection between ~::x,~,t,o(k)(:,~) and the quotient  set, 

A• 

where 
Y . , I =  Yoox Y ~ ' ~  Y~ox Y~ 

and  
y?,o  = (O~,O)• 

(A • acts through the embedding A • ~ (D~176 • on y?.o  and as before on 
Y| Yj, Y~); r~,o,o(k)(:,r~) maps 

A x [moo, h ~ ' ~  "~ h~oGLd_h(Co), mz,] 
into 

d x [mo~, h~176176 '~ h~oGLd-h((9o), m~] 

(Kr = ( ~ , o )  • 

Morever, if J ~ X  is another  finite closed subscheme such that d c~ {oo, o} = 0 
and if I ~ J, we have a Galois etale finite covering 

with Galois group 
K f '  ~ 176  

such that 

rj, o,o = r~,r �9 

Then, rj, t,o(k) maps r e,s,o(k)(:, ~) into r e,t,o(k)(:, ~) and it is clear that we can 
choose the bijections 

ed:x, ~,1,o(k)(r, ~) ~ ,  A • \ Y.,I 
and 

r162162 ~,J,o(k)(:, fl) ~ '  A • \ Y. , j  

as above in such way that the restriction rj,~,o(k)(Ln ) of rj, t,o(k) is induced by the 
canonical  map Y T  "~ ~ YT  '~ and the identity maps of Yoo, Yo ~ and Y~. 

Finally, let T be a finite set of places of F containing (oo, o). Let us set 

8::rx,~,o(k)(;,~) = ( lim (8::x,~,l,o(k)(:,~), rj,1,o(k)t:,~ )) �9 
lc~T=O 

Then we leave it to the reader to check that we can find a bijection of r ~,o(k)t: ' rt) 
on the quotient  set 

A • 
where 

y I  = y + •  . . . .  r x Y ~ o x Y ~  
and  

y~ ,o , r  +D|215215 x x = t ) /;~t\{~o,o} = (Dr) • x DT\{oo,o}/~T\{oo,o} ) 
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such that the right action of (D T) x on glen r, ~,o(k)~e, ~/which is described in (7.4) is 
identified with the obvious right action of (D T) • on A •  (here (D T) • acts by 
right translation on itself and by the identity on the other factors of y r). 

Now let K T c ( D T )  • be an open compact subgroup. For any gr~(Dr)  • the 
Hecke correspondence 

oa~(( T, @,o/(K T c'x ( g T ) -  1 K T gT ) 

which is described in (7.5), induces a correspondence 

N f f r  ~,o(k)ig ' hi~( K r C~ (gr ) -  1K rgr)  

~ f r l ,  e,o(k)izr, r~t/K T .____ ~rE~, ~,o(k)(;, rT)/ K T.  

Then, this last correspondence is isomorphic to the correspondence 

d •  T c~ (gT)- 1KrgT ) 

A •  •  T 

where Cl is induced by the identity of Y~ and c:  is induced by the right action of 
(gT)- I  on Y~. 

In practice, we will take T = {oo, o}. 

(10.5) In terms of the description gEEx,~,o(k)~r, rzl ~ ,  A •  Y~ or 
~r162 ~,o(k)iF, r~t ~ > A • Y~, the pole map is simply induced by the canonical map 

Yo~ = Z --~ 7Z/d7Z = Spec (K(oo))(k) 

(as we have fixed an origin in Y~, we have a corresponding origin in 
HomF,_ ~jg (x(oo), k)). 

Similarly, the action of 77 by translations of the indices on the moduli space of 
~-elliptic sheaves is induced by the action by translations of 77 on Y~ = 7/. Indeed, 
in terms of the description (9.4) of the moduli space, ne77 maps 

((v, ~o, O, (M~)~lxO 
into 

((V, go, 0, go~(Moo), (M~)~lXl\{o~)) �9 

Let FroboeGal(k/x(o))  be the geometric Frobenius (Frobo = frob~-d~176 It acts on 
the @-elliptic sheaves of characteristic o over k by 

So, in terms of the description (9.4), it maps 

((v, go, O, (M~)~lxl) 
into 

((V, go, O, god~g(~ (M~)xs)Xl\{o~,o}, godeg(~ . 
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Therefore, in terms of the description gYf x, ~,o(k )ir, ~) ~ ,  A • \ I1. or 8(fx r, ~,o(k )ip, n) 
~ ,  A •  the action of Frobo is induced by the translation of (deg(o), 1) on 

y~ x y~ = 7Z x 7Z. 

(10.6) Let us now consider the level structures at infinity on @-elliptic sheaves of 
characteristic o over k. We have a pro-finite, pro-etale and pro-Galois covering 

r+,o: ~E~x,~,o ~ ~EEx,~,o 

with pro-finite Galois group - x z D~/w o~. In terms of the description (9.4), the map 

r~,o(k) : 8Efx, ~,o(k) ~ ~fEx, ~,o(k) 

can be described in the following way. For each 

((V, tp, 0, (M.)x~ iXl) e gEYx,~,o(k) 
let 

i~,o : Spec(k) ~ Spec(x( oo )) 

be the pole of this ~-elliptic sheaf, i.e. the support of the x(o~) | k-module 
~ooo(M~)/Mo~, and let M'~ be the dual of the free (_9~ ~ k-module of constant rank d, 
Moo,' and ~ ../17/'~ --L)lT/~o be the restriction to 37/" of the F~ (~ frobq-semilinear 

i map (q3~)-1 : V" ~ V~. 
Here we have split (Voo, ~o~) andMoo into (V~, q~)d and ( M ' )  d using the 

identification ~ = ~/~d((9o~) and ~b~ : V~o ~ V~ is the dual map of ~o'. Then, the 
set ~"~x, e,o(k) is the set of isomorphism classes of triples 

((11, ~o, O, (Mx)x~txl,  (;~, ~)) 

where ((V, q~, t), (M~)x~lxl) belongs to gf~x,~,o(k) and 

2 : Spec(k) ~ Spec(K( o9 )a) 

is a lifting of io~,o and 
~ , M ~  ~: Ma,*(i~,o) ~ '  

is an isomorphism of (9| ~ k-modules which commutes with the r r~,o(k) maps 

((V, q~, 0, (M~)xEiXl, (2, ct)) 
into 

((V, r O, (Mx)xelXl) , 
and 

b ~ • = ~ ~ ~ ~/clTZ 

acts on the pair (2, ~) as described in (8.6). 
Therefore, in terms of the description A • \Y~,0 of the isogeny class gg#x, ~,o(k)(~, r~), 

the restriction 
r~,o(k)(p, n): ~-~x, ~,o(k)(p, n) ~ g~f x, ~,o(k)ltr, ~) 

of r| to this isogeny class can be described in the following way. We set 
? ~  r ~  - •  * - - •  * 

= x (D~/'~oo) • ( D ~ / ~ J ~ )  - 

with the action by right translations - • z of D~/mo~ on its second factor. We let A • act 
on Y~ (left action) in the following way. We have fixed an embedding of 
algebras 

A ~ E n d ( N a , - , , ~ a , - t ) .  
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Let us identify End(Nd,-1,  ~ba,-1) with (b~) ~ (both are central division algebras 
over F~ with invariant l/d), so that we get an embedding of algebras A c_. (b~)~ 
and an embedding of groups A • ~-~ ((Doo)~ • ~,Do~.- • 

Here the last i somorphism is given by g ~ g -  1. Then A • acts on the first factor 
Y~o = Z by t ranslat ions through the group homomorph i sm 

A x ~ _ ~  J~ oox r n  ) F X  d e g ( ~ ) o o ( - )  ) ~,~ 

and on the second factor 3 ~ / m L  by left t ranslat ions through the group homomor -  
--  x 

phism A • ~ Do~. No te  that  the group homomorph i sm 

A • ~-~ End (Na,- 1, ~a,- 1) • r ,  F ~  -deg~)o~-7 Z 

coincides with the one given above. 
Again, we leave it to the reader to construct  a bijection of gEfx,~,o(k)trz~) onto • the quotient  set A \ z<0, where Y~,0 = Yo~ • y~o,o • y~ • y~, such that  the right 

action ofDoo/~Jo~- • z on ~'~x,  e,o(k)ig, h~ is induced by the right action of/3 ~ / ~  on Yo~ 
that  we have described above and such that  the map  r~,o(k)ip ' r~)is induced by the 
project ion of Y~ onto its first factor Y~. 

Similarly, we have - • z (Do~/w~)-equiva len t  (non canonical)  bijections 

~ - ? x , ~ j , o ( k ) ~ , ~  t " ,  A •  

and 

~-dx r, 9, o(k)i;, r~ - ,  A • \I71 

for any finite closed subscheme I c X \ { o o ,  o} and any finite set T of places of 
F containing { 0% o}. Here, we have set 

~ , , =  L x Y ~ ' ~  Yao• Ya 

and 

? I = L •  . . . .  ~ • raox  Ya . 

The maps  r~ l o(k)(~ o) and r , . , roo,o(k)lg, n I are induced by the project ion of Yo~ onto its 
first factor Yoo. The maps  6,o(k)ce " rn and more generally fs, t, o(k)~r, ~I are induced by 
the canonical  maps  YT'~  y g , o  and yf ,o__~ y~o,o The action of (DT) • on 
"~T~,o(k){;~,r~ 1 is induced by the action of (Dr) • on Y . . . .  T. 

As in (10.4), we can give an explicit description of the Hecke correspondences 
for ~-'~T ~,o in each isogeny class. 

The map  
),o(k)lg, ~I) : O~dd x, ~,o(k)lL r~ ~ Spec (tc(oo)a) 

2o (k)lf, m are induced by the map  and the similar maps 2,,o(k)lL~ I and r _ 

f ~  = 7Z x D~/m~- • z -+Z/d .deg(m)TZ 

which sends (n, 6) into 

n - deg(m)m(rn(3)) (modulo d - d e g ( m ) ~ )  

(as we have fixed an origin in Y~, we have a corresponding origin in 
Hom~,_ m (~(~)d,  k)). 

The action (8.9) of 7Z on ~d-~x, ~,o(k)te, o) or on ~-~x, ~d,o(k)l~, " ' J r  ~/or  on ~ d x ,  ~,o(k)i~, ~1 
is induced by the act ion by translat ions of 7Z on the first factor Yo~ = 7Z of Y| 
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The action of the geometric Frobenius Frobo on gf fx ,  e,o(k)lr, ot or on 
~-~x, e,z,o(k)lp,/h or on ~-~T ~,o(k)(r, ril is induced by the translation of (deg(o), 1) on 
Y~oxY~=TZx71=]7~oxY ~. 

11 Counting fixed points 

As in Sects. 9 and 10, we fix a place o # ~ ,  o r Bad, of F and an algebraic closure 
k of x(o). We fix an open compact subgroup K ~,o~ (D co,o)• and an open normal 
subgroup /(~ - • z c D ~ / w ~ .  We assume that K ~'~ is small enough: for example, 
we assume that K | 1 7 6  '~ for some non empty finite closed subscheme 
l~X\{oo, o}. 

We consider the proper and smooth scheme 

M = ~-~{x~, ~)o/(7Z x/s  x K 0o,0) 

over ~(o) (see (8.9)). On M we have a right action of the finite group (D- ~ /~  • Zoo)//~ 
and a right action of the Hecke correspondences 

M ( g  ~'~ 

M §  M 
where 

"-'J{~,o} M (g oo,o) = ~E~ x,~,o/(2~ x K ~  x (K ~,o r~ (gO~,o)- 1K ~.o go~,o)) 

and g~'~ runs through (D~'O) • (see (8.8)). These two actions commute. 
On the set M(k)  of k-rational points of M we also have an action of the 

geometric Frobenius Frobor which commutes with the actions of 
- -  • Z - -  (D| and the Hecke correspondences. 

Let us - - • z gOO,O~(DO~,o)• fix go~eD| and . For any non negative integer r, let us 
denote by 

Fixr(j~,  g~.O) 

the fixed point set of the product of the actions of goo/s the Hecke correspond- 
ence associated to g~,o and Frob~. In other words, F i x r ( ~ ,  g~.O) is the set of 
m~M(g~ '~  such that 

Frob~(cl(m))" ~ / s  = c2(m) . 

( IL l )  Lemma. I f  r > 0, the f ixed point set Fix~(~ ,  gO~176 is finite. Moreover, each 
f ixed  point in Fix~(~o, g~,O) has multiplicity one. 

Proof  If r > 0, the graph of Frob~ is transversal to any correspondence 

M' 

M ~ - - - M  

with c~ and c~ etale. 

Our goal in this section is to compute the number of elements 

Lef,(0| g~,o) 

of Fix,(~o~, gO~,o) when r > 0. From now on we will assume r > O. 
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(11.2) Let us recall that M(k) can be decomposed into isogeny classes. Fo r  each 
(D, ~ ,  o)-type (F, FI) we have a corresponding isogeny class 

m(k)~r,/?1 c m(k)  

and a non canonical bijection 

M(k)~F,~) ~ ,  A x\Y~'~ x Is x K ~,o) , 

where 
? ~ , o l  7/ • - • z ( D ~ , O ) •  = (D~/vJ~) x x (GLd_h(Fo)/GLe_h((9o)) x 7Z . 

Here, the action of 7/(resp. ~2~ - • z ~Doo/vJ~, resp. K ~ ' ~ 1 7 6  on f~ ,o} is the 
action of right translations on the factor Y~ 7/(resp. - • z = D~/~oo, resp. (D~'~215 
Moreover ,  the action of Frob~o on M(k)tr ' fz)is induced by the translation (r deg(o), 

r) on the factor Y~ x Y~ = 7/•  7l of ~'7~'~ the correspondence 

M(g~'~ Ol 
/ 

M(k)(L ~t * - -  - M(k)tr, nl 

is induced by the correspondence 

(D ~,o)• ~,o n (g oo,o)- ~K ~,Og ~,o) 

<5 
(D~,O)•  (D~,O)• ~,o 

where 

c l (h~ '~  ~'~ c~ ( g ~ ' ~ 1 7 6 1 7 6  = h~ '~  ~'~ 

cz(h~'~ ~'~ c~ (g~176176176176 = h~'~ ~'~ 

on the factor (D~'~ x of fk~,o} and the action of - •  z - ( D ~ / ~ ) / K ~  on M(k)lg,~ I is 
induced by the action by right translations - • z of D~/vJ~o on itself. 

In particular, we can also decompose Fix~(0~, g~,O) into isogeny classes 

Fix~(j~o, g )~F',nt M ( g  )(k)tr, n I 

and 

A . . . . . . . . . .  - 1 . . . . . .  h]GLa_h(Oo), m~] [ h ~ K ~ , h  (K c~(g ) K g ), 

o o , o  . is in Fix~(0~, g )~e,n) if and only if there exists 6eA • k ~ e K ~ ,  k ~ , ~  ~,~ and 
k~eGLa_h((9o) such that 

h~, o = 6hO~,o(g~,o)-lk~,O 

h~. = 6h~ok~ o 

m~ + r = (deg(O)/deg(o))6(rn(6)) + m~ 



278 G. Laumon et al. 

i.e. if and only if there exists 6cA • such that 

~](h ~,~ - a 6h~,O e K ~,O (l~,o 

(h~)- 16h~eGLd_h(Co) 
I 

Qdeg(~)6(rn(6)) = r deg(o) . 

(11.3) Lemma. For any h~'~176176 • h~GLd-h(F~) ,  the only 6~A • such that 

f (h ~ ~,O ~ K ~,O 

~(h~o) - 16h~oeGLd_h((9o) 

{ ~(rn(6)) = 0 

is the identity element (recall that K ~'~ is small enough). 

Proof  See [Lau 2, (3.2.6)]. [] 

(11.4) Let A 2 be a system of representatives of the conjugacy classes in A • Let us 
say that l e a  • is r-admissible (at the place o) if 

deg (5)6(rn(6)) = r deg (o) 

and 6 is conjugate to an element of GLd-h((9o) in GLd-h(Fo). Clearly, this is 
a property of the conjugaey class of 6. For  each 6eA • let 

A{  = {6 'sA xl6,6 = 66'} 

be its centralizer in A • The map 

h~ '~  ~'~ n ( 9 ~ ' ~ 1 7 6  ~~176 w-~ h~ '~  ~176 

from the set of classes satisfying 

(h~,O)-~fh~O,O~K~,Og~, o 

to the set of classes satisfying 

(h~,O)-16h~,O~K~,Og~,OKOO,o 

is clearly bijective. Therefore we have proved: 

(11.5) Proposition. For each (O, oo, o)-type (F, FI), Fix~(0o~, g o~, o)lf, r~) is the disjoint 
union over the 6's in A ~ which are r-admissible of  the sets of  double classes 

A {  [hooff(~, h ~ '~  ~176 hZ'o GLd-h((9o), mrs] 

which satisfy 

(h~,O)-~6h~,O~KOO,ogoO,OK~,O 

(h~o)- X 6h~osGL d_.((go) . 

(11.6) For  each 6~A • let (b~o){ (resp. (D~'~ resp. GLa-h(Fo)o) be the central- 
izer of 6 in D~ (resp. (D|176 • resp. GLd-h(Fo)). Let dh~ (resp. dh ~'~ resp. dho ~) be 
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the Haar measure on b ~/w~ (resp. (D ~'~ • resp. GLd-h (Fo)) which is normalized 
by 

vol (g7 ~, dTt. ) = 1 

(resp. vol(K ~~176 dh ~'~ = 1 

resp. VoI(GLd_h((9o), dh~) = 1). 

Let dm~ be the counting measure on Y~ = Z. Let dh~,~ (resp. dh~ '~ resp. dh~,~) be an 
arbitrary Haar measure on (D~);/m~ (resp. (D~'~ resp. GLa-h(Fo)~). Let d3' be 
the counting measure on A{. Note that all the above groups are unimodular. 

Let f~ (resp. fog,o, resp. fo ~) be the characteristic function of ~| in D~/w| • z 

(resp. K~'~176 ~176176 in (D~'~ • resp. GLa_h((9o) in GLd_h(Fo) ). 

We can introduce the orbital integrals 

dh~ 
O~(foo, dho~,6) = j' foo ((,~oo)-',:Shoo) d~ ,~  ' 

dh OO,o 
O6(f ~,~ dh~ ,~ ) = ~ f~176176 _ _  

(o~,o):~(o~,o)~ dh~ '~ 
and 

G O~(fo, dho,o) = I 
GLd-h(Fo)a\GLd-h(Fo) 

They are absolutely convergent. 
We can also introduce the volume 

;, 1 z, dh~o 
fo((ho) ~ho) d-~o,~" 

vol (A ox\ [((/)j{/m~)x(D~176 7Z], dh~,6 xdh~ '~ xdh~o,6 xdm~) 
d•' 

(11.7) Lemma. For each r-admissible 6~A • the embeddings ofF-algebras 

A c--, b 7  

A ~ D ~'~ 
and 

A c__, ~I~-.(Fo) 

induce group isomorphisms between the centralizers of 6 

(A| ~ , (b~)~  

(A ~'~ ~ (O~'~ 
and 

(A]),~ ~,  GLd-h(Fo)o. 

In particular, the Haar measure dho~,~ x dh~'~ dh~o,~ induces a Haar measure d6 '~ 
~ x  ,E x Z oo,ox on (A )~/m~ = ((d ~)a/m~) x (d )6 x (Ao)~ • and the above volume is equal to 

vol (d~ \[((A~)~/w~) x 7/,], d6 'a_~;x dm~). 

Proof. See [Lau 2, (3.3.4)]. [] 

Then it is clear that the Proposition 11.5 implies: 
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(11.8) Proposition. For each (D, 0% o)-type (F,/7), the number 

Lef,(Ooo ' g~o,o){~,~) 

of elements of  Fix,(O~, 9~'~ o) is equal to 

A d6 '~ x d m ~  dh6 )O6(f o, dh~o,6) vol ,~ \ [((AZ)~/m~) • 7Z], -d~ ] O6(f~, dho~,6)O6(f ~176 oo.o 

where 6 runs through the set of all r-admissible elements in A ~. 

(11.9) Let D ~ be a system of representatives of the conjugacy classes in D • Let 
?~D • and let F '  = F [ 7 ] ~ D .  Let us say that 7 is elliptic at the place Go of F if 
Foo |  is a field, i.e. if there exists only one place oo' of F '  dividing ~ .  Let us say 
that 7 is r-admissible at the place o o f f  if o(det 7) = r and there exists a place o' o f F '  
dividing o such that 

o ' (~)4 :0  and x ' ( ~ ) = 0  

for all other places o f F '  dividing o. As in [Lau 2, (3.4)], we have a natural bijection 

{TeD~ lY is elliptic at oo and r-admissible at o} 

~ '  I-[ (6eA~ 16 is r-admissible at o} 
(F,H) 

where (F, /7)  runs through asystem of representatives of the isomorphism classes of 
(D, ~ ,  o)-types such that [F  : F ]  divides d and where A is attached to (F,/7) as 
before. 

It is defined as follows. Let 7~D~ be elliptic at oo and r-admissible at o. Let 
F '  = F [ ? ]  with its two places oo' and o' as before. L e t / 7 ' ~ F '  be such that 

o�9 =~ O, 0'(/7') :# 0 and x'(/7') = 0 

for all other places x '  of F ' .  We set 

i f= (~ F E I I " ] c F '  
nEZ 

r iCO 

and we denote by ~ and 6 the places of ff which are induced by oo' and o' 
respectively. There exists neE,  n 4: 0, such that H ' " e F  and we set 

=n'-| •174 
where ~e@ is determined by the condition 

deg(o~) o~(/]) = -[ f f :F] /o~.  

Then (F, /7)  is a (D, oo, o)- typeand [ff: F ]  divides d. Let A be the corresponding 
central division algebra over F. The invariants of A are given by 

f [F :  F]/d if ~ = 

inv.(A) = ~ - [ f f : F ] / d  if ~ = 5 

~[ff~:  G]invx(D) otherwise 

and we have 
dimr(A) -- (d/[ff: F ] )  2 . 
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Therefore, as 
i f ~ |  and i f ~ |  o, 

are fields and as F '  = D, we can find an embedding of/f-algebras F '  ~ A and all 
these embeddings are conjugate in A. In particular, we get 6~A ~ which is conjugate 
to the image of ~ F '  in A by the above embedding. The desired bijection maps 

into ((F,//),  6) (see loc. cit. for more details). 

(11.10) Let y~D~ be elliptic at ~ and r-admissible at o and let ((F, H), ~) be the 
corresponding triple (see (11.9)). 

At the place ~ of F, we can view D~ as an inner twist of D~ = GLn(F~) and if 
~ / ) ~  is the transfer of 7eD~ by the inner twisting (~ is well defined up to 
conjugacy), ~ and the image of 6 ~ A • in - "  D~ are conjugate in b~.  Moreover, we can 
identify the centralizer - • of~ in -• Boo • (O~)~ with (A o~)~. 

. . . .  (D~.O)X As A oo,o is the centralizer of if in D~~176 the centralizer (D )~ of 7 in 
coincides with (A oo,o)~ (we have i f c  F '  = F[7] = ff[6] c A). 

At the place o, the situation is more complicated. As o' is the unique place of F '  
which divides 6, we have 

d[ F'o, : Fo ] /[F'  : F] = d[i f  ~ : Fo]/[if  : F] = h . 

As 7 is r-admissible at o, up to conjugacy we can assume that 

)~ = (7~ ', ) ~ o , ) e G L d _ h ( F o )  x G L h ( F o ) c G L d ( F o )  
where 

Fo [7  g ' ]  --  (F')~ ~ l'lld-h(Fo) 
and 

r c Fo[7o,] = Fo' lMh(Fo). 

Here, GLd-h(Fo)x GLh(Fo) is viewed as a standard Levi subgroup of GLd(Fo). 
Now, as A~ is the centralizer ofifo ~ in GLd-dFo),  the centralizer GLa-h(Fo)~o of T~' in 
GLd-h(Fo) coincides with (Ao)n.~ x 

(11.11) We can rewrite the formula (11.8) for Lef,(._0~, O ='~ as follows. Let us fix 
arbitrary Haar measures - ~o,o o. . . . . .  dhoo,~, dh 7 and dho,~ on (D~)~, (D )~ and GLd-h(Fo)r~ 
respectively. Thanks to (11.10), they induce a Haar measure 

d6 '~ = dho~,~ x dh~ '~ x dh~o.~ 
o n  

~ x Z x Z ~ x (~1)~ /w 0o = ((~ ~o)~/~ oo1 x (A oo,o)~ x (a o)~ 

and we can consider the volume 

( d6 'a x dma'~ . 
v o l  \A~\[ ( (Ar ' )~ /w~)x  7l], ~, ,  ] 

We also have the orbital integrals 

O~(f~o, dho~,9) = S 
(b~)~ \b~ 

O3,0 O , ( f  ~'~ dh,  ) = I 

d-h~ 
fo~((h~)- 'f,-h~) e-U~,~ ' 

dhOO,o foo.o((hOO,o )-  1 The,O) _ _  
dh~ '~ (D~.O)~\(D|176 • 
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and 
dh o' 

f o ( ( h o )  1 o" o' O~,(fo,,dhOol,) = ~ o, o, - 7o h o ) - - ,  
G L a _ h ( L ) r :  \ G L . _ d F o )  dh~ 

where - | f . ,  f , d h . ,  dh ~'~ are defined as before and fro', dh~ ' are new notations for 
f;o, dh~ respectively. Then: 

(11.12) Proposition. L e f ~ ( ~ ,  g~,O) is equal to 

d(5 'a x d m ~  

�9 c o , o  o o , o  . o '  O~(f~o, dh~o.~)O~(f , dh~ )0.~: ( f o ,  dh~ 

where y runs through the set o f  elements in D • which are elliptic at oo and 
r-admissible at o. 

(11.13) Let 7eD~ be elliptic at ~ and r-admissible at o and let F ' =  F [ 7 ] c D  
with its two places oo' and o' as before. Then we have 

fo cF'o, = Fo[7o,]c~vIh(Fo) 

and if we choose an isomorphism of Fo-vector-spaces 

Fho ~ (Fo,)h/[ro,: Fo] 

we get an identification of the centralizer of 7o, in lMh(Fo) with 

~4lh/[F; : F~3 (F;,) = lvIh (Fo) . 

In particular, the centralizer GLh(Fo)~o, of ?o' in GLh(Fo) has a natural structure 
of F ' , -group scheme and is non canonically isomorphic to GLh/[Fo,:~,,](F'o,) as a 
F ' , -group scheme. 

If ((F, H), 6) is the image of 7 by the bijection (11.9), the centralizer (A~)~ of 6 in 
A{ also has a structure of F ' , -group scheme (Fo, = F~[6]) and is an inner twist of 
GLh(Fo)~o, as a Fo,-group scheme. Let dho,,7 be the Haar measure on 

GLh(Fo)~o, ~- GLh/[V; : Fo] (F'o') 

which is normalized by 
vol (GLh/[F;,: Fo](Co,), dho, ' ~) = 1 

(here 0o, c Fo, is the ring of integers), Let d6o be the transfer of the Haar measure 
dho,, 7 from GLh(Fo)r to its inner twist (A ~')a (over F~,) (see [Kot  2]). Thanks to [Ro] 
(see also [Lau 2, (4.6.4)]), d6'~ is the Haar measure on (A~),~ which gives the volume 

1 
# = ( q d e g ( o ' )  _ 1 ) "  ' ' (qdeg(o'l((h/EG : F . ] ) -  1) __ l )  

to the group of units of the maximal order of (A~)a = {3'sA~13'6 = 33'}. 

(11.14) Lemma. Let  d6'~ be the Haar measure df '~xd3[  on ( A ~ ) ~ / t ~  = 
((A~),~/m~)x (A ~)~. Then 

d3 '~ x d m ~  
vol (~; \[((,#);mL) x ~z], i/T ] 
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is equal to 
deg(o')  ' (A ~ \ (A~) ~ /m~,  d(~ ~ 
deg(o)/~ vol d6' J " 

Proof. We have a A $-equivariant  group homomorph i sm 

(A~)~ rn, (F;,)• (d~g(o')/aeg(ol)o'(-J Z 

with kernel the group of units of the maximal  order of (A~)~ and with cokernel 
deg(o)2~/deg(o')Tz. ((A~)o is a central division algebra over Fo, and for 6'~(A~)~ 
A{, we have 

deg(o ' )o ' ( rn  6') = deg(g)g(rn 6') 

where rn  is the reduced norm for the central division algebra (A~)~ over F ' ,  on the 
left side of the formula and rn is the reduced norm for the central division algebra 
A{ over ff~ on the right side of the formula). [5 

(11.15) Fol lowing Drinfeld (see [Ka ]  or [Lau 2, (4.2.5)]), let us consider the 
function 

fo :GLd(Fo) ~ 71 
such that  

fo(9o) = 0 

unless goelMa(Co) c~ GLe(Fo) and o(detgo) = r and such that  

fo(qo) = (1 -- qdeg(o))... (1 -- qdeglo)(o- 1)) 

if goe l~ ( (9o )~GLd(Fo) ,  o(detgo)= r and p is the nullity of the reduction 
0oeHqId(~(o)) of go modulo  the maximal  ideal of (90. Let us recall that  fo is the Hecke 
function on GLd(Fo), i.e. the GLd((9o)-bi-invariant function with compact  suppor t  
on GLd(Fo), such that  its Satake transform is equal  to 

f 2  (z) = qaeS~o),~d- 1)J2(Z ] + . . . + ZS) 
(see [Lau  2, (4.2.6)]). 

Drinfeld has computed  the orbital  integrals of fo. Let us review his results. Let 
dho be the Haa r  measure on GLd(Fo) which is normalized by 

vol(GLd((9o), dho) = 1 . 

For  any ~;~GLd(Fo), let dho, r be an arbi t rary  Haa r  measure on the centralizer 
GLd(Fo)~ of 7 in GLa(Fo) (this centralizer is always unimodular ,  see [Lau  2, (4.8.6)]). 
Then we can consider the orbital  integral  

dho 
O~(fo, dho,~) = ~ f~176176 dho,~ 

GLn(Fo)~\GLa(Fo) 

(it is always absolutely convergent,  see [ D e - K a - V i ]  or [Lau  2, (4.8.9)]). 

(11.16) Theorem (Drinfeld). (i) The orbital integral Or(fo, dho,~) vanishes unless 
there exists a positive integer h < d, an elliptic element 7' eGLh(Fo) with o(det ? ' )  = r 
and an element ?" eGLd-h((9o) such that ? is conjugate to 

in GLd(Fo). 
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(ii) Let h be a positive integer with h <_ d. Let 7'eGLh(Fo) be elliptic with 
o(det ~') = r and let 7" ~GLd-h(Co). Let 

We can identify GLa(Fo)r with the product of the centralizers 

GLh(Fo),, x GLd-h(Fo) , , , ,  

and we can identify GLh(Fo)~, with 

GLh/[f;.: fo](Fo') , 

where F~, = Fo [7 ' ]  ~I~(Fo).  Let us normalize dho,r in the followin9 way. We take 

dho,~, = dh'o,y x dho, y 

where dh'o, ~ is the Haar measure on GLh/[F;,: Fj (F',) which gives the volume one to the 
maximal compact subgroup 

GLh/tr; : F~3 ((9'o,) c GLh/EF; : to3 (Fo') 

and where dh" -o,~ is an arbitrary Haar measure on GLa-h(Fo)~,,. Then 

Or(fo, dho,r) = (1 - qdeg(o')), . '(1 -- qdO~(o'),h/tF;,:eo~)-~)) deg(o')  . . . . . . . . . .  u~,,tJo, ano,~) 

where f2  is the characteristic function of GLa-h((9o) in GLd-h(Fo). 

Proof See [Lau  2, (4.6.1) and (4.8.13)]. [] 

Note  that  we need this theorem only for closed 7 in GLn(Fo) (i.e., 7 semi-simple but  
not  necessarily geometrically semi-simple). Indeed, if 7~D • ~ Do x = GLd(Fo), Fo [7] c 
~ ( F o )  is a product  of fields (Fo is separable over F). Therefore, GLa(Fo)~ is 
obviously unimodular  and the orbi tal  integral  Or(fo, dho,r) is obviously convergent  
(the orbit  of y in GLd(Fo) is closed). 

(11.17) It  follows from (11.14) and (11.16) that  we can rewrite the formula (11.12) 
for Lef~(0~, goo,o) in the following way 

d~k 
Lef~(O~, g~'~ = ~ vol (A , \ ( A , ) , / ~ : ,  ~ 7 ) e ~ ( 7 ) O ~ ( f ~ ,  dh~,~)O,(f  , dh~ ) 

where 7 runs through the set of elements in D~ which are elliptic at oo. Here we 
have set f ~  = f~176176 with fo as in (11.15) and 

= dho,~ x dho,,~ dh 7 dh~ '~ x o' 
and the sign 

is the Kot twi tz  sign at  0o of~ (see [ K o t  1]). Indeed, for any ~sD~ which is elliptic at 
o% we have 

Or(fo, dho.~) = 0 

unless 7 is r-admissible at  o. Moreover ,  if 7 is r-admissible at  o, we have 

deg(o ')  
Or(fo, dho,r) = eo(Y) ~ O~:'(f ~ dh~ , 
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where 
~o(~) = ( _  1)<h/~Fo, : poJ~- 1 

is the Kottwitz sign at o of 7. But 

h = d[F ' , .Fo] / [F  .F]  
(see (11.10)) and 

[F':  F] = [F~, :F~] 

as oo' is the unique place of F' = F [7] which divides oe. So 

(product formula for e!, see [Kot 1]). 

(11.18) If 7~D~ is elliptic at oo and r-admissible at o and if ((F, H), A) is its 
image by the bijection (11.9), the centralizer D~ of 7 in D • and A2 have both 
a natural structure of group scheme over F '  = F[7 ] = ff[~] and D~ is an inner 

x ~ ~ x twist of A0 over F'. The same is true locally. The Haar measure dh~ on (D)~  is 
obviously the transfer of the Haar measure d6 '~ on (A~)~ by this inner twisting. 
Let dh~o,~ be the transfer of the Haar measure dh~,~ from (A~)~/vJ~ to its inner 
twist • z (D~)~/vJ ~. Then it follows from Weil's computations of Tamagawa numbers 
of A~ and D[ that 

Aa\(A~, )a /w~,  d6 ' ]  vol D ; \ ( D . ) ~ / w ~ ,  dh, } 

where dh~ is the counting measure on D~ (see [Lau 2, (3.5)] for example). There- 
fore, we get: 

(11.19) Theorem. Let foo be the characteristic function of  O ~ l ~  ~ [  ~ / ~ ,  let fo~,o 
be the characteristic function of  K~176176176176 in (D~~176 • and let fo be the Hecke 
function on GLa(Fo) with Satake transform 

f ~ (z) = qdeg(~ (Zrl "1- " '"  "t- Zrd) . 

We set 

f ~  = f ~ , ~  
- - x  Z Let dh~ be the Haar measure on Doo/~o~ which is normalized by vol(/s dh~) = 1 

and let dh ~176 be the Haar measure on (D~ • which is normalized by vol(K~'~ x ~o ,  
dh ~) = 1. 
For each ~,ED~ which is elliptic at Go, let 

dh~,~ = dh~,~ x dh~ 

D 2 / w ~  and let dh v be be an arbitrary Haar measure on its centralizer (D~)~/vJ z in • z 
• x the counting measure on D~. We can transfer the conjugacy class of  7 in Doo to 

Do~ F~-oroup scheme); let ~ e b L  be a conjugacy class in the inner twist - • o f  D~ (as a 
a representative of  this conjugacy class. The centralizer (D| • o fp  in Do~-• is an inner 
twist o f  (Do~)~ (as a F~o[V]-group scheme); let dho~,7 be the transfer of  the Haar 
measure dho~,~ from • z - • z (Doo)~/w~ to its inner twist (D~)~/mo~. Let  

~(7)  = ( -1 )  (~/[r~[~']:v'])-~ 

be the Kot twi tz  sign at o~ of  ~. 
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Then we have 

D • ~ dhz~ ~\ Lef,(0~, 9 ~176176 = ~ vol ~ \(Dz~)~/m ~ , - ~ s  e~(7)O~.(f~, dh~.7)O~(f ~, dh~) 
7 

where 7 runs through the set of  elements in D~ which are elliptic at ~ .  

12 The Lefsehetz fixed point formula 

From now on we assume that D is a division algebra. We fix a prime number 
distinct from the characteristic p of IFq and we fix an algebraic closure Q l  of the 

field R t  of Y-adic numbers. We fix an irreducible representation 
. - •  Z p~.  D~/w~ --, GL(L) 

on a finite dimensional i f  e-vector space L which is defined over a finite extension 
E~ of Q~ in Qe and which is continuous for the pro-finite topology on DL/w~ and 
the f-adic topology on GL(L). Then, it is well known that p~ factors through 
a finite quotient (bL/w~)/I(oo of - •  z O~/w~o (/(~ is a normal open subgroup of 

We fix a non empty finite closed subscheme I of X\{oo}. Then we have the 
proper and smooth scheme of pure relative dimension d - 1 

g::x,~.s/TZ ~ X \ ( { ~ }  w Bad w I) 

and its pro-finite, pro-etale, and pro-Galois covering 

71 , roo,s:~::x,~,s/ ~ eg::x ~,i/7~ 

with pro-finite Galois g r o u p / ) ~ / ~ .  Here 7l, acts by translation of the indices on 
the ~-elliptic sheaves (see (2.4)). The pair (r~,~, poo) defines a locally constant 
Qe-sheaf ~p~., on g~x.~ .~ /Z .  

If q = Spec(F) is the generic point of X and if 17 is an algebraic closure of F, we 
can consider the f-adic cohomology groups 

H~.l = H"((N(~x.~.I . , /Z)  |  f f  , 2t~o~.,) 

(neTZ). Each H~,I is a finite-dimensional if)e-vector space, with a rational structure 
over Ea induced by the rational structure of p~ over Ea. In fact, H,]., = 0 unless 
0 -< n -< 2d - 2. On each H,].,, we have an action of Gal(ff/F) which is defined over 
Ez and continuous for the Krull topology on Gal(/7/F) and the g-adic topology 
on H~.,. 

Let ~ r  be the (1)-algebra of locally constant functions with compact supports 

f ~  :(D ~176 • ~ Q 

which are K~~ (i.e. invariant by left and right translations under KT). 
Here the product is the convolution product with respect to the Haar measure dh" 
on (D~) • which gives the volume 1 to the open compact subgroup K r  c ( D ~ )  ~'. 
A basis of o ~  as a q-vec tor  space is given by the characteristic functions 

1KFg~KF 

of the double classes K T g ~ K T c ( D ~ )  • when 9 ~ runs through a system of 
representatives of these double classes. For  each 9 ~ ( D |  • we have a Hecke 
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correspondence (see (8.8)) 

f f  x,.~,,/(Z x (KF ~ (g~)- ~KFg~)) 

,### x,~,,,l(7l x K T ) . 

This correspondence acts on each H~,I and this action depends only on the double 
class KTg~K~.  In fact we get an action of the Q-algebra ~ T  on H~,, if we let 
1KTy~K? act by this correspondence. This action of ~ j*  on H~,t is also defined over 
E~. The actions of Gal (F /F)  and ~ ?  on the H~d's commute. 

Our goal is to determine the virtual representation 

H.*, = ~ (-1)"H;,1 
nEZ 

of Gal(ff/F) x ~f~j~. For  this it suffices to compute its trace. This is the purpose of 
this section. 

(12.1) Thanks to the proper 
smooth morphisms, the action 
each place o 4: o% o r Bad, o 

More precisely, let o 4= o% 
a diagram 

k2 

F 

base change theorem and the local acyclicity of 
of Gal(ff/F) on the H'~,t's (ne7/) is unramified at 
I o fF .  
o 6 B a d ,  o 6 I  be a place of F and let us choose 

Ld ~ Ld 

Fo = Co--" 1<(0) 

where fro is an algebraic closure of Fo, 60 is the normalization of (90 in Fo and k is the 
residue field of the local ring 60 (k is an algebraic closure of x(o)). We can consider 
the (-adic cohomology groups 

H~.I = HO((dffx, ed,o/Z) | 5eo~ ,) 

(n~Tl). Each H~,I is a finite dimensional ~ - v e c t o r  space, with a rational structure 
over E~ induced by the rational structure of p ,  over Ez. In fact, Ho",1 = 0 unless 
0 _< n < 2d - 2. On each Ho",1 we have an action of Gal(k/~c(o)) which is defined 
over E~ and continuous for the Krull topology on Gal(kfic(o)) and the E-adic 
topology on Ho",l. 

Then, we have a canonical isomorphism of ~ t -vec tor  spaces 

H~,~ ~" H~,I, 

for each n~7/, which is compatible with the rational structures over E~ and the 
actions of Gal (ffo/Fo) (we have a canonical embedding Gal (ffo/Fo) c Gal (if/F) and 
a canonical epimorphism Gal(Fo/Fo)--~ Gal (kfl<(o)); see [SGA 4, XVI (2.2)]). 

On each Ho ~, ~ we also have an action of the Hecke operators. In fact, as we have 
not studied the bad reduction of the modular varieties of ~-elliptic sheaves, we do 
not have an action of the full ~-a lgebra  #~f  on H~,t but only an action of its 
(Q-subalgebra ~ > , o  c ~ >  of locally constant functions with compact support 

f~,O:(D*,~215 ~ ff~ 
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which are K~'~ Here the product is the convolution product with 
respect to the Haar measure dhf  '~ on (D|176 • which gives the volume 1 to the 
open compact subgroup K f ' ~ 1 7 6  • and the embedding oggT'~ maps 
f~,o onto f~,o 1GL,Wo). The characteristic function 

1K?,Og~,OKp,O 

acts on Ho~,l as the Hecke correspondence 

------ { ~ o} 
~(~x,~,o/(2g • (KT '~ ~ (g~'~176176 

~ee ~,;,o/ (Tz x K F ,o) 

for each g~'~176215 and each n~TZ. It is clear that the action of ~ ' ~  on the 
H~o,[s (neTZ) is defined over Ea and commutes with the action of Gal(k/x(o)). It is 
also clear that the above isomorphisms H~,f ~ H~,,~ (n~TZ) are ~f~'~ 
(o~fF'~ In other words, for each place o 4= o% o~Bad,  o~I ,  of F, the 
restriction of the virtual representation H*,I of Gal(ff/F) x o ~  to 

Gal (ffo/Fo) x A,~] ~176 c Gal (F/F) x ~ 

is uniquely determined by the alternating traces 

tr (Frob'o x tK~,Og~,OK~,O; H*,~) 

(rs7Z, g~,~176215 as 7Z is dense in :E and as the characteristic functions 
1Kr.Oo~.oK;~.o generate ) f? ,o  as a q-vector space. It is even enough to know these 
traces for all positive integers r and all g~'~176176215 Here we have set 

lXnrln H*,I = ~ (-- , ,,o,l . 
neZ 

(12.2) Let us fix a place o 4 = ~ ,  o • Bad, o r I, o fF  and a positive integer r. Let us 
consider the •-adic cohomology groups 

Ho, -~. H n ( ( ~ x , ~ , l , o / ( Z  x ff~m)) (~c(o)k, ~ f )  

(neTZ) where K~ is an open normal subgroup -•  z of D~/vJ won  which po~ is trivial. 
Each /to~, is a finite dimensional Ql-vector space and H~,I = 0 unless 0 < n -< 
2d - 2. On each H~.I we have commuting actions of the finite group (Dg/t~)//~o~, 
of Gal(k/~c(o)) and of ~ , o .  The action of ( / g g / w ~ ) / / ~  is induced by the action of 
- • z - - - - - { ~  o} Do~/w ~ on 8dEx.~a,o, the action of Gal(k/~c(o)) is continuous for the Krull topology 

on Gal (k/x(o)) and the f-adic topology on Ho",1 and the action of ~r '~ is induced 
by the Hecke correspondences as before. 

By definition of ~%~,,, we have canonical isomorphisms of if)t-vector spaces 

n ~ ~ n  Ho.~ - -  (Ho, i ( ~ e  L)(b~m~)/g~ 

where (/)~/wz)//~| acts through p| on L. In particular, we have 

tr(Frob~ x 1K?.~176 H*,t) 

1 
= F)~ ~jz I~ ~ tr(#~xFr~176176176176176176174 



~-elliptic sheaves and the Langlands correspondence 289 

(12.3) Now, thanks to (11.1), we can apply the Lefschetz trace formula [SGA5, 
111(4.11.3)] to compute the traces 

tr(O| x Frob~ x 1Ky.Oo~.OK?.O; I~*.i ) 

and we get that this trace is equal to 

Lef~(O,, g~O,o) 

with the notation of (11.1). Therefore, we have proved: 

(12.4) Proposition. With the above notations, we have 

1 
tr(Frob~ x 1KT,Oa~,.OKF.,; Hod) -I(D~o/vJL)/g,l  

oo.o tr ~, Lefr(0~, g ) (P~(go~)) 

for each positive integer r and each g~'~176215 

Replacing Lef,(0~, g~,O) by its formula (11.19), we get finally 

(12.5) Theorem. We have 

tr(Frob~o• lK?.Og~,OKT.o; H*,t)= ~ vol (D~\ (D~)~ /w ' ,  ~ )  
Y 

�9 ~o(~)o~(f~, d ~ , ~ ) o ~ ( f  ~, dh~#) 

where ?, runs through the set of elements in D ~ which are elliptic at oo. Here, the Haar 
measures dh | dht~,~, dh~, d[~,~, dh~ and the functions f~,o, fo, f~o are chosen as in 
(ll.19) for K ~~176 = KT '~ Now the Haar measure dh,  is arbitrary and we have set 

vol - x z (D~/m ~, d~ . )  

where Zp~ is the character of the representation p~ (a locally constant function on 
- x  Z o . / ~  ~). 

Note that the product fo~dh~ is independent of the choice of dh~. 

13 The Selberg trace formula 

In this section we shall replace the factor e~o(y). O~(foo, dh| in the expression 
(12.5) by an orbital integral of a function f~ on D ~ / r ~ .  We shall suppose that p~ 
is the trivial representation. (For the general case, compare the remarks (13.8) at the 
end of this section). We shall show in this case that one may take for foo the weakly 
cuspidal Euler-Poincar6 function of [Lau 2, Sect. 5]. (It follows a posteriori that 
any of Kottwitz's Euler-Poincar~ functions [Kot 2, Sect. 2], which depend on the 

of D~/w~ on the set of facets in the choice of a set of representatives of the orbits • z 
building, will have the required properties and this is indeed proved in Kottwitz's 
paper [Kot  2, Theorems 2 and 2'], in the case ofa p-adic field). We briefly recall the 
results of [Lau 2, Sect. 5]. 
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(13.1) We choose an identification Doo"l~(Foo). Let T denote the group of 
diagonal matrices and B the group of upper triangular matrices in GLa. Let A be 
the set of simple roots of (T, B). To any subset I c A there is associated a standard 
parabolic s u b g r o u p / I ,  as well as a standard parahoric subgroup Y'~ contained in 
GLa((9~o). (We have ~ = ~o the standard Iwahori subgroup and ~ = GLa(O~) 
the standard maximal compact subgroup.) Let ~ i  denote the normalizer of ~ in 
GLa(Fo~). The group GLa(F~) acts on the building of SLd(F~) and ~ (resp. ~t)  is 
the pointwise stabilizer (resp. the stabilizer) of a facet a~. Let 

z , : &  --' { _+1} 

be the sign character of the permutation representation afforded by the vertices of 
at. We extend X~ to all of GLa(F~) by setting it zero outside of ~ .  The weakly 
cuspidal Euler-Poincar6 function [Lau 2, 5.1.2-1, is defined by the following expression 

f~  = ~ (--1) la-'l" •' 
1ca ([A - - I [  + 1 ) . v o l ( ~ ,  dh~)" 

It is a function on GLd(F~) whose value in g only depends on the image of g in 
PGLd(F~). If the Haar measure d h ,  on GLd(F~o) is multiplied by a scalar the 
function f~  is divided by that scalar. 

(13.2) Theorem. For some Haar measure dhoo on E)~/vJ~, let 

1 
- •  Z - -  ' vol (Do~/w ~, dh~) 

- •  Z D~/w~ is an inner a constant function on D~/eJo~, and define f~ as above (since • z 
twisting of b ~ / w ~  as an Foo-group scheme we could take the Haar measure dh~ to be 
the transfer of dho~, but this does not matter). 

(i) The orbital integrals o f f ,  for non-elliptic elements are O. Let ?~D~ be elliptic and 
let 9er)~ be its transfer by the inner twisting (9 is well-defined up to conjugacy). Then 
the centralizers (D~)~ and (b~)~ are inner twistings of one another (as 
F~ [~,] = F~ [~ ]-group schemes) and we choose Haar measures dh~,~ and dhoo,~ on 
them which are transfers of one another. Then 

O~(f~, dh~,r) = coo(9)" 07(f~,  dh~,~) = eo~(9) 
vol ((/)~)~/~%, dho~.~) " 

Here as before ~ ( ? )  = e~(9) is the Kottwitz sign 

g~o(2) = (--1) d/[v~['e1:~A - 1  . 

(Note that both sides of the above identity are independent of the choice of Haar 
measures d-h~ and dh~o.) 

D~/vJ~. Then tr ~ ( f |  = 0 (ii) Let ~ be a unitary irreducible representation of • z 
except in the following two cases: the trace off| on the trivial representation is 1 and 
the trace of f~ on the Steinberg representation St| is ( - 1 )  a- ~. 

Proof For  (i) we refer to [Lau 2, 5.1.3(i), (iii)]. For  (ii) we refer to [Kot  2, 
Theorem 2'],  noting that the blanket assumption made in that paper that the 
characteristic of the ground field be zero is not used in its proof. In [Kot2],  
Kottwitz considers ~ • • z Doo/Fo~, not Doo/vJ ~. However, this latter case reduces immedi- 

F| o~, hence if ately to the former. Indeed, f~  is invariant by translation under • z 
tr lro~(foo) ~ 0 it follows that n~ factors through D~/F~.  U 
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(13.3) Recall from the list of notations that we have fixed an isomorphism ~e  ~ ~.  
We now insert the above expression for the factor e~(7).OT(f~,dh~) in the 
formula of (12.5). Putting f = f~o" f ~  we obtain therefore the following expression 

- -  / • x z d h ~ , ~ \  (13.4) tr(Frob~o x 1K?.O. O . . . . .  K~[,o; H ' d ) =  ~,~ vol~D, \ ( D ~ ) , / ~ J ~ , ~ - )  

�9 Or(f, dh~,,). 

This is indeed the formula of (12.5) since, due to the vanishing of the orbital 
integrals of fo~ on non-elliptic elements of D~, this sum effectively only ranges over 
those ~ D ~  which are elliptic at ~ .  

The sum appearing above is nothing but one side of the Selberg trace formula. 
More precisely, let ~r215 be the space of locally constant functions, 
equipped with the right regular representation of • z Dz~/~ ~. Since D is a division 
algebra the coset space D • • z \D~/~J~ is compact. (Note that the coset space 
F • \~ •  is finite). Therefore this space is admissible and decomposes as a direct 
sum of irreducible admissible representations with finite multiplicities, 

d ( D •  = @m(H).  n . 
11 

Here H ranges over the irreducible admissible representations of D~/w~ and re(H) 
denotes the multiplicity. If re(H) > 0 then/7 is called automorphic. The compact- 
ness of the coset space also implies that the operator induced by a locally constant 

• Z function with compact support on D~ /~  ~ has a trace. The usual manipulation 
(integration of the kernel function over the diagonal) yields the Selberg trace 
formula. For  any f~C~ (D~/w~) of the form f =  1K,'fs where S is a finite set of 
places with {oo} w B a d c S  so that (DS) • = GLa(~s),  where K s = ~ x r  GLa(Cx) 

is the canonical maximal compact subgroup and where f s~C~(D~/~) ,  we have 

(13.5) 

t r ( f ; d ( D •  

= ~ vol~D, \ ( D ~ , ) , / ~ J ~ , ~ ) . O , ( f ,  dh~,,), 
yeD~ 

with the choice of . f  as in (13.4) and the same choices of Haar measures (dh~ is the 
counting measure on D~). Putting together (13.4) and (13.5), we get: 

(13.6) Proposition. We keep the notations of (12.5) and introduce the function 
• Z f = f~ . f ~  on D~/w~ with f~ as in (13.2). Then 

t r(Frob~ x 1K;,o.o| H'd) = ~ m(II).tr H( f )  . 
11 

Using (13.2) (ii) we therefore obtain the following conclusion. 

(13.7) Corollary. Let I be a non-empty finite closed subscheme of X\{oo} and let 
o 4: ~ ,  o r Bad, o (~ I be a place of F. For an automorphic representation H 
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occurring with multiplicity re(H) in ~r (D• D~ /~J~ ) we introduce 

and 

Z~o(~) = X(H~) = f i - - 1 ) a - i  

if II~ is the trivial representation 

if 11oo is the Steinberg representation 

in all other cases, 

Z~,~ = z(FI ~,~ K ?  ,~ = dim((II~,O)K?'~ . 

Then for the local factor at o of the Hasse-Weit zeta function of  Sf(x,~,t/7l there is 
the following expression 

Zo(g((x,~,1/7l, s) = (det (1 - q-dr Frobo; RF((g?~x,~,t,o/71) | ~/ ) ) ) -a  

= H L(Ho, s - (d - 1)/2) "(m'~l'z)'x;~176 . 
H,  d i m ( H ~ o )  = 1 

The factors on the right hand side are the standard L-functions of unramified 
representations of  GLd(Fo) and K o = GLd(d?o) is the canonical maximal compact 
subgroup. 

Proof The (completely standard) proof proceeds by regarding both sides as formal 
power series in T = q-a,g(o)~ and taking T. ~ log of both sides, and finally compar- 
ing coefficients in front of T ", r > 1. This reduces the assertion to proving for every 
r=>l  

tr(Frob~; H*,t) = y '  re(n).  X~(rt). z?,o(r/)  
H,  d i m  (H Ko) = 1 

�9 (qdeg(o)r(d-  1 ) / 2  (Z l ( l - lo )r  _i_ . , .  ~ Z d ( I ~ o ) r ) ) .  

Here (Z l ( I Io ) , ' " ,  Z d ( [ I o ) ) E ( c x ) d / ~  d is associated as usual to the unramified rep- 
resentation, cf. [Ca, 4.4], (comp. (14.5) below) and we have used the definition of the 
standard L-function in the unramified case. However, ZT'~ = 
trI1~'~ ), as we have normalized the Haar measure on (D~'~ • such that 
K T  '~ gets volume 1, and by (13.2) X~(//) = trH~(f~).  Finally, as we have nor- 
malized the Haar measure on Do ~ such that the maximal compact subgroups get 
volume 1, we have for )co as in (11.15), 

tr Ho(fo) = qdeg(o)r(d-  1 ) / 2 ,  ( Z  1 ( / ] r o ) ,  + . . . q_  Z a ( / ' - / o ) r )  , 

cf. [Ca, 4.4], (comp. (14.5) below). Therefore the right hand side of the identity 
above is equal to ~ m ( I I ) . t r l - l ( f )  and the assertion follows from (13.6). [] 

(13.8) We conclude this chapter with some remarks on the case of a general 
representation p ~. We do not claim to have a proof for all of  the statements below but 
rather hope that the specialists in this area can provide us with guidance to the 

D~/w| there should exist a unique literature. For each representation p~ of -• z 
D ~/vJ ~ uniquely characterized irreducible square-integrable representation n~ of • z 

by the following relation between characters on elliptic regular elements. If 
x Z 7eD~/eJ oo is elliptic regular (i.e. F~ [7] is a separable field extension of degree d of 

- - - •  Z F~) and if 7 corresponds to 7 E D ~ / ~  under the inner twisting (as F~-group 
scheme), then 

;~.o(~) = ( - 1 )  ~ -  ~" z ~ ( ~ )  �9 
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(generalized Jacquet-Langlands correspondence, compare [De-Ka-Vi; Ro; He 1, 
Appendix]). Following [Be-Ze 2], we can represent this representation zoo as 
a generalized Steinberg representation. More precisely, given ~ ,  there exists 
a positive integer d' and t~�89 (2t + 1)d' = d and a supercuspidal representa- 
tion ~"  of GLd,(F~) such that ~o~ is the unique irreducible submodule St2,+ 1(~ ')  
of the induced representation 

~ ' o o ( t )  x - .  �9 x ~ ( - t )  

(comp. [Mo-Wa,  1 3]). The numbers in parentheses refer to the powers of the twist 
by [detl. Furthermore, this induced representation has a unique irreducible quo- 
tient module which we shall denote by Speh2~+ 1 (zd~). It is unitary. (In loc. cit., 1.5., 
this is denoted by I ( ~ ' ,  - t ,  t). It is a special case of the p-adic analogue of a Speh 
module). There are two extreme cases to this construction. If 7to~ is supercuspidal, 
then t = 0 and n~ = Speh~ (rt~) = St~ (n~). I f ~  is the Steinberg representation, or 
equivalently, p~ is the trivial representation, then d ' =  1, ~ = 1~ is the trivial 
representation, ~ = Sta(l~) = Sty, and Speha(l'~) = 1~ is the trivial representa- 
tion. 

The analogue of the function f~ of Theorem 13.2 would be a function f~| on 
• Z D~/m ~, locally constant with compact support, and with the following properties. 

(i) The non-elliptic orbital integrals o f f ~  are zero. For elliptic 7~D~ with corres- 
ponding 9~b~ 

Or(f,~, ahoy,,) = e~(~).oT(f~, dh~,~) . 

Here f~ is defined as in (12.5) and the Haar measures are chosen as in (13.2). 
D~/m~ we have (ii) For a unitary irreducible representation ~c~ of • z 

{ ' ( -1 )  d-1 if ;~m~gm = St2,+l(rC~) 

t r ~ ( f " ~ )  = ~(0 1)a-l-2t inif ~Speh2 t+ t (n ' ) a l l  other cases. 

Furthermore, if n~o is supercuspidal it should be possible to take for f=~ a matrix 
coefficient of n~. (In the case of characteristic 0 this is indeed the case, cf. [Ro].) 

Assuming all this, the conclusion of (13.6) holds without further modification, 
with the understanding that H*,, denotes cohomology with coefficients in the local 
system 2'o~., corresponding to p~ (cf. the beginning of Sect. 12.). Similarly, corollary 
(13.7.) holds where on the left side there appears the L-function of s (in various 
degrees of cohomology) and where on the right hand side the definition of )~(H)  
has to be modified in the obvious way (cf. (ii) above). 

14 On the construction of global Galois representations associated 
to automorphic representations of the division algebra 

We recall (cf. beginning of Sect. 12) that, starting from an irreducible representation 
--X Z p~ of D| in a finite-dimensional ff~ e-vector space we had constructed a locally 

constant ~t-sheaf ~p~.x on gffx,~,d7Z, for any non-empty finite closed sub- 
scheme I of X\{m}.  We denote the corresponding f-adic cohomology groups 
by Hg,1 (cf. loc. cit.). Each H~.~ is a representation of G a l ( f f / F ) x ~  ~ where 
- ~ ?  denotes the Hecke algebra over Q of K•-biinvariant functions with compact 
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supports on (D~) • We denote by (H~,ty ~ the associated semi-simplification as 
representation of G a l ( F / F )  x oef? (the direct sum of all irreducible subquotients) 
and consider the virtual representation 

H * t  = ~ ( - 1)nH~d = ~ ( -  1)"(H~,t) ~. 
n n 

A formula for the trace of this virtual representation on certain elements was given 
in Sect. 12. 

(14.1) Recall that each g ~ ( D ~ )  • defines a Hecke correspondence on the tower 
formed by 

gi~x.~.,.,IZ (0, l = x \ { ~ ) ) .  

We therefore obtain an action of G a l ( F / F ) x  (D~) • on the direct limit 

n .  l i m  n H , . -  , H , d -  
1 

Here the index system is formed by the non empty finite closed subschemes 
I c X\{  oo } and the transition homomorphisms are injective (existence of the trace 
morphism in 6tale cohomology). 

Fix I. We consider H~,t as a subvectorspace of H~. The action of Gal  (F/F) on 
H~,~ is the induced action. We have 

H~,, = (H~) K: 

(subspace of invariants). The action of o~(~ ~ on H,],~ coincides with the induced 
action of ~ T  on the K~-invariant  vectors. The finite-dimensionality of the co- 
homology groups H~,~ implies therefore that H~ is an admissible representation of 
(D~~ • ' 

(14.2) We also introduce the semi-simplification (H~) ~ of the representation H,~ of 
G a l ( F / F ) x ( D ~ )  • Since passing to the invariants under a compact group in 
a representation over a field of characteristic 0 is an exact functor, we have 

n ss  ( H " ~ =  lim (H ,d )  . r / !  ) 

I 

We decompose (H,]y ~ into isotypic components under the action of (D~)• 

(~/~)s~ = O v > |  ~ 
7r 0o 

Here n~ ranges over the irreducible admissible representations of (D| • and 

V"~ = Homto~)• (n%(H~Y ~) 

is a semi-simple Gal (F/F)-module.  We call vn~ the (global) Galois representation 
associated to the irreducible admissible representation n'~ of  (D~~ • . We also intro- 
duce the virtual Galois representation 

V~%:= ~ ( -  1)n V ~ .  
n 



~-elliptic sheaves and the Langlands correspondence 295 

Then 

H * : =  E ( -  1)"H~ = E ( -  1)" (H~) ' '  = ~'  V > |  ~ , 
n n ~ 

as virtual representations of Gal(ff  /F) • (D~) • 

(14.3) Let o 4= 0% o ~ Bad, be a place of F. Then we have the equality of subspaces 

l i m  H~,I = (H~) GL"(~'~ 
o r  

Here we have chosen an identification Do ~- Me(Fo); any other choice would replace 
the subspace on the right by a conjugate under Do ~. It follows from (12.1) that this 
Galois module is unramified at o. Therefore, appealing to the isotypic decomposi- 
tion in (14.2) above we obtain the following statement: 

(14.4) Lemma. Let n ~~ be an irreducible admissible representation of (D~ • and let 
o 4= ~ ,  o r Bad, be a place of  F such that the local component n~ of ~ at o is 
unramified (existence o f  a vector invariant under a maximal compact subgroup of D~ ). 
Then the Galois representation V ~  is unramified in o, for every n. 

(14.5) Fix a place o, and choose an identification Do,~4Id(Fo). Let So be an 
irreducible admissible representation of Do ~ which is unramified, i.e. possesses 
a non-zero vector invariant under GLd((~o). Then dim(TZo GLd(r176 = 1 and So is the 
unique unramified component of an induced representation of the form 

Ind (GLa(Fo), B(Fo); I~1 . . . . .  t~d), 

where B c GLd is the standard Borel subgroup of upper triangular matrices and 
where #1 . . . . .  #d are unramified quasi-characters of Fo ~. The d-tuple (/~1 . . . . .  /~n) is 
uniquely determined up to permutation, and hence so is the d-tuple of elements 
of C • 

( z l  (So) . . . . .  z~(~o))  : = ( m  ( ~ o )  . . . . .  m ( ~ o ) ) .  

Moreover, this d-tuple up to permutation is independent of the identification of Do 
with ~n(Fo). Furthermore, if fo is a Hecke function, i.e. a GL~((9o)-biinvariant 
function with compact support on GLa(Fo), with Satake transform fo ~, then 

tr z%(fo) =fo  ~ (zl(~o) . . . . .  zd(~o)) 

(el. [Ca]). Here the Haar  measure dgo on GLd(Fo) is normalized so that GLa(Co) 
gets volume 1. 

(14.6) Starting from now and till the end of(14.19) we assume that p~ is the trivial 
representation o f  D ~. 

Fix a place o 4= 0% o r Bad, and let Ko ~ D{ be a maximal compact subgroup. We 
consider the virtual representation of Gal(ffo/Fo)• (D ~'~ • on 

(14.) ' ,o  = y~ ( - 1 ) , ( (H~)~or~ .  
n 
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The isotypic decomposition (14.2) yields 

(H*) K~ ~ V*~| ~'~ 
;,too 

~o o * (o) 

(recall that dim(no x~ = 1 if no K~ 4= (0)). 
Fix a finite set T of places of F. For  each finite set S of places of F such that 

S c~ T = 0, we consider the convolution algebra ~ (D~) of locally constant functions 
with compact support on D~. We have fixed a Haar measure de r on (DT) • and 
a splitting of dg T as a product of local Haar measures so that we have a splitting 
dg r =  dgs dg T€ s. If S ~ S', S'c~ T = 0, we have a homomorphism of algebras 

oo x oo • 
cgr ( D s ) ~ ,  (Ds,),fsr_~fs l r  . . . .  . 

We have fixed a compact subgroup K = H K~ of D~, such that K~ is a maximal 
x 

compact subgroup for almost every x and we assume that vol(Kx, dgx) = 1 for 
almost every x. The Hecke algebra ~,P((Dr) • ) is the direct limit of the algebras 
c~(D~)  for these transition homomorphisms. Then we can view each admissible 
representation of (DT) • as a non degenerate ~C((Dr) • 

(14.7) Proposition. Let foo,o~ ~,,~((D~O,o)• ). For any r ~ 7l, there is an equality of  
traces 

tr(n~176176176 V*~) 
7t~ 

~o o * (o) 

= ~ z(Hoo)m(II)tr(H~176176176176 r + ... + Zd(I1o) r) 
11 

II4 -~ l . o r  St .  
n~o o , (o) 

where H runs through the automorphic irreducible representations • z olD,~woo. Here 
z(H~) = 1 i f  H ,  is isomorphic to the trivial representation 1~o of  D~ and 
z(H~ ) = ( _ 1)a-1 i f  H| is isomorphic to the Steinberg representation Stoo of  D~. 

Proof. Fix a finite closed subscheme I c X \ {  oo,o}. The lemma immediately 
follows from its variant where r > 0, whe re f  *'~ is Kf '~  and where on 
both sides we impose in addition the existence of K 3 '  ~ vectors. But then 
we may take f ~ ' ~  to be equal to 1KT'~176176176 and we may normalize the Haar  
measure so that it gives KT, x the volume I for each place x * oo of F. The left hand 
side in this variant equals the left hand side of the identity in (13.6). We use the 
determination of the traces off| in (13.2) (ii). The lemma therefore follows from 
(13.6), bearing in mind (cf. (14.5)) that, for our choice of function fo (cf. (11.19)), we 
have 

tr Ho( fo) = q d e g ( o ) r ( a -  1)/2 (Z 1 ( H o ) r  + . . .  + Zd (Ho) r ) .  [] 

(14.8) Lemma. Let H be an automorphic irreducible representation of  D~ /w z and let 
T be a set of  places of  F such that T g: Bad. Then the following conditions are 
equivalent: 

(i) H is 1-dimensional and there exists a character Z: F• \&•  ~ •• such that 
H -~  X ~ d e t ;  
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(ii) HT is finite dimensional. 

Moreover, if they are satisfied, we have m(H) = 1. 

Proof This lemma is well known. Let us recall its proof. Obviously ( i ) ~  (ii). 
Conversely, if FIT is finite dimensional,  there exists a place x q~ Bad of F such that 
Hx is finite dimensional.  As D;  ~- GLd(Fx), this implies that/-/x is 1-dimensional, so 
that Hx is trivial on SLd(F~)cGLd(Fx)~-D:~. Now, if f e H = d ( D •  
we have f(Tgxg) = f (g  g-  1 g~g) = (H(g-  i g~g) ( f ) ) (g )  = f(g) for all ? e Ker(nr  : 
D • ~ F • ), all gxeKer  (nr : D~ ~ F~ ) and all g~D;~. (Note that Ker(nr  : Dff ~ F~ ) c  
D~ ~ D~ is a normal  subgroup). But 

Ker (nr : D • ~ F • ) Ker (nr : Dx ~ ~ F~) = Ker (nr: D.~ ~ Z~ • ) 

is dense (strong approximation theorem). We therefore have, by the admissibility of/7, 

(H(g ' ) ( f ) ) (g )  = f ( g g ' )  = f ( g g ,  g-X g) = f ( g )  

for any g~D~ and any g ' eKer (n r :D~  ~ & •  (Ker(nr:D~ ~ & •  is a normal  

subgroup of D~ ), a n d / 7  factors through D;, n* ,Z~• 

Finally, if /7-~xodet  for some character x :F•215  • any 
f~/7 = ~4 (D • \ D ~ / w ~ )  is of the form f = q~ ~ nr for some q~ ~ d (P • \Z~ •  and 
re(H) = 1 as ~r  • \Z~•  is multiplicity free. [] 

(14.9) Theorem. Recall that we are assuming that p~ is the trivial representation of 
D~ Let H be an automorphic irreducible representation of Dt~/eJ|215 z and let n ~ be an 
irreducible admissible representation of (Doo) • 

(i) If/7oo~-1| (the trivial representation of D~), then there exists a character 
Z: F • \&•  ~• such that / 7 ~ - x ~  (in particular, H ~~ is 1-dimensional) and 
there exists at least one integer n such that V"n| 4: (0). Moreover, for almost all places 
o 4: 0% o r  Bad, such that Ho is unramified (i.e. ~(o((9~) = {1}), we have 

tr(Frob~; V*| = ~(o(Wo)'(1 + qdeg(o)r "t- "'" q- qdeg(o)r(d-1)) (VrE7Z) 

(cf (14.4) and (14.5)). 
Conversely, if Tr oo is finite dimensional and if there exists at least one integer n such 

that V~o ~- (0), then l oo| ~176 is an automorphic representation of D~ /w~ (in particu- 
lar ~z ~176 is 1-dimensional and there exists a character z : F • \&• --* C • such that 
~ _~ Z ~ o rn). 
(ii) If/700 ~-Stoo (the Steinberg representation of D~), then there exists at least one 
integer n such that V"n| 4: (0). Moreover, for almost all places o 4: o% o r Bad, such 
that/70 is unramified, we have 

tr(Frob~,; V*~) = ( - 1)~-I m(H)qd~g(o),(d-i)/2 (zl(/7o)" + "'" + Z~(/7o)') (VreTZ) 

(cf (14.4) and (14.5)). 
Conversely, if ~z ~176 is infinite dimensional and if there exists at least one n such that 

V,~| 4: (0), then Stoo| ~176 is an automorphic representation of D~ /m~. 

Proof We closely follow [Kot  3]. Let I c X \ ( ( o o ) w B a d )  be a non  empty 
closed subscheme such that (/7oo)r, # (0) and (noo)K, # (0). Let (/71 . . . . .  /7a) be 
a system of representatives of the isomorphism classes of automorphic  representa- 
tions of • z D,(/moo which have a non-zero fixed vector under  K~ ~ and which have 
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a local component  at ~ isomorphic to 1~ or to Sty.  We have A < + ~ as 
D • \ D ~ / ~  ~ o  K/~ is finite, where Mo is the Iwahori  subgroup of D~. Similarly, let 
(g~ . . . .  , na ~) be a system of representatives of the isomorphism classes of admiss- 
ible irreducible representations of (D~ • which have a non-zero fixed vector under  
K ~  and which occur in H,] for at least one integer n. We have a < + ~ as H~,I is 
finite dimensional  for every n and is zero for n < 0 or n > 2d - 2. We can assume 
that H = H1 (we are only considering H ' s  such that / / ~ - 1 ~  or H~ ~Sto~) and 
that ~ = no~ Let F ~ e ~ ( ( D ~ )  • ) (resp. f ~ ( ( D ~ )  • )) be KT-bi invar ian t  and 
such that 

t r ( / / ~ ( F ~ ) )  = 1 (resp. t r ( n ~ ( f ~ ) ) =  1), 

such that tr(/-/~ (F| = 0 (u  = 2 . . . . .  A) (resp. t r ( ~ 7 ( f ~ ) )  = 0 (Vj = 2 . . . . .  a)) 
and such that t r ( 7~ (F~) )  = 0 unless n ~  is isomorphic to H ~ for all j = 1 . . . . .  a 
(resp. tr(H~~ ( f ~ ) )  = 0 un less /1  T is isomorphic to ~ for all J = 1 . . . . .  A). 

Now let o ~ ~ ,  o r  Bad, o r I be a place of F such that we can split F ~ 
(resp. f oo) into 

F ~ = 1Ko'F ~'~ (resp. f ~  = 1Ko'f ~,o). 

Obviously, almost all places o 4: or, o r Bad, of F such that 17o (resp. ~o ~) is 
unramified have these properties. Then we can apply (14.7) to F ~ ' ~  ~'~ • 
(resp. f ~ ' ~ 1 7 6 1 7 6 1 7 6 2 1 5  and we get that there exists one (and only one) 
j~  { 1 . . . . .  a } (resp. J ~ { 1 . . . . .  A }) such that 7t~ ~ ~- / i  ~ (resp. 17f -~ ~ ~ ) and such that 

Z ( I I ~ ) m ( H )  q~(o)~(a-1)/2 (z1(17o)~ + ... + z~(/io)') = tr(Frob~; V*?) 

(resp. 

t r(Frob~; V*~) = z(Hs, ~)m(17s)q a~g(~ 1)/2 (zl(Hs, o), + ... + za(17s.o)~)) 

for all r~T/. 

Here we are using the fact that 

X(17~)m(/i) q~g(o~,(a-~/2 (z~(17o)" + ... + za(17o)') 

(resp. 

tr(Frobo; V*| 

cannot  be zero for all re7/. Indeed, take r = 0 (resp. apply Deligne's purity 
theorem). 

Therefore, the theorem follows from lemma 14.8 and the fact that St~ is infinite 
dimensional  if d > 1. D 

(14.10) Corollary. Let  z : F • 2 1 5  ~ •  be any character. Then V~176 is the 
one-dimensional representation of  Gal( f f  /F)  which corresponds to Z by abelian class 
field theory (in particular, for  each place x o f F  such that Z~(Cx • = {1}, Vz| is 
unramified at x and 

tr(Frob~,; V~176 = X~(t~)" 

for  all r ~ ) .  For m = O, 1 . . . . .  d - 1, the representation 

2m 
Vx~orn 
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of Gat(F/F) is isomorphic to 

v~176 - m). 

lfn(~ {0,2 . . . . .  2d - 2}, we have 

v ,  = (o). X~ 

Proof Any character z : F •  ~ C• is of finite order as F • \A•  is 
compact. Since V~+o~, is pure of weight n the assertion follows from (i) of the 
previous theorem. [] 

(14.11) Corollary. I f  H is any automorphic irreducible representation of D~/w~ such 
that 17+_~Sto~, then we have the following properties. 
(i) V ~  = 0 unless n - d - 1 (mod 2), so that ( - 1) a-1 V*~ is the virtual repres- 
entation associated to a true (graded) representation of Gal(ff /F). Put 

�9 . W n" 

(ii) dim~t(V~o~ ) = m(II)d. 
(iii) For each place x ofF,  there exists A~OE • and B~TI such that 

L~(V:,+,T) ~ L A n ,  q ~ - W 2 r )  ],.,n> 
L~(V'uo~,q; a T -1) = A x r  "~ LL (  y- ij , 

where Lx(V'uo~, T) (resp. L~(H, T), L~(H ~, T)) is the local Galois (resp. automorphic) 
L-factor at x of V*uo~ (resp. 11, the contragredient H ~ of H) and where q~ = qd~gl~). 

We stress that L(V'no~, T) = H ,  L(VT~o~, T) is not  an alternating product. 

Proof Thanks  to the theorem, there exists a finite set S of places of F, containing 
w, Bad and all the ramified places o f / / ,  such that 

1-[ Lx(V"u +a-l, T) <-1~" = Lx(17['q~-l)/2 T)m<n) 
n 

for all places x r S of F. 

The right hand side of this equality is the inverse of a polynomial  of degree 
m(lI)d in 1 + T Q t [ T ] .  So the same must  be true for the left hand side. But this left 
hand side is a quot ient  of two polynomials in 1 + TF~c[T] and, thanks to Deligne's 
purity theorem, there cannot  be any non  trivial common factors in the numera tor  
and the denominator  of this rational function (recall that V ~  is unramified at any 
place x r S of F for any integer n). Therefore, the numera tor  must be equal to 1 and 
the assertions (i) and (ii) follow immediately. 

The assertion (iii) is obvious if x r S. Moreover, we have functional equations 
for the global L-functions 

L(V'u~o, T) = [I L~( V'n~, T ~(~1) 
x 

and 

L(H, T) = H LAn, T d~162176 
x 
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of the following form 

and 

L(V'no~, T) ~2 • TZ 
L(V*no~,q-aT-1) ~ 

L(FI, T)  ~ i12• TZ" 
L(FI V,q-1 T - l )  

(cf. [Gro] and [Go-Ja, (5.1)]). Here we are using the fact that the dual representa- 
tion V~o of Gal(f f /F) is canonically isomorphic to V2~ -2 -"  (d - 1) (Poincar6 
duality). 

Now the assertion (iii) can be proved in the same way as [He 1 (4.1)-I (cf. 
Remarks 1 and 2 following loc. cit.). Note that Henniart proves a stronger 
statement for which he needs the theory of local e-factors for Vn~; at this point in 
our argument this is not needed and Grothendieck's functional equation is suffi- 
cient, cf. however (t5.13). [] 

of D~ /wo~ such (14.12) Theorem. If17 is any automorphic irreducible representation • z 
that H~ ~- Sto~, then we have the following properties. 
(i) V,~ = 0 unless n = d - 1 and dim~t(Vdn~ 1) = m(H)d. 
(ii) Let o * o~ , o ~ Bad, be a place o f F  such that 17o is unramified (cf (14.5)), then 
Vdn~ 1 is an unramified representation of  Gal(ffo/Fo) and 

tr(Frob~; V ~  1) = m(II) qdOgto)r(n- 1)/2 (Zl (17o)" + "'" + za(IIo) r) 

for each r ~ 7Z. Moreover, we have 

IzAUo)l = 1 (Vj = 1 . . . . .  d). 

(iii) The Frobo~-semisimplification of  the restriction of  Vau~ 1 to Gal(Fo~/Foo) is 
isomorphic to 

60(Std) re(n). 

of  d-1 Here a~ (up to a Tare twist ,~ --f-, the so-called d-dimensional special (-adic 
representation of  Gal(f f~/F~)) ,  is the unique Froboo-semisimple indecomposable 
~-adic representation of  Gal(Y~o/F~) such that 

( - -  2 ) /f j - d -  1 (mod 2) and IJl < d - 1  grMaO(Std)= ~ t  j+d-1 
0 otherwise 

(cf [De 1]). 

Remark. The proof of Theorem 14.12 is very simple if we know that the local 
component Ho at the place o appearing in (ii) is generic (conjecturally this is 
automatically true). Indeed, in this case, 17o being unitary and generic, we have 
[Ja-Sh 2, Ta] 

Izj(17o)l < qa~g(~ = 1 . . . . .  d). 

Combining this estimate with Deligne's purity theorem then allows one to 
deduce from Theorem 14.9 that I za(17o)l = 1, j = 1 . . . . .  d and the assertions (i) and 
(ii) of (14.12). Then, (14.12) (iii) follows (cf. (14.11) (iii)). 
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Without  the assumption of genericity, the proof is more delicate. Firstly, we 
shall classify all the "pure" and "integral" representations V ~ of Ga l ( f f~ /F~)  
having the properties (14.11) (i), (ii) and (iii). Then, we shall conclude using either 
Deligne's hard Lefschetz theorem or Tadi~'s classification of uni tary representa- 
tions of GLd(Fo) for some unramified place o 4: ~ ,  o ~ Bad. 

(14.13) Let 

2 d - 2  

V ' =  0 V~ 
i=0 

be a graded Frob-semisimple #-adic representation of Gal (F~/F |  We shall 
say that V ~ is pure if for i = 0, ... ,2d - 2 and each j, 9r~ V i is pure of weight i + j  
(M is the monodromy filtration). We shall say that V ~ is integral if 

2 d - 2  

L~(V',  T) = [J L~(V ~, ~) 
i = 0  

has no pole at T = q% for each n > 0. We shall say that V" is selfdual if 

( V i )  v = V2a-2-i(d-- i )  

for each i = 0, . . . ,  2d - 2. 
If V ~ is pure, integral and selfdual, any direct summand of V ~ isomorphic to 

a ~  

occurs in degree i + 2j - 1 and such a direct summand can exist only if 

l < _ i < d  

and 

O < j < d - 1 .  

(Recall that a ~  is pure of weight i + 2j - 1 in the sense of the monodromy 
filtration, admits 1/(1 - q~ T) as local L-factor and admits a~ (i + j  - 1) as 
dual representation). The following three examples of graded Frob-semisimple 
f-adic representations of Ga l (F |  will be of particular importance for us. For  
each sequence (io . . . . .  i~) of positive integers satisfying 

(resp. 

resp. 

let us set 

2 ( i o +  "" + i s - 1 ) + i s = d  

2(io + ' "  + is) = d, 

i o +  '" + i x = d ) ,  

s - 1  
U'(io . . . . .  is) = j~--o (a~ ( - io . . . . .  i j _ , ) ~ a ~  - d + io + "" + ij)) 

G a ~  io . . . . .  i~-1) 
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(resp. 

U"(io . . . .  ,is) = + ( a~  ( - io . . . . .  i j _ l )@tr~  - d + io + "" + ij)), 
j=O 

resp. 

U(io . . . . .  is) = ( ~  (tr~ ( - io . . . . .  i j_~)@tr~ - d + io + ' "  + ij))) 
j = o  

( a ~  in degree i + 2j - 1 for each i,j). Then U'(io . . . . .  i~), U"(io . . . . .  i~) 
and U(io . . . . .  i~) are pure, integral  and selfdual. The dimension of U'(io . . . . .  is) or 
U"(io . . . .  ,iA (resp. U(io . . . . .  is)) is d (resp. 2d). Moreover ,  for 

(resp. 

we have 

(resp. 

V ~  U'(io . . . . .  i~) or U"(io . . . . .  i~) 

V ~ = V(io . . . . .  i,)) 

L ~ ( V ~  l - q J T -  TZ 

L ~ ( V ~  -1) 1 - T 

Lo~(V' ,T)  f l - q : a T ~  2 - T z. 
L ~ ( V ~  ~ - 1 - - T  /I ff~; 

If f(T), g(T)E ~t(T) • we shall write 

f ( T )  ,,~ g ( T )  

if the orders  of the zero (or pole) at  T = q~ o f f ( T )  and g ( T )  are equal for each 
n ~ Z .  

(14.14) Lemma.  Let  us f i x  non-negative integers m and m' such that m' divides m. Let 
V ~ be a pure, integral, selfdual graded Frob-semisimple d-adic representation of 
Gal(ffoo/F| (cf (14.13)). We assume moreover that 

(1-qJr  m 
L ~ ( V ' , q ~ d T  -1) 1 - T } 

and that 

Loo(Vi, T)  - '  ~(1 + T ( ~ t [ T ] )  m' 

for each i = 0 . . . . .  2d - 2. Then, there exists a direct summand W" of  V" of  the form 

with W:  (resp. W'~) isomorphic to U'(io . . . . .  i,) m' or U'(io . . . . .  i , ) "  (resp. 
U (io . . . . .  is)"') for some sequence (io . . . . .  i,) for each ot ~ A (resp. fl ~ B), such that 

m = (IA[ + 21Bl)m'. 
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Proof  We make  an  induc t ion  on m. Fo r  m = 0 there is no th ing  to prove. Let  us 
assume m > 0 and  therefore m > m'. Then,  the only th ing  tha t  we need to prove  is 
the existence of a direct  s u m m a n d  W ~ of V ~ such tha t  W ~ is i somorph ic  to 
U'(io . . . . .  is) m', U'(io . . . . .  is) m' or LT(io . . . . .  is) ' '  for some sequence (io . . . . .  iA ( then 
the l emma  will follow by applying the induc t ion  hypothes is  to V~176 
We consider  L ~ ( V  ~ T ) -1 .  We have 

d 

L ~ ( V ~  - 1 ~  [ I  ( 1 - - q " ~ T ) % , .  
n = O  

with 

and  

eo,, ~ Z ,  eo,, > 0 (Vn), eo, o = m 

re'leo,, (Vn). 

F r o m  eo,o = m > 0, we deduce tha t  there exists a special r epresen ta t ion  cr~ 
occurr ing in V ~ By purity,  it necessarily occurs in V i~ i and,  by integrali ty,  we 
necessarily have 1 =< io =< d (of. (14.13)). As we are assuming  

Lo~(V i~  1~(1  + TC~e[T])  m'. 

the mult ipl ici ty of a~ in V i~ is at  least m'. Finally, by duality,  V 2a-1-~~ 
conta ins  a direct  s u m m a n d  i somorph ic  to 

(a~162 ( - d + io)) m'. 

Now, we have  three  cases: 
(1) io = d; 
(2) io = -~; 
(3) l < io  < d -  l,  io#~2. 

In  the first case, we set 

W ~ = (a~ m' = U'(d) m' 

and we are done.  In the  second case, we set 

W ~ = (a~176 - ~ ) ) "  = U"(~)  m' 

(obviously, this  case can  occur  only if d is even) and  we are also done.  In the  th i rd  
case, we set 

W ~ = (a~176 - d + io)) m" 

and we con t inue  the proof. 
Let  us assume tha t  we have found a sequence (io, ... , ij_ 1) of posi t ive integers  

(j > 1) with  

i o+  .." + i j - l < d  

2(io + ..- + i j -  2) + ij-1 4: d 
and 

d 
i o +  "" + i t - 1  ~= 
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and  a direct  s u m m a n d  W~_ ~ of V ~ which is i somorph ic  to the m'- th  power  of the 
pure ,  integral ,  selfdual, graded,  F rob - semis imp le  r  r ep resen ta t ion  

a ~ 1 7 6  - io)0) .-- ~ a ~  - io . . . . .  i j - z )  

~)tr~ - d + io)09 a ~  - d + io + i l )  

~) ... @ a ~  - d + io + "" + i j -a)  

of  G a l ( f f ~ / F ~ ) .  Then ,  we have 

L ~ ( V ' / W T _ ~ , q ~ a T - ~ )  ~ i S T  ] " l _ q ~ + . . . + , ~ _ , T  ] 

with no  fur ther  s impl i f icat ions  as io + .-. + t)_ ~ < d and  io + ... + ij_ ~ * ~. It  
follows 

d 

L ~ ( V ~  - ~  l-I ( 1 - q % T )  ej'" 
n = O  

with 

and  

es,. ~ 7], e j , .  _-> 0 (V n) 

e j ,  0 ~- i n  - -  l'Yl' 

e j ,  io+ .. + i j - 1  ~-~ ~ l  

m'lej,. (Vn). 

F r o m  es.~o+... + i j - ,  > m ' >  0, we deduce  that  there exists a twisted special 
r ep resen ta t ion  a ~ ( - io . . . . .  ij_ 1) occur r ing  in V'/W~_ 1.BY puri ty,  it 
necessar i ly  occurs  in  degree 2(io + .." + i j - 1 ) +  i j -  1 and,  by in tegral i ty  we 
necessar i ly  have 

1 < i o + i l  + "" + i j ~ d .  

(ij > 1) (cf. (14.13)). As we are a s suming  

Z~(V2(io+ ... +ij_,)+iy-1,  T ) - I  s (I + T(~t  [ T ] )  m' 

and  as, obvious ly ,  

L crxr2(io+ "" + i d - t ) + i j - 1  T ) - I  ~(1 + T ( ~ I [ T ] ) " ' ,  
c~ .  r~ j - 1  

the mul t ip l ic i ty  of a~ ( - io . . . . .  ij_ a) in V~ I is at  least  m'. F inal ly ,  
by dua l i ty  V'/W~_ 1 con ta in s  a direct  s u m m a n d  (in degree 
2d - 1 - 2(/0 + ... + i j_x) - i~) i somorph ic  to 

(a~  - d + io + .." + ij)) m'. 

Now,  we have  four  cases: 

(1) 2(io + "" + i s - l )  + ij = d; 

(2) io + "" + ij = ~-; 
(3) i o +  "-  + i j = d ;  
(4) n o n e  of the above.  
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In the first case, we set 

W* = WT_l(~(tr~ - io . . . . .  i j - 1 ) )  m" 

= U'(io,  "'" , i j )  m' 

and we are done. In the second one, we set 

W ~ = W~-l@(cr~ - i o  . . . . .  i j _ l ) o a o ( s t i , ) (  __d))m' 

= U"(io, .-. ,ij) m" 

(obviously, this case can only occur if d is even) and we are also done. In the third 
case, we set 

W ~ = W y - l @ ( ( a ~  - i o  . . . . .  i j - 1 )@a~  m' 

= IJ(io, ... , i j )  m' 

and we are done too. In the last case, we set 

W~ = W ~ _ l G ( a ~  - io . . . . .  i j _ l ) ~ a ~  - d + io + .." + ij)) ~' 

and we conclude by induct ion on j. [] 

(14.15) Lemma.  L e t  W be a pure E-adic representa t ion  o f  Gal( /7 /F)  and let m be 
a posi t ive  integer. W e  assume that  

L o ( W , T )  -~ 6(1 + T Q L [ T ] )  m, 

f o r  a lmos t  all p laces  o o f F  where  W is unramified.  L e t  x be an arb i t rary  place o f F  and 
consider  the m o n o d r o m y  f i l t ra t ion  M f o r  the restr ic t ion o f  W to G a l ( F ~ / F ~ )  and  its 
decompos i t ion  into pr imi t ive  parts,  (cf. [De 2, (1.6.4)]) 

~r~(W)= @ e j ( -  ~) .  '+j 
J>lil 

j ~ /(rood 2} 

Then  we have 

det( l  - T -F robx ;  P - j ) e ( 1  + TIDe[T])  m, 

f o r  all Froben ius  e lements  Frob~ 6 Gal(F, /F~) ,  and all j >- O. 

Proof.  It  is clear that  d i m ~ , ( W )  = me for some non-negative integer e. Let us 
consider the algebraic map 

�9 e I~/  P .  A~ ,  --+ Am, 

given by 
m e  

(1 + a l T +  ... + aeTe) m =  1 + Y" P , ( a l  . . . .  ,ae)T". 
n = l  

Then, P is a closed embedding (if n = 1 . . . . .  e, we have 

P . ( a l ,  ... ,ae) = ma.  + Q. (a l  . . . . .  a , - 1 )  

for some polynomial  Q.(a l  . . . . .  a ._ 1)). Therefore, the set o fg  e Ga l ( f f /F )  such that 

det(1 - Tg; W )  6 (1 + Tt[~eET]) m 
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is closed for the Krul l  topology.  But, by hypothesis,  this set contains the Frobenius  
elements for almost  all places of F. By Chebotarev 's  theorem, it follows that  

det(1 - Tg; W)~(1  + T Q ~ [ T ] )  m 

for all g ~ Gal(ff/F). 
By Deligne's theorem on the puri ty of the m o n o d r o m y  fil tration (cf. [De 2, 

(1.8.4)]), gr~ (W)  is pure of weight i. Therefore it follows that  

det(1 - T" Frobx;gr~(W))  ~ (1 + T ~ z [ T ] )  m 

for all Frobenius  elements Frobx ~ Gal(ffx/Fx) and all i. The assert ion now follows 
from the primitive decomposi t ion  by descending induction on j .  

(14.16) Let H be as in the s tatement  of Theorem 14.12. We denote by V ~ the 
Frob-semisimplif icat ion of the restriction of V ~  to Gal(ffo~/Fo~). Then V ~ is 
a gr~aded ~-adic representat ion which (by Deligne's theorem on the puri ty of the 
monodromy  filtration) is pure in the sense of (14.13), is integral  by Deligne's 
theorem on the integrali ty of L-functions (cf. [SGA 7, II, XXI, app., (5.2.2) and 
(5.3)0)]) and is selfdual by Poincar6 duality. Fur thermore ,  specializing (14.10) (ii) to 
x = oo we obtain 

L ~ ( V ' , T )  [ 1 - - q ~ d T  1] m~n) 
L ~ ( V ~  = Ao~T'~ - 1 Z ~  

as the local L-factor of St~o - St~ is equal to 

1 
1 - q~-a~/2T " 

We may therefore apply  Lemma 14.14 to V ~ with m' = 1, m = m(II). It follows 
that  V ~ contains a direct summand  W ~ of the form 

(cf. (14.14)) with 
m(I I ) - - IA I  + 2"lBI. 

Since we have dim W~ = d (a ~ A) and W~ = 2d (fl ~ B) (cf. (14.13)) and since 
dim V ~ = m(Fl), d (of. (14.10) (ii)) we conclude that  we have equali ty V ~ = W ~ In 
part icular  each V ~ is of the form 

V i = ( ~ ~ 1 7 6  - 1 ) ) f l  ~ ~ . . .  

for suitable exponents  f} .  Therefore the j - th  primitive par t  of V i is equal to 

. { 0 Q t ( - - ~ ) f ' , + ,  , O < = j < i , i - - j ( m o d 2 )  
P'-J  = otherwise. 

By theorem 14.9 (ii) and Deligne's pur i ty  theorem we may apply  Lemma 14.15 
to each V ~ .  It follows that  all exponents  f}  are divisible by m = rn(H) and hence 
L(V~,T) -~ ~(1 + T ~ e [ T ] )  m, all i. We may  therefore reapply Lemma 14.14 to 
V ~ with m' = rn = m(Fl). It follows that  V ~ contains a direct summand  W ~ of the 
form 
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where dim W, = md(ct~A),  dim Wp = 2 m d ( f l ~ B ) .  Compar ing  dimensions we 
therefore obtain the following statement. 

(14.17) Proposition. Let  1I be as in the statement o f  Theorem 14.12. Then the Frob-  
semisimplification of the restriction of  V'n-, to Gal( f f  ~ / F ~ )  is isomorphic to either 

V ~ = (VT~) ~~ - U'(io, ... ,is)"~m,2(io + ... + i s - l )  + is = d 

o r  

V ~ = ( V ~ )  Fr~ -~ U"(io, "",i~)mln),2(io + "'" + i~) = d, 

(cf. (14.13)). 

(14.18) Remark. Assume that s = 0 in the above statement. Then the two alter- 
natives given by the proposi t ion are 

V ~ -~ ~~ "try) or  V ~ - [cr~ cr~ -_~)] , , tm.  

We note that  in the second case V ~ has a non-trivial  component  in degrees 
d/2 - 1 and 3d/2 - 1. The difference between these two numbers is equal  to 2 if and 
only if d = 2 in which case 

v" = [ Q ~ ( ~  ( -  ~)]"~'J 

in degrees 0 and 2. 
Assume now s > 0 and let io, . . . ,  is be a sequence of positive integers such that 

2(io + ..- + i,_~) + is = d (resp. 2(io + ..- + i~) = d). 

Then we have a chain of inequalities 

io -- l < 2io + ia -- l < "" < 2 ( / 0 +  ... + i~_l) + i~ - l = d - 1  

< 2 d - 1 - 2 ( i o +  ... + i ~ - z ) - i ~ - i  < "" < 2 d -  1 - 2 / o - i ~ < 2 d - l - i o  

(resp. 

i o -  1 < 2 i o + i l -  1 < ... < 2 ( i o +  ... + i ~ - ~ ) + i ~ - I  

< 2 d - 1 - 2 0 o +  -"  + i ~ - ~ ) - i ~ <  ... < 2 d -  1 - 2 i o - i ~ < 2 d - l - i o . )  

Fur thermore  the difference between consecutive members  of this chain is 
always of the form ij + i~_~ (resp. ij + ij_~ or 2iA. Therefore in both cases these 
differences are all equal to 2 if and only if io = il . . . . .  i~ = 1, in which case d is 
odd and s = (d - 1)/2 (resp. d is even and s = d/2). Furthermore ,  in the first case we 
have 

V ~ = r~ ( (~ (  ( - -  1 ) ( ~  ""([~((  --  d @ 1)] m(ll) 

in degrees 0,2, ... ,2d - 2, whereas the second case does not  in fact arise since 
when d is even the graded representation is concentrated in odd degree, 
cf. (14.10)0). 

(14.19) Proof  o f  Theorem 14.12 It suffices to prove the statement (iii). Indeed, it 
then follows from Proposi t ion 14.17 that  Vn~ only contributes to the middle degree 
cohomology  from which (i) follows. The statement (ii) follows from (i) and (14.9) (ii) 
by Deligne's purity theorem. We shall present now two arguments  for proving (iii), 
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one based on the strong Lefschetz theorem and one based on the classification of 
unitarizable irreducible admissible representations of GLa(Fo) due to Tadic [Ta]. 

First argument. In this argument we use the fact that there exists a class h ~ H2(1) 
invariant under the action of (D~ • and of Gal (F/F)  such that the iterated cup 
product maps 

h~: v.a-l- i  a-1 - - r t  ~ ~ V n ~  +i(i), i = 0,1 . . . .  

are isomorphisms. In fact, there is such a class induced by the canonical bundle on 
8~(x,~,i,~/7/which is ample for deg I >> 0. This last assertion can be roughly seen 
as follows (details omitted). A modification of the method of Drinfeld [-Dr 4] allows 
one to formulate a moduli problem defining gEfx,~,~,,/7l over X \ I  and to show 
that its restriction to Spec (90o is represented by a finite disjoint sum of schemes of 
the form 

r \ 6 ,  

where ~ is Drinfeld's upper half space of dimension d - 1 relative to the local field 
F~ and where F = PGLa(Foo) is a (sufficiently small) cocompact discrete subgroup�9 
For such varieties the ampleness of the canonical bundle of the generic fibre has 
been established by Mustafin [Mu]. Using the existence of h the proof of (14.12) (ii) 
is now very simple. By the "strong Lefschetz" property of h we have the implication 

v n  :4 = (0)  ~ V n + 2 : #  (0) ,  if n + 1 < d - 1. 

Therefore, Proposition 14.17 and the Remark 14.18 imply that if (14.12) (iii) 
does not hold, then the restriction of V ~  to Gal(Fo/Fo) for a place o + oo, o r Bad 
such that 1-1o is unramified is of the form 

V ~  -~ [-W~ W2|  ... |  "~m, 

with W z~ of dimension 1 and pure of weight i, 0 - < i - < d - 1 .  By the strong 
Lefschetz property we even have 

Wi ~- W~ - i), i = 0 , . . . , d - 1 .  

But then by (14.9) we can order the Hecke eigenvalues of rio in such a way that 
�9 ~,(1 - d ) / 2  

z d r l o )  = - o  ~o 
�9 ~(3  - d ) / 2  

Z 2 ( / - / o )  = ~ o  q o  

zd(rlo) = ~o.q(o d- ~/2 

where ~o is the eigenvalue of Frobo on W ~ Thanks to the classification of 
unramified irreducible representations of GLa(Fo) (cf. (14.5)) it follows that 17o is the 
1-dimensional representation 

Zo ~ det:GLa(Fo) -~ C • 

where Zo is the unramified character of Fo ~ such that Zo(~o) = ~0. But rioo ~ St~ is 
infinite-dimensional (d > 1). So, by (14.8), 11o cannot be finite-dimensional and we 
have derived a contradiction. 

Second aroument. In this argument we are going to use the classification theorem 
of Tadi~ [Ta]. In the ease of positive characteristic the proof of Tadi~ uses the fact 
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that the Zelevinsky involution carries irreducible representations again into irredu- 
cible representations. This has been announced by I. Bernstein but  his proof  was 
never published. Since, however, a proof  of this assertion will be contained in 
a for thcoming paper by P. Schneider and one of us (U. Stuhler) there seems no 
harm in using it. According to this classification a unitarizable irreducible admiss- 
ible representation 1Io of GLa(Fo) for a local field Fo is of the form 

11o = Spehdl (Stbl(pl))(21) x ... • Speha~(Stb~(ps))(2~), 

(comp. [Mo-Wa,  I. 10]). Here al . . . . .  a~, bl . . . . .  b,, d l ,  ... , d~ are positive integers 
with al bl d~ + ... + asb~ds = d, pi is a unitarizable irreducible supercuspidal rep- 
resentation of GLd, (Fo) and 2i ~ ] - 1/2, 1/2 [is a real number  (i = 1 . . . . .  s) and we 
used the notat ion introduced in (13.8). The product  sign refers to the (normalized) 
induced representation from the standard parabolic P,,~b,d~, .,,,b~d,(Fo) to 
GLd(Fo) which turns out  to be irreducible. We apply this theorem to the local 
component  of our au tomorphic  representation 11 at the place o of F with o 4: ~ ,  
o r Bad where Iio is unramified. Then by Deligne's purity theorem we have 
21 . . . . .  2s = 0 and the fact that 1Io is unramified forces 11o to be of the form 

11o = Spehdl(Z1) • "" • Spehd,(Z~) 

= x l~  • ... x zsodetd~ 

for suitable unitary unramified characters Xt, .-. , ~  of F2 and a part i t ion 
(dl . . . . .  ds) of d. Here det~,:GLd,(Fo)~ Fo ~ denotes the determinant  map. The 
Hecke eigenvalues of 11o are XJ (Wo)" q~o a'- 1)/z . . . . .  ~ (Wo)" q~o ~ -a~)/2 . . . . .  
g~(t%)- q~o a ' -  ~)/2 . . . . .  X~(Wo)" q~o ~ -a~/2. By Deligne's purity theorem it is possible to 
determine the trace of Frob~o on VT~* from (Z~ . . . . .  Z~) and (dx . . . . .  d~). In particular 
we again have the implication 

V " 4 = ( O ) ~ V  "+z4=(O), if n +  1 < d - 1  

and one concludes as before. 

(14.20) We conclude this section with some remarks on the case of a general 
representation p~.  They will not  be used in the next sections. 

We take up the notat ions and the assumptions introduced in (13.8). In this case 
(14.7) has to be modified in the obvious way: the sum of the right hand side is over  
the set of all au tomorphic  irreducible representations of • z D,/~s| such that/-/o~ is 
either isomorphic to Speh2,+ ~ 0t'~), in which case Z(11~) = ( - 1) d- 1 - zt, or  isomor-  
phic to ~o~ = St2~+a(n'),  in which case X(11oo) = ( - 1) d-1. 

(14.21) Conjecture Let 11 be an automorphic irreducible representation of  D~/vJ z 
and let n ~ be an irreducible admissible representation of  (D~) • 
(i) I f  H ~ - S p e h 2 t + l ( n ' ) ,  then V77~=0 unless n = d - l  + 2 t - 2 i  for some 
0 <_ i <_ 2t, 

V~= ~ + 2~- 2~ = V~= ~ + 2,(i) 

for any i ~ 7z, 0 < i < 2t. For all places o 4: oo, o r Bad, such that Ho is unramified 
and such that 11 o is the unique irreducible quotient of  the induced representation 
n'o(t) x n'o(t - 1) • ... x lr'o( - t) where no is an unramified unitary representation of  
GLa,(Fo), we have 

tr(Frob~; Van= 1 + 2,) = m(Fl) qd,g~o),(a- 1 + 2O/2 (zl(rc,), + ... + za,(no)') 

t 1 . t  t for all r ~ 7I. Furthermore, Iz~,(no)[ = , J = 1 . . . . .  d .  
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Conversely, if  there exists at least one integer n ~ d - 1 such that V~n~ 4= (0), then 
Speh2t+ l (n~ ) |  ~ is an automorphic irreducible representation of  D~/w~ .  
(ii) I f  H ~ o -  n~ = St2,+l(n~), then V71~ = 0 unless n = d - 1 .  For all places 
o 4= oo, o ~ Bad, such that Iio is unramified, 

tr(Frob~o; VfI~ 1 ) = m(II) qdegto~rtd- 1)/a (zl (17o)" + "'" + zd(llo) ~) 

for all r ~ ~. Furthermore, [zj(llo)[ = 1,j = 1 . . . . .  d. 
Conversely, if  V ~  = (O), for all n ~: d - 1 and V d7l :~ (0), then n ~ |  ~ is an 

automorphic irreducible representation of  D ~ / ~ .  

(14.22) The method that we have used to prove (14.9), (14.10) and (14.12), i.e. the 
case p~ trivial of the above conjecture, does not extend to the non trivial po~'S. 
But, under the local assumptions of(13.8), it is not difficult to deduce the conjecture 
from the following hypothesis (we leave the details to the reader). 

• Z (14.23) Hypothesis. Let II be an automorphic irreducible representation of  D~/wo~ 
and let o 4= oo, o r Bad be a place o f f  such that 17o is unramified. 
(i) I f  I I~ ",~ Speh2t+l(n~), then Ho is the unique irreducible quotient of  the induced 
representation n'o(t) x n'o(t - 1) x ... • n'o( - t) where no is an unramified generic 
unitary representation of  GLd,(Fo). 
(ii) I f l I ~  ~_ n~o = St2t+l(n~), 17o is generic. 

(14.24) Remark. In the extreme case where n~ is supercuspidal, (14.23) (i) and 
(14.23) (ii) coincide. In the other extreme case where n~ = Sto~(t = a-~2, d' -- 1, n~ is 
the trivial character of F~ and Speh2t+~(n~) = loo), (14.23) (i) is trivially satisfied 
(cf. (14.8)) and (t4.23) (ii) is a consequence of (14.12) (ii) (we have even proved that 
Ho is tempered). 

We also note that, if a fully worked out global Jacquet-Langlands corres- 
pondance existed between D • and GLa(F), (14.23) (ii) would hold and (14.23) (i) 
would follow from the results of [Mo-Wa IV]. Indeed, any automorphic irredu- 
cible representation of G L a ( ~ ) / t ~  (or GLd,(~)/~J~ t+l)z) with a discrete series 
local component at oo is cuspidal and all unramified local components of 
any cuspidal automorphic irreducible representation of G L a ( ~ ) / ~  (or 
G L a , ( N ) / ~  t+~)z) are generic (cf. [Sh]), In particular, thanks to the results of 
[Ja-Pi-Sh 1], Conjecture 14.21 holds true in the cases d = 2 and d = 3. 

15 A global proof of the local Langlands conjecture in characteristic p 

In this section we shall make use of the results of the previous chapter to give 
a proof of the local Langlands conjecture in a strong form. In the beginning we 
shall depart from the notations used elsewhere in the paper. We now let F denote 
a local field of characteristic p. We denote by (9, w, ~c -~ ]Fq the ring of integers, 
a uniformizer and the residue field of F. Recall from the list of notations that we 
have fixed an isomorphism t~t ~ ~E. 

(15.1) We start by recalling some facts about ~-adic representations. Let fir(d) be 
the set of isomorphism classes of f-adic representations of dimension d of G a l ( F / F )  
with determinant character of finite order and let fr~ c fv (d)  be the subset of 
isomorphism classes of irreducible representations. 



~-elliptic sheaves and the Langlands correspondence 311 

(15.2) Remark. Each a efr176 is automatically Frob-semisimple (cf. [De 1, 
Sect. 8]). Indeed, a factors through a finite quotient of Gal (F/F) .  Conversely, any 
: -adic  representation a whose associated Frob-semisimple representation a '  is 
irreducible is itself irreducible. Indeed, since a '  is irreducible, the restriction of a '  
and therefore of a to the inertia group of Gal( f f /F)  factors through a finite 
quotient. But in this case, a '  is just the associated semi-simple representation to a, 
hence if tr' is irreducible then so is tr and tr' -~ a. 

(15.3) We denote by Sp,(l_) = a~ ( ~ )  (cf. (14.12)) the special representation 
of dimension n of Gal(F/F).  It is an indecomposable representation which 
is a successive extension of one-dimensional representations ~ t ( L ~ ) ,  
~ : ( ~  + 1) . . . . .  t~e(~ -~) with ~ t ( ~ )  as the unique irreducible submodule and 
with ~ : ( ~ )  as the unique irreducible quotient module. For  any a E ~F(d) its 
Frob-semisimplification a v~~ can be written in a unique way as a direct sum 

0 "Fr~  @ @ @ (Sp,(1) |  . . . . .  

n>-1 l<-a'<-a p'e~O(d ') 
(cf. [De 3, (3.1.3) (ii)]). 

Here m,,o, e IN, and m.,p, = 0 for all but finitely many pairs (n,p'). Then for the 
L-function (which we regard here as a function of a complex parameter) there is the 
expression (cf. [De 1, 8.12]) 

= = 1-I lq I1 
n>_l l<_d'<_d p, effO(d, ) 

= F I f l  1-I 
n>_t t < d ' < d  p, e f fOld,)  

t m L(Sp , (1 ) |  s) .... 

Note that for p ' e  f#~ we have L ( p ' , s ) -  1 unless d ' =  1 and p ' =  Z is an 
unramified character of finite order. In the latter case, the L-function L(Z, s) has no 
zero's and all poles of L (Z, s) are on the line Re(s) = 0 and there is in fact a pole at 
s -- 0 if and only if Z is trivial. Applying the above formula to a = p i | it therefore 
follows that for pl,  P 2 ~ ~  ~~ we have L(p l@pz ,  S ) ~  1 if and only if 
dl = d2 and if there exists an unramified character Z of finite order with P2 "~ PI" Z. 
Here and in the sequel we denote by ~ the contragredient of a representation p and 
P 'Z  the tensor product P| We are going to use the formula [De 2, (1.6.11)] 

inf(nl, t12) -- 1 
Sp,l(1)| ) = ( ~  SP,,+.2-1-zj(1). 

j=o 

It follows that for al ,a2  e fie(d) with their Frob-semisimplifications decom- 
posed as above, 

i n f ( n l , n z ) -  1 

= lq lq lq 
nl,n2>-- 1 j=0 

I <= d',,d' 2 Z d 
p', ~ ~la'l),p' 2 ~ ~(~',) 

r t l  + n 2  1 - -  ""1' ~ m 2 " f l 2 " ~  

L p'~| + 2 

= I--[ H l--I inf(nl, n2)-- IR L(Z~S -[- --I'll "~ l'12 1 --jl m1'~I'p''m2"~:'~'z . 
nl,n2> 1 l < d ' < d  Z j=O 2 
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Here Z ranges over the unramified characters of finite order. In particular, since 
Sp,(1) ~ -~ Sp,(1) [De 2, (1.6.11)], we obtain for a ~ fie(d), 

inf( ) - 1 (  h i + n 2  ) , z , . . . . .  . . . . . . . . . .  

1-I lq FI [I L x , s + - -  1 - j  
nl,n2 >1 l~d '<--  d Z j=O 2 

p' ~ ~(d') 
(15.4) Corollary. Let cr~fgr(d). Then t~fr176 if and only i f  the L-function 
L(cr| s) has all its poles on the line Re(s) = 0 and a simple pole at s = O. 

Proof. The part "only if" has already been proved. Let us check the part "if". Let a '  
be the associated Frob-semisimple representation. Then a ' |  is the associated 
Frob-semisimple representation to a |  and L ( a |  s ) =  L(a ' |  s). From the 
previous formula we deduce that or' is irreducible, and the part "if" of the corollary 
follows from Remark 15.2. [] 

(15.5) We next recall some facts from the theory of local L-functions of pairs 
[Ja-Pi-Sh, Sects. 8,9]. For  every pair (It, ~z') consisting of an irreducible admissible 
representation ~ of GLa(F ) and an irreducible admissible representation 7z' of 
GLd.(F) there is an L-function L(n x n', s), and an e-factor e(Tt • n', ~b, s) depending 
on the choice of a non-trivial additive character ~b of F. We note that implicit here is 
the choice of a Haar measure on F which will always he taken to be selfdual with 
respect to ~b. We shall need the following analytic properties of the L-functions. 
Assume that ~ and ~' are both supercuspidal representations with central character 
of finite order. Then 

L(~ x ~',s) = I-I L ( z , s ) ,  
Z 

where the product ranges over all unramified characters of finite order such that 
~' - ~Z. Here ~Z = ~ |  (Z ~ det). In particular, L0z x ~z', s) =- 1, if d 4= d' and 
L0z x ~,s) has all its poles on the line Re(s) = 0, and there is in fact a simple pole at 
s = 0. In what follows we let d ~  be the set of isomorphism classes of irreducible 
supercuspidal representations of GLa(F) with central character of finite order. 

(15.6) Proposition. We assume 9iven for any ~ ~ff~ a non-empty subset 
Z~ c (~F(d) with the following properties: 

(i) For all ~, x '  ~ d ~  and cre Z~, tr' ~ S~, we have 

L ( a |  = L ( z  x ~',s). 

(ii) For all ~z ~ d ~  i f  a ~ Z~ then ~ ~ Z;.  

Then for  all x ~ ~ff~ the set ,Y,~ consists of  one element a~ and cr~ ~ ~~ ). Further- 
more, the map 

~/~ ~ ~~ : ~ ~-~ an 

is injective. 

Proof  Let n ~ d ~  and a ~ Z~. Then 

L(a |  = LOz x "a,s) 

has all its poles on the line Re(s)= 0 and  a simple pole at s = 0 (cf. (15.5)).  
Therefore, by (15.4), a e f~~ 
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Let 0.1, 0"2 ~ z~: for rce d ~  Then al,  a2 e N~ and 

L(O'l| ) = L(n x ~,s) = L(trl |  ). 

Both L-functions, on the left and on the right, are of the form I IL(z ,  s). For the 
left L-function the product is over all unramified characters Z of finite order such 
that 0.2 -~ chX, and for the right L-function the product is over all X such that 
aa -~ aaX. The identity of L-functions implies that these two index sets coincide. 
Since the trivial character appears in the product on the right, it follows that 
0.1 = G2" 

To prove the injectivity of the constructed map from d ~  to ~r176 let n~, 
T~ 2 ~ d ~  and let 0. s I , ,  c~ I==. Then 

L(n l  x he,s)  = L(a@~r,s) = L(nl  x "nl,s). 

An identical argument to the one just employed shows that nl = ~2. [] 

The following theorem is the main result of this section. 

(15.7) Theorem. For each d > 1 there exists a bijective map 

~ ~  ~ ~r~ : n H 0.~ 

with the following properties. 
(i) For any n, n' e ~r176 

(ii) For any n e ~r176 

L(0.~| = L(n x n',s) 

a~ = ~ .  

Furthermore, this collection of  maps (for variable d) has the following properties. 
(iii) For any n e xl~ n' e d~  

L(a,|  s) = L(n x n', s) 

~(~|  O, s) = ~(~ x ~z', O, s) 

(iv) For any n e d ~  the determinant of  0., corresponds to the central character of  
n under local class field theory. 
(v) For any n e d ~  and any character Z o f  finite order o f F  • 

tT~)~ = ty~X 

(correspondence under local class f e l d  theory). 

(15.8) Remark.  The restriction we imposed on the central character (resp. the 
determinant character) is merely made to simplify our exposition and allows us to 
avoid the use of the Well group. Also, it is well-known [He 4] how to extend this 
map to include all irreducible admissible representations of GLd(F) on the one 
hand and all d-dimensional Frob-semisimple representations of the Deligne-Weil 
group on the other hand. As a matter of fact, we shall need some version of this 
extension below, cf. (15.18). We refer to the appendix by Henniart [He 5] for 
a proof of the fact that there is at most one collection of such maps. This appendix 
also contains a discussion of the influence of the choice of the isomorphism ~e ~ 
on this correspondence. 
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(15.9) We note that by Proposition 15.6 the map appearing in (15.7), if it exists, is 
automatically injective. Our next objective will be to use global methods to 
construct subsets S .  ~ c~e~ as in (15.6). We therefore return, for the global 
arguments, to the notation used elsewhere in this paper. We let F denote a global 
field and Xo a place of F such that Fx o is isomorphic to the local field under 
consideration. Let oo + Xo, x~ 4: Xo, oo 4: xx be two other places. Let D be a cen- 
tral division algebra of dimension d 2 over F with invariants 

! d  if x = Xo 

invx(D) = 1/d if x = xl 

otherwise. 

Let ~ be a sheaf of maximal orders of D over the smooth projective model X of 
F. The corresponding moduli scheme o~{(x, ~,,/7l over Spec (F) has good reduction 
outside I w  { oV,Xo,Xl} for every non-empty 1 c X\{  oe }. 

Let g be a fixed representative of the isomorphism class of a given element of 

d~ 

(15.10) Lemma. Let x2 be a place ofF with x2 ~ { oo ,xo, x~ }. There exists a cuspidal 
automorphic representation II ~ sI~p(GLa(F) F~ \ GLa(~)) such that 

H~ -~ Stoo 

H:, o ~ rr 

FI~, and FI,~ are supercuspidal admissible irreducible representations. 

Proof (el. [Ar-C1, (I.6.5)] for a closely related result in the number field case). Let 
x3 r { oo, Xo, x l, x2 } be another place of F. We wish to apply the Deligne-Kazhdan 
simple trace formula to a functionf = f~ f~o fx, f ~  f~  f . . . . . . . . . . . . .  ~ cr (GLa(~)). 
We takef~ = the weakly cuspidal Euler-Poincar~ function considered in Sect. 13. 
We fix supercuspidal irreducible representations n~o = n, 7r,,, n~ at the places x~, 
i =  0, 1, 2. We choose open compact subgroups K~, c GLd(F~) such that 
~?, 4: (0). Then by [Be-Ze 1 2.4.2], there exists a function f~ ~ cg~(GLa(F~,)) such 
that for the induced operator on any irreducible admissible representation n' of 
GLa(Fx,) 

n'(f*')={OX'(1K*') ifif z~'z~zr' ~- n~'~z~. 

In particular 

trn~,(f~,) = dimn~?, 4: 0. 

We recall briefly the construction of fx,. It is based on the two maps of 
GLa(Fx,) • GLa (Fx,)-modules 

End(V) ~ ~ ,~(GLd(F~,))  ~' ' ,End(V) ~176 

Here V denotes the representation space of n~, and the upper index oo are the 
smooth vectors and 

q~(A)(y) = tr(nx,(g-1)o A), A ~ End(V) ~~ 
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The composi t ion  ~x, o ~0 is a scalar c # 0. Then 

L, = c -1"  ~~ )) 

has the asserted properties.  F rom this expression we conclude that  

f~,(1) = c -1 "trn~.(1K~ ) -- c -1 �9 dim lrff~. # 0. 

This fixes the choice off~, for i =  0, 1, 2. F o r  f~  e cd2(GLd(Fx,)) we take 
a function with suppor t  contained in the regular elliptic set. Then for any 
f . . . . . . . . . . . . .  e cg~(GLa(~  . . . . . . . . . . . . .  )) we have the simple trace formula, as 
follows 

t r ( H ( f ) ,  d@~) 
H ~ a / ~ p ( G L a ( F ) F ~ \ G L a ( ~ - ) )  

7 e GL.(F)~ dz ~/I 
7 elhptm regular 

(cf. [De-Ka-Vi]  and [He 3]). 

It suffices to prove that  both  sides of this identity are non-zero. Indeed, any 
H on the left hand side with t r ( H ( f ) )  4= 0 will have, by the choice of the function 
f~,, i = 0, 1, 2, component  Hx, " ~x,. Fur thermore  H| ~ St~ by Theorem 13.2 since 
the other possibili ty for a uni tary r ep resen ta t ion , /7~  = trivial representation,  is 
excluded for a cuspidal  representat ion H. 

First step. For i=  O, 1, 2 there exists a non-empty open subset V~ of GLd(Fx,) 
consisting of regular elliptic elements and invariant under conjugation by GLd(Fx,), 

such that O~,( f~,, ff~gg~,) # O for all 7ie V~. 

Indeed, fix an elliptic maximal  torus T c GLa(Fx,) and denote by T '  the subset 
of regular  elements of T(F). Then there is the germ expansion (comp. [He 3, A.3]) 

O, f, ~ = Y~ Vo(t)" Oo( f ), t e T' 
o 

valid for all t e T '  close to 1. Here o ranges over the unipotent  orbits�9 Fur thermore ,  
there is the following homogenei ty  proper ty  for the germ Fo. If t = 1 + y e T '  is 
regular elliptic sufficiently close to 1, then [He 3, A.3.4] 

Fo(1 + ay) = ]a[-a(~ + y), aeCvx ' . 

Here d(o) denotes the dimension of the unipotent  orbit  o. Fur thermore ,  o = { 1 } 
�9 do is the unique orbit  with d(o) = 0. Therefore, if Ot(f~,, ~7) = 0 then F1 (t)f~,(1) = 0. 

However,  Ft(t) is constant  # 0 for all t sufficiently close to 1 ( [He  3, A.3]). On the 
other hand we know that  f~,(1) 4= 0, whence a contradict ion.  It follows that  there 
exists a ne ighbourhood U~ of 1 in T such that  for all t e T 'c~ U~ we have 

do Ot(f~,,~,) # O. However,  the map  

GLn(F~,) x T '  ~ GLa(F~,) 

(x, t) ~ x -  1. tx 
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is submersive and hence open [H-C] ,  therefore T '  c~ Ui generates by conjugat ion 
under  GLn(Fx,) an open subset V~ with the required properties.  

Second step. There exists an element 7 ~ GLd(F)  such that ? is regular elliptic in 
GLd(Fo~) and in GLd(Fx,)for i = 0, 1, 2, 3 and such that 

f d g ~ o \  ( d g x , )  o, . o  i : o ,  

Indeed, let Pi(T)~ Fx~[T] be the characterist ic po lynomia l  of an element 
7i e V~, i = 0, 1, 2. The fact that  71 is regular elliptic in GLn(Fx.) is equivalent to the 
fact that P~(T) is separable and irreducible. Let P ( T ) ~  F [ T ]  be a polynomial  
which is close to Pi(T) in Fx,[ T] ,  i = 0, 1, 2, and which is an Eisenstein polynomial  
in F ~  I T ]  and in F~3[T ]. Then any 7 e GLe(F)  with characterist ic polynomial  
P(T) will lie in Vii, i = 0, 1, 2 and also will be regular elliptic in GLd(F~)  and in 
GLd(Fx3). The assert ion about  the orbital  integral  o f f ~  follows therefore from 
Theorem 13.2 and the assertion about  the orbital  integrals off~,, i = 0, 1, 2 from the 
definition of V~. 

Third step. We may choose the functions f~ 3 and f ~176 . . . . . . . .  3 such that in the sum on 
the right hand side of the simple trace formula there is precisely one non-vanishing 
term. 

We choose a 7 ~ GLa(F)  as in the previous step. Let f~3 be the characterist ic 
function of an open compact  ne ighbourhood of 7 in the set of regular  elliptic 
elements of GLd(Fx3) and l e t f  . . . . . . . . . . . . .  be the characteristic function of an open 
compact  ne ighbourhood of ~ in GLa(& ~'~~ . . . . . . . .  3) which in all but  finitely many 
places is the canonical  maximal  compact  subgroup. Now the set of non-vanishing 
terms in the sum is finite and contains at least 7. By shrinking the suppor t  of f~  or 
f . . . . . . . . . . . .  ~ we can arrange that  the term corresponding to ? is the only one 
non-vanishing.  [] 

To pass from GLd to D • we quote from [He 1, A.4], the following result. 

(15.11) Lemma.  Let 17 be as in (15.10). Then there is one and up to isomorphism only 
one 11 ~ d(D•  ) such that 

Hy~- H~, y # xo,xl .  

Furthermore, the multiplicity m(Fl) in sC(D• \D~ ) is 1. 

(15.12) Theorem. Let H be a cuspidal representation in sC~,w(GLa(F ) F ~ \ G L a ( ~ ) )  
with H~ ~-Sto~ and which satisfies the conclusions of Lemma 15.11. There exists 
a semi-simple g-adic representation, unique up to isomorphism, 

Z: Gal(ff /F) ~ GLd (II~) 

such that 

(i) Z is unramified outside { oe, Xo, X~} u T where T = {x e IX[; 17~L,~e'~l = (0)} 
(note that x2 ~ T if H is as in (15.10)). 
(ii) For every r > O, 

tr(Frob'~;2;) = z~(Hx)" + ... + zd(1-lx)" 
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with 

I z~ ( /L ) l  = 1, j = 1 . . . . .  d 

for any x r { o0 ,Xo,Xl} ~ T. 

Proof. L e t / I  be the automorphic representation of D~ defined by Lemma 15.11. 
Since /7o~ ~- 11o~ - St~ we can take 2; = V~r ~1 ( ~ ) ,  cf. (14.12). The uniqueness 
follows from the Chebotarev density theorem. [] 

Remark. We note that by [Sh] the local components/Iy, y 4: Xo, xl are generic. We 
are therefore in the range of applicability of the remark after the statement of 
(14.12), which allows us to avoid in our proof of the local Langlands conjecture the 
use of the more subtle arguments needed for establishing (14.12). 

(15.13) Proposition. Let ~ ~ ,~~ ) and denote by 11(7~) the set of cuspidal auto- 
morphic representations 11 ~ dcusp(GLa(F)F~\GLd(~k)) such that there exists 
x2 r { ~ , Xo, xl } for which 11 satisfies the conditions of Lemma 15.10. For 11 ~ 11(n) 
denote by 2;(11) the d-dimensional (-adic representation associated to 11 by Theorem 
15.12. For a place x, denote by S(11)x the restriction of 2;(11) to the decomposition 
group at x. 
(i) The determinant character of 2;(Fl) is of finite order, and corresponds via global 
class field theory to the central character of 17. 
(ii) If11 E 11(n), then FI~ II(~) and S(II) = S(11). 
(iii) I f  11~11(n) and X is a character of F• • then 11"zelI(nZxo) and 
Z(11"Z) = Z(H)x (correspondence via global class field theory). 
(iv) Let n �9 ~~ ), n' ~ ~r176 o(d') and 1I ~ 11(n), 1I' E H(n'). Then we have 

L ( n  x 7~', s) = L ( 2 ; ( r / ) x o |  ~ ( 1 7 ' ) ~  o, s)  

~(~ x ~', ~ o ,  s) = ~(~(11)~o| 4'xo, s), 

for any non-trivial additive character ~xo of F~o. 

Proof. Part (i) The second statement implies the first. To prove the second state- 
ment it suffices by the Chebotarev density theorem to prove the desired equality 
locally at almost all places of F. However at an unramified place x (i.e. in the 
notation of theorem 15.12 x r { m, Xo, xl} w T) the central character of 11 is given 
by 

d 

OO.x(~) = 1-[ z~(n~) 
j = l  

(here mx denotes a uniformizer at x) and the determinant character of ,r( / /)  at x is 
given by (15.12) (ii), as 

d 

det ~(//)(Frob~) = l--I zj(11~). 
j = l  

Parts (ii) and (iii) Just as for assertion (i) it suffices to prove these statements locally 
at the unramified places where they again follow from (15.12) (ii). 

Part (iv) By (15.12) (ii) for every place x r  { ~,Xo,  xa} where 11 and 11' are 
unramified we have 

L(rl~,  s) = L(Z(11)~, s) 

L(II ' ,  s) = L(,~(/7')x, s). 
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Therefore, by [He 1, 4.1] we obtain for any non-trivial additive character Oxo of 
f x o , 

e(11~ox11"o, Oxo, S ) L(HxoX11"o, l - s )  
r L(/7xo x Hxo, s) 

t ~ v !  

= ~(zC11)xo| )xo, ~.~o, s ) . L ( Z ( n ) ~ o |  )xo, t - s )  

L(Z(H)~o| s) 

Here we make use of the fact that for the E-adic representations Z(11) and 2(/7') 
a local theory of e-factors exists [De 1], so that the proof of loc. cit. goes through 
(compare Remark 1 immediately following 4,1 in loc. cit.). We wish to apply 
Lemma 4.4 of loc. cit. through Proposition 4.5 of loc, cit. to deduce the assertion 
(iv). We have to show (considering the L-functions as inverse polynomials in an 
indeterminate T) that L(Hxo x 1I"o, T) and L(/lxo x/1~o, q-1 T-1)  have no com- 

' L(Z(/7)xo| FI )xo, mon pole and similarly for L(Z(11)xo| )xo, T) and v ~, 
q -  1 T -  1). For  the first pair this follows from loc. cit. 4.5(ii) since the representations 
7z -  11xo, n ' ~  17"o are supercuspidal. Here we used the notation L(11:,, T ) =  
Lx(II, T dr176176 (cf. Sect. 14) and similarly for the L-functions of pairs. Put 
S, = Z(FI)| Then Z is a dd'-dimensional ~-adic representation of Gal(F/F) 
unramified outside a finite set S of places of F and for y ~ S the restriction Zy to the 
decomposition group at y is an unramified representation pure of weight 0 (all 
eigenvalues of Frobr have complex absolute value 1). But then by [De 2, (1.8.1)] (a 
form of the "purity of the monodromy filtration") we conclude that all eigenvalues 
of Frob~ o operating on the invariants under the inertia subgroup at Xo have 
absolute values < 1. It follows that all poles of the L-function L(S~o, T) have 
absolute value > 1. For the same reason all poles of the L-function 
L(Z:xo, q-~T-~)  have absolute value =< q~-o ~. Therefore common poles cannot 
occur. [] 

(15.14) Corollary. Let n ~ d~ and define Z~ c (gF~o(d) by 

z~  = {z(U)~o ; 11~11(~)} . 

Then Z~ satisfies the conditions (i) and (ii) of Proposition 15.6, and hence consists of 
one element ~r~f~~ The map ~ ~-~ r is injective and has all properties (i)-(v) of 
Theorem 15.7. 

(15.15) To finish the proof of Theorem 15.7 it remains to prove the surjectivity of 
the constructed map. Since our proof of this will be purely local we switch back to 
the notation used in the beginning of this section (hence F is again a local field etc.). 
We are going to reproduce the relevant parts of Henniart's proof of the numerical 
Langlands conjecture [He 2]. (This method, introduced by J. Tunnel and by 
H. Koch, partitions the source and the target of the map in question into finite 
subsets which are mapped into each other and consists in showing that corres- 
ponding finite subsets have the same number of elements.) 

(15.16) We recall that to a representation ~r~ffF(d ) there is associated its Artin 
exponent a(tr) > 0 and its Swan conductor. 

sw (a) = a(tr) -- (dim r - dim a1"). 
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(Here IF denotes the inertia subgroup.) There is a close relation to the e-factor. Fix 
an additive character of conductor 0. Then (comp. [Ta (3.4.6)]), 

e ( f f , ~ , S ) = C ' q  -a(~r)s, C ~  • . 

If X is an unramified character, sw(px) = sw(p). We are also going to use the 
formula 

sw(Sp,(1)|  = n ' s w ( p ' ) ,  p ' e ~ ~  

There is an analogous theory for irreducible admissible representations n of 
GLd(F). Again for $ of conductor 0, write 

e(rc, ~b,s) = c .q  -a<~)', c ~ r  • . 

Then a(n)~TZ, __> 0 and depends on ~ alone [Ja-Sh 1], and is called the Artin 
exponent of n. Put again 

sw(n) = a(n) - (d - degT(L(n, T)-1)) . 

There is a compatibility with the formation of the generalized Steinberg module 

sw(St,(p')) = n ' s w ( p ' ) ,  p ' ~ d ~  

Again for an unramified character Z we have sw(nx) = sw(n). Furthermore, if 
n is square-integrable (more generally, if n is generic), then a(n) < j for some integer 
j => 0 if and only if n has a non-zero invariant vector under a certain open compact 
subgroup Kj c GLd(F), [Ja-Sh 1, (5.1)] (Kj = congruence subgroup modulo t~ j of 
the standard "mirahoric" subgroup). 

Let D be a central division algebra of dimension d 2 over F with invariant 1/d. 
Let p be an irreducible admissible representation of D • There is again an e-factor 
e(p, ~b, s) associated to p[Go-Ja]  and an Artin exponent a(p) and a Swan conduc- 
tor sw(p) as before. Let j > d - 1. Then a(p) < j  if and only if Pl 1 + pJo -~d-x) is 
trivial (as usual 1 + po := ~ • .). Here PD denotes the maximal ideal in the maximal 
order ~ of D. 

Since we have established compatibility of the constructed map d ~ ~ fee ~ (d) 
with twisting by characters and with e-factors (even e-factors of pairs) the following 
theorem may be applied to finish the proof of Theorem 15.7. 

(15.17) Theorem (Henniart [He 2, 1.2]). Every injective map 

d ~  -~ ~r176 (d) 

which preserves conductors and is compatible with twistin9 by unramified characters 
of finite order is bijective. 

For the convenience of the reader, we are going to reproduce the combinatorial 
part of Henniart 's proof reducing this theorem to its key points. The proof will be 
based on Propositions 15.18 and 15.20 below. We introduce the following nota- 
tions. Let I r  c Gal(ff/F) be the inertia subgroup and let Frob  E GaI(F/F)  be a fixed 
representative of the geometric Frobenius so that 

Gal (F/F) = IF >~ Frob ~ �9 

For  an integerj  > 1 we let ~ ] ( d )  / c ffF(d) be the subset of isomorphism classes 
of indecomposable Frob-semisimple d-dimensional ~-adic representations a with 
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det a(Frob) = 1 and sw(a) < j. (Note that the condition det a(Frob) = 1 auto- 
matically implies that de t a  is of finite order.) We also put c~~ 
fr~ c~ f#~(d) ~ = the set of isomorphism classes of irreducibles in f#~(d) j. 

Similarly, we introduce the set ~ ( d )  j of isomorphism classes of square- 
integrable irreducible admissible representations n of GLd(F) with ~ ( m )  = 1 and 
with sw(n)<=j. (Here co. denotes the central character of n.) We put also 
A ~  j = d~  ~ ~ ( d y .  

Finally, let ~F(d) j be the set of isomorphism classes of irreducible admissible 
representations p of D ~ with op(tn) = 1 and with sw(p) ~ j .  Here D denotes the 
central division algebra of dimension d 2 over F with invariant lid. 

(15.18) Proposition. The sets ~7~ j, ~72(d)J and ~F(d) j are finite. For their car- 
dinality there is the formula 

z .  o 
d'jd ~ [ d F ( d  ) I =  I,J~(dYl = L~F(d)Jl = ~ ~ . ( q S _  . 

Here # denotes the M6bius function. 

Proof. The fact that ~F(d) j is finite is easy to see (for any open compact normal 
subgroup K of D • the factor group D •  is finite) and the formula for its 
cardinality is due to Koch [Ko].  In fact, Koch showed the above formula for the 
cardinality of ~e(d)  j for any local field F of arbitrary characteristic equipped with 
a uniformizer m. 

We use the Bernstein-Zelevinsky classification which sets up a bijection be- 
tween the set of isomorphism classes of square-integrable irreducible representa- 
tions of GLa(F) with central character of finite order and the set ILia, a sdF~ , given 
by p ~ Sta/a,(p'). Since the central character of the Steinberg module St ,(p ' )  is 
o~, and by the compatibility of the formation of the Steinberg module with the 
Swan conductor, cf. (15.16), we obtain a surjection 

~~ x {Z: Gal(F/F)/IF ~ Q{ ; Z n = 1} ~ ~TF2(d)~ 

(P', Z) w-~ Sta/a,(p')" Z �9 

Furthermore, two elements (p~, X~) and (p~, X2) of the left hand side have the 
same image if and only if d] = d~ and p~ = p] Z1-~ ;~2. It follows that 

d ~' 
1~ff2(dYl = ~ d- I~~ I ' 

d'la 

Let now F '  be a local field of characteristic zero, with the same residue field as 
F, and equipped with a uniformizer ~' .  Then, if the valuation of the prime number 
p in F '  is sufficiently large, there is a bijection 

(cf. [He 2, (2.7)]; this is based on the idea of Kazhdan of comparing representations 
of groups over close local fields and on the determination of certain Hecke algebras 
by Howe). By the local Jacquet-Langlands correspondence [De-Ka-Vi, Ro], pro- 
ved for any local field of characteristic zero, there is a bijection 

~2,(d)J ,~ ~F,(d)J . 
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Taking into account the remark made previously that I~v(d)J[ = I~v,(d)~[ the 
result follows. [] 

(15.19) Remark.  If the Jacquet-Langlands correspondence were proved in char- 
acteristic p the recourse to characteristic zero could be avoided and our proof of the 
local Langlands correspondence would proceed purely in characteristic p. This is in 
contrast to Henniart's proof of the numerical Langlands conjecture where the cases 
of characteristic p and characteristic zero are intricately intertwined. 

(15.20) Proposition. The sets (Sv2(d) j, (~~ are finite. For their cardinalities there is 
the formula 

d - , Jd" d ( t ~  �9 c'e~ ~[~] 1)" qSiJ/,l Z ~7 --e, , = l ~ 2 ( d ) J f = Z z ~ ' E #  - "(q~- - 
d'[d rid t sit \ S J  

Proof  The restrictions of all elements a of f~(d)  ~ to a certain ramification group 
are trivial. Since det a(Frob) = 1 the finiteness assertions follow easily. The first 
identity is proved just as the corresponding identity in Proposition 15.18. replacing 
in its proof the Steinberg module St,(p') by the special representation Sp,(1)| 

We introduce the notation 

~v~ s) j = {a t  ~'v~ a[ le  has precisely s irreducible components) . 

Note that by Frobenius reciprocity the s irreducible components of a [ l r  have 
the same dimension d/s. Then 

~~ j = LI (~~ d, s)~ . 
sld 

Let Fs be the unique unramified extension of degree s of F in the fixed algebraic 
closure of F. Let 

ts: Gal(ff/F~)~ Gal(F/Fs): 9 v-~ Frob-1 9 Frob .  

Note that (~)~ is an inner automorphism. 
We introduce, for each integer t >_- 1 dividing s, 

~7~ (d, 1), j = {a ~ ' ~  (d, 1)J; ao ~t ~ a and t is minimal among integers > 1 with this 
property} . 

Therefore 

~~ 1)~ = LI ~r176 1 ) i  
tls 

(15.21) Lemma. For every sial we have 

I~r~ s) i1= ! ~~ 1)t//'1 

and hence 

Proof. We have a surjective map 

f#~ ( ! ,  1 )t J/~1 - ,  .~~ (d, s) ' 

a '  ~ IndWs(a') . 
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The fibre of this map through tr' is equal to 

{~', ~'o~ . . . . . .  o 'o0s )  ~-1 } 

and hence has always s elements. For  all these assertions one uses Frobenius 
reciprocity for GaI(F/F) = Gal(f/Fn) >~ 7Z/d7l. Details are left to the reader. [] 

(15.22) Lemma. For t lsld we have 

I c~~ 1)ll = I f~r~ 1)ll .  

Proof. Define f~~ just as fC~(d, 1)/, except that the condition on 
det(Frob')  = 1, is changed into 

det(Frob')~# = 1 . 

Then there is a surjection 

~~ 1)i ~ ~~ 1)t j 

a ~-~ ~r [ Gal(f /Fs)  

(the irreducibility of a[ Gal(f /Fs)  follows from the irreducibility of ~ [ 1V, = ~ [ 1V~). 
Furthermore, the elements of the fibre of this map through ~ correspond in 
a one-to-one way to the intertwining maps 

B: tr'o (ts)' --- rr' 

with given (s/t)-th power 

B*/'= rr'(FrobS): tr'o (ls)s = tr ' .  

Here tr' = trlGal(ff/F~). (B = image of Frob'). It follows that 

I c~~ 1)11 = ~ ' 1  ~r 1)11 I 

On the other hand, it is easy to see that 

S 
I ~ ( d ,  1)11 = 71 ~~ 1)11. 

The lemma is proved. [] 

End of the proof of Proposition 15.20 We obtain from Lemma 15.22 and the 
decomposition of c~~ (d, 1) j preceding Lemma 15.21 for any d", any j"  and any s 

IC~~ ", 1)J"l = ~ I ~ ( d " ,  1)i"1 �9 
tls 

Applying the M6bius inversion formula we obtain 

I fg),(d , 1)1"1 = ~ t  �9 I c~~ l)i'" [, 

for any d", any j" and any t. 
Plugging this into Lemma 15.21 we get for any d' and any j '  

Ifg~ = 2 2 / ~  " f~v ~ 1 . 
rid' 
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By the first identity of Proposition 15.20 (which is already proved) we obtain 

=~"d~,~d s " ~ "l{r176 

(d' = d'/t). 

Hereweused the fac t tha t fo rx6 lR ,  x > O a n d t ~ 7 I ,  t>= 1 , [ t ] - - - - [~ -~  1. 

Now we use the main theorem of [He 2, 1.3] which yields 

d~ 1 -Od ' 1c5# ( , 1)1~:31 = (q -- 1)" qJ. 

(The proof of this formula uses the geometric Fourier transform [Lau 1]; to deduce 
the above formula from the one of loc. cit. note that the expression appearing in 
loc. tit. 

I ~F\~~176 k)l 

kd 5 d'j 

1 
is, in our notation, equal to d-- ] ~~ 1)[J-5~'] [' cf. [He 2, 2.2(c)].) 

Applying this identity to Fs instead of F and d/t instead of d and [j/t] instead of 
j and inserting the resulting expression in the sum above we obtain the desired 
formula. [] 

Proof of  theorem 15.17 From Propositions 15.18 and 15.20 we deduce that 

Let Xv be the set of unramified characters of finite order, either of the multiplicative 
group F • or of the Galois group Gal(F/F). Let ~~ resp. d ~  ~ be the set of 
elements in ff~ and d ~  with Swan conductor < j. Then Xv acts on (r176 
and sl~ j. There is a surjective map 

affv~ x XF ~ (~~ (a, Z) ~ aX 

and the elements in the fibre through an element a e (~v~ j are parametrized by the 
factor group 

{ x ~ x ~ ;  z d = 1 } / { z ~ x ~ ;  ~x = ~} .  

It follows that the quotient XF\~v~ j is finite. The same holds for ~v~ j instead 
of ~~ However, we have, by the hypotheses of (15.17), inclusions 

~~ = ~~ X F \ ~ ~  ~ = XF\~~  j . 

and the number of elements in the inverse image under the above map of an 
element of Xe\M~ j and of the corresponding element of Xv\(~~ j is the same. 
Therefore we deduce from the equality of the two sums above that there has to be 
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termwise equality, yielding 

XF\~C~ = XF\(c~ 

Since any element of (C~ lies in (c~ for some j the surjectivity of the map 
~v~ ~ ~~ follows. [] 

16 Further remarks on the global Galois representations 

In this section we give some complements on the global Galois representations 
V~L 1 associated to an automorphic representation/7 of • z D~/m~ with H~ -~ Sty, 
cf. (14.12). Note that, by definition, Vn~ ~ is a semi-simple (-adic representation of 
Gal(F/F). The arguments will all be based on the fact that the Frob~o-semisimplifi- 
cation of the restriction of Vn~ 1 to Gal(ffo~/F~) is isomorphic to cr~ re(n), where 
a~ is, up to a Tate twist, the special representation of dimension d, 
cf. (14.12)(iii). Throughout this section a representation/7 as above is fixed. 

(16.1) Proposition. Assume that m(/7) = 1. Then V ~  1 is an irreducible representa- 
tion of Gal(ff /F). 

Proof. Since the special representation is indecomposable the hypothesis implies 
that the Frobo~-semisimplification of the restriction of Vf~ ~ to Gal(F~/Fo~) is 
indecomposable. But then the same is true of the restriction of Vna?~ ~ to Gal(Fo~/Fo~) 
and therefore the semi-simplicity of Vnd~ 1 as Gal(F/F)-module implies the 
result. [] 

We note that we have encountered in (15.11) representations /7 satisfying the 
hypothesis of the previous proposition. Also, for d = 2 and d = 3 the hypothesis is 
automatically satisfied [Ja-Pi-Sh 1]. 

(16.2) Proposition. Let E/F be a finite extension contained in the fixed algebraic 
closure ff of F. Assume d > 2. Then for all i 

(Vnd; 1 (i))Gal (V/e) = (0) 

(Galois invariants). 

Proof We argue by contradiction. If (V~u176 O, then there exists an 
injective Gal(_P/E)-module homomorphism 

a),( - i )~ v~ I 

whose image is a direct summand (semi-simplicity). Let Eoo be the completion of 
E in a place dividing c~ e IF]. But the Frob~-semisimplification of the restriction 
of V~ I to Gal(ff/E~) is, up to a Tate twist, a power of the special representation 
Spa(1). (The restriction of the special representation of Gal(Foo/F~) to GaI(F~/E~) 
is the special representation of Gal(Foo/Eo~).) It follows easily that the 
Frob~o-semisimplication of the restriction of VndS~ ~ to Gal(ffoo/Eoo) cannot contain 
a direct summand of dimension one and therefore the same is true of the restriction 
of V~ 1 to  Gal(ff~/E~) itself. This contradiction proves the claim. [] 

We note that it is not difficult to deduce from the previous proposition and 
standard facts on poles of L-functions the Tate conjectures on algebraic cycles of 
arbitrary codimension over F on 8dgx, 9, r/Z. 
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(16.3) Let S be a finite set of places of F containing Bad and all the places x q~ Bad 
such that 11~ is ramified (in particular, ov ~S). Then, for each xr  the local 
L-factor 

n 1 
L(11x x flx, T) = 1~ 1 -- zi(11x)Zj(11x)- 1Tdeg(x) 

i , j=  l 

is well-defined and we can form the partial L-function 

LS(11 • B, 7") = 1-[ L(11x • V).  
xr  

Since 

Iz,(r/x)l = 1, i =  1 . . . . .  d ,  

for all x ~ S (of. (14.12) (ii)), this product is absolutely convergent for I TI < q-1 (we 
have 

I{xr deg(x) = n}[ = O(qn)). 

The following lemma must be well known to the specialists. 

(16.4) Lemma. The holomorphic function Ls(11x(1, T) on the disk { T ~ ;  
L TL < q-1} has a meromorphic extension to the whole complex plane. 

Proof Let G = GLz(D) and let P -- M N  its obvious standard parabolic subgroup 
(M ~ D • •  ~ and N-~ D). Then 17@11 is a "cuspidal" representation of 
M(~)  -~ D2 x D~. Let ~o~: M(~)  -* C • be the quasieharacter defined by 

oJ~(gl, gz) = Irn(gl)/rn(g2)15 , 

for each s e ~. We consider the Eisenstein series which are parabolically induced 
from (11@17)co s and let M(s, 11@1I) be the corresponding global intertwining 
operator which is a priori only defined for Re(s) >> 0. For  each place x of F, we have 
a corresponding local intertwining operator 

M(s,/Ix • 11~): Ind~r174 
G(Fx) 

a priori defined for Re(s) ,> 0. If x~.S, the above induced representation is un- 
ramified. Let ffl  be its unique GL2a((gx)-fixed vector, up to a scalar 
(GL2(Dx)-~ GLza(Fx)). A standard computation [La] shows that 

L(11~ x [I~, q2 ~) .f 
M ( s ' H x • 1 7 6  - - - ~ - r  f 

L(11x x fI~, q2 r ~)) 

(comp. [Mo-Wa, I.l]).  It  follows that, for any 

in the global induced representation 

Ind~{2] ((11| 
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Ls,nx qs,  
M ( s ' H x H ) ( f ) = L S ( H x f i ,  q-( l+sl) \  l-I x f o  . 

Then, the lemma follows from two fundamental results: 

(1) the local intertwining operators M(s, I1 x x Fix) have a meromorphic continua- 
tion to the whole complex plane (comp. [Sha, Corollary to Theorem 2.2.2]). 
(2) the global intertwining operator M(s, H x II) has a meromorphic continuation 
to the whole complex plane and satisfies the functional equation 

M ( -  s, H x H ) o  M(s, H x I I )  = id,  

(cf. [Mo]). [] 

(16.5) Proposition. There exists an irreducible ~-adic representation ~(II), unique up 
to isomorphism, with 

v~ 1 (~) = z(u) ~- ~(U) "~"~ . 

Moreover, T,(H) has the following properties: 
(i) for any place o ~ S, T,(II) is an unramified representation of Gal(ff o/Fo) with 

tr(Frob~; ~(//)) = zl(IIo)" + ... + za(Ilo)', Vr ; 

(ii) the restriction of T,(II) to Gal(/7oo/F~) is isomorphic to the special representation 
Spa(l). 

Proof. Let 

X(H)= @ Vii *m~, mi > O , 
i = 1  

be the decomposition of 22(H) into irreducibles, where V~ are pairwise non-isomor- 
phic irreducible E-adic representations of Gal(ff/F). Since the Frob~-semisimplica- 
tion of the restriction of Z(//) to Gal(ff~/F~o) is a power of the special representation 
Spd(1), the same is true for each V/, i = 1 . . . . .  s (Spa(1) is indecomposable), i.e. 

V~] Gal(ff~/F~) ~- Spd(1)n' 

for n~ > 0, i = 1 , . . . ,  s. Counting dimensions, we get the relation 

i min~ = m(lI ) .  
i = 1  

On the other hand, we have 

L(Z(tI)~,| T) = L(Hx x fix, T) "m)2 

for all x r  (cf. (14.12) (ii)), so that we get the equality of partial L-functions 

Ls(z(n)| T) = LS(H x f i ,  T) "(n)~. 

Therefore it follows from Lemma 16.4 that 

(I  L~(V,| ~, r)-,-~ = cs(z(n)| r)  
i , j = l  
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has a pole of order divisible by m(/7) 2 at T = q-  1 But, each V~ defines a smooth 
f-adic sheaf ~ o n  X \ S ,  pure of weight 0 (cf. (14.12) (ii)) and, for each i , j  = 1 . . . . .  s, 
we have (cf. [De 2, (1.4) and (3.3.4)]) 

with 

Ls(v~| ~ ,  T) = 
det(1 - T Frob; H))  
det(1 - TFrob; H 2) 

H) = I#( (x \ s ) |  ~-,| 
mixed of weights < 1 and 

H 2 = H f ( ( x \ s ) |  ~ |  

= Homaal(~/v.v,)(Vi, Vj)V( - 1). 

Therefore, the order of the pole at T =  q-* of Ls (v~ |  T) is equal to the 
multiplicity of the eigenvalue 1 for Frob acting on 

HOmGal(,~/v.~: )( V/, Vj), 

i.e. to 1 if i =  j and 0 otherwise (recall that the irreducibles V~ are pairwise 
non-isomorphic). Then, we have proved that m(//) 2 divides 

j=l  i , j= l  

and this implies that s = 1, nl = 1 and ml = m(FI). Putting 

~(U) = 1/1 

it follows that E(/7) satisfies all the requirements of the proposition. The unique- 
ness assertion follows from the Chebotarev density theorem. [] 

Remark. We let the reader check that a stronger form of the Lemma 16.4 (including 
the definition of L(FI x H',  s) and its functional equation for /7 , /7 '  automorphic 
representations of D~,/F~) would imply that, for each Xo q} { oo} ~o Bad such that 
Flxo is supercuspidal, the restriction of 3(/-/) to Gal(f~o/Fxo) is isomorphic to 
an~o (use the techniques of Sect. 15). 

A ~-spaces and Dieudonn6 Fx-modules (following Drinfeld) 

The definitions and the results of this appendix are taken from [Dr 7]. Let F be 
a function field with field of constants Fq. Let k be an algebraic closure of the field 
F~ and let us denote by frobq the arithmetic Frobenius element in Gal(k/lFq). For 
each positive integer n, k contains a unique subfield lFq, with q" elements (the fixed 
field of frob~ in k). 

(A.1) Definition. A q>spaee (over k) is a finite-dimensional F| space 
which is endowed with a bijective F |  frobq-semilinear map q~: V ~  V. A mor- 

phism a between two tp-spaees (I/1, tp 1 ) and ( I/"2, ~02) is a F | Fq k-linear map V1 ~ V2 
such that ~oz oa = ~otpl. 



328 G. Laumon et al. 

Obviously, the (p-spaces and their morphisms form a category which is F-linear, 
abelian, noetherian and artinian. 

(A.2) Definition. A (p-pair is a pair (F,/7) where /7 is a commutative finite- 
dimensional F-algebra and where~/7~ ~ F • |  satisfies the following property: for 
any proper F-subalgebra F '  of F, 11 does not belong to F '• @Q c F • |  

(A.3) Lemma. I f (F,  171) is a (p-pair and if  N is any non zero integer such that IT N ~ if• 
(more correctly, 1T N belongs to the image of~7 • in/Tx |  then/7 = F[/~N]. 

Proof  Let F '  = F[/T N] c /7 ,  t h e n / T ~ F ' •  |  Therefore F '  =/7.  [] 

(A.4)  To each non zero (p-space (V, (p) Drinfeld associates a (p-pair (F~v, ~), 11~v,~)) 
in the following way. 

Any (p-space (V, (p) (over k) is defined over lFq, for n divisible enough. So, we can 
choose a positive integer n', a finite-dimensional F| space V', a bijec- 
tive F| frob~-semilinear map (p': V ' -~  V' and an isomorphism of (p-spaces 

(V, (p) - (V', (p')| �9 

Then (p'"': V' --* V' is a bijective F |  IFq,,-linear map and the F-subalgebra 

F[ (p ' " ' ]  c Endv|162 (V') 

is a commutative finite-dimensional F-algebra. If H ' :  V ~  V is the FQF,  k-linear 
extension of (p' "'(/7' = (p '" ' |  r,. k), the F-subalgebra 

F' = F [ H ' ]  c Ende| 

is isomorphic to F[-(p'"'] and therefore is also a commutative finite-dimensional 
F-algebra. Moreover, H '  commutes with (p, so 

F '  c End(V, (p) c Endv| ) 

(ring of endomorphisms in the category of (p-spaces.) 
V t p  rr Now, if(n", V", (p', (V, (p) -~ ( , (P)| k) is another choice, there exists some 

positive integer m such that H ..... = H ""'m. Therefore, the F-algebra 

/7= N F[ n'N] 
N~_I 

is independent of the choices ofn ' ,  V', (p' and (V, (p) ~ (V', ~0')| F,. k. As/7 = F ' , /7  
is also a commutative finite-dimensional F-algebra and there exists a positive 
integer N such that /7 = F[11m]. Let us choose one such N. As /-/,N: V--* V is 
bijective, 11,N~/7• and we can set 

r7  = • |  

Again it is easy to see t h a t / 1  is independent of the choices. 
~ ~ 

The pair (F, 11) is clearly a (p-pair. We set (F(v,r 11(v,~)) = (F, 11). 
By definition, F(v,~) is a F-subalgebra of the center of End(V, (p) (F[(p'" ']  is 

contained in the center of End(V',  (p') = Endr| (V')). 
Drinfeld uses the construction (A.4) to prove that the category of (p-spaces is 

semi-simple and to classify its simple objects, 

(A.5) Lemma. If(~7, 11) is a (p-pair,/7 is an ~tale F-algebra, i.e. is a product o f  finitely 
many separable f n i t e  field extensions of  F. 
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Proof. It suffices to check that F = F[/~P]. But, if we set F ' =  F[/TP], F '  is 
a F-subalgebra of F , / ~ P ~ F  '• |  a n d / 7 ~ F  '• |  Therefore, F '  =/7.  [] 

(A.6) Theorem. (i) The abelian category of  q~-spaces (over k) is semi-simple. 
(ii) The map (V, q~) ~ (F(v,~), II(v,e)) induces a bijection between the set of  isomor- 
phism classes of  irreducible q~-spaces and the set o f  isomorphism classes of  q~-pairs 
(_F, 1]) where .~ is afield. 
(iii) l f  F is a finite field extension o f f  and if f f l e F • 1 7 4  let us denote by d(ffl) the 
common denominator of  the rational numbers deg(~)2(/7) where Yc runs through the 
set o f  places of  _F and where deg(Y) is the degree of  the residue field of  Y~ over ~q. Then, 
for any irreducible q~-space (V, q~), we have 

dime| ~, k ( V )  = [F(v, ~) : F ] d (H(v, ~)) 

and End(V, q~) is a central division algebra over Fr of  dimension d(Htv,~)) 2 with 
invariant 

inv.(End(V, q~)) -= - deg(~)~(H(v,~)) (modulo 7z) 

at each place ~ of  Ftv, ~). 

Proof. Let us begin with two remarks. 
If (V, q~) is a non zero cp-space, any non trivial idempotent of Fry, ~) is also a non 

trivial central idempotent of End(V, q~). Therefore, if (V, q)) is indecomposable, 
F(v, ~) is a field. Let 

o ~ (v , ,  ~ol) ~ (v, ~o)~ (v2, ~02) ~ 0 

be a short exact sequence of non zero tp-spaces. We can find a positive integer n' 
such that this exact sequence is defined over IFq,,. Moreover, if 

0 ~ (Vl, q,'~) ~ (V', ~0')~ (V~, r  

is an lFq,,-structure for the above exact sequence we can assume that 

(F(v, ~), Fl(v, 9)) = (F [ / - / ' ] , / / '  1/,') 

and 

(F(v, ~,), H(v,,,,)) = (F[HI] ,  HI 1/,') 

where / / ' =  ~0'n' | k and H[ = q~'i"QF,.k ( i =  1,2). It follows that we have 
a surjective homomorphism of F-algebras Ftv ' ~ ) ~  Ftv,, ~,) which maps l l tv  ' ~) into 
Fl(v,. ~,) (II; is induced by H' )  (i = 1, 2). In particular, if Ftv ' ~) is a field, the ~o-pair 
(F(v,.,,), Htv,,~, )) is canonically isomorphic to the ~0-pair (F~v,,), Htv,~))(i = t, 2). 

Now, let (/~,/7) be a ~o-pair such that F is a field and let g be the following full 
subcategory of the category of q~-spaces: the objects of g are  the ~o-spaces (V, q~) 
such that either V = 0 or (F(v,,), Htv,~)) is isomorphic to (F, / / ) .  Thanks to the 
above two remarks, to prove the theorem it suffices to prove that, for any ~o-pair as 
before, g has the following properties: 

(1) any indecomposable object of g is an irreducible object of g, 
(2) there is one and only one isomorphism class of irreducible objects in g,  
(3) if (V, q0 is an irreducible object of g, the dimension of V and End(V, q~) satisfy 
the requirements of the theorem. 
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To prove these properties of ~, Drinfeld gives a new descriptionof 8. Let I be 
the set of pairs (n',II'), where n' is a positive integer and H ' ~ F  • such that 
H '@I  = / I " '  in/7• |  On I we have the partial order which is defined by 

(n'~, rt~) __< (n~, r/~) 

if and only if n~ divides n~ and/ /~  = H'~ "~/"i. 
If (n'x, H~), (n~,//~)e I, then there exists (n ' , / / ' )e  I such that 

(n', H')  > (n~, H~) 

for i =  1, 2. For each (n', 17')~ I, let g~,, n') be the category of finite-dimensional 
F| spaces V', which are endowed with a bijective F| f rob :  
semilinear map r V' --%V', such that either V' = 0 or the pair (F[~0'"'], qr is 
isomorphic to the pair (F, H'). If (n'l, HI) < (n~, H~), we have a functor 

and we get in this way a direct system of categories. The functors 

g(,,,n,)-~ g, (V', ~p') ~---~ (V', ~o')| 

((n', H')  ~ 1) induce an equivalence of categories 

lim 8~. , ,  n ' ) - ~ g  - 
I 

But, for each (n',/7') ~ I, 8~,,, n')is equivalent to the category of left modules of finite 
type over the ring 

RI.,,. ,~ = (/7| [ ~ ] ) / ( 0  |  ~ -- ( n ' |  1)) 

(Fq,, [z] is the non-commutative polynomial ring over IFq., in the variable r with 
commutation rule z- 2 = 2 q" ~ if 2 e lFq.,). The ring R(,,, n,) is clearly a central simple 
algebra of dimension n '2 over/7 with invariant 

deg(#):~(H') = _ deg(#)~7(/7) (modulo 7/) inv.(R(.,, n')) -- n' 

at each place ~ of 17. Therefore, the category g(.,, n,) is semi-simple, has only one 
irreducible object (V', tp') up to isomorphism and End(V', q~') is a central division 
algebra over ff with invariant 

inv~(End(V', q~')) = - deg(~)~(H) (modulo 7Z) 

at each place 2 of F. Moreover 

dim~(V') = n'(dim~(End(V', qr 

i.e. 

and 

dim.~(V') = n'd(II) 

V t ~ dimr| F~.,( ) I F :  F]d(f f )  

The theorem follows. [] 
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B Dieudonn6 F~-modules (following Drinfeld) 

The definition and the results of this appendix are taken from [Dr 7]. Let F and 
k be as in Appendix A. Let x be a place ofF.  We denote by F~ the completion o f F  at 
x, by (9~ the ring of integers of Fx, by ~(x) the residue field of (9 x and by deg(x) the 
degree of ~c(x) over lFq. 

(B.1) Definition. A Dieudonn~ Fx-module (over k) is a F~@~ k-module N of finite 
type which is equipped with a bijective GQFq  frobq-semilinear map q~: N ~ N. 
A morphism o: between two Dieudonn6 F~-modules (N1, t~l) and (N2, ~/12) is a F ~ F ~  k- 
linear map N1 ~-+N2 such that ~ / 2 ~  ~ G(~ . 

Obviously, the Dieudonn6 F~-modules and their morphisms form a category 
which is Fx-linear, abelian, noetherian and artinian. 

We have an exact and F-linear functor 

(V, ~p) ~ (V,, q~x) = (Fx@F V, Fx@FCp) 

from the category of ~0-spaces to the category of Dieudonn6 F~-modules. 

(B.2) Remark. Let lo: K ( x ) ~ - . k  be a fixed embedding of Fq-algebras. Put 
~ = frob~ o to(j e :~/deg(x)TZ). Then we have a canonical splitting 

F~@~qk = [-[ Fx@~(x).,~k 
j~Z/deg(x) Z 

0c(x) is naturally embedded in Fx) and each factor is a field. Therefore, to give 
a Dieudonn6 Fx-module (N, ~b) is equivalent to giving finite-dimensional vector 
spaces N~ over Fx (~(x), ,j k and bijective semilinear maps S j: Nj --* Nj + 1 over 

Fx@~tx) frobq: Fx @~(x),,~ k ~  Fx ~ , , ~ +  ~ k 

for all jeZ/deg(x)Z which, in turn, is equivalent to giving a finite-dimensional 
vector space No over Fx~x) , ,o  k and a bijective F~@~(x),,ofrobd~gtxl-semilinear 
map 

7/o = 6dog(x)- t ~ 6dr . . . . .  6o: No ~ No �9 [] 

Let us fix an embedding lo as in (B.2) and a uniformizer Wx of (fix. Let d, r be two 
integers such that d > 1 and (d, r) = 1 (if r = 0, this means that d = 1). Let us 
consider the finite dimensional vector space 

No = (F~b~(~).,o k) a 

over F ~ , ~ ) , , o k  with its standard basis e~ . . . . .  ea and let ~Po:No--* No be the 
bijective F ,  ~)~(~1,,o ffobq ar map which is defined by 

~ro~ea if i =  1 
~'o(e,) 

ei-1 if i = 2  . . . .  , d  . 

The pair (No, ~o) defines a Dieudonn~ F~-module (see (B.2)). We will denote it by 
(Nd,~, Sa,~)- Its isomorphism class does not depend on the choices of Zo and t~ .  

(B.3) Theorem. (i) The abelian category of Dieudonn~ F~-modules (over k) is semi- 
simple. 
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(ii) The Dieudonn~ G-modules (Nd, r, ~Jd, r) (d, re7Z, d ~ 1, (d, r) = 1) are irreducible 
and any irreducible Dieudonn~ G-module is isomorphic to one and only one of  them. 
(iii) For each d, r e  TZ, d > 1, (d, r) = 1, End(Nd,,  ~k~,,) is a central division algebra 
over G with invariant - r/d (modulo Z). 

(B.4) Proposition. Let (V,q~) be an irreducible ~p-space and let ( F , H ) =  
(F(v, ~), Fltv, ~)) be the corresponding cp-pair. For each place "2 o f F  which divides x, let 

(v~, ~o~) = f ~ |  ~o) . 

The canonical splitting G |  r F = l ~ l ~  F~ induces a splitting 

(vx, ~ox) = Q ( v ~ ,  ~o~) 

of  (V.,  % )  as a Dieudonnd G-module. Then, for  each place s o f F  which divides x, 
(V~, r is (non canonically) isomorphic to 

( N .  . . . . .  ~ . . . .  )~ 

where the integers d~, r~ and s~ are uniquely determined by the following relations 

{( d~,sx>= 1 

dR, r~) = 1 ~ ~ 

r~/d~ = deg(Yc)~(lI)/[G: G ]  

d~s~ = d( l l )  [F~: G ] .  

Proof. Let s~(d, r) be the multiplicity of the irreducible Dieudonn6 G-module 
(Na. ,, @a. ~) in the Dieudonn6 G-module (V~, (p~) for each place ~ o fF  which divides 
x and each pair (d, r) of integers with d > 1 and (d, r) = 1. It follows from (A.6) (iii) 
that 

(*)  ~ ~, dse(d, r) = dimrx+,k(Vx) = d(H)[F:  F] . 
Yclx (d,r) 

It also foUows from (A.6) (iii) that F~| q~) is a central simple algebra over 
F~ of dimension d(/I) 2 and with invariant - deg(:~)s (modulo 7/), for each 
place ~ of ff dividing x. 

Now, let us consider the natural homomorphism of/~-algebras 

_P~| qa) --, Endi%(V~, cp~), 

where End~(V~, ~0~) is the commutant o f / ~  in End(Ve, ~ ) .  It is automatically 
injective. If we compare the dimensions over F~ of the source and the target, we get 
the inequality 

d(/7) 2 < dimp~(Endp~(V~, % ) ) .  

But, we have 

dimex(End(V~, ~o~)) 
dimv~(Endv~(V~, q~)) = [ /7:Fx]2 

= ~ (ds~(d, r)/[/7~: G ] )  2 
(d, r) 
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(see [Re]). Therefore, we have 

(**) d(/I) 2 =< ~ (ds~,(d, r)/[/7,: Fx]) 2 
(d, r) 

for each place :~ which divides x. 
Finally, it is an elementary exercise to prove that the equality ( . )  and the 

inequalities ( ** ) are compatible if and only if, for each place .~ of F which divides x, 
there is at most one (d, r) with s~(d, r) 4: O. The proposition follows. [] 

(B.5) Let x be a place of F and let (N, t~) be a Dieudonn+ F~-module (over k). 
A lattice M in N is a free 60,Q~ k-submodule of N of finite type which generates 
N as a F~@F~ k-module. It follows from (B.2) that N is a free F~| k-module (of 
finite type). Therefore, it always contains lattices. Let 

N O = { n ~ N l ~ ( n )  = n} 

It is easy to see that N O is a finite dimensional F,-subvector-space of N and that 
the canonical map N ~  ~ N is injective. In fact, for each pair of integers (d, r) 
with d >= 1 and (d, r) = l, we have 

{F~ if r = 0  
(Na,~)~ = 0 otherwise 

and the canonical map 

is either an isomorphism (if r = 0) or zero (otherwise). 

(B.6) Lemma. The following properties o f (N ,  ~ ) are equivalent: 

(i) there exists a lattice M in N with ~ ( M )  = M; 
(ii) the canonical map N~ k ~ N is bijective; 

(iii) any irreducible DieudonnO Fx-submodule o f (N,  t~ ) is isomorphic to (N1, o, 01, o) 
(i.e. (N, I11) is isomorphic to (Nl .o ,  ~l,o)a for some integer d >= 0). 

Moreover, i f  these conditions are fulfilled then for any lattice M in N with ~9(M) = M,  
M 0 = M c~ N q' is a lattice in the finite dimensional Fx-vector space N O and the 
canonical map 

M ~  M 

is an isomorphism. 

(B.7) Lemma. The following properties o f (N ,  ~ ) are equivalent: 

(i) there exists a lattice M in N such that ~ ( M ) c  M (resp. M c t~(M)), 
t~ (M)  ~ toxM (resp. M c w~dp(M))  for any uniformizer w~ o f  C~ and some positive 
integer n and 

dimk(MAb(M))  = 1 (resp. d i m k ( ~ ( M ) / M ) =  1) 

(ii) (N, ~b ) is isomorphic to (N a, 1, ~b a, 1) (resp. (N d, - t, ~b a, - x) ) for  some positive 
integer d. 

(B.8) Lemma. The following properties o f (N ,  ~)  are equivalent: 
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(i) there exists a lattice M in N such that ~ ( M )  ~ M(resp. M ~ ~(M))  and 

d imk(M/~(M))  = 1 (resp. dimk(~b(M)/M)= 1) 

(ii) (N, ~k ) is isomorphic to 

d - h  (Nl,o, ffl,o) ~(Nh, l,~h, 1 ) (resp. (Nl,o,~ll ,o)d-h~(Nh,-1,~lh,-1))  

for  some integers d, h with d > h > O. 
Moreover, if  these conditions are fulfilled, then any lattice M in N with 

~,(M) c M (resp. M c ~b(M)) has a unique decomposition into a direct sum of  two 
free (gxQe~ k-submodules 

M = M a i M  c, such that ~ ( M  6t) = M et 
and 

~b(M c) c M ~ (resp. M c c ~b(M~)) , 

~n(MC) ~ w x M  ~ (resp. M ~ ~ wx~,"(M~)) 

for  any uniformizer mx of  C x and some positive integer n and 

dimk(M~/~(M~)) = 1 (resp. dimk(~(M~)/M ~) -- 1). 

(B.9) Remark. If the equivalent condit ions (i) and (ii) of (B.8) are fulfilled and if 
M is any lattice in N such that  ~ (M)  c M (resp. M ~ ~(M)),  we automat ica l ly  
have 

dimk(MAb(M)) = 1 (resp. d i mk (~ (M) / M)=  1), 

~F '~  M et ~klFx| M a) (N~t, fret):= ~ x ~ .  , 

is the sum of all Dieudonn6 Fx-submodules of (N, ~) which are i somorphic  to 
(Nl.o,  ffi,o) and 

(N ~, ~,r (F~| M ~, t P I F ~ |  ~) 

is the sum of all Dieudonn6 F~-submodules of (N, ~)  which are isomorphic  to 
(Na,~, ~'d.~) for some pair  of integers (d, r) with d > 1, (d, r ) =  1 and r > 0 (resp. 
r < 0). We will say that  (N et, ~et) is the etale part of (N, r  and that  (N ~, ~b c) is its 
connected part. [] 

(B.lO) Proposition. Let us assume that there exists a lattice M in N such that 

{ ~(M)  c M M c i f (M) 

~"(M) ~ w ~M (resp. M ~ m ~ " ( M )  

dimk(MAb(M)) = 1 dimk(~(M)/M) = 1) 

for  any uniformizer m~ of  d)~ and some positive integer n. Then any other lattice M '  in 
N such that 

r  ~ M '  (resp. M '  ~ ~(M') )  

is equal to ~k~(M) for one and only one m e Z  
In other words, if  (N, ~b) is isomorphic to (Na. l, ~ba, 1) (resp. (Na , -  l ,  ~ a , -  1))for 

some positive integer d, the set o f  lattices M in N such that 

~k(M) ~ M (resp. M ~ ~b(M)) 
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is a principal homogeneous space over 7Z, (me7Z acts on this set of  lattices by 
M ~ ~m(M)). Moreover any lattice in this set satisfies 

{ ~p~(M) ~ mxM (resp. ~M c mx~bn(M) 
dimk(MAb(M)) = 1 (dimk(~b(M)/M) = 1) 

for any uniformizer mx of (9~ and some positive integer n. 

(B.11) Remark. U n d e r  the  h y p o t h e s i s  of  (B.10), E n d ( N ,  ~k) is a cen t ra l  d iv i s ion  
a lgeb ra  over  F~ wi th  i nva r i an t  - 1/d(resp.  1/d) (see (B.7) a n d  (B.3)). N o w ,  the  
n a t u r a l  ac t ion  o f  the  mul t ip l i ca t ive  g r o u p  of  E n d ( N ,  r  o n  the  set o f  la t t ices  M in 
N such  tha t  

~p(M) c M (resp. M ~ ~,(M)) 

can  be  desc r ibed  in the  fo l lowing  way.  W e  have  a g r o u p  h o m o m o r p h i s m  

E n d ( N ,  ~b) • rn ,F~ deg(x)x(-),  7Z, , 

(resp. E n d ( N ,  ~)• rn ,F~ -deg(x) x(-)  Z)  

w h e r e  rn  is t he  r e d u c e d  n o r m  a n d  ~ e E n d ( N ,  ~)  • m a p s  the  la t t ice  M in to  the  la t t ice  
Ore(M) where  

m = deg(x)x(rn(6)) (resp. m = - deg(x)x(rn(~5))) . 
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