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Abstract. We prove p-adic uniformization for Shimura curves attached to the group of
unitary similitudes of certain binary skew hermitian spaces V with respect to an arbitrary
CM field K with maximal totally real subfield F . For a place v|p of F that is not split in K
and for which Vv is anisotropic, let ν be an extension of v to the reflex field E. We define
an integral model of the corresponding Shimura curve over SpecOE,(ν) by means of a moduli
problem for abelian schemes with suitable polarization and level structure prime to p. The
formulation of the moduli problem involves a Kottwitz condition, an Eisenstein condition, and
an adjusted invariant. The uniformization of the formal completion of this model along its
special fiber is given in terms of the formal Drinfeld upper half plane Ω̂Fv for Fv . The proof
relies on the construction of the contracting functor which relates a relative Rapoport-Zink
space for strict formal OFv -modules with a Rapoport-Zink space of p-divisible groups which
arise from the moduli problem, where the OFv -action is usually not strict when Fv 6= Qp.
Our main tool is the theory of displays, in particular the Ahsendorf functor.
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1. Introduction

1.1. History of uniformization. One of the major results of the Mathematics of the 19th
century is the uniformization theorem. It states that any non-singular projective algebraic curve
X of genus g(X) ≥ 2 can be uniformized, i.e., can be written as

X ' Γ\ΩR, (1.1.1)

where ΩR = P1(C) \ P1(R) is the union of the upper and the lower half plane and Γ denotes a
discrete cocompact subgroup of PGL2(R). This notation reinforces the analogy with the p-adic
uniformization discussed below. The history of this theorem is very complicated, and involves the
names of many mathematicians, among them Poincaré, Hilbert and Koebe, comp. [14]. Inspired
by the uniformization theorem, Poincaré gave a systematic construction of cocompact discrete
subgroups of PGL2(R). For this he used the exceptional isomorphism between inner forms of
PGL2 and special orthogonal groups of ternary quadratic forms. In fact, for his construction, he
used arithmetic subgroups of the special orthogonal group of an indefinite anisotropic ternary
quadratic form over Q, cf. [14].
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Now let p be a prime number. The history of the p-adic uniformization of algebraic curves
starts with Tate’s uniformization theory of elliptic curves. It turns out that not all elliptic
curves over p-adic fields admit a p-adic uniformization, but only those with (split) multiplicative
reduction [32, §6].

The next step was Mumford’s p-adic uniformization theory of algebraic curves of higher genus,
[25]. Again, it turns out that not all such algebraic curves over p-adic fields admit a p-adic
uniformization, but only those with totally degenerate reduction [25]. In view of Mumford’s
results, it becomes interesting to single out classes of algebraic curves with totally degenerate
reduction. Such classes are exhibited by Cherednik [8].

Cherednik’s discovery is that certain quaternionic Shimura curves, i.e., Shimura curves as-
sociated to quaternion algebras over a totally real field F , admit p-adic uniformization. The
quaternion algebra has to satisfy the following conditions. It is required to be split at precisely
one archimedean place w of F (and ramified at all other archimedean places), and to be ramified
at a non-archimedean place v of residue characteristic p. In this case, the reflex field can be
identified with F . Then one obtains p-adic uniformization by the Drinfeld halfplane associated
to Fv, provided that the level structure is prime to v. It follows that if X is a connected compo-
nent of the Shimura tower for such a level, considered as an algebraic curve over F̄ , then there
is an isomorphism of algebraic curves over F̄v,

X ⊗F̄ F̄v ' (Γ̄\ΩFv )⊗Fv F̄v. (1.1.2)

Here ΩFv = P1
Fv
\ P1(Fv) denotes the Drinfeld halfplane for the local field Fv, and Γ̄ denotes

a discrete cocompact subgroup of PGL2(Fv). Recall that ΩFv is a rigid-analytic space over
Fv. The isomorphism (1.1.2) is to be interpreted as follows: the rigid-analytic space Γ̄\ΩFv
is (uniquely) algebraizable by a projective algebraic curve over Fv. After extension of scalars
Fv −→ F̄v, there exists an isomorphism as in (1.1.2). We thus see that (1.1.2) allows us to pass
from the original complex uniformization X ⊗F̄ C ' Γ\ΩR, where Γ is a congruence subgroup
maximal at v, to p-adic uniformization.

Let us comment on the proof of Cherednik’s theorem. When F = Q, these quaternionic
Shimura curves are moduli spaces of abelian varieties with additional structure, and Drinfeld
[11] gives a moduli-theoretic proof of Cherednik’s theorem in this special case. Furthermore,
he proves an ‘integral version’ of this theorem (which has the original version as a corollary).
For this, Drinfeld extends the moduli problem integrally and then relates the integral version
to a theorem on formal moduli spaces of p-divisible groups, which is in fact the deepest part of
Drinfeld’s paper. When F 6= Q, Cherednik’s quaternionic Shimura curves do not represent a
moduli problem of abelian varieties, and Drinfeld’s approach runs into problems. Cherednik’s
approach [8] seems to only use arguments involving the generic fiber.

There are also higher-dimensional versions of p-adic uniformization. Drinfeld’s method has
been generalized by Rapoport and Zink [29] to Shimura varieties associated to certain fake
unitary groups. These are associated to central division algebras over a CM-field equipped with
an involution of the second kind; for Rapoport-Zink uniformization, one has to assume that
the p-adic place of the totally real subfield splits in the CM-field. This higher-dimensional
generalization also includes integral uniformization theorems. In [29], these integral uniformiza-
tion theorems appear as a special instance of a general non-archimedean uniformization theorem,
which describes the formal completion of PEL-type Shimura varieties along a fixed isogeny class.
In the case of p-adic uniformization, the whole special fiber forms a single isogeny class.

The method of [29] has been applied by Boutot and Zink [5] to prove Cherednik’s original
theorem and an integral variant of it by embedding Cherednik’s quaternionic Shimura curves
into Shimura curves obtained by the Rapoport-Zink method; in an update [6], some gaps in
[5] are filled. The integral uniformization theorems in [6] have the draw-back that they only
show that there exists some integral model of the Shimura curve for which one has integral
uniformization. There is a characterization of this integral model as the unique stable model in
the sense of Deligne-Mumford [10] but this characterization is of a rather abstract nature since
there is no moduli-theoretic description of it.

A variant of Cherednik’s method has been developed by Varshavsky [33, 34] to obtain p-
adic uniformization of certain higher-dimensional Shimura varieties associated to fake unitary
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groups, again at a split place. We refer to Boutot’s Bourbaki talk [3] for an account of all these
developments.

In the present paper, we deal with Shimura curves attached to unitary similitude groups
associated to anti-hermitian1 vector spaces V of dimension 2 over a CM-field K with totally
real subfield F of arbitrary degree. Our results generalize those in [20], where the case F = Q
is considered. Like Cherednik, we assume that V is split at precisely one archimedean place w
of F (and ramified at all other archimedean places). We also assume that V is ramified at a
non-archimedean place v of residue characteristic p of F . However, in contrast to the cases of
p-adic uniformization mentioned above, we assume that v does not split in K. Of course, these
Shimura curves are closely related to the Shimura curves considered by Cherednik (we refer to
[20] for a general discussion of the relation between quaternion algebras and two-dimensional
hermitian vector spaces). However, they are different. In particular, they have the enormous
advantage that they always represent a moduli problem of abelian varieties. Our uniformization
theorem is optimal when the level structure imposed is prime to p, in the sense that it extends
to an integral uniformization that allows an explicit moduli interpretation of the points in the
reduction modulo p.

As in Drinfeld’s approach, our uniformization theorem relies on a theorem on formal moduli
spaces of p-divisible groups. In fact, the main work in proving our theorems is to establish an
isomorphism of our formal moduli spaces with the moduli space of Drinfeld. Such an isomorphism
is also constructed by Scholze and Weinstein [31]. Their construction relies on Scholze’s theory of
local Shimura varieties and his integral p-adic Hodge theory, as well as on results in a preliminary
(unpublished) version of the present paper on local models. Our construction here is more direct
and more elementary; it relies on the theory of displays, cf. [35]. We do not see any direct
connection between the isomorphism in [31] and the one constructed here.

Drinfeld’s version of Cherednik’s theorem for F = Q has found numerous arithmetic ap-
plications, to level raising, level lowering and bounding Selmer groups, at the hands of Ribet,
Bertolini, Darmon, Nekovar and many others, comp. also the references in the introduction of
[20]. It is to be hoped that our direct construction can be the basis of similar such applications
for general totally real fields F .

Our results are an expression of the exceptional isomorphism between an inner twist of the
adjoint group of GL2 and an inner twist of the adjoint group of U2. Just as for Poincaré’s excep-
tional isomorphism of inner forms of PGL2 and special orthogonal groups of ternary quadratic
forms, there is no higher rank analogue.

1.2. Global results. Now let us state our global results. Let K be a CM-field, with totally
real subfield F . We denote the non-trivial F -automorphism of K by a 7→ ā. Let V be a two-
dimensional K-vector space, equipped with an alternating Q-bilinear form ψ : V ×V −→ Q such
that

ψ(ax, y) = ψ(x, āy), x, y ∈ V, a ∈ K. (1.2.1)
There is a unique anti-hermitian form κ on V such that

TrK/Qp aκ(x, y) = ψ(ax, y), x, y ∈ V, a ∈ K. (1.2.2)

Conversely, the anti-hermitian form κ determines the alternating bilinear form ψ with (1.2.1).
We say that κ arises from ψ by contraction. Recall that anti-hermitian spaces V are determined
up to isomorphism by their signature at the archimedean places of F and their local invariants
invv(V ) at the non-archimedean places v of F (see §8.1 for the definition of invv(V )). Let w
be an archimedean place such that Vw has signature (1, 1) and such that Vw′ is definite for all
archimedean places w′ 6= w. Let us be more precise. Let Φ = HomQ-Alg(K,C). Let r be a
generalized special CM-type of rank 2, special w.r.t. w, i.e., a function

r : Φ −→ Z>0, ϕ 7−→ rϕ, (1.2.3)

such that rϕ + rϕ̄ = 2 for all ϕ ∈ Φ, and such that for the extensions {ϕ0, ϕ̄0} of w we have
rϕ0

= rϕ̄0
= 1 and with rϕ ∈ {0, 2} for ϕ /∈ {ϕ0, ϕ̄0}, comp. [20]. Then we demand that the

signature of Vϕ = V ⊗K,ϕ C be equal to (rϕ, 2− rϕ).

1It turns out to be more natural to consider anti-hermitian forms, rather than hermitian forms, cf. below.
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We denote the reflex field of r by E = Er. It is a subfield of Q, the algebraic closure of Q in
C. Note that F embeds via ϕ0 into E, and that the archimedean place of F induced by

F
ϕ0−→ E −→ C (1.2.4)

is equal to w. If F = Q, then E = F .
Associated to these data, there is a Shimura pair (G, {h}). Here G denotes the group of

unitary similitudes of V , with similitude factor in Gm, an algebraic subgroup of GSp(V, ψ) over
Q. For an open compact subgroup K ⊂ G(Af ), there is a Shimura variety ShK, with canonical
model over the reflex field E, whose complex points are given by

ShK(C) ' G(Q)\[ΩR ×G(Af )/K].

Here ΩR is acted on byG(R) via the projection to GU(Vw)ad and a fixed isomorphism GU(Vw)ad '
PGL2(R).

Consider the following moduli problem on (Sch/E). It associates to an E-scheme S the set
of isomorphism classes of tuples (A, ι, λ̄, η̄). Here

• A is an abelian scheme up to isogeny of dimension 2[F : Q] over S.

• ι : OK −→ End(A) is an action of OK on A such that

Tr(ι(a)|LieA) =
∑

ϕ∈Φ
rϕϕ(a), for all a ∈ OK .

• λ̄ is a Q-homogeneous polarization of A such that its Rosati involution induces the conjugation
on K/F .

• a K-orbit of K-linear similitudes η̄ : V ⊗ Af
∼−→ V̂ (A).

Here the rational Tate module is equipped with its natural anti-hermitian form arising by con-
traction from its polarization form.

This moduli problem is represented by a quasi-projective scheme AK,E which is the canonical
model of ShK over E. It is a projective scheme when the existence of v as below is imposed.

Let p be a prime number and let v be a p-adic place of F which is non-split in K and such that
Vv is a non-split Kv/Fv-anti-hermitian space, i.e., invv(V ) = −1. We take the open compact
subgroup of the form K? = K?

p ·Kp, where Kp is an arbitrary open compact subgroup of G(Apf ),
and where K?

p has the following shape. Let

V ⊗Qp =
⊕

p|p
Vp

be the orthogonal decomposition according to the prime ideals of F over p. Note that the prime
ideal pv corresponding to v occurs as an index here. Then

G(Qp) ⊂
∏

p
Gp(Qp) ,

where Gp denotes the group of unitary similitudes of Vp with similitude factor in Gm. We take
K?
p of the form

K?
p = G(Qp) ∩KvK

?,v
p , (1.2.5)

whereKv is the unique maximal compact subgroup ofGpv (Qp), and whereK?,v
p ⊂

∏
p6=pv

Gp(Qp)
is an arbitrary open compact subgroup.

Let J be the inner form of G which is anisotropic at w and quasi-split at v, and which locally
coincides with G at all places 6= v, w of F . Then there exists an identification of the adjoint
group Jv,ad(Qp) with PGL2(Fv) and an action of J(Q) on G(Af )/K? (which is, however, not
induced by an action of J(Q) on G(Af )).

We now formulate our main theorem in the version over a p-adic field, cf. Corollary 7.5.2.
Recall the embedding (1.2.4) of F into E. We choose a place ν of E over v. Throughout the
paper, we always assume2 p 6= 2 if v is ramified in K.

2In the light of the results of Kirch [16], it should be possible to remove this blanket assumption.
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Theorem 1.2.1. Let K? = K?
pK

p, where K?
p is of the form (1.2.5). Let Ĕν be the completion

of the maximal unramified extension of Eν in Qp. There is a finite abelian extension Ĕ?ν of Ĕν
and an isomorphism of algebraic curves over Ĕ?ν ,

AK?,E ×Spec E Spec Ĕ?ν '
(
J(Q)\[ΩFv ×G(Af )/K?]

)
×Spec Fv Spec Ĕ?ν

Here, as before, ΩFv denotes the Drinfeld halfplane relative to the local field Fv, and the
interpretation is as before that the scheme on the LHS is the algebraization of the rigid-analytic
variety on the RHS. If Kp is of the form (1.2.7) below, then we may take Ĕ?ν = Ĕν , cf. Theorem
1.2.3 below; but in general, one needs a non-trivial extension, comp. Theorem 1.2.4.

From this theorem we deduce an analogue of Cherednik’s isomorphism (1.1.2), noting that
any geometric connected component X of ShK? is defined over the maximal abelian extension
Eab of E,

X ⊗Eab Ĕab
ν ' (Γ̄\ΩFv )⊗Fv Ĕab

ν . (1.2.6)

Here Ĕab
ν denotes the completion of the maximal abelian extension of Eν , and Γ̄ is a cocom-

pact discrete subgroup of PGL2(Fv). Since the Cherednik Shimura datum is a central twist of
(G, {h}), the geometric connected components of ShK can be identified with those appearing in
Cherednik’s theorem, so that in fact (1.1.2) follows from Theorem 1.2.1.

By extending the moduli problem for ShK integrally over SpecOE,(pν), we obtain semi-global
integral models of these Shimura varieties. This gives us the possibility of formulating an ‘inte-
gral’ version of this theorem. Let us explain the moduli problem in question.

We first explain the level structure. For every p|p, we fix a lattice Λp in Vp. We assume that
Λp is a self-dual lattice (for the alternating form ψ) when p is either split in K or ramified. When
p is unramified in K, we assume that Λp is selfdual when invp(V ) = 1, and almost selfdual when
invp(V ) = −1. Let

Kp = {g ∈ G(Qp) | gΛp = Λp, for all p|p}. (1.2.7)
We also fix an open compact subgroup Kp ⊂ G(Apf ) and set K = KpK

p. We continue to assume
that for the distinguished p-adic place v we have invpv (V ) = −1.

We now define a functor AK on the category of OE,(pν)-schemes. Let S ∈ (Sch/OE,(pν)).
Then a point of AK(S) consists of an equivalence class of quadruples (A, ι, λ̄, η̄p). Here
• A is an abelian scheme over S and ι : OK −→ End(A)⊗ Z(p) is an action of OK on A.
• λ̄ is a Q-homogeneous polarization of A such that its Rosati involution induces the conjugation

on K/F .

• η̄p : V ⊗ Apf
∼−→ V̂ p(A) is Kp-class of K-linear similitudes.

Here the prime-to-p-rational Tate module V̂ p(A) of A is equipped with its natural anti-hermitian
form arising by contraction from its polarization form. Two quadruples (A, ι, λ̄, η̄p) and (A′, ι′, λ̄′, η̄p,′)
are equivalent, if there exists an isogeny A −→ A′ of degree prime to p compatible with the re-
maining data.

We impose the following conditions on the quadruples (A, ι, λ̄, η̄p). First, for the action of
OK on LieA induced by ι, we impose the Kottwitz condition (KCr) relative to r, see (2.2.1),
comp. [20]. In addition, we demand that this action also satisfies the Eisenstein condition
(ECr) relative to r. This condition is defined in section 2, and is a key novelty of this paper.
The condition (ECr) follows from the Kottwitz condition (KCr) when S is an E-scheme but
is quite subtle when p is nilpotent in OS . Imposing this condition ensures the flatness of the
moduli scheme.

Secondly, we demand that there exists a polarization λ ∈ λ̄ such that, for every p|p, the
localization of the kernel of the polarization λ at the place p satisfies

|(Ker λ)p| = [Λ∨p : Λp]. (1.2.8)

Thirdly, we impose that for each p|p, the r-adjusted invariant invrp(A, ι, λ) coincides with the
invariant invp(V ) of the anti-hermitian space V . Here the r-adjusted invariant of the triple
(A, ι, λ), defined in §8.2, is another key novelty of this paper. This condition is automatically
satisfied when pv is the only prime ideal of F over p. In general, this condition cuts out the open
and closed part of the moduli scheme defined by the Shimura variety. The reason for the name
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r-adjusted is that this adjusts the definition of the invariant in [20], where it was erroneously
asserted that the invariant is locally constant in families. We prove here that this local constancy
indeed holds for the r-adjusted invariant, cf. Proposition 8.2.1.

Proposition 1.2.2. Let r be a generalized CM-type of even rank n, with associated reflex field
E, cf. [20, §2]. Let S be an OE-scheme. Let (A, ι, λ) be a CM-triple over S which satisfies the
Kottwitz condition (KCr), cf. §8.2. Let c ∈ {±1}. Then for every non-archimedean place v of
F , the set of points s ∈ S such that

invrv(As, ιs, λs) = c

is open and closed in S.

Here, now, is our main theorem in the context of schemes over p-adic integer rings, cf. Theorem
7.3.3 and Corollary 7.3.4.

Theorem 1.2.3. Let K = KpK
p, where Kp is of the form (1.2.7), and where Kp is sufficiently

small.
(i) The functor AK is representable by a projective flat OE,(pν)-scheme of relative dimension
one, which is the unique stable model in the sense of Deligne-Mumford [10] of its generic fiber.
Its generic fiber AK⊗OE,(pν )

E is identified with AK,E and its complex fiber AK⊗OE,(pν )
C with

ShK.
(ii) Let ÂK be the formal completion of AK along its special fiber, which is a formal scheme
over Spf OEν . Then there exists an isomorphism of formal schemes over Spf OĔν ,

ÂK ×Spf OEν
Spf OĔν ' J(Q)\

[(
Ω̂Fv ×Spf OFv

Spf OĔν
)
×G(Af )/K

]
.

For varying Kp, this isomorphism is compatible with the action of G(Apf ) through Hecke corre-
spondences on both sides. The natural Weil descent datum on the LHS is given on the RHS
by (ξ, g) 7→ (τEν (ξ), w′r(g)), where τEν is the natural Weil descent datum down to OEν on
Ω̂Fv ×Spf OFv

Spf OĔν , and where w′r is a certain automorphism of G(Qp)/Kp commuting with
the action of G(Qp) by left translations. If the inertia index fEν is even and if furthermore there
are no prime ideals p|p which split in K, then w′r is given by multiplication by p.

Here Ω̂Fv denotes the formal scheme version of ΩFv over Spf OFv due to Deligne, Drinfeld
and Mumford, cf. [11]. In section 7 we give a variant of the RHS, which allows us to express the
automorphism w′r explicitly. Theorem 1.2.3 is optimal in the sense that it describes explicitly
the scheme AK over OEν and its p-adic uniformization.

If we assume that there are prime ideals p|p different from pv, we may pass to deeper level
structures and still prove an integral version of p-adic uniformization. Let K?

p ⊂ G(Qp) be of
the form

K?
p = G(Qp) ∩KvK

?,v
p , (1.2.9)

where Kv is the stabilizer of Λpv , and where K?,v
p is an arbitrary open compact subgroup of

Gv(Qp) =
∏

p6=pv
Gp(Qp). The system of such subgroups is stable under conjugation with

elements of G(Qp). For such subgroups, we have the following version of our main theorem, cf.
Corollary 7.4.15.

Theorem 1.2.4. Let K? = K?
pK

p, for a choice of sufficiently small Kp ⊂ G(Apf ), where K?
p is

of the form (1.2.9). There exists a normal scheme A?K? over SpecOĔν such that for the p-adic
completion of this scheme there is an isomorphism

Â?K? ' J(Q)\[(Ω̂Fv ×Spf OFv
Spf OĔν )×Gv(Qp)/K?,v

p ×G(Apf )/Kp].

For varying K?, these schemes form a tower with an action of the group G(Qp)×G(Apf ), where
the action of G(Qp) factors through G(Qp) → Gv(Qp). The isomorphism of formal schemes is
compatible with these actions.

The general fiber of A?K? is a Galois twist of AK?,E ×SpecE Spec Ĕν by an abelian character
χh

0 . The Galois twist respects the Hecke operators.
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The scheme A?K? represents a moduli problem of abelian varieties with additional structure
over OĔν , cf. section 7.4. We refer to section 7.6 for the explicit determination of χh

0 .
It should be pointed out that Theorem 1.2.4 is not optimal since we cannot describe the

descent to Eν . Also, when v is ramified in K, we can only give the character χh
0 explicitly after

restricting to a subgroup of index 2. This is in contrast to Theorem 1.2.3. The deeper reason for
this deficiency lies in the fact that the natural context for Theorem 1.2.4 is the class of Shimura
varieties appearing in [26]. Let Ψ ⊂ Φ be a CM-type for K/F such that

Ψ ∩ (Φ \ {ϕ0, ϕ̄0}) = {ϕ ∈ Φ \ {ϕ0, ϕ̄0} | rϕ = 2}. (1.2.10)

There are two possibilities for Ψ. Let EΨ be the reflex field of Ψ and let Ẽ be the composite of
EΨ and E = Er. Then Ẽ is an extension of degree one or two of Er. Associated to (V, ψ,Ψ),
there is a finite number of Shimura varieties ShK̃(G̃, {h̃}) with reflex field Ẽ, cf. [26, §3]. Here
G̃ maps surjectively to G with kernel a central torus, hence the Shimura varieties ShK̃(G̃, {h̃})
are central twists of the Shimura variety ShK(G, {h}). Each one represents a moduli problem
on (Sch/Ẽ). In a sequel to this paper, we will construct semi-global integral models of these
Shimura varieties over SpecOẼ,(ν̃). These are described by moduli problems of abelian varieties
on (Sch/OẼ,(ν̃)) and admit p-adic uniformization in the strong sense of Theorem 1.2.3, when
the congruence condition on the open compact subgroup K̃ is prime to the chosen place v. The
trade-off in comparison with our Shimura variety is that the corresponding reflex field Ẽ is larger
than the reflex field E of our Shimura variety (which, in turn, is larger than the reflex field F of
Cherednik’s Shimura variety).

Both Theorems 1.2.1 and 1.2.3 are proved in [20] when Fv = Qp. Most of the work in [20]
was local, and an essential ingredient was the alternative moduli interpretation of the Drinfeld
halfplane in [19]. Once this is accomplished, the proof of the global theorems follows in a
relatively straightforward way from the general non-archimedean uniformization theory of [29,
Chap. 6]. The same is true here. In [20], we expressed the hope that it might be possible to
eliminate the strong limitation Fv = Qp made there, and this hope is achieved in the present
paper. As explained in [20], the main issue is the contrast between the condition on the action
of OFv on the Lie algebras of the p-divisible groups in the local moduli problems. On the one
hand, for the moduli problem represented by the Drinfeld half-plane Ω̂Fv , the action of OFv on
the Lie algebra is required to be strict, i.e., to factor through the structure morphism of the base
scheme S. On the other hand, in the global moduli problem, the Lie algebras of the relevant
abelian schemes are often free OF ⊗Z OS-modules. The main results of the present paper, and
in particular the contracting functor defined in section 4, provide the bridge between the two
types of moduli problems.

1.3. Local results. Let us now formulate our local results, referring to section 2 for more
details and more explanations of some terms used here. Let p be a prime number, and let F
be a finite extension of degree d = [F : Qp] of Qp and let K/F be a quadratic extension. Let
Φ = HomQp-Alg(K, Q̄p), and fix a pair {ϕ0, ϕ̄0} of conjugate elements in Φ. Here ϕ̄0(a) = ϕ0(ā).
Let r be a local CM-type of rank 2 which is special w.r.t {ϕ0, ϕ̄0}, i.e., a function

r : Φ −→ Z>0, ϕ 7−→ rϕ, (1.3.1)

such that rϕ + rϕ̄ = 2 for all ϕ ∈ Φ, and rϕ0 = rϕ̄0 = 1 and rϕ ∈ {0, 2} for ϕ /∈ {ϕ0, ϕ̄0}, comp.
[20]. We denote the reflex field of r by E. It is a subfield of Q̄p.

For an OE-scheme S, we consider triples (X, ι, λ), where X is a p-divisible group of height
4d and dimension 2d over S, where ι : OK −→ End(X) is an action of OK on X, and where
λ : X −→ X∨ is a polarization ofX such that its Rosati involution induces on OK the conjugation
involution over OF . We impose the Kottwitz condition (KCr) and the Eisenstein conditions
(ECr) on the action of OK on LieX. Furthermore, we assume that λ is a principal polarization
if K/F is ramified, and that λ is an almost principal polarization if K/F is unramified.

We fix such a triple (X, ιX, λX) over the algebraic closure k̄ of the residue field κE of E, and
refer to it as a framing object. When K/F is unramified, then any two such triples are isogenous
by an OK-isogeny of height zero which preserves the polarizations. The same is true when K/F
is ramified, provided we impose that the r-adjusted invariant invr(X, ιX, λX) is −1 (this last
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condition is automatic when K/F is unramified). In either case, the group J(Qp) of OK-self-
quasi-isogenies of (X, ιX) preserving the polarization λX up to a factor in Q×p can be identified
with the group of unitary similitudes, with similitude factor in Q×p , of a split K/F -anti-hermitian
space of dimension 2. Let J1(Qp) denote the special unitary group.

We consider the Rapoport-Zink spaceMr over Spf OĔ representing the functor on (Sch/ Spf OĔ)
which associates to S ∈ (Sch/ Spf OĔ) the set of isomorphism classes of 4-tuples (X, ι, λ, ρ), where
(X, ι, λ) is as above, and where ρ is a framing of height zero, with framing object (X, ιX, λX). Our
main local result may now be formulated as follows. We fix an isomorphism J1(Qp) ' SL2(F ).

Theorem 1.3.1. The RZ-spaceMr is isomorphic to Ω̂F ⊗̂OF ,ϕ0OĔ. More precisely, there exists
a unique isomorphism of formal schemes

Mr ' Ω̂F×Spf OF Spf OĔ ,

which is equivariant with respect to the fixed identification J1(Qp) ' SL2(F ). In particular,Mr

is flat over Spf OĔ with semi-stable reduction.

It is more honest to formulate this theorem as follows. LetM be the relative RZ-space over
Spf OF̆ from [19]. It parametrizes tuples (X ′, ι′, λ′, ρ′), where X ′ is a strict formal OF -module
of relative height 4 and dimension 2, and where ι′ is an OK-action on X which is of signature
(1, 1), and where λ′ is a relative polarization compatible with ι′, which is principal if K/F is
ramified and almost principal if K/F is unramified. Also, ρ′ is a framing of height zero with a
suitable framing object (X′, ι′X′ , λ′X′). We fix an extension ϕ̆0 : OF̆ −→ OĔ of ϕ0 : OF −→ OE .
Then our main local result is the construction of a contracting functor

Mr −→M×Spf OF̆
Spf OĔ (1.3.2)

and the proof that it induces an isomorphism of formal schemes over Spf OĔ . The construction
of the contracting functor is another key novelty of this paper. Theorem 1.3.1 then follows by
combining (1.3.2) with the alternative interpretation of the Drinfeld halfplane of [19], which
yields an isomorphismM' Ω̂F ⊗̂OFOF̆ .

Our construction of the contracting functor is based on the theory of displays. Let R be
a p-adic ring, and let W (R) be its ring of Witt vectors. Displays over R are certain modules
over W (R) with additional structures. Under suitable hypotheses, the category of p-divisible
groups over R is equivalent to the category of displays over R. The contracting functor is the
composition of two functors. The first functor associates to a tuple (X, ι, λ) as above a new
tuple (X̃, ι̃, λ̃), where X̃ is a p-divisible group of height 4d and dimension 2, where ι̃ is an OK-
action such that its restriction to OF is strict and which is of signature (1, 1), and where λ̃ is a
polarization with values in the Lubin-Tate group compatible with ι̃. We call this a polarization
in the sense of Faltings. Note that because of the values for the height and the dimension of X̃,
there cannot exist a polarization in the usual sense on X̃. The second functor is the Ahsendorf
functor from [1]. It associates to (X̃, ι̃, λ̃) a relative tuple (X ′, ι′, λ′) as above. The Ahsendorf
functor is the analogue for displays of the Drinfeld functor which associates to a Cartier module
of a p-divisible group with strict OF -action its relative Cartier module, cf. [11, §2]. We also use
the theory of displays to give a new proof of (a slight refinement of) the alternative interpretation
of the Drinfeld halfplane, which is the third proof after the original proof in [19] and the proof
of Kirch [16].

Let us formulate the main contribution of this paper to the theory of displays, cf. Theorem
3.3.2 and Theorem 3.4.11. It compares displays for the Witt frame W(R) with displays for the
relative Witt frame WOF (R), comp. Definition 3.1.4. We give a simpler construction of the
Ahsendorf functor and use this to prove the following theorem.

Theorem 1.3.2. Let R be an OF -algebra such that p is nilpotent in R. The Ahsendorf functor
is a functor

AOF /Zp,R :

(
W(R)-displays
with strict OF -action

)
−→

(
WOF (R)-displays

)
.
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It induces an equivalence of categories

AOF /Zp,R :

(
nilpotent W(R)-displays
with strict OF -action

)
−→

(
nilpotent WOF (R)-displays

)
.

Let P1 and P2 be W(R)-displays over R with a strict OF -action. We denote by P1,a and P2,a

their images by the Ahsendorf functor AOF /Zp,R. Then there is a natural homomorphism between
groups of bilinear forms of displays,

BilOF -displays(P1 × P2,LR) −→ BilWOF
(R)-displays(P1,a × P2,a,Pm,WOF

(R)(π
ef/pf )).

If the dual (P1,a)∨ of P1,a and P2,a are nilpotent WOF (R)-displays, then this homomorphism is
an isomorphism.

Here LR denotes the Lubin-Tate W(R)-display, and Pm,WOF
(R)(π

ef/pf ) the twist of the mul-
tiplicative WOF (R)-display by the unit ξ = πefF /p

f .

Let us now put the local results of this paper in perspective. We address in our special case
the general problem of identifying a basic Rapoport-Zink space associated to the pair (G, {µ})
with a twist of the basic Rapoport-Zink space associated to the pair (G, {µ′}), where µ′ differs
from µ by a central character, cf. the Introduction of [30]. This problem is also addressed by
Scholze in [31, Chap. 23], in both the case considered here and in the fake Drinfeld case of [30].
As mentioned above, Scholze’s proof uses in an essential way our formulation of the local moduli
problem, via the theory of local models (and hence implicitly the linear algebra lemma [30, Lem.
4.9]). One of the main reasons that we are successful in constructing the contracting functor in
the case treated here is that here we are able to develop a good understanding of the Kottwitz
condition (KCr), even in unequal characteristic. Our failure to do the same in the fake Drinfeld
case is the essential reason that in [30] we only succeeded in defining the contracting functor
in the special fiber. The contracting functor is an expression of the exceptional isomorphism
between the quasi-split special unitary group in two variables and the special linear group in
two variables. We restricted ourselves here to the case of curves; it would have been possible to
prove a higher-dimensional version where the uniformizing space ΩFv is replaced by a product
of such spaces, comp. [20] and [29, §6].

1.4. Layout of the paper. We now explain the layout of the paper. The whole paper, with
the exception of section 7, is devoted to the local theory. In section 2 we explain in detail the
definition of the formal moduli spaces of (polarized) p-divisible formal groups, including the
Kottwitz conditions relevant here and the Eisenstein conditions; in particular, Subsection 2.6
contains the detailed statements of our main local results. Section 3 summarizes the relevant facts
on relative Dieudonné theory and relative display theory. The most important fact proved in this
section is the relation established by the Ahsendorf functor between the Lubin-Tate display and
the relative multiplicative display. In section 4 we first consider the relation between the Kottwitz
condition and the Eisenstein condition; this is used in the rest of the section to construct the
contracting functor. More precisely, we first consider the first step in its construction which we
call the pre-contracting functor, cf. above. After this, we complete the second step in the case of
a special generalized CM-type. In the final subsection of section 4, we consider the second step
in the case of a banal generalized CM-type. Section 5 is devoted to an alternative proof of the
main result of [19], based on the theory of displays. In section 6 we prove the main local results,
namely Theorem 1.3.1 and its banal counterpart. In the appendix, section 8, we give the correct
version of the sign factor of [20] by defining the adjusted invariant of a CM-triple of generalized
CM-type r of even rank n, and investigate its behaviour under the contracting functor. Section
7 deduces the global results from the local theory.

1.5. Acknowledgements. We are grateful to P. Scholze for very helpful discussions. In par-
ticular, he helped us locate the mistake in the definition of the invariant of a CM-triple (we had
discovered a discrepancy caused by this mistake in 2014, but it took us 10 months to locate the
error (e-mail from P. Scholze of 5 Oct. 2015)). We also thank the anonymous referee of [26]
whose report gave us the idea of defining the p-adic étale sheaf in Corollary 7.4.9.

We also acknowledge the hospitality of the MSRI during the fall of 2014 when the work on
this paper was begun. We also thank the referee for helpful remarks.
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1.6. Notation. • If R and R′ are Zp-algebras, we often write R ⊗ R′ for R ⊗Zp R
′. Also, we

often write X ⊗A B for X ×SpecA SpecB.
• If F is a finite extension ofQp, we write F̆ for the completion of a maximal unramified extension,
and F t for the maximal subfield unramified over Qp. We write d = ef , where d = [F : Qp] and
f = [F t : Qp] and e = [F : F t]. We denote by OF , resp. OF t , resp. OF̆ the rings of integers.
• Let V be an C/R-anti-hermitian vector space. The signature of V is (a, b) if the anti-hermitian
form is equivalent to diag(i(a), i(b)), where i is the imaginary unit.
• Let F be a finite extension of Qp and let K/F be a quadratic extension. Let V be a K-vector
space, equipped with an alternating Qp-bilinear form ψ : V × V −→ Qp satisfying (1.2.1). Let
Λ be a OK-lattice in V . Then the dual OK-lattice is Λ∨ = {x ∈ V | ψ(x, y) ∈ Zp for all y ∈ Λ}.
The lattice Λ is called self-dual if Λ = Λ∨; it is called almost self-dual if Λ is contained in Λ∨

with colength one.
• If O is a discrete valuation ring with uniformizer π, we write NilpO for the category of O-
algebras R such that π is locally on SpecR nilpotent. Similarly, we denote by (Sch/ Spf O) the
category of O-schemes such that πOS is a locally nilpotent ideal sheaf.
•Given modulesM andN over a ring R, we writeM ⊂r N to indicate thatM is an R-submodule
of N of finite colength r.

Warning. It is customary to denote a finite extension of Qp and the Frobenius by the same
symbol F . This should not lead to confusions.

2. Main local statements

In this section we formulate our main results in the local theory. We fix a prime number p
and an algebraic closure Qp of Qp. Here, as in the rest of the paper, we assume that p 6= 2. Let
F be a finite field extension of Qp, with residue class field κF . We set d = [F : Qp], f = [κF : Fp]
and define e through d = ef . We let K/F be an étale algebra of degree 2. We denote the
non-trivial automorphism of Gal(K/F ) by a 7→ ā.

In the case where K/F is a ramified extension of local fields (ramified case) we choose a prime
element Π ∈ OK such that Π̄ = −Π. Then π = −Π2 is a prime element of F . In the case where
K/F is unramified extension of local fields (unramified case) or K ∼= F×F (split case) we choose
a prime element π ∈ F and we set Π = π.

Let Φ = ΦK = HomQp-Alg(K,Qp) be the set of algebra homomorphisms.

2.1. Special and banal local CM-types. Let r be a generalized local CM-type of rank 2
(relative to K/F ) in the sense of [20, section 5], i.e., a function

r : Φ −→ Z>0, ϕ 7−→ rϕ, (2.1.1)

such that rϕ + rϕ = 2 for all ϕ ∈ Φ. Here ϕ(a) = ϕ(a), where a 7→ a is the non-trivial
automorphism of K over F . The corresponding reflex field E = E(r) is the subfield of Qp fixed
by

Gal(Qp/E) := {τ ∈ Gal(Qp/Qp) | rτϕ = rϕ, ∀ϕ}.
Let OE be the ring of integers of E.

When we fix an embedding ϕ0 : F −→ Qp, we denote by ϕ0, ϕ0 the two extensions of ϕ0 to
K (by abuse of notation).

Definition 2.1.1. A local CM-type r of rank 2 is called special relative to the choice of embed-
ding ϕ0 : F −→ Qp if K/F is a field extension and

rϕ0
= rϕ0

= 1, and rϕ ∈ {0, 2}, for all ϕ ∈ Φ \ {ϕ0, ϕ0}.

It is called banal non-split if K/F is a field extension and rϕ ∈ {0, 2}, for all ϕ ∈ Φ. It is called
banal split if K ' F ⊕ F and rϕ ∈ {0, 2}, for all ϕ ∈ Φ.

From now on, we will assume r to be either special (relative to a fixed choice of ϕ0) or banal
(non-split or split). We will consider p-divisible groups X with an action of OK over OE-schemes
S. We will want to impose certain conditions on the induced action of OK on LieX.
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2.2. The Kottwitz and the Eisenstein conditions. Let S be an OE-scheme, and let L be
a locally free OS-module, equipped with an action

ι : OK −→ EndOS L.

of OK .
We say that (L, ι) satisfies the Kottwitz condition (KCr) relative to r if the identity of poly-

nomials with coefficients in OS holds

char(T, ι(a)|L) = i
(∏
ϕ∈Φ

(T − ϕ(a))rϕ
)
, for all a ∈ OK , (2.2.1)

where i : OE −→ OS is the structure homomorphism (compare [30]).
We denote by F t ⊂ F the maximal subextension which is unramified over Qp. We similarly

define Kt ⊂ K when K is a field; in the split case K ∼= F × F we set Kt = F t × F t. We set
Ψ = ΨK = HomQp-Alg(Kt,Qp). We call ψ ∈ Ψ banal if rϕ ∈ {0, 2} for each ϕ ∈ Φ such that
ϕ | ψ. If this is not the case we call ψ special. We use the notation

Φψ = {ϕ ∈ Φ | ϕ|Kt = ψ}, ψ ∈ Ψ. (2.2.2)

The subfield ψ(Kt) of Q̄p is unramified over Qp, and hence is normal and independent of ψ ∈ Ψ.
We denote by E′ the compositum of E with ψ(Kt). Note that E′/E is an unramified extension
of local fields.

Let S be an OE-scheme. Let α : S −→ SpecOE′ be a morphism of OE-schemes. Then α
gives rise to an isomorphism of OKt ⊗Zp OS algebras

OKt ⊗Zp OS =
⊕

ψ∈Ψ
OS , (2.2.3)

where the action of OKt on the ψ-th factor is via ψ. Hence for a locally free OS-module L with
action by OK , we obtain a decomposition into locally free OS-modules,

L =
⊕

ψ∈Ψ
Lψ . (2.2.4)

If (L, ι) satisfies the Kottwitz condition we obtain from (2.2.1) applied to a ∈ OKt that

rank Lψ =
∑
ϕ∈Φψ

rϕ (2.2.5)

We say that (L, ι) satisfies the rank condition (RCr), if (2.2.5) is satisfied for all ψ. The rank con-
dition does not depend on the α chosen above because a second α′ differs from α by an automor-
phism of E′ over E if S is connected. If there is no α we use base change SpecOE′×SpecOES −→ S
to define the condition (RCr). This agrees with the old definition if α exists.

We consider a pair (L, ι) that satisfies (RCr). Then we will define the Eisenstein condition
(ECr) (this definition is analogous to [30, section 2], but different). We introduce the notation

Aψ = {ϕ : K −→ Qp | ϕ|Kt = ψ, and rϕ = 2}
Bψ = {ϕ : K −→ Qp | ϕ|Kt = ψ, and rϕ = 0}.

(2.2.6)

We note that under the action of the non-trivial automorphism of K/F ,

Āψ = Bψ. (2.2.7)

Also, let aψ = |Aψ| and bψ = |Bψ|.
With this notation we may rewrite the rank condition (RCr)

rank Lψ = 2aψ + εψ , (2.2.8)

where

εψ =


0, if ψ is banal
1, if ψ is special and K/F is unramified
2, if ψ is special and K/F is ramified.

In the case where K/F is ramified we have Kt = F t, [K : Kt] = 2e, and for each ψ ∈ Ψ

ϕ | ψ ⇒ ϕ̄ | ψ.
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Therefore aψ = bψ, and the rank condition reads, in the ramified case,

rankLψ = 2e,

regardless of whether r is banal or not.
Consider the Eisenstein polynomial E(T ) of Π in OKt [T ]. We consider the image Eψ(T ) of

E(T ) in Qp[T ] under ψ, for ψ ∈ Ψ. In Qp[T ] this has a decomposition into linear factors,

Eψ(T ) =
∏
ϕ∈Φψ

(T − ϕ(Π)). (2.2.9)

We define
EAψ (T ) =

∏
ϕ∈Aψ

(T − ϕ(Π)), EBψ (T ) =
∏
ϕ∈Bψ

(T − ϕ(Π)). (2.2.10)

The action of Gal(Qp/E′) stabilizes the corresponding subsets in the index set on the right
hand sides of (2.2.9) and (2.2.10). Therefore all three polynomials lie in OE′ [T ].

If r is special we fix an embedding ϕ0 : K −→ Q̄p such that rϕ0
= 1. We denote by ψ0

the restriction of ϕ0 to Kt. In the ramified case we have ψ0 = ψ̄0 and in the unramified case
ψ0 6= ψ̄0.

We define Sψ by the following factorization in OE′ [T ],

Eψ(T ) = Sψ(T ) ·EAψ (T ) ·EBψ (T ). (2.2.11)

Hence

Sψ(T ) =


1, if ψ is banal
(T − ϕ0(Π))(T − ϕ0(Π)), if ψ = ψ0 and K/F is ramified
T − ϕ0(Π), if ψ = ψ0 and K/F is unramified
T − ϕ0(Π), if ψ = ψ0 and K/F is unramified.

Now using the structure morphism OE′ −→ OS , each of the three factors in (2.2.11), when
evaluated on Π, defines an endomorphism of the OS-module Lψ. These endomorphisms are
denoted by EAψ (ι(Π)|Lψ), resp. EBψ (ι(Π)|Lψ), resp. Sψ(ι(Π)|Lψ).

We say that (L, ι) satisfies the Eisenstein conditions (ECr) if (RCr) is fulfilled and if for each
ψ (

Sψ ·EAψ
)
(ι(Π) | Lψ) = 0,

4−[Kt:F t]∧ (
EAψ (ι(Π) | Lψ)

)
= 0.

(2.2.12)

In the case where ψ is banal the first condition says

EAψ (ι(Π)|Lψ) = 0, for all ψ ∈ Ψ. (2.2.13)

and the second condition follows from the first.
The Eisenstein conditions do not depend on the OE-morphism α : S −→ SpecOE′ . Indeed,

if S is connected, any other choice of α differs by an automorphism ρ ∈ Gal(E′/E). In the
decomposition (2.2.4) Lψ is then replaced by Lρψ and Eψ is replaced by ρ(Eψ) = Eρψ. Here the
last identity holds by the definition of the reflex field E. Therefore changing α does not change the
Eisenstein conditions (ECr). If there exists no α, we use base change SpecOE′ ×SpecOE S −→ S
to define the condition (ECr). The same arguments apply to the condition (KCr).

We first note the following statement.

Proposition 2.2.1. Let S be an OE-scheme and L a locally free OS-module with an OK-action
ι : OK −→ EndOS (L).
(i) The Eisenstein conditions (ECr) are independent of the uniformizer Π.
(ii) When K/Qp is unramified, the Eisenstein conditions (ECr) are implied by the Kottwitz
condition (KCr). The same conclusion holds if F = Qp and K/F is ramified.
(iii) When S is an E-scheme, the Eisenstein conditions (ECr) hold automatically.
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Proof. Let us prove (i). Let Π′ be another uniformizer. It is enough to show that the elements
of OK ⊗OKt ,ψ OE′ ,

EAψ (Π⊗ 1), EAψ (Π′ ⊗ 1), resp.

Sψ(Π⊗ 1)EAψ (Π⊗ 1), Sψ(Π′ ⊗ 1)EAψ (Π′ ⊗ 1),

differ by a unit in OK ⊗OKt ,ψ OE′ . Indeed, let Ẽ′ be the normalization of E′ in Q̄p. Since
OK ⊗OKt ,ψ OE′ → OK ⊗OKt ,ψ OẼ′ is a flat extension of local rings, we can replace E′ by Ẽ′.
By the definitions (2.2.10) and (2.2.11), it suffices to show that the elements Π ⊗ 1 − 1 ⊗ ϕ(Π)
and Π′ ⊗ 1− 1⊗ ϕ(Π′) differ by a unit in OK ⊗OKt ,ψ OE′ . But by [27, Lem. 6.11] the elements
Π⊗ 1− 1⊗Π and Π′ ⊗ 1− 1⊗Π′ of OK ⊗OKt OK differ by a unit, whence the assertion.

Now we prove (ii). Let us only treat the case where r is special; the banal case is similar.
When K = Kt is unramified over Qp, then E(T ) = T − π is a linear polynomial. Furthermore,
Aψ has at most one element for ψ /∈ {ψ0, ψ0}, and Aψ0

= Aψ0
= ∅. Let ψ /∈ {ψ0, ψ0}. If

Aψ = ∅, then Lψ = (0) and the Eisenstein condition relative to the index ψ is empty; if Aψ has
one element, the Eisenstein condition relative to the index ψ is just equivalent to the definition
of the ψ-th eigenspace in the decomposition (2.2.4). Something analogous applies to the indices
ψ0, ψ0. The case when F = Qp is handled in the same way.

Finally we prove (iii). Let K̃ be the normal closure of K in Qp. It suffices to prove the
assertion after replacing S by its base change S ×SpecE Spec K̃. Then we have a decomposition

OK ⊗Zp OS =
⊕

ϕ∈Φ
OS .

Correspondingly, we have L = ⊕Lϕ, and the endomorphism ι(Π) is diagonal with respect to this
decomposition, with entries ϕ(Π)idLϕ . It is easy to see that (KCr) is equivalent to the condition

rankLϕ = rϕ, ∀ϕ ∈ Φ. (2.2.14)

The Eisenstein conditions (ECr) involve endomorphisms of L which are products of endomor-
phisms of the form (ι(Π)|Lϕ − ϕ(Π)idLϕ) ⊕ϕ′ 6=ϕ idLϕ′ . From this, the conditions follow triv-
ially. �

Let us make the Eisenstein conditions more explicit in the case where r is special. For this,
we distinguish between the case when K/F is ramified and the case when K/F is unramified.
Let S be an OE′ -scheme and L be a locally free OS-module satisfying (RCr).

• K/F ramified. In this case, we have Kt = F t, and ψ = ψ for all ψ ∈ Ψ. Hence, (2.2.7) implies
in this case

aψ = bψ =

{
e, if ψ 6= ψ0

e− 1, if ψ = ψ0.
(2.2.15)

We have
Sψ0

(T ) = (T − ϕ0(Π))(T − ϕ0(Π)).

The Eisenstein conditions become in this case(
Sψ0 ·EAψ0

)
(ι(Π)|Lψ0) = 0,

3∧(
EAψ0

(ι(Π)|Lψ0
)
)

= 0,

EAψ (ι(Π)|Lψ) = 0, for all ψ 6= ψ0.

(2.2.16)

• K/F unramified. In this case, [Kt : F t] = 2, and ψ 6= ψ for all ψ ∈ Ψ. Furthermore, aψ = bψ
and ∑

ψ∈Ψ\{ψ0,ψ0}

aψ = e(f − 1), aψ0
+ aψ0

= e− 1. (2.2.17)

In this case, the Eisenstein conditions become
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(
Sψ0
·EAψ0

)
(ι(π)|Lψ0

) = 0,

2∧(
EAψ0

(ι(π)|Lψ0)
)

= 0,(
Sψ0
·EAψ0

)
(ι(π)|Lψ0

) = 0,

2∧(
EAψ0

(ι(π)|Lψ0
)
)

= 0,

EAψ (ι(π)|Lψ) = 0, for all ψ 6= ψ0, ψ0.

(2.2.18)

2.3. Local CM-pairs and CM-triples. Let S be an OE-scheme such that p is locally nilpotent
i.e. a scheme over Spf OE . A local CM-pair of type r is a pair (X, ι) such that X is a p-divisible
group of height 4d and dimension 2d and ι is an Zp-algebra homomorphism

ι : OK −→ EndX

such that the rank condition (RCr) is satisfied for the induced action of OK on LieX. In the
split case OK = OF ×OF we require moreover that in the induced decomposition X = X1×X2

each factor is a p-divisible group of height 2d.
Later we will introduce displays P, and these have a Lie algebra LieP, cf. Definition 3.1.4.

Therefore, we can also speak of local CM-pairs (P, ι) of type r, where P is a display over S, cf.
section 3.

Let S = Spec k be a perfect field of characteristic p which is endowed with an OE′ -algebra
structure. In this case, a display in the same thing as a Dieudonné module P = (P, F, V ), where
P is a finitely generated free module over the ring of Witt vectors W (k). If P is the Dieudonné
module of X, there is a canonical isomorphism of k-vector spaces LieX ∼= P/V P .

Via ι we regard P as a OK ⊗Zp W (k)-module. The homomorphisms

ψ : OKt −→ OE′ −→ k, (2.3.1)

ψ ∈ Ψ lift uniquely to homomorphisms

ψ̃ : OKt −→W (k). (2.3.2)

We obtain a ring isomorphism

OK ⊗Zp W (k) =
∏
ψ∈Ψ

OK ⊗OKt ,ψ̃ W (k).

This induces a decomposition
P = ⊕ψ∈ΨPψ. (2.3.3)

More explicitly
Pψ = {x ∈ P | ι(a)x = ψ̃(a)x, for a ∈ OKt}.

Let us denote by σ the Frobenius automorphism of W (k). The operators F and V on P
induce σ-linear maps

F : Pψ −→ Pσψ, V : Pσψ −→ Pψ. (2.3.4)
Here σψ denotes the composite of (2.3.1) with the absolute Frobenius of k.

Lemma 2.3.1. Let (P, ι) be local CM-pair of type r over a perfect field k. Then P is a free
OK ⊗Zp W (k)-module of rank 2.

Proof. Since FV = p it follows that

rankOK⊗O
Kt

,ψ̃W (k) Pψ = rankOK⊗O
Kt

,σψ̃W (k) Pσψ. (2.3.5)

Since rankW (k) P = 4d, and by the extra condition in the split case, this implies that the common
rank of (2.3.5) is 2. This proves the Lemma. �

To each local CM-pair (X, ι) we define the conjugate dual (X∨, ι∧). Here X∨ is the dual
p-divisible group of X but we change the action dual to ι by the conjugation of K/F , i.e.,
ι∧(a) = ι∨(ā). We will denote the conjugate dual simply by X∧.
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Lemma 2.3.2. The conjugate dual of a CM-pair (X, ι) of type r is again a local CM-pair of
type r. If (X, ι) satisfies the Kottwitz condition (KCr), resp., the Eisenstein conditions (ECr),
then so does its conjugate dual.

Proof. For the first assertion, we may assume that we are over an algebraically closed field. We
use the Dieudonné module P. We set

P∨ = HomW (k)(P,W (k)).

We use the canonical pairing
〈 , 〉 : P × P∨ −→W (k). (2.3.6)

The operators F and V on the dual Dieudonné module P∨ are defined by the equations

〈V x, V x∨〉 = pσ−1(〈x, x∨〉), x ∈ P, x∨ ∈ P∨

σ(〈V x, x∨〉) = 〈x, Fx∨〉.

One of these equations implies the other. It follows that V P/pP ⊂ P/pP and V P∨/pP∨ ⊂
P∨/pP∨ are orthogonal complements with respect to the non-degenerate pairing of k-vector
spaces,

P/pP × P∨/pP∨ −→ k.

If we use the action ι∧, we write for the decomposition (2.3.3)

P∨ = ⊕ψ∈ΨP
∧
ψ = P∧.

Then Pψ1 and P∧ψ2
are for ψ1 6= ψ̄2 orthogonal with respect to (2.3.6) and

〈 , 〉 : Pψ × P∧ψ̄ −→W (k). (2.3.7)

is a perfect pairing. The k-vector spaces V Pσψ/pPψ and V P∧
σψ̄
/pP∧

ψ̄
are orthogonal complements

with respect to the induced non-degenerate k-bilinear form

Pψ/pPψ × P∧ψ̄ /pP
∧
ψ̄ −→ k.

Let us assume that K/F is unramified or split. In this case Lemma 2.3.1 implies rankW (k) Pψ =
2e and by (2.3.7) rankW (k) P

∧
ψ = 2e. Since P satisfies (RCr) we find by the orthogonality above

rankk P
∧
ψ̄ /V P

∧
σψ̄ = 2e− rankk Pψ/V Pσψ = 2e−

∑
ϕ|ψ

rϕ =
∑
ϕ|ψ

(2− rϕ) =
∑
ϕ|ψ

rϕ̄.

This shows that the conjugate dual satisfies (RCr). The case K/F ramified is similiar.
For the proof of the assertion concerning (KCr), we refer to Proposition 4.2.13. For the proof

of the assertion concerning (ECr), we refer to Corollary 4.2.8 in the case when K/F is unramified
or split, resp., Corollary 4.2.12 when K/F is ramified. �

The notion of a local CM-triple of type r over S was introduced in [20]. This is a triple
(X, ι, λ), where (X, ι) is a local CM-pair of type r and λ : X −→ X∨ is an anti-symmetric
isogeny (also called a polarization) such that the corresponding Rosati involution induces the
non-trivial automorphism on K/F . In particular λ induces a morphism of local CM-pairs

λ : (X, ι) −→ (X∧, ι∧).

In the present paper, we will also say that (X, ι, λ) is a polarized local CM-pair (of type r). We
call the polarized local CM-pair (X, ι, λ) principal if Kerλ = 0; we call it almost principal when
Kerλ ⊂ X[ι(π)] and Kerλ has order p2f . We will distinguish principal polarized local CM-pairs
from almost principal ones by attaching the integer h = 0 to the principal case, and h = 1 to
the almost principal case, i.e., heightλ = 2fh. We will see in §2.5 below that, when K/F is a
ramified field extension, then the almost principal case does not occur. Compare Lemmas 8.1.2
and 8.1.3 for the analogue in linear algebra.
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2.4. The invariant of a local CM-triple. Let K/F be a field extension. We recall from [20]
the definition of the invariant of a CM-triple, in a slightly more general context.

Let k be an algebraically closed field of characteristic p and let W (k) be the ring of Witt
vectors. We set W (k)Q = W (k) ⊗ Q. Let (M,F, V ) be a Dieudonné module of height 4d and
dimension 2d which is endowed with a Zp-algebra homomorphism

ι : K −→ End0(M,F, V ).

We set MQ = M ⊗Q. We assume that M is endowed with a non degenerate alternating bilinear
form

β : MQ ×MQ −→W (k)Q

Let us denote by σ the Frobenius automorphism of W (k). We require the following properties:

β(V x, V y) = pσ−1(β(x, y)), x, y ∈MQ

β(ι(a)x, y) = β(x, ι(ā)y), a ∈ K.

We will associate to such a set of data (M, ι, β) an invariant inv(M, ι, β) ∈ {±1}. We set
Ψ = HomQp-Alg(Kt,W (k)Q).

The ring OK ⊗Zp W (k) decomposes

K ⊗Zp W (k) =
∏
ψ

K ⊗OKt ,ψ̃ W (k). (2.4.1)

If ξ = (ξψ) is an element of (2.4.1). Then we set

ordK⊗W (k) ξ = ordp NmK/Qp ξ =
∑
ψ

ordΠ ξψ ∈ Z. (2.4.2)

The Frobenius homomorphism σ acts via the second factor on K ⊗Zp W (k). The σ-conjugacy
class of an element ξ ∈ (K ⊗W (k))× is uniquely determined by ordK⊗W (k) ξ.

We view MQ as a K ⊗Zp W (k)-module and suppress the notation ι. This is a free module of
rank 2. We define an anti-hermitian form κ = κβ ,

κ : MQ ×MQ −→ K ⊗Zp W (k),

on the K ⊗Zp W (k)-module MQ by the formula

TrK/Qp(aκ(x, y)) = β(ax, y), x, y ∈MQ, a ∈ K ⊗W (k). (2.4.3)

Then κ satisfies
κ(V x, V y) = pσ−1(κ(x, y)). (2.4.4)

We write ∧2MQ :=
∧2
K⊗W (k)MQ for the exterior product as a K ⊗Zp W (k)-module. This is

a free K ⊗Zp W (k)-module of rank 1. According to (2.4.1) we have decompositions

MQ =
⊕

ψ
MQ,ψ

∧2MQ =
⊕

ψ

( 2∧
K⊗Kt,ψWQ(k)

MQ,ψ
)
.

We choose an isomorphism ∧2MQ ∼= K ⊗Zp W (k). Then we can write

∧2V (z) = γσ−1(z).

We have
ordK⊗W (k) ∧2V = ordp NmK/Qp detK⊗ZpW (k)(V |MQ)

= ordp detW (k)(V |MQ) = dimM = 2d.

Therefore we find ordK⊗W (k) γ = 2d. Since ordK⊗W (k) p = 2d, the elements p, γ ∈ K ⊗Zp W (k)
are in the same σ-conjugacy class by the remark after (2.4.2). We conclude that there is a
generator x ∈ ∧2MQ such that

∧2 V (x) = px. (2.4.5)
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Note that the last equation is equivalent to ∧2F (x) = px. Any other generator with this property
has the form ux, where u ∈ K×. We consider the hermitian form

h = ∧2κ : ∧2MQ × ∧2MQ −→ K ⊗W (k).

One deduces that h(x, x) is an element of F ⊂ K⊗W (k) which is 6= 0 because β is non-degenerate
by assumption. We denote by

dK/F (M, ι, β) ∈ F×/NmK/F K
× (2.4.6)

the class of h(x, x). This class is called the discriminant of (M, ι, β) and is independent of the
choice of x.

Let a ∈ F . Then aκ is again an anti-hermitian form which satisfies (2.4.4). We can replace
κ by aκ in the definition of (2.4.6) without changing the discriminant. We denote by

inv(M, ι, β) ∈ {±1} (2.4.7)

the image of dK/F (M, ι, β) by the canonical isomorphism F×/NmK/F K
× ' {±1}.

Let r be a local CM-type of rank 2. Let E be the reflex field. Let OE −→ k an algebra
structure of the algebraically closed field k. Let (X, ι, λ) be a local triple of CM-type r over k.
Let (M, ι, β) be the associated Dieudonné module with its polarization β. Then we set

inv(X, ι, λ) := inv(M, ι, β).

For CM-triples of CM-type r, we use also the adjusted invariant invr(X, ι, λ) = invr(M, ι, β), cf.
section 8.2. In the case at hand we have

invr(M, ι, β) =

(−1)d−1inv(M, ι, β), for r special,

(−1)dinv(M, ι, β), for r banal.
(2.4.8)

2.5. Uniqueness of framing objects. In this subsection, we discuss the existence and unique-
ness of framing objects that are used in the formulation of the formal moduli problems. The
proofs of these statements are given later in the paper.

Let r be a generalized local CM-type of rank 2 for K/F . Let k be an algebraic closure of the
residue field κE of OE . Consider CM-triples (X, ι, λ) over k which satisfy (KCr) and (ECr).

(i) Assume that r is special. If K/F is ramified, then a local CM-triple of type r over k as above
such that the polarization is principal and with r-adjusted invariant −1 is isoclinic. When K/F
is unramified, then a local CM-triple of type r over k as above such that the polarization is almost
principal has r-adjusted invariant −1 and is isoclinic. In either case, any two such CM-triples
are isogenous by a OK-linear quasi-isogeny of height zero that preserves the polarizations.

Furthermore, the group of OK-linear self-isogenies of such a local CM-triple, preserving the
polarization, can be identified with the unitary group of the split K/F -anti-hermitian space C of
dimension 2.

The assertions concerning slopes follow from Corollary 4.3.3. The uniqueness assertion is in
the ramified case the content of Proposition 5.2.12, and in the unramified case of Proposition
5.3.6. The last part of the assertion follows from the fact that the contraction functor is an
equivalence of categories.

(ii), a) Let r be banal non-split. Any local CM-triple of type r over k as above is isoclinic.
The group of OK-linear self-isogenies of such a local CM-triple, preserving the polarization, can
be identified with the unitary group of a K/F -anti-hermitian space C of dimension 2. When
K/F is unramified and the polarization is principal, then the anti-hermitian space C is split and
the r-adjusted invariant is 1; when K/F is ramified and the polarization is principal, then the
anti-hermitian space C is non-split and the r-adjusted invariant is −1; when K/F is unramified
and the polarization is almost principal, then the anti-hermitian space C is non-split and the
r-adjusted invariant is −1. The case K/F ramified and almost principal polarization does not
occur. Any two CM-triples with the same r-adjusted invariant are isogenous by a OK-linear
quasi-isogeny of height zero that preserves the polarizations.

The assertions concerning slopes follow from Corollary 4.3.3. The uniqueness assertion is the
content of Proposition 4.5.14. Similar arguments apply to the banal split case.



18 STEPHEN KUDLA, MICHAEL RAPOPORT, AND THOMAS ZINK

(ii), b) Let r be banal split. Then the p-divisible group underlying a local CM-triple of type r
is the direct product of two isoclinic p-divisible groups of slope λ, resp. 1 − λ, where λ depends
only on r. Any two local CM-triples of type r over k are isogenous by a OK-linear quasi-isogeny
of height zero that preserves the polarizations. The group of OK-linear self-isogenies of such a
local CM-triple, preserving the polarization, can be identified with ResF/Qp(GL2).

The chart below summarizes the discussion above. The last column lists the group of OK-
linear self-isogenies preserving the polarization. In all cases listed below, the framing object is
unique up to quasi-isogeny of height zero.

type r K/F invr polarization group of self-isogenies

special ramified −1 principal quasi-split unitary group
special unramified −1 almost principal quasi-split unitary group
banal ramified −1 principal non-quasi-split unitary group
banal unramified 1 principal quasi-split unitary group
banal unramified −1 almost principal non-quasi-split unitary group
banal split 1 principal GL2/F

Table 1. Framing objects

Remark 2.5.1. The statement (i) above generalizes [20, Prop. 5.4]. However, the proof of
the uniqueness assertion given there is incomplete. Note that for a local CM-type of the first
kind in the sense of loc. cit. we have imposed F = Qp; therefore the condition in loc. cit. that
ε = inv(X, ι, λ) = −1 implies that the associated anti-hermitian space (C, h) is split (in this case
the r-adjusted invariant coincides with the invariant).

Remark 2.5.2. The statement (i) is closely related to the fact that B(G, {µ}) has only one
element, cf. [18], §6. Here G = ResF/Qp(GU) is the linear algebraic group over Qp associated to
the group of unitary similitudes of the non-split anti-hermitian space of dimension 2 over K, and
{µ} is the conjugacy class of cocharacters with component (1, 0) for ϕ0 and central component
for ϕ 6= ϕ0. In fact, it seems that the essential contents of the calculations in section 8.3 is to
show that the Frobenius element of a local CM-triple of type r with r-adjusted invariant −1 over
k defines an element in B(G,µ). Recall from the introduction of [18] that p-adic uniformization
can only be expected when the pair (G,µ) is uniform, i.e., B(G,µ) consists of a single element.

2.6. Formal moduli spaces. In this subsection we are going to define RZ-spaces of formal
local CM-triples, and formulate our main results about them. We fix K/F as before.

First let r be special, so that K/F is a field extension. We fix a local CM-triple (X, ιX, λX) of
type r over κ̄E as in (i) of subsection 2.5 (a framing object). We assume that if K/F is ramified,
then λX is principal and that, if K/F is unramified, then λX is almost principal. Then, in either
case, the r-adjusted invariant equals −1. We identify κ̄E with the residue class field of OĔ , the
ring of integers in the completion of the maximal unramified extension of E. Let (Sch/OĔ) be
the category of OĔ-schemes S such that the ideal sheaf πOS is locally nilpotent.

Definition 2.6.1. We set h = 0 if K/F is ramified, and h = 1 if K/F is unramified.
We define a functorMK/F,r on (Sch/OĔ). A point ofMK/F,r(S) consists of an isomorphism

class of the following data:
(1) Two local CM-pairs (X0, ι0), (X1, ι1) of CM-type r over S which satisfy the Eisenstein
conditions (ECr) relative to a fixed uniformizer π of F and the Kottwitz condition (KCr).
(2) Two isogenies of p-divisible OK-modules

X0 −→ X1 −→ X0,

which have both height 2fh and such that the composite is ι0(π)h idX0
.
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(3) An isomorphism of p-divisible OK-modules

κ : X1
∼−→ X∧0 .

We require that the composite λ : X0 −→ X1
∼−→ X∧0 is a polarization of X0, i.e., this map

is anti-symmetric, and that this polarization is principal when K/F is ramified, and almost
principal when K/F is unramified.3

(4) A quasi-isogeny of height zero of p-divisible OK-modules

ρX : X0 ×S S̄ −→ X×Spec κ̄E S̄,

such that the pullback quasi-isogeny ρ∗(λX) differs from λ|X0×SS by a scalar in F×, locally on
S. Here S = S ⊗OĔ κ̄E . We call ρX a framing.

We denote the data above simply by (X, ι, λ, ρ). Another datum (X ′, λ′, ρ′) defines the same
point of MK/F,r(S) iff there are OK-isomorphisms X0

∼−→ X ′0 and X1
∼−→ X ′1 which commute

with the data (2) and (4) above. This implies that the isomorphism X0
∼−→ X ′0 respects the

polarizations up to a factor in O×F .
To ease the notation we writeMr =MK/F,r. If R is a p-adic OĔ-algebra we setMr(R) =

lim←−n Mr(SpecR/pnR).
It follows by the methods of [29] thatMr is representable by a formal scheme which is locally

formally of finite type over Spf OĔ . Let J be the algebraic group over Qp of unitary K-linear
quasi-automorphisms of (X, ιX, λX) which preserve the polarization up to a scalar in Q×p . Let J1

denote the derived group of J . Then J1(Qp) acts on the functorMr by changing the framing. It
follows from (i) in subsection 2.5 that J1 can be identified with ResF/Qp(SU), where SU denotes
the quasi-split special unitary group in two variables over F . Note that SU is isomorphic to
SL2/F .

The first main result in the local case can now be stated as follows.

Theorem 2.6.2. Let r be special. Then the functor MK/F,r is represented by Ω̂F ⊗̂OF ,ϕ0
OĔ.

More precisely, there exists a unique isomorphism of formal schemes

MK/F,r ' Ω̂F ⊗̂OF ,ϕ0
OĔ ,

which is equivariant with respect to a fixed identification J1(Qp) ' SL2(F ). In particular,
MK/F,r is flat over Spf OĔ with semi-stable reduction.

Now let r be banal. Fix a local CM-triple (X, ιX, λX) over k as in (ii) a) or (ii) b) in subsection
2.5. We write the height of λX as 2fh, where h ∈ {0, 1}. We assume that h = 0 when r is
banal split, or when r is banal and K/F is a ramified field extension. Recall from from (ii)
a) in subsection 2.5 that, when r is non-split, there is a anti-hermitian space C = C(X, ιX, λX)
attached to (X, ιX, λX). By Proposition 4.5.14, the framing object (X, ιX, λX) is uniquely defined
up to isogeny by the r-adjusted invariant invr(X, ιX, λX) = inv(C) ∈ {±1} (see Proposition 8.3.6
for this last identity). To make our statements uniform, we set invr(X, ιX, λX) = 1 in the banal
split case.

We may now define a variant for banal r of the functor MK/F,r of Definition 2.6.1. Since
the functor depends not only on K/F but also on invr(X, ιX, λX), we denote this functor by
MK/F,r,ε, where invr(X, ιX, λX) = ε. When r is banal split, we have ε = 1; when r is banal
non-split and K/F is unramified, then ε = (−1)h, cf. Proposition 4.5.14.

Let S ∈ (Sch/OĔ). A point of MK/F,r,ε(S) consists of an isomorphism class of exactly the
same data as in Definition 2.6.1.

Theorem 2.6.3. Let r be banal, and let ε ∈ {±1}. The formal schemeMK/F,r,ε is isomorphic
to (Spf OĔ) × (J(Qp)o/CM ), where J(Qp)o denotes the subgroup of elements of J(Qp) which
preserve the polarization up to a scalar in Z×p . More precisely, there exists a unique isomorphism
of formal schemes

MK/F,r,ε ' (Spf OĔ)× (J(Qp)o/CM ),

3It can be proved that, when K/F is unramified, the fact that Kerλ ⊂ X0[π] follows automatically from the
assumption that deg λ = p2f , cf. Proposition 5.3.7. We impose the condition Kerλ ⊂ X0[π] in order to make
transparent that the moduli problemMK/F,r is of the kind considered in [29].
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which is equivariant for the action of J(Qp)o. In particular, MK/F,r,ε is formally étale over
Spf OĔ.

Here, when r is non-split, J(Qp)o can be identified with the group of K-linear automorphisms
of C = C(X, ιX, λX) preserving the anti-hermitian form up to a factor in Z×p , and CM is the
stabilizer in J(Qp)o of a lattice M in C which is self-dual when h = 0 and almost self-dual
when h = 1. When r is split, then J(Qp)o/CM can be identified with the set of lattices in the
two-dimensional standard F -vector space of dimension 2.

In the later part of the paper, we write simply J(Qp)o/CM for the formal scheme (Spf OĔ)×
(J(Qp)o/CM ) over Spf OĔ .

3. Background on Display Theory

In this section, K/Qp is an arbitrary finite field extension with ring of integers O = OK ,
and NilpO will denote the category of O-algebras R such that p is nilpotent in R. We recall
the classification of strict formal p-divisible O-modules over R ∈ NilpO proved in [1]. A main
ingredient is the Ahsendorf functor, which we present in a new form which is better suited for
our applications.

3.1. Displays. We fix a prime element π ∈ O. We denote by q the number of elements in the
residue class field κ of O.

Definition 3.1.1. ([1, Def. 3.1], [22], [36]) Let R be an O-algebra. A frame F for R consists of
the following data:
(1) An O-algebra S and a surjective O-algebra homomorphism S → R. We denote the kernel

by I.
(2) An O-algebra endomorphism σ : S → S.
(3) A σ-linear map of S-modules σ̇ : I → S.
The following conditions are required.
(i) I + pS is contained in the radical of S.
(ii) σ(s) ≡ sq mod πS for all s ∈ S.
(iii) σ̇(I) generates S as an S-module.

We will denote a frame by F = (S, I,R, σ, σ̇) and we will sometimes make the identification
S/I = R.

A morphism of O-frames α : F = (S, I,R, σ, σ̇) −→ F ′ = (S′, I ′, R′, σ′, σ̇′) is an O-algebra
homomorphism α : S −→ S′ such that α(I) ⊂ I ′ and such that

σ̇′(α(a)) = α(σ̇(a)), a ∈ I.
The last equation implies that

σ′(α(s)) = α(σ(s)), s ∈ S.
Let F = (S, I,R, σ, σ̇) be an O-frame. Then there exists a unique element θ ∈ S in the radical

of S such that
σ(a) = θσ̇(a), for all a ∈ I, (3.1.1)

cf. [1, Lem. 3.2]. In the frames below we have θ = π.

Example 3.1.2. Let R be a p-adic O-algebra. Then the Witt ring WO(R) relative to O with
respect to the chosen uniformizer π ∈ O is a p-adic O-algebra. The Witt polynomials relative to
O

wO,n = Xqn

0 + πXqn−1

1 + π2Xqn−2

2 + . . .+ πn−1Xq
n−1 + πnXn,

define O-algebra homomorphisms wO,n : WO(R) −→ R. We denote by F and V the Frobenius
and the Verschiebung acting on WO(R), cf. [11]. In the case where k = R is a perfect field, the
ring WO(k) is the complete discrete valuation with residue class field k which is unramified over
O.

The Witt frame relative to O for R is the O-frame defined as

WO(R) = (WO(R), V WO(R), R, σ, σ̇). (3.1.2)



ON THE p-ADIC UNIFORMIZATION OF UNITARY SHIMURA CURVES 21

Here σ = F : WO(R) −→ WO(R) is the Frobenius endomorphism written as σ(ξ) = F ξ, and
σ̇(Vξ) = ξ, for ξ ∈WO(R). We use also the notation Ḟ := σ̇ and IO(R) = VWO(R). If K = Qp
and π = p, we obtain the classical ring of Witt vectors W (R) = WZp(R). We write W(R) for
the Zp-frame WZp(R).

Example 3.1.3. Let S −→ R be a surjective homomorphism of p-adic O-algebras. We assume
that the kernel a is endowed with divided powers relative to O ([1], 1.2.2). They make sense out
of the expression ′′aq/π′′. We also call this an O-pd-thickening. We denote by a[Fn] the ideal a
considered as an WO(S)-module via restriction of scalars relative to wO,n : WO(S) −→ S. The
divided powers give rise to divided Witt polynomials ẇO,n. They are homomorphisms of WO(S)-
modules ẇO,n : WO(a) −→ a[Fn] such that πnẇO,n = wO,n. They give rise to an isomorphism
of WO(S)-modules ∏

n≥0

ẇO,n : WO(a)
∼−→
∏
n≥0

a[Fn],

cf. [1], 1.2.2. The inverse image in WO(a) of an element [a, 0, 0, . . .] from the right hand side
is called the logarithmic Teichmüller representative of a ∈ a. The logarithmic Teichmüller
representatives of elements of a form an ideal ã ⊂WO(S). The ideal J = ã⊕ IO(S) is the kernel
of the composition

WO(S)
wO,0−→ S −→ R.

Then Ḟ : IO(S) −→ WO(S) extends uniquely to a F -linear homomorphism Ḟ : J −→ WO(S)

such that Ḟ (ã) = 0. We define the relative Witt frame for S −→ R as

WO(S/R) = (WO(S),J , R, F, Ḟ ). (3.1.3)

This is an O-frame. Later we use the more precise notation

IO(S/R) = J = WO(a) + IO(S).

Definition 3.1.4 ([1], Def. 3.3). Let F = (S, I,R, σ, σ̇) be an O-frame. An F-display P =

(P,Q, F, Ḟ ) consists of the following data: a finitely generated projective S-module P , a sub-
module Q ⊂ P , and two σ-linear maps

F : P −→ P, Ḟ : Q −→ P.

The following conditions are required.
(i) IP ⊂ Q.
(ii) The factor module P/Q is a finitely generated projective R-module.
(iii) The following relation holds for a ∈ I and x ∈ P ,

Ḟ (ax) = σ̇(a)F (x).

(iv) Ḟ (Q) generates P as an S-module.
(v) The projective R-module LieP = P/Q lifts to a finitely generated projective S-module. It

is called the Lie algebra of P.

If the rank of LieP is constant, we call it the dimension of P. If the S-module P is of constant
rank, we call it the height of P. If we want to be precise, we say F-height.
F-displays form a category in the obvious way. In the case O = Zp and F = W(R) for a

p-adic ring R, we speak simply of a display over R. Displays for general frames F were originally
called F-windows, cf. [1, Def. 3.3]. We note that for the O-frames WO(R), the condition (v) of
Definition 3.1.4 is automatically satisfied, cf. [35, Lem. 2].

Example 3.1.5. For each O-frame F = (S, I,R, σ, σ̇) we have the multiplicative F-display

Pm = Pm,F = (S, I, σ, σ̇).

Example 3.1.6. Let P be an F-display. Let ε ∈ S be a unit. The display

P(ε) = (P,Q, εF, εḞ ).

is called the twist of P by ε.
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Recall the element θ from (3.1.1). The conditions in Definition 3.1.4 imply that

F (y) = θḞ (y), y ∈ Q. (3.1.4)

We can always find a direct sum decomposition P = T ⊕ L such that Q = IT ⊕ L. Such a
decomposition is called a normal decomposition of P . The σ-linear homomorphism

Φ := F|T ⊕ Ḟ|L : T ⊕ L −→ P (3.1.5)

is a σ-linear isomorphism, i.e., (3.1.5) corresponds to the linearization isomorphism,

F ] ⊕ Ḟ ] : (S ⊗σ,S T )⊕ (S ⊗σ,S L)
∼−→ P. (3.1.6)

Conversely, an arbitrary σ-linear isomorphism (3.1.5) defines an F-display in the obvious way.
For each display P there is a homomorphism of S-modules ([1, Def. 3.3])

V ] : P −→ S ⊗σ,S P (3.1.7)

which is uniquely determined by

V ](sḞ y) = s⊗ y, V ](Fx) = θ ⊗ x, x ∈ P, y ∈ Q, s ∈ S.

We have
V ] ◦ F ] = θ idS⊗σ,SP , F ] ◦ V ] = θ idP .

Any morphism of O-frames α : F −→ F ′ defines a base change functor α∗ from the category
of F-displays to the category of F ′-displays as follows, cf. [1, Def. 3.8]. Let P be an F-display.
Then we define α∗(P) = P ′ = (P ′, Q′, F ′, Ḟ ′) as follows:

P ′ = S′ ⊗S P, Q′ = Ker
(
S′ ⊗S P −→ R′ ⊗R (P/Q)

)
, F ′ = σ′ ⊗ F : P ′ −→ P ′. (3.1.8)

Here Q′ is the image of I ′ ⊗S P ⊕ S′ ⊗S Q → S′ ⊗S P . The map Ḟ ′ : Q′ → P ′ is uniquely
determined by

Ḟ ′(ξ ⊗ x) = σ̇′(ξ)⊗ F (x), Ḟ ′(η ⊗ y) = σ′(η)⊗ Ḟ (y), for ξ ∈ I ′, η ∈ S′, x ∈ P, y ∈ Q.

If P is given in terms of a normal decomposition (3.1.5), we obtain P ′ from the σ′-linear extension
of Φ,

Φ′ : (S′ ⊗S T )⊕ (S′ ⊗S L) −→ P ′.

Example 3.1.7. The base change of the multiplicative display for the frame F under α : F −→
F ′ is the multiplicative display for F ′.

If R is a perfect ring of characteristic p with an O-algebra structure, the category of WO(R)-
displays is equivalent to the more classical category of Dieudonné modules. We describe this
equivalence in its natural generality.

Definition 3.1.8. (a) A perfect O-frame is an O-frame F = (S, I,R, σ, σ̇) such that σ : S −→ S
is bijective.

Let F = (S, I,R, σ, σ̇) be a perfect O-frame. It follows from (3.1.1) and Definition 3.1.1 that
σ̇ : I → S is bijective. Let u ∈ I such that σ̇(u) = 1. Again by (3.1.1) we obtain σ(u) = θ. One
can see that the elements u and θ are non zero divisors in S.
(b) A Dieudonné module (M,F, V ) for the perfect O-frame F consists of a finitely generated
projective S-module M and two additive maps F : M −→ M , V : M −→ M such that the
following conditions are satisfied.

(i) F (sx) = σ(s)F (x), V (sx) = σ−1(s)V (x), x ∈ P, s ∈ S.
(ii) F ◦ V = θ idM , V ◦ F = u idM .

(iii) The R-module M/VM is projective and lifts to a finitely generated projective S-module.

If R is a perfect O-algebra, then F = WO(R) is a perfect O-frame and we have u = V1 =
π = θ.

Proposition 3.1.9. Let F = (S, I,R, σ, σ̇) be a perfect O-frame. Let u, θ ∈ S as defined above.
Then the category of Dieudonné modules for F is equivalent to the category of F-displays.
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Proof. Let (M,F, V ) be a Dieudonné module. Since u and θ are not zero divisors, the maps
F : M −→M and V : M −→M are injective. Therefore we can define a display (P,Q, F, Ḟ ) by
setting

P = M, Q = VM, F = F, Ḟ = V −1.

Conversely, let (P,Q, F, Ḟ ) be a display. We set (M,F ) := (P, F ). We have the bijective map

ν : S ⊗σ,S P −→ P, ν(s⊗ x) := σ−1(s)x.

Then we define V = ν ◦ V ]. More explicitly, we have

V (sḞ (y)) = σ−1(s)y, y ∈ Q, s ∈ S.

This implies that V (P ) = Q. Moreover, we obtain

FV (sḞ y) = F (σ−1(s)y) = sF (y) = θsḞ y

V F (x) = V (Ḟ (ux)) = ux.

Therefore (M,F, V ) is a Dieudonné module. �

In our basic example F = WO(R) for a perfect O-algebra R, we can replace the condition
(iii) above by the weaker condition that M/VM is a projective R-module. We note that for this
frame F ◦ V = π idM , V ◦ F = π idM .

We refer to [1, Def. 3.3] or [37] for the definition of a nilpotent F-display. If R is a perfect O-
algebra, a WO(R)-display is nilpotent iff for the corresponding Dieudonné module (M,F, V ) the
endomorphism V of M/πM is nilpotent. For an arbitrary O-algebra R such that π is nilpotent
in R, a WO(R)-display P is nilpotent iff for any homomorphism of O-algebras to a perfect field
R −→ k, the base change of P by the morphism of frames WO(R) −→WO(k) is nilpotent.

Definition 3.1.10. Let R be an O-algebra. Let X be a p-divisible group over R endowed with
a Zp-algebra homomorphism ι : O −→ EndX. We call the action ι strict if the induced action
on LieX coincides with the O-action on this R-module given by restriction of scalars O −→ R.
We say that (X, ι) is a strict p-divisible O-module.

The following main result of [1] was known before for O = Zp [35], [23].

Theorem 3.1.11 ([1], Thm. 1.1). Let R ∈ NilpO. There is an equivalence of categories(
nilpotent WO(R)-displays

)
−→

(
strict formal p-divisible O-modules over R

)
which is functorial in R.

The theorem extends to p-adic R if we require the properties ”nilpotent” and ”formal” only
after base change to R/pR.

A nilpotent WO(R)-display gives rise to a crystal, as follows. Let S −→ R be a O-pd-
thickening, cf. Example 3.1.3. We assume that p is nilpotent in S. The ring homomorphism
WO(S) −→WO(R) defines morphisms of O-frames,

WO(S) −→WO(S/R) −→WO(R).

The base change of displays with respect to the first arrow goes as follows. Let P = (P,Q, F, Ḟ )

be a WO(S)-display and let P ′ = (P ′, Q′, F ′, Ḟ ′) be the WO(S/R)-display obtained by the base
change functor defined before Example 3.1.7. Explicitly, it is given as follows: P ′ = P , and
Q′ = Q + JP = Q ⊕ ã, and F ′ = F , and Ḟ ′|Q = Ḟ , and Ḟ ′(ax) = 0 for a ∈ ā. Note that the
last equation is necessary because Ḟ ′(ax) = Ḟ (a)F ′(x) = 0, since Ḟ (a) = 0 by the definition of
(3.1.3).

Theorem 3.1.12 ([22], [35]). Let S −→ R be an O-pd-thickening such that p is nilpotent in S.
The base change functor(

nilpotent WO(S/R)-displays
)
−→

(
nilpotent WO(R)-displays

)
is an equivalence of categories. �
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Remark 3.1.13. In the case O = Zp, Lau [21] has defined a functor(
p-divisible groups over R

)
→
(
W(S/R)-displays

)
(3.1.9)

which gives a quasi-inverse of the functor in Theorem 3.1.12, when restricted to formal p-divisible
groups. In particular this functor associates to an arbitrary p-divisible group over R a display.

Let P be a nilpotent WO(R)-display. Let P̃ be the unique WO(S/R)-display associated to P
by Theorem 3.1.12. Then we set

DP(S) = P̃ /IO(S)P̃ . (3.1.10)
This is a finitely generated projective S-module. It is a crystal in the following sense. If S′ −→ R
is a another O-pd-thickening such that p in nilpotent in S′ and S′ −→ S is a morphism of O-pd-
thickenings, then there is a canonical isomorphism

S ⊗S′ DP(S′) ∼= DP(S).

This crystal corresponds to the Grothendieck-Messing crystal of a p-divisible group via Theorem
3.1.11. From Theorem 3.1.12 one obtains the Grothendieck-Messing criterion for displays in the
following formulation.

Corollary 3.1.14. Let P be a nilpotent WO(R)-display. Let S −→ R be an O-pd-thickening.
Each WO(S)-display P̃ which lifts P defines a lifting F̃il := Q̃/IO(S)P̃ ⊂ DP(S) of the Hodge
filtration Fil := Q/IO(R)P ⊂ DP(R).

For a fixed O-pd-thickening S −→ R, consider the category of pairs (P, F̃il), where P is a
nilpotent display and F̃il ⊂ DP(S) is a lifting of the Hodge filtration associated to P. The functor
which maps a pair (P, P̃) to the pair (P, F̃il) is an equivalence of categories. �

Proof. Let P ′ the uniqueWO(S/R)-display which corresponds to P by Theorem 3.1.12. We note
that P = WO(R) ⊗WO(S) P

′ by definition of the base change. A lifting of the Hodge-filtration
P → P/Q = P ′/Q′ corresponds to a WO(S)-module Q̃ such that P ′ ⊃ Q̃ ⊃ IO(S)P ′. Since
Q̃ ⊂ Q′, we obtain a WO(S)-display P̃ by restricting Ḟ ′ to Q̃, i.e., P̃ = (P ′, Q̃, F ′, Ḟ ′). From
this the equivalence of categories follows. �

The following fact is well-known, but we give a proof.

Lemma 3.1.15. Let R be a p-adic O-algebra. Let P be a WO(R)-display. Let Õ be a discrete
valuation ring which is a finite extension of O. Let

Õ −→ EndP,
be an O-algebra homomorphism. Then P is a locally on SpecR a free Õ ⊗O WO(R)-module.

Let S −→ R be an O-pd-thickening such that p is nilpotent in S. We assume that P is
nilpotent. Then DP(S) is locally on SpecS a free Õ ⊗Zp S-module.

Proof. We start with the case where S = R = k is a perfect field which contains the residue
class field of Õ. Let Õt be the maximal unramified extension of O contained in Õ. Let σ be the
Frobenius automorphism of Õt relative to O. To each O-algebra homomorphism ψ : Õt −→ k
there is a unique Frobenius equivariant O-algebra homomorphism

ψ̃ : Õt −→WO(k)

which induces ψ when composed with wO,0 : WO(k) −→ k. This follows from the remark after
the definition of WO(R), cf. Example 3.1.2. The decomposition

Õ ⊗O WO(k) =
∏
ψ

Õ ⊗Õt,ψ̃ WO(k)

induces a decomposition
P = ⊕ψPψ.

Each Pψ is a free module over the discrete valuation ring Õ ⊗Õt,ψ̃ WO(k). The Frobenius
F : P −→ P induces maps Pψ −→ Pψσ. This shows that all Pψ have the same rank as WO(k)-
modules. This proves the case where R = k is a perfect field containing the residue class field of
Õ.
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Now let k be an arbitrary field of characteristic p. It suffices to show that P ⊗WO(k) k is a
free Õ ⊗O k-module. By base change α : k −→ k̄ this follows from the previous case because
P ⊗WO(k) k̄ = α∗(P )⊗ k̄ is a free Õ ⊗O k̄-module.

If R is a local ring with residue class field of characteristic p we conclude by Nakayama’s lemma
that P ⊗WO(R)R is a free Õ⊗OR-module. The generalization to arbitrary R is immediate. This
proves the first assertion of the Lemma.

If P is nilpotent, the crystal DP is defined. The case DP(R) = P/IO(R)P was proved above.
For arbitrary S −→ R we can apply again Nakayama’s lemma. �

Remark 3.1.16. Let R be a ring such that p is nilpotent in R. Let X be a p-divisible group
over R with a ring homomorphism

O −→ EndX.

Let S −→ R be a nilpotent pd-thickening. Then the value of the Grothendieck-Messing crystal
DX(S) is locally on SpecS a free O ⊗Zp S-module. This can be shown by the same arguments
as above.

Finally we discuss isogenies of WO(R)-displays, where R is an O-algebra such that p is nilpo-
tent in R. We assume moreover that SpecR is connected. Let α : P1 −→ P2 be a morphism
of displays of the same height and dimension, cf. the remark after Definition 3.1.4. Locally on
SpecR the WO(R)-modules P1 and P2 are free of the same rank. We may choose a basis in each
of these modules and write detα ∈WO(R). This is locally defined up to a unit in WO(R). More
invariantly one can write exterior powers.

Definition 3.1.17. A morphism of WO(R)-displays of the same height and dimension α :
P1 −→ P2 is called an isogeny if detα 6= 0.

Proposition 3.1.18 ([37], Prop. 17.6.2.). Let R be an O-algebra such that p is nilpotent in R
and such that SpecR is connected. Let α : P1 −→ P2 be an isogeny of WO(R)-displays. Then
there exists a natural number h ∈ Z≥0 such that locally on SpecR

detα = πhε, ε ∈WO(R)×.

�

We call h the O-height of α, and write h = heightO α. If O = Zp, we write simply heightα.
An abbreviation for the Proposition is:

heightO α = ordπ detα.

Proposition 3.1.19 ([37], Prop. 17.6.4.). Assume that the ideal of nilpotent elements in R is
nilpotent and that SpecR is connected. Let α : P1 −→ P2 be an isogeny of O-height h. Then
there exists locally on SpecR a morphism of WO(R)-displays β : P2 −→ P1 such that

β ◦ α = πh idP1
, α ◦ β = πh idP2

.

�

Proposition 3.1.20. With the assumptions of Proposition 3.1.18, let a : X1 −→ X2 be a
morphism of strict formal p-divisible O-modules over R. Let α : P1 −→ P2 be the induced
morphism of the associated WO(R)-displays, cf. Theorem 3.1.11. The morphism a is an isogeny
of height h if and only if α is an isogeny of height h.

Proof. This can be reduced to the case of a perfect field R = k where it is well-known by
Dieudonné theory. �

Let R be an O-algebra and let a : X1 −→ X2 be a morphism of strict formal p-divisible O-
modules. By Theorem 3.1.11, there is an associated morphism α : P1 −→ P2 ofWO(R)-displays.
We set

heightO a = heightO α, heightOX1 = heightWO(R) P1. (3.1.11)
The last height was defined after Definition 3.1.4. It is equal to the O-height of the endomorphism
of P1 given by multiplication by π. We also write

heightO P1 = heightO(π|P1) = heightWO(R) P1.
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3.2. Bilinear forms of displays. Let F = (S, I,R, σ, σ̇) be an O-frame and let θ ∈ S be the
element from (3.1.1).

Definition 3.2.1. Let P1,P2,P be F-displays. A bilinear form of F-displays
β : P1 × P2 −→ P

is a bilinear form of S-modules
β : P1 × P2 −→ P (3.2.1)

with the following properties:
(i) The restriction of β to Q1 ×Q2 takes values in Q.
(ii) For y1 ∈ Q1 and y2 ∈ Q2,

Ḟ β(y1, y2) = β(Ḟ1y1, Ḟ2y2).

We will denote the O-module of all bilinear forms by

Bil(P1 × P2,P).

Lemma 3.2.2. The following equations hold

Fβ(x1, y2) = β(F1x1, Ḟ2y2), x1 ∈ P1, y2 ∈ Q2,

Fβ(y1, x2) = β(Ḟ1y1, F2x2), y1 ∈ Q1, x2 ∈ P2,

θFβ(x1, x2) = β(F1x1, F2x2), x1 ∈ P1, x2 ∈ P2.

Proof. We omit the verification which is, for classical displays, contained in [35]. �

Let R be a perfect O-algebra and let F = WO(R). Then we may equivalently consider
Dieudonné modules (P, F, V ) and (Pi, Fi, Vi) for i = 1, 2, cf. Proposition 3.1.9. We can reformu-
late the Definition 3.2.1 as follows: A bilinear form of Dieudonné modules is a bilinear form of
WO(R)-modules β : P1 × P2 −→ P such that

β(V1x1, V2x2) = V β(x1, x2). (3.2.2)

Proposition 3.2.3. Let β : P1 × P2 −→ P be a bilinear form of F-displays. Let α : F −→ F ′
be a morphism of frames. Denote by P ′1, P ′2, and P ′ the displays obtained by base change with
respect to α. Because P ′i = S′ ⊗S Pi, and P ′ = S′ ⊗S P , there is an induced S′-bilinear form
β′ : P ′1 × P ′2 −→ P ′. This is a bilinear form of F ′-displays

P ′1 × P ′2 −→ P ′.

Proof. We omit the straightforward verification. �

Let P = (P,Q, F, Ḟ ) be an F-display. We are going to define the dual F-display P∨ =

(P∨, Q∨, F∨, Ḟ∨). For an S-module M , we define M∗ = HomS(M,S). We set P∨ := P ∗, and

Q∨ = {ψ ∈ P∨ | ψ(Q) ⊂ I}.
We note that we have a natural perfect pairing

P/IP × P∨/IP∨ −→ R.

We deduce that Q∨/IP∨ is the orthogonal complement of Q/IP and is therefore a direct sum-
mand of P/IP . We claim that there are σ-linear maps

F∨ : P∨ −→ P∨, Ḟ∨ : Q∨ −→ P∨

which are uniquely determined by the following conditions. We denote by < , > : P ×P∨ −→ S
the natural perfect pairing. Then we require for x ∈ P, y ∈ Q,φ ∈ P∨, ψ ∈ Q∨:

< Ḟ (y), F∨(φ) > = σ(< y, φ >), < F (x), F∨(φ) > = θσ(< x, φ >),

< Ḟ (y), Ḟ∨(ψ) > = σ̇(< y,ψ >), < F (x), Ḟ∨(ψ) > = σ(< x,ψ >).
(3.2.3)

Since Ḟ is a σ-linear surjection, the maps F∨ and Ḟ∨ are uniquely determined by these identities.
To verify the existence of these maps, we consider a normal decomposition,

P = T ⊕ L.
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Let L∨ ⊂ P∨ be the orthogonal complement of L and T∨ ⊂ P∨ the orthogonal complement of
T . Hence there are canonical isomorphisms

L∨ ∼= T ∗, T∨ ∼= L∗.

We obtain the normal decomposition

P∨ = T∨ ⊕ L∨, Q∨ = IT∨ ⊕ L∨.

For ψ ∈ L∨ = T ∗, we set

Ḟ∨(ψ)(Ḟ (`)) = 0, Ḟ∨(ψ)(Ḟ (t)) = σ(ψ(t)), ` ∈ L, t ∈ T.

This definition makes sense because of the linearization isomorphism (3.1.6). Finally, we define
F∨(φ) for φ ∈ T∨ = L∗ by the equations

F∨(φ)(Ḟ (`)) = σ(φ(`)), F∨(φ)(F (t)) = 0.

One verifies that, with these definitions, the identities (3.2.3) are satisfied. It follows from the
symmetry of the equations (3.2.3) that we have a natural isomorphism

P ∼= (P∨)∨.

By the equations (3.2.3) we have a natural bilinear form of displays

P × P∨ −→ Pm (3.2.4)

with values in the multiplicative display Pm = Pm,F . If P ′ is another F-display, the bilinear
form (3.2.4) induces an isomorphism

HomF-displays(P ′,P∨)
∼−→ Bil(P ′ × P,Pm). (3.2.5)

We deduce a variant of the Grothendieck-Messing criterion. Let P and P ′ beWO(R)-displays
such that P∨ and P ′ are nilpotent. Let S −→ R be a O-pd-thickening in NilpO, cf. Example
3.1.3. We denote by P∨rel and P ′rel the associated WO(S/R)-displays, which exist by Theorem
3.1.12. We define Prel = (P∨rel)

∨, where the last ∨ denotes the dual in the category ofWO(S/R)-
displays. We set DP(S) = Prel/I(S)Prel. Then we obtain a crystal which is dual to the crystal
DP∨(S), cf. (3.1.10). This crystal agrees with DP(S) defined earlier, if P is nilpotent. It follows
form (3.2.5) that each bilinear from

β : P ′ × P −→ Pm,WO(R) (3.2.6)

induces a bilinear form
βrel : P ′rel × Prel −→ Pm,WO(S/R)

and, in particular, a S-bilinear form

βcrys : DP′(S)× DP(S) −→ S. (3.2.7)

Proposition 3.2.4. Let R ∈ NilpO and let S −→ R be an O-pd-thickening in NilpO. Let
P and P ′ be WO(R)-displays and assume that P∨ and P ′ are nilpotent. Let P̃ and P̃ ′ be
liftings which correspond to liftings of the Hodge filtrations F̃il ⊂ DP(S) and F̃il

′
⊂ DP′(S),

cf. Corollary 3.1.14. Then a bilinear form β : P ′ × P −→ Pm,WO(R) lifts to a bilinear form
β̃ : P̃ ′ × P̃ −→ Pm,WO(S) iff

βcrys(F̃il
′
, F̃il) = 0.

�

Proof. This is a consequence of Corollary 3.1.14 and (3.2.5). �

We go back to an arbitrary O-frame F and add a remark on the map V ], cf. (3.1.7). If P
is an S-module we set P (σ) = S ⊗σ,S P . If P is projective and finitely generated, the perfect
pairing < , > induces a perfect pairing

< , >(σ): P
(σ) × (P ∗)(σ) −→S

(s1 ⊗ x, s2 ⊗ φ) 7−→s1s2σ(φ(x)).



28 STEPHEN KUDLA, MICHAEL RAPOPORT, AND THOMAS ZINK

Let P be an F-display and let P∨ be the dual display. The maps (F∨)] and V ] are dual in the
following sense

< V ]x, s⊗ φ >(σ)=< x, (F∨)](s⊗ φ) > .

Definition 3.2.5. A polarization of an F-display P is a bilinear form

β : P × P −→ Pm,F
such that the underlying bilinear form P×P −→ S is alternating and its determinant is non-zero.

If F = WO(R), the height of β is the height of the associated isogeny P −→ P∨ (cf. Propo-
sition 3.1.18). We write heightO β for the height of β. Then we have heightO β = ordπ detβ in
the notation of Proposition 3.1.18. The polarization is called principal if heightO(β) = 0.

Remark 3.2.6. Let X be a strict formal p-divisible O-module over R ∈ NilpO. Let P be the
WO(R)-display of X in the sense of Theorem 3.1.11. If the dual display P∨ is nilpotent, it
corresponds to a strict formal p-divisible O-module X∨, called the O-dual of X. In this case, a
polarization is given by an anti-symmetric O-module homomorphism X −→ X∨.

3.3. The Ahsendorf functor. We will give here an alternative definition of the Ahsendorf
functor of [1] which is better suited to our purposes. One step of this definition is contained in
the Appendix of [24]. We use a Lubin-Tate frame introduced by Mihatsch in loc. cit., but for us
it will be important to make a specific choice, cf. Definition 3.3.8.

Let Qp ⊂ k ⊂ K be a subfield. We denote by o the ring of integers in k. We fix a prime
element $ ∈ o. If R is an o-algebra we denote by Wo(R) the Witt vectors relative to o and $.
The Frobenius and the Verschiebung will be denoted by f and v. We set [K : k] = ef where e is
the ramification index and f is the inertia index. Beginning with section 4 we will only consider
the case where k = Qp.

For an O-algebra R we have the Drinfeld homomorphism

µ : Wo(R) −→WO(R), (3.3.1)

cf. [11, Prop. 1.2]. It is functorial in R and satisfies wO,n(µ(ξ)) = wo,fn(ξ), for ξ ∈ Wo(R).
This implies the following properties:

µ( ff ξ) = Fµ(ξ), µ( vξ) =
$

π
V (µ( ff−1

ξ)), µ([u]) = [u], (3.3.2)

for ξ ∈ Wo(R), u ∈ R. The last equation says that the Teichmüller representative [u] ∈ Wo(R),
is mapped by µ to the Teichmüller representative [u] ∈WO(R).

We have µ(Io(R)) ⊂ IO(R). Therefore we may rewrite the second equation of (3.3.2) as
Ḟ (µ(η)) =

$

π
µ( ff−1 ḟη), η ∈ Io(R). (3.3.3)

The following definition extends Definition 3.1.10 to the relative case.

Definition 3.3.1. Let F = (S, I,R, σ, σ̇) be an o-frame, where R is a p-adic O-algebra. Let
P = (P,Q, F, Ḟ ) be an F-display. A strict O-action on P is a homomorphism of o-algebras
O −→ EndP such that the induced action on the R-module P/Q coincides with the O-module
structure on P/Q obtained by restriction of scalars O −→ R.

For a p-adic O-algebra R we will define a functor

AO/o,R :

(
Wo(R)-displays
with strict O-action

)
−→

(
WO(R)-displays

)
. (3.3.4)

We call this functor the Ahsendorf functor. The image of a Wo(R)-display P as in Definition
3.3.1 will be denoted by Pa = AO/o,R(P). The main theorem on the Ahsendorf functor is:

Theorem 3.3.2. Let R be an O-algebra such that p is nilpotent in R. The Ahsendorf functor
induces an equivalence of categories

AO/o,R :

(
nilpotent Wo(R)-displays
with strict O-action

)
−→

(
nilpotent WO(R)-displays

)
.

Furthermore, the Ahsendorf functor canonically associates to a bilinear form

β : P ′ × P ′′ −→ P (3.3.5)
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of Wo(R)-displays with a strict O-actions such that β is also O-bilinear, a bilinear form of
WO(R)-displays

P ′a × P ′′a −→ Pa.

Proof. The first statement is the main result of [1]. The second statement is shown in Proposition
3.3.15. �

Remark 3.3.3. By Theorem 3.3.2 we obtain a functor(
strict formal p-divisible O-modules over R

)
−→

(
WO(R)-displays

)
, (3.3.6)

which is defined as follows. By [21], [37] there is a functor from the first category to the category
of W(R)-displays with a strict O-action. Composing this with AO/Zp,R we obtain (3.3.6). In
particular this gives a quasi-inverse functor to the functor of Theorem 3.1.11.

We will now define the Ahsendorf functor. We denote by Kt ⊂ K the maximal subextension
which is unramified over k. Let Ot be the ring of integers of Kt. We consider the Witt vectors
WOt(R) with respect to the prime element $ ∈ Ot. The Frobenius resp. the Verschiebung
acting on WOt(R) will be denoted by F ′ and V ′. We will define AO/o,R as the composite of two
functors

AOt/o,R :

(
Wo(R)− displays
with strict O-action

)
−→

(
WOt(R)− displays
with strict O-action

)
,

AO/Ot,R :

(
WOt(R)− displays
with strict O-action

)
−→

(
WO(R)− displays

)
.

(3.3.7)

We begin with the definition of AOt/o,R.

Lemma 3.3.4. Let S be an O-algebra which has no π-torsion. Let τ : S −→ S be a O-algebra
homomorphism such that

τ(s) ≡ sq ( mod π).

Let u0, u1, . . . , un, . . . ∈ S. Then there exists ξ ∈WO(S) such that wO,n(ξ) = un for all n iff

τ(un−1) ≡ un mod πnS, for n ≥ 1.

The element ξ is uniquely determined.

Proof. The proof is up to obvious changes identical with the proof for the classical case O = Zp,
cf. [2, IX, §1, 2, Lemme 2]. �

We denote by σ ∈ Gal(Kt/k) the Frobenius automorphism. By Lemma 3.3.4, there is a
homomorphism λ : Ot −→ Wo(Ot), defined by wo,n(λ(a)) = σn(a) for a ∈ Ot and all n. We
obtain a ring homomorphism

κ : Ot
λ−→Wo(Ot) −→Wo(R). (3.3.8)

We introduce the Ahsendorf frame with respect to the unramified extension Ot/o for a p-adic
Ot-algebra R,

Ao(R) = (Wo(R), Io(R), R, ff , ff−1 ḟ). (3.3.9)
This is an Ot-frame via κ.

Let P = (P,Q, F, Ḟ ) be a Wo(R)-display with a strict O-action. We set

Pm = {x ∈ P | ι(a)x = κ(σm(a))x, for a ∈ Ot}, m ∈ Z/fZ.
The Wo(R)-module P decomposes as

P = ⊕m∈Z/fZPm. (3.3.10)

There is a similiar decomposition for Q. The maps F and Ḟ of P are graded of degree one,

F : Pm −→ Pm+1, Ḟ : Qm −→ Pm+1.

If the action ι is strict, we have Qm = Pm for m 6= 0. Then we define the Ao(R)-display Pua:

Pua = P0, Qua = Q0, Fua = Ḟ f−1F, Ḟua = Ḟ f . (3.3.11)

It is clear that O acts strictly on Pua.
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It follows from (3.3.2) that µ : Wo(R) −→WOt(R) induces a morphism of Ot-frames

µ : Ao(R) −→WOt(R). (3.3.12)

By base change we obtain from Pua a WOt(R)-display Pt = µ∗(Pua). The strict action of O
on Pua induces a strict action of O on Pt because the tangent space remains unchanged by this
base change.

Definition 3.3.5. The Ahsendorf functor AOt/o,R is the functor which associates to a Wo(R)-
display P with a strict O-action the WO(R)-display Pt defined above.

The Ahsendorf functor is compatible with bilinear forms as follows. Let β : P ′ × P ′′ −→ P
as in (3.3.5). Because β is Ot-bilinear, β induces for each m ∈ Z/fZ a pairing

β : P ′m × P ′′m −→ Pm,

and P ′i and P ′′j are orthogonal for i 6= j. For y′ ∈ Q′0 and y′′ ∈ Q′′0 we find

β((Ḟ ′)fy′, (Ḟ ′′)fy′′) = Ḟ fβ(y′, y′′).

Therefore the restriction of β,
βua : P ′0 × P ′′0 −→ P0

induces a bilinear form of Ao(R)-displays

P ′ua × P ′′ua −→ Pua.

Applying Proposition 3.2.3, we obtain a bilinear form in the category of WOt(R)-displays,

βt : P ′t × P ′′t −→ Pt. (3.3.13)

Now we define AO/Ot,R. First we introduce the Lubin-Tate frame. We choose a finite normal
extension L of Kt which contains K. We set Φ = HomKt-Alg(K,L). Let ϕ0 : K −→ L be the
identity embedding.

Let EK ∈ Ot[T ] be the Eisenstein polynomial of π ∈ O over Ot. In OL[T ] it decomposes as

EK(T ) =
∏
ϕ∈Φ

(T − ϕ(π)).

We set
EK,0(T ) =

∏
ϕ∈Φ,ϕ6=ϕ0

(T − ϕ(π)) ∈ OL[T ]

One sees easily that EK,0 ∈ O[T ]. We lift these polynomials via wOt,0 to the ring of Witt
vectors,

ẼK(T ) =
∏
ϕ∈Φ(T − [ϕ(π)]) ∈WOt(O

t)[T ],

ẼK,0(T ) =
∏
ϕ∈Φ,ϕ6=ϕ0

(T − [ϕ(π)]) ∈WOt(O)[T ].
(3.3.14)

The Frobenius F ′ and the Verschiebung V ′ act via the second factor on O⊗Ot WOt(R). We set

Ḟ ′ = (V ′)−1 : O ⊗Ot IOt(R) −→ O ⊗Ot WOt(R).

Proposition 3.3.6. The element

Ḟ ′(ẼK(π ⊗ 1)) ∈ O ⊗Ot WOt(O
t)

is a unit of the form

(
πe

$
⊗ 1)δ, δ ∈ O ⊗Ot WOt(O

t) (3.3.15)

such that δ − (1⊗ 1) lies in the kernel of

O ⊗Ot WOt(O
t) −→ O ⊗Ot WOt(κ),

and hence in the Jacobson radical of O ⊗Ot WOt(O
t).
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Proof. The element is defined because id⊗wOt,0 : O⊗OtWOt(O
t) −→ O maps ẼK(π⊗ 1) to 0.

In the following computation we pass to O ⊗Ot WOt(OL). We find from the definitions:
Ḟ ′(ẼK(π ⊗ 1)) = Ḟ ′(

∏
ϕ∈Φ

(π ⊗ 1− 1⊗ [ϕ(π)])

=
1

$

∏
ϕ∈Φ

(π ⊗ 1− 1⊗ [ϕ(π)q]) =
1

$

e∑
i=0

πe−i ⊗ F ′si.

(3.3.16)

Here we denote by si the elementary symmetric polynomial of degree i evaluated at the e
arguments [ϕ(π)]. By definition s0 = 1. We claim that for i > 0 the elements F ′si ∈ WOt(O

t)
are divisible by $. Clearly wOt,0(si) is divisible by π. On the other hand, wOt,0(si) ∈ Ot and
therefore is divisible by $. We find expressions in WOt(O

t),

si = [$ci] + V ′ξi, ci ∈ Ot, ξi ∈WOt(O
t).

Therefore F ′si = [$q][cqi ] +$ξi is divisible by $. Indeed, using Lemma 3.3.4, one shows as in
the proof of [35, Lem. 28] that $ divides [$q].

Now we may write the last term of (3.3.16) as

πe

$
⊗ 1 +

e∑
i=1

πe−i ⊗
F ′si
$

.

Finally,
F ′si
$ lies for i > 0 in the kernel of WOt(O

t) −→ WOt(κ). Indeed, the elements [ϕ(π)] ∈
WOt(OL) are mapped to zero in WOt(κL) and therefore a fortiori the symmetric functions si.
We conclude that si and then F ′si become zero in WOt(κ) for i > 0. Because $ is not a zero
divisor in WOt(κ) the elements

F ′si
$ are then also in the kernel. �

We write in the ring WO(O),
π − [π] = V ε. (3.3.17)

One checks that ε ∈WO(O) is a unit. If we apply F to the last equation, we obtain

π − [πq] = πε. (3.3.18)

In particular [πq] is divisible by π.

Lemma 3.3.7. The image of the element
(
Ḟ ′ẼK(π⊗ 1)

)−1 · F ′ẼK,0(π⊗ 1) under the Drinfeld
homomorphism

µ : O ⊗Ot WOt(O) −→WO(O)

equals ε−1($/π).

Proof. It is enough to show the same assertion for O⊗Ot WOt(OL) −→WO(OL). The image of
Ḟ ′ẼK(π⊗ 1) by the last map is $−1

∏
ϕ(π− [ϕ(π)q]). Here we used that $ is not a zero divisor

in the participating rings. Our assertion is equivalent to the equation

$−1
∏
ϕ

(π − [ϕ(π)q])ε−1$

π
=
∏
ϕ6=ϕ0

(π − [ϕ(π)q]).

But this is a consequence of (3.3.18). �

The free WOt(R)-module O ⊗Ot WOt(R) has the basis

1⊗ 1, π ⊗ 1− 1⊗ [π], . . . , πm ⊗ 1− 1⊗ [π]m, . . . , πe−1 ⊗ 1− 1⊗ [π]e−1. (3.3.19)

To ease the notation, here [π] denotes the Teichmüller representative of the image of π by the
morphism O −→ R. Let

J = Ker
(
O ⊗Ot WOt(R) −→ R

)
,

where the map is induced by w0 : WOt(R) −→ R. The ideal J is contained in the radical
of O ⊗Ot WOt(R). As a WOt(R)-module, J is the direct sum of O ⊗O IO(R) and the direct
summand generated by the last e− 1 elements of (3.3.19). In particular we obtain

J = O ⊗Ot IOt(R) + (π ⊗ 1− 1⊗ [π])(O ⊗Ot WOt(R)). (3.3.20)
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We define maps σlt : O ⊗Ot WOt(R) −→ O ⊗Ot WOt(R), σ̇lt : J −→ O ⊗Ot WOt(R) by
σltξ = F ′ξ, σ̇ltη = ( Ḟ

′
ẼK)−1 Ḟ ′(ẼK,0η), ξ ∈ O ⊗Ot WOt(R), η ∈ J .

The map σ̇lt : J −→ O ⊗Ot WOt(R) is σlt-linear. Then we obtain
σ̇lt(π ⊗ 1− 1⊗ [π]) = ( Ḟ

′
ẼK)−1 Ḟ ′(ẼK) = 1. (3.3.21)

Definition 3.3.8. (comp. [24, Def. 2.7]) The Lubin-Tate frame for O is the O-frame

Flt(R) := (O ⊗Ot WOt(R),J , R, σlt, σ̇lt).

This is indeed an O-frame: the only thing we need to check is
σltξ ≡ ξq ( mod (π ⊗ 1)O ⊗Ot WOt(R)),

and this follows because a ≡ aq mod π for a ∈ O and F ′η ≡ ηq mod $ for η ∈WOt(R).
We remark that by (3.3.21)

(π ⊗ 1− 1⊗ [πq]) σ̇ltη = σltη, η ∈ J .
Now we start with a WOt(R)-display P with a strict O-action. The last condition can be

reformulated as
JP ⊂ Q. (3.3.22)

We refer to [1, Prop. 2.26] for the proof of the following lemma.

Lemma 3.3.9. Let P be a WOt(R)-module with an action of O, i.e., a homomorphism of O-
algebras

O −→ EndWOt (R) P.

Assume that locally on SpecR the WOt(R)-module P is free. Then P is locally on SpecR a
finitely generated free O ⊗Ot WOt(R)-module. �

Lemma 3.3.10. Let P be a WOt(R)-display with a strict O-action. Let x ∈ P . By (3.3.22)
(π ⊗ 1− 1⊗ [π])x ∈ Q. The following equation holds,

Fx =
(
Ḟ ′ẼK(π ⊗ 1)

)−1 · F
′
ẼK,0(π ⊗ 1) · Ḟ

(
(π ⊗ 1− 1⊗ [π])x

)
.

Proof. From the definition of the polynomials ẼK and ẼK,0, we find since ϕ0(π) = π,

ẼK(π ⊗ 1) = ẼK,0(π ⊗ 1) · (π ⊗ 1− 1⊗ [π]).

Therefore
Ḟ (ẼK(π ⊗ 1)x) = Ḟ (ẼK,0(π ⊗ 1)) · (π ⊗ 1− 1⊗ [π])x)

= F ′(ẼK,0(π ⊗ 1))Ḟ ((π ⊗ 1− 1⊗ [π])x).

Because ẼK(π ⊗ 1) ∈ O ⊗Ot IOt(R), we obtain

Ḟ (ẼK(π ⊗ 1)x) = Ḟ ′(ẼK(π ⊗ 1))Fx.

We conclude by Lemma 3.3.6. �

We now associate to theWOt(R)-display P = (P,Q, F, Ḟ ) with a strict O-action a Flt-display
Plt = (Plt, Qlt, Flt, Ḟlt). We set Plt = P , Qlt = Q, Ḟlt = Ḟ , and

Flt(x) = Ḟ ((π ⊗ 1− 1⊗ [π])x), x ∈ P. (3.3.23)

Proposition 3.3.11. Plt is an Flt(R)-display.

Proof. The only thing we have not checked is the equation

Ḟlt(ηx) = σ̇ltηFltx, η ∈ J . (3.3.24)

We begin with the case η = V ′ξ. We apply Lemma 3.3.10

Ḟlt(ηx) = Ḟ ( V
′
ξx) = ξF (x) = ξ( Ḟ ẼK)−1 · F ẼK,0 · Ḟ ((π ⊗ 1− 1⊗ [π])x). (3.3.25)

By definition
σ̇ltη = ( Ḟ

′
ẼK)−1 Ḟ ′(ẼK,0

V ξ) = ( Ḟ
′
ẼK)−1 F ′(ẼK,0)ξ.
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Using the definition (3.3.23), we can write the right hand side of (3.3.25) as σ̇ltηFlt(x), hence
we are done in this case.

Next we consider the case where η = (π ⊗ 1− 1⊗ [π])ξ. Then we find

Ḟlt(ηx) = Ḟ ((π ⊗ 1− 1⊗ [π])ξx) = F ξFlt(x).

But by (3.3.21) we have σ̇lt((π ⊗ 1− 1⊗ [π])ξ) = F ′ξ. Therefore in this case (3.3.24) is true as
well. �

We use the same symbol ε ∈ WO(R)× for the image of the element ε ∈ WO(O)× defined by
(3.3.17). We define the frame

Wε
O(R) = (WO(R), IO(R), F, ε−1Ḟ ). (3.3.26)

We note that the categories of displays over WO(R) and Wε
O(R) are canonically isomorphic.

Indeed, if P = (P,Q, F, Ḟ ) is a WO(R)-display, then P = (P,Q, εF, Ḟ ) is a Wε
O(R)-display.

Recall that we denote the Frobenius and the Verschiebung acting on WOt(R) by F ′ and V ′.
We consider the Drinfeld homomorphism µ : WOt(R) −→WO(R), cf. (3.3.1). This is a functorial
ring homomorphism such that w′n(µ(ξ)) = wn(ξ) which has the following properties

µ( F
′
ξ) = Fµ(ξ), µ( V

′
ξ) =

$

π
V µ(ξ), µ([a]) = [a], for a ∈ R. (3.3.27)

The Drinfeld homomorphism extends to a ring homomorphism

µ : O ⊗Ot WOt(R) −→WO(R) (3.3.28)

which we denote by the same letter.

Proposition 3.3.12. The Drinfeld homomorphism induces a morphism of O-frames

µ : Flt(R) −→Wε
O(R).

Proof. We have to check that the image of J ⊂ O⊗OtWOt(R) by µ is contained in IO(R). This
is immediate because µ(π ⊗ 1− 1⊗ [π]) = π − [π] = V ε. It remains to prove the equations for
ξ ∈ O ⊗Ot WOt(R) and η ∈ J ,

µ( σltξ) = Fµ(ξ), µ( σ̇ltη) = ε−1 Ḟµ(η). (3.3.29)

The first equation follows from (3.3.27). To prove the second equation, it is enough to consider
the following two cases separately: η = V ′ξ and η = (π⊗ 1− 1⊗ [π])ξ. In the first case we have

σ̇ltη = ( Ḟ
′
ẼK)−1 Ḟ ′(ẼK,0

V ′ξ) = ( Ḟ
′
ẼK)−1( F

′
ẼK,0)ξ.

Applying Lemma 3.3.7, we obtain

µ( σ̇ltη) = ε−1($/π)µ(ξ).

On the other hand, we have by (3.3.27)

ε−1 Ḟµ(V
′
ξ) = ε−1 Ḟ (($/π) V µ(ξ)) = ε−1(($/π)µ(ξ),

as desired.
Now we consider the case η = (π ⊗ 1− 1⊗ [π])ξ. We have

µ((π ⊗ 1− 1⊗ [π])ξ) = (π − [π])µ(ξ) = V εµ(ξ) = V (ε Fµ(ξ)).

We obtain
ε−1 Ḟµ(η) = Fµ(ξ).

On the other hand, we find by (3.3.21) and (3.3.27)

µ( σ̇ltη) = µ( F
′
ξ) = Fµ(ξ),

as desired. �

Starting now with a WOt(R)-display P = (P,Q, F, Ḟ ) with a strict O-action, we have the
associated Flt(R)-display Plt = (Plt, Qlt, Flt, Ḟlt), cf. Proposition 3.3.11. After taking the base
change by the morphism of frames of Proposition 3.3.12, we obtain a Wε

O(R)-display Pεa =

(P εa , Q
ε
a, F

ε
a , Ḟ

ε
a ). Then Pa = (P εa , Q

ε
a, ε
−1F εa , Ḟ

ε
a ) is an WO(R)-display.
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Definition 3.3.13. The Ahsendorf functor AO/Ot,R is the functor which associates to the
WOt(R)-display P with a strict O-action the WO(R)-display Pa defined above.

From the construction we obtain that

Pa = WO(R)⊗O⊗OtWOt (R) P, (3.3.30)

and that Qa is the kernel of the natural map

WO(R)⊗O⊗OtWOt (R) P −→ P/Q.

We note that the canonical map P −→ Pa induces a map Q −→ Qa.

Proposition 3.3.14. Let P be aWOt(R)-display with a strict action of O. Let Pa = AO/Ot,R(P)
be its image by the Ahsendorf functor. The following diagram is commutative

Q
Ḟ //

��

P

��

Qa
Ḟa

// Pa

Proof. This follows from the definition of Plt before Proposition 3.3.11 and the definition of base
change (via the morphism of Proposition 3.3.12). �

We note that this diagram determines the map Ḟa uniquely. Indeed, consider the following
equation in Pa under the identification (3.3.30),

V ε⊗ x = 1⊗ (π ⊗ 1− 1⊗ [π])x.

Applying Ḟa, we obtain from the diagram that

εFa(1⊗ x) = 1⊗ Ḟ ((π ⊗ 1− 1⊗ [π])x).

This shows that Fa is uniquely determined. Because the image of Q and IO(R)Pa generate Qa

as a WO(R)-module, the map Ḟa is then also uniquely determined.
We return to the notation that P is an o-display with a strict O-action. Applying the functors

AOt/o,R and AO/Ot,R, we obtain first Pt and then Pa. We find by our definitions that, with the
notation of (3.3.10),

Pa = WO(R)⊗(
O⊗Ot,κWo(R)

) P0 = WO(R)⊗(
O⊗oWo(R)

) P. (3.3.31)

We note that P0 = (O ⊗Ot,κ Wo(R))⊗O⊗oWo(R) P .
We already noted that the Ahsendorf functor AOt/o,R is compatible with bilinear forms.

Similar remarks are also valid for the Ahsendorf functor AO/Ot,R: first one checks that the
functor P 7→ Plt is compatible with bilinear forms of displays, and then applies Proposition 3.2.3
for the compatibility of base change with bilinear forms. Taken together with (3.3.13), we obtain
the following property of the Ahsendorf functor AO/o,R.

Proposition 3.3.15. Consider a bilinear form of Wo(R)-displays,

β : P ′ × P ′′ −→ P,
which is also O-bilinear. Then the bilinear form β : P ′×P ′′ −→ P induces by (3.3.31) a WO(R)-
bilinear form βa : P ′a × P ′′a −→ Pa. The bilinear form βa is a bilinear form of WO(R)-displays,

βa : P ′a × P ′′a −→ Pa.

�

Remark 3.3.16. In the case where R = k is a perfect field, the description of the Ahsendorf
functor is very simple. We consider the functor AO/Zp,k which is relevant for us. As a prime
element of Zp we choose p. The element ε ∈WO(k) is 1. As above, we denote by f, resp. v, the
Frobenius, resp. the Verschiebung, of the ring of Witt vectors W (k). In this case the morphism
(3.3.12) of frames µ : AO/Zp,k −→ WOt(k), and the morphism of frames µ : Flt(k) −→ WO(k)
of Proposition 3.3.12 are isomorphisms. Therefore we identify WO(k) with the frame

(O ⊗Ot W (k), πO ⊗Ot W (k), k, ff , ffπ−1). (3.3.32)
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This is a perfect frame with u = θ = π, cf. Definition 3.1.8.
Let (P, F, V ) be aW(k)-Dieudonné module with a strict O-action. We have the decomposition

P = ⊕mPm cf. (3.3.10). The summand P0 is an O ⊗Ot W (k)-module. Since the action of O is
strict, we find

πP0 ⊂ Q0 = V fP0.

Therefore we can define
Va = V f , Fa = V −fπ : P0 −→ P0. (3.3.33)

Then (P0, Fa, Va) is a Dieudonné module for the frame (3.3.32). It is the image of (P, F, V ) by
the Ahsendorf functor AO/Zp,k.

Proposition 3.3.17. Let R ∈ NilpO. We assume that SpecR is connected. Let P be a W(R)-
display with a strict O-action, and let Pa be the image by the Ahsendorf functor AO/Zp,k. Then

heightP = [O : Zp] heightO Pa.

The right hand side denotes the height of the WO(R)-display Pa in the sense of Definition 3.1.4.
Let α : P1 −→ P2 be an isogeny of W(R)-displays with strict O-action, and let αa : P1,a −→

P2,a be the image by the Ahsendorf functor. Then

heightα = [Ot : Zp] heightO αa.

Let R = k be a perfect field. Let λ1 < . . . < λm be the slopes of P. Then the slopes of Pa are
[O : Zp]λ1, . . . , [O : Zp]λm. The display P with its strict O-action is isogenous to a direct sum
of displays with a strict O-action ⊕mi=1P(λi) such that P(λi) is isoclinic of slope λi.

Proof. It suffices to consider the case where R = k is a perfect field. Then it is a consequence of
the description of the Ahsendorf functor given above, cf. (3.3.33). �

In the end of this subsection, we relate explicitly the deformation theory of a display with
a strict O-action and its image by the Ahsendorf functor. Let S −→ R be an epimorphism
of O-algebras which are p-adic. We assume that the kernel a of this epimorphism is endowed
with divided powers γ relative to o. Then γ induces also divided powers γt on a relative to Ot.
Indeed, let qo be the number of elements in the residue class field of o. Then we set

γt(a) = γ(a)aq−qo = ′′aq/$
′′
, a ∈ a (3.3.34)

By setting γa(a) = γt(a)($/π), we obtain divided powers γa relative to O on a.
Let P = (P,Q, F, Ḟ ) be a Wo(S/R)-display with a strict action

ι : O −→ EndP.
The definition of strictness is literally the same as Definition 3.3.1. Since (S −→ R, γa) is an
O-pd-thickening, the O-frame WO(S/R) is defined, cf. Example 3.1.3. The Ahsendorf functor
generalizes to a Ahsendorf functor for S/R

AO/o,S/R :

(
Wo(S/R)− displays
with strict O-action

)
−→

(
WO(S/R)− displays

)
. (3.3.35)

The construction is the same but uses some additional arguments, which we will indicate now.
We define the Ahsendorf frame for S −→ R relative to o,

Ao(S/R) = (Wo(S), Io(S/R), R, ff , ff−1 ḟ), (3.3.36)

where ḟ : Io(S/R) −→ Wo(S) is defined as in Example 3.1.3. This is an Ot-frame by the
homomorphism κ : Ot −→Wo(S).

From the Ot-action on the Wo(S)-module P we obtain a decomposition, comp (3.3.10),

P = ⊕m∈Z/fZPm, Q = ⊕m∈Z/fZQm. (3.3.37)

We obtain an Ao(S/R)-display Pua = (Pua, Qua, Fua, Ḟua) by the formulas (3.3.11).

Lemma 3.3.18. The Drinfeld homomorphism µ : Wo(S) −→ WOt(S) induces a morphism of
frames

Ao(S/R) −→WOt(S/R). (3.3.38)
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Proof. We have to prove the formula
Ḟ ′(µ(η)) = µ( ff−1 ḟη), η ∈ Io(S/R).

For η ∈ Io(S), this is (3.3.3). Therefore the formula follows if we show that µ : Wo(S) −→
WOt(S) maps logarithmic Teichmüller representatives of elements in a to logarithmic Teich-
müller representatives. Let ẇo,n be the divided Witt polynomials defined by γ and let ẇOt,n

be the divided Witt polynomials defined by γt. It follows from the definition of the Drinfeld
homomorphism (3.3.1) that

ẇOt,n(µ(ξ)) = $(f−1)nẇo,fn(ξ), ξ ∈Wo(a). (3.3.39)

This is verified by reducing to a universal case where a is without p-torsion. If now ξ = ã ∈Wo(a)
is a logarithmic Teichmüller representative, the right hand side of (3.3.39) is 0 for n 6= 0, and is a
for n = 0. This shows that µ(a) is the logarithmic Teichmüller representative of a inWOt(a). �

Applying now base change to Pua relative to (3.3.38), we obtain a WOt(S/R)-display Pt with
a strict O-action. The assignment P 7→ Pt defines the functor

AOt/o,S/R :

(
Wo(S/R)− displays
with strict O-action

)
−→

(
WOt(S/R)− displays
with strict O-action

)
.

Next we define the functor

AO/Ot,S/R :

(
WOt(S/R)− displays
with strict O-action

)
−→

(
WO(S/R)− displays

)
. (3.3.40)

We begin with the definition of the Lubin-Tate frame Flt(S/R) for S → R relative to O. We start
with the frame WOt(S/R) = (WOt(S), IOt(S/R), F ′, Ḟ ′). Recall that IOt(S/R) = ã ⊕ IOt(S),
where the ideal ã consists of the logarithmic Teichmüller representatives ã of elements a ∈ a,
with respect to the divided powers γt. We have by definition Ḟ ′(ã) = 0. Tensoring with O⊗Ot ,
we obtain

F ′ : O ⊗Ot WOt(S) −→ O ⊗Ot WOt(S),

Ḟ ′ : O ⊗Ot IOt(S/R) −→ O ⊗Ot WOt(S).

We define an ideal in O ⊗Ot WOt(S),

J (S/R) = O ⊗Ot IOt(S/R) + (π ⊗ 1− 1⊗ [π])(O ⊗Ot WOt(S)). (3.3.41)

For an element η ∈ J (S/R) we find

ẼK,0(π ⊗ 1)η ∈ O ⊗Ot IOt(S/R).

Indeed, the factor ring O⊗OtWOt(S)/O⊗Ot IOt(S/R) = O⊗Ot R is annihilated by EK(π⊗ 1).
As before in the definition of the Lubin-Tate frame, we define maps σlt : O ⊗Ot WOt(S) −→
O ⊗Ot WOt(S) and σ̇lt : J (S/R) −→ O ⊗Ot WOt(S) by

σltξ = F ′ξ, σ̇ltη = Ḟ ′ẼK(π ⊗ 1)−1 Ḟ ′(ẼK,0(π ⊗ 1)η),

with ξ ∈ O ⊗Ot WOt(S), η ∈ J (S/R). The justification of the following definition is analogous
to the justification of Definition 3.3.8 of the Lubin-Tate frame.

Definition 3.3.19. The O-frame

Flt(S/R) := (O ⊗Ot WOt(S),J (S/R), σlt, σ̇lt)

is called the Lubin-Tate frame for the epimorphism of O-algebras S −→ R and the divided
powers γt relative to Ot on the kernel a.

Lemma 3.3.20. The Drinfeld homomorphism

µ : O ⊗Ot WOt(S) −→WO(S)

defines a morphism of O-frames

Flt(S/R) −→Wε
O(S/R). (3.3.42)

The last frame is defined by (3.3.26).
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Proof. One can argue exactly as in the proof of Proposition 3.3.12, but we need that

µ : WOt(a) −→WO(a)

maps logarithmic Teichmüller representatives ã ∈WOt(a) with respect to the Ot-divided powers
γt to logarithmic Teichmüller representatives ã ∈ WO(a) with respect to the O-divided powers
γa. This is a consequence of the following relation of divided Witt polynomials,

ẇO,n(µ(α)) =
($
π

)n
ẇOt,n(α), α ∈WOt(a).

Again we may restrict to the p-torsionfree case, where this formula follows immediately from the
definition of µ, cf. (3.3.1). �

Let Pt be aWOt(S/R)-display with a strict O-action. Then the R-module Pt/Qt is annihilated
by π ⊗ 1− 1⊗ [π]. As in Proposition 3.3.11, we define Flt : P −→ P by

Flt(x) = Ḟt((π ⊗ 1− 1⊗ [π])x), x ∈ P.
We set Plt = Pt, Qlt = Qt, Ḟlt = Ḟt. Then we obtain a Flt(S/R)-display Plt = (Plt, Qlt, Flt, Ḟlt).
If we apply the base change by (3.3.42), we obtain a Wε

O(S/R)-display Pεa = (P εa , Q
ε
a, F

ε
a , Ḟ

ε
a ).

The assignement Pt 7→ Pa = (P εa , Q
ε
a, ε
−1F εa , Ḟ

ε
a ) is the desired relative Ahsendorf functor

AO/Ot,S/R.

Proposition 3.3.21. Let P be a Wo(S/R)-display with a strict O-action. Let Pa be the
WO(S/R)-display associated to it by the relative Ahsendorf functor AO/o,S/R. Then there is
a canonical isomorphism

Pa/IO(S)Pa
∼= S ⊗O⊗oS (P/Io(S)P ). (3.3.43)

Proof. This is an immediate consequence of (3.3.31) �

With the notation P = Pua of (3.3.37), we may write

Pa/IO(S)Pa = Pua/Io(S)Pua + (π ⊗ 1− 1⊗ [π])Pua. (3.3.44)

To see this, one uses that π⊗1−1⊗π generates the kernel of the canonical map O⊗Ot O −→ O
as an ideal. We see that Pa/IO(S)Pa is the biggest quotient of Pua/Io(S)Pua such that the action
via ι and via the structure homomorphism O −→ S agree.

Let R be an O-algebra R such that π is nilpotent in R. Let P be a Wo(R)-display with strict
O-action. We assume that P is nilpotent. Then Pa is also nilpotent. Then there is a crystal
DP on the category of o-pd-thickenings and a crystal DPa

on the category of O-pd-thickenings
associated to these displays.

Corollary 3.3.22. Let P be a nilpotent Wo(R)-display with a strict O-action. Then the image
Pa by the Ahsendorf functor is a nilpotent WO(R)-display. Let S −→ R be a surjective map
of O-algebras which are p-adic. Assume that the kernel a of this epimorphism is endowed with
divided powers γ relative to o. Let γa be the corresponding O-divided powers on a. There is a
canonical isomorphism

DPa
(S, γa) = S ⊗(O⊗oS) DP(S, γ).

Proof. Indeed, DP(S) is computed from aWo(S/R)-display P̃ which lifts P and which is unique
up to isomorphism. But then the relative Ahsendorf functor applied to P̃ gives a WO(S/R)-
display P̃a which lifts Pa. We conclude by Proposition 3.3.21. �

Corollary 3.3.23. With the notation of Corollary 3.3.22, the Ahsendorf functor AO/o,S defines
a bijection between the liftings of P to a Wo(S)-display with a strict O-action and the liftings of
Pa to a WO(S)-display.

Proof. We show that each lifting of Pa is in the essential image of AO/o,S . A lifting P̃a of Pa

corresponds, by Grothendieck-Messing for nilpotent displays, to a direct summand Ua ⊂ DPa
(S).

Let U ⊂ DP be the preimage of Ua by the natural epimorphism DP −→ DPa . Then U defines a
lifting of P which is mapped by the Ahsendorf functor to P̃a. �

It is straightforward to deduce from the last Corollary Ahsendorf’s Theorem 3.3.2 for an
artinian local ring with perfect residue class field, i.e., we reproved a special case of [1].
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3.4. The Lubin-Tate display. Let K be a finite extension of Qp. Let Kt ⊂ K be the maximal
subextension which is unramified over Qp. We denote by Ot ⊂ O the rings of integers and by κ
the common residue class field. We fix a prime element π ∈ O. Let L be a normal extension of
Qp which contains K. We set Lt = Kt. Let Φ = HomQp-Alg(K,L) and Ψ = HomQp-Alg(Kt, L).
We denote by ϕ0 ∈ Φ and ψ0 ∈ Ψ the identity embeddings. We denote by Φψ the preimage of
ψ by the restriction map Φ −→ Ψ. We define

Eψ(T ) =
∏
ϕ∈Φψ

(T − ϕ(π)) ∈ OL[T ].

Clearly this polynomial has coefficients inOLt ⊂ OL. LetE ∈ Ot[T ] be the Eisenstein polynomial
of π in the extensionK/Kt. Then Eψ is the image of E by ψ inOLt [T ]. We consider the surjective
OL-algebra homomorphismus

OL[T ] −→ O ⊗Ot,ψ OL,
which maps T to π ⊗ 1. Then Eψ(π ⊗ 1) = 0.

We lift the polynomials Eψ to the Witt ring

Ẽψ(T ) =
∏
ϕ∈Φψ

(T − [ϕ(π)]) ∈W (OLt)[T ].

We consider the decomposition

O ⊗Zp OLt =
∏
ψ∈Ψ

O ⊗Ot,ψ OLt .

Let σ ∈ Gal(Kt/Qp) be the Frobenius automorphism. We have the morphism λ : Ot −→W (Ot)

from (3.3.8). We define ψ̃ as the composite

ψ̃ : Ot
λ−→W (Ot)

W (ψ)−→ W (OLt).

Then we obtain the decomposition

O ⊗Zp W (OLt) =
∏
ψ∈Ψ

O ⊗Ot,ψ̃ W (OLt). (3.4.1)

Let Ẽψ(π⊗1) be the image of Ẽψ by the homomorphismW (OLt)[T ] −→ O⊗Ot,ψ̃W (OLt) which
maps T to π ⊗ 1. Since Eψ(π ⊗ 1) = 0, we conclude that

Ẽψ(π ⊗ 1) ∈ O ⊗Ot,ψ̃ I(OLt). (3.4.2)

For an arbitrary OLt-algebra R, the decomposition (3.4.1) induces

O ⊗Zp W (R) =
∏
ψ∈Ψ

O ⊗Ot,ψ̃ W (R). (3.4.3)

The Frobenius and the Verschiebung act on the left hand side via the second factor, and this
induces on the right hand side the maps

F : O ⊗Ot,ψ̃ W (R) −→ O ⊗
Ot,ψ̃σ

W (R)

a⊗ ξ 7−→ a⊗ F ξ

V : O ⊗
Ot,ψ̃σ

W (R) −→ O ⊗Ot,ψ̃ W (R)

a⊗ ξ 7−→ a⊗ V ξ

(3.4.4)

We note that ψ̃σ = ψ̃ ◦ σ. We will write Ḟ = V −1 : O ⊗Ot,ψ̃ I(R) −→ O ⊗
Ot,ψ̃σ

W (R).

Proposition 3.4.1. The element Ḟ Ẽψ(π ⊗ 1) ∈ O ⊗
Ot,ψ̃σ

W (OLt) is a unit of the form

Ḟ Ẽψ(π ⊗ 1) = (
πe

p
⊗ 1)δ, δ ∈ O ⊗

Ot,ψ̃σ
W (OLt), (3.4.5)

where δ−1⊗1 is in the kernel of O⊗
Ot,ψ̃σ

W (OLt) −→ O⊗
Ot,ψ̃σ

W (κLt). In particular, δ−1⊗1

lies in the Jacobson radical of O ⊗
Ot,ψ̃σ

W (OLt).

Proof. The proof is the same as that of Proposition 3.3.6. �
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The polynomial Eψ0
has the decomposition

Eψ0
(T ) = (T − π) ·E0(T ).

These polynomials have coefficients in K ⊂ L. Recall that ϕ0(π) = π. We set

Ẽ0(T ) =
∏

ϕ∈Φψ0
,ϕ6=ϕ0

(T − [ϕ(π)]) ∈W (OL)[T ].

This polynomial lies in W (O)[T ] ⊂W (OL)[T ]. We set

PL = O ⊗Zp W (O) = ⊕ψ∈ΨO ⊗Ot,ψ̃ W (O). (3.4.6)

We denote by Qψ0
⊂ O ⊗Ot,ψ̃0

W (O) the kernel of the map

O ⊗Ot,ψ̃0
W (O)

id⊗w0−−−−→ O ⊗Ot,ψ0
O

mult.−−−→ O. (3.4.7)

Lemma 3.4.2.

Qψ0 = {x ∈ O ⊗Ot,ψ̃0
W (O) | Ẽψ0,0(π ⊗ 1)x ∈ O ⊗Ot,ψ̃0

I(O)}

Proof. Let Q̄ψ0 be the kernel of the second map of (3.4.7). Then we can reformulate our assertion
as

Q̄ψ0 = {x ∈ O ⊗Ot,ψ0
O | Eψ0,0(π ⊗ 1)x = 0}.

We write
O ⊗Ot,ψ0

O '
(
Ot[T ]/Eψ0

(T )Ot[T ]
)
⊗Ot,ψ0

O ' O[T ]/Eψ0
(T )O[T ].

We see that Q̄ψ0
= (T −π)O[T ]/Eψ0

(T )O[T ] which coincides with E0(T )O[T ]/Eψ0
(T )O[T ]. �

We let F and V act via the second factor on O ⊗Zp W (O) and therefore on the right hand
side of (3.4.6) by the formulas (3.4.4).

Definition 3.4.3. The Lubin-Tate display is the W(O)-display L = (PL, QL, FL, ḞL), defined
as follows. Let PL = O ⊗Zp W (O). Then PL = ⊕ψPψ,L with Pψ,L = O ⊗Ot,ψ̃ W (O). Set
Qψ = Pψ,L for ψ 6= ψ0 and Qψ0

⊂ Pψ0,L as above, and define

QL = ⊕ψ∈ΨQψ ⊂ PL.

The maps FL and ḞL are defined as the direct sum of the following maps for all ψ. For ψ 6= ψ0

we define
FL : O ⊗Ot,ψ̃ W (O) −→ O ⊗

Ot,ψ̃σ
W (O), ḞL : O ⊗Ot,ψ̃ W (O) −→ O ⊗

Ot,ψ̃σ
W (O).

x 7−→ F (Ẽψ(π ⊗ 1)x), y 7−→ Ḟ (Ẽψ(π ⊗ 1)y)

For ψ0 we define

FL : O ⊗Ot,ψ̃0
W (O) −→ O ⊗

Ot,ψ̃0σ
W (O), ḞL : Qψ0 −→ O ⊗

Ot,ψ̃0σ
W (O).

x 7−→ F (Ẽ0(π ⊗ 1)x), y 7−→ Ḟ (Ẽ0(π ⊗ 1)y)

The action of O by multiplication via the first factor on O ⊗Zp W (O) defines a strict O-action
on L. If R is a p-adic O-algebra we denote by LR the base change of L via the morphism of
frames W(O) −→W(R).

The tuple (PL, QL, FL, ḞL) is indeed a W(O)-display. The only non-trivial point is that ḞL
is surjective. But this follows from Proposition 3.4.1.

We will now apply the Ahsendorf functor AO/Zp,O to the Lubin-Tate display L. We use the
previous section in the case o = Zp and $ = p. We set ψi = ψ0σ

i : Ot −→ O, where ψ0 is the
identity. We have the decomposition

PL = ⊕f−1
i=0 PL,ψi , PL,ψi = O ⊗Ot,ψ̃i W (O).

We denote the Frobenius on W (O) by F . In the last section we have associated to L an A(O)-
display Pua for the Ot-frame

AZp(O) = A(O) = (W (O), I(O), F f , F f−1Ḟ ).
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By definition Pua = PL,ψ0
, Qua = QL,ψ0

, and Ḟua = Ḟ fL . More explicitely, for y ∈ Qua,

Ḟua(y) = ḞẼψf−1
(π ⊗ 1) FḞẼψf−2

(π ⊗ 1) · . . . · F
f−2ḞẼψ1

(π ⊗ 1) F
f−1Ḟ(Ẽ0(π ⊗ 1)y).

We set

n = ḞẼψf−1
(π ⊗ 1) FḞẼψf−2

(π ⊗ 1) · . . . · F
f−2ḞẼψ1(π ⊗ 1) F

f−1ḞẼψ0(π ⊗ 1).

Then we may write

Ḟua(y) = n
(
F f−1ḞẼψ0

(π ⊗ 1)
)−1 F f−1Ḟ(Ẽ0(π ⊗ 1)y). (3.4.8)

To Pua we apply base change with respect to the Drinfeld morphism µ : A(O) −→ WOt(O), cf.
(3.3.12). We obtain the WOt(O)-display Pt, where

Pt = O ⊗Ot WOt(O)

and where Qt is the kernel of the homomorphism O ⊗Ot WOt(O) −→ O induced by wOt,0, cf.
(3.4.7). The polynomials Ẽψ0 and Ẽ0 are mapped by µ to the polynomials ẼK and ẼK,0 of
(3.3.14). We denote by nlt the image of n by µ. Therefore we obtain

Ḟt(y) = nlt

(
Ḟ ′ẼK(π ⊗ 1)

)−1 Ḟ ′(ẼK,0(π ⊗ 1)y), y ∈ Qt.

By Proposition 3.3.11, we associate to Pt a Flt(O)-display Plt. In terms of the Lubin-Tate frame
(comp. Definition 3.3.8), we may rewrite the last equation as

Ḟlt(y) = nltσ̇lt(y), y ∈ Qt = Qlt = J .

Proposition 3.4.4. The Ahsendorf functor AO/Zp,O maps the Lubin-Tate display L to aWO(O)-
display which is canonically isomorphic to Pm,WO(O)(π

ef/pf ), i.e., the twist of the multiplicative
display by πef/pf ∈ O ⊂WO(O), cf. Example 3.1.6.

Proof. Let Pm,lt be the multiplicative Flt(O)-display. The above identities show that the display
Lt is equal to the Flt(O)-display Pm,lt(nlt). Applying to this display the base change by the
Drinfeld morphism of frames, cf. Proposition 3.3.12, we obtain essentially (i.e., neglecting ε)
the image of L by the Ahsendorf functor. By Proposition 3.4.1 the image of the element n by
the map O ⊗Ot,ψ̃0

W (O) −→ O ⊗Ot,ψ0
W (κ) = O is πef/pf . This implies that the image of

nlt ∈ O ⊗Ot WOt(O) in O ⊗Ot WOt(κ) is πef/pf . By the following Lemma there is a uniquely
determined unit ξ ∈ O ⊗Ot WOt(O) such that ξnlt = (πef/pf ⊗ 1) F f ξ. This gives a canonical
isomorphism Pm,lt(nlt)

∼−→ Pm,lt(πef/pf ⊗ 1). The base change with respect to a morphism of
frames maps the multiplicative display to the multiplicative display, cf. Example 3.1.7. Therefore
the last display is mapped by the base change of Proposition 3.3.12 to the Wε

O(O)-display(
WO(O), IO(O), F, ε−1Ḟ )(πef/pf ⊗ 1

)
.

Here we denote by F the Frobenius acting on WO(O) and by Ḟ the inverse of the Verschiebung.
The element ε is defined by (3.3.17).

Therefore the definition of the Ahsendorf functor gives Pm,WO(O)(ε
−1(πef/pf ⊗ 1)) as the

image of L. The image of ε by the homomorphism WO(O) −→ WO(κ) is 1. A variant of the
next Lemma shows that there is a unique ξ ∈ WO(O) such that F ξξ = ε. This shows that the
last display is canonically isomorphic to Pm,WO(O)(π

ef/pf ⊗ 1). �

Lemma 3.4.5. Let α ∈ O ⊗Ot WOt(O) be a unit whose image in O ⊗Ot WOt(κ) is 1. Then
there exists a unique unit ξ ∈ O ⊗Ot WOt(O) whose image in O ⊗Ot WOt(κ) is 1 and such that

F fξ · ξ−1 = α.

Proof. One proves this by induction on n for O ⊗Ot WOt(O/π
nO). Alternatively one can use

Grothendieck-Messing for frames due to Lau and show that the multiplicative display of Flt(κ)
has no nontrivial deformation with respect to Flt(O) −→ Flt(κ). �

Remark 3.4.6. Let k a perfect field which is an extension of κ. We regard it as an O-algebra
via the residue class map O −→ κ. Then we can describe the Dieudonné module (PLk , FLk , VLk)
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of Lk as follows. Let ψ̃0 : Ot = W (κ) −→W (k) be the canonical map. The set Ψ consists of the
maps ψ̃0σ

i where σ is the Frobenius of the extension Ot/Zp. We have

PLk = O ⊗Zp W (k) =
∏
ψ̃∈Ψ

O ⊗Ot,ψ̃ W (k).

The Frobenius and the Verschiebung

O ⊗Ot,ψ̃ W (k)
FLk−→←−
VLk

O ⊗Ot,ψ̃σ W (k) (3.4.9)

are defined as follows:

FLk(xψ) = πe Fxψ, VLk(xψσ) = (p/πe) F
−1

xψσ, for ψ 6= ψ0,

FLk(xψ0
) = πe−1 Fxψ0

, VLk(xψ0σ) = (p/πe−1) F
−1

xψ0σ.

The upper left index F denotes the action of the Frobenius via the second factor on O⊗ZpW (k).
This description follows easily because Ẽψ(T ) = T e, and therefore Ẽψ(π ⊗ 1) = πe ⊗ 1 ∈
O ⊗Ot,ψ̃ W (k) and Ẽ0(π ⊗ 1) = πe−1 ⊗ 1. Moreover, we have Qψ0

= πO ⊗Ot,ψ̃ W (k).
We have identified the frame WO(k) with(

O ⊗Ot,ψ̃0
W (k), πO ⊗Ot,ψ̃0

W (k), k, F f , F fπ−1
)
.

By Remark 3.3.16, the Ahsendorf functor associates to the Dieudonné module (PLk , FLk , VLk)
of Lk the WO(k)-Dieudonné module(

O ⊗Ot,ψ̃0
W (k),

πef

pf
F f ,

pf

πef−1
F−f

)
. (3.4.10)

This is equal to the Dieudonné module of the twisted multiplicative display Pm,WO(k)(π
ef/pf ),

in agreement with Proposition 3.4.4.

In the end of this subsection we discuss the Faltings dual of a display P = (P,Q, F, Ḟ ) with
a strict O-action over an O-algebra R. We begin with a recipe how to construct such P. We
consider the decomposition induced by (3.4.3),

P = ⊕ψPψ, Q = Qψ0 ⊕ (⊕ψ 6=ψ0Pψ).

Let
Jψ0

= Ker
(
O ⊗Ot,ψ̃0

W (R) −→ R
)
, (3.4.11)

where the map is induced by the structure homomorphism O −→ R and the homomorphism w0.
Then

Jψ0
= O ⊗Ot,ψ̃0

I(R) + (π ⊗ 1− 1⊗ [π])(O ⊗Ot,ψ̃0
W (R)),

cf. (3.3.20). To find a normal decomposition P = T ⊕ L, we start with

Pψ0
= Tψ0

⊕ Lψ0
, Qψ0

= Jψ0
Tψ0
⊕ Lψ0

.

We define φTψ0
: Tψ0 −→ Pψ0σ,

φTψ0
(t) = Ḟ

(
(π ⊗ 1− 1⊗ [π])t

)
.

Then we set T = Tψ0
⊂ P and L = Lψ0

⊕ (⊕ψ 6=ψ0
Pψ). Let φL : L −→ P be the restriction of Ḟ

to L and let φT = φTψ0
. The restriction to Lψ0

is denoted by φLψ0
.

Lemma 3.4.7. The map
φT ⊕ φL : T ⊕ L −→ P

is an F -linear O ⊗Zp W (R)-module isomorphism, where the Frobenius F acts on O ⊗Zp W (R)
via the second factor.
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Proof. For ψ 6= ψ0 the map Ḟψ : Pψ −→ Pψσ is an F -linear isomorphism. Therefore it suffices
to show that the map

φT ⊕ φLψ0
: Tψ0

⊕ Lψ0
−→ Pψ0σ (3.4.12)

is an F -linear isomorphism or, equivalently, an F -linear epimorphism. Since Pψ0σ is generated
by Ḟ (Qψ0

) it suffices to show that the following elements are in the image of the linearization
of (3.4.12):

Ḟ (`), Ḟ ((π ⊗ 1− 1⊗ [π])t), Ḟ ( V ηt), ` ∈ Lψ0
, t ∈ T, η ∈ O ⊗Zp W (R).

For the first two elements this is obvious. For the last element this follows from the formula

Fx =
(
Ḟ Ẽψ0

(π ⊗ 1)
)−1 · F Ẽ0(π ⊗ 1) · Ḟ

(
(π ⊗ 1− 1⊗ [π])x

)
, x ∈ Pψ0

, (3.4.13)

which is proved in the same way as Lemma 3.3.10. �

We omit the proof of the following proposition.

Proposition 3.4.8. Let R be a p-adic O-algebra. Let Tψ0
, Lψ0

be O⊗Ot,ψ̃0
W (R)-modules and let

Pψ for ψ 6= ψ0 be O⊗Ot,ψ̃W (R)-modules which are free locally on SpecR. Set Pψ0
= Tψ0

⊕Lψ0
.

Assume given F -linear isomorphisms

φTψ0
⊕ φLψ0

: Tψ0 ⊕ Lψ0 −→ Pψ0σ, φψ : Pψ −→ Pψσ, for ψ 6= ψ0,

cf. (3.4.4) for the meaning of F -linear.
Then there exists a unique display P = (P,Q, F, Ḟ ) with a strict action of O over R such

that P = ⊕ψPψ and Q = Jψ0Tψ0 ⊕ (⊕ψ 6=ψ0Pψ) with T = Tψ0 and L = Lψ0 ⊕ (⊕ψ 6=ψ0Pψ) and
such that φT = φTψ0

: T −→ P and φL = φψ0
⊕ (⊕ψ 6=ψ0

φψ) : L −→ P are given by the display
structure of P as in Lemma 3.4.7. �

Let P be a display with a strict action by O over R, as above. Then we set

P∇ = HomO⊗ZpW (R)(P,O ⊗Zp W (R)) = ⊕ψP∇ψ , where

P∇ψ = HomO⊗Ot,ψ̃W (R)(Pψ, O ⊗Ot,ψ̃ W (R)).

We define

Q∇ψ0
= {x̂ ∈ P∇ψ0

| x̂(Qψ0
) ⊂ Jψ0

} ⊂ P∇ψ0
, Q∇ = Q∇ψ0

⊕ (⊕ψ 6=ψ0
P∇ψ ).

Let
〈 , 〉can : P × P∇ −→ O ⊗Zp W (R) (3.4.14)

be the canonical perfect O ⊗Zp W (R)-bilinear form. It induces pairings Pψ × P∇ψ −→ O ⊗Ot,ψ̃
W (R). Under the perfect R-bilinear form

Pψ0
/Jψ0

Pψ0
× P∇ψ0

/Jψ0
P∇ψ0
−→ (O ⊗Ot,ψ̃ W (R))/Jψ0

' R,

the R-submodules Qψ0
/Jψ0

Pψ0
and Q∇ψ0

/Jψ0
P∇ψ0

are orthogonal complements.

Proposition 3.4.9. Let P be a display with a strict O-action over R. Let P∇ and Q∇ as above.
Then there are unique F -linear homomorphisms of O ⊗Zp W (R)-modules

F∇ : P∇ −→ P∇, Ḟ∇ : Q∇ −→ P∇

such that P∇ = (P∇, Q∇, F∇, Ḟ∇) becomes a display and such that the bilinear form (3.4.14)
defines a bilinear form of displays with a strict O-action,

〈 , 〉can : P × P∇ −→ L. (3.4.15)

We call P∇ the Faltings dual of P.

Proof. It follows from the definition that

〈Q,Q∇〉can ⊂ QL ⊂ O ⊗Zp W (R).

We will define a display P∇ = (P∇, Q∇, F∇, Ḟ∇). Then we will show that

〈Ḟ y, Ḟ∇ŷ〉can = ḞL〈y, ŷ〉can y ∈ Q, ŷ ∈ Q∇. (3.4.16)

This will show that (3.4.15) is a bilinear form of displays with an O-action. Since the pairing
(3.4.14) is perfect, the map Ḟ∇ is uniquely determined by (3.4.16).
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We begin by defining P∇. We chose a normal decomposition

Pψ0 = Tψ0 ⊕ Lψ0 , Qψ0 = Jψ0Tψ0 ⊕ Lψ0 (3.4.17)

Let T∇ψ0
be the orthogonal complement of Tψ0 and let L∇ψ0

be the orthogonal complement of Lψ0

with respect to the perfect bilinear form

Pψ0
× P∇ψ0

−→ O ⊗Otψ̃0
W (R).

We consider the maps φTψ0
and φLψ0

. We define maps

φT∇ψ0

: T∇ψ0
−→ P∇ψ0σ, φL∇ψ0

: L∇ψ0
−→ P∇ψ0σ

by the equations

〈φTψ0
(t) + φLψ0

(`), φT∇ψ0

(t̂)〉can = Ḟ Ẽψ0(π ⊗ 1) F 〈`, t̂〉can, t ∈ Tψ0 , ` ∈ Lψ0

〈φTψ0
(t) + φLψ0

(`), φL∇ψ0

(ˆ̀)〉can = Ḟ Ẽψ0(π ⊗ 1) F 〈t, ˆ̀〉can, t̂ ∈ T∇ψ0
, ˆ̀∈ L∇ψ0

.
(3.4.18)

This definition makes sense because φTψ0
⊕φLψ0

: Tψ0
⊕Lψ0

−→ Pψ0σ is an F -linear isomorphism.
For ψ 6= ψ0 the map Ḟ : Pψ −→ Pψσ is an F -linear isomorphism. Therefore we can define
Ḟ∇ : P∇ψ −→ P∇ψσ by the equation

〈Ḟ z, Ḟ∇ẑ〉can = Ḟ Ẽψ(π ⊗ 1) F 〈z, ẑ〉can, z ∈ Pψ, ẑ ∈ P∇ψ .

We now apply Proposition 3.4.8 to the modules T∇ψ0
, L∇ψ0

, and P∇ψ for ψ 6= ψ0, and to the
maps φT∇ψ0

, φL∇ψ0

, and φψ = Ḟ∇ψ for ψ 6= ψ0. This concludes the definition of the display

P∇ = (P∇, Q∇, F∇, Ḟ∇).
Now we verify (3.4.16). Let ψ 6= ψ0. If y ∈ Pψ and ŷ ∈ P∇ψ , the right hand side is by definition

Ḟ Ẽψ(π ⊗ 1) · F(y, ŷ)can.

Therefore (3.4.16) holds in this case by the definition of Ḟ∇ψ . For ψ0 we use the normal decompo-
sition (3.4.17) and the induced normal decomposition Q∇ψ0

= Jψ0
T∇ψ0
⊕L∇ψ0

. Using the definition
(3.4.11) of Jψ0

, the identity (3.4.16) becomes for the ψ0-components a series of equations:

(1) 〈Ḟ
(
(π ⊗ 1− 1⊗ [π])t

)
, Ḟ∇ ˆ̀〉can = ḞL〈(π ⊗ 1− 1⊗ [π])t, ˆ̀〉can,

(2) 〈Ḟ ( V ηt), Ḟ∇ ˆ̀〉can = ḞL〈 V ηt, ˆ̀〉can, η ∈ O ⊗Ot,ψ̃0σ
W (R),

(3) 〈Ḟ `, Ḟ∇
(
(π ⊗ 1− 1⊗ [π])t̂

)
〉can = ḞL〈`, (π ⊗ 1− 1⊗ [π])t̂〉can,

(4) 〈Ḟ `, Ḟ∇( V ηt̂)〉can = ḞL〈`, V ηt̂〉can,

(5) 〈Ḟ `, Ḟ∇ ˆ̀〉can = 0,

(6) 〈Ḟ (Jψ0Tψ0), Ḟ∇(Jψ0T
∇
ψ0

)〉can = 0.

We compute the right hand side of equation (1):

RHS(1) =Ḟ Ẽ0(π ⊗ 1)(π ⊗ 1− 1⊗ [π]) F 〈t, ˆ̀〉can = Ḟ Ẽψ0
(π ⊗ 1) F 〈t, ˆ̀〉can.

Therefore equation (1) is exactly the second equation of (3.4.18) for ` = 0. The equation (3)
follows in the same way.

We prove now the equation (2). For the right hand side we find:

RHS(2) = ηFL〈t, ˆ̀〉can = η F Ẽ0(π ⊗ 1) F 〈t, ˆ̀〉can.

We compute the left hand side of (2) by applying (3.4.13) to Ḟ ( V ηt) = ηFt:

〈Ḟ ( V ηt), Ḟ∇ ˆ̀〉can = η Ḟ Ẽψ0
(π ⊗ 1)−1 F Ẽ0(π ⊗ 1)〈Ḟ ((π ⊗ 1− 1⊗ [π])t), Ḟ∇ ˆ̀〉can

= η Ḟ Ẽψ0
(π ⊗ 1)−1 F Ẽ0(π ⊗ 1) Ḟ Ẽψ0

(π ⊗ 1) F 〈t, ˆ̀〉can.

Here the last equation follows from (1). This proves (2). In the same way we obtain (4) from
equation (3). The equation (5) follows from the second equation of (3.4.18) for t = 0.

Finally we prove equation (6). The special case

〈Ḟ ((π ⊗ 1− 1⊗ [π])t), Ḟ∇((π ⊗ 1− 1⊗ [π])t̂)〉can = 0 (3.4.19)
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is exactly the first equation of (3.4.18) for ` = 0. We have to show that the same holds if we
replace the first argument of the bilinear form in (3.4.19) by Ḟ ( V ηt) or the second argument by
Ḟ∇( V ηt̂). But this may be reduced to (3.4.19) in the same way as in the proof of equation (2).
This finishes the proof of (3.4.16). �

Proposition 3.4.10. Let P1 and P2 be displays over R with a strict O-action. Then the natural
map

HomO-displays(P2,P∇1 ) −→ BilO-displays(P1 × P2,LR)

is an isomorphism. Here we consider bilinear forms of displays with a strict O-action which are
also O-bilinear.

Proof. We define the inverse map. Let β be an element from the right hand side. This is in
particular a O ⊗W (R)-bilinear form

β : P1 × P2 −→ O ⊗W (R).

On the other hand, we have the canonical perfect O⊗W (R)-bilinear form 〈 , 〉can : P1×P∇1 −→
O⊗W (R). Since this is perfect, we can define a O⊗W (R)-module homomorphism α : P2 −→ P∇1
by

β(x1, x2) = 〈x1, α(x2)〉can.

We omit the straightforward verification that α defines a morphism of displays. �

Theorem 3.4.11. Let R be an O-algebra such that p is nilpotent in R. Let P1 and P2 be displays
over R with a strict O-action. We denote by P1,a and P2,a their images by the Ahsendorf functor
AO/Zp,R. Proposition 3.3.15 and Proposition 3.4.4 define a homomorphism

BilO-displays(P1 × P2,LR) −→ BilWO(R)-displays(P1,a × P2,a,Pm,WO(R)(π
ef/pf )). (3.4.20)

If the displays P∇1 and P2 are nilpotent, the homomorphism (3.4.20) is an isomorphism.
Equivalently, (3.4.20) is an isomorphism if (P1,a)∨ and P2,a are nilpotent WOF (R)-displays.

Proof. We apply (3.4.20) to P2 = P∇1 and the canonical bilinear form. We obtain a bilinear
form

P1,a ⊗ (P∇1 )a −→ Pm,WO(O)(π
ef/pf ),

which is perfect by Proposition 3.3.15. After twisting, we obtain also a perfect pairing of P1,a

and (P∇1 )a((πef/pf )−1) with values in Pm,WO(O). Therefore we have an identification with the
dual display

(P1,a)∨ ∼= (P∇1 )a

(
(πef/pf )−1

)
.

By Theorem 3.3.2 we have an isomorphism

HomO-displays(P2,P∇1 )
∼−→ HomWO(R)-displays(P2,a, (P∇1 )a).

Here the left hand side agrees with the left hand side of (3.4.20) by Proposition 3.4.10. We have
seen that the right hand side is the same as

HomWO(R)-displays(P2,a,P∧1,a(πef/pf )) ∼= BilWO(R)-displays(P1,a × P2,a,Pm,WO(R)(π
ef/pf )).

The last isomorphism follows from (3.2.5). �

Definition 3.4.12. Let R ∈ NilpO and let P be a display with a strict O-action. A relative
polarization of P with respect to O is a polarization of the WO(R)-display Pa obtained from P
by the Ahsendorf functor, cf. Definition 3.2.5.

Let Ŏ be the completion of the maximal unramified extension of O. We consider Theorem
3.4.11 in the case of an Ŏ-algebra R. We denote by τ ∈ Gal(Ŏ/O) the Frobenius automorphism.
Since πe/p ∈ Ŏ is a unit we find η0 ∈ Ŏ× such that τ(η0)η−1

0 = πe/p. By Lemma 3.3.4 there
is a τ − F -equivariant homomorphism Ŏ −→ WO(Ŏ) such that the composite with w0 is the
identity.

Let R ∈ NilpŎ. We denote by η0,R the image of η0 by the homomorphism

Ŏ −→WO(Ŏ) −→WO(R).
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Then multiplication by ηf0,R defines an isomorphism of WO(R)-displays,

Pm,WO(R)(π
ef/pf )

∼−→ Pm,WO(R). (3.4.21)

Therefore we may write Theorem 3.4.11 without the twist (πef/pf ).

Corollary 3.4.13. Let R ∈ NilpŎ. Fix η0 ∈ Ŏ× with τ(η0)η−1
0 = πe/p, which defines the

isomorphism (3.4.21). Let P be a display with a strict O-action over R such that P and P∇ are
nilpotent. Then a relative polarization on P with respect to O is the same thing as an isogeny
of displays with an O-action P −→ P∇ such that the induced bilinear form

P × P −→ LR
is alternating. �

In the situation of the corollary, P is the display of a formal p-divisible group X with a strict
O-action and P∇ is the display of a formal p-divisible group with a strict O-action which we
denote by X∇. We call X∇ the Faltings dual of X. However, we do not relate our definition
to that of Faltings in [13], which operates directly in the realm of p-divisible groups. We can
consider a relative polarization as an isogeny of p-divisible groups with an O-action,

X −→ X∇. (3.4.22)

4. The contracting functor

We return to the notation of section 2. In particular, throughout this section, K/F denotes
an etale extension of degree two of a p-adic field F , and r denotes a generalized CM-type of rank
2.

Let E be the reflex field of r, and let Ẽ ⊂ Q̄p be its normal closure. As in subsection 2.2,
E′ ⊂ Ẽ is the composite of E and the normal closure of Kt in Q̄p.

4.1. The aim of this section.

Definition 4.1.1. Let S be a scheme over SpecOE′ such that p is locally nilpotent in OS . We
denote4 by Pr,S the category of local CM-pairs of type r over S which satisfy the Eisenstein
conditions (ECr). If S = SpecR, we will also write Pr,R or simply PR.

The category of local CM-pairs (P, ι) of type r in the sense of displays which satisfy the
Eisenstein conditions will be denoted by dPr,S , resp., dPr,R.

We will define a functor C′r,R that associates to a CM-pair (P, ι) ∈ dPr,R a new display
(P ′, ι′) over R with an action ι′ : OK −→ EndP ′. When r is special relative to ϕ0 : F −→ Qp,
cf. Definition 2.1.1, then the restriction of ι′ to OF is strict with respect to OF

ϕ0−→ OE′ −→ R.
If r is banal, then P ′ is étale. We will call the functor C′r,R the pre-contracting functor. Under
suitable hypotheses, the pre-contracting functor will be an equivalence of categories.

We will also describe what C′r,R does with polarizations, and define a functor C′,pol
r,R on the

category Ppol
r,S , defined as follows.

Definition 4.1.2. We denote by Ppol
r,S the category of polarized local CM-triples (X, ι, λ) of

type r over S such that (X, ι) satisfies the Eisenstein conditions (ECr). If S = SpecR, we also
write Ppol

r,R. We denote by dPpol
r,S the corresponding category of local CM-triples in the sense

of displays. Explicitly, dPpol
r,R denotes the category of triples (P, ι, β) where (P, ι) ∈ dPr,R and

where β : P × P −→ Pm,W(R) is a polarization such that

β(ι(a)x1, x2) = β(x1, ι(ā)x2), a ∈ OK , x1, x2 ∈ P.

In the sequel, we will abbreviate the last condition into saying that β is anti-linear for the
OK-action.

4The symbol P is to remind us that this is a category of local CM-pairs.
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In a second step, we will use the functors C′r,R, resp. C′,pol
r,R , to define contracting functors.

Here, we make a distinction between the case when r is special and the case when r is banal. In
the case when r is special, the image of the contracting functor is aWOF (R)-display Pc, endowed
with an action ι of OK such that Pc is of height 4 and dimension 2 (and, in the polarized case,
with a polarization). When r is banal, the image is a p-adic étale sheaf G in Zp-flat modules of
rank 4d, endowed with an action of OK (and with a polarization form in the polarized case).

Remark 4.1.3. The pre-contracting functor is analogous to the functor in [30, Thm. 4.12],
with two important differences. First, in loc. cit., there is no polarization in play, which makes
the definition simpler. Second, in loc. cit. the functor is only considered for schemes S with
pOS = 0. This is due to the fact that, in the context of [30], we were not able to handle the
Kottwitz condition in the general case when p is only locally nilpotent in OS .

A very similar pre-contracting functor also appears in [24]. Mihatsch considers the case
where K/F is an unramified field extension, and assumes that the generalized local CM-type
r is unramified. Let us explain this in the case when r is of rank 2 special relative to ϕ0.
Let Kt be the maximal unramified subextension of K. With the notation of §2.2, we fix a
disjoint decomposition Ψ = Ψ0 q Ψ1, where the summands are exchanged by the generator
σ ∈ Gal(Kt/Qp). Then rϕ0

= rϕ̄0
= 1 and for ϕ /∈ {ϕ0, ϕ̄0}

rϕ =

{
0, if ϕ|Kt ∈ Ψ0

2, if ϕ|Kt ∈ Ψ1.
(4.1.1)

In this case, the Kottwitz condition (KCr) and the Eisenstein conditions (ECr) can be replaced
by the simpler conditions [24, Def. 2.8], which makes the definition of the pre-contracting functor
in [24] easier than in the case of a general r.

4.2. The Kottwitz and the Eisenstein condition for CM-pairs. The Kottwitz condition
(KCr) can be formulated in terms of polynomial functions. Let L be a locally free R-module
equipped with an action of OK . If S is an R-algebra, we write LS = L ⊗R S.

Let us assume for a moment that R is endowed with an OẼ-algebra structure. For ϕ ∈ Φ =

HomQp-Alg(K, Ẽ) we consider the induced map

ϕR : OK
ϕ−→ OẼ −→ R.

Definition 4.2.1. We say that (L, ι) satisfies the Kottwitz condition relative to r if for each
OẼ-algebra S endowed with an OE-algebra homomorphism R −→ S

detS(a | LS) =
∏
ϕ∈Φ

ϕS(a)rϕ , for all a ∈ OK ⊗Zp S. (4.2.1)

Let A = V(OK) be the affine space over SpecZp. The right hand side of this equation may
be considered as a polynomial function on AOẼ . By base change to Ẽ, it is easily shown that
this function is defined on AOE . We note that each factor of the right hand side of (4.2.1) is a
linear polynomial function such that some coefficient is a unit in OẼ . Therefore these factors are
non-zero divisors in Γ(AS ,OAS ) for each S. Here we remark that a polynomial in S[U1, . . . , Ur]
is a non-zero divisor if one of its coefficients is a non-zero divisor in S.

Because the right hand side of (4.2.1) is a polynomial function on AOE , the condition does
not depend on the OẼ-algebra structure on S. By a theorem of Amitsur, condition (4.2.1) is
equivalent to the Kottwitz condition (KCr) of (2.2.1) (compare [30]).

For a OE′ -algebra S we have a decomposition

OK ⊗Zp S =
∏
ψ∈Ψ

OK ⊗OKt ,ψS S. (4.2.2)

Here ψS denotes the composite OKt
ψ−→ OE′ −→ S. Let EψS be the image of the Eisenstein

polynomial E ∈ OKt [T ] by the last homomorphism. We have a natural isomorphism

S[T ]/EψSS[T ]
∼−→ OK ⊗OKt ,ψS S, T 7−→ Π⊗ 1. (4.2.3)



ON THE p-ADIC UNIFORMIZATION OF UNITARY SHIMURA CURVES 47

Therefore we may regard an OK ⊗OKt ,ψS S-module M as an S[T ]-module. If U ∈ S[T ] and
x ∈ M , we write Ux = U(Π⊗ 1)x. If U0 ∈ OE′ [T ], with image U ∈ S[T ], then we write simply
U0x = Ux.

Returning to the R-module L with action by OK , the decomposition (4.2.2) induces a decom-
position

LS = ⊕LS,ψ.
By considering, for given ψ, an element a of (4.2.2) whose components are zero for ψ′ 6= ψ,

we obtain
detS(a | LS,ψ) =

∏
ϕ|ψ

ϕS(a)rϕ , for all a ∈ OK ⊗OKt ,ψ S. (4.2.4)

We call this condition (KCψ,r). The condition (KCr) holds iff the conditions (KCψ,r) hold for
each ψ.

We will call ψ banal with respect to r if rϕ ∈ {0, 2} for each ϕ|ψ. We call ψ special with
respect to r if there exists ϕ|ψ such that rϕ = 1 and if for any other ϕ′|ψ with rϕ′ = 1 we have
ϕ′ = ϕ̄. We note that another ϕ′ can only exist if ψ̄ = ψ.

We also use the conditions (ECψ,r). This means that we consider (2.2.12) for a fixed ψ.
We consider CM-pairs (X, ι) of type r over R ∈ NilpOE , cf. section 2.3. Thus X is a p-divisible

group of height 4d and dimension 2d and ι is a Zp-algebra homomorphism

ι : OK −→ EndX

such the rank condition (RCr) is satisfied. If we speak about the Kottwitz or Eisenstein condition
we refer to the induced action on LieX. We use a similar terminology when we consider CM-
pairs (P, ι) in the sense of displays. This means that P = (P,Q, F, Ḟ ) is a W(R)-display of
height 4d and dimension 2d endowed with a ring homomorphism

ι : OK −→ EndP,

such that the rank condition (RCr) is satisfied for the induced action on P/Q.
By Remark 3.1.13, display theory provides a functor from the category of CM-pairs (X, ι) of

type r to the category of CM-pairs (P, ι) of type r. We set DP = P/IRP and LP = P/Q. If P
is the display of X, we have the identifications

DP = DX(R), LP = LieX.

Here DX(R) is the Grothendieck-Messing crystal evaluated at R. For an R-algebra S, we will
write DP,S := DP ⊗R S and LP,S := LP ⊗R S. If P is fixed, we write simply DS and LS . If S
is a OE′ -algebra, (4.2.2) gives a decomposition

DS = ⊕ψ∈ΨDS,ψ.

Proposition 4.2.2. Let ψ be banal with respect to r. Let (P, ι) be a CM-pair of type r over an
OE-algebra R.

Then the Eisenstein condition (ECψ,r) is satisfied iff EAψDψ is the kernel of the canonical
map Dψ −→ LP,ψ. Moreover (ECψ,r) implies the Kottwitz condition (KCψ,r).

Here EAψ denotes the operator EAψ
(
ι(Π)

)
on the module in question, for a fixed choice of Π,

cf. (2.2.12).

Proof. We reduce to the case where S is an R-algebra endowed with an OẼ-algebra structure.
Then EAψ,S ∈ S[T ] is defined as the image of EAψ by OẼ [T ] −→ S[T ]. It acts on any OK⊗OKt ,ψ
S-module by (4.2.3).

Via ι, we view DS and LS as OK ⊗Zp S-modules. We consider the canonical surjective map

DS −→ LS .

The decomposition (4.2.2) induces decompositions,

DS = ⊕ψDψ, LS = ⊕ψLψ. (4.2.5)

We allowed ourselves to omit the index S on the right hand side of these equations.
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The Eisenstein condition (ECψ,r) for banal ψ says that Lψ is annihilated by EAψ , cf. (2.2.13).
Therefore it is clearly implied by the condition of the Proposition. If conversely (ECψ,r) holds,
we obtain a surjective map

Dψ/EAψDψ −→ Lψ. (4.2.6)
By Lemma 3.1.15, Dψ is locally on SpecS a free OK ⊗OKt ,ψ S-module. It has rank 2 because
the height of P is 4d. We may assume that

Dψ ∼= (OK ⊗OKt ,ψ S)2 = S[T ]2/EψSS[T ]2.

We see that both sides of (4.2.6) are locally free S-modules of the same rank rψ =
∑
ϕ|ψ rϕ.

Therefore this map is an isomorphism.
The condition (KCψ,r) would follow from

detS(a | S[T ]/EAψS[T ]) =
∏
ϕ∈Aψ

ϕS(a), a ∈ S[T ]. (4.2.7)

We have
EAψ (T ) =

∏
ϕ∈Aψ

(T − ϕS(Π⊗ 1)), ϕS(a) = a(ϕS(Π⊗ 1)).

We obtain (4.2.7) from the following Lemma. �

Lemma 4.2.3. Let R be a ring. Let

E(T ) =

s∏
i=1

(T −Πi), Πi ∈ R

be a polynomial. A polynomial f(T ) ∈ R[T ] defines by multiplication an endomorphism of the
free R-module R[T ]/ER[T ]. Then

detR(f(T ) | R[T ]/ER[T ]) =

s∏
i=1

f(Πi).

Proof. One can easily reduces the question to the case where R is a field of characteristic 0
such that E(T ) is a product of different linear factors. For the reduction one starts with a ring
homomorphism

Z[X,Y ] −→ R,

where for the first set of variables X = (X1, . . . , Xs), Xi is mapped to Πi and where the second
set of variables Y is mapped to the coefficients of f .

If now R is a field and E is separable, we have a canonical isomorphism of R-modules

R[T ]/ER[T ]
∼−→ ⊕si=1R.

T 7−→ (Πi)i

Multiplication by f(T ) on the left hand side acts on the right hand side on the i-th factor by
multiplication by f(Πi). This implies the assertion. �

Corollary 4.2.4. Let r be banal. Let (P, ι) be a CM-pair of type r over an OE-algebra R. Then
the Eisenstein condition (ECr) implies the Kottwitz condition (KCr). �

We consider next the case where ψ is special. This means by definition that there is exactly
one pair {ϕ, ϕ̄} such that ϕ|ψ and rϕ = rϕ̄ = 1. When K/F is ramified, we have E′ = E and
when K/F is unramified, we have [E′ : E] ≤ 2.

Proposition 4.2.5. Let ψ be special with respect to r. Let R be a OE-algebra such that p is
nilpotent in R. Let (P, ι) be a CM-pair of type r over R which satifies the Eisenstein condition
(ECψ,r). Let S be a OE′-algebra which is endowed with an OE-algebra homomorphism R −→ S.
Then, with the notations of (4.2.5), the canonical map

Dψ/EAψDψ −→ Lψ/EAψLψ
is an isomorphism.
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Proof. Clearly we may assume that S is a local ring with residue class field k. We postpone the
verification that the assertion holds for S = k (compare (4.3.17) and (4.3.20) below).

We begin with the case K/F unramified. Then rankS Lψ = rψ = 2aψ + 1. Let

f : Lψ −→ Lψ (4.2.8)

be the S-module homomorphism given by multiplication with EAψ . From the case of a field, we
deduce that dimk L/f(L)⊗S k = 2aψ. By (ECψ,r) we have

2∧
f = 0,

cf. (2.2.18). Therefore we can apply Lemma 4.9 of [30] with s = 1. This says that Lψ/f(Lψ) is
a free S-module of rank 2aψ. Therefore the canonical map of the proposition is a surjection of
free S-modules of the same rank, and hence an isomorphism.

The argument in the case K/F ramified is similiar. In this case, we have rankS Lψ = rψ =
2aψ + 2 = 2e. The dimension dimk Lψ/f(Lψ)⊗S k = 2aψ, as before. In this case the condition
(ECψ,r) says

3∧
f = 0,

cf. (2.2.16). Therefore we may apply Lemma 4.9 loc.cit. with s = 2. We conclude as before. �

Proposition 4.2.6. Let r be special and K/F unramified. Let R be a OE-algebra such that p is
nilpotent in R. Let (P, ι) be a CM-pair of type r over R which satifies the Eisenstein condition
(ECr). Then the condition (KCr) is also satisfied.

Proof. We consider an algebra S as in the last proposition. We keep the notation of (4.2.5). We
need only to verify (KCψ0,r) since the Kottwitz condition is satisfied for ψ banal by Proposition
4.2.2. We have to verify that

detS(a | Lψ0) = ϕ0,S(a) ·
∏

ϕ∈Aψ0

ϕS(a)2, a ∈ OK ⊗OKt ,ψ0 S. (4.2.9)

Since Dψ0 is locally on S a free OK⊗OKt ,ψ0 S-module of rank 2, we obtain from the isomorphism
of Proposition 4.2.5

detS(a | Lψ0/EAψ0
Lψ0) =

∏
ϕ∈Aψ0

ϕS(a)2.

The proposition also shows that EAψ0
Lψ0 is a locally free S-module of rank 1. It follows from

the Eisenstein condition (2.2.18) that this module is annihilated by (T − ϕ0,S(Π ⊗ 1)). Hence
an element a ∈ OK ⊗OKt ,ψ0

S = S[T ]/Eψ0
S[T ] acts on EAψ0

Lψ0
as ϕ0,S(a). In particular

detS(a | EAψ0
Lψ0

) = ϕ0,S(a).

The formula (4.2.9) follows. �

We reformulate the Eisenstein condition in the case where K/F is unramified.

Proposition 4.2.7. Let r be special and K/F unramified. Let ϕ0, ϕ̄0 ∈ Φ be the two embeddings
such that rϕ0 = rϕ̄0 = 1, and let ψ0, resp. ψ̄0, the embeddings induced by ϕ0, resp. ϕ̄0. Let R
be a OE′-algebra, and let (P, ι) be a CM-pair of type r over R. Let D = DP(R). The CM-pair
(P, ι) satisfies the Eisenstein conditions iff the following conditions hold.
(1) If ψ ∈ Ψ is banal, then the canonical map

Dψ/EAψDψ −→ LieψX

is an isomorphism.
(2) If ψ ∈ {ψ0, ψ̄0}, then the canonical map

Dψ/EAψDψ −→ LieψX/EAψ LieψX

is an isomorphism.
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(3) The R-modules EAψ0
Lieψ0

, resp. EAψ̄0
Lieψ̄0

, are locally free of rank 1 and OK acts on
them via

ϕ0,R : OK −→ OE′ −→ R, resp. ϕ̄0,R : OK −→ OE′ −→ R.

Proof. This is a consequence of Proposition 4.2.5 and the proof of Proposition 4.2.6. �

We next consider what happens to the Eisenstein conditions when passing from a display to
its conjugate dual, cf. Lemma 2.3.2. We note that we already checked in loc. cit. that the
condition (RCr) is preserved. Recall that, if (P, ι) is a CM-pair, the conjugate dual (P∧, ι∧) is
defined by (

P∧ = P∨, ι∧(a) = ι(ā)∧
)
.

Corollary 4.2.8. Let K/F be unramified and let r be arbitrary or let K/F be split. Let (P, ι) be
a CM-pair over an OE-algebra R such that p is nilpotent in R. If (P, ι) satisfies the Eisenstein
condition (ECr), then the conjugate dual (P∧, ι∧) also satisfies (ECr).

Proof. We have a canonical isomorphism D∧ = HomR(D, R). The resulting perfect pairing

〈 , 〉 : D× D∧ −→ R (4.2.10)

satisfies
〈ax, x̂〉 = 〈x, āx̂〉, a ∈ OK , x ∈ D, x̂ ∈ D∧. (4.2.11)

This implies that for ψ1 6= ψ̄2 the modules Dψ1
and D∧ψ2

are orthogonal and that for any ψ the
induced pairing

Dψ × D∧ψ̄ −→ R (4.2.12)

is perfect. Let D1
ψ ⊂ Dψ be the kernel of the map Dψ −→ Lψ := Lieψ P and let D∧,1

ψ̄
⊂ D∧

ψ̄

be defined in the same way. By definition of the dual display, D1
ψ and D∧,1

ψ̄
are orthogonal

complements of each other with respect to (4.2.12). We consider the case ψ ∈ {ψ0, ψ̄0}. Recall
that this is possible only in the non-split case. The Eisenstein condition for P says that we have
a split filtration of direct summands of Dψ

SψEAψDψ ⊂ D1
ψ ⊂ EAψDψ, (4.2.13)

such that the factor modules are locally free of rank 1. We claim that the orthogonal complement
of EAψDψ is Sψ̄EAψ̄D

∧
ψ̄
. Indeed, by (4.2.11), we have

〈 EAψx, x̂〉 = 〈 x, EBψ̄ x̂〉. (4.2.14)

This implies that EAψDψ and Sψ̄EAψ̄D
∧
ψ̄
are orthogonal. Because (4.2.10) is perfect we obtain

a surjection of R-modules

Dψ/EAψDψ −→ HomR(Sψ̄EAψ̄R
D∧ψ̄, R). (4.2.15)

Recall that Dψ is locally on SpecR a free OK ⊗OKt ,ψ R-module of rank 2. It follows that both
sides of (4.2.15) are locally free R-modules of the same rank 2aψ = 2e− 2aψ̄ − 2. Therefore this
map is an isomorphism. This proves our claim about the orthogonal complement. By the same
argument, EAψ̄RD

∧
ψ̄
is the orthogonal complement of SψEAψDψ.

We take the orthogonal complement of (4.2.13) and obtain the filtration

Sψ̄EAψ̄D
∧
ψ̄ ⊂ D∧,1

ψ̄
⊂ EAψ̄D

∧
ψ̄,

and conclude that the factor modules are locally free of rank 1.
Now let ψ be banal. We have to prove that EAψD∧ψ ⊂ D∧,1ψ . The right hand side is the

orthogonal complement of D1
ψ̄

= EAψ̄Dψ̄. Therefore we have to prove that

〈 EAψ̄x, EAψ x̂〉 = 0, for x ∈ Dψ̄, x̂ ∈ D∧ψ.

Using (4.2.14), we find for the right hand side

〈 x, EBψEAψ x̂〉 = 〈 x, Eψx̂〉 = 0.

�
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Before proving the analogue of Corollary 4.2.8 in the case when K/F is ramified, we further
analyze in this case the Eisenstein conditions.

Proposition 4.2.9. Let r be special and K/F ramified. Let R be a OE-algebra such that p is
nilpotent in R. Let (P, ι) be a CM-pair of type r over R. Since E′ = E, the decomposition
(4.2.2) is defined for S = R. Then the Eisenstein condition (ECψ0,r) holds iff the following
conditions are satisfied.
(1) The R-module EAψ0

Lψ0
⊂ Lψ0

is a direct summand which is locally free of rank 2.
(2) The action of ι(π) on EAψ0

Lψ0 coincides with the action of ϕ0(π) ∈ R, i.e., the action of
the image of π by the homomorphism OF

ϕ0−→ OE −→ R.
Furthermore, a CM-pair (P, ι) which satisfies (ECr) also satisfies the Kottwitz condition

(KCr) if and only if
TrR(ι(Π) | EAψ0

Lψ0
) = 0. (4.2.16)

Proof. For the proof we may pass from R to an R-algebra S which is endowed with a OẼ-algebra
stucture. We continue with the notations of (4.2.5). The first assertion of the proposition is
then an immediate consequence of Proposition 4.2.5.

To verify the last sentence on the Proposition it suffices by Proposition 4.2.2 to consider
(KCψ0,r). This condition reads

detS(a | Lψ0
) = ϕ0,S(a) · ϕ̄0,S(a) ·

∏
ϕ∈Aψ0

ϕS(a)2, a ∈ OK ⊗OKt ,ψ0
S.

In this case EAψ0
Lψ0 is a locally free S-module of rank 2. By Proposition 4.2.5, it is enough to

show
detS(a | EAψ0

Lψ0
) = ϕ0,S(a) · ϕ̄0,S(a). (4.2.17)

In this case, the Eisenstein condition says that

(T − ϕ0,S(Π⊗ 1))(T − ϕ̄0,S(Π⊗ 1)) = T 2 + ψ0(π) (4.2.18)

annihilates EAψ0
Lψ0 , cf (2.2.16). Note that the action of T 2 on EAψ0

Lψ0 is by definition the
action of ι(Π2) = −ι(π). Therefore the action of OF on EAψ0

Lψ0
via ι coincides with the action

via OF
ϕ0−→ OẼ −→ S. The polynomial (4.2.18) is the characteristic polynomial of ι(Π) acting

on the S-module EAψ0
Lψ0 . This follows from the trace condition of the proposition. Therefore

the desired equation (4.2.17) is a consequence of Lemma 4.2.10 below.
Conversely, assume that the Kottwitz condition holds. By Proposition 4.2.5, this implies

detS(a | EAψ0
Lψ0

) ·
∏

ϕ∈Aψ0

ϕS(a)2 = ϕ0,S(a) · ϕ̄0,S(a) ·
∏

ϕ∈Aψ0

ϕS(a)2, a ∈ OK ⊗ S.

We already remarked right after Definition 4.2.1 that ϕS is a non-zero divisor in the ring of
polynomial functions. Therefore we conclude

detS(a | EAψ0
Lψ0

) = ϕ0,S(a) · ϕ̄0,S(a), for all a ∈ OK ⊗ S.

This implies that the characteristic polynomial of ι(Π) acting on EAψ0
Lψ0

is the polynomial
(4.2.18). Therefore the trace is 0. �

We state the needed Lemma without proof.

Lemma 4.2.10. Let S be a ring. Let L be a locally free S-module of rank 2. Let α : L −→ L be
an endomorphism with characteristic polynomial

detS(T idL − α | L) = T 2 − s1T + s2.

Then for all λ, µ ∈ S
detS(µidL − λα) = µ2 − s1µλ+ s2λ

2.

Assume that the characteristic polynomial splits

T 2 − s1T + s2 = (T − ρ1)(T − ρ2).
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Consider L as S[T ]-module, and let φi : S[T ] −→ S be the S-algebra homomorphism such that
φi(T ) = ρi. Then for each polynomial a ∈ S[T ]

detS(a | L) = φ1(a) · φ2(a).

�

Remark 4.2.11. Let A ⊂ B be R-modules. Then we write A
c
⊂ B if the factor module B/A is

a finitely generated projective R-module of rank c.
Let (P, ι) as in Proposition 4.2.9 such that (ECψ0,r) is satisfied. We write D = P/IRP . Let

Q̄ψ0 the kernel of Dψ0 −→ Lψ0 . By Lemma 3.1.15, Dψ0 is a free OK ⊗OFt ,ψ0 R-module of rank
2. We obtain that

EAψ0
Dψ0

2(e−1)
⊂ Dψ0

.

On the other hand, the condition (1) of Proposition 4.2.9 says

Q̄ψ0

2
⊂ EAψ0

Dψ0
+ Q̄ψ0

2(e−1)
⊂ Dψ0

.

This implies Q̄ψ0
⊂ EAψ0

Dψ0
. Therefore we may reformulate the two conditions in Proposition

4.2.9 in one line:
Sψ0

EAψ0
Dψ0

2
⊂ Q̄ψ0

2
⊂ EAψ0

Dψ0
. (4.2.19)

Corollary 4.2.12. Let K/F be ramified. Let (P, ι) be a CM-pair over an OE-algebra R such
that p is nilpotent in R. If (X, ι) satisfies the Eisenstein condition (ECr), then the conjugate
dual (P∧, ι∧) also satisfies (ECr).

Proof. We use the notation of the last remark. The banal ψ are treated as in the unramified case.
We need only to check that the conjugate dual satisfies (ECψ0,r). The orthogonal complement
of EAψ0

Dψ0
in HomR(Dψ0

, R) is Sψ0
EAψ0

HomR(Dψ0
, R), where in the last formula we use the

action via ι∨. We obtain the result by taking the orthogonal complement of (4.2.19). �

To end this subsection, we check that the Kottwitz condition (KCr) is preserved under passage
to the conjugate dual.

Proposition 4.2.13. Let K/F, r be arbitrary. Let (P, ι) be a CM-pair which satisfies (KCr).
Then the conjugate dual (P∧, ι∧) satisfies (KCr).

Proof. We may assume that R is endowed with the structure of an OẼ-algebra. We use the
notation of the proof of Corollary 4.2.8. In particular DP,R = D and DP∧,R = D∧, and we write
L and L∧ for the Lie algebras of P and P∧. We have to show that for each R-algebra S and for
each ψ ∈ Ψ

detS(a | L∧S,ψ) =
∏
ϕ|ψ

ϕS(a)rϕ , for all a ∈ OK ⊗OKt ,ψR S.

To show this, we may replace P by its base change PS . Therefore it is enough to consider the
case S = R. Since Dψ is locally on SpecR a free OK ⊗OKt ,ψR R-module of rank 2, we find

det(a | Dψ) =
∏
ϕ∈Φψ

ϕR(a)2, for a ∈ OK ⊗OKt ,ψR R.

Since Lψ = Dψ/D1
ψ we find

det(ā | D1
ψ̄) =

∏
ϕ̄|ψ̄

ϕ̄R(ā)(2−rϕ̄) =
∏
ϕ∈Φψ

ϕR(a)rϕ .

The perfect pairing (4.2.8) induces a perfect pairing

D1
ψ̄ × L

∧
ψ −→ R.

Therefore we obtain
det(a | L∧ψ) = det(ā | D1

ψ̄) =
∏
ϕ∈Φψ

ϕR(a)rϕ .

Therefore (KCψ̄,r) for P implies (KCψ,r) for P∧. �
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4.3. The pre-contracting functor. Let (P, ι) = (P,Q, F, Ḟ , ι) be a CM-pair of type r over
an OE′ -algebra R such that p is nilpotent in R. We assume that (P, ι) satisfies (ECr). In other
words, (P, ι) ∈ dPr,R, cf. Definition 4.1.1. We will define a functor that associates to (P, ι) a
new display P ′ = (P ′, Q′, F ′, Ḟ ′) with an action

ι′ : OK −→ EndP ′,

such that (P, ι) = (P ′, ι′) and Q ⊂ Q′ ⊂ P ′ = P . In particular we obtain a natural surjection
LieP → LieP ′ of OK-modules. In the case where r is banal, we define Q′ = P . Therefore the
display P ′ will be étale in this case. In the case where r is special, the restriction of the action
ι′ to OF will be strict with respect to ϕ0,R : OF −→ OE −→ R. We will call this functor the
pre-contracting functor.

Let us first restrict our attention to the case where K/F is a field extension. The case
K = F × F will be treated separately because it needs different notations, see p. 57, starting
before eq. (4.3.22). Each ψ : Kt −→ Q̄p induces a homomorphism

ψ̃ : OKt −→W (OKt)
W (ψ)−−−−→W (OE′). (4.3.1)

For an OE′ -algebra R we deduce a homomorphism ψ̃R : OKt −→W (R) that is equivariant with
respect to the Frobenius homomorphisms on both sides. This induces decompositions

OKt ⊗Zp W (R) ∼=
∏

ψ∈Ψ
W (R),

OK ⊗Zp W (R) ∼=
∏

ψ∈Ψ
OK ⊗OKt ,ψ̃R W (R)

(4.3.2)

which lift the decomposition (4.2.2). Let σ ∈ Gal(Kt/Qp) be the Frobenius automorphism. The
operators F and V act via W (R) on the left hand side of (4.3.2). On the right hand side this
induces maps

OK ⊗OKt ,ψ̃R W (R)
F−→←−
V

OK ⊗OKt ,ψ̃R◦σ W (R),

cf. (3.4.4). Recall that
EAψ (T ) =

∏
ϕ∈Aψ

(T − ϕ(Π)) ∈ OE′ [T ].

We lift this to a polynomial with coefficients inW (OE′) by taking the Teichmüller representatives
of the roots,

ẼAψ (T ) =
∏
ϕ∈Aψ

(T − [ϕ(Π)]) ∈W (OE′)[T ]. (4.3.3)

The image of this polynomial by the homomorphismW (OE′) −→W (R) is denoted by ẼAψ,R(T ).
If we reduce with respect to w0 : W (OE′) −→ OE′ , we obtain the polynomial EAψ (T ). We note
that in the case where R is a κE′ -algebra, we have

ẼAψ,R(T ) = T aψ . (4.3.4)

We consider the ring homomorphism

W (OE′)[T ] −→W (R)[T ] −→ OK ⊗OKt ,ψ̃R W (R).

T 7−→ Π⊗ 1
(4.3.5)

We denote by ẼAψ,R(Π⊗ 1) the image of ẼAψ (T ) under (4.3.5).
Let now (P, ι) ∈ dPr,R. We obtain decompositions of the OK ⊗Zp W (R)-modules P and Q,

P = ⊕ψ∈ΨPψ, Q = ⊕ψ∈ΨQψ. (4.3.6)

For x ∈ Pψ, we write
ẼAψx = ẼAψ,R(Π⊗ 1)x. (4.3.7)

On the left hand side we consider Pψ as a W (OE′)[T ]-module via (4.3.5).
We give first the recipe for the construction of P ′ for any R ∈ NilpOE′ . Then we will discuss

the case of a perfect field. This special case is then used to prove that P ′ is indeed a display.
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We begin with the case where r is banal (and K/F is a field extension). Let (P, ι) as above.
We define

P ′ = ⊕ψP ′ψ, Q′ = ⊕ψQ′ψ
as follows: for all ψ we set

P ′ψ = Q′ψ = Pψ. (4.3.8)

By the Eisenstein condition (2.2.13), we have ẼAψPψ ⊂ Qψ. Then we may define

Ḟ ′ : Q′ψ −→ P ′ψσ, Ḟ ′(x) = Ḟ (ẼAψx), x ∈ Pψ
F ′ : P ′ψ −→ Pψσ, F ′(x) = F (ẼAψx), x ∈ Pψ.

(4.3.9)

We define F ′ : P ′ −→ P ′ and Ḟ ′ : Q′ −→ P ′ as the direct sum of the maps above. We have to
prove that P ′ = (P ′, Q′, F ′, Ḟ ′) is a display. The only non-trivial property we have to check is
that Ḟ ′ : Pψ −→ Pψσ is an F -linear isomorphism. We postpone the verification, cf. p. 55, below
(4.3.16).

We now define the pre-contracting functor in the case where r is special and K/F unramified.
In this case we have ψ0 6= ψ̄0. If ψ is banal, i.e., if ψ /∈ {ψ0, ψ̄0}, we keep the definitions (4.3.8)
and (4.3.9). We set P ′ψ0

= Pψ0
and we define Q′ψ0

as the kernel of the following map,

P ′ψ0
= Pψ0 −→ Pψ0/Qψ0

EAψ0,R−−−−−→ EAψ0,R
(Pψ0/Qψ0) ⊂ Pψ0/Qψ0 . (4.3.10)

It follows from Proposition 4.2.5 that EAψ0,R
(Pψ0

/Qψ0
) is locally free of rank 1 and is a direct

summand of Pψ0
/Qψ0

. Therefore

P ′ψ0
/Q′ψ0

∼= EAψ0,R
(Pψ0/Qψ0) (4.3.11)

is locally free of rank 1 and, as remarked at the end of the proof of Proposition 4.2.6, an element
a ∈ OK ⊗OKt ,ψ0

R acts on (4.3.11) by multiplication with ϕ0,R(a). This makes sense because
ϕ0 : OK −→ OẼ factors through OE′ ⊂ OẼ . We define

F ′ : P ′ψ0
−→ P ′ψ0σ, F ′(x) = F (ẼAψ0,R

x),

Ḟ ′ : Q′ψ0
−→ P ′ψ0σ, Ḟ ′(y) = Ḟ (ẼAψ0,R

y).
(4.3.12)

The last equation makes sense because, by definition, ẼAψ0,R
Q′ψ0

⊂ Qψ0 . The definitions of the
modules P ′

ψ̄0
, Q′

ψ̄0
and the restrictions of F ′ and Ḟ ′ to these modules are defined by interchanging

the roles of ψ0 and ψ̄0. This completes the definition of

F ′ : ⊕ψP ′ψ −→ ⊕ψP ′ψ, Ḟ ′ : ⊕ψQ′ψ −→ ⊕ψP ′ψ. (4.3.13)

Again we postpone the verification that P ′ is a display, cf. below (4.3.17). The tangent space
L′ = P ′/Q′ is a locally free R-module of rank 2. It has a decomposition

L′ = L′ψ0
⊕ L′ψ̄0

,

where an element a ∈ OK ⊗OKt ,ψ0
R acts on the first summand by multiplication with ϕ0,R(a)

and an element a ∈ OK ⊗OKt ,ψ̄0
R acts on the second summand by multiplication with ϕ̄0,R(a).

Next we define the pre-contracting functor in the case where r is special and K/F ramified.
In this case we have ψ0 = ψ̄0. For banal ψ, we keep the definitions (4.3.8) and (4.3.9). The
R-module EAψ0,R

(Pψ0/Qψ0) ⊂ Pψ0/Qψ0 is a direct summand which is locally free of rank 2. We
set P ′ψ0

= Pψ0
and we define Q′ψ0

as the kernel of (4.3.10). We define F ′ and Ḟ ′ by (4.3.12). Then
P ′ψ0

/Q′ψ0

∼= EAψ0,R
(Pψ0

/Qψ0
) is locally free and we define as before P ′ = (P ′, Q′, F ′, Ḟ ′), with

its OK-action ι′. It follows from Proposition 4.2.9 that the action of OF on EAψ0,R
(Pψ0

/Qψ0
)

via ι coincides with the action of via ϕ0, i.e., the action via ι′ on P ′ is strict. That P ′ is a display
is proved around (4.3.20).

Now we consider the case where R = k is a perfect field in more detail. We know that Pψ is
a free module of rank 2 over the discrete valuation ring OK ⊗OKt ,ψ̃W (k). Therefore Pψ/ΠPψ is
a k-vector space of dimension two. In the perfect field case, we have now also the operator V ,

F : Pψ −→ Pψσ, V : Pψσ −→ Pψ, V (Pψσ) = Qψ. (4.3.14)
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We will see that in all cases the Eisenstein condition implies that V (Pψσ) ⊂ ΠaψPψ. Therefore
we may define operators F ′ and V ′:

F ′ = ΠaψF : Pψ −→ Pψσ, V ′ = Π−aψV : Pψσ −→ Pψ. (4.3.15)

The Dieudonné module of the display P ′ in the sense of Proposition 3.1.9 will then be (P, F ′, V ′).
We begin with the case when r is banal. Now EAψ,k(T ) = T aψ acts on Pψ as multiplication

by Πaψ . By the Eisenstein condition (2.2.13), Πaψannihilates Pψ/Qψ. This implies ΠaψPψ ⊂
V (Pψσ). By the rank condition, the factor Pψ/V (Pψσ) has length 2aψ as OK ⊗OKt ,ψ̃ W (k)-
module. Since the same is true for the factor module Pψ/ΠaψPψ, we obtain

ΠaψPψ = V (Pψσ). (4.3.16)

Therefore Ḟ ′ = ḞΠaψ = V −1Πaψ : Pψ −→ Pψσ is bijective. This shows that P ′ is a display. We
set

F ′ = ⊕ψFΠaψ , V ′ = ⊕ψΠ−aψV.

Then (P, F ′, V ′) is the Dieudonné module associated to P ′.
We obtain from (4.3.16) in the ramified case that V 2fPψ = Π2efPψ = pfPψ for all ψ and in

the unramified case that V 2fPψ = πefPψ. This implies that in both cases P is isoclinic of slope
1/2.

Now we can verify that P ′ is a display for r banal, for an arbitrary OE′ -algebra R. Let
(P, ι) ∈ dPr,R. We must show that Ḟ : P −→ P is a Frobenius-linear isomorphism. We may
assume that P is a free W (R)-module. Let det Ḟ be the determinant of the matrix of Ḟ with
respect to any given basis of the W (R)-module P . We must verify that det Ḟ is a unit in W (R).
We have shown that, for each homomorphism R −→ k to a perfect field k, the image of det Ḟ by
W (R) −→W (k) is a unit in W (k). In particular w0(det Ḟ ) ∈ R has a nonzero image under any
homomorphism R −→ k. But then w0(det Ḟ ) is a unit in R, and this implies that det Ḟ ∈W (R)
is a unit. This finishes in the banal case the proof that P ′ is a display.

Next we consider the case when r is special and K/F unramified. By our conventions, Π = π
is the prime element of F . Let R = k be a perfect field and let P = (P, F, V ), regarded as
a Dieudonné module. If ψ ∈ Ψ is banal, we find as above that V Pψσ = πaψPψ. Now let
ψ ∈ {ψ0, ψ̄0}. Since πaψ+1 annihilates Lieψ P by the Eisenstein condition (2.2.18), we obtain
πaψ+1Pψ ⊂ V Pψσ. We note that Pψ is a OK ⊗OKt ,ψ̃ W (k)-module of rank 2. Therefore the
factor module of the last inclusion is, by the rank condition, a OK⊗OKt ,ψ̃W (k)-module of length
1 and is therefore annihilated by π. This implies

πaψ+1Pψ ⊂ V Pψσ ⊂ πaψPψ.

In particular
Pψ/π

aψPψ
∼−→ Lieψ P/πaψ Lieψ P (4.3.17)

is an isomorphism, as claimed in the beginning of the proof of Proposition 4.2.5. By definition
(4.3.10) we have Q′ψ = π−aψV Pψσ. The map Ḟ ′ = πaψ Ḟ : Q′ψ −→ Pψσ is therefore surjective.
Since we know this fact also for banal ψ we conclude that (P,Q′, F ′, Ḟ ′) is a display. The
associated Dieudonné module is (P, F ′, V ′), where

F ′ψ = πaψFψ : Pψ −→ Pψσ,

V ′ψσ = π−aψVψσ : Pψσ −→ Pψ.
(4.3.18)

Now we return to an arbitrary O-algebra R such that p is nilpotent in R. We note that the
definition of (P ′, Q′) commutes with arbitrary base change because Q′ψ0

/I(R)P ′ψ0
is defined as

the kernel of an epimorphism of projective R-modules,

Pψ0
/I(R)Pψ0

−→ EAψ0
(Pψ0

/Qψ0
).

We choose a normal decomposition of (P ′, Q′),

P ′ = T ′ ⊕ L′,

together with the Frobenius-linear endomorphism Φ′ : P ′ −→ P ′ of the W (R)-module P ′ such
that the restriction of Φ′ to T ′ is F ′ and the restriction to L′ is Ḟ ′. We have to show that the
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determinant of Φ in a locally chosen basis is a unit. Since we know that this is true after any
base change R −→ k with k a perfect field, this follows as in the banal case.

We can determine the possible slopes of P when r is special and K/F unramified. Let
P = (P, F, V ) over the perfect field k. By (4.3.15) we have (V ′)2f = π−(ef−1)V f . Let

PQ = ⊕λN(λ)

be the decomposition into isoclinic components. Fix λ = r/s. Then we find a W (k)-lattice
Λ ⊂ N(λ) such that V sΛ = prΛ. From V 2fsΛ = p2frΛ we obtain

(πef−1(V ′)2f )sΛ = p2rfΛ, i.e., (V ′)2fsΛ = π−efsπsp2rfΛ.

We write the right hand side as p−sfps/ep2rfΛ. This shows that N(λ) ⊂ P ′Q is an isoclinic
rational Dieudonné submodule of slope

−sf + (s/e) + 2fr

2fs
= −1

2
+

1

2d
+ λ.

Let us apply the Ahsendorf functor to P ′. We obtain a WOF (k)-Dieudonné module (Pc, Fc, Vc)
of height 4 and dimension 2. The slopes of Pc are by Proposition 3.3.17

d(λ− 1

2
) +

1

2
. (4.3.19)

The action of OK ⊗OF WOF (k) ∼= WOF (k) × WOF (k) on Pc defines a decomposition Pc =
Pc,0 ⊕ Pc,1 such that Vc(Pc,0) ⊂ Pc,1 and Vc(Pc,0) ⊂ Pc,1. The WOF (k)-module Pc,0 with
the semi-linear operator V 2

c is of height 2 and dimension 2. Therefore the possible slopes of
(Pc,0, V

2
c ) are with multiplicities (1, 1) or (0, 2). We conclude that the slopes of (Pc, Vc) are with

multiplicities (1/2, 1/2, 1/2, 1/2) or (0, 0, 1, 1). From (4.3.19) we find that in the first case all
slopes λ of P are 1/2, while in the second case we obtain the two slopes λ = 1/2 − 1/2d and
λ = 1/2 + 1/2d.

Now we consider the case where r is special and K/F is ramified. As in the last case, it is
enough to verify that P ′ is a display when R = k is a perfect field. Recall that aψ = e for ψ
banal and that aψ0 = e − 1. As above we find V Pψσ = ΠePψ for ψ banal. By the Eisenstein
condition (2.2.16), Lψ0

is annihilated by Πe+1 and the k-vector space Πe−1Lψ0
has dimension

at most 2. We consider the following filtration by subvector spaces,

Lψ0
⊃ ΠLψ0

⊃ Π2Lψ0
⊃ . . . ⊃ ΠeLψ0

⊃ Πe+1Lψ0
= 0.

We have dimk ΠmLψ0
/Πm+1Lψ0

≤ 2 for all m ≥ 0 since Lψ0
is a quotient of Pψ0

, which is a free
OK ⊗OKt ,ψ̃0

W (k)-module of rank 2. Therefore we find

dimk Lψ0
= dimk Lψ0

/Πe−1Lψ0
+ dimk Πe−1Lψ0

≤ 2(e− 1) + 2 = 2e = dimk Lψ0
.

We must have the equality

dimk Lψ0
/Πe−1Lψ0

= 2(e− 1), dimk Πe−1Lψ0
= 2.

The first equation shows that the natural map

Pψ0/Π
e−1Pψ0 −→ Lψ0/Π

e−1Lψ0 (4.3.20)

is an isomorphism of vector spaces, as asserted in the beginning of the proof of Proposition 4.2.5.
Finally we have by definition Q′ψ0

= Π−e+1Qψ0
= Π−e+1V Pψ0σ. Therefore

Ḟ ′ = Πe−1V −1 : Q′ψ0
−→ Pψ0σ

is bijective. We conclude that (P ′, Q′, F ′, Ḟ ′) is a display. The associated Dieudonné module is
(P, F ′, V ′), where

V ′ = Π−eV : Pψσ −→ Pψ, ψ 6= ψ0

V ′ = Π−e+1V : Pψ0σ −→ Pψ0
.

(4.3.21)

As in the unramified case we conclude for an arbitrary R ∈ NilpOE′ that our definitions (4.3.8),
(4.3.9), (4.3.12) give a display P ′ = (P ′, Q′, F ′, Ḟ ′).
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In the case of a perfect field k, the slopes of P ′ are computed in the same way as in the
unramified case. We have the equation (V ′)f = Π−(ef−1)V f . Let N(λ) ⊂ PQ be an isoclinic
component. We find a lattice Λ ⊂ N(λ) such that V sΛ = prΛ. We obtain that

(V ′)sfΛ = Π−efsΠsprfΛ.

Since Π2e and p differ by a unit, this implies that N(λ) ⊂ P ′Q is isoclinic of slope

−(fs/2) + (s/2e) + rf

sf
= −1/2 + 1/2d+ λ = (λ− 1/2) + 1/2d.

If we apply the Ahsendorf functor, we obtain an WOF (k)-Dieudonné module (Pc, Fc, Vc) with
slopes d(λ − 1/2) + 1/2. If we consider the OK ⊗OF WOF (k)-module Pc with the semi-linear
operator Vc the possible slopes with multiplicity are (1, 1) or (0, 2) because (Pc, Vc) is of height 2
and dimension 2. If we regard (Pc, Vc) over WOF (k), the heights are multiplied with 2 and then
the possible heights are (1/2, 1/2, 1/2, 1/2) or (0, 0, 1, 1). As in the unramified case we conclude
that P is either isoclinic of slope 1/2 or has exactly two slopes 1/2− 1/2d and 1/2 + 1/2d.

Finally we consider the case where r is banal and K = F×F . We set Θ = HomQp-Alg(F t, Q̄p).
In this case σ will denote the Frobenius automorphism in Gal(F t/F ). If we compose θ ∈ Θ with
the first, resp. second, projection Kt = F t×F t −→ F t we obtain θ1, θ2 ∈ Ψ. Via the first, resp.
the second, projection, we obtain isomorphisms

(OF ×OF )⊗(OFt×OFt ),θi OE′
∼= OF ⊗OFt ,θ OE′ , i = 1, 2.

This leads to the decomposition

OK ⊗OE′ =
∏
ψ∈Ψ

OK ⊗OKt ,ψ OE′ =
( ∏
θ∈Θ

OF ⊗OFt ,θ OE′
)
×
( ∏
θ∈Θ

OF ⊗OFt ,θ OE′
)
. (4.3.22)

Assume that ψ ∈ Ψ factors through θ ∈ Θ. We define ψ̃ as the composite

OKt = OF t ×OF t
proj.−−−→ OF t −→W (OF t)

W (θ)−−−→W (OE′). (4.3.23)

The first map is the projection to the first or second factor according to ψ. We denote by θ̃ the
composite of the last two arrows in (4.3.23). We obtain the decomposition

OK ⊗Z W (OE′) =
∏
ψ∈Ψ

OK ⊗OKt ,ψ̃ W (OE′)

=
( ∏
θ∈Θ

OF ⊗OFt ,θ̃ W (OE′)
)
×
( ∏
θ∈Θ

OF ⊗OFt ,θ̃ W (OE′)
)
.

(4.3.24)

On the right hand side, the first set of factors correspond to those ψ which factor over the first
projection and the second set of factors correspond to those ψ which factor over the second
projection.

We consider a CM-pair (P, ι) over R ∈ NilpOE′ which satisfies the Eisenstein condition. By
(4.3.22) we obtain a decomposition

P = P1 × P2 = (
⊕
θ∈Θ

P1,θ)⊕ (
⊕
θ∈Θ

P2,θ). (4.3.25)

This decomposition corresponds to the decomposition into displays P = P1⊕P2 induced by the
OF ×OF -action on P. By the definition of a CM-pair (at the beginning of subsection 2.3), the
displays P1 and P2 have both height 2d.

The maps F and Ḟ of the display P induce maps

F : Pi,θ −→ Pi,θσ, Ḟ : Qi,θ −→ Pi,θσ. (4.3.26)

The polynomial ẼAψ ∈ W (OE′)[T ] is defined as before, cf. (4.3.3). For i = 1, 2 we define the
displays P ′i = (P ′i , Q

′
i, F
′
i , Ḟ

′
i ) as follows

P ′i = Q′i = Pi, Ḟ ′i (x) = Ḟ (ẼAθix), F ′i (x) = F (ẼAθix), x ∈ Piθ.

Here, by the convention (4.3.7), ẼAθi acts as the multiplication by ẼAθi ,R(π ⊗ 1) ∈ OF ⊗OFt ,θ̃i
W (R). We set P ′ = P ′1⊕P ′2. As in the unramified banal case, the verification that P ′ is a display
reduces to the case of a perfect field. However, when R is a κE′ -algebra, then ẼAθi ,R(π ⊗ 1) =
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πaθi ⊗ 1. If R = k is a perfect field, we consider the Dieudonné module (Pi, Fi, Vi) of Pi. We
have

Vi(Pi,θσ) = πaθiPi,θ. (4.3.27)
We define

F ′i = πaθiFi : Pi,θ −→ Pi,θσ, V ′i = π−aθiVi : Pi,θσ −→ Pi,θ.

Then (Pi, F
′
i , V

′
i ) is the Dieudonné module of P ′i. Finally we determine the slopes of P. If we

iterate (4.3.27) we find
V fPi = π

∑
θ aθiPi.

We set ai =
∑
θ aθi . Then a1 + a2 = ef = d because aθ1 + aθ2 = e. We obtain easily that

2ai = dimPi. (4.3.28)

It follows that Pi is isoclinic of slope λi = ai/d and that λ1 + λ2 = 1.
We summarize the properties of our constructions.

Definition 4.3.1. Let R ∈ NilpOE′ . We define categories dP′r,R and P′r,R as follows.
(1) If r is banal, then dP′r,R is the category of pairs (P ′, ι′), where P ′ is an étale display (i.e.,

P ′ = Q′) of height 4d and where ι′ is an OK-action. In the split case OK = OF × OF , we
require in addition that in the induced decomposition P ′ = P ′1⊕P ′2 both factors have height
2d.

(2) If r is special andK/F is unramified, then the category dP′r,R is the category of pairs (P ′, ι′),
where P ′ is a display of height 4d and dimension 2 with an action ι′ : OK −→ EndP ′ such
that the action of ι′ restricted to OF is strict with respect to ϕ0,R : OF

ϕ0−→ OE′ −→ R and
such that LieP ′ = P ′/Q′ is locally on SpecR a free OK ⊗OF ,ϕ0,R

R-module of rank 1.
(3) If r is special and K/F is ramified, then the category dP′r,R is the category of pairs (P ′, ι′),

where P ′ is a display of height 4d and dimension 2 with an action ι′ : OK −→ EndP ′ such
that the action of ι′ restricted to OF is strict with respect to ϕ0,R : OF

ϕ0−→ OE′ −→ R.
The category P′r,R is the category of formal p-divisible groups X ′ with an OK-action ι′ such
that the associated display (P ′, ι′) is an object of dP′r,R.

Let r be special. We call (P, ι) supersingular if (P ′, ι′) satisfies the nilpotence condition. We
denote the full subcategory of supersingular objects of dPr,R by dPss

r,R.

Theorem 4.3.2. Let R ∈ NilpOE′ be such that the ideal of nilpotent elements in R is nilpotent.
The construction above defines the pre-contracting functor5

C′r,R : dPr,R −→ dP′r,R

which commutes with arbitrary base change with respect to R. Furthermore,
(i) if r is banal, the functor C′r,R is an equivalence of categories.
(ii) if r is special and the ring R is reduced, the functor C′r,R is an equivalence of categories.
(iii) if r is special and R is arbitrary, C′r,R induces an equivalence of categories

C′r,R : dPss
r,R −→ dP′ nilp

r,R ,

where the right hand side is the full subcategory of nilpotent displays.
Let r be special and K/F be ramified. Let (P, ι) ∈ dPr,R and let (P ′, ι′) be its image by C′r,R.
Then (P, ι) satisfies (KCr) if and only if

TrR(ι′(Π) | P ′/Q′) = 0.

Before proving this, we state a Corollary which we already proved in the construction of C′r,R
above.

Corollary 4.3.3. Let k ∈ NilpOE′ be a perfect field. Let P ∈ dPr,k and let P ′ be its image by
the functor C′r,R.
(1) Let r be banal and K/F a field extension. Then the display P is isoclinic of slope 1/2 and
P ′ is étale.

5Later we will also have a contracting functor Cr,R, which explains our notation.
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(2) Let K/F be split (and then r is banal). Then P decomposes into P = P1 ⊕ P2, where P1

is isoclinic of slope λ and P2 is isoclinic of slope 1− λ. The number λ depends only on r. The
display P ′ is étale.
(3) Let r be special. Then P is either isoclinic of slope 1/2 (supersingular case) or it has the two
slopes 1/2− 1/2d and 1/2 + 1/2d with the same multiplicity. In the first case P ′ is isoclinic of
slope 1/2d. In the second case it has the two slopes 0, 1/d with the same multiplicity.

�

Proof. We still have to prove the claimed equivalences of categories. We begin with the case
where R is reduced.

Let us consider first the case where r is special and K/F unramified. It is enough to in-
vert the construction of the functor C′r,R. For any ψ, Pψ/I(R)Pψ is locally on SpecR a free
(OK/pOK)⊗κK ,ψ R-module of rank 2, cf. Lemma 3.1.15. Let P ′ = (P ′, Q′, F ′, Ḟ ′) be an object
of dP′r,R. We define as follows an object P = (P,Q, F, Ḟ ) of dPr,R such that P ′ is the image of
P by the functor C′r,R. We set Pψ = P ′ψ for ψ ∈ Ψ, and for ψ /∈ {ψ0, ψ̄0} we set

Qψ = πaψPψ + I(R)Pψ. (4.3.29)

Since Pψ = Q′ψ, we have Ḟ ′(I(R)Pψ) ⊂ W (R)F ′Pψ ⊂ pPψσ. By (4.3.29) we find Ḟ ′(Qψ) ⊂
πaψPψσ. Since p is not a zero divisor in W (R), the element π ∈ OK acts injectively on Pψ0 .
Therefore we may define

Ḟ = π−aψ Ḟ ′ : Qψ −→ Pψσ, F = π−aψF ′ : Qψ −→ Pψσ.

If ψ ∈ {ψ0, ψ̄0} we consider the split homomorphism of R-modules

πaψ : Pψ/I(R)Pψ −→ Pψ/I(R)Pψ. (4.3.30)

It is split because Pψ/I(R)Pψ is a free (OK/pOK)⊗κK ,ψ R-module. We set

Qψ = πaψQ′ψ + I(R)Pψ.

If we apply Ḟ ′ to the last equation we obtain that Ḟ ′(Qψ) ⊂ πaψPψσ. Indeed, because the action
of OF on P ′ is strict π annihilates Pψ/Q′ψ. We conclude that F ′(πPψ) ⊂ F ′(Q′ψ) = pḞ ′(Qψ) ⊂
pPψσ and therefore F ′(Pψ) ⊂ πe−1Pψ ⊂ πaψPψ. This justifies the following definition:

Ḟ := π−aψ Ḟ ′ : Qψ −→ Pψσ, F := π−aψF ′ : Pψ −→ Pψσ.

It is obvious that we obtain a display P = (P,Q, F, Ḟ ). We need to verify that the condition
(ECr) is satisfied. We check the conditions (2) and (3) of Proposition 4.2.7. By definition of
dP′r,R, the R-module P ′ψ/Q

′
ψ is annihilated by π. The kernel of (4.3.30) is πe−aψPψ and therefore

contained in Q′ψ/I(R)Pψ. The image of the last module by (4.3.30) is therefore a direct summand
of Pψ/I(R)Pψ. This image is Qψ/I(R)Pψ. Therefore condition (2) holds. Moreover, we obtain
an isomorphism

Pψ/Q
′
ψ
∼−→ πaψPψ + I(R)Pψ/Qψ.

In particular, the last module is locally free of rank 1 and the action of π on this module coincides
with multiplication by ϕ0(π) if ψ = ψ0, resp., by ϕ̄0(π) if ψ = ψ̄0. Hence condition (3) holds.

In the split case the same arguments hold but we need only the easy part because ψ0 and ψ̄0

don’t exist.
Next we consider the case where r is special and K/F ramified. Again we reverse the con-

struction of the functor C′r,R. Let (P ′, Q′, F ′, Ḟ ′) be an object of dP′r,R. We associate to it as
follows an object (P,Q, F, Ḟ ) ∈ dPr,R. We set Pψ = P ′ψ for all ψ ∈ Ψ. Assume that ψ 6= ψ0.
We have Q′ψ = P ′ψ because the action of OF t is strict. We set

Qψ = ΠeP ′ψ + I(R)P ′ψ.

It follows from Lemma 3.1.15 that Pψ/I(R)Pψ is locally on SpecR a free (OK/pOK)⊗κK ,ψ R-
module. Therefore Pψ/Qψ is a locally free R-module. From F ′Pψ = pḞ ′Pψ, we find that
Ḟ ′Qψ ⊂ ΠeP ′ψσ. Since R is reduced, the ring W (R) has no p-torsion. It follows that the map
Πe : Pψσ −→ ΠePψσ is bijective. Therefore we may define

Ḟ := Π−eḞ ′ : Qψ −→ Pψσ.
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It is clear that this map is a Frobenius-linear epimorphism. Next, we set

Pψ0 = P ′ψ0
, Qψ0

= Πe−1Q′ψ0
+ I(R)P ′ψ0

.

Since the action of OF on P ′ is strict, we find

Πe+1P ′ψ0
⊂ Π2P ′ψ0

⊂ Q′ψ0
. (4.3.31)

We consider the split homomorphism of R-modules,

Πe−1 : P ′ψ0
/I(R)P ′ψ0

−→ P ′ψ0
/I(R)P ′ψ0

. (4.3.32)

The kernel of this map is the image of Πe+1. Therefore the kernel is contained in Q′ψ0
/I(R)P ′ψ0

.
This implies that the image of Q′ψ0

/I(R)P ′ψ0
under (4.3.32) is a direct summand of P ′ψ0

/I(R)P ′ψ0
.

Hence the cokernel Pψ0
/Qψ0

is a locally free R-module. We apply F ′ to (4.3.31) and obtain

Π2F ′P ′ψ0
⊂ F ′Q′ψ0

= pḞ ′Q′ψ0
⊂ pP ′ψ0σ.

Using this, we get

Ḟ ′Qψ0
= Ḟ ′

(
Πe−1Q′ψ0

+ I(R)P ′ψ0

)
⊂ Πe−1P ′ψ0σ + F ′P ′ψ0

⊂ Πe−1P ′ψ0σ.

It follows that the following definitions of maps Qψ0
−→ Pψ0

, resp. Pψ0
−→ Pψ0

, make sense:

Ḟ = (1/Πe−1)Ḟ ′, F = (1/Πe−1)F ′.

Therefore we have defined P = (P,Q, F, Ḟ ). It is clear that we obtain a display. We have to
verify the condition (ECr). Only (ECψ0,r) is not completely obvious. We prove the conditions
of Proposition 4.2.9. By the R-module homomorphism (4.3.32), P ′ψ0

/I(R)P ′ψ0
is mapped to

the direct summand (Πe−1P ′ψ0
+ I(R)P ′ψ0

)/I(R)P ′ψ0
, and Q′ψ0

/I(R)P ′ψ0
is mapped to the direct

summand Qψ0/I(R)P ′ψ0
. We obtain an isomorphism

P ′ψ0
/Q′ψ0

∼−→ (Πe−1Pψ0 + I(R)Pψ0)/Qψ0 .

Therefore by the strictness of the OF -action, the right hand side is a locally free R-module
of rank 2 and ι(π) acts on the right hand side as ϕ0(π). These are exactly the conditions of
Proposition 4.2.9. The rank condition is now obvious for (P,Q, F, Ḟ ).

Finally, in the case where r is banal, including the split case (and R is reduced), we can
reverse the functor C′r,R using the arguments for banal ψ given above.

Now we consider assertion (iii) of Theorem 4.3.2 when R is not reduced. It follows from
Corollary 4.3.3 (3) that P is isoclinic of slope 1/2 because P ′ is nilpotent. Therefore we may apply
Grothendieck-Messing for displays Corollary 3.1.14. We consider a surjective homomorphism
S −→ R of OE′ -algebras and assume that the kernel a is endowed with a divided power structure.

We define the category dPr,S/R as the full subcategory of the category of pairs (P1, ι1) where
P1 is a W(S/R)-display, cf. Example 3.1.3, and where

ι1 : OK −→ EndP1

is an action such that the base change (P, ι) of such a pair by the morphism of framesW(S/R) −→
W(R) lies in the category dPr,R. We also say that (P1, ι1) is a lift of (P, ι) to a relative display.
By Theorem 3.1.12, the lift (P1, ι1) is uniquely determined by (P, ι) if P satisfies the nilpotence
condition.

In the same way we define the category dP′r,S/R, cf. Definition 4.3.1. Then the functor C′r,R
of Theorem 4.3.2 extends to a functor

C′r,S/R : dPr,S/R −→ dP′r,S/R. (4.3.33)

Indeed, the definition of C′r,S/R is essentially the same as that of C′r,R. We indicate it in the
case where K/F is unramified or split. By the OK-action, we have for the relative display P1 a
decomposition,

P1 = ⊕ψP1,ψ, Q1 = ⊕ψQ1,ψ.

We are going to define a W(S/R)-display P ′1 = (P ′1, Q
′
1, F

′
1, Ḟ

′
1). We set P ′1,ψ = P1,ψ for all

ψ ∈ Ψ. Since P1 is a lifting of P, we have a natural isomorphism

P1,ψ/Q1,ψ = Pψ/Qψ. (4.3.34)
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If ψ /∈ {ψ0, ψ̄0}, we set Q′1,ψ = P ′1,ψ. By the condition (ECr) for P we conclude that
ẼAψP1,ψ ⊂ Q1,ψ. Therefore we can define

F ′1 : P ′1,ψ −→ P1,ψσ, F ′1(x) = F1(ẼAψx), x ∈ P ′1,ψ
Ḟ ′1 : Q′1,ψ −→ P ′1,ψσ, Ḟ ′1(x) = Ḟ1(ẼAψx), x ∈ Q′1,ψ.

(4.3.35)

In the split case this decribes P ′1 already completely. Now we consider the case ψ ∈ {ψ0, ψ̄0}.
Then we define Q′1,ψ as the kernel of the map

P1,ψ −→ Pψ/Qψ
EAψ−−−→ Pψ/Qψ.

This implies ẼAψQ′1,ψ ⊂ Q1,ψ. Therefore we can define

F ′1 : P ′1,ψ −→ P ′1,ψσ, F ′1(x) = F1(ẼAψx), x ∈ P ′1,ψ,

Ḟ ′1 : Q′1,ψ −→ P ′1,ψ0σ, Ḟ ′1(y) = Ḟ1(ẼAψy), y ∈ Q′1,ψ.
(4.3.36)

We then define P ′1 = (P ′1, Q
′
1, F

′
1, Ḟ

′
1), where P ′1 = ⊕P ′1,ψ and Q′1 = ⊕Q′1,ψ. In the ramified case

the same definition holds with slight modifications.
The functor C′r,S/R defines a natural isomorphism

DP(S) ∼= DP′(S). (4.3.37)

This relates deformations of P and deformations of its image P ′ under Cr,R since P and P ′ are
nilpotent.

Let (P, ι) ∈ dPss
r,R. It has a unique lift P1 ∈ dPr,S/R. The image P ′1 by the functor C′r,S/R is

the unique lift of P ′ to an object of dP′r,S/R, cf. Theorem 3.1.12.
Let us fix P. LetM be the set of all isomorphism classes of deformations of (P, ι) to an object

in dPr,S . Let M′ be the set of isomorphism classes of deformations of (P ′, ι′) to an object of
dP′r,S/R. We claim that the functor C′r,S defines a bijection,

C′r,S :M−→M′. (4.3.38)

We indicate this when K/F is unramified. Let Q̄ ⊂ DP(R) = P/I(R)P be the image of Q, i.e.,
the Hodge filtration. The setM is identified with the set of liftings of Q̄ to a direct summand
Q̄1 ⊂ DP(S) = P1/I(S)P1 which is a OK ⊗Zp S-submodule and such that the factor module
satisfies the Eisenstein condition. The OK-action gives a decomposition Q̄1 = ⊕Q̄1,ψ. For ψ
banal, we must have by Proposition 4.2.7 that

ẼAψDP(S)ψ = Q̄1,ψ. (4.3.39)

We note that the left hand side is a direct summand of DP(S)ψ as an S-module. This follows
from the fact that P1,ψ/I(S)P1,ψ is a free module over S[T ]/EψS[T ]. Therefore, there is exactly
one possibility to lift the ψ-component of the Hodge filtration. We consider now liftings of Q̄ψ
when ψ is not banal. In this case the Eisenstein condition implies that

SψẼAψDP(S)ψ ⊂ Q̄1,ψ ⊂ ẼAψDP(S)ψ.

By the freeness of DP(S)ψ just mentioned, the multiplication by ẼAψ gives an isomorphism

ẼAψ : DP(S)ψ/SψDP(S)ψ ∼= ẼAψDP(S)ψ/SψẼAψDP(S)ψ.

This shows that it is the same thing to lift Q̄ψ to a direct summand Q̄1,ψ ⊂ DP(S)ψ such
that the Eisenstein condition is satisfied or to lift Ẽ−1

Aψ
Q̄ψ to a direct summand Q̄′1,ψ such that

DP(S)ψ/Q̄
′
1,ψ is annihilated by Sψ. The last condition means that the action of OF is strict

with respect to ϕ0, resp., ϕ̄0. In other words,

Q̄′1 = Q̄1,ψ0
⊕ Q̄1,ψ̄0

⊕ (⊕ψ 6=ψ0ψ̄0
DP(S)ψ)

is a lift of the Hodge filtration Q̄′ ⊂ DP′(R) = P/I(R)P to a Hodge filtration Q̄′1 ⊂ P1/I(S)P1

such that the action of OF is strict, i.e., the Hodge filtration Q̄′1 defines a point ofM′. This shows
that (4.3.38) is bijective because the functor C′r,S maps the Hodge filtration Q̄1,ψ to E−1

Aψ
Q̄1,ψ

when ψ is special by the definition (4.3.10). We leave the ramified case to the reader.
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Finally we prove assertion (i) of Theorem 4.3.2, i.e., we assume that r is banal. We begin
with the case where K/F is a field extension. Then P is by Corollary 4.3.3 (1) of slope 1/2. By
(4.3.39) there is a unique way to lift the Hodge filtration and therefore the Grothendieck-Messing
criterion implies that there is a unique way to lift P to an object P1 ∈ dPr,S/R. On the other
hand P ′ is étale. Therefore it lifts obviously uniquely, and (i) follows. In the case where K/F is
split the same argument applies if P is local. If not, we consider the decomposition P = Pα⊕Pβ
induced by OK = OF ×OF . By Corollary 4.3.3 (2), in each geometric point of SpecR one of the
factors of this decomposition is isoclinic of slope 0 and the other is isoclinic of slope 1. That Pα
is étale means that the locally free module Pα/Qα is zero. This is true on an open and closed
subset of SpecR. Therefore we may assume without loss of generality that Pα is étale. Then
Pα has a unique lift and Pβ has a unique lift by Grothendieck-Messing. Since P ′ is étale it has
also a unique lift. This completes the proof in the split case. �

Corollary 4.3.4. Let R ∈ NilpOE′ be such that the ideal of nilpotent elements in R is nilpotent.
We denote by Pss

r,R the full subcategory of objects of Pr,R whose displays lie in dPss
r,R. Let P

′form
r,R

be the full subcategory of P′r,R whose objects are formal p-divisible groups. Then C′r,R induces
an equivalence of categories

C′r,R : Pss
r,R −→ P

′form
r,R .

�

4.4. The contracting functor in the case of a special CM-type. In this subsection, r will
denote a special CM-type. In this case, we will compose the functor C′r,R with the Ahsendorf
functor.

Definition 4.4.1. Let r be special. Let R ∈ NilpOF . We denote by dRR
6 the category of

WOF (R)-displays Pc endowed with a homomorphism of OF -algebras

ιc : OK −→ EndPc,

such that Pc is of height 4 and dimension 2. In the case where K/F is unramified, we require
moreover that LiePc is locally on SpecR a free OK ⊗OF R-module of rank 1.

We note that in the ramified case, the OK ⊗OF R-module LiePc is in general not locally free
on SpecR.

Definition 4.4.2. Let r be special. Let R be a OE′ -algebra. We regard R as a OF -algebra via
ϕ0,R : OF

ϕ0−→ OE −→ R. The contracting functor

Cr,R : dPr,R −→ dRR

is the composition of C′r,R with the Ahsendorf functor AOF /Zp,R.

Theorem 4.4.3. Let r be special. Let R ∈ NilpOE′ be such that the ideal of nilpotent elements
of R is nilpotent. Then the functor Cr,R induces an equivalence of categories

Cr,R : dPss
r,R −→ dRnilp

R .

Here dRnilp
R denotes the full subcategory of nilpotent displays in dRR.

Proof. This follows from Proposition 4.3.2 and Theorem 3.3.2. �

Remark 4.4.4. Let R = k be a perfect field with an OE′ -algebra structure. Then the construc-
tion of the functor Cr,k simplifies.

We begin with the unramified case. Let P = (P, F, V ) ∈ dPr,k viewed as a Dieudonné module.
The display P ′ = (P, F ′, V ′) is described after (4.3.17). Applying the Ahsendorf functor to it,
we obtain the image Pc = (Pc, Fc, Vc) of P by the functor Cr,k. The P0 of (3.3.33) is in our case
Pc = Pψ0

⊕ Pψ̄0
and Vc = (V ′)f is the Va of (3.3.33). We know that the restriction of V ′ to Pψσ

is
V ′ = π−aψV : Pψσ −→ Pψ.

6The symbol R is to remind us that this is a category of relative displays.
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We conclude that (V ′)f : Pψ0
−→ Pψ̄0

is equal to π−gψ̄0V f where

gψ̄0
= aψ̄0

+ aψ̄0σ + . . .+ aψ̄0σf−1

= aψ0σ−f + aψ0σ−(f−1) + . . .+ aψ0σ−1 .
(4.4.1)

In the same way (V ′)f : Pψ̄0
−→ Pψ0

is equal to π−gψ0V f where

gψ0
= aψ0

+ aψ0σ + . . .+ aψ0σf−1 . (4.4.2)

From (2.2.17) we obtain gψ0
+ gψ̄0

= ef − 1. In summary, Pc = Pψ0
⊕ Pψ̄0

as a WOF (k) =
OF ⊗OFt ,ψ̃0

W (k)-module, and Vc is given by the matrix(
0 π−gψ0V f

π−gψ̄0V f 0

)
. (4.4.3)

Finally Fc is determined by the equation FcVc = π. For instance, Fc : Pψ̄0
−→ Pψ0 is equal to

(πgψ̄0
+1/pf )F f . We obtain a Dieudonné module (Pc, Fc, Vc) with respect to the perfect frame

WOF (k) = (OF ⊗OFt ,ψ̃0
W (k), πOF ⊗OFt ,ψ̃0

W (k), k, F f , F fπ−1). (4.4.4)

In the ramified case we have Pc = Pψ0 as a module over WOF (k) = OF ⊗OFt ,ψ̃0
W (k). If we

apply the Ahsendorf functor to P ′, we obtain by (4.3.21)

Vc = Π−ef+1V f : Pc −→ Pc. (4.4.5)

Fc is determined by the equation FcVc = π, i.e., Fc = −(Πef+1/pf )F f . We obtain a Dieudonné
module (Pc, Fc, Vc) for the frame (4.4.4)

We next add polarizations to the picture. We set t(a) = TrF/Qp ϑ
−1a where ϑ is the different

of F/Qp.

Proposition 4.4.5. Let r be special. Let R ∈ NilpOE′ . Let (P1, ι1) and (P2, ι2) be objects of
dPr,R. Let (P ′1, ι′1) and (P ′2, ι′2) be their images by the functor C′r,R. Assume given a bilinear
form of displays

β : P1 × P2 −→ Pm,R,
where Pm is the multiplicative display of W(R). Assume that β is anti-linear for the OK-actions
ι1, resp. ι2, i.e,

β(ι1(a)x1, x2) = β(x1, ι2(ā)x2), x1 ∈ P1, x2 ∈ P2, a ∈ OK . (4.4.6)

Define
β̃ : P1 × P2 −→ OF ⊗Zp W (R)

by the equation

t(ξβ̃(x1, x2)) = β(ξx1, x2), x1 ∈ P1, x2 ∈ P2, ξ ∈ OF ⊗Zp W (R).

Then β̃ is a OF -bilinear form of displays,

β̃ : P ′1 × P ′2 −→ LR,

where LR is the Lubin-Tate display associated to the local field F and the algebra structure
ϕ0 : OF −→ OE′ −→ R, cf. Definition 3.4.3. Furthermore, β̃ is anti-linear for the OK-actions
ι1, resp. ι2.

Proof. To avoid a conflict with the present notations, we adapt some of the notation of section
3.4 to our situation. What was K in section 3.4 is now F . We set Lt = ψ0(F t) ⊂ E′. We write
the polynomials of that section as follows:

ẼF,ψ(Z) =
∏

χ:F−→Ẽ, χ|Ft=ψ

(Z − [χ(π)]) ∈W (OLt)[Z].

We stress that here ψ denotes an embedding of F t into E′, not as elsewhere in this section an
embedding of Kt into E′. For ψ = ψ0, we consider the decomposition ẼF,ψ0

(Z) = (Z− [ϕ0(π)]) ·
ẼF,0(Z) in W (ϕ0(F ))[Z]. In particular all of these polynomials lie in W (OE′)[Z].
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Let M be an OF ⊗OFt ,ψ W (R)-module. Then we write by our convention

ẼF,ψm = ẼF,ψ(π ⊗ 1)m,

where ẼF,ψ(π ⊗ 1) ∈ OF ⊗OFt ,ψ W (R) is the evaluation at π ⊗ 1 in this W (OLt)-algebra.
We first consider the assertion of Proposition 4.4.5 in the ramified case. We have the de-

composition Pi = ⊕ψPi,ψ. By (4.4.6), we find β(P1,ψ, P2,ψ′) = 0 for ψ 6= ψ′. We consider the
restrictions of our bilinear forms

βψ :P1,ψ × P2,ψ −→W (R)

β̃ψ :P1ψ × P2,ψ −→ OF ⊗OFt ,ψ W (R).

Lemma 4.4.6. Let K/F be ramified. Then:

β̃ψ(ẼAψx1, ẼAψx2) = ẼF,ψβ̃ψ(x1, x2), x1 ∈ P1,ψ, x2 ∈ P2,ψ, ψ 6= ψ0

β̃ψ0
(ẼAψ0

x1, ẼAψ0
x2) = ẼF,0β̃ψ(x1, x2), x1 ∈ P1,ψ0

, x2 ∈ P2,ψ0
.

Proof. We can restrict ourselves to the case where R is a OẼ-algebra. Then we obtain

β̃ψ
(
(Π⊗ 1− 1⊗ [ϕ(Π)])x1, x2

)
= β̃ψ

(
x1, (−Π⊗ 1− 1⊗ [ϕ(Π)])x2

)
= −β̃ψ

(
x1, (Π⊗ 1− 1⊗ [ϕ̄(Π)])x2

)
.

In the case were ψ 6= ψ0 we deduce

β̃ψ(ẼAψx1, x2) = (−1)eβ̃ψ(x1, ẼBψx2).

We find
ẼBψ (Π⊗ 1) · ẼAψ (Π⊗ 1) =

∏
ϕ∈Aψ

(Π⊗ 1− 1⊗ [ϕ(Π)])(Π⊗ 1− 1⊗ [ϕ̄(Π)])

=
∏
ϕ∈Aψ

(Π⊗ 1− 1⊗ [ϕ(Π)])(Π⊗ 1 + 1⊗ [ϕ(Π)])

=
∏
ϕ∈Aψ

(−π ⊗ 1 + 1⊗ [ϕ(π)]) = (−1)eẼF,ψ(π ⊗ 1).

Therefore we obtain
β̃ψ(ẼAψx1, ẼAψx2) = (−1)eβ̃ψ(x1, ẼBψ ẼAψx2) = β̃ψ(x1, ẼF,ψx2)

= ẼF,ψβ̃ψ(x1, x2),

which finishes the proof for ψ 6= ψ0.
We turn now to the case ψ0. The polynomials ẼAψ0

, ẼBψ0
, and ẼF,0 are of degree e− 1. The

same computations yield for x1 ∈ P1,ψ0
and x2 ∈ P2,ψ0

,

β̃ψ0(ẼAψ0
x1, x2) = (−1)e−1β̃ψ0

(x1, ẼBψ0
x2),

ẼBψ0
(Π⊗ 1) · ẼAψ0

(Π⊗ 1) = (−1)e−1ẼF,0(π ⊗ 1).

The assertion for ψ0 follows as before. �

We continue with the proof of Proposition 4.4.5 in the ramified case. We begin by showing
that

β̃ψ(Q′1,ψ, Q
′
2,ψ) ⊂ QL,ψ. (4.4.7)

This is trivial for ψ 6= ψ0. Let y1 ∈ Q′1,ψ0
and y2 ∈ Q′2,ψ0

. By Lemma 3.4.2, the inclusion (4.4.7)
is equivalent to

ẼF,0β̃ψ0
(y1, y2) ∈ OF ⊗OFt ,ψ0

I(R)

By Lemma 4.4.6 we find

ẼF,0β̃ψ0
(y1, y2) = β̃ψ0

(ẼAψ0
y1, ẼAψ0

y2).

The elements u1 = ẼAψ0
y1, resp., u2 = ẼAψ0

y2, lie, by the definition of Q′1,ψ0
, in Q1,ψ0 , resp.,

by the definition of Q′2,ψ0
, in Q2,ψ0

. But for arbitrary elements u1 ∈ Q1,ψ0
and u2 ∈ Q2,ψ0

, we
have β(u1, u2) ∈ I(R). By the definition of β̃ψ0 , we find

TrF/F t ϑ
−1ξβ̃ψ0

(u1, u2) = β(ξu1, u2) ∈ I(R),
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for all ξ ∈ OF ⊗OFt ,ψ0
W (R). But this implies β̃ψ0

(u1, u2) ∈ OF ⊗OFt ,ψ0
I(R), as desired.

Finally we have to check for y1 ∈ Q′1,ψ and y2 ∈ Q′2,ψ that

β̃ψ(Ḟ ′y1, Ḟ
′y2) = ḞLβ̃ψ(y1, y2).

If ψ 6= ψ0 we find for the left hand side

β̃ψ
(
Ḟ (ẼAψ )y1, Ḟ (ẼAψ )y2

)
= Ḟ

(
ẼF,ψβ̃ψ(y1, y2)

)
= ḞL

(
β̃ψ(y1, y2)

)
.

For ψ0 we obtain

β̃ψ0

(
Ḟ (ẼAψ0

)y1, Ḟ (ẼAψ0
)y2

)
= Ḟ

(
ẼF,0β̃ψ0

(
y1, y2)

)
= ḞL

(
β̃ψ0(y1, y2)

)
.

This ends the proof of Proposition 4.4.5 in the ramified case.
Now we consider the unramified case. We consider the decomposition (4.3.2). Let us denote

by eψ the idempotents corresponding to this decomposition. The conjugation of K/F maps eψ
to eψ̄. We consider the corresponding decompositions Pi = ⊕Pi,ψ, for i = 1, 2. We obtain that
β(P1,ψ1

, P2,ψ2
) = 0 for ψ2 6= ψ̄1, and

β̃(P1,ψ, P2,ψ̄) ⊂ OF ⊗OFt ,ψ̃ W (R).

We note that there are natural isomorphisms

OK ⊗OKt ,ψ̃ W (R) ∼= OF ⊗OFt ,ψ̃ W (R) ∼= OK ⊗OKt ,˜̄ψ W (R). (4.4.8)

Therefore β̃ induces an OF ⊗OFt ,ψ̃ W (R)-bilinear form

β̃ψ : P1,ψ × P2,ψ̄ −→ OF ⊗OFt ,ψ̃ W (R).

With the identification (4.4.8), we have ẼAψ̄ (π ⊗ 1) = ẼBψ (π ⊗ 1) ∈ OF ⊗OFt ,ψ̃ W (R). The
analogue of Lemma 4.4.6 is

β̃ψ(ẼAψx1, ẼAψ̄x2) = ẼF,ψβ̃ψ(x1, x2), x1 ∈ P1,ψ, x2 ∈ P2,ψ̄, ψ 6= ψ0, ψ̄0,

β̃ψ(ẼAψx1, ẼAψ̄x2) = ẼF,0β̃ψ(x1, x2), x1 ∈ P1,ψ, x2 ∈ P2,ψ̄, ψ = ψ0, ψ̄0.
(4.4.9)

Here we recall again the notation introduced in the beginning of the proof: to be very precise,
the expression ẼF,ψ should be written as ẼF,ψ|Ft . These identities follow from the identities

ẼAψ ẼBψ =

{
ẼF,ψ, ψ 6= ψ0, ψ̄0,

ẼF,0, ψ = ψ0, ψ̄0.

We need to check
β̃ψ(Q′1,ψ, Q

′
2,ψ̄) ⊂ QL,ψ. (4.4.10)

It suffices to consider the case ψ = ψ0. By Lemma 3.4.2, the inclusion (4.4.10) is equivalent to

ẼF,0β̃ψ0
(y1, y2) ∈ OF ⊗OFt ,ψ0

I(R), y1 ∈ Q′1,ψ0
, y2 ∈ Q′2,ψ̄0

.

But, as in the ramified case, this is an immediate consequence of (4.4.9). Finally we have to
check that for y1 ∈ Q′1,ψ and y2 ∈ Q′2,ψ̄

β̃ψ(Ḟ ′y1, Ḟ
′y2) = ḞLβ̃ψ(y1, y2).

For this we can repeat the last two formulas in the proof of the ramified case. �

Let R ∈ NilpOF . Let (P1, ι1) be an object of dP′r,R. We denote by (P∆
1 , ι

∆
1 ) the conjugate

Faltings dual. It is defined from the Faltings dual exactly as the conjugate dual from the dual.

Corollary 4.4.7. Let r be special. Let R ∈ NilpOE′ be such that the ideal of nilpotent elements
of R is nilpotent. We regard R as an OF -algebra via ϕ0. Let (P, ι) be an object of dPr,R and
let (P ′, ι′) ∈ dP′r,R be its image under the pre-contracting functor C′r,R. Then the image of the
conjugate dual (P∧, ι∧) under C′r,R is the conjugate Faltings dual ((P ′)∆, (ι′)∆), cf. Proposition
3.4.9.

With the notation of Proposition 4.4.5, assume that P∧1 and P2 are in dPss
r,R. Then the

canonical map

BilOK -anti-linear(P1 × P2,Pm,R) −→ BilOK -anti-linear(P ′1 × P ′2,LR)
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is bijective. Here these sets of bilinear forms Bil are meant as in Proposition 4.4.5.

Proof. We apply Proposition 4.4.5 to the canonical bilinear form βcan : P × P∧ −→ Pm,R and
obtain

β̃can : P ′ × (P∧)′ −→ LR.
By Proposition 3.4.10, we obtain a morphism of displays

κ : (P∧)′ −→ (P ′)∆. (4.4.11)

By definition, β̃can is given by a perfect OF ⊗W (R)-bilinear form

P × P ∗ −→ OF ⊗W (R).

(Recall that P ∗ = HomW (R)(P,W (R)).) We obtain an isomorphism

P ∗
∼−→ HomOF⊗W (R)(P,OF ⊗W (R)).

But this says exactly that the map which κ induces on the ”P -components” of the displays
(4.4.11) is an isomorphism. It is elementary to see that a morphism of displays κ : P1 −→ P2

which induces a W (R)-module isomorphism P1 −→ P2 is an isomorphism of displays.
Finally we prove the bijectivity of the last map in the corollary. The left hand side is, by

(3.2.5),
HomdPr,R(P1, (P2)∧).

This group is, by (iii) of Theorem 4.3.2, equal to

HomdP′r,R
(P ′1, (P∧2 )′) ∼= HomdP′r,R

(P ′1, (P ′2)∆) ∼= BilOK -anti-linear(P ′1 × P ′2,LR).

�

We now combine the last corollary with Theorem 3.4.11.

Theorem 4.4.8. Let r be special. Let R ∈ NilpOE′ be such that the ideal of nilpotent elements
of R is nilpotent. Let (P1, ι1) and (P2, ι2) be objects of dPr,R, with images (P ′1, ι′1) and (P ′2, ι′2)
under the pre-contracting functor C′r,R, cf. Proposition 4.3.2. Since the actions ι′i restricted
to OF are strict with respect to ϕ0 : OF −→ OE′ −→ R, the Ahsendorf functor AOF /Zp,R
may be applied to them. For i = 1, 2, let Pi,c = AOF /Zp,R(P ′i), i = 1, 2, with its OF -algebra
homomorphism

ιi,c : OK −→ EndWOF
(R) Pi,c.

If P∧1 and P2 are in dPss
r,R, then the natural homomorphism

BilOK -anti-linear(P1 × P2,Pm,R) −→ BilOK -anti-linear(P1,c × P2,c,Pm,WOF
(R)(π

ef/pf )).

is a bijection.
The twist Pm,WOF

(R)(π
ef/pf ) of the multiplicative display is defined in Example 3.1.6. More

precisely, this is the twist by the image of (πef/pf ) under the canonical map OF −→WOF (R).

Proof. This follows from Corollary 4.4.7 and Theorem 3.4.11. �

Remark 4.4.9. Let Ĕ ⊂ ˆ̄Qp be the completion of the maximal unramified extension of the
reflex field E of r. We extend ϕ0 : OF −→ OĔ to an embedding ϕ̆0 : OF̆ −→ OĔ . We denote
by τ ∈ Gal(F̆ /F ) the Frobenius automorphism. We apply the definition of η0 after Definition
3.4.12,

τ(η0)η−1
0 = πe/p, η0 ∈ O×F̆ . (4.4.12)

Let R ∈ NilpOĔ . Via ϕ̆0 we consider R as an OF̆ -algebra. Therefore η0,R is defined, and
multiplication by ηf0,R defines an isomorphism

Pm,WOF
(R)(π

ef/pf )
∼−→ Pm,WOF

(R), (4.4.13)

cf. (3.4.21). Therefore, if R ∈ NilpOĔ , we can ignore the twist by (πe/p) in Theorem 4.4.8.

We recall the definition of polarized CM-pairs Ppol
r,S , cf. Definition 4.1.2. We also introduce

the analogous category of polarized objects of dRR, as follows.
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Definition 4.4.10. Let R ∈ NilpOF . We denote by dRpol
R the category of triples (Pc, ιc, βc)

where (Pc, ιc) ∈ dRR (cf. Definition 4.4.1) and where

βc : Pc × Pc −→ Pm,WOF
(R)

is a polarization which is anti-linear for the OK-action ιc.

Let r be a special local CM-type with reflex field E. We regard an algebra R ∈ NilpOĔ as an
OF̆ -algebra via ϕ̆0. We now define the contracting functor for polarized CM-pairs,

Cpol
r,R : dPpol

r,R −→ dRpol
R . (4.4.14)

Let (P, ι, β) ∈ dPpol
r,R. We apply the contracting functor Cr,R to (P, ι) and obtain (Pc, ιc) ∈ dRR,

cf. Definition 4.4.2. By Theorem 4.4.8, the polarization β : P × P −→ Pm,R induces an
alternating bilinear form

β̃c : Pc × Pc −→ Pm,WOF
(R)(π

ef/pf ). (4.4.15)

If we combine this with the chosen isomorphism (4.4.13), we obtain a polarization of theWOF (R)-
display Pc,

βc : Pc × Pc −→ Pm,WOF
(R).

Then (Pc, ιc, βc) is defined to be the image of (P, ι, β) by the functor Cpol
r,R.

Theorem 4.4.11. Let R ∈ NilpOĔ be such that the ideal of nilpotent elements is nilpotent. The
contracting functor Cpol

r,R induces an equivalence of categories

Cpol
r,R : dPss,pol

r,R −→ dRnilp,pol
R .

Let (Pc, ιc, βc) the image of (P, ι, β) under the functor Cpol
r,R. Then

heightOF βc =
1

f
heightβ,

cf. Definition 3.2.5.
Here the index ”ss” indicates the full subcategory of supersingular displays and the index

”nilp” the full subcategory of nilpotent displays.

Proof. We use the notation of Proposition 4.4.5. We have a commutative diagram

P

α
**

//
α̃
− HomOF⊗ZpW (R)(P,OF ⊗Zp W (R))

t∗

��

HomW (R)(P,W (R))

Here the map α̃ is induced by β̃ and the map α is induced by β. The vertical map is defined by
t∗(`) = t ◦ ` and is an isomorphism. The map α induces the isogeny P −→ P∨ associated to β
and the map α̃ induces the isogeny P ′ −→ (P ′)∆. Therefore these isogenies have the same height.
If we apply the Ahsendorf functor to the last isogeny we obtain the map Pc −→ P∨c (πef/pf )

which is associated to β̃c. By Proposition 3.3.17 we obtain

heightOF βc = heightOF β̃c =
1

f
heightβ.

�

Remark 4.4.12. Let us explain how the bijection between bilinear forms of Theorem 4.4.8
simplifies when R = k is a perfect field in NilpOE′ . We take P1 = P2.

We consider the Dieudonné module (P, F, V ) of P. We consider β : P × P −→W (k) as a bi-
linear form of Dieudonné modules. Here we mean by W (k) the Dieudonné module (W (k), F, V ),
cf. (3.2.2). We define

β̃ : P × P −→ OF ⊗Zp W (k) (4.4.16)
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as in Proposition 4.4.5. We know that β̃ induces a bilinear form of displays P × P −→ Lk. In
terms of Dieudonné modules, this means that the following equation holds,

β̃(V ′x1, V
′x2) = VLβ̃(x1, x2). (4.4.17)

In terms of the decomposition (4.3.6), the operator V ′ is given by (4.3.15).
By (3.4.10), the Ahsendorf functor applied to Lk gives the WOF (k)-Dieudonné module

(OF ⊗OFt ,ψ̃0
W (k),

πef

pf
F f ,

pf

πef−1
F−f ). (4.4.18)

The bilinear form β̃ gives by restriction to Pc = P ⊗OFt ,ψ̃0
W (k) ⊂ P the OF ⊗OFt ,ψ̃0

W (k)-
bilinear form

β̃c : Pc × Pc −→ OF ⊗OFt ,ψ̃0
W (k). (4.4.19)

Because this is obtained by applying the Ahsendorf functor to (4.4.17), β̃c is a bilinear form of
WOF (k)-Dieudonné modules if we equip the right hand side with theWOF (k)-Dieudonné module
structure (4.4.18). Therefore we obtain

β̃c(Vcx1, Vcx2) =
pf

πef−1
F−f β̃c(x1, x2), x1, x2 ∈ Pc. (4.4.20)

In the case where K/F is ramified, we have Pc = Pψ0
, and

Vc = Π−ef+1V f : Pψ0
−→ Pψ0

,

cf. (4.4.5). Note that (4.4.20) can be checked easily from these expressions.
In the case where K/F is unramified, we have Pc = Pψ0 ⊕ Pψ̄0

, and Vc is the endomorphism
of Pc = Pψ0

⊕ Pψ̄0
given by the matrix(

0 π−gψ0V f

π−gψ̄0V f 0

)
,

cf. (4.4.3). Before (4.4.8) we already remarked that β̃(Pψ0
, Pψ0

) = 0 = β̃(Pψ̄0
, Pψ̄0

). Again
(4.4.20) can be checked directly on these descriptions of Vc.

Now we assume moreover that k is a OĔ-algebra. We have the map (4.4.12),

OF̆ −→ OF ⊗OFt ,ψ̃0
W (k) = WOF (k).

We consider the image η0,k ∈ OF ⊗OFt ,ψ0
W (k) of η0. We set

βc = ηf0,kβ̃c : Pc × Pc −→ OF ⊗OFt ,ψ̃0
W (k). (4.4.21)

Then we find

βc(Vcx1, Vcx2) = ηf0,kβ̃c(Vcx1, Vcx2) = ηf0,k
pf

πef−1
F−f β̃c(x1, x2)

= ηf0,k
pf

πef−1
F−f (η−f0,kβc(x1, x2)) = π F−fβc(x1, x2),

since ηf0,k
F−f(η−f0,k ) = πef/pf . Indeed, the left hand side of the last identity is the image of

(η0τ
−1(η−1

0 ))f = πef/pf .
This shows that βc is a bilinear form of WOF (k)-Dieudonné modules, if we consider on

OF ⊗OFt ,ψ̃0
W (k) the WOF (k)-Dieudonné module structure which corresponds to Pm,WOF

(R),
namely

(OF ⊗OFt ,ψ̃0
W (k), F f , πF−f ).

Remark 4.4.13. Let us discuss the height identity in Theorem 4.4.11 in a more direct way. We
may assume that R is a perfect field. We may write the equation in the form

ordp detW (k)β = f ordπ detWOF
(k) βc. (4.4.22)

On the left hand side the determinant is taken with respect to an arbitrary basis of the W (k)-
module P . After we take ordp, the result is independent of the choice of the basis. The right
hand side of this equation does not change if we replace βc by the form β̃c of (4.4.19). We
begin with the ramified case. The decomposition P = ⊕Pψ is orthogonal with respect to β. Let
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βψ be the restriction to Pψ. Let ψ be banal. The map Π−eV : Pψσ −→ Pψ is a F−1-linear
isomorphism. From the equation

βψ(Π−eV x,Π−eV y) = βψ(V (π−ex), V y) = F−1

βψσ(π−epx, y)

we conclude that ordp detW (k) βψ = ordp detW (k) βψσ. Therefore this value is independent of ψ.
In particular we obtain

ordp detW (k)β = f ordp detW (k) βψ0
= f ordπ detWOF

(k) β̃c.

The last equation follows because

β̃c : Pψ0 × Pψ0 −→WOF (k) = OF ⊗OFt ,ψ̃0
W (k)

is obtained from βψ0
by the equation

TrWOF
(k)/W (k)(ϑ

−1aβ̃c(x, y)) = βψ0
(ax, y), x, y ∈ Pψ0

, a ∈ OF ⊗OFt ,ψ̃0
W (k),

and since the pairing

TrWOF
(k)/W (k)(ϑ

−1a1a2) : (OF ⊗OFt ,ψ̃0
W (k))× (OF ⊗OFt ,ψ̃0

W (k)) −→W (k)

is perfect.
In the unramified case we write ψσf = ψ̄. The modules Pψ1 and Pψ2 are orthogonal for

ψ1 6= ψ̄2. We denote by βψ the restriction of β to Pψ × Pψ̄. We define ordp detβψ by taking
an arbitrary basis of Pψ and an arbitrary basis of Pψ̄. Assume that ψ is banal; then ψ̄ is also
banal. We obtain two F−1-linear isomorphisms

π−aψV : Pψσ −→ Pψ, π−aψ̄V : Pψ̄σ −→ Pψ̄.

We have
βψ(π−aψV x, π−aψ̄V y) = βψ(π−eV x, V y) = F−1

βψσ(pπ−ex, y).

We conclude that ordp detW βψ = ordp detW βψσ. Because β is alternating, βψ0
and βψ̄0

have
the same order of determinant. We conclude that h := ordp detW βψ is independent of ψ ∈ Ψ.
We find ordp detW β = 2fh. The form β̃c is obtained from the restriction βψ0

by the equation

TrOF⊗O
Ft
,ψ̃0

W (k)/W (k)(aϑ
−1β̃c(x, y)) = βψ0

(ax, y), x ∈ Pψ0
, y ∈ Pψ̃0

, a ∈ OF .

Therefore we obtain

2h = 2 ordp detWβψ0 = ordπ detOF⊗O
Ft
,ψ̃0

W (k) β̃c.

4.5. The contracting functor in the case of a banal CM-type. In the banal case we will
associate to an object of the category dP′r,R (cf. Definition 4.3.1) an étale sheaf on SpecR. The
construction does not use the Ahsendorf functor AOF /Zp , which is not useful here.

Definition 4.5.1. Let R be a ring. An étale Frobenius module is a pair (M,Θ), where M is a
finitely generated W (R)-module which is locally on SpecR free and where Θ : M −→ M is a
Frobenius linear isomorphism, i.e., Θ : σ∗(M) −→M is an isomorphism.

The following proposition is a variant of a result of Drinfeld, comp. [12, Prop. 2.1]. It can also
be proved using the theory of displays. When R is an algebraically closed field, the proposition
is a theorem of Dieudonné.

Proposition 4.5.2. Let R be a ring such that p is nilpotent in R. There is a functor A from the
category of étale Frobenius modules over R to the category of locally constant p-adic étale sheaves
which are finitely generated and flat over Zp. The functor A is an equivalence of categories which
commutes with arbitrary base change. It is compatible with the tensor product of étale Frobenius
modules, resp., of p-adic étale sheaves.

Proof. We give a sketch of the proof which shows how this equivalence is constructed. By
[35, Lem. 42] it follows that the category of étale Frobenius modules over R and R/pR are
equivalent. Indeed, a Frobenius module lifts locally and by loc. cit. two liftings are canonically
isomorphic. Therefore we may assume pR = 0. Let (M,Θ) be an étale Frobenius module. We
set Mn = Wn(R) ⊗W (R) M . Because pR = 0, the Frobenius F on W (R) induces a Frobenius
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F : Wn(R) −→ Wn(R). By base change we obtain a F -linear map Θn : Mn −→Mn. We define
a functor An on the category of R-algebras,

An(S) = {x ∈Wn(S)⊗Wn(R) Mn | Θn,S(x) = x}.
One can show that An is representable by a finite étale scheme over SpecR. Clearly Z/pnZ =
Wn(Fp) acts on An. We define the associated p-adic sheaf

A(M,Θ) = lim
← n An.

Let W be the étale sheaf of Witt vectors. We have W ⊗Zp A(M,Θ) = M in the sense of étale
sheaves, where the action of Θ corresponds on the left hand side to the action of F ⊗ id.

Finally, we show the compatibility with tensor products. If (M ′,Θ′) is a second étale Frobenius
module, we set (N,Ξ) = (M ⊗W (R) M

′,Θ⊗Θ′). We obtain a natural homomorphism

A(M,Θ) ⊗Zp A(M ′,Θ′) −→ A(N,Ξ). (4.5.1)

To prove that this is an isomorphism, we may reduce by base change to the case where R is an
algebraically closed field. Then the assertion is clear by the theorem of Dieudonné. �

Definition 4.5.3. Let r be banal. Let R ∈ NilpOE′ . Let Et(OK)R be the category of locally
constant p-adic étale sheaves G over SpecR which are Zp-flat with rankZp G = 4d and which are
equipped with an action

ι : OK −→ EndZp G.

The contracting functor is the functor

Cr,R : dPr,R −→ Et(OK)R,

which is the composite of the pre-contracting functor C′r,R of Theorem 4.3.2 and the functor A of
Proposition 4.5.2, applied to the étale Frobenius module (P ′, Ḟ ′). The functor commutes with
arbitrary base change R −→ R′.

Theorem 4.5.4. Let r be banal. Let R ∈ NilpOE′ be such that the ideal of nilpotent elements
of R is nilpotent. Then the contracting functor is an equivalence of categories,

Cr,R : dPr,R −→ Et(OK)R.

Proof. Since the objects in dP′r,R are étale, this is simply a combination of Proposition 4.3.2
and Proposition 4.5.2 �

Remark 4.5.5. In the banal case there is a functor

Pr,R −→ dPr,R (4.5.2)

from p-divisible groups to displays which is an equivalence of categories. Indeed, in the case
when K/F is a field extension, the displays of objects in dPr,R are by Corollary 4.3.3 isoclinic
of constant slope 1/2 and therefore nilpotent. Therefore they are displays of formal p-divisble
groups, cf. Theorem 3.1.11. In the split case OK = OF × OF we have a corresponding decom-
position of a display P ∈ dPr,R: P = P1⊕P2. In the case where P is nilpotent we can argue as
before. If not, one of the summands is étale and the other is isoclinic of slope 1, cf. Corollary
4.3.3. But we have an equivalence between étale p-divisible groups over R and étale displays
over R, which is easily defined by the A-functor. Therefore we conclude also in this case that
the equivalence (4.5.2) exists.

For more information about the resulting functor Pr,R −→ Et(OK)R cf. section 7.4.

We now add polarizations to the picture.

Lemma 4.5.6. Let r be banal. Let R ∈ NilpOE′ . Let (P1, ι1) and (P2, ι2) be in dPr,R. Let

β̄ : P1/I(R)P1 × P2/I(R)P2 −→ R

be an R-bilinear form such that

β̄(ι1(a)x1, x2) = β̄(x1, ι2(ā)x2), a ∈ OK .
Then the restriction of β̄ to Q1/I(R)P1 ×Q2/I(R)P2 is zero.
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Proof. We first consider the case where K/F is ramified. We consider Pi,ψ/I(R)Pi,ψ as an
OK ⊗OFt ,ψ R-module for i = 1, 2. Because of the isomorphism (4.2.6), it suffices to show that

β̄(EAψx1,EAψx2) = 0, x1 ∈ (P1/I(R)P1)ψ, x2 ∈ (P2/I(R)P2)ψ.

We consider EAψ (Π ⊗ 1) ∈ OK ⊗OFt ,ψ OE′ . The image of this element by the conjugation of
K/F is (−1)eEBψ (Π⊗ 1), cf. the proof of Lemma 4.4.6. Therefore we find

β̄(EAψx1,EAψx2) = (−1)eβ̄(x1,EBψEAψx2) = (−1)eβ̄(x1,Eψx2) = 0.

Now we assume that K/F is unramified. Then the condition on β̄ implies that P1,ψ1
/I(R)P1,ψ1

and P2,ψ2/I(R)P2,ψ2 are orthogonal with respect to β̄ if ψ1 6= ψ̄2. Again by the isomorphism
(4.2.6), it suffices to show that

β̄(EAψx1,EAψ̄x2) = 0, x1 ∈ (P1/I(R)P1)ψ, x2 ∈ (P2/I(R)P2)ψ̄.

In this case the conjugation of K/F maps EAψ to EBψ̄ . Therefore the last equation follows from

EBψ̄ (π ⊗ 1)EAψ̄ (π ⊗ 1) = Eψ̄(π ⊗ 1) = 0.

Exactly the same argument applies to the split case. �

Lemma 4.5.7. In the situation of the last lemma, assume that R is a reduced ring. Let β : P1×
P2 −→ W (R) be a W (R)-bilinear form such that β is anti-linear for the OK-actions ι1, resp.
ι2, and such that

β(F1x1, F2x2) = p Fβ(x1, x2), x1 ∈ P1, x2 ∈ P2.

Then β induces a bilinear form of displays

β : P1 × P2 −→ Pm,R.

Proof. We must verify that β(Q1, Q2) ⊂ I(R) and that

β(Ḟ1y1, Ḟ2y2) = Ḟβ(y1, y2), y1 ∈ Q1, y2 ∈ Q2.

The inclusion is a consequence of Lemma 4.5.6. To verify the last equation, we may multiply
it by p2 because p is not a zero divisor in W (R). But then it follows from the assumptions on
β. �

Definition 4.5.8. Let ρ ∈ OF ⊗Zp W (R) be a unit. We define OF (ρ) as the p-adic étale sheaf
associated by Proposition 4.5.2 to the étale Frobenius module (OF ⊗Zp W (R),Θρ), where

Θρ(a⊗ ξ) = ρ · (a⊗ F ξ), a ∈ OF , ξ ∈W (R). (4.5.3)

When ρ = 1 we obtain the constant p-adic étale sheaf OF = OF (1).
Let ρ = πe/p. Let R ∈ NilpOE′ and let (Pi, ιi) ∈ Pr,R for i = 1, 2. We will associate to a

bilinear form of displays
β : P1 × P2 −→ Pm,R (4.5.4)

which is anti-linear for the OK-actions ι1, resp. ι2, a bilinear form of p-adic étale sheaves which
is anti-linear for the OK-actions on CP1 = Cr,R(P1), resp. CP2 = Cr,R(P2),

φ : CP1
× CP2

−→ OF (ρ). (4.5.5)

For the construction we may assume that R is a κE′ -algebra because étale sheaves are insensitive
to nilpotent elements.

Let first K/F be ramified. Then we find for x1 ∈ P1 and x2 ∈ P2 that

β(Ḟ ′1x1, Ḟ
′
2x2) = β(Ḟ1Πex1, Ḟ2Πex2) = Ḟβ(Πex1,Π

ex2)

= Ḟβ(πex1, x2) = Fβ(
πe

p
x1, x2).

(4.5.6)

We used the equation
Ḟ ′1x1 = Ḟ1Πex1, (4.5.7)

which follows from (4.3.4) and (4.3.9). Recall the function t(a) = TrOF /Zp ϑ
−1a, for a ∈ OF ,

where ϑ ∈ OF is the different of F/Qp, cf. p. 63. We define β̃ : P1 × P2 −→ OF ⊗Zp W (R) by
the equation

t(ξβ̃(x1, x2)) = β(ξx1, x2), ξ ∈ OF ⊗Zp W (R). (4.5.8)
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Then β̃ is a bilinear form of OF ⊗Zp W (R)-modules. We conclude from (4.5.6) that

β̃(Ḟ ′x1, Ḟ
′x2) =

πe

p
· F β̃(x1, x2). (4.5.9)

Hence β̃ is a bilinear form of Frobenius modules. Since the functor A of Proposition 4.5.2
commutes with tensor products, it induces a bilinear form (4.5.5).

Now we consider the case where K/F is an unramified field extension. For each OE′ -algebra
R we have the decomposition

OK ⊗Zp W (R) =
∏
ψ∈Ψ

OK ⊗OKt ,ψ̃ W (R), (4.5.10)

which is induced by (4.3.2). The conjugation of K/F acts on OK ⊗Zp W (R) via the first factor.
We denote this by η 7→ η̄. We denote by F η the action of the Frobenius via the second factor.
On the right hand side of (4.5.10) these actions become

OK ⊗OKt ,ψ̃ W (OE′) −→ OK ⊗OKt ,ψ̃σf W (OE′)

a⊗ ξ 7−→ ā⊗ ξ,

OK ⊗OKt ,ψ̃ W (R) −→ OK ⊗OKt ,σψ̃ W (R)

a⊗ ξ 7−→ a⊗ F ξ.

(4.5.11)

Here σ denotes the Frobenius automorphism of Gal(Kt/Qp). Looking at the right hand side of
(4.5.10), we define

πr := (πaψ ⊗ 1)ψ∈Ψ ∈ OK ⊗Zp W (OE′). (4.5.12)
It follows that

πrπ̄r = πe ⊗ 1.

Let (P, ι) ∈ Pr,R. We note that, since R is a κE′ -algebra, the definition of (P ′, ι′) = C′r,R(P, ι)
in (4.3.9) takes the form

Ḟ ′(x) = Ḟ (πrx), F ′(x) = F (πrx). (4.5.13)
Now let us start with a bilinear form

β : P1 × P2 −→ Pm
which is anti-linear for the OK-actions ι1, resp. ι2. We find

β(Ḟ ′1x1, Ḟ
′
2x2) = β(Ḟ1πrx1, Ḟ2πrx2) = Ḟβ(πrx1, πrx2)

= Ḟβ(πex1, x2) = Fβ(
πe

p
x1, x2).

(4.5.14)

As before, β defines the OF ⊗Zp W (R)-bilinear form

β̃ : P1 × P2 −→ OF ⊗Zp W (R),

which by (4.5.14) satisfies

β̃(Ḟ ′1x1, Ḟ
′
2x2) =

πe

p
· F β̃(x1, x2). (4.5.15)

Applying, as before, the A-functor to P ′, we obtain the desired bilinear form (4.5.5).
Finally we consider the split case. In this case we consider in the decomposition (4.3.22) the

element
πr = πr,1 × πr,2 =

(
(πaθ1 ⊗ 1)θ∈Θ

)
×
(
(πaθ2 ⊗ 1)θ∈Θ

)
(4.5.16)

of (4.3.22). The conjugation acts on OK ⊗ZpW (OE′) via the first factor. On the right hand side
of (4.3.22), the conjugation just interchanges the two factors in parentheses. This shows that
πrπ̄r = πe ⊗ 1. Now starting with a bilinear form7 (4.5.4), the formulas (4.5.14), (4.5.15) from
the unramified case continue to hold, and this finishes the construction in the split case.

7One should not confuse the notation P1 and P2 with the decomposition (4.3.25) which continues to exist,
e.g., P1 = P1,1 ⊕ P1,2.
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Proposition 4.5.9. Let r be banal. Let R ∈ NilpOE′ be such that the ideal of nilpotent elements
of R is nilpotent. Let (P1, ι1) and (P2, ι2) be objects of dPr,R. The construction above, which
associates to a bilinear form of displays (4.5.4) a bilinear form of p-adic étale sheaves (4.5.5) is
a bijection,

BilOK -anti-linear(P1 × P2,Pm,R) −→ BilOK -anti-linear(CP1 × CP2 , OF (ρ)).

Proof. We reduce the question to the case where R is reduced. Indeed, let S −→ R be a pd-
thickening in the category NilpOE′ . Assume that (Pi, ιi) ∈ dPr,S for i = 1, 2. It follows from
Proposition 3.2.4 and Lemma 4.5.6 that any bilinear form

β̄ : P1,R × P2,R −→ Pm,R
with the properties of (4.5.4) lifts uniquely to a bilinear form

β : P1 × P2 −→ Pm,S .

Since bilinear forms of étale sheaves have the same property, we can assume that R is reduced.
We begin with the ramified case. For i = 1, 2, let (Pi, ιi) ∈ dPr,R, which correspond to (P ′i , Ḟ

′
i )

under the pre-contracting functor C′r,R, cf. Theorem 4.3.2, and to CPi under the contraction
functor Cr,R. We start with a bilinear form of p-adic sheaves

φ̃ : CP1 × CP2 −→ OF (
πe

p
)

with the properties of (4.5.5). We have to construct a bilinear form of displays (4.5.4) which
induces φ. By Proposition 4.5.2, φ comes from a bilinear form of étale Frobenius modules

β̃ : P ′1 × P ′2 −→ OF ⊗Zp W (R)

which satisfies

β̃(Ḟ ′1x1, Ḟ
′
2x2) =

πe

p
F β̃(x1, x2). (4.5.17)

After applying t we obtain a bilinear form β which satisfies

β(Ḟ ′1x1, Ḟ
′
2x2) = Fβ(

πe

p
x1, x2). (4.5.18)

By (4.5.7) we may write

Fi = pḞi = Ḟ ′i
p

Πe
,

because multiplication by p is injective on Pi. We deduce from (4.5.18)

β(F1x1, F2x2) = β(Ḟ ′1
p

Πe
x1, Ḟ

′
2

p

Πe
x2) = Fβ(

πe

p

p

Πe
x1,

p

Πe
x2) = p Fβ(x1, x2).

By Lemma 4.5.7, it follows that β is a bilinear form of displays β : P1×P2 −→ Pm. This proves
the ramified case.

Now let K/F be an unramified field extension. We begin with a bilinear form of p-adic étale
sheaves (4.5.5) as before. This induces a bilinear form of étale Frobenius modules β̃ : P ′1×P ′2 −→
OF ⊗Zp W (R) which satisfies (4.5.17). Using (4.5.13), we rewrite this as

β̃(Ḟ1πrx1, Ḟ2πrx2) =
πe

p
F β̃(x1, x2).

We multiply this equation with p2 and find for the left hand side

β̃(F1πrx1, F2πrx2) = β̃( FπrF1x1,
FπrF2x2) = β̃( F (π̄rπr)F1x1, F2x2) = πeβ̃(F1x1, F2x2).

If we compare this to the right hand side multiplied with p2, we obtain

β̃(F1x1, F2x2) = p F β̃(x1, x2).

Setting now β = t ◦ β̃, the assumptions of Lemma 4.5.7 are satisfied. Therefore β induces a
bilinear form of displays β : P1 × P2 −→ Pm.

In the split case the argument is the same using the πr which appeared in this context. �
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On Spec κ̄E we can choose a trivialization of the twisted constant étale sheaf,

OF (πe/p)
∼−→ OF , (4.5.19)

as follows. Choose η ∈ OF ⊗ZpW (κ̄E) such that F ηη−1 = πe/p (this is equivalent to the choice
of η0 in (4.4.12)). Then the multiplication by η

η : (OF ⊗Zp W (κ̄E), (πe/p)⊗ F ) −→ (OF ⊗Zp W (κ̄E), 1⊗ F )

is an isomorphism of étale Frobenius modules, which induces (4.5.19) under the A-functor into
Et(OK)κ̄E , cf. Proposition 4.5.2.

Definition 4.5.10. Let R ∈ NilpOĔ . Let Et(OK)pol
R be the category of p-adic étale sheaves

(G, ι) ∈ Et(OK)R, equipped with a OF -linear alternating form

φ : G×G −→ OF , (4.5.20)

which is anti-linear for the OK-action.

Using the trivialization (4.5.19), and applying Proposition 4.5.9, we now obtain the contract-
ing functor with polarizations which is a functor from dPpol

r,R to Et(OK)pol
R .

Theorem 4.5.11. Let r be banal. Let R ∈ NilpOĔ be such that the ideal of nilpotent elements
in R is nilpotent. Then the contracting functor Cpol

r,R is an equivalence of categories,

Cpol
r,R : dPpol

r,R −→ Et(OK)pol
R .

�

Remark 4.5.12. In the split case, let CP = Cpol
r,R(P). Let P = P1 × P2 be the decomposition

induced by OK = OF × OF . This induces a decomposition CP = CP,1 × CP,2, where CP,i is
the étale sheaf associated to the Frobenius module (Pi, Ḟ πr,i), i = 1, 2. Here the elements πr,i
are defined in (4.5.16). The subsheaves CP,i of CP are isotropic with respect to φ as in (4.5.20),
and hence φ corresponds to an OF -bilinear form

φ : CP,1 × CP,2 −→ OF .

Remark 4.5.13. Let k ∈ NilpOE′ be an algebraically closed field. Let (P, β) ∈ dPpol
r,k . We will

give a description of Cpol
r,R(P, β) = (CP , φ). We write P = (P, F, V ) as a Dieudonné module. The

image of P under the contracting functor, a sheaf CP on Spec k, is simply an OK-module.
Assume thatK/F is ramified. From the definition of the pre-contracting functor (cf. Theorem

4.3.2) and the A-functor we have

CP = {x ∈ P | V −1Πex = x}.
To describe this further, with its bilinear form of displays, we extend the bilinear form β to

β̃ : P × P −→ OF ⊗W (k),

cf. (4.5.8). The decomposition P = ⊕ψ∈ΨPψ is orthogonal with respect to β̃ and, by restriction,
we obtain for every ψ

β̃ψ : Pψ × Pψ −→ OF ⊗OFt ,ψ̃ W (k) ⊂ OF ⊗W (k).

Let xψ, x′ψ ∈ Pψ. Since β is a polarization, we obtain

β̃ψσ(V −1Πexψ, V
−1Πex′ψ) =

πe

p
F β̃ψ(xψ, x

′
ψ). (4.5.21)

The action of F on the right hand side is defined by (4.5.11). Fix ψa ∈ Ψ. The projection
x 7→ xψa is an isomorphism

CP ∼= {xψa ∈ Pψa | V −fΠefxψa = xψa}. (4.5.22)

In particular, we see that CP is indeed a free OK-module of rank 2. For x, x′ ∈ CP we obtain
from (4.5.21)

β̃ψσ(xψσ, x
′
ψσ) =

πe

p
F β̃ψ(xψ, x

′
ψ).
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Since ψa = ψaσ
f , we obtain

β̃ψa(xψa , x
′
ψa) =

(
πe

p

)f
F f β̃ψa(xψa , x

′
ψa).

In the same way we may interpret the sheaf OF (πe/p): the projection

OF ⊗Zp W (k) −→ OF ⊗OFt ,ψ̃a W (k)

defines an isomorphism

OF (
πe

p
) ∼= {aψa ∈ OF ⊗OFt ,ψ̃a W (k) | aψa =

(πe
p

)f F f aψa}. (4.5.23)

For the last equation we may write ηaψa = F f (ηaψa) (cf. (4.5.19) for η) or, equivalently,
ηaψa ∈ OF . Therefore, using the expression (4.5.22) for CP , the restriction of β̃ to CP multiplied
by η gives the desired bilinear form

φ : CP × CP −→ OF

(xψa , x
′
ψa) 7−→ ηβ̃ψa(xψa , x

′
ψa).

(4.5.24)

Now let K/F be unramified. In this case, in the decomposition P = ⊕ψ∈ΨPψ, the summands
Pψ1

and Pψ2
are orthogonal, unless ψ1 = ψ̄2. The OK-module CP is, in this case, given by

CP = {x = (xψ) ∈ P | V −1πrxψ = xψσ}, (4.5.25)

where we recall the element πr from (4.5.12). After fixing ψa, we can write

CP = {(xψa , xψ̄a) ∈ Pψa ⊕ Pψ̄a | V
−fπgxψa = xψ̄a , V

−fπḡxψ̄a = xψa}, (4.5.26)

where g = aψa + aψaσ + · · ·+ aψaσf−1 and ḡ = aψ̄a + aψ̄aσ + · · ·+ aψ̄aσf−1 . Using the expression
(4.5.26) for CP , we may write

φ : CP × CP −→ OF (ρ)

(xψa + xψ̄a , yψa + yψ̄a) 7−→ ηβ̃ψa(xψa , yψ̄a) + ηβ̃ψ̄a(xψ̄a , yψa).
(4.5.27)

We have for arbitrary elements xψ ∈ Pψ and yψ̄ ∈ Pψ̄ that

β̃ψ̄(V −fπgxψ, V
−fπḡyψ̄) =

πef

pf
F f β̃ψ(xψ, yψ̄).

If x = xψa + xψ̄a and y = yψa + yψ̄a in CP the last formula becomes

β̃ψ̄(xψ̄, yψ) =
πef

pf
F f β̃ψ(xψ, yψ̄).

By the formula (4.5.27) for φ we obtain

φ(x, y) = F fφ(x, y).

This shows again that φ(x, y) ∈ OF , cf. (4.5.23).
Finally let K = F × F . We use the notation of the last Remark. We obtain

CPi = {x ∈ Pi |V x = πr,ix },
where we recall the element πr,i from (4.5.16) We have the decomposition

CP = CP1
⊕ CP2

If we fix θ0 ∈ Θ = HomQp-Alg(F t, Q̄p), the natural projection Pi → Pi,θ0 defines an isomorphism

CPi = {x ∈ Pi,θ0 |V fx = πaix }, for i = 1, 2, (4.5.28)

where ai =
∑
θ aθi , cf. (4.3.28). The bilinear form β̃ induces by restriction

β̃θ0 : P1,θ0 × P2,θ0 → OF ⊗OFt ,θ̃0 W (k).

In the notation of (4.5.28) we obtain

φ : CP1
× CP2

→ OF ,

(x1, x2) 7−→ ηβ̃θ0(x1, x2).
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This determines φ on CP since the subspaces CPi for i = 1, 2 are isotropic, cf. Remark 4.5.12.

Proposition 4.5.14. Let r be banal. Let k ∈ NilpOE′ be an algebraically closed field. Let
(P, ι, β) and (P+, ι+, β+) be two objects in dPpol

r,k .

(i) If K/F is split, then there exists a quasi-isogeny

(P, ι, β)→ (P+, ι+, β+). (4.5.29)

(ii) Let K/F be a field extension. Then there exists a quasi-isogeny (4.5.29) iff inv(P, ι, β) =
inv(P+, ι+, β+), cf. (2.4.7).
(iii) Let K/F be an unramified field extension. If β is a polarization of height 2fh with h ∈ {0, 1}
then invr(P, ι, β) = (−1)h. For a given h, there exists (P, ι, β) with these properties.

Proof. To prove the first assertion, we may apply the polarized contraction functor Cpol
r,k of

Theorem 4.5.11. We choose an arbitrary isomorphism α1 of the F -vector spaces CP1 ⊗ Q and
CP+

1
⊗Q. Since φ, resp. φ+, define dualities of these spaces with CP2 ⊗Q, resp. CP+

2
⊗Q, we

can extend α1 to an isomorphism α : (CP , φ)⊗Q→ (CP+ , φ+)⊗Q.
If K/F is a field extension, we conclude by Proposition 8.3.6 that the equality inv(P, ι, β) =

inv(P+, ι+, β+) is equivalent to the equality inv((CP , ι, φ)⊗Q) = inv((CP+ , ι+, φ+)⊗Q). There-
fore, by Definition 8.1.1, these anti-hermitian K-vector spaces are isomorphic, which proves our
assertion.

Finally we prove the last assertion. We consider the bilinear form βψ : Pψ×Pψ̄ →W (k). If we
choose aW (k)-basis of Pψ and Pψ̄, we can speak of ordp detW (k) βψ. This number is independent
of ψ and equals h. Let β(ψ) be the restriction of β to Pψ⊕Pψ̄. We obtain ordp detW (k) β(ψ) = 2h.
Recall β̃, cf. (4.5.8). Let β̃(ψ) the restriction of β̃,

β̃(ψ) : (Pψ ⊕ Pψ̄)× (Pψ ⊕ Pψ̄)→ OF ⊗OFt ,ψ̃ W (k).

Then we have
ordp detW (k)β(ψ) = ordπ detOF⊗O

Ft
,ψ̃W (k) β̃(ψ). (4.5.30)

Indeed, the function t(a) = TrOF /OFt ϑ
−1a, for a ∈ OF , where ϑ ∈ OF is the different of F/Qp,

defines for an arbitrary OF ⊗OFt ,ψ̃W (k)-module U an isomorphism of OF ⊗OFt ,ψ̃W (k)-modules,

HomOF⊗O
Ft
,ψ̃W (k)(U,OF ⊗OFt ,ψ̃ W (k))

∼−→ HomW (k)(U,W (k)), α̃ 7−→ α̃ ◦ t. (4.5.31)

We apply this to U = Pψ ⊕ Pψ̄. If we regard β̃ as a homomorphism of U to the left hand
side of (4.5.31) and β as a homomorphism from U to the right hand side, they correspond
to each other. Therefore the cokernels of these two homomorphisms are isomorphic and have
the same length. This shows (4.5.30). By Remark 4.5.13, we have for each ψ an isomorphism
CP ⊗OF (OF ⊗OFt ,ψ̃ W (k)) ∼= P. Since φ coincides with the restriction of β̃(ψ) up to a unit,
we conclude that ordπ detOF φ = 2h. By Lemma 8.1.2, we have inv(CP , ι, φ) = (−1)h. By
Proposition 8.3.6 we are done. �

5. The alternative moduli problem revisited

In this section we give another proof of the main result of [19] which gives an alternative inter-
pretation of the Drinfeld moduli space of special formal OD-modules in the case of a quaternion
division algebra D over a p-adic local field F . We also prove a refinement concerning descent
data. The original proof was already simplified by Kirch [16], but the argument here is different
and is based on the theory of displays.

5.1. Special formal OD-modules. We fix the finite extension F of Qp, with uniformizer π and
residue field κF . Let R be an OF -algebra. Let (X, ι) be a p-divisible group over R with a strict
action ι : OF −→ EndX. A relative polarization of X is a relative polarization of the display of
X. Here, by a relative polarization we mean one with respect to OF , cf. Definition 3.4.12.
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If R = k is a perfect field, we may work with the associated WOF (k)-Dieudonné module
(M,F, V ) of X. It is obtained from the display of X by the Ahsendorf functor AOF /Zp,R, cf.
Remark 3.3.16. In this language, a relative polarization is a WOF (k)-alternating pairing

ψ : M ×M −→WOF (k),

such that
ψ(Fx, Fy) = π Fψ(x, y), x, y ∈M, (5.1.1)

cf. (3.2.2). If the bilinear form ψ is perfect, we will say that the polarization is principal.
We denote by D the quaternion division algebra with center F . Let F ′ ⊂ D be a quadratic

unramified extension of F . Let OD ⊂ D be the ring of integers. Recall that a special formal
OD-module X over R is a p-divisible group X over R of height [D : Qp] with an action ι : OD −→
EndX such that the restriction of ι to OF is strict and such that LieX is locally on SpecR a
free OF ′ ⊗OF R-algebra, cf. [11]. One can check that this condition is independent of the choice
of F ′.

Proposition 5.1.1. Let k be an algebraically closed field of characteristic p with an OF -algebra
structure OF −→ k. Let F ′ be an unramified quadratic extension F ′ of F . We denote by F and
V the Frobenius and the Verschiebung acting on WOF (k).

Let (M,F, V ) be aWOF (k)-Dieudonné module (see Definition 3.1.8) of height 4 and dimension
2 which is endowed with an OF -algebra homomorphism

ι : OF ′ −→ End(M,F, V ).

Assume that ι makes M/VM into a free module of rank 1 over κF ′ ⊗κF k. Then there exists a
principal relative polarization ψ on (M,F, V ) such that

ψ(ι(u)x, y) = ψ(x, ι(u)y), for u ∈ OF ′ , x, y ∈M (5.1.2)

Any other relative polarization φ of (X, ι) with the property (5.1.2) (with ψ replaced by φ) is of
the form

φ(x, y) = ψ(ι(c)x, y)

for some element c ∈ OF ′ .

Proof. We choose an embedding OF ′ −→WOF (k). We set, for i ∈ Z/2Z,

Mi = {x ∈M | ι(u)x = F iux, for u ∈ OF ′}.
We have the decomposition

M = M0 ⊕M1. (5.1.3)
The operators F and V are of degree 1. The k-vector spaces M0/VM1 and M1/VM0 are by
assumption both of rank 1.

If ψ is a bilinear form with the properties (5.1.2), then the decomposition (5.1.3) is orthogonal.
We choose alternating perfect forms ψ̃0 resp. ψ̃1 on the free WOF (k)-modules M0 resp. M1 of
rank 2. These forms are unique up to a unit in WOF (k). By this uniqueness we find an equation
of the form

F−2

ψ̃0(F 2x0, F
2x′0) = ξπ2ψ̃0(x0, x

′
0), ξ ∈WOF (k), for all x0, x

′
0 ∈M0. (5.1.4)

By assumption we have ordπ det(F 2|M0) = 2. Comparing the determinants on both sides of
(5.1.4), we conclude that ξ is a unit. Since k is algebraically closed we may write

ξ = F−2

ηη−1.

Replacing ψ̃0 by ψ0 := ηψ̃0 we may assume that we have ξ = 1 in equation (5.1.4).
With the same argument as before we find an equation

F−1

ψ0(Fx1, Fx
′
1) = ξ1πψ̃1(x1, x

′
1), ξ1 ∈WOF (k), for all x1, x

′
1 ∈M1.

Comparing the determinants we see that ξ1 ∈ WOF (k) is a unit. We set ψ1 = ξ1ψ̃1 and
ψ = ψ0⊕ψ1 (orthogonal sum). Then ψ satisfies (5.1.1). To prove (5.1.2) it suffices to show that

ψi(ι(u)xi, x
′
i) = ψi(xi, ι(u)x′i) for i = 0, 1.

This is trivial from the definition of (Mi, ψi).
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If we have a second φ satisfying (5.1.2), we find c ∈WOF (k) such that

φ0 = cψ0.

Since both sides of this equation satisfy (5.1.4) with ξ = 1 we obtain F 2

c = c. Therefore we
have c ∈ OF ′ ⊂WOF (k). We obtain that φ(x, y) = ψ(ι(c)x, y). �

Corollary 5.1.2. Let (N, ι) be a second WOF (k)-Dieudonné module of height 4 and dimension
2 with an action of OF ′ such that N/V N is a free κF ′⊗κF k-module of rank 1. Let ρ : N⊗Q −→
M ⊗Q be a quasi-isogeny of height 0. Then

ψ(ρ(z), ρ(w)), z, w ∈ N (5.1.5)

is a perfect bilinear form on N .

Proof. Let ψN be a perfect alternating form on N given by Proposition 5.1.1, and let ψN0 be its
restriction to N0. This form differs from the form (5.1.5) restricted to N0 by a factor in ζ ∈ F ′.
Since ρ has height 0 we conclude that ζ is a unit. �

Let K/F be a ramified quadratic extension of F generated by a prime element Π ∈ K such
that Π2 = −π. Let τ ∈ Gal(F ′/F ) be the Frobenius automorphism. Let

OD = OF ′ [Π],

such that the following relations hold:

Πu = τ(u)Π, Π2 = −π, u ∈ OF ′ .

Then OD is the maximal order in the quaternion division algebra over F .
We have OK = OF [Π] ⊂ OD. We consider on OD the involution:

d = u+ vΠ 7−→ d′ = u−Πv, u, v ∈ OF ′ . (5.1.6)

It is trivial on OF ′ and induces the conjugation of OK over OF .

Proposition 5.1.3. Let k be an algebraically closed field of characteristic p which is endowed
with an algebra structure OF −→ k. Let X be a special formal OD-module over k. Let (M,F, V )
be the WOF (k)-Dieudonné module of X. Then there exists a principal relative polarization

ψ : M ×M −→WOF (k),

on X such that
ψ(ι(d)x1, x2) = ψ(x1, ι(d

′)x2). (5.1.7)

Any other polarization with the property (5.1.7) is of the form uψ, with u ∈ OF .

Proof. We take ψ as in Proposition 5.1.1. Then we consider the alternating bilinear form

ψ1(x, y) = ψ(ι(Π)x, ι(Π)y), x, y ∈M.

Then ψ1 is by the uniqueness part of Proposition 5.1.1 of the form

ψ1(x, y) = ψ(ι(c)x, y), c ∈ OF ′ .

If we apply the last equations to π2ψ(x, y) = ψ(ι(Π)x, ι(Π)y), we obtain cτ(c) = π2. Therefore c
is divisible by π. We write c = aπ for some unit a ∈ OF ′ with aτ(a) = 1. We write a = uτ(u)−1

by Hilbert 90 and consider the form

ψ2(x, y) = ψ(ι(u)x, y).

Then we have
ψ2(ι(Π)x, ι(Π)y) = ψ(ι(u)ι(Π)x, ι(Π)y) = ψ(ι(Π)ι(τ(u))x, ι(Π)y) =

= ψ(ι(c)ι(τ(u))x, y) = ψ(ι(πu)x, y) = πψ2(x, y).

Therefore ψ2 satisfies the requirements (5.1.7). The uniqueness assertion is proved as before. �
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Let (X, ι) be a special formal OD-module over a ring R ∈ NilpOF . We denote by P the
corresponding WOF (R)-display. Let P∨ be the dual WOF (R)-display. Then ι induces a ho-
momorphism ι∨ : Oopp

D → EndP∨. Let ι′ : OD → EndP∨ be the composite of ι∨ with the
involution OD → Oopp

D , cf. (5.1.6). By Theorem 3.1.11, (P∨, ι′) corresponds to a special formal
OD-module (X ′, ι′).

Let ψ be a relative polarization ofX, i.e. aWOF (R)-polarization ψ : P×P → Pm. We assume
that ψ induces on OD the involution (5.1.6). In other words, (5.1.7) is satisfied in this context,
i.e., for x1, x2 ∈ P and d ∈ OD. To give such a polarization ψ is by (3.2.5) the same thing as
to give an isogeny of special formal OD-modules λψ : (X, ι) → (X ′, ι′) which is anti-symmetric
with respect to the duality X 7→ X ′.

Definition 5.1.4. Let (X, ι) be a special formal OD-module over R ∈ NilpOF . A Drinfeld
polarization is a principal relative polarization on X which induces on OD the involution (5.1.6).
Alternatively, a Drinfeld polarization is given by an anti-symmetric isomorphism of special formal
OD-modules λ : (X, ι)→ (X ′, ι′).

Proposition 5.1.5. Let X be a special formal OD-module over κ̄F . Let S be a connected scheme
over Spf OF̆ . In other words, p is locally nilpotent on S. We set S̄ = S ×Spf OF̆

Spec κ̄F . Let
(X, ι) be a special formal OD-module over S such that there exists a quasi-isogeny of special
formal OD-modules

X×Spec κ̄F S̄ −→ X ×S S̄. (5.1.8)

Then there is a Drinfeld polarization ψ on X. Any other relative polarization on X which
induces the involution d 7→ d′ is of the form fψ for some f ∈ OF .

In particular, ψ is, up to a factor in F×, compatible with a Drinfeld polarization on X by the
quasi-isogeny (5.1.8)

Proof. We begin with a κ̄F -scheme S which is not necessarily connected. We fix a Drinfeld
polarization λX on X. We will show that for each point of S there is an open neighbourhood U
and an integer c such that the quasi-polarization induced by πcλX via (5.1.8) on X is a Drinfeld
polarization over U . For this we can assume that S = SpecR. Because X is the quotient of
X×Spec κ̄F ×S by a finite locally free subgroup scheme, the quasi-isogeny (5.1.8) is defined over a
subalgebra R0 ⊂ R which is finitely generated over κ̄F . Therefore we may assume that R = R0

and, in particular, that R is noetherian.
Once we know the existence of c, it follows immediately that the quasi-polarization induced

by πcλX via (5.1.8) is a polarization on an open and closed subset U ⊂ S which contains the
point we started with. This will prove the Proposition in the case where S is an κ̄F -scheme.

To prove the existence of c, we recall some generalities from [11] which are formulated there
for Cartier modules. Let R ∈ NilpOF̆ . We fix an embedding OF ′ −→ OF̆ . From this we obtain
homomorphisms OF ′ −→ R and λ : OF ′ −→ WOF (OF ′) −→ WOF (R). Let λ̄ be the composite
of λ with the conjugation of F ′/F .

Let P be the WOF (R)-display of X. The action of OD on P is also denoted by ι. We have
the decompositions

P = P0 ⊕ P1, Q = Q0 ⊕Q1 (5.1.9)

such that for a ∈ OF ′ ⊂ OD the action of ι(a) on P0 is multiplication by λ(a) and the action
on P1 is multiplication by λ̄(a), and Qi = Q ∩ Pi. We regard (5.1.9) as a Z/2Z-grading. Then
F,Π, Ḟ are all homogeneous of degree 1,

F : Pi −→ Pi+1, Π : Pi −→ Pi+1, Ḟ : Qi −→ Pi+1.

Let ψ : P ×P → Pm be a polarization which induces on OD the involution (5.1.6). Because this
involution is trivial on OF ′ we obtain that P0 is orthogonal to P1 with respect to ψ. Therefore
ψ is given by two alternating WOF (R)-bilinear forms

ψ0 : P0 × P0 →WOF (R), ψ1 : P1 × P1 →WOF (R).

In our case Q0/IOF (R)P0 ⊂ P0/IOF (R)P0 is a direct summmand of rank 1 and therefore an
arbitrary alternating R-bilinear form on P0/IOF (R)P0 is zero on this direct summand. This
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implies that for an arbitrary alternating form ψ0 the inclusion ψ0(Q0, Q0) ⊂ IOF (R) holds. The
same remark applies to ψ1. If ψ is a polarization the equation

ψ1(Ḟ y, Ḟ y′) = Ḟψ0(y, y′) (5.1.10)

holds for y, y′ ∈ Q0. Since Ḟ : Q0 → P1 is a Frobenius-linear epimorphism, we see that ψ1 is
uniquely determined by ψ0. In fact, we can construct ψ1 from ψ0 as follows. We take a normal
decomposition P0 = L0 ⊕ T0, Q0 = L0 ⊕ IOF (R)T0. The linearizations of F and Ḟ define an
isomorphism

Ḟ ] ⊕ F ] : WOF (R)⊗F,WOF
(R) L0 ⊕ WOF (R)⊗F,WOF

(R) T0
∼−→ P1.

Therefore we can define a bilinear form ψ1 on P1 by the equations

ψ1(ξḞ l0, ηḞ l
′
0) = ξηḞψ0(l0, l

′
0), ξ, η ∈WOF (R), l0, l

′
0 ∈ L0,

ψ1(ξḞ l0, ηF t0) = ξηFψ0(l0, t0), t0 ∈ T0,

ψ1(ηFt0, ξḞ l0) = ηξFψ0(t0, l0),

ψ1(ξF t0, ηF t
′
0) = ξηπFψ0(t0, t

′
0), t′0 ∈ T0.

One checks that with this definition of ψ1 the identity (5.1.10) holds. Therefore it makes sense
to ask whether an alternating form ψ0 on P0 is a polarization.

To show the existence of a principal ψ, we begin with the case where S = SpecR and where
P has a critical index i ∈ Z/2Z. Assume that i = 0 is critical, i.e., the homomorphism

Π : P0/Q0 −→ P1/Q1 (5.1.11)

is zero. This implies that π = −Π2 is zero in R. We consider the composite Φ : P0
Π−→ Q1

Ḟ−→ P0.
We claim that Φ is a Frobenius-linear isomorphism. It is enough to show that det Φ ∈WOF (R)
is a unit. By base change, we may assume that R = k is a perfect field. Since i = 0 is critical, we
find ΠP0 ⊂ Q1 = V P0. Since P1/V P0 and P1/ΠP0 are k-vector spaces of dimension 1 we obtain
ΠP0 = V P0. Therefore V −1Π = Φ is bijective and therefore a Frobenius-linear isomorphism.

For each n ∈ N we consider on the category of affine schemes SpecA → S = SpecR the
functor

U0(n) : SpecA 7−→ (P0 ⊗WOF
(R) WOF ,n(A))Φ, (5.1.12)

where the RHS denotes invariants of the Frobenius-linearly extended operator Φ. This functor is
representable by a scheme which is finite and étale over S of degree ](OF /πnOF )2, cf. Proposition
4.5.2. Moreover, the existence of the quasi-isogeny (5.1.8) implies that this scheme is a constant
finite scheme. This means that U0(n) = S×U0(n) where U0(n) is the set of sections of U0(n)→
S. We note that the category of finite constant sheaves on S is equivalent to the category of
finite sets because S is connected. We conclude that U0(n) is an OF -module isomorphic to
(OF /π

nOF )2. We set U0 = proj limU0(n). It is a free OF -module of rank 2. We obtain a
canonical isomorphism WOF (R)-modules

P0
∼= WOF (R)⊗OF U0.

Let φ be a relative polarization on X which induces the involution d 7→ d′ on OD. Then we
obtain for x, x′ ∈ P0

φ0(ḞΠx, ḞΠx′) =Ḟφ1(Πx,Πx′) =Ḟφ0(x,−Π2x′) = π Ḟφ0(x, x′) =Fφ0(x, x′).

Therefore the restriction of φ0 induces an alternating OF -bilinear form φ̄0 : U0×U0 → OF . The
form φ̄0 determines φ0 and then φ1, as we have seen above. Therefore φ̄0 determines φ uniquely.
We conclude that any relative polarization φ of P that induces the given involution on OD is of
the form φ = fψ for some f ∈ F×.

Conversely, we start with a perfect alternating pairing α : U0 × U0 −→ OF and extend it by
base change to a perfect bilinear pairing

ψ0 : P0 × P0 −→WOF (R).

As explained above, ψ0 extends to an alternating bilinear form

ψ : P × P −→WOF (R),
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such that P0 and P1 are orthogonal with respect to ψ and (5.1.10) holds.
To prove that ψ is a polarization we begin with the case where, moreover, R is a reduced ring.

In this case P ⊂ P ⊗Q. We may assume without loss of generality that both indices i = 0 and
i = 1 are critical for X. We choose a Drinfeld polarization ψX on X. Let αX be the alternating
OF -bilinear form on U0,X. The quasi-isogeny (5.1.8) induces an isomorphism

U0,X ⊗Q→ U0 ⊗Q.

Since both sides are two-dimensional F -vector spaces, the bilinear forms α and αX differ by a
factor in F× under the isomorphism. Let φ be the relative quasi-polarization induced by ψX on
X via (5.1.8). We have seen that φ0 and ψ0 differ by a factor in F×. Because for the bilinear
forms φ : P ⊗Q×P ⊗Q→WOF (R)⊗Q and ψ the identity (5.1.10) holds, these bilinear forms
also differ by the same factor in F×. In particular ψ inherits from φ the identities

ψ(Ḟ x, Ḟ z) =Ḟψ(x, y), ψ(Πx, z) = ψ(x,Πz), x, z ∈ P ⊗Q.

This proves that ψ : P × P →WOF (R) is a polarization. To show that ψ is perfect it is enough
to show that detψ ∈ WOF (R) is a unit. This may be reduced to the case where R is a perfect
field. In this case we know it by Proposition 5.1.3. This proves that ψ a Drinfeld polarization on
X. Since the restrictions of ψ and φ to U0 ⊗Q differ by a factor in F×, we conclude that there
is c ∈ Z such that the quasi-polarization πcψX induces via (5.1.8) a Drinfeld polarization on X.

We make a general remark on liftings before we continue. Let R̃→ R be a surjection in NilpOF̆
with nilpotent kernel. Let X̃ be a special formal OD-module over R̃ and let X be its base change
to R. Then any relative polarization ψ of X which induces on OD the given involution (5.1.6)
lifts uniquely to a relative polarization on X̃ which also induces the given involution. Indeed,
to see this we may assume that the map R̃→ R is an OF -pd-thickening, because any surjection
with nilpotent kernel breaks up into such thickenings. In this situation we apply Proposition
3.2.4. Let P resp. P̃ be the displays of X resp. X̃. Then ψ : P × P → Pm lifts to P̃ iff

ψcrys(Q̃/IOF (R̃)P̃ , Q̃/IOF (R̃)P̃ ) = 0,

and this lifting is unique. As we remarked above, this condition follows because Q̃0/IOF (R̃)P̃0

and Q̃1/IOF (R̃)P̃1 are locally free of rank 1.
Now we return to the case of a reduced ring R such that S = SpecR is connected, but we

do not assume that X has a critical index. We consider the closed subscheme S0 = SpecR/a0

where i = 0 is critical, i.e. where the homomorphism (5.1.11) is zero. Let S1 = SpecR/a1 be
the closed subscheme where i = 1 is critical. We obtain a fiber product diagram of rings

R/(a0 ∩ a1) //

��

R/a0

��

R/a1
// R/(a0 + a1).

Let G, H be p-divisible groups over R/(a0 ∩ a1). Let Gi, Hi be the restrictions of these p-
divisible groups to R/ai for i = 1, 2. It is easy to see that two homomorphisms γi : Gi → Hi

which agree on R/(a0 + a1) come from a unique homomorphism G→ H. This implies that two
Drinfeld polarizations of X over R/a1 and R/a2 which agree on R/(a0 +a1) are the restriction of
a single Drinfeld polarization of X over R/(a0 ∩ a1). Finally we can lift a Drinfeld polarization
from R/(a0 ∩ a1) to R because the ideal a0 ∩ a1 is nilpotent. Note that a0a1 = 0 because
Π2 = −π = 0.

Let {Ur}r∈r be the connected components of S0 and let {Vt}t∈t be the connected components
of S1. These are closed subschemes of SpecR. We find integers cr and dt such that πcrψX
induces a Drinfeld polarization of X over Ur and πdtψX induces a Drinfeld polarization of X
over Vt. If Ur ∩ Vt 6= ∅ we obtain cr = dt. Since S = SpecR is connected we conclude that
cr = dt = c is independent of r and t. This shows that πcψX defines a Drinfeld polarization of X
over S. If φ and ψ are two relative polarizations of X which induce the given involution (5.1.6),
we have already seen that their restrictions to Ur resp. Vt differ by a factor in F×. The same
argument as before shows that φ = fψ holds over S for some f ∈ F×.
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Next we consider the case that SpecR is noetherian and connected. Since the kernel R→ Rred

has nilpotent kernel, the relative polarizations ofX over Rred inducing (5.1.6) on OD lift uniquely
to R. This shows that two polarizations over R of this type differ by a factor in F× and that
there exist Drinfeld polarizations over R.

As we said at the beginning of the proof, this implies that for each connected κ̄F -scheme S
the Proposition holds. The general case follows because the kernel of OS → OS̄ is nilpotent. �

Corollary 5.1.6. With the assumptions of Proposition 5.1.5, let ψX be a Drinfeld polarization
on X. Moreover, let

ρ : X×Spec κ̄F S̄ −→ X ×S S̄
be a quasi-isogeny of height 0. Then the relative quasi-polarization ψ̄ on X ×S S̄ induced by ψX
is a Drinfeld polarization of X ×S S̄ that lifts to a Drinfeld polarization ψ on X.

Proof. In the notation introduced before Definition 5.1.4, ψX induces an isomorphism λX : X→
X′. By the definition of ψ̄ we obtain a commutative diagram

X×Spec κ̄F S̄
ρ

//

λX

��

X ×S S̄

λψ̄

��

X′ ×Spec κ̄F S̄ X ′ ×S S̄.
ρ′
oo

Since ρ and its dual ρ′ have height zero, we conclude that λψ̄ is a quasi-isogeny of height zero.
On the other hand, there exists by Proposition 5.1.5 a Drinfeld polarization φ on X. Moreover,
there is f ∈ F× such that

λψ̄ = λφ̄ ◦ ι(f).

Hence ι(f) : X×S S̄ → X×S S̄ is a quasi-isogeny of height zero. Since 4 ordπ f = heightOF ι(f),
we conclude that f is a unit in OF . Therefore λψ̄ is an isomorphism, and ψ̄ is a Drinfeld
polarization which lifts to the Drinfeld polarization λφ ◦ ι(f) on X. �

Let us recall the Drinfeld moduli functorMDr on the category of schemes S over Spf OF̆ . We
will use the notation S = S⊗Spf OF̆

SpecκF . We fix a special formal OD-module (Y, ιY) over the
OF̆ -algebra κF . We call Y a framing object. By [11] there is a quasi-isogeny of height 0 between
any two choices. For a scheme S −→ Spf OF̆ , a point ofMDr(S) consists of the following data
up to isomorphism:
(1) A special formal OD-module (Y, ι) over S.
(2) A quasi-isogeny of OD-modules of height 0

ρ : Y ×S S −→ Y×Spec κ̄F S. (5.1.13)

The functor is representable by the p-adic formal OF̆ -scheme Ω̂F ×Spf OF Spf OF̆ .
We define the functorMDr(i) by replacing in (2) height 0 by the condition heightOF ρ = 2i.

We set
M̃Dr =

∐
i∈Z
MDr(i).

Let (Y, ι) be a special formal OD-module. Let u ∈ D×. Then we define a new special formal
OD-module (Y u, ιu) by setting

Y u = Y, ιu(d) = ι(u−1du), for d ∈ OD.
The multiplication ι(u) : (Y u, ιu) −→ (Y, ι) is a quasi-isogeny of special formal OD-modules. We
obtain for each i ∈ Z an isomorphism of functors

u :MDr(i)
∼−→MDr(i+ ordD u), (Y, ρ) 7−→ (Y u, ιY(u)ρu), (5.1.14)

This defines an action of D× on M̃Dr. If u ∈ O×D, the multiplication by ι(u) defines an isomor-
phism ι(u) : (Y u, ιY(u)ρu)→ (Y, ρ). Therefore the action of D× factors through ordD : D× → Z.
We will call this action the translation.

We endow M̃Dr with a Weil descent datum relative to OF̆ /OF . Let τ ∈ Gal(F̆ /F ) be the
Frobenius automorphism. Let ε : OF̆ −→ R be an algebra in NilpOF̆ . We denote by R[τ ] the
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ring R with the new OF̆ -algebra structure ε ◦ τ . The Frobenius τ induces τ̄ : κ̄F −→ κ̄F . We
have the Frobenius morphism

FY,τ : Y −→ τ∗Y. (5.1.15)

For a κ̄F -algebra ε : κ̄F −→ R̄, we set φ(r) = rp
f

for r ∈ R̄. This defines a κ̄F -algebra
homomorphism R̄ −→ R̄[τ ]. If we apply the functor Y we obtain (5.1.15). We will define a
morphism

ωMDr :MDr(i)(R) −→MDr(i+ 1)(R[τ ]). (5.1.16)
Let (Y, ρ) ∈MDr(i)(R). We define ρ′ as the composite

YR⊗O
F̆
κ̄F

ρ−→ ε∗Y
ε∗FY,τ−→ ε∗τ∗Y.

The image of (Y, ρ) under (5.1.16) is by definition (Y, ρ′). Since heightOF FY,τ = 2, we obtain
that heightOF ρ

′ = 2i+ 2. From (5.1.16) we obtain a Weil descent datum

ωMDr : M̃Dr(R) −→ M̃Dr(R[τ ]) (5.1.17)

on the functor M̃Dr (compare [29]). We introduce the notation

M̃(τ)
Dr = M̃Dr ×Spf OF̆ ,Spf τ Spf OF̆ . (5.1.18)

Then we have M̃(τ)
Dr (R) = M̃Dr(R[τ ]). We write (5.1.17) in the form

ωMDr : M̃Dr −→ M̃(τ)
Dr . (5.1.19)

The translation Π : MDr(i) → MDr(i + 1) is an isomorphism. We use it to identify these
functors. By Drinfeld’s theorem we obtain an isomorphism

M̃Dr ∼= (Ω̂F ×Spf OF Spf OF̆ )× Z. (5.1.20)

We denote by ωτ the action of τ via the second factor on Ω̂F ×Spf OF Spf OF̆ .

Proposition 5.1.7. The Weil descent datum ωMDr induces on the right hand side of (5.1.20)
the Weil descent datum

ωMDr : (ξ, i) 7−→ (ωτ (ξ), i+ 1). (5.1.21)
The translation functor is on the right hand side (ξ, i) 7→ (ξ, i+ 1).

Proof. Let (Y, ρ) ∈ MDr(R). Composing ωMDr with the translation we obtain a Weil-descent
datum onMDr,

α :MDr(R)→MDr(R[τ ]).

It associates to (Y, ρ) the point (Y Π−1

, ρ1), where ρ1 is the composite

Y Π−1

R⊗O
F̆
κ̄F

ρ−→ ε∗YΠ−1 ε∗FY,τ−→ ε∗τ∗YΠ−1 ι(Π−1)−→ ε∗τ∗Y. (5.1.22)

Our assertion says that Drinfeld’s morphismMDr → Ω̂F fits into a commutative diagram

MDr(R)
α //

$$

MDr(R[τ ])

yy

Ω̂F (R)

This is stated as an exercise in the proof of [29, Prop. 3.77], but we give the verification. We
have to go back to Drinfeld’s proof and therefore we use his notation. A point of Ω̂F (R) is given
by data (η, T, u, r) ([11], §2, Thm.). Drinfeld constructs the data (η, T, u) entirely from a graded
Cartier module M = ⊕Mi. The Cartier modules M and MΠ−1

[τ ] are the same and the gradings

are also the same because M 7→MΠ−1

shifts the grading by 1 and M 7→M[τ ] shifts the grading
by 1 in the opposite direction. Finally, we have to see that the rigidification r is not changed
by the application of αĞ. This can be checked on the geometric points of SpecR. But over an
algebraically closed field L, the rigidification is obtained as follows. We take the morphism of
rational Dieudonné modules

N → N
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induced by (5.1.13) for S = S = SpecL. Then r is obtained by taking the invariants by V −1Π
on both sides. We see from the definition (5.1.22) that αĞ does not change r. �

Let AutoD(Y) be the group of quasi-isogenies of Y which commute with the action of ιY. With
the notation of (5.1.9), let N = N0 ⊕N1 = P ⊗Q be the rational Dieudonné module of Y. The
natural map

AutoD(Y)→ GLF (NV −1Π
0 ) ∼= GL2(F )

is an isomorphism. This group acts on the functor M̃Dr as follows. For g ∈ AutoD(Y) we define

g :MDr(i)→MDr(i+ ord det g), (Y, ρ) 7−→ (Y, gρ).

The action commutes with the translation. Let JDr be the cokernel

Z → AutoD(Y)× Z → JDr → 0.
i 7−→ (πi,−2i)

The second group acts on M̃Dr such that the factor Z acts by translation. We obtain an action
of JDr on M̃Dr. We introduce the groups J∗r and J∗ur as cokernels

F× → AutoD(Y)×K× → J∗r → 0,
f 7−→ (f, f−1)

F× → AutoD(Y)× (F ′)× → J∗ur → 0.
f 7−→ (f, f−1)

(5.1.23)

The homomorphisms ordK : K× → Z, resp. 2 ordF ′ : (F ′)× → Z, induce homomorphisms
J∗r → JDr, resp. J∗ur → JDr. Therefore these groups act on M̃Dr.

5.2. The alternative theorem in the ramified case. LetK be a ramified quadratic extension
of F . We also assume that p 6= 2. We choose prime elements Π ∈ OK and π ∈ OF such that
Π2 = −π as in section 2. With the notation before Proposition 5.1.3, we regard OK as a subring
of OD.

For each i ∈ Z we define the functor N (i) = NK/F,r(i) on the category of schemes S −→
Spf OF̆ . We fix a special formal OD-module Y over κ̄F and we fix a Drinfeld polarization ψY.
We denote by λY : Y −→ Y∆ the isomorphism associated to ψY, cf. Definition 5.1.4. We will
consider p-divisible groups X on S with an action ι : OK −→ EndX such that the restriction of
this action to OF is strict. By duality we obtain an action of OK on the Faltings dual X∇. If
we compose this action with the conjugation of K/F we obtain ι∆ : OK −→ EndX∇. We write
X∆ = (X∇, ι∆) and call this the Faltings conjugate dual of (X, ι).

Definition 5.2.1. A point of N (i)(S) consists of the following data:
(1) A formal p-divisible group X over S with an action

ι : OK −→ EndX,

such that the restriction of ι to OF is a strict action.
(2) An isomorphism of OK-modules λ : X −→ X∆ which induces a relative polarization on X,

cf. Corollary 3.4.13.
(3) A quasi-isogeny of OK-modules

ρ : X ×S S −→ Y×Spec κ̄F S.

We require that the following conditions are satisfied.
a) ρ respects the OK-actions. There is an element u ∈ O×F such that the following diagram of

quasi-isogenies is commutative

X ×S S̄
ρ
//

uπiλ
��

Y×Spec κ̄F S̄

λY

��

X∆ ×S S̄ Y∆ ×Spec κ̄F S̄.
ρ∆

oo

(5.2.1)
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b)
Tr(ι(Π) | LieX) = 0. (5.2.2)

Two such data (X1, ι1, λ1, ρ1) and (X2, ι2, λ2, ρ2) define the same point of N (i)(S) iff there is an
isomorphism α : (X1, ι1) −→ (X2, ι2) which respects the polarizations up to a factor in O×F and
such that α commutes with ρ1 and ρ2.

We note that changing λ by a factor in O×F does not alter the points of N (S). The existence
of ρ implies that dimX = 2 and that the OF -height of X is 4. The condition b) implies the
following Kottwitz condition for the characteristic polynomial,

char(ι(a) | LieX) = (T − a)(T − ā), a ∈ OK . (5.2.3)

Clearly the functor N (i) does not depend on the choice of the Drinfeld polarization λY.
It follows from [29] that N (i) is representable by a formal scheme which is locally formally of

finite type over Spf OF̆ .
Let S = SpecR, R ∈ NilpOF̆ . Let PX be the WOF (R)-display associated to the p-divisible

group X. The conjugate dual WOF (R)-display P∆
X is nilpotent. It corresponds to X∆. We

denote by ψ : PX × PX −→ Pm,WOF
(R) the bilinear form of displays which corresponds to λ.

We may reformulate the commutativity of the diagram (5.2.1) as follows: the quasi-polarization
ρ∗ψY coincides with πiψR/πR of (PX)R/πR up to a factor in O×F .

We obtain from (5.2.1) that
4i = 2 heightOF ρ.

As for the functorsMDr(i) we have functor isomorphisms

Π : N (i)
∼−→ N (i+ 1), (X, ρ) 7−→ (X, ι(Π)ρ), (5.2.4)

which we call the translations. Let τ ∈ Gal(F̆ /F ) be the Frobenius automorphism. Using the
Frobenius FY,τ : Y −→ τ∗Y we define

ωN : N (R)(i) −→ N (i+ 1)(R[τ ]). (5.2.5)

exactly as ωMDr in (5.1.16). This defines a Weil descent datum ωN relative to OF̆ /OF on the
functor

Ñ =
∐
i∈Z
N (i).

Lemma 5.2.2. The action of the group J∗r from (5.1.23) on the OK-module Y gives an iso-
morphism

J∗r
∼−→ J ·,

where

J · = {α ∈ AutoK(Y) | ψY(α(x), α(y)) = µ(α)ψY(x, y), for some µ(α) ∈ F×, x, y ∈ PY ⊗Q}.

�

The group J∗r acts on the functor Ñ by

(Y, ι, ρ) 7−→ (Y, ι, gρ), for g ∈ J∗r.

We have a natural morphism of functors on NilpOF̆

MDr(i) −→ N (i). (5.2.6)

This is defined as follows. Let (Y, ι, ρ) ∈MDr(i)(S) be a point. Let ψ be a Drinfeld polarization
on Y which is compatible with the quasi-isogeny ρ, cf. Proposition 5.1.5. It is uniquely deter-
mined up to a factor in O×F . Locally on S̄ we have ρ∗ψY = fψ for f ∈ F . Since heightOF ρ = 2i
we obtain ordπ f = i. Therefore (Y, ι|OK , ψ, ρ) ∈ N (i)(S).

The main result of [19] may now be formulated as follows. Note that in loc. cit. Weil descent
data were not considered.
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Theorem 5.2.3 ([19]). Assume that p 6= 2. The functor morphisms (5.2.6) define a functor
isomorphism

M̃Dr
∼−→ Ñ

which commutes with the Weil descent data and the action of the group J · = J∗r on both sides.
In particular it commutes with the translations.

It is clear that the morphism of functors M̃Dr −→ Ñ , is compatible with the Weil descent
data ωMDr and ωN relative to OF̆ /OF and with the translations (5.1.14) and (5.2.4). From this
we see that it commutes also with the actions of J∗r. We need to prove that it is an isomorphism.
For the proof we need some preparations.

Let k be an algebraically closed field which is an OF̆ -algebra. We consider a WOF (k)-
Dieudonné module M of height 4 and dimension 2. We assume that an OK-action ι : OK −→
EndM on M is given such that the restriction to OF is via OF −→WOF (k).

Let
ψ : M ×M −→WOF (k) (5.2.7)

be a relative polarization, i.e., an alternating WOF (k)-bilinear form such that

ψ(Fx1, Fx2) = π Fψ(x1, x2).

We require that
ψ(ι(a)x, y) = ψ(x, ι(ā)y), a ∈ OK .

Proposition 5.2.4. Let M be the WOF (k)-Dieudonné module of a special formal OD-module
with a Drinfeld polarization ψM, cf. Definition 5.1.4. Let (M, ι, ψ) be as above and such that ψ
is perfect. We assume that there exists an isomorphism of rational WOF (k)-Dieudonné modules
ρ : M⊗Q −→M ⊗Q, such that ρ is a homomorphism of OK-modules and such that ρ respects
the polarizations ψM and ψ up to a factor in F×.

Then there exists a unique OD-module structure on M such that M becomes the Dieudonné
module of a special formal OD-module and such that ρ is a quasi-isogeny of OD-modules.

Proof. We will write ax := ι(a)x, for a ∈ OK and x ∈M . For a ∈ OF this coincides by definition
with the action via OF −→WOF (k).

We define W̃ = OK ⊗OF WOF (k). We extend the conjugation of K over F by linearity to
W̃ over WOF (k). We denote the traces of K/F and of W̃/WOF (k) both by Tr. The Frobenius
endomorphism of WOF (k) extends OK-linearly to W̃ and is denoted by F . It will be impossible
to confuse this with the field F .

We define a hermitian form
h : M ×M −→ W̃ ,

by requiring that
Tr ξΠ−1h(x, y) = ψ(x, ξy) ξ ∈ W̃ , x, y ∈M.

Then h is W̃ -linear in the second variable and hermitian,

h(x, y) = h(y, x).

The pairing h is perfect and satisfies the equation

h(Fx, Fy) = π Fh(x, y).

Since N := M ⊗ Q is the rational Dieudonné module of a special formal OD-module with its
Drinfeld polarization, we have a decomposition

N = N0 ⊕N1, (5.2.8)

which is orthogonal with respect to ψ (see (5.1.3)). One should note that N0 and N1 are not
W̃ -modules.

We note that for n0, n
′
0 ∈ N0, n1, n

′
1 ∈ N1 we have

h(n0, n
′
0) = 1

2Πψ(n0, n
′
0), h(n1, n

′
1) = 1

2Πψ(n1, n
′
1),

h(n0, n1) = 1
2ψ(n0,Πn1).

(5.2.9)
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Indeed, the equation

Tr
Π

Π
h(n0, n

′
0) = ψ(n0,Πn

′
0) = 0

implies that Π−1h(n0, n
′
0) ∈WOF (k)⊗Q. We obtain the first equation of (5.2.9):

2Π−1h(n0, n
′
0) = Tr Π−1h(n0, n

′
0) = ψ(n0, n

′
0).

The proof of the next equation is the same. We have

Tr Π−1h(n0, n1) = ψ(n0, n1) = 0.

This implies h(n0, n1) ∈WOF (k)⊗Q. We obtain the last equation of (5.2.9):

2h(n0, n1) = Trh(n0, n1) = ψ(n0,Πn1).

In particular we see from (5.2.9) that an element n0 ∈ N0 is isotropic for h.
We call an element x ∈M primitive if it is not in ΠM . We find an element x ∈M ∩N0 such

that x /∈ πM . Assume that x = Πy for some y ∈M . Then y ∈M ∩N1. Then it is clear that y
is a primitive element in M . Interchanging the role of the indices 0 and 1, we may assume that
x ∈M ∩N0 is primitive.

Since the pairing h is perfect and x is isotropic for h, we find an element y′ ∈ M , such that
h(x, y′) = 1. We can even choose y′ to be isotropic for h. Indeed, we set y = y′ + λx for some
λ ∈ W̃ . Then h(x, y) = 1. We compute:

h(y, y) = h(y′, y′) + h(y′, λx) + h(λx, y′) = h(y′, y′) + λ+ λ̄.

We choose λ = −(1/2)h(y′, y′) (which is legitimate, as p 6= 2) and obtain h(y, y) = 0. According
to (5.2.8) we write

y = y0 + y1, y0 ∈ N0, y1 ∈ N1.

We write
1 = h(x, y) = h(x, y0) + h(x, y1).

We have h(x, y0) ∈ ΠWOF (k) ⊗ Q and h(x, y1) ∈ WOF (k) ⊗ Q by the formulas (5.2.9). This
implies h(x, y0) = 0 and h(x, y1) = 1. On the other hand, we find by (5.2.8)

0 = h(y, y) = h(y0 + y1, y0 + y1) = h(y0, y1) + h(y1, y0).

Since h(y0, y1) ∈ WOF (k)⊗Q, this implies h(y0, y1) = 0 and then h(y, y0) = 0. The elements x
and y generate N as a W̃ ⊗ Q-vector space. Because we already proved that h(x, y0) = 0, we
conclude y0 = 0. Therefore y = y1 ∈M ∩N1. We obtain

M = W̃x+ W̃y,

because h is unimodular on the right hand side. Then the elements x,Πx, y,Πy are a basis of
the WOF (k)-module M . We have x,Πy ∈M ∩N0 and y,Πx ∈M ∩N1 and therefore

M = (M ∩N0)⊕ (M ∩N1).

This shows that the OD-module structure on N induces an OD-module structure on M . �

Proof of Theorem 5.2.3. We consider the morphism (5.2.6) for i = 0 and denote it by

MDr −→ N . (5.2.10)

Clearly it is enough to show that this is an isomorphism. Proposition 5.2.4 shows that for
any algebraically closed field k which is an OF̆ -algebra, the induced map MDr(k) −→ N (k) is
bijective.

We note that the morphism (5.2.10) is formally unramified. Indeed, let S −→ R be a surjective
morphism in NilpOF̆ with nilpotent kernel. Let X be a p-divisible group over S with base change
XR over R. Then an OD-module structure on XR lifts by rigidity in at most one way to X.
We consider the underlying topological spaces in (5.2.6) with their induced structure of reduced
schemes. Then we obtain a formally unramified morphism of κ̄F -schemes

MDr,red −→ Nred (5.2.11)

These schemes are locally of finite type over κ̄F and have irreducible components which are
proper over κ̄F , cf. [29, Prop. 2.32]. Moreover, the morphism is bijective on geometric points.
Then the irreducible components of both schemes correspond bijectively to each other. We
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consider a point x ∈ MDr(κ̄F ). Let X be the union of all irreducible components which pass
through x with the reduced scheme structure. Let y ∈ N (κ̄F ) be the image of x and define
Y ⊂ N in the same way as X. Then X −→ Y is a finite morphism. If we remove all points
in X resp. Y which belong to components not passing through x, resp. y, we obtain a finite
morphism of open neighbourhoods U −→ V of x ∈MDr,red and y ∈ Nred. Therefore (5.2.11) is
a finite morphism of schemes locally of finite type over the algebraically closed field κ̄F . Since
this morphism is unramified and bijective on geometric points, it is an isomorphism.

Lemma 5.2.5. Let S −→ κ̄F be a surjective morphism in NilpOF̆ such that the kernel is nilpotent
and endowed with divided powers. Then the map

MDr(S) −→ N (S)

is bijective.

Let us assume that the lemma is proved. Then we consider points x and y as above. We
consider an open affine neighbourhood U of x. By the isomorphism (5.2.11) we regard U also
as a neighbourhood of y. Let n ∈ N. For a suitable ideal sheaf of definition J of N , we have a
homomorphism

(ON /J )(U) −→ OMDr(U)/πnOMDr(U).

This map is surjective modulo π by (5.2.11) and is therefore surjective. We note that by EGA0I ,
Prop. 7.2.4 the ring (ON /J )(U) is π-adic. It follows that

ON (U) −→ OMDr
(U)

is surjective. Taking the inductive limit over U we obtain an epimorphism of local rings

Oy −→ Ox. (5.2.12)

By [29, Thm. 2.16] this is a homomorphism of noetherian adic rings (comp. EGA I, Prop. 10.1.6).
The ring Ox is, as a local ring of the scheme MDr, regular of dimension 2. Let my and mx be
the maximal ideals of the local rings. We remark that the squares of the ideals are open because
the topologies are adic.

We apply Lemma 5.2.5 to S = Oy/m2
y. Then we obtain an oblique arrow which makes the

following diagram commutative,

Oy //

��

Ox

{{

Oy/m2
y .

It follows that there is a surjective homomorphism mx/m
2
x −→ my/m

2
y. The epimorphism of

local rings also gives a surjection in the other direction. We conclude

dimκ̄F my/m
2
y = 2.

Therefore Oy is a regular local ring of dimension 2, and the map (5.2.12) is an isomorphism. It
follows that the map of sheaves

ON −→ OMDr

is an isomorphism. Finally let J be the maximal ideal sheaf of definition of ON . By the
isomorphism (5.2.12) we obtain an isomorphism

Oy/JOy −→ Ox/πOx.

Therefore JOy = πOy. Therefore J = πON is an ideal sheaf of definition. We obtain that
(5.2.10) is an isomorphism of formal schemes.

It remains to prove Lemma 5.2.5. We denote by m the kernel of S −→ κ̄F . Let ξ : SpecS −→
N be a morphism. We show that it lifts uniquely to SpecS −→MDr. We denote by y ∈ N (κ̄F )
the point induced by ξ. Let x ∈MDr(κ̄F ) be the unique point over y.
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We denote by P the OF -display of the special formal OD-module over κ̄F which corresponds to
x. We denote by P̃ the unique WOF (S/κ̄F )-display which lifts P, cf. Theorem 3.1.12. We write
P̃ = (P̃ , Q̂, F, Ḟ ). The OD-action on P extends to P̃. Therefore we have the decompositions

P̃ = P̃0 ⊕ P̃1, Q̂ = Q̂0 ⊕ Q̂1.

We consider only the most interesting case where Π acts trivially on LieP, i.e., Spec κ̄F −→
MDr is a singular point of the special fibre, cf. [11]. In this case we obtain Frobenius-linear
isomorphisms

Ḟ ◦Π : P̃0 −→ Q̂1 −→ P̃0, Ḟ ◦Π : P̃1 −→ Q̂0 −→ P̃1.

We set Ũi = {x ∈ P̃i | Ḟ ◦ Π(x) = x}. Then the canonical morphism WOF (S)⊗OF Ũi −→ P̃i is
an isomorphism.

We can make the same construction with the display P. Then we obtain Ui ⊂ Pi such that
the canonical OF -module homomorphism Ũi −→ Ui is an isomorphism. Using our knowledge
about P we find elements ẽi ∈ Ui, for i = 0, 1 such that

ẽ0,Πẽ1 ∈ P̃0, ẽ1,Πẽ0 ∈ P̃1,

are a basis of the WOF (S)-module P̃ . The natural polarization ψ on P extends to a polarization
ψ̃ on P̃ which is given by the conditions

ψ̃(ẽ0,Πẽ1) = 1 = ψ̃(ẽ1,Πẽ0),

and such that the decomposition P̃ = P̃0 ⊕ P̃1 is orthogonal with respect to ψ̃.
We classify now the liftings of Spec κ̄F −→ N to a point SpecS −→ N . We consider the

Hodge filtration L = Q/IOF (k)P ⊂ P/IOF (k)P . Since we compute now all the time modulo the
augmentation ideal IOF (k) ⊂ WOF (k), resp., IOF (S) ⊂ WOF (S), we continue to simply write
ẽ0 when we mean the residue class in P̃ /I(S)P̃ . The k-vector space L has the basis Πe0,Πe1.
Therefore a lifting of L to a direct summand L̃ ⊂ P̃ /I(S)P̃ has a unique basis of the form

f0 = Πẽ1 + γẽ0 + δẽ1, f1 = Πẽ0 + αẽ0 + βẽ1,

because it is complementary to the module generated by ẽ0, ẽ1. Since we want a lifting of L we
have α, β, γ, δ ∈ m. The lifting L̃ determines a lifting of the display to S. The form ψ lifts to a
polarization of this display if and only if L̃ is isotropic under ψ. Therefore we must have

0 = ψ̃(Πẽ0 + αẽ0 + βẽ1,Πẽ1 + γẽ0 + δẽ1)

One obtains easily that the right hand side is

ψ̃(Πẽ0, δẽ1) + ψ̃(αẽ0,Πẽ1) = −δ + α.

Since the lifting L̃ should define a point of N , the condition 2) in the definition of points of N
implies

0 = Tr(Π | P̃ /L̃) = α+ δ.

Because p 6= 2 we obtain α = δ = 0. This implies that L̃ = (L̃∩P̃0)⊕(L̃∩P̃1). This shows that the
display over S defined by L̃ is the display of a special formal OD-module. Therefore the liftings
of Spec κ̄F −→ N to N (S) correspond via (5.2.6) bijectively to the liftings of Spec κ̄F −→MDr

to a point ofM(S). This proves Lemma 5.2.5 and Theorem 5.2.3.
�

The properties of Drinfeld’s moduli schemeMDr imply the following corollary, cf., e.g., [4].

Corollary 5.2.6. The formal scheme N is π-adic and has semi-stable reduction. The special
fiber N ⊗OF̆ κF of N is a reduced scheme. �

Finally we prove the uniqueness of the framing object, cf. (i) of subsection 2.5. We begin
with this question in the category dRpol

R , cf. Definition 4.4.10.

Proposition 5.2.7. Let r be special and let K/F be ramified. Let k ∈ NilpOF be an alge-
braically closed field. Let (Pc,1, ιc,1, βc,1) and (Pc,2, ιc,2, βc,2) be two objects in dRpol

k . Assume
that inv(Pc,i, ιc,i, βc,i)) = −1 for i = 1, 2. Then there exists a quasi-isogeny α : Pc,1 −→ Pc,2

which respects ιc,i and βc,i.
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If the forms βc,i are perfect, then the actions ιc,i extend to actions ι̃c,i : OD −→ EndOF Pc,i

such that Pc,i becomes a special formal OD-module with Drinfeld polarization βi and such that
α becomes a homomorphism of OD-modules.

For the proof we need some preparations.

Lemma 5.2.8. Let K/F, r, k as in the last Proposition and let (Pc, ιc, βc) ∈ dRpol
k . Assume that

inv(Pc, ιc, βc) = −1, cf. Definition 8.3.1. Then the WOF (k)-display Pc is isoclinic of slope 1/2.

Proof. The K ⊗OF WOF (k)-vector space N = Pc⊗Q has dimension 2. The isoclinic decomposi-
tion of the WOF (k)-isocrystal N is invariant under the action of OK and has therefore at most
two summands. We have to show that there is only one summand. If not, we have N = N0⊕N1,
where N0 is étale and N1 is dual to N0. The dimension of each Ni as a K ⊗OF WOF (k)-vector
space is one. Therefore we find a generator e0 ∈ N0 such the Vce0 = e0. We use the notation
of before Definition 8.3.1. Let e1 ∈ N1 be the generator such that κc(e0, e1) = 1. Let τ be the
Frobenius acting via the second factor on K ⊗OF WOF (k). From the equation

κc(Vce0, Vce1) = πκc(e0, e1)τ
−1

= π,

we conclude that Vce1 = πe1. Therefore Vc(e0 ∧ e1) = πe0 ∧ e1. This implies that the invariant
of (Pc, ιc, βc) is 1, which contradicts the assumption (Pc, ιc, βc) = −1. �

Let (Pc, ιc) ∈ dRk be isoclinic of slope 1/2. Then there is anWOF (k)-lattice Λ ⊂ Pc⊗Q which
is invariant by π−1V 2

c . Then there is also a lattice invariant by the ”square root” Π−1Vc. One
deduces that the invariants C of Π−1Vc acting on Pc ⊗Q form a K-vector space of dimension 2
and

Pc ⊗Q = C ⊗OF WOF (k). (5.2.13)
The anti-hermitian form κc associated to βc by (8.3.1) induces the anti-hermitian form on the
K-vector space C

κc : C × C −→ K. (5.2.14)
Indeed, for x, y ∈ C we find

πκc(x, y) = κc(Πx,Πy) = κc(Vcx, Vcy) = π F−1

κc(x, y).

This shows that κc(x, y) ∈ K ⊗OF WOF (k) is invariant by the Frobenius F acting on WOF (k),
and therefore this element is in K. The same argument shows that βc(x, y) ∈ F . The form κc

restricted to C is obtained from the restriction of βc to C by the formula

TrK/F (aκc(x, y)) = βc(ax, y), x, y ∈ C, a ∈ K.

Lemma 5.2.9. Let (Pc,1, ιc,1, βc,1) and (Pc,2, ιc,2, βc,2) be objects of dRpol
k such that Pc,1 and

Pc,2 are isoclinic of slope 1/2. Then the canonical map

Hom
(
(Pc,1, ιc,1, βc,1), (Pc,2, ιc,2, βc,2)

)
⊗Q −→ HomK

(
(C1, βc,1), (C2, βc,2)

)
is an isomorphism.

Proof. This is an immediate consequence of the isomorphism (5.2.13) because the K-action, βc,
and Vc on Pc ⊗Q can be recovered from the right hand side of the isomorphism. The map Vc is
induced from Π⊗ F−1 on the right hand side. �

Lemma 5.2.10. There is the following relation between the invariants defined in Definition
8.3.1 and in Definition 8.1.1,

inv(Pc, ι, βc) = −inv(C, βc). (5.2.15)

We remark here that (C, βc) determines (Pc, ι, βc) up to isogeny.

Proof. Let x1, x2 be a basis of the K-vector space C. Then the right hand side of (5.2.15) is
given by the 2× 2-determinant

det(κc(xi, xj)).

By definition of C we have Vcxi = Πxi. We conclude that Vc(x1 ∧ x2) = −π(x1 ∧ x2) in ∧2
KC.

From Lemma 8.3.3 we obtain that the determinant above gives −inv(Pc, ι, βc). �
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Lemma 5.2.11. Let (Psp, ιsp) the WOF (k)-display of a special formal OD-module. We denote
by ψ a Drinfeld polarisation. Let ι′sp be the restriction of ιsp to OK ⊂ OD. Then (Psp, ι

′
sp, ψ) ∈

dRpol
k , and

inv(Psp, ι
′
sp, ψ) = −1.

Proof. We write M = Psp and consider it as a WOF (k)-Dieudonné module. Let N = M ⊗ Q.
Then ψ is a relative polarization that satisfies (5.1.2). By the decomposition (5.1.3) (or (5.1.9))
we obtain a decomposition

N = N0 ⊕N1,

which is orthogonal with respect to ψ. As in the proof of Lemma 5.2.9, we consider the in-
variants Csp = NV −1Π. Because V −1Π is homogenous of degree zero, the decomposition of N
induces Csp = C0 ⊕ C1. Each Ci is a F -vector space of dimension 2. The restriction of ψ is a
nondegenerate alternating pairing

ψ : Csp × Csp −→ F

Let κ : Csp×Csp −→ K be the anti-hermitian form associated to ψ as before Lemma 5.2.9. We
choose a basis e0, f0 of the F -vector space C0 such that ψ(e0, f0) = 2. We claim that

κ(e0, e0) = κ(f0, f0) = 0, κ(e0, f0) = 1. (5.2.16)

Indeed, we write κ(e0, e0) = a+ Πb, a, b ∈ F . By definition of κ we find

TrK/F (κ(e0, e0)) = ψ(e0, e0) = 0, TrK/F (Πκ(e0, e0)) = ψ(Πe0, e0) = 0.

The last equation follows because C0 and C1 are orthogonal. This implies a = b = 0. Clearly it
is enough to verify the last equation of (5.2.16). Again we write κ(e0, f0) = a + Πb, a, b ∈ F .
Then we find

TrK/F (κ(e0, f0)) = ψ(e0, f0) = 2, TrK/F (Πκ(e0, f0)) = ψ(Πe0, f0) = 0,

and therefore a = 1 and b = 0. Since e0, f0 is a basis of the K-vector space Csp, the determinant

det

(
κ(e0, e0) κ(e0, f0)
κ(f0, e0) κ(f0, f0)

)
= 1

gives the invariant 1 = inv(Csp, ψ) = −inv(Psp, ι
′
sp, ψ) by the last Lemma. �

Proof. (of Proposition 5.2.7) By Lemma 5.2.8 we know that Pc,i is isoclinic of slope 1/2 for
i = 1, 2. Therefore Lemma 5.2.9 is applicable. By Lemma 5.2.10, the associated K-vector
spaces (Ci, βc,i) have the same invariant 1 and are therefore isomorphic. Therefore we find the
quasi-isogeny α by Lemma 5.2.9.

We use the notations of Lemma 5.2.11. By what we just proved we find a quasi-isogeny
(Psp, ι

′
sp, ψ) −→ (Pc,1, ιc,1, βc,1). If βc,1 is perfect, this quasi-isogeny extends by Proposition

5.2.4 to a quasi-isogeny of special formal OD-modules and so does α. �

We can now prove the uniqueness of the framing object.

Proposition 5.2.12. Let r be special and K/F ramified. Let k be an algebraically closed field
in NilpOE . Let (P, ι, β) ∈ Ppol

r,k be an object such that β is perfect, cf. Definition 4.1.2. Assume
that invr(P, ι, β) = −1. Then P is isoclinic of slope 1/2.

If moreover (P1, ι1, β1) is a second triple with the same properties, then there is a quasi-isogeny
of height zero

ρ : (P, ι, β) −→ (P1, ι1, β1),

such that there is an f ∈ O×F with

β1(ρ(x), ρ(y)) = β(fx, y), x, y ∈ P.

Proof. We apply the functor Cpol
r,k to (P, ι, β) and obtain (Pc, ιc, βc), cf. (4.4.14). By the definition

of this functor, βc is perfect. We conclude from Proposition 8.3.2 that inv(Pc, ιc, βc) = −1. By
Lemma 5.2.8, Pc is isoclinic of slope (1/2). By Corollary 4.3.3 and Proposition 3.3.17, P is
isoclinic of slope 1/2.

By Proposition 5.2.7, we find a quasi-isogeny α : (Pc, ιc, βc) −→ (Pc,1, ιc,1, βc,1) which we can
make into a quasi-isogeny of special formal OD-modules. The height of α is then a multiple
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of 2. Composing α with an endomorphism of the special formal OD-module (Pc, ιc), we can
obtain a quasi-isogeny of height 0 of OD-modules ρc : (Pc, ιc) −→ (Pc,1, ιc,1). Then ρc respects
the Drinfeld polarizations βc and βc,1 up to a constant in O×F . By Theorem 4.4.11, we obtain a
quasi-isogeny of height zero as claimed in the proposition. �

Remark 5.2.13. We chose here the framing object for N as coming from the Drinfeld moduli
problem. It can also be characterized in terms of the moduli problem N , cf. [16]: it is a triple
(X, ι, λ) consisting of a p-divisible strict formal OF -module X over κF , with an action ι of OK
satisfying the Kottwitz condition (5.2.3), and a perfect relative polarization λ such that the
special automorphism group is isomorphic to SL2(F ), comp. [16, Prop. 3.2].

5.3. The alternative theorem in the unramified case. In this subsection K denotes an
unramified quadratic extension of F . Let k be an algebraically closed field of characteristic p
which is endowed with an OF -algebra structure. We will sometimes write F ′ = K if we refer to
subsection 5.1. Let τ be the Frobenius of F ′/F . We write τ(a) = ā for a ∈ OF ′ .

Let M be theWOF (k)-Dieudonné module of a special formal OD-module over k, as in Propo-
sition 5.1.3. In addition to the Drinfeld polarization, we use another type of polarization of
M ,

θ : M ×M −→WOF (k).

This is an alternating bilinear form of M which satisfies

θ(Fx1, Fx2) = π F θ(x1, x2), x1, x2 ∈M
θ(ι(a)x1, x2) = θ(x1, ι(ā)x2), a ∈ OF ′ ,
θ(ι(Π)x1, x2) = θ(x1, ι(Π)x2),

ordπ det θ = 2.

(5.3.1)

The polarization θ is unique up to a constant in O×F . It is constructed as follows: We choose
an element δ ∈ O×F ′ , such that δ + τ(δ) = 0. We set Π1 = δΠ. Then Π1 is invariant under the
involution (5.1.6) and therefore we have

ψ(ι(Π1)x, y) = ψ(x, ι(Π1)y).

We define
θ(x, y) = ψ(ι(Π1)x, y). (5.3.2)

We see that θ is alternating. It induces on D the involution given by

Π† = Π, u† = τ(u), for u ∈ F ′. (5.3.3)

Conversely, assume that θ is a polarization with the properties (5.3.1). Let ψ1(x, y) = θ(Π1x, y).
Using Π1Π = −ΠΠ1 we see that ψ1 satisfies the properties (5.1.7). By Proposition 5.1.3 this
shows the uniqueness of θ with the properties above.

Let (Y, ιY) be a special formal OD-module over the OF -algebra κF and such that ι(Π) acts
as zero on LieY. We endow Y with the polarization θY defined above, cf. (5.3.2).

Definition 5.3.1. We define for each i ∈ Z the functor N (i) = NK/F (i) on the category
(Sch/ Spf OF̆ ). A point of N (i)(S) consists of the following data:
(1) A formal p-divisible group X over S with an action

ι : OK −→ EndX,

such that the restriction of ι to OF is a strict action.
(2) A relative polarization θ on X such that the determinant of θ is π2 up to a unit and such

that θ induces on OK the conjugation over OF .
(3) A quasi-isogeny of OK-modules

ρ : X ×S S −→ Y×Spec κ̄F S.

Here, if S = SpecR, the condition in (2) means that the polarization of the corresponding OF -
display P of Y has determinant π2, up to a unit in WOF (R). We require that the following
conditions are satisfied.
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a) ρ respects OK-actions. The relative quasi-polarization ρ∗θY differs from πiθ by a factor in
O×F .

b) LieX is locally on S a free OK ⊗OF OS-module of rank 1.
We note that, as in the ramified case, the OF -height of X is 4 and the dimension 2. The

condition b) implies the following Kottwitz condition for the characteristic polynomial:

char(ι(a) | LieX) = (T − a)(T − ā), a ∈ OK .
Two data (X1, ι1, θ1, ρ1) and (X2, ι2, θ2, ρ2) define the same point of N (i)(S) iff there is an

isomorphism α : (X1, ι1) −→ (X2, ι2) which respects the polarizations up to a factor in O×F and
such that α commutes with ρ1 and ρ2.

It follows from [29] that N (i) is representable by a formal scheme which is locally formally of
finite type over SpecOF̆ . The functor N (0) will be also denoted by N .

We have a natural functor morphism

MDr(i) −→ N (i). (5.3.4)

Indeed, let (Y, ρ) ∈ MDr(i)(R). Then we have the Drinfeld polarization ψ of Y and we define
θY by the formula (5.3.2). This gives a point of N (R)(i).

The diagram similiar to (5.2.1) shows that

heightOF ρ = 2i.

We will define a translation functor isomorphism

Π : N (i)
∼−→ N (i+ 1). (5.3.5)

Let (Y, ι) be a special formal OD-module over R ∈ NilpOF . We fix a Drinfeld polarization ψ.
This is also a Drinfeld polarization for (Y Π, ιΠ). For the polarizations θ and θΠ derived by
(5.3.2), we obtain θΠ = −θ. We consider the morphism ιΠ : Y Π −→ Y . One easily checks that

θ(ι(Π)x, ι(Π)y) = πθΠ(x, y).

This is an identity of bilinear forms on the WOF (R)-display of Y .
If (X, ι) is a p-divisible OK-module, we define the conjugate p-divisible OK-module (Xc, ιc)

by setting Xc = X and ιc(a) = ι(ā) for a ∈ OK . For the special formal OD-module Y we have

(Y c, (ι|OK )c) = (Y Π, ιΠ|OK ).

Let R ∈ NilpOF̆ and let (X, ι, θ, ρ) ∈ N (i)(R). We define

ρc : Xc
R̄

ρ−→ Yc
R̄ = YΠ

R̄

ι(Π)−→ YR̄.
We set θc = −θ. Then (Xc, ιc, θc, ρc) ∈ N (i + 1)(R). This defines the translation functor
morphism (5.3.5). It is clearly an isomorphism. With this definition, the functor morphism
(5.3.4) commutes with the translations on source and target.

Let τ ∈ Gal(F̆ /F ) be the Frobenius automorphism. Using the Frobenius FY,τ : Y −→ τ∗Y,
we obtain a morphism

ωN : N (i) −→ N (i+ 1)(τ)

with the same definition as (5.1.16). This induces a Weil descent datum ωN on

Ñ =
∐
i∈Z
N (i).

Lemma 5.3.2. The action of the group J∗ur (cf. (5.1.23) for F ′, which is now denoted by K)
on the OK-module Y gives an isomorphism

J∗ur ∼−→ J ·,

where

J · = {α ∈ AutoK(Y) | θY(α(x), α(y)) = µ(α)θY(x, y), for some µ(α) ∈ F×, x, y ∈ PY ⊗Q}
�

The group J · acts via the rigidification ρ on the functor Ñ .
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Theorem 5.3.3 ([19]). The morphisms of functors (5.3.4) for varying i extend to a functor
isomorphism

M̃Dr
∼−→ Ñ

which commutes with the Weil descent data, the actions of J∗ur = J ·, and the translations on
both sides.

Proof. We already checked that (5.3.4) extends to a functor morphism which respects trans-
lations and Weil descent data on both sides. Therefore it suffices to see that (5.3.4) is an
isomorphism for i = 0,

MDr
∼−→ N . (5.3.6)

We begin with the case where R = k is an algebraically closed field. Let Y ∈ N (k). Let M be
the OF -Dieudonné module of Y and let M be the OF -Dieudonné module of Y. The quasi-isogeny
ρ induces an isomorphism M ⊗Q ∼= M⊗Q. The polarization ψM induces a polarization ψ1 on
M ⊗Q. Since ρ is of height zero and ordπ detψM = 0 we conclude that ordπ detψ1 = 0. On the
other hand, we have by Proposition 5.1.1 a perfect pairing ψ on M which differs from ψ1 by an
element f ∈ F ′. This shows that ψ1 is perfect on M . Then we define the action ι(Π1) by the
equation

θ(x, y) = ψ(ι(Π1)x, y), x, y ∈M. (5.3.7)
Therefore the morphism (5.3.6) evaluated at k is bijective.

Since both functors of (5.3.6) are representable by formal schemes locally of finite type, it
suffices now to check the following statement. Let S −→ R be a surjective OF̆ -algebra homo-
morphism such that S and R are artinian local rings with algebraically closed residue class field.
Assume that (5.3.6) is bijective when evaluated at R. Then it is bijective when evaluated at S.
We may assume that the kernel of S −→ R is endowed with divided powers.

We consider a point Ỹ ∈ N (S) and we denote by Y ∈ N (R) its reduction. By our assumption,
Y carries the structure of an OD-module compatible with ρ. Therefore ψY induces a perfect
polarization on the OF -display P of Y . The OF -display P̃ of Ỹ is a lifting of P. By the
crystalline property of displays [1], cf. end of subsection 3.1, we obtain a perfect pairing

ψ̃ : P̃ × P̃ −→WOF (S).

The involution induced by ψ̃ on OF ′ is trivial. It follows that the decomposition

P̃ = P̃0 ⊕ P̃1

according to the two OF -algebra embeddings OF ′ −→ OF̆ is orthogonal with respect to ψ̃. The
Hodge filtration

Q̃i/IOF P̃i ⊂ P̃i/IOF P̃i, i = 0, 1

is isotropic with respect to ψ̃ because these direct summands are of rank 1. Therefore ψ̃ is
a polarization of the OF -display P̃. Using the given polarization θ̃ on P̃, we can define the
endomorphism ι(Π1) = ι(δΠ) of P̃ by

θ̃(x, y) = ψ̃(ι(Π1)x, y).

This gives the desired OD-module structure on P̃ and therefore on Ỹ . �

The analogue of Corollary 5.2.6 follows as before from the properties of the Drinfeld moduli
space.

Corollary 5.3.4. The formal scheme N is π-adic and has semi-stable reduction. The special
fiber N ⊗OF̆ κF of N is a reduced scheme. �

We next prove the uniqueness of the framing object, cf. (i) of subsection 2.5. We start with
the following statement.

Proposition 5.3.5. Let k be an algebraically closed field which contains κF . Let M be a
WOF (k)-Dieudonné module of height 4 and dimension 2. Let ι be a homomorphisms of OF -
algebras

ι : OF ′ −→ EndM.
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Assume that M/VM is a free κF ′ ⊗κF k-module of rank 1. Let θ be a relative polarization on
M which satisfies

θ(ι(a)x1, x2) = θ(x1, ι(ā)x2), a ∈ OF ′ ,
ordπ det θ = 2.

Then the action ι extends to an action ι : OD −→ EndM such that θ satisfies (5.3.1). In
particular M is isoclinic of slope 1/2. Furthermore, inv(M, ι, θ) = −1 (see Definition 8.3.1 for
this invariant).

If (M ′, ι′, θ′) is a second triple with the same properties, then there exists a quasi-isogeny
(M, ι) −→ (M ′, ι′) of height 0 which respects the polarizations θ and θ′ up to a factor in O×F .

Proof. Let ψ be the principal relative polarization on M which exists by Proposition 5.1.1. We
define an endomorphism ρ : M −→M by the equation

θ(x, y) = ψ(x, ρ(y)), x, y ∈M.

One checks that ρ is an endomorphism of the Dieudonné module M such that

ρ(ι(a)x) = ι(ā)ρ(x), a ∈ OF ′ . (5.3.8)

As in the proof of Proposition 5.1.1, we choose an embedding λ : OF ′ −→WOF (k) and obtain a
decomposition M = M0 ⊕M1. We note that

M1 = {x ∈M | ι(a)x = λ(ā)x}.

It follows from (5.3.8) that ρ(M0) ⊂M1 and ρ(M1) ⊂M0. We obtain a commutative diagram

M0

V

��

ρ
// M1

V

��

M1
ρ
// M0.

By our assumption on M/VM , the cokernels of both vertical maps have WOF (k)-length 1.
Therefore the cokernels of the horizontal maps have also the same length. This length must be
1 because ordπ det(ρ|M) = ordπ det θ = 2.

We have
θ(ρ(x), y) = θ(x, ρ(y)),

because both sides are equal to ψ(ρ(x), ρ(y)). We consider the form

ψ1(x, y) := ψ(ρ(x), ρ(y)).

This relative polarization satisfies the assumptions of the last part of Proposition 5.1.1. Therefore
there exists c ∈ OF ′ such that ψ1(x, y) = ψ(ι(c)x, y). We find

ψ(ι(c)x, y) = θ(ρ(x), y) = −θ(y, ρ(x)) = −ψ(y, ρ2(x)) = ψ(ρ2(x), y).

This shows that
ρ2 = ι(c).

Since ρ commutes with the left hand side it commutes with ι(c). Comparing this with (5.3.8),
we obtain c ∈ OF . Since ρ2 has height 4 we obtain ordπ c = 1.

For α ∈ O×F ′ we consider the endomorphism ρα(x) = ι(α)ρ(x) ofM . We obtain ρ2
α = ι(αᾱ)ρ2.

Since each unit of F is a norm in the unramified extension F ′/F we can arrange that ρ2
α = −π.

We set Π = ρα. Then we obtain an action of OD = OF ′ [Π] on the Dieudonné module M . Since
M0/ΠM1 and M1/ΠM0 have length 1, we have obtained a special formal OD-module. The
equations (5.3.1) are satisfied for θ. Therefore θ is up to a factor in O×F uniquely determined by
the OD-action. This implies the first and the last assertion of the Proposition.

Because the invariant depends only on the isogeny class, it is enough to compute it for a
special formal OD-module with two critical indices and the canonical form θ from (5.3.1).

We use the isomorphism

OF ′ ⊗OF WOF (k) −→WOF (k)×WOF (k), (5.3.9)
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which maps a ⊗ ξ to (λ(a)ξ, λ(ā)ξ). Let σ = F be the Frobenius automorphism of WOF (k). It
acts on the left hand side of (5.3.9) via the second factor. This induces on the right hand side
the action σ : (ξ1, ξ2) 7→ (σ(ξ2), σ(ξ1)).

We set Ni = Mi ⊗Q. This is a WOF (k)Q-vector space of dimension 2. In the decomposition
N = M⊗Q = N0⊗N1, the summands are isotropic with respect to θ. We consider the invariants

Ui = N
V −1ι(Π)
i .

(In the notation of the proof of Proposition 5.1.5, this is Ui⊗Q.) The Ui are F -vector spaces of
dimension 2. Let

∧2θ : ∧2N0 × ∧2N1 −→WOF (k)Q

be the bilinear form defined by

θ(n0 ∧ n′0, n1 ∧ n′1) = det

(
θ(n0, n1) θ(n0, n

′
1)

θ(n′0, n1) θ(n′0, n
′
1)

)
,

for n0, n
′
0 ∈ N0, n1, n

′
1 ∈ N1. In the same way we can define ∧2θ : ∧2N1 × ∧2N0 −→ WOF (k)Q.

Then we obtain ∧2θ(x0, x1) = ∧2θ(x1, x0) for x0 ∈ ∧2N0, x1 ∈ ∧2N1. From θ we pass to κ, cf.
(8.1.2) (there our F ′ is called K),

κ : N ×N −→ F ′ ⊗F WOF (k)Q ∼= WOF (k)Q ×WOF (k)Q.

Explicitly we have

κ(n0 + n1, n
′
0 + n′1) = (θ(n0, n

′
1), θ(n1, n

′
0)) ∈WOF (k)Q ×WOF (k)Q.

We take ∧2κ on the F ′ ⊗F WOF (k)Q-module
2∧

F ′⊗FWOF
(k)Q

N ∼= ∧2N0 ⊕ ∧2N1.

From the expression for κ we obtain

∧2 κ(x0 + x1, x
′
0 + x′1) = (∧2θ(x0, x

′
1),∧2θ(x1, x

′
0)) ∈WOF (k)Q ×WOF (k)Q (5.3.10)

The restriction of θ to U0 × U1 induces a nondegenerate F -bilinear form

θ : U0 × U1 −→ δF ⊂ F ′ ⊂WOF (k)Q, (5.3.11)

where δ was defined after (5.3.1). Indeed, for u0 ∈ U0 and u1 ∈ U1 we have by definition

θ(V u0, V u1) = θ(ι(Π)u0, ι(Π)u1) = θ(ι(Π)2u0, u1) = −πθ(u0, u1).

Because θ is a polarization, we have on the other hand

θ(V u0, V u1) = πσ−1
(
θ(u0, u1)

)
.

Therefore θ(u0, u1) is anti-invariant by σ and (5.3.11) is proved.
We choose a nonzero element u0 ∈ U0. Then we find u1 ∈ U1 such that θ(u0, u1) = δ. We

remark that θ(ι(Π)n, n) = 0, for an arbitrary n ∈ N . This is clear from the third equation of
(5.3.1) because θ is alternating. Since θ(u0, ι(Π)u0) = 0, the vectors u1, ι(Π)u0 ∈ U1 are linearly
independent. We set

x = x0 + x1 := u0 ∧ ι(Π)u1 + u1 ∧ ι(Π)u0 ∈ ∧2
F ′⊗FWOF

(k)Q
N.

It satisfies ∧2V x = πx. Indeed,

∧2V (u0∧ι(Π)u1) = (V u0∧ι(Π)V u1) = (ι(Π)u0∧ι(Π)2u1) = (ι(Π)u0∧(−π)u1) = π(u1∧ι(Π)u0).

The similiar equation holds for the second summand in the definition of x. By Definition 8.3.1
we obtain

inv(M, ι, θ) = (−1)ordπ ∧2κ(x,x).

By (5.3.10) we have ordπ ∧2κ(x, x) = ordπ ∧2θ(x0, x1). We compute

∧2θ(x0, x1) = det

(
θ(u0, u1) θ(u0, ι(Π)u0)

θ(ι(Π)u1, u1) θ(ι(Π)u1, ι(Π)u0)

)
= det

(
δ 0
0 δπ

)
= πδ2.

This shows ordπ ∧2θ(x0, x1) = 1 and therefore inv(M, ι, θ) = −1. �
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We can now prove the uniqueness of the framing object.

Proposition 5.3.6. Let r be special and K/F unramified. Let k be an algebraically closed field
in NilpOE . Let (P, ι, β) ∈ Ppol

r,k be such that ordp detW (k) β = 2f , cf. Definition 4.1.2. Then P
is isoclinic of slope 1/2 and invr(P, ι, β) = −1.

If (P1, ι1, β1) is a second triple with the same properties, then there exists a quasi-isogeny of
height zero,

ρ : (P, ι, β) −→ (P1, ι1, β1),

such that there is an f ∈ O×F with

β1(ρ(x), ρ(y)) = β(fx, y), x, y ∈ P.

Proof. We apply the functor Cpol
r,k to (P, ι, β) and obtain (Pc, ιc, βc), cf. (4.4.14). By Theorem

4.4.11 we find ordπ detWOF
(k) βc = 2. Therefore we can apply Proposition 5.3.5 to (Pc, ιc, βc).

We obtain that Pc is isoclinic of slope 1/2 and inv(Pc, ιc, βc) = −1. By Corollary 4.3.3 and
Proposition 3.3.17, we find that P is isoclinic of slope 1/2, and by Proposition 8.3.2 we obtain
invr(P, ι, β) = −1.

By Proposition 5.3.5, there is a quasi-isogeny of height 0 between (Pc, ιc, βc) and (P1,c, ι1,c, β1,c).
It induces by Theorem 4.4.11 a quasi-isogeny of height zero as claimed in the Proposition. �

We end this section by justifying the footnote in Definition 2.6.1. Let S ∈ NilpOF̆ and let
(Y, ι, θ, ρ) ∈ N (S). Since there is an OD-module structure on Y such that θ is of the form (5.3.7),
the kernel of θ : Y −→ Y ∧, considered as morphism to the dual relative to OF , is annihilated
by π. More generally we prove:

Proposition 5.3.7. Let K/F be an unramified quadratic field extension. Let R be an OK-
algebra. Let P and P ′ be WOF (R)-displays of height 4 with an action ι : OK −→ EndP, resp.
ι′ : OK −→ EndP ′. Assume that LieP, resp. LieP ′, is locally on SpecR a free OK ⊗OF R-
module of rank 2. Let α : P −→ P ′ be an isogeny of OF -height 2. Then there exists locally on
SpecR an isogeny β : P ′ −→ P such that

β ◦ α = πidP , α ◦ β = πidP′ .

Let P and P ′ be the displays of formal p-divisible groups X and X ′ with an OK-action. Then
the kernel of any isogeny α : X −→ X ′ of height 2 is annihilated by π.

Proof. The proof is a variant of the proof of Proposition 1.6.4 in [37]. We will use notation from
that proof. The OK-algebra structure on R induces a natural homomorphism OK −→WOF (R)
which is equivariant with respect to the Frobenius τ ∈ Gal(K/F ) and the Frobenius onWOF (R).
The composition with τ gives a second homomorphism OK −→ WOF (R). We denote by Ψ the
set of these two homomorphism. We write ψ̄ = ψ ◦ τ for ψ ∈ Ψ.

The OK-action gives the usual decompositions,

P = ⊕ψ∈ΨPψ, P ′ = ⊕ψ∈ΨP
′
ψ.

We have the same kind of decompositions for Q ⊂ P and Q′ ⊂ P ′. We choose normal decompo-
sitions

Pψ = Tψ ⊕ Lψ, P ′ψ = T ′ψ ⊕ L′ψ.
The T and L on the right hand sides are by assumption locally free of rank 1. Using these
decompositions, we write αψ : Pψ̄ −→ P ′ψ in matrix form

Mψ =

(
Xψ

V Yψ
Uψ Zψ

)
. (5.3.12)

The maps Ḟψ : IOF (R)Tψ ⊕ Lψ −→ Tψτ ⊕ Lψτ , resp. Ḟ ′ψ : IOF (R)T ′ψ ⊕ L′ψ −→ T ′ψτ ⊕ L′ψτ , are
given by invertible matrices

Φψ =

(
Aψ Bψ
Cψ Dψ

)
, Φ′ψ =

(
A′ψ B′ψ
C ′ψ D′ψ

)
.

The matrices (5.3.12) define a morphism α of displays iff

MψτΦψ = Φ′ψ
sMψ, for ψ ∈ Ψ. (5.3.13)
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We will argue as in [37]. The meaning of the upper left index s is the same as there. Taking
determinants we obtain

detMψτ det Φψ = det Φ′ψ det sMψ. (5.3.14)

In particular detMψ and F 2

detMψ differ by a unit in WOF (R). As in [37] we obtain that

detMψ = πhεψ,

for some units εψ ∈WOF (R). By (5.3.14), h is independent of ψ. Since α is an isogeny of height
2 we conclude that h = 1. Now we pass to the adjucate matrices

adΦψ
adMψτ = ad( sMψ) adΦ′ψ.

Since the matrices Φ are invertible, we conclude

(det Φψ) adMψτ Φ′ψ = (det Φ′ψ)Φψ
ad( sMψ). (5.3.15)

We consider first the case where R is reduced. Then π is not a zero divisor in WOF (R). In this
case, we conclude from (5.3.14)

det Φψ εψτ = det Φ′ψ
F εψ.

Thus we may rewrite equation (5.3.15) as

ε−1
ψτ

adMψτ Φ′ψ = Φψ
F ε−1

ψ
ad( sMψ).

This shows that the matrices ε−1
ψ

adMψ define the desired morphism β : P ′ −→ P. In the case
where R is not reduced we may argue as in the proof of Proposition 1.6.4 in [37]. �

6. Moduli spaces of formal local CM-triples

In this section we prove Theorems 2.6.2 and 2.6.3. Recall that d = [F : Qp], and that we
write d = ef .

6.1. The case r special and K/F ramified. Let (Y, ιY, λY) be a special formal OD-module
over κ̄F with a Drinfeld polarization λY, cf. Definition 5.1.4 and section 5.2. We denote by F̆
resp. Ĕ, the completions of the maximal unramified extension of F , resp. of the reflex field E.
Their residue class fields are identified with κ̄F resp. κ̄E . We note that in the ramified case
E = E′. We extend the embedding ϕ0 : OF −→ OE to an embedding ϕ̆0 : OF̆ −→ OĔ . The
base change (Y, ιY, λY)κ̄E is the base change via ϕ̆0. The relative display of this base change is
an object of dRnilp,pol

κ̄E if we restrict the action ιY to OK , cf. Definition 4.4.10 and Theorem 4.4.3.
By Theorem 4.4.11, this relative display is the image of an object in dPss,pol

r,κ̄E by the contracting
functor. To the latter object corresponds a polarized p-divisible formal group (X, ιX, λX) with an
action ιX : OK → EndX. The polarization λX is again principal. Using the equivalence between
formal p-divisible groups and nilpotent displays one can say that (X, ιX, λX) ∈ Ppol

r,κ̄E is the object
which is mapped by the contracting functor Cpol

r,κ̄E to the special formal OD-module (Y, ιY, λY).
We note that we use for the definition of (X, ιX, λX) ∈ Ppol

r,κ̄E only classical Dieudonné theory
over a perfect field.

We consider the functorMr =MK/F,r of Definition 2.6.1 in the ramified case (where h = 0).
By Proposition 4.2.9, this Definition may be reformulated as follows.

Proposition 6.1.1. Let S be a scheme over Spf OĔ. A point ofMr(S) consists of
(1) a local CM-pair (X, ι) of CM-type r over S which satisfies the Eisenstein conditions (ECr)
relative to a fixed uniformizer Π of K and such that

Tr(ι(Π) | EAψ0
Lieψ0

X) = 0. (6.1.1)

(2) an isomorphism of p-divisible OK-modules

λ : X
∼−→ X∧,

which is a polarization of X.
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(3) a quasi-isogeny of height zero of p-divisible OK-modules

ρ : X ×S S̄ −→ X×Spec κ̄E S̄,

such that the pullback quasi-isogeny ρ∗(λX) differs from λ|X×SS by a scalar in O×F , locally on S.
Here S = S ×SpecOĔ

Spec κ̄E.
Two data (X1, ι1, λ1, ρ1) and (X2, ι2, λ2, ρ2) define the same point iff there is an isomorphism of
OK-modules α : X1 → X2 such that ρ2 ◦αS̄ = ρ1. (This implies that α respects the polarizations
up to a factor in O×F ).

In Definition 2.6.1 we required that the scalar is in F× but because the polarizations λ and λX
are principal and ρ has height 0 the scalar is automatically in O×F . We remark that the condition
(6.1.1) depends only on the restriction of the structure morphism S −→ Spf OE .

We define for i ∈ Z the functorMr(i) on the category of schemes S −→ Spf OĔ by replacing
(3) in Proposition 6.1.1 by
(3′) a quasi-isogeny of p-divisible OK-modules

ρ : X ×S S̄ −→ X×Spec κ̄E S̄,

such that the pullback quasi-isogeny ρ∗(λX) differs from piλ|X×S S̄ by a scalar in O×F , locally
on S̄.

It follows from the last condition that

2 height ρ = height(pi | X) = 4di. (6.1.2)

We have an isomorphism of functors

Mr −→Mr(i),

which associates to a point (X, ι, λ, ρ) ∈Mr(S) the point (X, ι, λ,Πeiρ) ∈Mr(i)(S). We set

M̃r =
∐
i∈Z
Mr(i).

We define a Weil descent datum on M̃r relative to OĔ/OE . Let τE be the Frobenius of Ĕ/E.
It is enough to consider the functor M̃r for affine schemes S = SpecR. We write ε : OĔ −→ R
for the given algebra structure. We write R[τE ] for the ring R with the new algebra structure
ε ◦ τE . By base change to κ̄E , we obtain

ε̄ : κ̄E −→ R̄ := R⊗OĔ κ̄E .
We consider a point (X, ι, λ, ρ) ∈Mr(i)(R), where ρ is a quasi-isogeny

ρ : XR̄ −→ ε̄∗X.
Since the notion of a CM-triple depends only on the induced OE-algebra structure on R, we
may regard (X, ι, λ) as a CM-triple on R[τE ]. We set

ρ̃ : XR̄
ρ−→ ε̄∗X

FX,τE−→ ε̄∗(τE)∗X.
The assignment (X, ι, λ, ρ) 7→ (X, ι, λ, ρ̃) defines a morphism

ωMr :Mr(i)(R) −→Mr(i+ fE)(R[τE ]) (6.1.3)

where fE = [κE : Fp]. Here we note that the inverse image of the polarization (τE)∗λX on (τE)∗X
by FX,τE : X −→ (τE)∗X is pfEλX. From (6.1.3) we obtain the Weil descent datum

ωMr : M̃r −→ M̃(τE)
r , (6.1.4)

where the upper index (τE) denotes the base change via Spec τE : Spf OĔ −→ Spf OĔ .
Let N (i) be the functor of Definition 5.2.1. Note that we took Y for the framing object

appearing in the definition of N (i). We consider a point (X, ι, λ, ρ) ∈ Mr(i)(R), where R ∈
NilpOĔ . Applying the contracting functor Cpol

r,R of Theorem 4.4.11 to its display, we obtain a
quadruple (Xc, ιc, λXc , ρc). It follows from the isomorphism (4.3.11) (which also holds in the
ramified case, cf. a few lines below (4.3.11)) that the condition (6.1.1) implies

Tr(ιc(Π) | LieXc) = 0.
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By functoriality, the polarizations ρ∗c(λY) and piλ(Xc)R̄
differ by a unit inOF . Hence (Xc, ιc, λXc

, ρc)
defines a point of N (i). Therefore we obtain from Theorem 4.4.11 an isomorphism of functors,

Mr(i)
∼−→ N (ei)×Spf OF̆

Spf OĔ . (6.1.5)

The base change on the right hand side is via ϕ̆0 : OF̆ −→ OĔ
We set

Ñ [e] =
∐
i∈Z
N (ei). (6.1.6)

We endow Ñ [e] with a Weil descent datum relative to OĔ/OE . Let R ∈ NilpOĔ . We consider
the map

Π(d−1)fE/fω
fE/f
N : N (ei)(R) −→ N (e(i+ fE)(R[τE ]).

Here on the left hand side appears the iterate of the Weil descent datum ωN : N (i) −→ N (i+1)(τ)

of Ñ relative to OF̆ /OF from (5.2.5) and the translation functor Π : N (i) −→ N (i + 1), cf.
(5.2.4). This defines a Weil descent datum relative to OĔ/OE ,

Π(d−1)fE/fω
fE/f
N : Ñ [e] −→ Ñ [e](τE). (6.1.7)

We define
J ′ = {α ∈ AutoK X | α∗(λX) = uλX, for u ∈ pZO×F }

= {α ∈ AutoK Y | α∗(λY) = uλY, for u ∈ pZO×F }.
(6.1.8)

The last equation holds because of the contraction functor. This group acts via the rigidifications
ρ on the functors M̃r and Ñ [e]. By the last equation of (6.1.8), we may regard J ′ as a subgroup
of J∗r of Lemma 5.2.2.

Proposition 6.1.2. There is an isomorphism of formal schemes over Spf OĔ

M̃r −→ Ñ [e]×Spf OF̆
Spf OĔ ,

where the right hand side denotes the base change via ϕ̆0 : OF̆ −→ OĔ. This isomorphism is
compatible with the action of J ′ on both sides.

Under the isomorphism the Weil descent datum (6.1.4) on the left hand side corresponds to
the Weil descent datum

Π(d−1)fE/fω
fE/f
N : Ñ [e] −→ Ñ [e](τE)

on the right hand side. More explicitly, for any i ∈ Z, there is a commutative diagram

Mr(i)
∼ //

ωMr

��

N (ei)OĔ

Π(d−1)fE/fω
fE/f

N
��

Mr(i+ fE)(τE) ∼ // N (e(i+ fE))
(τE)
OĔ

.

(6.1.9)

Proof. The isomorphism of formal schemes over Spf OĔ comes from (6.1.5). It remains to show
that the diagram is commutative. Let R ∈ NilpOĔ with structure morphism ε : OĔ −→ R.
Let ε̄ : κ̄E −→ R̄ = R ⊗OĔ κ̄E be the induced morphism. We start with a point (X, ι, λ, ρ) ∈
Mr(i)(R). If we apply ωMr

, we change ρ to

ρ̃ : XR̄ −→ ε̄∗X
FX,τE−→ ε̄∗(τE)∗X.

The lower horizontal arrow in (6.1.9) applies to ρ̃ the contracting functor Cr,R, cf. Definition
4.4.2. We have Xc = Y. Let PX be the W(κĒ)-Dieudonné module of X. Then the WOF (κĒ)-
Dieudonné module of Y is by definition the degree-zero component of P ′X defined by (4.3.21),
comp. Remark 4.4.4. From this definition we obtain

(V ′)f = Π1−dV f .

In terms of Dieudonné modules, FX,τE is given by

PX −→W (κĒ)⊗W (τE),W (κĒ) PX, x 7−→ 1⊗ V fEx.
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In terms of the relative Dieudonné module, FY,τE is given by (V ′)fE . Therefore the contracting
functor applied to FX,τE gives

ιY(Π(d−1)fE/f )FY,τE : Y −→ (τE)∗Y,

since (V ′)fE = Π(1−d)fE/fV fE . On the other hand ωN just multiplies ρc by FY,τE . Therefore
we obtain the commutativity of the diagram. �

Corollary 6.1.3. Let ωτE denote the action of τE on the formal scheme scheme Ω̂F ×Spf OF

Spf OĔ via the second factor. There exists an isomorphism of formal schemes over Spf OĔ

M̃r
∼−→ (Ω̂F ×Spf OF Spf OĔ)× Z,

such that the Weil descent datum ωMr
induces on the right hand side the Weil descent datum

(ξ, i) 7−→ (ωτE (ξ), i+ fE).

In particular the formal schemeMK/F,r over Spf OĔ is a p-adic formal scheme which has semi-
stable reduction; hence it is also flat, with reduced special fiber.

Proof. We consider the isomorphism M̃Dr −→ Ñ of formal schemes over Spf OF̆ from Theorem
5.2.3. It is compatible with translations and the Weil descent data on both sides. Combining
this with the Drinfeld isomorphism (5.1.20), we obtain an isomorphism

(Ω̂F ×Spf OF Spf OF̆ )× Ze ∼−→ Ñ [e]. (6.1.10)

We consider on the right hand side the Weil descent datum Π(d−1)fE/fω
fE/f
N which is a composite

of an iterate of the translation functor and an iterate of the Weil descent datum ωN . By (5.1.21)
we see that Π(d−1)fE/fω

fE/f
N induces on the left hand side of (6.1.10) the Weil descent datum

(ξ, ei) 7−→ (ωτE , e(i+ fE)).

The assertion about descent data follows by forgetting e. The last assertion follows from Corol-
lary 5.2.6. �

6.2. The case r special and K/F unramified. Let ϕ0, ϕ̄0 ∈ Φ be the special embeddings.
Their restrictions to F are the same. We extend the resulting embedding OF −→ OE to an
embedding OF̆ −→ OĔ . The two embeddings ϕ0, ϕ̄0 then factor over the two OF -algebra
homomorphisms ϕ̆0, ¯̆ϕ0 : OK −→ OF̆ .

Let (Y, ιY) be a special formal OD-module over κ̄F . We endow the WOF (κ̄F )-Dieudonné
module PY of Y with the polarization θ, cf. (5.3.1). (One should note that we call now K what
was F ′ in that section.) Then θ defines an isogeny to the Faltings dual,

λY : Y −→ Y∇.

If we compose the action ι∇Y of (OD)opp on Y∇ with the anti-involution † of (5.3.3), the isogeny
λY becomes an isogeny of special formal OD-modules. We indicate this by rewriting the isogeny
as

λY : Y −→ Y∆. (6.2.1)

In section 5.3 we used (PY, θ) to define the functor N (i). Together with the restriction to
OK of the action of OD on PY, we obtain an object of dRpol

κ̄F , cf. Definition 4.4.10. By Theorem
4.4.11, this object is the image of an object in dPss,pol

r,κ̄E . The latter is the display of an object
(X, ιX, λX) ∈ Ppol

r,κ̄E , cf. Definition 4.1.2. The height of the polarization λX is 2f , and the
associated Rosati involution induces on OK the conjugation over OF .

We consider the functorMr =MK/F,r of Definition 2.6.1 with the framing object (X, ιX, λX)
as defined above. We can give an alternative description of that functor.

Proposition 6.2.1. Let S be a scheme over Spf OĔ. A point ofMr(S) consists of
(1) a local CM-pair (X, ι) of CM-type r over S which satisfies the Eisenstein conditions (ECr)

relative to the fixed uniformizer π of F .
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(2) an isogeny of height 2f of p-divisible OK-modules

λ : X −→ X∧,

which is a polarization of X.
(3) a quasi-isogeny of p-divisible OK-modules

ρ : X ×SpecR Spec R̄ −→ X×Spec κ̄E Spec R̄,

such that the pullback quasi-isogeny ρ∗(λX) differs from λ|X×SSpec S̄ by a scalar in O×F , locally
on S̄, where S̄ = S ⊗Spf OĔ

Spec κ̄E.
Two data (X1, ι1, λ1, ρ1) and (X2, ι2, λ2, ρ2) define the same point iff there is an isomorphism of
OK-modules α : X1 → X2 such that ρ2 ◦αS̄ = ρ1. (This implies that α respects the polarizations
up to a factor in O×F ).

Proof. Wemay assume that S = SpecR. Let (X0, X1, λ, ρX) ∈Mr(R) be a point as in Definition
2.6.1. We obtain a point (X,λ, ρX) as in the Proposition if we set X := X0, keep ρX and redefine
λ to be the composite

X0 −→ X1
λ−→ X∧0 .

We note that ρ is automatically of height zero because by the last condition ρ∗(λX) and λX have
the same height 2f .

Conversely, assume (X,λ, ρX) is as in the Proposition. Then we set X0 = X and X1 = X∧.
By Corollary 4.2.8, X1 satisfies the condition (ECr) and, by Proposition 4.2.6, X0 and X1 satisfy
(KCr) . The polarization λ defines an isogeny a : X0 −→ X1 of p-divisible OK-modules which
has height 2f . To the morphism induced by a on the displays we apply the contracting functor
of Definition 4.4.2. We obtain an isogeny of WOF (R)-displays α : P0 −→ P1 of height 2. To
this isogeny we may apply Proposition 5.3.7. We find an isogeny β : P1 −→ P0 such that
β ◦ α = πidP0

.
The existence of ρ guarantees that X0, X1 and a are defined over an OĔ-subalgebra R

′ ⊂ R
which is of finite type over OĔ . Therefore we may apply Theorem 4.4.3. It gives us a morphism
b : X1 −→ X0 such that b ◦ a = πidX0

. We see that X0, X1, ρ together with the defining
isomorphism X1

∼−→ X0 defines a point of the functorMr of Definition 2.6.1. �

Definition 6.2.2. We define the functorMr(i) in the same way as in Definition 6.2.1, but we
replace the data (3) by the following
(3′) A quasi-isogeny of p-divisible OK-modules

ρ : X ×S S̄ −→ X×Spec κ̄E S̄,

such that the pullback quasi-isogeny ρ∗(λX) differs from piλ|X×S S̄ by a scalar in O×F , locally
on S̄.

As in the ramified case (6.1.2) we conclude that height ρ = 2di. We set

M̃r =
∐
i∈Z
Mr(i).

Let R ∈ NilpOĔ . Exactly as in the ramified case we obtain a morphism

ωMr
:Mr(i)(R) −→Mr(i+ fE)(R[τE ]), (6.2.2)

where, as in the ramified case, fE = [κE : Fp]. With the notation used in the ramified case, it
changes the datum ρ in point (4′) of Definition 6.2.2 to

ρ̃ : (X0)R̄
ρ−→ ε̄∗X

FX,τE−→ ε̄∗(τE)∗X.

From (6.2.2) we obtain the Weil descent datum,

ωMr : M̃r −→ M̃(τE)
r . (6.2.3)

We define an isomorphism of functors on NilpOĔ ,

Mr(i)
∼−→ N (ei). (6.2.4)



ON THE p-ADIC UNIFORMIZATION OF UNITARY SHIMURA CURVES 103

Let (X, ι, λ, ρ) ∈ Mr(i)(R). Applying the contracting functor Cpol
r,R, we obtain a quadruple

(Xc, ιc, λXc
, ρc), where ρc : Xc⊗R, R̄ −→ Y⊗κ̄E R̄. This gives a point of N (i)(R). The functor

Cpol
r,R is an equivalence of categories if the ideal of nilpotent elements of R is nilpotent, cf.

Theorem 4.4.11.Therefore we may reverse the construction of (6.2.4). ThereforeMr(i)(R) −→
N (ei)(R) is bijective for those R. For a general R we obtain the bijectivity as in the proof of
Proposition 6.2.1. With the notation (6.1.6) we have a bijection M̃r(R)

∼−→ Ñ [e](R).
We define

J ′ = {α ∈ AutoK X | α∗(λX) = uλX, for u ∈ pZO×F }

= {α ∈ AutoK Y | α∗(λY) = uλY, for u ∈ pZO×F }.
(6.2.5)

The last equation holds because of the contraction functor. This group acts via the rigidifications
ρ on the functors M̃r and Ñ [e]. By the last equation of (6.2.5) we may regard J ′ as a subgroup
of J∗ur of Lemma 5.3.2.

Proposition 6.2.3. There exists an isomorphism of formal schemes Spf OĔ

M̃r
∼−→ Ñ [e]×Spf OF̆

Spf OĔ ,

where the right hand side denotes the base change via ϕ̆0 : OF̆ −→ OĔ. This isomorphism is
compatible with the action of J ′ on both sides, and the Weil descent datum (6.1.4) on the left
hand side corresponds to the Weil descent datum

πgω
fE/f
N : Ñ [e] −→ Ñ [e](τE).

on the right hand side. Here g = fE(d− 1)/2f . More explicitly, there is a commutative diagram

Mr(i)
∼ //

ωMr

��

NOĔ (ei)

πgω
fE/f

N
��

Mr(i+ fE)(τE) ∼ // NOĔ (e(i+ fE))(τE).

(6.2.6)

The multiplication by π is the morphism N (j)→ N (j+ 2) which is obtained by multiplying ρ in
Definition 5.3.1 by π. Equivalently one can apply two times the translation functor (5.3.5).

Proof. We have already proved the isomorphism of formal schemes over Spf OĔ . The compati-
bility with the Weil descent datum follows from the following lemma. �

Lemma 6.2.4. Let X be the framing object over κ̄E, with corresponding Frobenius morphism
FX,κE : X −→ (τE)∗X. Let Y be its image under the contracting functor Cpol

r,κ̄E . Then the image
of FX,κE under Cpol

r,κ̄E is given as

πgFY,κE : Y −→ (τE)∗Y.

Proof. Let M = PX be the W(κ̄E)-Dieudonné module of X. Then the WOF (κĒ)-Dieudonné
module M ′ of Y is by definition the ψ0-component of P ′X defined by (4.3.18). In terms of
Dieudonné modules, FX,τE is given by

M −→W (κĒ)⊗τE ,W (κĒ) M, x 7−→ 1⊗ V fEx.
This induces

V fE : M ′ −→W (κ̄E)⊗τE ,W (κ̄E) M
′. (6.2.7)

We consider the decomposition
M = ⊕Mψ.

We denote by σ the Frobenius on the Witt ring W (κ̄E) and also the Frobenius of Kt/Qp. We
note that

W (κ̄E)⊗τE ,W (κ̄E) Mψ = (W (κ̄E)⊗τE ,W (κ̄E) M)τEψ = (W (κ̄E)⊗τE ,W (κ̄E) M)ψσfE .

In terms of the relative Dieudonné module, FY,τE is given by (V ′)fE . Our problem is to express
(6.2.7) in terms of V ′. By definition we have

V ′ = π−aψV : Mψσ −→Mψ.
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We consider
V fE : Mψ

V−→Mψσ−1
V−→ . . .

V−→Mψσ−fE .

Therefore we obtain for this map

V fE = πaψσ−1 · . . . · πaψσ−fE (V ′)fE .

By definition of the reflex field E, we have aψ = aψσ−fE . This implies that the number

g = aψσ−1 + . . .+ aψσ−fE

is independent of ψ. We add to the last equation

g = aψ̄σ−1 + . . .+ aψ̄σ−fE .

Since aψ + aψ̄ is e or e− 1 we obtain

2g =
fE
f
· (d− 1).

This proves the Lemma. �

Corollary 6.2.5. Let ωτE denote the action of τE on the formal scheme scheme Ω̂F ×Spf OF

Spf OĔ via the second factor, i.e., in the notation of (5.1.21), ωτE = ω
fE/f
τ . There exists an

isomorphism of formal schemes over Spf OĔ

M̃r
∼−→ (Ω̂F ×Spf OF Spf OĔ)× Z,

such that the Weil descent datum ωMr induces on the right hand side the Weil descent datum

(ξ, i) 7−→ (ωτE (ξ), i+ fE).

In particular the formal schemeMK/F,r over Spf OĔ is a p-adic formal scheme which has semi-
stable reduction; hence it is also flat, with reduced special fiber.

Proof. We consider the isomorphisms of functors

M̃r
∼−→ ÑOĔ [e]

∼←− (M̃Dr[e])OĔ
∼−→ (Ω̂F ×Spf OF Spf OĔ)× Ze. (6.2.8)

The last arrow is the isomorphism (5.1.20) and the left arrow in the middle is the isomorphism
of Theorem 5.3.3. We must see what the Weil descent data πgωfE/fN on ÑOĔ [e] does on the last
functor. By Theorem 5.3.3, it induces on (M̃Dr[e])OĔ the Weil descent datum ω

fE/f
MDr

multiplied
2g-times with the translation (cf. last sentence of Proposition 6.2.3). By (5.1.21), the induced
Weil descent datum on the last functor of (6.2.8) is

(ξ, ie) 7−→ (ωτE , ie+ (fE/f) + 2g).

But we have
ie+ (fE/f) + 2g = ie+ (fE/f) + (d− 1)(fE/f) = ie+ fEe.

This proves the Corollary. �

6.3. The case r banal and K/F ramified. Let ε ∈ {±1}. There is up to isomorphism a unique
anti-hermitian K-vector space (V, ψ) of dimension 2 such that inv(V, ψ) = ε, cf. Definition 8.1.1.
Let Λ ⊂ V be an OK-lattice such that ψ induces a perfect pairing on Λ, cf. Lemma 8.1.3. By
Theorem 4.5.11, (Λ, ψ) corresponds to a display (P, ι, β) ∈ dPpol

r,κ̄E over the residue class field of
OĔ which is unique up to isomorphism. Let (X, ιX, βX) be the corresponding polarized p-divisible
OK-module of type r. It is uniquely determined by the conditions that β is principal and that
invr(X, ιX, βX) = ε. Then (CX ⊗Q, φ) ' (V, ψ).

Definition 6.3.1. We define a functor Mr,ε(i) on the category NilpOĔ . For R ∈ NilpOĔ , a
point ofMr,ε(i)(R) is given by the following data:
(1) a local CM-pair (X, ι) of CM-type r over R which satisfies the Eisenstein conditions (ECr)

relative to a fixed uniformizer Π ∈ K.
(2) an isomorphism of p-divisible OK-modules

λ : X −→ X∧,

which is a polarization of X.
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(3) a quasi-isogeny of p-divisible OK-modules

ρ : XR̄ −→ X×Spec κ̄E Spec R̄,

such that the pullback quasi-isogeny ρ∗(λX) differs from piλ|X×S S̄ by a scalar in O×F , locally
on Spec R̄. Here R̄ = R⊗OĔ κ̄E .

Two data (X, ι, λ, ρ) and (X1, ι1, λ1, ρ1) define the same point iff there is an isomorphism of
OK-modules α : X → X1 such that ρ1 ◦ αR̄ = ρ. (This implies that α respects the polarizations
up to a factor in O×F ).

By Proposition 4.2.2, Mr,ε(0) is the functor MK/F,r,ε used in Theorem 2.6.3. We will also
consider the functor

M̃r,ε =
∐
i∈Z
Mr,ε(i).

Let i ∈ Z. We consider the following functor Gε(i) on the category NilpOĔ . A point of
Gε(i)(R) is given by the following data:
(1) a locally constant p-adic étale sheaf C on SpecR which is Zp-flat with rankZp C = 4d and

with an action
ι : OK −→ EndZp C.

(2) a perfect alternating OF -bilinear pairing

φ : C × C −→ OF ,

such that φ(ι(a)c1, c2) = φ(c1, ι(ā)c2) for c1, c2 ∈ C and a ∈ OK .
(3) a quasi-isogeny of OK-module sheaves on SpecR

ρ : (C, ι) −→ (CX, ι) (6.3.1)

such that locally on SpecR there is an f ∈ O×F with

pifφ(c1, c2) = φX(ρ(c1), ρ(c2)).

Another set of data (C ′, ι′, λ′, ρ′) defines the same point iff there is an isomorphism α : C
∼−→ C ′

such that ρ′ ◦ α = ρ. Then α respects φ and φ′ up to a factor in O×F .
We remark that in (6.3.1) we regard CX as the constant sheaf on SpecR. The existence of

the quasi-isogeny implies that C is locally constant for the Zariski topology. Therefore locally
on SpecR the sheaf C is the constant sheaf associated to an OK-submodule C ⊂ CX⊗Zp Qp and
ρ is given by the last inclusion.

The polarized contraction functor Cpol
r defines a morphism of functors

Mr,ε(i) −→ Gε(i). (6.3.2)

To describe the functor Gε(i), we may restrict to the case where the sheaf C is given by
an OK-submodule of CX ⊗Zp Qp. Then C defines a point of Gε(i)(R) iff (1/pi)φX is a perfect
alternating pairing on C. We define an algebraic group over Zp, and its Zp-rational points,

J ′(Zp) = {g ∈ GLOK (CX) | φX(gc1, gc2) = f · φX(c1, c2) for some f ∈ O×F }.
By Lemma 8.1.3, there is an isomorphism g : (CX, φX) −→ (C, 1

piφX). This means that gCX = C

and
φX(gc1, gc2) = piφX(c1, c2), c1, c2 ∈ CX ⊗Zp Qp. (6.3.3)

We define

J ′(i) = {g ∈ GLK(CX ⊗Zp Qp) | φX(gc1, gc2) = pifφX(c1, c2), for some f ∈ O×F }.
This construction gives us a functor isomorphism

Gε(i)
∼−→ J ′(i)/J ′(Zp),

where the right hand side is considered as the restriction of the constant sheaf to NilpOĔ . Let
J ′ ⊂ GL(CX) be the union of the J ′(i). Using the contraction functor we may write

J ′ = {α ∈ AutoK X | α∗(λX) = µ(α)λX for some µ(α) ∈ pZO×F }. (6.3.4)

Therefore J ′ acts via ρ on the functor M̃r,ε.
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Proposition 6.3.2. The morphism of functors on NilpOĔ obtained from (6.3.2) is a J ′-equivariant
isomorphism,

M̃r,ε
∼−→ J ′/J ′(Zp). (6.3.5)

The left hand side is endowed with the Weil descent datum ωMr relative to OĔ/OE which is
defined exactly in the same way as (6.1.4). This Weil descent datum corresponds on the right
hand side to the Weil descent datum given by multiplication with ΠefE . Here we regard ΠefE as
an automorphism of the K-vector space CX ⊗Zp Qp.

Proof. We show that (6.3.2) is an isomorphism of functors. Let R′ → R be an epimorphism of
OĔ-algebras with nilpotent kernel. We claim that the induced mapMr,ε(i)(R

′) →Mr,ε(i)(R)
is bijective. We may assume that the kernel is endowed with divided powers. Let (X, ι, λ, ρ) be
as in Definition 6.3.1. To see that (X, ι) lifts uniquely to R′ we apply Corollary 3.1.14. Let P be
the display of (X, ι) over R and let D be the associated crystal (3.1.10). By Proposition 4.2.2,
the Hodge filtration of P is EAψDψ(R) ⊂ Dψ(R). The only possibility to lift this filtration to
R′ such that the condition (ECr) continues to hold is to take EAψDψ(R′) ⊂ Dψ(R′). Hence we
obtain a unique lifting (X ′, ι′) over R′. That λ lifts to a principal polarization λ′ of X ′ follows
from Proposition 3.2.4 and Lemma 4.5.6. Since the quasi-isogeny ρ lifts automatically, we obtain
the claimed bijectivity. The functor on the right hand side of (6.3.2) also induces a bijection
when applied to R′ → R because it is defined in terms of étale sheaves.

Using these bijections we see that it is enough to prove the Proposition for the restrictions
of the functors to the category of κ̄E-algebras. Both functors commute with inductive limits
of rings, i.e., they are locally of finite presentation. To see this, we consider the special fiber
Mr,ε,κ̄E (0). Letm ∈ N. We consider the subfunctor Um which consists of points such that pmρ−1

is an isogeny. Then X is the quotient of X×Spec κ̄E SpecR by a finite locally free subgroup scheme
of X(4dm) ×Spec κ̄E SpecR. (We have denoted by X(4dm) the kernel of the multiplication by
p4dm.) This shows that Um is a scheme of finite presentation over Spec κ̄E . Therefore Um is
locally of finite representation as a functor, cf. EGA IV, Thm. (8.8.2). One easily deduces from
this that Mr,ε,κ̄E (0) is locally of finite presentation as a functor. In the same way we see that
Gε(i) is locally of finite presentation. To show that (6.3.2) is an isomorphism of functors we can
therefore restrict to κ̄E-algebras R which are of finite type over κ̄E . For such R, (6.3.2) induces
a bijection by Theorem 4.5.11.

It remains to compare the Weil descent data on both sides of (6.3.5). It is enough to make
the comparison for the restriction of (6.3.5) to the category of κ̄E-algebras. Let ε : κ̄E −→ R
be a κ̄E-algebra. The restriction of the functorMr,ε to κ̄E-algebras has a Weil descent datum
ωMr,ε,Fp :Mr,ε(R) −→Mr,ε(R[σ]) over Fp, given by

ωMr,ε,Fp((X, ι, λ, ρ)) = (X, ι, λ, ρ[σ]), (6.3.6)

where ρ[σ] is the composite

X
ρ−→ ε∗X

ε∗FX−→ ε∗σ∗X.
Here σ denotes the Frobenius automorphism of κ̄E over Fp. To see that this makes sense, we
have to check that all p-divisible OK-modules above satisfy the rank condition (RCr) and the
Eisenstein conditions (ECr). The condition (ECr) says that Πe LieX = 0. This remains true
if we regard X as a p-divisible OK-module over R[σ]. For the condition (RCr), the claim is
obvious.

Therefore it suffices to show that ωMr,Fp induces on the right hand side of (6.3.5) the Weil
descent datum g 7→ Πeg. This follows from the following Lemma. �

Lemma 6.3.3. There is an identification CX = Cσ∗X. The functor C
pol
r,κ̄Eapplied to the Frobenius

morphism FX : X −→ σ∗X yields Πe : CX −→ CX.

Proof. The first assertion follows because the functor Cpol
r,κ̄E commutes with base change. Con-

sider the Dieudonné module PX of X. We have

CX = {c ∈ PX | V c = Πec},
cf. Remark 4.5.13. The map

PX −→W (κ̄E)⊗σ,W (κ̄E) PX, c 7−→ 1⊗ c
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defines the identification CX = Cσ∗X. The Frobenius FX induces on the Dieudonné modules

PX
V ]−→W (κ̄E)⊗σ,W (κ̄E) PX, x 7−→ 1⊗ V x.

For c ∈ CX we obtain V ]c = 1⊗ V c = 1⊗Πec. �

We can reformulate a part of Proposition 6.3.2 as follows. We consider the algebraic group
over Zp such that

J(Zp) = {g ∈ GLOK (CX) | φX(gc1, gc2) = u · φX(c1, c2) for some u ∈ Z×p }.

We define

J(i) = {g ∈ GLK(CX ⊗Q) | φX(gc1, gc2) = upi · φX(c1, c2) for some u ∈ Z×p }.

The union of the J(i) is the group J(Qp) of unitary similitudes with similitude factor in Q×p .

Corollary 6.3.4. Let J(Qp) be the group of unitary similitudes of CX ⊗Zp Qp with similitude
factor in Q×p , and let J(Zp) be its subgroup stabilizing the lattice CX. There are isomorphisms
of functors on NilpOĔ ,

M̃r,ε
∼−→ J(Qp)/J(Zp), MK/F,r,ε

∼−→ J(Qp)o/J(Zp).

Here J(Qp)o denotes the group of unitary similitudes with similitude factor in Z×p .

Proof. It is enough to show that Gε(i)(κ̄E) is in bijection with J(i)/J ′(Zp). For this is enough
to show that for each C ∈ Gε(i)(κ̄E) there exists g ∈ J(i) such that gCX = C. This we have
already shown before (6.3.3). �

In this reformulation it is less obvious what the Weil descent datum is.

6.4. The case r banal and K/F unramified. Let ε ∈ {±1}. We consider a CM-triple
(X, ι, λX) over κ̄E such that λX is principal if ε = 1 and is almost principal if ε = −1. By
Proposition 4.5.14 such a CM-triple exists and invr(X, ι, λX) = ε. In fact, by Lemma 8.1.2 and
Theorem 4.5.11, (X, ι, λX) is unique up to isomorphism.

We recall the functorMK/F,r,ε from section 2.6.

Definition 6.4.1. Let (X, ι, λX) be a framing object with an almost principal polarization. We
define a functorMr−(i) on the category NilpOĔ . For R ∈ NilpOĔ , a point ofMr−(i)(R) is given
by the following data:
(1) a local CM-triple (X, ι, λ) of type r over R which satisfies the Eisenstein conditions (ECr)

relative to the fixed uniformizer π ∈ K.
(2) the polarization λ is almost principal.
(3) a quasi-isogeny of p-divisible OK-modules

ρ : XR̄ −→ X×Spec κ̄E Spec R̄,

such that the pullback quasi-isogeny ρ∗(λX) differs from piλ|XR̄ by a scalar in O×F , locally
on Spec R̄. Here R̄ = R⊗OĔ κ̄E .

Now let (X, ι, λX) be a framing object with a principal polarization. Then we have h(λX) = 0

and invr(X, ι, λX) = 1. We define the functorMr+(i) by exactly the same data but we replace
the condition (2) above by the condition

(2′) the polarization λ is principal.
In the almost principal case there exists an isogeny X∧ −→ X such that the composite

X
λ−→ X∧ −→ X

is πidX . This follows from the following analogue of Proposition 5.3.7.
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Proposition 6.4.2. Let α : P1 −→ P2 be an isogeny of CM-pairs of type r over R ∈ NilpOĔ
which both satisfy the Eisenstein condition (ECr). Let αC : C1 −→ C2 be the morphism in
Et(OK)R associated by the contracting functor Cr,R. Then

heightα = 2f · lengthOK CokerαC .

If heightα = 2f then there exists a unique morphism β : P2 −→ P1 such that

α ◦ β = πidP2
, β ◦ α = πidP1

,

Proof. To prove the first assertion we can assume that R = k is an algebraically closed field.
Then we can use that Cokerα = CokerαC ⊗ZpW (k). If lengthOK CokerαC = 1, then βC clearly
exists. �

In the case where i = 0, the quasi-isogeny ρ is of height zero because the polarizations λX and
λ have the same degree. We set X0 = X and X1 = X∧. Since X and X∧ satisfy the Eisenstein
condition (ECr) and, by Proposition 4.2.2, also the Kottwitz condition (KCr), we obtain a point
of the functorMK/F,r,−1 of Definition 2.6.1. We conclude thatMr−(0) =MK/F,r,1. The index
r− on the left hand side indicates that we are in the case where the adjusted invariant of the
framing object is −1. Similarly, Mr+(0) = MK/F,r,1. The index r+ on the left hand side
indicates that we are in the case where the adjusted invariant of the framing object is 1.

We will describe the formal scheme which represents the functor MK/F,r,ε. More precisely,
consider the functors on NilpOĔ ,

M̃r± =
∐
i∈Z
Mr±(i).

These functors are endowed with a Weil descent datum ωMr±
: Mr±(i) −→ Mr±(i + fE)τE

relative to Ĕ/E using exactly the same definition as in (6.1.4). Recall (CX, φX) = (CX, ιX, φX).
We define

J ′(Zp) = {g ∈ AutOK CX | φX(gc1, gc2) = f · φX(c1, c2) for some f ∈ O×F },
J ′(i) = {g ∈ AutCX ⊗Zp Qp | φX(gc1, gc2) = pifφX(c1, c2), for some f ∈ O×F }.

As in the ramified case, we see that a point of Mr±(i)(R) is locally on SpecR given by a
lattice C ⊂ CX ⊗Zp Qp such that the restriction of (1/pi)φX to C induces a OF -bilinear form

1

pi
φX : C × C −→ OF

which is perfect in the case of r+ and such that ordπ
1
piφX = 1 in the case of r−. For the case of

r−, we are using here Proposition 6.4.2.
We deduce that there is an isometry g : (CX, φX) −→ (C, (1/pi)φX), cf. Lemma 8.1.2. Con-

sequently we have g ∈ J ′(i). Conversely, if g ∈ J ′(i), the sublattice C = gCX with the bilinear
form (1/pi)φX gives rise to a point ofMr±(i)(R).

We will denote by J ′ ⊂ AutCX the union of the J ′(i). We can identify J ′ with a subgroup of
AutoK X exactly as in the ramified case, cf. (6.3.4). It acts via ρ on the functor M̃r± .

Proposition 6.4.3. There is a J ′-equivariant isomorphism of functors on NilpOĔ ,

M̃r±
∼−→ J ′/J ′(Zp). (6.4.1)

Here the right hand side is the constant sheaf on NilpOĔ . The Weil descent datum ωMr,±

on the left hand side corresponds on the right hand side to the Weil descent datum given by
multiplication with πefE/2. Here we view πefE/2 as an automorphism of the K-vector space
CX ⊗Zp Qp by multiplication.

Proof. That (6.4.1) is an isomorphism of functors follows from Theorem 4.5.11 in the same way
as in the proof of Proposition 6.3.2.

Let us recall the definition of the Weil descent relative to OĔ/OE on the functor M̃r± . We
write

FX,τE : X −→ (τE)∗X (6.4.2)
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for the Frobenius relative to κE . Let ε : OĔ −→ R be an object of NilpOĔ . We write ε̄ = ε⊗ κ̄E :

κ̄E −→ R̄. Let (X, ι, λ, ρ) ∈ Mr±(i)(R) be a point. We view (X, ι, λ) as a CM-triple on R[τE ]

and we endow it with the framing

ρ̃ : XR̄
ρ−→ ε̄∗X

ε̄∗FX,τE−→ ε̄∗(τE)∗X.

Then (X, ι, λ, ρ̃) defines a point of Mr±(i + fE)(R[τE ]). Varying i ∈ Z, we obtain the Weil
descent datum

ωMr±
: M̃r± −→ M̃

(τE)
r± .

We note that the inverse image of (τE)∗λ by (6.4.2) is pfEλ. The compatibility of the Weil
descent data follows as in the proof of Proposition 6.3.2 from the following Lemma. �

Lemma 6.4.4. The contracting functor applied to the Frobenius morphism FX,τE : X −→ (τE)∗X
yields the multiplication by πefE/2 : CX −→ CX.

Proof. We use the Dieudonné module P of X over κ̄E . The map FX,τE induces on the Dieudonné
modules the map

V fE ,] : P −→W (κ̄E)⊗F fE ,κ̄E P, x 7−→ 1⊗ V fEx.

By definition we have

C := CX = {c ∈ P | V c = πrc},

where we recall πr from (4.5.12), cf. Remark 4.5.13. With the identification CX = C(τE)∗X, the
restriction of V fE ,] to C gives

F−fE+1

πr · . . . · F
−1

πr · πr : C −→ C. (6.4.3)

The right hand side is a module over

OK ⊗Zp W (κ̄E) =
∏
ψ∈Ψ

OK ⊗OKt ,ψ̃ W (κ̄E).

On the right hand side, F−1 is given by the map

OK ⊗OKt ,ψ̃σ W (κ̄E) −→ OK ⊗OKt ,ψ̃ W (κ̄E), a⊗ ξ 7−→ a⊗ F−1

ξ.

Therefore the components of the element on the left hand side of (6.4.3) are

π
a
ψσ(fE−1) · . . . · πaψσ · πaψ .

Since σfE fixes κE we have aψσfE = aψ. It follows that the numbers

gψ := aψσ(fE−1) + . . . aψσ + aψ

are independent of ψ. We call this number g. We find:

2g = gψ + gψ̄ = efE

because aψ + aψ̄ = e. We conclude that (6.4.3) is the multiplication by πefE/2. �

Corollary 6.4.5. Let J(Qp) be the group of unitary similitudes of CX ⊗Zp Qp with similitude
factor in Q×p , and let J(Zp) be its subgroup stabilizing the lattice CX. There are isomorphisms
of functors on NilpOĔ ,

M̃r,ε
∼−→ J(Qp)/J(Zp), MK/F,r,ε

∼−→ J(Qp)o/J(Zp).

Here J(Qp)o denotes the group of unitary similitudes with similitude factor in Z×p . �
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6.5. The banal split case. We assume that K = F ×F . Let R = k be an algebraically closed
field. There is up to isomorphism a unique anti-hermitian OK-module (C, φ) of rank 2 with φ
perfect. Hence there is a unique CM-triple

(X, ιX, λX) ∈ Ppol
r,κ̄E

with principal λX. We take this as framing object.
We define functors Mr(i) on the category NilpOĔ . For R ∈ NilpOĔ , a point of Mr(i)(R) is

given by the following data:
(1) a local CM-triple (X, ι, λ) of type r over R which satisfies the Eisenstein conditions (ECr)

relative to the fixed uniformizer π ∈ F .
(2) the polarization λ : X −→ X∧ is principal.
(3) a quasi-isogeny of p-divisible OK-modules

ρ : XR̄ −→ X×Spec κ̄E Spec R̄,

such that the pullback quasi-isogeny ρ∗(λX) differs from piλ|XR̄ by a scalar in O×F , locally
on Spec R̄. Here R̄ = R⊗OĔ κ̄E .

Note thatMr(0) =Mr,1 of before Theorem 2.6.3. Consider a point (X, ι, λ, ρ) as above. Let
(C, φ) be the p-adic étale sheaf associated to (X, ι, λ)R̄ on (Spec R̄)ét = (SpecR)ét. Let CX be
the constant sheaf on (SpecR)ét of the OK-module CX. The existence of ρ implies that C is
locally constant for the Zariski topology. Therefore, locally on SpecR, we may regard C as a
submodule of CX ⊗Q. By the definition ofMr(i), we have

fpiφ(x, y) = φX(x, y), x, y ∈ CX ⊗Q,

for some f ∈ O×F . We see by Theorem 4.5.11 that a point of Mr(i)(R) is the same as a OK-
sublattice C ⊂ (CX)R ⊗Q such that the restriction of (1/pi)φX to C induces a perfect pairing

C × C −→ OF .

This is directly clear if the ideal of nilpotent elements of R is nilpotent, and follows from the
argument in the proof of Proposition 6.3.2 in the general case.

Again we set

J ′(Zp) = {g ∈ GLOK (CX) | φX(gc1, gc2) = f · φX(c1, c2), for some f ∈ O×F },
J ′(i) = {g ∈ GL(CX ⊗Zp Qp) | φX(gc1, gc2) = pifφX(c1, c2), for some f ∈ O×F }.

There is an isometry up to a constant in O×F ,

g : (CX, φX) −→ (C,
1

pi
φX).

Then g ∈ J ′(i) and gCX = C. Any other isometry of this type is of the form gh, with h ∈ J ′(Zp).
Therefore we have associated to the point (X, ι, λ, ρ) a section of the constant sheaf J ′(i)/J ′(Zp).

We set
M̃r =

∐
i∈Z
Mr(i), J ′ = ∪i∈ZJ ′(i).

As in the ramified case, the group J ′ acts via ρ on the functor M̃r, cf. (6.3.4). Moreover, this
functor is endowed with the Weil descent datum ωMr

: Mr(i) −→ Mr(i + fE)(τE) relative to
OĔ/OE .

Let σ ∈ Gal(F t/F ) be the Frobenius. We use the notation introduced below (4.3.22). We fix
θ ∈ Θ, with θ1, θ2 ∈ Ψ. Set

a1,E = aθ1σfE−1 + . . .+ aθ1σ + aθ1 (6.5.1)

This number is independent of the choice of θ because, by the definition of the reflex field E,

aθ1σfE = aθ1 .

We already defined a1 =
∑
θ∈Θ aθ1 , cf. (4.3.28). If we sum the right hand side of (6.5.1) over all

θ ∈ Θ we obtain
fa1,E = fEa1.
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In the same way we define a2,E by using θ2. Then we obtain fa2,E = fEa2. Since a1 + a2 = d
we find

a1,E + a2,E = efE .

The endomorphism

πaE := πa1,E ⊕ πa2,E : CX,1 ⊕ CX,2 −→ CX,1 ⊕ CX,2 (6.5.2)

is an element of J ′(fE).

Proposition 6.5.1. The polarized contraction functor defines an isomorphism of functors on
NilpOĔ ,

M̃r
∼−→ J ′/J ′(Zp). (6.5.3)

The Weil descent datum ωMr
relative to OĔ/OE corresponds on the right hand side to the Weil

descent datum given by multiplication with πaE ∈ J ′(fE).

We note that J ′/J ′(Zp) = J ′/J ′(Zp)(τE) because this is true for any constant sheaf. Propo-
sition 6.5.1 is the consequence of the definition of ωMr and the following Lemma.

Lemma 6.5.2. The Frobenius FX,τE : X −→ (τE)∗X induces on CX the multiplication by πaE .

Proof. The statement needs an explanation. Because the functor Cpol
r,κ̄E commutes with base

change, we have a canonical isomorphism CX = C(τE)∗X. Indeed, the inverse image of the
constant sheaf CX by Spec τE is the constant sheaf CX.

Let M = PX be the Dieudonné module of X. The Frobenius FX,τE is induced by the Ver-
schiebung

V fE : M −→M.

We write in this proof C := CX. By definition we have

C = MπrV
−1

= C1 ⊕ C2,

cf. Remark 4.5.13. Therefore the action of V fE on C coincides with the action of

F−fE+1

πr · . . . · F
−1

πr · πr : C −→ C. (6.5.4)

We look at the components of the element on the left hand side in (4.3.22). Let us consider the
components of the first set of factors of (4.3.22) which act on C1. The component of (6.5.4) in
the factor OF ⊗OFt ,θ̃ W (OE′) is

π
a
θ1σ

fE−1 · . . . · πaθ1σ · πaθ1 ⊗ 1 = πa1,E ⊗ 1.

Therefore V fE induces on C1 the multiplication by πa1,E . By the same argument it induces on
C2 the multiplication by πa2,E . �

Corollary 6.5.3. Let J(Qp) = GLK(CX,1 ⊗Zp Qp) and J(Zp) = GLOK (CX,1). There are iso-
morphisms of functors on NilpOĔ ,

M̃r
∼−→ J(Qp)/J(Zp), MK/F,r,1

∼−→ J(Qp)o/J(Zp).

Here J(Qp)o denotes the subgroup of elements with determinant in O×K . �

7. Application to p-adic uniformization

In this section, we reap the global fruits from our local work in the preceding sections. This
section is modelled on the case of p-adic uniformization of the first kind of the previous paper
[20, section 4].
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7.1. The Shimura variety and its p-integral model. In this section, K and F will be
number fields. Let K/F be a CM-field. We fix an archimedean place w0 of F . We denote by
a 7→ ā the conjugation acting on K.

Let V be a K-vector space of dimension 2. Let

ς( , ) : V × V −→ Q
be a non-degenerate alternating Q-bilinear form such that

ς(av1, v2) = ς(v1, āv2), a ∈ K, v1, v2 ∈ V.
We define three algebraic groups over Q. For a Q-algebra R, the R-valued points are:
U(V, ς)(R) = {g ∈ GLK⊗R(V ⊗R) | ςR(gx1, gx2) = ςR(x1, x2)}
G(V, ς)(R) = {g ∈ GLK⊗R(V ⊗R) | ςR(gv1, gv2) = µ(g)ςR(v1, v2), µ(g) ∈ R×},

Ġ(V, ς)(R) = {g ∈ GLK⊗R(V ⊗R) | ςR(gv1, gv2) = ςR(µ(g)v1, v2), µ(g) ∈ (F ⊗R)×}.
(7.1.1)

If (V, ς) is fixed, we write U,G, Ġ.
Equivalently, we can replace the form ς by the anti-hermitian form

κ : V × V −→ K

on the K-vector space V which is defined by the equation

TrK/Q aκ(v1, v2) = ς(av1, v2), a ∈ K. (7.1.2)

Then κ is linear in the first argument and anti-linear in the second.
For each place w of F we obtain an anti-hermitian pairing

κw : V ⊗F Fw × V ⊗F Fw −→ K ⊗F Fw. (7.1.3)

Let w : F −→ R be an archimedean place. We choose an extension of w to ϕ : K −→ C. This
defines an isomorphism K ⊗F Fw ∼= C and κw becomes an anti-hermitian pairing

κϕ : V ⊗K,ϕ C × V ⊗K,ϕ C −→ C.
Note that the space V is determined up to isomorphism by the signature at the archimedean

places w of F and the local invariants invv(V ) := inv(V ⊗F Fv,κ⊗F Fv) at the non-archimedean
places v of F , cf. Definition 8.1.1. If v splits in K, we set invv(V ) = 1. We will impose the
following signature condition on V . Let Φ = HomQ-Alg(K,C) and let r be a special CM-type of
rank 2 wrt. w0, i.e., a function

r : Φ −→ Z>0, ϕ 7−→ rϕ, (7.1.4)

such that rϕ + rϕ̄ = 2 for all ϕ ∈ Φ and such rϕ = 1 iff ϕ restricts to w0 : F → R. We write
ϕ0, ϕ̄0 ∈ Φ for the two extensions of w0.

We require that κϕ is isomorphic to the anti-hermitian form on C2 given by the matrix(
iErϕ 0
0 −iErϕ̄

)
, (7.1.5)

for every ϕΦ. Here Erϕ is denotes the unit matrix of size rϕ, and i the imaginary unit. We note
that the last requirement is independent of the choice of ϕ above w. We endow

V ⊗Q R =
∏

w:F−→R
V ⊗F,w R,

with the complex structure J such that κw(v1,J v2) is hermitian and positive-definite for all w.
This defines a Shimura datum (G, h), resp., (Ġ, h), cf. [9, 4.9, 4.13] and an associated Shimura
variety Sh(G, h) with canonical model over the reflex field E of r.

Let p be a prime number. We also impose a condition on (V, ς) at a p-adic place of F . The
condition is with respect to a chosen embedding E → Q̄p. Let ν be the place of E defined by
this embedding. We denote by v the p-adic place of F defined by

F
ϕ0−→ E −→ Q̄p.

We require that
invv(V ) = −1.
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In particular, this implies that the place v does not split in K. We will denote by pν the prime
ideal of OE which corresponds to ν, and by pv the prime ideal of OF which corresponds to v.

We have an isomorphism
V ⊗Qp ∼= ⊕p|pV ⊗F Fp. (7.1.6)

Here p runs over all prime ideals of F which divide p. We will write

Vp := V ⊗F Fp, Kp = K ⊗F Fp.

The decomposition (7.1.6) is orthogonal with respect to ς and, for each prime ideal p of F over
p, we obtain a bilinear form

ςp : Vp × Vp −→ Qp.
It is related to κp by

TrK⊗FFp/Qp aκp(x1, x2) = ςp(ax1, x2), a ∈ K ⊗F Fp, x1, x2 ∈ Vp.

One defines algebraic groups over Qp as in (7.1.1) above:

Up = U(Vp, ςp), Gp = G(Vp, ςp), Ġp = Ġ(Vp, ςp).

Let p|p be such that p is unramified (and hence non-split) in K/F and such that inv(Vp,κp) =
−1, cf. Definition 8.1.1. Then there is a OKp

-lattice

Λp ⊂ Vp
such that ςp induces a bilinear form

ςp : Λp × Λp −→ Zp (7.1.7)

such that Λp is almost self-dual, i.e., h(Λp, ςp) = 1 (compare (8.1.4)). Any other lattice with
these properties has the form gΛp where g ∈ U(Vp, ςp)(Qp). This follows from Lemma 8.1.2.

In all other cases, we apply the following lemma.

Lemma 7.1.1. Let p be a p-adic place of F . Assume that inv(Vp,κp) = 1 if p is unramified in
K/F . There is an OKp

-lattice Λp ⊂ V ⊗F Fp such that ςp induces a perfect pairing

ςp : Λp × Λp −→ Zp.

Any other such lattice is of the form gΛp where g ∈ Up(Qp).

Proof. Indeed, because of Lemmas 8.1.2 and 8.1.3, we need only a justification in the case where
p is split. In this case we have Kp = Fp × Fp and, accordingly, a decomposition V ⊗F Fp =
U1 ⊕ U2. The vector spaces U1 and U2 are isotropic with respect to ςp and therefore ςp induces
an isomorphism U2 = HomQp(U1,Qp). The form ςp becomes

ςp(x+ x∗, y + y∗) = x∗(y)− y∗(x), x, y ∈ U1, x
∗, y∗ ∈ U2.

The existence and uniqueness of Λp follows easily. �

To pass to a p-integral model over OE,(pν) of Sh(G, h), we restrict the choice of the level
structure. To do this, we choose for each p|p a OK⊗FFp

-lattice Λp ⊂ Vp as above. We define

Kp = {g ∈ Gp | gΛp = Λp}
Kp = {g ∈ G(Qp) | gΛp = Λp for all p|p}.

(7.1.8)

We choose an open compact subgroup Kp ∈ G(Apf ) and set K = Kp ·Kp ⊂ G(Af ).
We extend the embedding ν : E −→ Q̄p to an embedding Q̄ −→ Q̄p. We obtain a decomposi-

tion
Φ = HomQ-Alg(K, Q̄) =

∐
p

HomQp-Alg(Kp, Q̄p) =
∐
p

Φp. (7.1.9)

The restriction of the function r to Φp will be denoted by rp. The group Gal(Q̄p/Eν) acts on Φ
via the restriction

Gal(Q̄p/Eν) −→ Gal(Q̄/E).

Therefore rτϕ = rϕ for ϕ ∈ Φ and τ ∈ Gal(Q̄p/Eν). This implies that the local reflex fields
E(Kp/Fp, rp) are all contained in Eν .
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Let R be an OEν -algebra. Let L be an R-module with an OK-action. We have decompositions

OK ⊗R =
∏
p

OKp
⊗Zp R, L = ⊕pLp.

We will say that L satisfies the Eisenstein condition (ECr) if each Lp satisfies the Eisenstein
condition (ECrp), cf. (2.2.12). We use a similar terminology for the Kottwitz condition (KCr).

Definition 7.1.2. We define the groupoid AK on the category of OE,(pν)-algebras. A point of
AK(R) consists of the following data:
(1) An abelian scheme A over R, up to isogeny of degree prime to p, with an algebra homomor-

phism
ι : OK −→ EndA⊗ Z(p).

such that LieA⊗OE,(pν )
OEν satisfies the conditions (KCr) and (ECr).

(2) AQ-homogeneous polarization λ̄ of A such that the Rosati involution induces the conjugation
of K/F .

(3) A class of OK-linear isomorphisms

η̄p : V ⊗ Apf −→ V p(A) mod Kp

which respect the forms on both sides up to a constant in Apf (1)×.
We impose the following two conditions.
(i) There exists a polarization λ ∈ λ̄ such that the induced map to the dual variety λ : A→ A∧

has the following property. Let (kerλ)p be the p-primary part of the kernel of λ. It has
the decomposition (kerλ)p =

∏
p|p(kerλ)p. We require that (kerλ)p is trivial, unless p is

unramified in K and inv(Vp, ςp) = −1. In the latter case the height of (kerλ)p is 2fp.
(ii) For each geometric point ω : R→ k There is an identity of invariants,

invrp(Aω, ι, λ) = invp(Vp, ςp), for all p|p,

cf. the explanation after this Definition.
An isomorphism of such data (A, ι, λ̄, η̄p) −→ (A′, ι′, λ̄′, η̄′

p
) is given by a OK-linear quasi-isogeny

φ : A −→ A′ of degree prime to p compatible with the Q-homogeneous polarizations and the level
structures.

We briefly explain the requirement (ii), with references to the Appendix. Assume that the
characteristic of ω is p. Then the invariant on the left hand side is defined in terms of the
Dieudonné module M of Aω. The definitions of section 2.4 apply to the Dieudonné mod-
ule Mp := M ⊗F⊗Qp Fp with the action of OKp

. The adjusted invariant (2.4.8) of the latter
Dieudonné module is by definition invrp(Aω, ι, λ). In the case where the characteristic of ω is
zero, invrp(Aω, ι, λ) is the invariant of the Kp-vector space (Vp(Aω), Ep) with the Riemann form
induced by λ, cf. Definition 8.1.1. It is easily seen that the left hand side of (ii) depends only
on the image s ∈ SpecR of ω. By Proposition 8.2.1 we regard invrp(A, ι, λ) as a locally constant
function on SpecR and write the condition (ii) in the form

invrp(A, ι, λ) = invp(Vp, ςp).

We will denote a point of AK(R) simply by (A, ι, λ̄, η̄p).

Remark 7.1.3. It is equivalent to consider in (2) a Z(p)-homogeneous polarization λ̄ of A such
that the elements λ ∈ λ̄ satisfy the condition (i) on the p-primary part of the kernel of λ.

Remark 7.1.4. Let (A, ι, λ̄, η̄p) ∈ AK(R). Let λ ∈ λ̄ be as in condition (i) of Definition 7.1.2.
For each geometric point ω of characteristic 0 of SpecR the pairing induced by λ on the p-adic
Tate module,

Ep : Tp(Aω)× Tp(Aω) −→ Zp(1) (7.1.10)
has the following properties. If p is ramified in K/F , the pairing is perfect and inv(Vp(Aω), Ep) =
inv(Vp, ςp). If p is unramified, then (7.1.10) is perfect if inv(Vp, ςp) = 1 and is almost perfect if
inv(Vp, ςp) = −1. If p is split in K/F , then (7.1.10) is perfect.
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For each geometric point ω of R of characteristic p, the polarization λ induces a pairing on
the Dieudonné module M of Aω and therefore for each prime p|p of F a pairing

Ep : Mp(Aω)×Mp(Aω) −→W (κ(ω)), (7.1.11)

with the following properties. If p is ramified inK/F , the pairing is perfect and invr(Mp(Aω), Ep) =
inv(Vp, ςp). If p is unramified, then (7.1.11) is perfect if inv(Vp, ςp) = 1 and is almost perfect if
inv(Vp, ςp) = −1. If p is split in K/F , then (7.1.11) is perfect.

Proposition 7.1.5. Assume that Kp is small enough. Then the functor AK is representable by
a projective scheme over SpecOE,(pν) whose generic fiber is the Shimura variety ShK associated
to the Shimura datum (G, h). For general Kp, AK is a DM-stack proper over SpecOE,(pν) whose
generic fiber is the Shimura variety ShK considered as the classifying stack of a group action.

Proof. Let (A, ι, λ̄, η̄p) ∈ AK(R), and fix ηp ∈ η̄p. Let Λ ⊂ V be a OK-lattice on which ς is
integral. We find an abelian variety A1 in the class A up to isogeny prime to p such that for
each ` 6= p

ηp(T`(A1)) = Λ⊗ Z`.
In this way we obtain also a polarization on A1 whose degree is bounded in terms of ς and Λ. If
Kp is small enough we obtain a level structure on the m-division points for some m ≥ 3.

The fact that the moduli problem of abelian varieties with a polarization of given degree and a
m-level structure form ≥ 3 is a quasi-projective scheme implies that the functor of (A, ι, λ̄, η̄p) as
in (1)–(3) of Definition 7.1.2, is representable by a quasi-projective scheme. Now the conditions
(i) and (ii) define open and closed subschemes (this is easy for condition (i), and follows from
Proposition 8.2.1 for condition (ii)). The representability by a Deligne-Mumford stack for general
Kp follows.

To compare the generic fiber of AK with ShK, recall from [17, §8] that ShK represents the
following functor AK,E on the category of E-algebras, comp. section 1.2. A point of AK,E(R)
consists of the following data.
(1) An abelian scheme A over R, up to isogeny, with an algebra homomorphism

ι : OK −→ EndA⊗Q
such that the Kottwitz condition (KCr) is satisfied.

(2) AQ-homogeneous polarization λ̄ of A such that the Rosati involution induces the conjugation
of K/F .

(3) A class of K-linear isomorphisms

η̄ : V ⊗ Af −→ V̂ (A) mod K

which respect the forms on both sides up to a constant in Af (1)×.
Here we are implicitly using the fact that G satisfies the Hasse principle, cf. [17, §7]. We define
a map AK,E(R) −→ AK(R). We fix a OK-lattice Λ in V whose localizations at p|p are the given
lattices Λp above. Let (A, ι, λ̄, η̄) ∈ AK,E(R), and fix η ∈ η̄. We find an abelian variety A1 in
the isogeny class A such that for each `

η(T`(A1)) = Λ⊗ Z`.
Then we obtain ι1 : OK −→ End(A1) ⊗ Z(p). The Eisenstein condition (ECr) is automatically
satisfied, cf. Proposition 2.2.1. We also find a polarization λ1 ∈ λ̄ which satisfies the condition
(i) in Definition 7.1.2. The existence of η implies Condition (ii). By forgetting the p-component
of η̄, we have associated to (A, ι, λ̄, η̄) a well-defined object (A1, ι1, λ̄1, η̄

p) of AK(R). By the
uniqueness property of the lattices Λp mentioned above, this map is bijective.

The properness of AK −→ SpecOE,(pν) is a consequence of Proposition 7.1.7 below. �

Remark 7.1.6. If pv is the only prime ideal of F over p, then it follows from the product
formula that condition (ii) of Definition 7.1.2 is automatically satisfied. Indeed, condition (ii)
defines an open and closed subscheme which in this case has the same generic fiber.

Proposition 7.1.7. The morphism AK −→ SpecOE,(pν) is proper.

For the proof of Proposition 7.1.7, we need two lemmas.
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Lemma 7.1.8. Let K/F be a CM-field and let r be a generalized CM-type of rank 2. Let E ⊂ Q̄
be the reflex field. Let R be a complete discrete valuation ring with an OE-algebra structure. Let
L be the field of fractions of R. We assume that the residue characteristic of R is p > 0. Let
w be a finite place of F of residue characteristic `, such that Kw/Fw is a field extension. We
assume that L is of characteristic zero or that ` 6= p.

Let (A, ι, λ) be a CM-triple of type r over L. The polarization induces on the rational Tate
module Vw(A) an alternating pairing

ψw : Vw(A)× Vw(A) −→ Q`(1). (7.1.12)

If inv(Vw(A), ψw) = −1, then the abelian variety A has potentially good reduction.

Proof. We consider only the case ` = p. We may assume that A has semistable reduction. We
choose an isomorphism Qp ∼= Qp(1) over L̄. We obtain from ψw the anti-hermitian form

κw : Vw(A)× Vw(A) −→ Kw,

cf. (8.1.2). Let T be the toric part of the special fiber of the Néron model of A. Then OK acts
on the character group X∗(T ). If T is non-trivial, we obtain that

dimT = [K : Q] = dimA.

This implies that the toric part V tw(A) ⊂ Vw(A) is a Kw-vector subspace of dimension 1. By the
orthogonality theorem [SGA7, Exp IX, Thm. 5.2], the anti-hermitian form κw is zero on this
subspace. Let u1, u2 be a basis of Vw(A) such that u1 is a basis of V tw(A). Then we obtain, in
the notation of (8.1.1),

dK/F (Vw(A),κw) = −κw(u1, u2)κw(u2, u1) = κw(u1, u2)κw(u1, u2) ≡ 1

modulo NmKw/Fw K
×
w . This contradicts the assumption inv(Vw(A),κw) = −1. �

With the notation of the last lemma, we consider the case where ` = p and where the
characteristic of L is also p. The OE-algebra structure on R factors

OE −→ κν −→ R,

where κν is the residue field of Eν . We fix a commutative diagram

Eν // Q̄p

E //

OO

Q̄.

OO

Let w be a p-adic place of F . By the last diagram we can restrict r to a local CM-type rw of
Kw/Fw. Then Eν is the composite of the subfields E(Kw/Fw, rw), for w running over all places
of F over p.

Let (A, ι, λ) be a CM-triple of type r over L. The action of OF ⊗ Zp =
∏
w OFw , where w

runs over all p-adic places of F , induces a decomposition of the p-divisible group of A:

X =
∏
w

Xw.

Then (Xw, ιw, λw) is a local CM-triple with respect to Kw/Fw, rw over the field L.

Lemma 7.1.9. Let R be a discrete valuation ring of equal characteristic p > 0, and let L be the
field of fractions. Let R be an OE-algebra. Let ν be the p-adic place of E induced by this algebra
structure.

Let (A, ι, λ) be a CM-triple of type r over L. We assume that there is a p-adic place w of F
such that one of the following conditions is satisfied.
(1) Kw/Fw is a ramified field extension. The local CM-triple (Xw, ιw, λw) satisfies the Eisenstein

condition (ECrw), and invr(Xw, ιw, λw) = −1.
(2) Kw/Fw is an unramified field extension. The local CM-triple (Xw, ιw, λw) satisfies the Eisen-

stein condition (ECrw), and λw is almost principal.
Then the abelian variety A has potentially good reduction over R.
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Proof. We may assume that A has semistable reduction over R. Let Ã be the Néron model over
R, and let B be the identity component of the special fibre of Ã. Let us assume that the torus
part T ⊂ B is nontrivial. Since OK acts on T , we obtain that X∗(T )Q is a K-vector space of
dimension one. Let Y be the p-divisible group of T . We obtain a decomposition

Y =
∏
u

Yu

where u runs over all places of K over p and Yu is an OKu -module which is of height [Ku : Qp]
and of multiplicative type. We pass from R to the completion R̂. Let X̂ = XK̂ be the p-divisible
group of AK̂ . By [SGA7, Exp IX, §5], the multiplicative group Yw lifts to a multiplicative group
Ỹw ⊂ X̂f

w of the finite part of X̂w over R̂. If we pass to the general fibre of the last inclusion
we obtain a nontrivial multiplicative subgroup (Ỹw)L̂ ⊂ X̂w. But our assumption implies, by
Lemma 5.2.8 in the ramified case, and by Proposition 5.3.5 in the unramified case, that X̂w

is isoclinic of slope 1/2. This contradicts the existence of a nontrivial multiplicative part and
therefore the assumption that the torus part of B is nontrivial. �

Proof. (of Proposition 7.1.7) We check the valuative criterion. Let R a discrete valuation ring
with a OEν -algebra structure. Let L be the field of fractions of R. Let α : SpecL −→ AK be a
OEν -morphism. We have to show that α extends to SpecR −→ AK. It is enough to show that
for a discrete valuation ring R′ which dominates R, the morphism SpecL′ −→ AK induced by α
extends SpecR′ −→ AK. The map α gives a point (A, ι, λ̄, η̄p) ∈ AK(L). Since we may replace L
by L′ we may assume that A has semistable reduction. Let ω be a geometric point concentrated
in the generic point of SpecR. We are assuming that invr(Tpv

(Aω), Epv
) = inv(Vpv

, ςpv ) = −1
when charL = 0, resp. invr(Mpv

(Aω), Epv
) = inv(Vpv

, ςpv ) = −1, when charL = p. Hence we
conclude by the last two lemmas that A has good reduction. Let Ã/R denote the abelian scheme
which extends A. Then ι extends to an action ι̃ of OK on Ã. The Kottwitz condition and the
Eisenstein condition are closed conditions and hold therefore for Ã. The polarization λ extends
to λ̃ : Ã −→ Ã∧. The condition (i) from Definition 7.1.2 extends from A to Ã. For a geometric
point ω0 concentrated in the closed point of SpecR we find

invrp(Ãω0
, ι̃ω0

, λω0
) = invr(Mp(Ãω0

), Ep) = inv(Vp, ςpv )

because the left hand is by Proposition 8.2.1 equal to invrp(ÃL, ιL, λL). Hence condition (ii) from
Definition 7.1.2 also extends from A to Ã. From this we obtain an extension of (A, ι, λ̄, η̄p) to a
point of AK(R). �

Remark 7.1.10. The scheme AK turns out to be flat over SpecOE,(pv), cf. Theorem 7.3.3, (i).
Hence its generic fiber is dense. It follows that it is enough to check the valuative criterion on
discrete valuation rings R with fraction field L of characteristic zero. Hence Lemma 7.1.9 is not
needed.

The following proposition shows that there is only one isogeny class in the special fiber of
AK. This is the underlying reason why there is p-adic uniformization.

Proposition 7.1.11. Let κν be the residue class field of Eν . Let (A1, ι1, λ̄1, η̄
p
1) and (A2, ι2, λ̄2, η̄

p
2)

be two points of AK(κ̄ν). Then there exists a quasi-isogeny

(A1, ι1, λ̄1) −→ (A2, ι2, λ̄2),

i.e., a quasi-isogeny which respects the actions ιi and the Q-homogeneous polarizations λ̄i. In
fact, there exists such a quasi-isogeny of degree prime to p.

Proof. Let Xi be the p-divisible group of Ai, with its decomposition Xi =
∏

p|pXi,p. It follows
from Proposition 5.2.7 (jointly with Lemma 5.2.8) and Proposition 5.3.6 that Xi,pv is isoclinic.
In the banal cases p 6= pv, the same follows from Lemma 4.3.3 for Xi,p. By [29, Cor. 6.29] we
find a quasi-isogeny

a : (A1, ι1) −→ (A2, ι2).

We choose λi ∈ λ̄i. We set λ = a∗(λ2). We find an endomorphism u ∈ Endo(A1) such that

λ = λ1u.
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Since λ1 and λ induce the conjugation on K, we conclude that u ∈ EndoK A1. Moreover u is
fixed by the Rosati involution ∗ induced by λ1 on D := EndoK A1. It is enough to find an element
d ∈ D× such that

u = fd∗d (7.1.13)

for some element f ∈ Q×. The solutions of these equations form a torsor under the algebraic
group J over Q such that

J(Q) = {e ∈ D× | e∗e ∈ Q×}. (7.1.14)

By [17, §7], this group satisfies the Hasse principle. Therefore it is enough to find a solution of
the equation (7.1.13) in D ⊗ Q×w for all places w of Q. If w is a finite place w 6= p we have, by
[29, Cor. 6.29], that

D ⊗Qw = EndK⊗Qw Vw(A1)

such that the Riemann form Eλ1
w induces the involution ∗. A solution of (7.1.13) exists iff the

symplectic K ⊗Qw-modules

(Vw(A1), Eλ1
w ), (Vw(A2), Eλ2

w )

are similar up to a factor in Q×w . But this follows from the existence of η̄p1 and η̄p2 .
In the case w = p we can use Dieudonné modules. In this case we know, by condition

(ii) in Definition 7.1.2, that the rational Dieudonné modules of A1 and A2 together with their
polarizations are isomorphic.

If w is the infinite place, one can deduce the assertion from the fact that u in (7.1.13) is totally
positive.

Now let us prove the second assertion. We consider the Dieudonné modules M1, resp. M2,
of A1, resp. A2. We choose the polarizations λ1 ∈ λ̄1, resp. λ2 ∈ λ̄2, as in condition (i) of
Definition 7.1.2. Using the contracting functor, it is clear that there is a quasi-isogeny of height
zero α : (M1, λ1) −→ (M2, λ2). Let ρ : (M1, λ̄1) −→ (M2, λ̄2) be an arbitrary quasi-isogeny.
Consider the morphism

α ◦ ρ−1 : (M2, λ̄2) −→ (M2, λ̄2).

We consider the group J for (A2, ι2, λ̄2) (compare (7.1.14)). Then α◦ρ−1 is an element of J(Qp)
by Tate’s theorem ([29, Cor. 6.29]). We approximate it by an element α1 ∈ J(Q). Then

ρ ◦ α1 : (A1, ι1, λ̄1) −→ (A2, ι2, λ̄2)

is the desired quasi-isogeny of order prime to p. �

7.2. The RZ-space M̃r. We fix a point (A0, ι0, λ̄0, η̄
p
0) of AK(κ̄ν). We also fix a polarization

λ0 ∈ λ̄0 which satisfies the condition (i) of Definition 7.1.2. We denote by X the p-divisible
group of A0. The action ι0 induces an action ιX on X and λ0 induces a polarization λX on X.
We denote by qν the number of elements in κν = κEν .

Let R ∈ NilpOEν and let (X, ι) be a p-divisible group over SpecR with an action

ι : OK ⊗ Zp −→ EndX.

The notion of a semi-local CM-triple (X, ι, λ) relative to K⊗Qp/F ⊗Qp and r should be obvious
but we explain it more precisely: the decomposition

OF ⊗ Zp =
∏
p

OFp

induces the decomposition
X =

∏
Xp.

Let λ be a polarization of X which induces the conjugation on K/F . Then the decomposition
extends to

(X, ι, λ) =
∏

(Xp, ιp, λp). (7.2.1)

We call (X, ι, λ) a semi-local CM-triple of type r if each (Xp, ιp, λp) is a local CM-triple of type
rp with respect to Kp/Fp. This makes sense because E(Kp/Fp, rp) ⊂ Eν .
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Definition 7.2.1. A semi-local CM-triple (X, ι, λ) of type (K ⊗ Qp/F ⊗ Qp, r) over an alge-
braically closed field with a κEν -algebra structure is said to be compatible with (V, ς) if, for each
p|p,

invr(Xp, ιp, λp) = inv(Vp, ςp),

and if λp is principal, except in the case where Kp/Fp is unramified and inv(Vp, ςp) = −1. In
the latter case λp is almost principal.

We note that the CM-triple (X, ιX, λX) over κ̄ν is compatible with (V, ς) and satisfies the
conditions (KCr) and (ECr), in the sense explained before Definition 7.2.1

Definition 7.2.2. Let i ∈ Z. LetMr(i) be the following functor on the category NilpOĔν
. For

an object R ∈ NilpOĔν
, write R̄ = R ⊗OĔν κ̄Eν . A point ofMr(i)(R) is given by the following

data:
(1) A CM-triple (X, ι, λ) of type (K ⊗Qp/F ⊗Qp, r) over SpecR which satisfies the conditions

(KCr) and (ECr) and is compatible with (V, ς).
(2) A OK ⊗ Zp-linear quasi-isogeny

ρ : X̄ := X ×SpecR Spec R̄ −→ X×SpecκĔν
Spec R̄

such that ρ respects the polarization piλ on X and λX up to a factor in (OF ⊗ Zp)×.
We denote these data by (X, ι, λ, ρ). Two data (X, ι, λ, ρ) and (X ′, ι′, λ′, ρ′) define the same
point of Mr(i) iff there is an isomorphism α : (X, ι) −→ (X ′, ι′), such that ρ′ ◦ αR̄ = ρ. In
particular, α respects the polarizations λ and λ′ up to a factor in (OF ⊗ Zp)×.

Remark 7.2.3. In (2) we could replace the last condition on ρ by
(2′) The quasi-isogeny ρ respects the polarizations as follows,

piλ = ρ∗(λX).

Then we obtain a functor which is naturally isomorphic to Mr(i). This follows because for
a ∈ (OF ⊗ Zp)× the points (X, ι, aλ, ρ) and (X, ι, λ, ρ) of Mr(R) are isomorphic. We could
also require upiλ = ρ∗(λX) for some u ∈ Z×p without changing the functor. We use different
descriptions of the functorMr(i) in order to describe better different group actions.

Let τEν ∈ Gal(Ĕν/Eν) be the Frobenius automorphism and let fEν be the inertia index of
Eν/Qp, i.e., qν = pfEν . As earlier, the Frobenius FX,τEν defines a Weil descent datum on these
functors,

ωMr
:Mr(i)(R) −→Mr(i+ fEν )(R[τEν ]), (7.2.2)

cf. (6.1.3), (6.2.2). Since the degrees of the polarizations λ and λX are the same, it follows that

2 height ρ = height(pi | X) = 4[F : Q]i.

More precisely, ρ =
∏

p ρp where p runs over the prime ideals of F over p. For each p we have

2 height ρp = height(pi | Xp) = 4[Fp : Qp]i.
We define

M̃r =
∐
i∈Z
Mr(i). (7.2.3)

We describe the functor M̃r with its Weil descent datum. Let

J(Qp) = {α ∈ EndoK⊗Qp X | α
∗(λX) = cλX, for some c ∈ Q×p }. (7.2.4)

This group acts naturally on M̃r via the rigidification ρ. We consider the decomposition (7.2.1)
for X. We set

Jp = {α ∈ EndoKp
Xp | α∗(λp) = cλp, for some c ∈ Q×p } (7.2.5)

For all p the groups Jp are subgroups of J ′ as introduced in section 6 in the local cases and they
agree with J introduced in the banal cases.

We will give an explicit description of these groups. For this, it is convenient to replace the
bilinear form ςp by the Fp-bilinear form

ς̃p : Vp × Vp → Fp,
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which is defined by
t(aς̃p(x1, x2)) = ςp(ax1, x2), a ∈ Fp,

for t(a) = TrFp/Qp ϑ
−1a, where as usual ϑ ∈ OF is the different of F/Qp. The restriction to the

lattices Λp gives
ς̃p : Λp × Λp → OFp

.

Let us consider the prime p = pv. We denote by Dv the quaternion division algebra over Fv.
We choose a two-dimensional Kv-vector space with an anti-hermitian form

ς̄pv : V̄pv × V̄pv → Fpv

of invariant +1. The contraction functor associates to (Xpv , ιXpv
, λXpv

) a special formal ODv -
module Y with the relative polarization λv = ψv, resp. λv = θv, as in section 5.2 resp. 5.3. Since
the endomorphism ring is not changed by the contraction functor, it follows from Lemmas 5.2.2
and 5.3.2 that there is an isomorphism

Jpv = G(V̄pv , ς̄pv ). (7.2.6)

Indeed, to see that the two groups agree we can assume that V̄pv = K2
pv and that the antiher-

mitian form κ associated to ς̄pv , cf. section 8.1, is given by the matrix(
0 1
−1 0

)
.

Then an elementary computation yields that the right hand side of (7.2.6) coincides with the
groups defined by the exact sequences (5.1.23).

For a banal prime p|p of F , we consider the image (CXp
, φXp

) by the polarized contraction
functor Cpol

r,k of Theorem 4.5.11. By Proposition 8.3.6, it follows from Condition (ii) in Definition
7.1.2 that there is an isomorphism

(CXp
, φXp

) ∼= (Λp, ς̃p). (7.2.7)

More precisely, Condition (ii) implies that the corresponding vector spaces are isomorphic; the
integral isomorphism follows from Lemmas 8.1.2 and 8.1.3. Therefore we obtain

Jp = G(Vp, ς̃p) = Gp, for p 6= pv. (7.2.8)

Since we want a uniform notation, we set (V̄p, ς̄p) = (Vp, ς̃p) for p 6= pv. We set

Ḡp = G(V̄p, ς̄p).

We now have fixed an isomorphism Jp ∼= Ḡp for all p|p. For p banal, we have Gp = Ḡp.
Let

V̄p = ⊕p|pV̄p.

This is an K ⊗Qp-module. Let
ς̄p : V̄p × V̄p → F ⊗Qp

be the orthogonal sum of the forms ς̄p. We define

Ḡ(Qp) := G(V̄p, ς̄p) := {g ∈ AutK⊗Qp(V̄p) | ς̄p(gx, gy) = cς̄p(x, y), for some c ∈ Q×p }. (7.2.9)

We have shown that Ḡ(Qp) = J(Qp). In the description of the descent data, the following
slightly larger group will be needed. We define the group Ḡ′p ⊃ Ḡ(Qp) via

Ḡ′p = {g ∈ AutK⊗Qp(V̄p) | ς̄p(gx, gy) = µp(g)ς̄p(x, y), for µp(g) ∈ pZ(OF ⊗ Zp)×},
and

Ḡ′p = {g ∈ AutKp
(V̄p) | ς̄p(gx, gy) = µp(g)ς̄p(x, y), for µp(g) ∈ pZO×Fp

}.
The groups Ḡ′p are isomorphic to the groups J ′p = J ′ introduced in section 6 in the local cases.
We fix these isomorphisms which are associated to the framing objects. Therefore the groups
Ḡ′p act on the local moduli spacesM of section 6 and the subgroup Ḡ′p ⊂

∏
p|p Ḡ

′
p acts on M̃r,

cf. (7.2.3).
We define the group Ĝ′(Qp) as the union of the following sets for i ∈ Z,

Ĝ′(i) = {(c, gp) ∈ piO×Fpv
×

∏
p banal

Ḡ′p | µp(gp) ∈ piO×Fp
, for all p}. (7.2.10)
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Let Ĝ′(Zp) ⊂ Ĝ′(Qp) be the subgroup of elements (c, gp) such that c ∈ O×Fpv
and gp(Λp) = Λp.

The multiplicator µpv : Ḡ′pv → pZO×Fpv
induces homomorphisms

Ḡ′p → Ĝ′(Qp) and G(Qp)→ Ĝ′(Qp). (7.2.11)

For the second map we used the identification Ḡp = Gp for p banal.

Definition 7.2.4. We consider the following element w′r = (c, wp) ∈ Ĝ′(Qp).
(1) c = pfEν .
(2) If Kp/Fp is ramified and hence λXp

is principal, wp is the multiplication

Π
epfEν
p : V̄p −→ V̄p,

see Proposition 6.3.2.
(3) If Kp/Fp is unramified, then both principal and almost principal λXp

are allowed. In both
cases we define wp as the multiplication

π
epfEν /2
p : V̄p −→ V̄p,

see Proposition 6.4.3.
(4) In the case whereKp = Fp×Fp is split and hence λXp

is principal, we have the decompositions
Xp = Xp,1 × Xp,2 and V̄p = V̄p,1 ⊕ V̄p,2. We set ap,i,Eν = ap,i

fEν
fp

for i = 1, 2, where
2ap,i = dimXpi , cf. (4.3.28) and the dicussion before Proposition 6.5.1. We define wp to be
the multiplication by πap,1,Eνp on V̄p,1 and the multiplication by πap,2,Eνp on V̄p,2.

Proposition 7.2.5. There exists an isomorphism

M̃r
∼−→ (Ω̂Fv ×Spf OFv

Spf OĔν )× Ĝ′(Qp)/Ĝ′(Zp)

which is equivariant with respect to the action of Ḡ′p on both sides. This extends the action of
J(Qp) = Ḡ(Qp) ⊂ Ḡ′p.

The Weil descent datum ωMr
relative to OĔν/OEν on the left hand side (7.2.2) corresponds

on the right hand side to

(ξ, g) 7−→ (ωτEν (ξ), w′rg), g ∈ Ĝ′(Qp).
Proof. We use the decomposition

Mr(i) =
∏
p|p

Mrp(i),

which follows immediately from (7.2.1). Then we conclude by the results of section 6, in partic-
ular Propositions 6.3.2, 6.4.3, 6.5.1. �

Remark 7.2.6. We may multiply each wp by a unit in Kp in the Definition 7.2.4 of w′r. This
does not change the assertion of the last Proposition.

We introduce the group

Ĝ(Qp) = {(c, gp) ∈ Q×p ×
∏

p banal

Gp | µp(gp) = c, for all p banal}. (7.2.12)

There are natural homomorphisms

G(Qp)→ Ĝ(Qp) and Ḡ(Qp)→ Ĝ(Qp). (7.2.13)

For the second map, we used that in the definition of Ĝ(Qp) we can replace Gp by Ḡp. In
particular the groups G(Qp) and J(Qp) act on Ĝ(Qp). We denote by Ĝ(Zp) ⊂ Ĝ(Qp) the
subgroup of all (c, gp) such that c ∈ Z×p and gpΛp = Λp. By Corollaries 6.3.4, 6.4.5, 6.5.3, we
obtain a bijection

Ĝ(Qp)/Ĝ(Zp)
∼−→ Ĝ′(Qp)/Ĝ′(Zp). (7.2.14)

Corollary 7.2.7. There exists an isomorphism

M̃r
∼−→ (Ω̂Fv ×Spf OFv

Spf OĔν )× Ĝ(Qp)/Ĝ(Zp)

which is equivariant with respect to the action of J(Qp) on both sides. �
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Note that in this version of Proposition 7.2.5 we loose control of the descent data.

7.3. The p-adic uniformization. We will now define a uniformization morphism in the sense
of [29]. We fix a point (A0, ι0, λ̄0, η̄

p
0) of AK(κ̄ν). The uniformization morphism will depend

on the choice of ηp0 ∈ η̄p0 . This choice defines a point of the proscheme proj limKp AK for all
congruence subgroups K = KpK

p as above. We also fix a polarization λ0 ∈ λ̄0 which satisfies
the condition (i) of Definition 7.1.2. Let (X, ιX, λX) be the p-divisible group corresponding to
(A0, λ0).

We denote by ÂK the restriction of AK to the category NilpOEν . The uniformization mor-
phism

Θ : M̃r ×G(Apf )/Kp −→ ÂK ×Spf OEν
Spf OĔν (7.3.1)

is defined as follows. Let (X, ι, λ, ρ) ∈ Mr(i)(R) and let g ∈ G(Apf ). Recall the notation
R̄ = R⊗OĔν κ̄ν . There exists an abelian scheme Ā over Spec R̄ endowed with an isomorphism of
the p-divisible group of Ā with X̄ and with a quasi-isogeny of abelian schemes of order a power
of p

ρ : Ā −→ A0 ×Spec κ̄ν Spec R̄. (7.3.2)

which induces on the p-divisible groups the given map ρ : X̄ → X ×Spec κ̄ν Spec R̄. The pair
(Ā, ρ) is unique up to canonical isomorphism. Because OK acts on X̄ = X ⊗R R̄, we obtain
a map OK −→ End(Ā) ⊗ Z(p). Moreover the polarization λ0 : A0 −→ A∧0 induces on Ā a
quasi-polarization λ′

Ā
: Ā −→ Ā∧ and η̄p0 induces

η̄p
Ā

= V p(ρ−1) ◦ ηp0 : V ⊗ Apf
∼−→ V p(Ā) mod Kp.

On the p-divisible groups, λ′
Ā

differs from piλ by a factor from (OF ⊗ Zp)× and therefore
λĀ := p−iλ′

Ā
satisfies the condition (i) in the Definition 7.1.2 of the functor AK.

We associate to the pair (X, g) from the left hand side of (7.3.1) the point

(Ā, ιĀ, λĀ, η̄
p

Ā
g) ∈ AK(R̄). (7.3.3)

The CM-triple (X, ι, λ) over R defines by the Serre-Tate theorem a lifting of (7.3.3) to a point
of AK(R). This finishes the definition of the uniformization morphism Θ in (7.3.1).

Lemma 7.3.1. The uniformization morphism is compatible with the Weil descent data ωMr

acting on the first factor on the left hand side and the natural Weil descent data on ÂK×Spf OEν
Spf OĔν .

Proof. This is essentially [29, Thm. 6.21] but we repeat the simple argument in our context.
By definition of the Weil descent data repeated below, it is enough to consider both sides of
(7.3.3) on the category of κ̄ν-algebras R. We will denote by ε : κ̄ν −→ R the algebra structure.
Consider a point (X, ι, λ, ρ) ∈ M̃r(R). The Weil descent datum ωMr

is obtained by changing ρ
to ρ′:

ρ′ : X
ρ−→ ε∗X

ε∗FX,τEν−→ ε∗(τEν )∗X.
This gives a point (X, ι, λ, ρ′) ∈ M̃r(R[τEν ]). The point (X, ι, λ, ρ) defines a quasi-isogeny of
abelian varieties

ρ : A −→ ε∗A0,

as explained in the definition of Θ. The point (X, ι, λ, ρ′) defines in the same way the quasi-
isogeny of abelian varieties over R[τEν ],

A −→ ε∗A0

ε∗FA0,τEν−→ (ετEν )∗A0.

Here A with its additional structure is regarded as a point of ÂKp(R[τEν ]). This makes sense
because to be a point of ÂKp(R) depends only on the κν-algebra structure on R. In other words

ÂKp(R) = ÂKp(R[τEν ]). (7.3.4)

But this equation is the Weil descent datum on the right hand side of (7.3.1). �
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We define the group

J(Q) = {γ ∈ EndoK A0 | γ∗(λ0) = uλ0, for some u ∈ Q×}, (7.3.5)

cf. (7.1.14). Regarded as an algebraic group over Q, the group J is an inner form of G. In the
proof of Proposition 7.1.11 we saw that the Qp-valued points of J coincide with the group J(Qp)
of (7.2.4). We proved in section 7.2 that Ḡ(Qp) = J(Qp). Let γ ∈ J(Q). With the chosen ηp0 ,
we define ω(γ) ∈ G(Apf ) by the equation

V p(γ) ◦ ηp0 = ηp0ω(γ). (7.3.6)

This defines a homomorphism
ω : J(Q) −→ G(Apf ),

and an isomorphism J(Apf ) ∼= G(Apf ). Therefore J and G are isomorphic over the finite places
w 6= p of Q. At the infinite place J is anisotropic because the Rosati involution is positive.

The group J(Qp) acts on M̃r,

(X, ι, λ, ρ) 7−→ (X, ι, λ, γρ), γ ∈ J(Qp).

Let ((X, ι, λ, ρ), g), with g ∈ G(Apf ) be a point from the left hand side of (7.3.1) and let
(A, ιA, λA, η

p
Ag) be its image by Θ, cf. (7.3.3). If γ ∈ J(Q), the quasi-isogeny γρ extends

to the quasi-isogeny of abelian schemes

Ā
ρ−→ (A0)R̄

γ−→ (A0)R̄.

In follows from (7.3.6) that the image of ((X, ι, λ, γρ), g) by the morphism Θ is

(A, ιA, λA, η
p
Aω(γ−1)g)

We define an action of J(Q) on the left hand side of (7.3.1) by

((X, ι, λ, ρ), g) 7−→ ((X, ι, λ, γρ), ω(γ)g).

Proposition 7.3.2. The uniformization morphism (7.3.1) factors through an isomorphism

Θ : J(Q)\(M̃r ×G(Apf )/Kp)
∼−→ ÂK ×Spf OEν

Spf OĔν .

This isomorphism is compatible with the Weil descent data relative to OĔν/OEν . Here the Weil
descent datum on the left is induced from ωMr , cf. Proposition 7.2.2.

Proof. We have just proved that the morphism is well-defined. The bijectivity follows from the
Proposition 7.1.11 and [29, Thm. 6.30]. �

By inserting Proposition 7.2.5 in this result, we obtain our main theorem about uniformization.

Theorem 7.3.3. Assume that Kp is sufficiently small. In particular, AK is representable, cf.
Proposition 7.1.5.
(i) The OEν -scheme AK is a projective and flat relative curve, which is stable in the sense of
Deligne-Mumford [10].

(ii) Let ÂK be the completion of AK along its special fiber, which is a formal scheme over
Spf OEν . There exists an isomorphism of formal schemes over Spf OĔν ,

J(Q)\
[(

Ω̂Fv×Spf OFv
Spf OĔν

)
×Ĝ′(Qp)/Ĝ′(Zp)×G(Apf )/Kp

] ∼−→ ÂK×Spf OEν
Spf OĔν . (7.3.7)

For varying Kp, this isomorphism is compatible with the action of G(Apf ) through Hecke corre-
spondences on both sides.

Let w′r the element in the center of Ĝ′(Qp) of Definition 7.2.4. We endow the left hand with
the Weil descent datum

(ξ, h, g) 7−→ (ωτEν (ξ), w′rh, g), h ∈ Ĝ′(Qp), g ∈ G(Apf ).

Then the isomorphism (7.3.7) is compatible with the Weil descent data on both sides. �
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Proof. The only assertion that remains to be proved is that the geometric special fiber of AK is
a stable curve. This geometric special fiber is a finite disjoint sum of schemes of the form

Γ̄\(Ω̂Fv ×Spf OFv
Spec κ̄ν), (7.3.8)

where Γ̄ ⊂ PGL2(Fv) is a discrete group, comp. [4, Rmks. 5.4] or [6, Cor. 6.8]. Consider the
action of Γ̄ on the Bruhat-Tits tree B of PGL2(Fv). By making Kp sufficiently small, we can
make sure that no non-trivial element of Γ̄ takes a vertex of B into itself or to an adjacent
vertex. Therefore no non-trivial element of Γ̄ takes an irreducible component of Ω̂Fv ×Spf OFv
Spec κ̄ν into itself or into a second component meeting the first one. From the structure of
Ω̂Fv ×Spf OFv

Spec κ̄ν , it follows that (7.3.8) is reduced and that each irreducible component of
(7.3.8) is a projective line meeting q + 1 other irreducible components. Here q is the number
of elements in the residue field of OFv . Hence each irreducible component meets at least three
other components, which proves the stability of (7.3.8). �

Under additional assumptions there is a much simpler statement of Theorem 7.3.3 which uses
Ĝ instead of Ĝ′. We can replace Ĝ′ by Ĝ in (7.3.7) using (7.2.14), where we recall Ĝ(Qp) from
(7.2.12). We define Ĝ(Af ) = Ĝ(Qp)×G(Apf ) and K̂ = Ĝ(Zp)×Kp, cf. (7.2.12).

Corollary 7.3.4. There is a natural isomorphism of formal schemes

J(Q)\
[(

Ω̂Fv ×Spf OFv
Spf OĔν

)
× Ĝ(Af )/K̂

] ∼−→ ÂK ×Spf OEν
Spf OĔν . (7.3.9)

Assume that the inertia index fEν is even. Assume moreover for prime ideals p|p of F which
split in K that ap,1 = ap,2 = [Fp : Qp]/2 in the notation of Definition 7.2.4. The multiplication
by p on V ⊗Qp defines an element of G(Qp). Let p̂ be the image in Ĝ(Qp). We also denote by
p̂ the element

(p̂, 1) ∈ Ĝ(Qp)×G(Apf ) = Ĝ(Af ).

If we endow the left hand side of (7.3.9) with the Weil descent datum

(ξ, g) 7−→ (ωτEν (ξ), p̂fEν /2g), g ∈ Ĝ(Af ),

then the morphism (7.3.9) is compatible with the Weil descent data.

Proof. We use the notations of the Theorem. By Remark (7.2.6), we may change the components
wp for banal p in w′r = (pfEν , wp) by units in Kp. It follows easily from our assumptions that
wp and pfEν /2 differ by an element in O×Fp

. The Corollary follows. �

Note that G(Qp)/G(Zp)
∼−→ Ĝ(Qp)/Ĝ(Zp), as follows from Kpv = ker(µpv : Gpv (Qp) −→

Q×p /Z×p ). Let us indicate briefly the last identity. We use the exact sequence

1 −→ SU(Vpv ) −→ Gpv (Qp) −→ Q×p × F 1
pv −→ 1.

(This exact sequence is induced by an exact sequence of algebraic groups over Qp.) The right
map is given by g 7→ (µpv (g), det(g)

µpv (g) ). Since Vpv is anisotropic, SU(Vpv ) is compact. Fur-
thermore, Z×p × F 1

pv is the unique maximal compact subgroup of the target group. Hence
K′pv := ker(µpv : Gpv (Qp) −→ Q×p /Z×p ) is the unique maximal compact subgroup of Gpv (Qp).
On the other hand, K′pv stabilizes Λpv . Hence K′pv = Kpv by the maximality of K′pv .

Hence
G(Af )/K ' Ĝ(Af )/K̂. (7.3.10)

Using these facts, Theorem 7.3.3 and Corollary 7.3.4 imply Theorem 1.2.3 in the Introduction.

7.4. The uniformization for deeper level structures at p. We now pass to deeper level
structures. For each prime ideal p of OF with p|p we have the group

Gp = {g ∈ GLOKp
(Vp) | ςp(gx1, gx2) = µ(g)ςp(x1, x2), for some µp(g) ∈ Q×p },

and the open compact subgroup Kp ⊂ Gp cf. (7.1.8). We will assume that there exist prime
ideals p which are banal since our deeper level structures exist only in this case. For each banal
p, we choose an open subgroup of K∗p ⊂ Kp. For a natural number M we consider the subgroup
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Kp(pM ) ⊂ Kp which consists of the elements that act trivially on Λp/p
MΛp. We will assume

that for some M
Kp(pM ) ⊂ K∗p. (7.4.1)

For the special prime pv we set K?
pv = Kpv . We set

K?
p = {g = (gp) ∈ G(Qp) | gp ∈ K?

p}.

This says that µp(gp) is independent of p. We also introduce

K?,ba
p = {(gp) ∈

∏
p, banal

K?
p | µp(gp) = c ∈ Z×p , independent of p}. (7.4.2)

This is a subgroup of

Gba(Qp) = {(gp) ∈
∏

p, banal

Gp | µp(gp) = c ∈ Q×p , independent of p}.

Also, let Oba
K =

∏
p, banalOKp

. Since the multiplier µpv : Gpv −→ Z×p is surjective, the groups
K?,ba
p and K?

p determine each other.
We need some generalities on p-divisible groups suited for our special case. Let X and Y be

p-divisible groups on a scheme S. We consider the category of étale morphisms U → S with the
étale topology.

Definition 7.4.1. Let n ∈ N. We define a sub-presheaf

Gp
n ⊂ Homet(X(n), Y (n)),

where the right hand side denotes the Hom in the category of étale sheaves. A homomorphism
α : X(n)U → Y (n)U belongs to Gp

n(U) if there is a profinite étale covering Ũ → U and a
homomorphism of p-divisible groups α̃ : XŨ → YŨ such that the restriction of α̃ to X(n)Ũ is
αŨ .

We denote the sheafification of Gp
n by Gn. We define the prosheaf

Homet(X,Y ) = ′′lim
←
′′Gn.

The limit is taken with respect to the natural restriction maps Gn → Gm for n > m.

We note that a homomorphism of p-divisible groups α̃ : XŨ → YŨ defines a homomorphism
α : X(n)U → Y (n)U iff

pr?1α̃− pr?2α̃ ∈ pn Hom(XŨ×U Ũ , YŨ×U Ũ ). (7.4.3)

We consider now a banal local CM-type (Kp/Fp, rp). Let Ep = E(rp) be the corresponding
reflex field. Let (X, ιX) and (Y, ιY ) be local CM-pairs over S/ Spf OEp

, which satisfy the Eisen-
stein condition. As above, we define Homet

OKp
(X,Y ) by replacing throughout homomorphisms by

homomorphisms of OKp
-modules. The presheaf Gp

n is now meant in this sense. The contracting
functor (cf. Definition 4.5.3) associates p-adic étale sheaves CX and CY with an OKp

-module
structure. By Theorem 4.5.4,

HomOKp
(X,Y ) ∼= HomOKp

(CX , CY ).

We set Cn,X = CX/p
nCX . One checks easily by the remark after Definition 7.4.1 that

Gp
n(U) = HomOKp

(CX , Cn,Y ) = HomOKp
(Cn,X , Cn,Y ). (7.4.4)

In particularGpn = Gn. We conclude that, for a scheme S/ Spf OEp
, the pro-sheaf Homet

OKp
(X,Y )

is a p-adic étale sheaf. Let ι : ω → S be a geometric point. Then we find for the fiber

Homet
OKp

(X,Y )ω = HomOKp
(Xω, Yω),

where the right hand side is the Hom in the cateory of p-divisible OKp
-modules.

Let us assume that S is a scheme over Spf OĔp
. The contracting functor of Theorem 4.5.11

associates to a CM-triple (X, ιX , λX) which satisfies the Eisenstein condition a p-adic étale sheaf
CX ∈ Et(OK)S with an alternating form

φX : CX × CX → OFp
. (7.4.5)
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We set ξX = TrFp/Qp ϑ
−1φX . In particular there is a CM-triple (Xp, ιXp

, λXp
) over κ̄Ĕp

such that

(CXp
, ξλXp

) ∼= (Λp, ςp), (7.4.6)

cf. (7.2.7).
The group Kp acts on the right hand side by similitudes. Therefore we obtain a homomor-

phism Kp → AutOKp
Xp such that the automorphisms in the image respect the polarization λXp

up to a factor in Z×p .

Definition 7.4.2. Let p be banal and let (X, ιX , λX) be a CM-triple on S which satisfies the
Eisenstein condition as above. A CL-level structure on (X, ιX , λX) as a class of isomorphisms
of p-adic étale sheaves

(Λp, ςp)
∼−→ (CX , ξλX ) mod K?

p, (7.4.7)

which respect the bilinear forms on both sides up to a factor in Z×p . We will write

Xp
∼−→ X mod K?

p. (7.4.8)

for a CL-structure.

More precisely this means the following. Let M ≥ 1 such that (7.4.1) holds. Then a CL-level
structure is a right K?

p/(Kp(pM ))-torsor

T ⊂ IsomOKp
(Λp ⊗ Z/pMZ, CX ⊗ Z/pMZ)

such that the inclusion is equivariant with respect to the right actions of K?
p/(Kp(pM )) on both

sides and such that the local sections of T respect the bilinear forms on Λp and CX up to a
factor in (Z/pMZ)×. If S is connected and ω → S is a geometric point a CL-structure is given
by a K?

p-orbit of an isomorphism Λp → (CX)ω which respects the bilinear forms on both sides
by a factor in Z×p and such that the orbit is preserved by the action of π1(S, ω). This explains
the notation (7.4.8).

Let (X, ι, λ) be a semi-local CM-triple relative to (K ⊗ Qp/F ⊗ Qp, r) over a scheme S ∈
(Sch/ Spf OĔν ), cf. the beginning of section 7.2. We set Xba =

∏
p, banalXp. We choose

(X, ιX, λX) as in section 7.2. Then (7.4.6) holds. From this we obtain an action of K?,ba
p on Xba

which respects the polarization
∏

p, banal λXp
up to a factor in Z×p .

We define a CL-level structure on Xba modulo K?,ba
p as a CL-level stuctures η̄p : Xp

∼−→ Xp

mod K?
p, for each banal p which respect the bilinear forms up to a factor in Z×p that is independent

of p.

Definition 7.4.3. With the notations of Definition 7.2.2, let i ∈ Z. LetMK?
p
(i) be the following

functor on the category of schemes S over Spf OĔν . We will write S̄ = S ×Spf OĔν
Spec κ̄Eν . A

point ofMK?
p
(i)(S) is given by the following data:

(1) A CM-triple (X, ι, λ) of type (K⊗Qp/F ⊗Qp, r) over S which satisfies the conditions (KCr)
and (ECr) and is compatible with (V, ς).

(2) A OK ⊗ Zp-linear quasi-isogeny

ρ : X̄ := X ×S S̄ −→ X×SpecκĔν
S̄

such that ρ respects the polarization piλ on X and λX up to a factor in Z×p .
(3) Let Xba =

∏
p banalXp. A CL-level structure

η̄ : Xba ∼−→ Xba mod K?,ba
p .

We set
M̃K?

p
=
∐
i∈Z
MK?

p
(i).

Two data (X1, ι1, λ1, ρ1, η̄1) and (X2, ι2, λ2, ρ2, η̄2) define the same point iff there is an isomor-
phism of OK-modules α : X1 → X2 such that ρ2 ◦ αS̄ = ρ1 and such that the level structures
are respected (in particular, α respects the polarizations up to a factor in Z×p ).
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We note that in the case without level structure we used a different version of the functor
Mr(i), cf. Remark 7.2.3. We prefer here to consider Z×p -homogeneous polarizations. We prove
directly a version of Corollary 7.2.7 in this setting. Since we assume that banal places exist, we
do not need the group Ĝ.

Proposition 7.4.4. There exists an isomorphism

M̃K?
p

∼−→ (Ω̂Fv ×Spf OFv
Spf OĔν )×Gba(Qp)/K?,ba

p ,

which is equivariant with respect to the action of J(Qp) on both sides.

Proof. At the banal places we may use lisse p-adic étale sheaves to describe a point of M̃K?
p
(S).

A point consists of a CM-triple (Xpv , ιpv , λpv ) and a quasi-isogeny ρpv : Xpv,S̄ → Xpv such that
ρ?pv (λXpv

) = upiλXpv
for some u ∈ Z×p , i ∈ Z and an isomorphism of lisse p-adic étale sheaves

on S̄,
(CXba , ξXba)

η−→ (C, ξ) ⊂ (CXba , ξXba)⊗Q, (7.4.9)
where η respects the alternating forms up to a factor in Z×p and such that the restriction of ξXba

with respect to the last inclusion is equal to upiξ with the same u and i as above. By (7.2.7) we
have

(CXba , ξXba) ∼= (Λba, ςba), (7.4.10)
where the right hand side is the orthogonal direct sum over all (Λp, ςp) for p banal.

We denote by M̃ba
K?
p
the moduli functor described by the data (7.4.9). We claim that there is

a natural isomorphism
M̃ba

K?
p

∼= Gba(Qp)/K?,ba
p . (7.4.11)

Indeed, the group Gba(Qp) acts naturally on this functor: Let g ∈ Gba(Qp) such that

φX(gx1, gx2) = u′pjξX(x1, x2).

Then g maps (7.4.9) to

(CXba , ξXba)
gη−→ (gC, (1/u′pj)ξ) ⊂ CXba ⊗Q.

If we have an arbitrary point (7.4.9), then the composite of the arrow with the inclusion is an
element g ∈ Gba(Qp) and therefore (7.4.9) is isomorphic to

CXba
g−→ (gC, (1/u′pj)ξXba) ⊂ CXba ⊗Q.

We see that the action is transitive and that the stabilizer of the base point

(CXba , ξXba)
id−→ (CXba , ξXba) ⊂ CXba ⊗Q

is K?,ba
p . This shows (7.4.11).

Now we fix i ∈ Z. We denote byMrpv
the functor of section 6 associated to the special local

CM-type (Kpv/Fpv , rpv ). There is the natural injection of functors

MK?
p
(i)→Mrpv

(i)× M̃ba
K?
p
(i).

We claim that this map is surjective. Indeed, assume we are given a point (Xpv , ιpv , λpv , ρpv ),
where ρ?pv (λXpv

) = u1p
iλpv , with u1 ∈ Z×p , from the first factor on the right hand side, and a

point (C, ξ) ⊂ CXba (endowed with η), where u2p
iξ = ξXba with u2 ∈ Z×p , from the second factor.

These two points form a point of MK?
p
(i) iff u1 = u2 because only then the condition (2) of

Definition 7.4.3 is fulfilled for the resulting polarization on X = Xpv × Xba. But in the point
from the first factor we can replace λpv by (u1/u2)λpv without changing the isomorphism class
of this point.

Therefore the surjectivity holds and the Proposition follows as Proposition 7.2.5. �

Let us fix an open and compact subgroup Kp ⊂ G(Apf ). We set K? = K?
pK

p and K = KpK
p

as after (7.1.8). We choose (X, ιX, λX) as above.

Definition 7.4.5. We define a functor Â?K? on the category of schemes S over Spf OĔν . A point
of Â?K?(S) consists of the following data:
(1) a point (A, ι, λ̄, η̄p) of AK(S),
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(2) a CL-level structure
η̄p : Xba → A[p∞]ba mod K?,ba

p .

We denote here by A[p∞]ba the banal part of the p-divisible group of A with its structure of
a semi-local CM-triple. The morphism Â?K? → ÂK is a finite étale covering of formal schemes.
Since we assume that Kp is small enough, AK is a proper scheme over SpecOĔν . By the
algebraization theorem, there is a unique finite étale morphism of schemes over SpecOĔν

A?K? → AK ×Spec OE,(pν )
Spec OĔν , (7.4.12)

such that the p-adic completion of A?K? is Â?K? .

Remark 7.4.6. We note that the scheme A?K? is defined over the ring OĔν , which is not of finite
type over Zp. As mentioned after Theorem 1.2.4, this scheme is closely related to an integral
model of a Shimura variety which is a central twist of ShK?(G, {h}).

Recall the projective schemeAK?,E over E from section 1.2 (the canonical model of ShK?(G, {h})),
comp. the proof of Proposition 7.1.5. We will now relateAK?,E with the general fiberA?K?×SpecOĔν

Spec Ĕν . We start with a reformulation of the level structure η̄p in Definition 7.4.5.
We assume that S is a scheme over Spf OĔp

, i.e., we pass to the completion of the maximal
unramified extension of Ep. We consider now a polarized local CM-pair (X, ιX , λX) over S of
CM-type (Kp/Fp, rp), cf. Definition 4.1.2. We will always assume that the Eisenstein conditions
are satisfied. By Theorem 4.5.11, λX is described by a OFp

-bilinear form φλX , or also

ξλX : CX × CX → Zp,
as defined after (7.4.5). Equivalently, we can consider the OKp

-anti-hermitian form

κλX : CX × CX → Kp, (7.4.13)

which is defined by

TrKp/Fp
aκλX (c1, c2) = φλX (ac1, c2), a ∈ OKp

, c1, c2 ∈ CX .
Then κλX is OKp

-linear in the first variable and OKp
-anti-linear in the second variable.

If we define (X, ιX, λX) by (CX, ξλX) ∼= (Λp, ςp) (cf. (7.4.6)), we can reformulate (7.4.7): A
CL-structure is a class of isomorphisms

(X, λX)→ (X,λX) mod K?
p

which respect the polarizations up to a factor in Z×p . This agrees with Definition 7.4.5.
Let κ̄Ep

be the residue class field of Ĕp. We will consider CM-pairs (Z, ιZ) of CM-type rp/2
over a scheme S/ Spf OĔp

. Then Z is a p-divisible group of height 2dp and dimension dp, where
dp = [Kp : Fp]. We will always assume that the Eisenstein condition is fulfilled. Proposition
4.2.2 continues to hold with the same polynomials EAψ . The functor CZ (cf. Definition 4.5.3)
exists for local CM-pairs of type (Kp/Fp, rp/2).

We will reformulate CL-level structures as suggested by [26]. There is up to isomorphism a
unique CM-pair (X̄0, ῑ0) of CM-type rp/2 over κ̄Ep

. It lifts uniquely to a CM-pair (X0, ι0) over
OĔp

, and
CX0

∼= OKp
(7.4.14)

is the constant p-adic sheaf. We consider biextensions

β : X0 ×X0 → Ĝm
or, equivalently, bilinear forms of displays as in Proposition 4.5.9. They are in bijection with
bilinear forms

φ : CX0 × CX0 → OFp
. (7.4.15)

Equivalently we use ξ = ξφ or κ = κφ as before (7.4.13).
We define κ0 : C0 × C0 → OKp

using (7.4.14), by

κ0(x, y) = xȳ. x, y ∈ OKp
. (7.4.16)

We denote by s0 : X0 → X∧0 the homomorphism associated to φ0. This homomorphism is
symmetric.
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We note that there is a principal polarization λ on X0. It is a generator of the free OKp
-

module of rank one HomOKp
(X0, X

∧
0 ). In the case where Kp/Fp is ramified, the corresponding

form under the bijection (7.4.15) is

φλ(x, y) = TrKp/Fp
Π−1xȳ.

Then s0 = λΠ. In the case where Kp/Fp is unramified, we choose a unit ε ∈ OKp
such that

ε+ ε̄ = 0. Then the corresponding form under the bijection (7.4.15) is

φλ(x, y) = TrKp/Fp
ε−1xȳ.

Then s0 = λε.
Let S be a p-adic formal scheme over Spf OĔp

. Let (X, ιX , λX) be a polarized CM-pair
of type (Kp/Fp, rp) which satisfies the Eisenstein condition as always required. We endow
Homet

OKp
(X0, X) with an OKp

-anti-hermitian form with values in Kp. Let u1, u2 ∈ Cn(U). They
are given by homomorphisms ũ1, ũ2 : X0 → X which are defined over a profinite étale covering
Ũ → U . We consider the homomorphism

ũ∧2 λX ũ1 : X0 → X → X∧ → X∧0 .

This element of HomOKp
((X0)Ũ , (X

∧
0 )Ũ ) may be written as

ũ∧2 λX ũ1 = δ̃(ũ1, ũ2)s0, (7.4.17)

with some constant δ̃(ũ1, ũ2) ∈ Kp. In the ramified case,

δ(u1, u2) := δ̃(ũ1, ũ2) mod pnΠ−1OOKp

is well defined. In the unramified case, the element δ̃(ũ1, ũ2) is well-defined modulo pnOKp
.

Varying n, we therefore obtain a bilinear form

δ : Homet
OKp

(X0, X)×Homet
OKp

(X0, X)→ Kp.

This is a OKp
-anti-hermitian form. We set

e = TrFp/Qp TrKp/Fp
ϑ−1
Fp/Qpδ.

Then e is an alternating form

e : Homet
OKp

(X0, X)×Homet
OKp

(X0, X)→ Zp.

which satisfies e(au1, u2) = e(u1, āu2), a ∈ OKp
.

Proposition 7.4.7. A CL-level structure on a polarized CM-pair (X, ιX , λX) of type (Kp/Fp, rp)
over the p-adic formal scheme S can equivalently be given as a class of isomorphisms of p-adic
étale sheaves

η : (Λp, ςp)
∼−→ (Homet

OKp
(X0, X), e) mod K?

p, (7.4.18)

which respect the bilinear forms on both sides up to a constant in Z×p .

Proof. Indeed, we apply the contracting functor to the right hand side of the isomorphism
(7.4.18). We view ũ1, ũ2 from (7.4.17) as homomorphisms

ũi : OKp
= CX0 → CX .

Let κλX : CX ×CX → Kp be the anti-hermitian form induced by λX . The definition (7.4.17) of
the sesqui-linear form δ which gives rise to e, reads in terms of the contracting functor as defined
by (7.4.17)

κλX (ũ1(x), ũ2(y)) = δ̃(ũ1, ũ2)xȳ. (7.4.19)
If we identify

Homet
OKp

(X0, X) = Homet
OKp

(OKp
, CX) = CX

by sending ũ to ũ(1), the form δ̃ is mapped to the form κλX . This is immediate by setting
x = y = 1 in (7.4.19). Therefore we have identified the right hand side of (7.4.18) with (CX , ξλX ).
This proves the assertion. �
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Proposition 7.4.8. Let S be a flat proper scheme over SpecOĔp
. Let (X, ιX) and (Y, ιY ) be

CM-pairs of type (Kp/Fp, rp) or (Kp/Fp, rp/2) over S. Let U → S be a finite étale covering,
and Û → Spf OĔp

its formal completion along the special fibre. Set Uη = U ×SpecOĔp
Spec Ĕp.

Then there is a natural bijective homomorphism

Gn(Û)→ HomOKp
(X(n)Uη , Y (n)Uη ). (7.4.20)

In particular, the p-adic étale sheaf HomOKp
(Tp(XSη ), Tp(YSη )) is unramified along the special

fibre of S.

Proof. We consider the natural map Gn(Û)→ HomOKp
(X(n)Û , Y (n)Û ). By Grothendieck’s ex-

istence theorem (EGA III, Thm. 5.1.4), the target of this arrow coincides with HomOKp
(X(n)U , Y (n)U ).

If we restrict the last set of homomorphisms to the generic fibre we obtain the map (7.4.20).
The injectivity of (7.4.20) follows from the definition of Gn. To prove surjectivity, we can

assume that U is connected. By Grothendieck’s existence theorem we find a finite connected
étale covering U1 → U such that the sheaves Cn,XŜ and Cn,YŜ become trivial over Û1.

We write the proof only in the case where X and Y are of CM-type rp. The cases where rp/2
appears will be obvious. By the choice of U1, we deduce the isomorphism

Gn(Û1) ∼= HomOKp
((OKp

/pnOKp
)2, (OKp

/pnOKp
)2).

We choose a geometric point ω of (U1)η. Then we obtain injective homomorphisms

Gn(Û1)→ HomOKp
(X(n)U1,η , Y (n)U1,η ) =

HomOKp
(Tp(Xη)⊗ Z/(pn), Tp(Yη)⊗ Z/(pn))(U1,η) −→

HomOKp
(Tp(Xω), Tp(Yω))⊗ Z/(pn) ∼= HomOKp

((OKp
)2, (OKp

)2)⊗ Z/(pn).

Since we have the same number of elements on both sides, the arrows are bijective. In particular
this shows that the étale sheaf HomOKp

(Tp(Xη), Tp(Yη))⊗Z/(pn) becomes trivial over the finite
étale covering U1,η → Sη. Therefore it is unramified along the special fibre of S.

Finally, we obtain the bijectivity of (7.4.20) by exploiting the sheaf property with respect to
the covering

U1 ×U U1
→→ U1 → U.

�

Corollary 7.4.9. With the assumptions of the last Proposition, there is a p-adic étale sheaf
HomOKp

(X,Y ) on S whose restriction to the special fibre S×SpecOĔp
Spec κ̄Ep

is Homet
OKp

(Xκ̄Ep
, Yκ̄Ep

)

and whose restriction to the general fibre S ×SpecOĔp
Spec Ĕp is HomOKp

(Tp(XĔp
), Tp(YĔp

)).

Proof. The sheaves Gn over Ŝ are representable by finite étale morphisms of formal schemes.
They come therefore from finite étale morphisms Gal

n → S. We have to compare the general
fibre of Gal

n with HomOKp
(Tp(Xη), Tp(Yη))⊗ Z/(pn).

We have shown that both sheaves are trivialized by a finite étale covering S1 → S. The
homomorphism (7.4.20) gives a canonical isomorphism between these sheaves with constant
étale sheaves on S1 ×SpecOĔp

SpecκĔp
. Finally, we consider descent for the general fiber of the

covering

S1 ×S S1

p1→→
p2

S1 → S

We see that the descent data for the two sheaves agree since they are induced from the descent
datum on the étale sheaf Hom(X(n), Y (n)). �

We now go back to the Definition 7.4.5. Let Λba =
∏

p,banal Λp. We choose for each banal
p a CM-pair (Xp,0, ιp,0) of local CM-type (Kp/Fp, rp/2) over Spf OĔν . We may assume that
CXp,0 = OKp

. We endow CXp,0 with the hermitian form (7.4.16) which corresponds to the
symmetric homomorphism sp,0 : Xp,0 → X∧p,0. We define Xba

0 =
∏

p, banalXp,0 and we endow it
with sba

0 =
∏

sp,0. Then by Proposition 7.4.7 we may replace (2) in Definition 7.4.5 by



ON THE p-ADIC UNIFORMIZATION OF UNITARY SHIMURA CURVES 131

(2′) A class η̄p of isomorphisms of p-adic étale sheaves,

ηp : Λba → HomOba
K

(Xba
0 , A[p∞]ba) mod K?,ba

p ,

which respect the forms on both sides up to a constant in Z×p .

The lisse p-adic sheaf on ÂK given by the right hand side of (2′) is the algebraization of a lisse p-
adic sheaf on AK which exists because this scheme is proper over SpecOĔν . We denote this sheaf
by the same symbol. Then the scheme A?K? is given by the following functor on the category
of schemes S over SpecOĔν : A point of A?K?(S) consists of a point (A, ι, λ̄, η̄p) of AK(S) and a
class η̄p as in (2′). We deduce the following description of A?K? .

Proposition 7.4.10. The scheme A?K? ×SpecOĔν
Spec Ĕν represents the following functor on

the category of Ĕν-schemes. A T -valued point is a point (A, ι, λ̄, η̄p) of AK(T ) and a class η̄p of
isomorphisms of p-adic étale sheaves

ηp : Λba ∼−→ HomOba
K

(Tp((X
ba
0 )Ĕν ), Tp(A)ba) mod K?,ba

p , (7.4.21)

which respect the forms on both sides up to a constant in Z×p .
The scheme A?K? is the normalization of AK×SpecOE,(pν )

SpecOĔν in A?K? ×SpecOĔν
Spec Ĕν

and is finite and étale over AK ×SpecOE,(pν )
SpecOĔν . �

Theorem 7.4.11. Let Ĕab
ν be the maximal abelian extension of Ĕν . Then there is an isomor-

phism
AK?,E ×SpecE Spec Ĕab

ν
∼= A?K? ×SpecOĔν

Spec Ĕab
ν (7.4.22)

which is natural in K?.

Proof. We make explicit what a level structure (7.4.21) means after base change to Ĕab
ν . Over

Ĕab
ν we may choose an isomorphism Zp(1) ∼= Zp and therefore we do not need to worry about

Tate twists. The Tate module Tp(Xp,0) of Xp,0 over an algebraic closure of Ĕν is an OKp
-module

which is free of rank 1. Therefore the Galois group of Ĕν acts on the Tate-module via its maximal
abelian quotient. We choose an isomorphism

Tp(Xp,0) ∼= OKp
(7.4.23)

such that the action of the Galois group of Ĕab
ν on both sides is trivial. The symmetric map

sp : Xp,0 → X∧p,0 induces a hermitian form κp,0 on the Tate-module (7.4.23). We find

κp,0(x, y) = cp,0xȳ, x, y ∈ OK

for some constant cp,0 ∈ O×Fp
. Note that in the ramified case two isomorphism classes are possible

for κp,0.
We consider a T -valued point (A, ι, λ̄, η̄p, η̄p) from the right hand side of (7.4.22). Let X =∏
Xp be the p-divisible group of A. A polarization from λ̄ induces an anti-hermitian pairing κp

on Tp(Xp). The anti-hermitian form δp on Hom(Tp(Xp,0), Tp(Xp)) is given by

κp(u1(x), u2(y)) = δp(u1, u2)cp,0xȳ, x, y ∈ OKp
, (7.4.24)

where u1, u2 ∈ Hom(Tp(Xp,0), Tp(Xp)) are sections.
For an OKp

-lattice (Γ,κΓ) with an anti-hermitian form κΓ : Γ × Γ → Kp, we write Γ[c] =
(Γ, cκΓ). The equation (7.4.24) gives an isomorphism

(Hom(Tp(Xp,0), Tp(Xp), cp,0δp) ∼= (Tp(Xp),κp).

We see that a level structure (7.4.21) at the banal prime p is given by an isomorphism

Λp[cp,0]→ (Tp(Xp),κp) mod K?
p.

Choosing a fixed isomorphism Λp[cp,0] ∼= Λp, we see that such a level structure at p is the same
as a class of isomorphisms

η̄p : Λp → (Tp(Xp),κp) mod K?
p.
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Since we want a level structure for Tp(A)ba, we require that the ηp must respect the bilinear
forms on both sides by the same factor u ∈ Z×p . For the special prime pv we take an arbitrary
isomorphism

ηpv : Λpv → Tp(Xpv )

which respects the bilinear forms on both sides up to the same factor u ∈ Z×p . This is possible
because by (ii) of Definition 7.1.2, the OKpv

-lattices of both sides are isomorphic and since, by
Lemmas 8.1.2 and 8.1.3, there exist isomorphisms with an arbitrary multiplicator u ∈ Z×p . We
set

η̃p = ηpvηp : Λ⊗ Zp → Tp(A).

Finally we set
η = η̃pη

p : V ⊗ Af → V̂ (A).

Let η̄ be the class of this isomorphism modulo K?. Then (A, ι, λ̄, η̄) is a T -valued point of AK?,E .
Since the last construction can be reversed, we obtain the isomorphism of the theorem. �

We will formulate a more precise version of the last Theorem. Let Ecν be the algebraic closure
of Ĕν . The action of the Galois group Gal(Ecν/Ĕν) on Tp(Xp,0) is given by a character

χp,0 : Gal(Ecν/Ĕν)→ O×Kp
, (7.4.25)

such that σ(t) = χp,0(σ)t for t ∈ Tp(Xp,0) and σ ∈ Gal(Ecν/Ĕν). Since the polarization of Xp,0

is defined over Ĕν , we obtain that NmKp/Fp
χp,0(σ) = 1. We define

χba
0 (σ) =

∏
p,banal

χp,0(σ) ∈ Gba(Qp).

Finally we define χ0 : Gal(Ecν/Ĕν)→ G(Qp) by setting

χ0(σ) = 1× χba
0 (σ) ∈ Gpv ×Gba(Qp).

We note that this element is in the center of the group G(Qp). By definition of the functor
AK?,E before Remark 7.1.6, χ0(σ) acts on AK?,Ĕν

= AK?,E ×SpecE Spec Ĕν via the datum (3),
i.e. it acts by Hecke operators. We obtain the homomorphism

χh
0 : Gal(Ecν/Ĕν)→ AutoppAK?,Ĕν

. (7.4.26)

(We write here the opposite group because the Hecke operators act by definition from the right.)

Corollary 7.4.12. Let σ ∈ Gal(Ecν/Ĕν). Then the action of idA?
K?
× Specσ on the right hand

side of (7.4.22) induces on the left hand side the automorphism χh
0(σ)× Specσ.

Remark 7.4.13. In general, let X a quasi-projective scheme over Ĕν . Let χ : Gal(Ecν/Ĕν) →
AutoppX be a continuous homomorphism. Then descent says that there is a unique quasi-
projective scheme X(χ) over Ĕν and an isomorphism

X ×Spec Ĕν
SpecEcν → X(χ)×Spec Ĕν

SpecEcν

such that, for all σ ∈ Gal(Ecν/Ĕν), the action of idX(χ) × Specσ on the right hand side induces
on the left hand side the action χ(σ)× Specσ. We will call X(χ) the Galois twist of X by χ.

Proof. (of Corollary 7.4.12) We take (7.4.22) over the algebraic closure Ecν . For σ ∈ Gal(Ecν/Ĕν),
we write σ̂ := Specσ. We consider the non-commutative diagram

AK?,Ĕν
×Spec Ĕν

SpecEcν //

idA×σ̂

��

A?
K?,Ĕν

×Spec Ĕν
SpecEcν

idA?×σ̂

��

AK?,Ĕν
×Spec Ĕν

SpecEcν // A?
K?,Ĕν

×Spec Ĕν
SpecEcν .

(7.4.27)

To understand how this does not commute we consider more generally a scheme S of finite type
over Ĕν and write SEcν = S×Spec Ĕν

SpecEcν . The morphism σ̂S := idS × σ̂ : SEcν → SEcν induces
maps

σA : AK?,Ĕν
(SEcν )→ AK?,Ĕν

(SEcν ), σA? : A?
K?,Ĕν

(SEcν )→ A?
K?,Ĕν

(SEcν ).
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Our task is to compare the effect of these maps on an element ξ ∈ AK?,Ĕν
(SEcν ) = A?

K?,Ĕν
(SEcν ).

The moduli interpretation describes ξ as a point of AK?,Ĕν
by a point (A, ι, λ, η̄p) ∈ AK,Ĕν

(SEcν )

and a rigidification η̄p : Λba → Tp(A)ba mod K?,ba. To make this more precise, we choose a
geometric point ω : SpecEcν → S which extends naturally to a point ω : SpecEcν → SEc . We
define ω′ by the commutative diagram

SEcν
σ̂S // SEcν

SpecEcν

ω′

OO

σ̂ // SpecEcν .

ω

OO

The rigidification is given by a homomorphism

ηp : Λba → Tp(Aω)ba.

There is an isomorphism
Tp((σ̂

∗
SA))ω′ = σ̂∗(Tp(Aω)).

By the moduli interpretation, the point σA(ξ) is given by (σ̂∗SA, σ̂
∗
Sι, σ̂

∗
Sλ, σ̂

∗
S η̄

p) and the rigidi-
fication is given by

Λba = σ̂∗(Λba)
σ̂∗(ηp)−→ σ̂∗(Tp(Aω)). (7.4.28)

Now we consider σA?(ξ). We can give the sheaf Tp((Xba
0 )Ĕν ) in (7.4.21) equivalently by the

Gal(Ecν/Eν)-module Λba(χba
0 ), where we indicate that the Galois group acts via the character

χba
0 . Then η̄p of (7.4.21) can be considered as a class of maps

Λba(χba
0 )Ecν → Tp(Aω)ba mod K?,ba. (7.4.29)

Since we are over Ecν , the action via χba
0 is trivial and therefore (A, ι, λ, η̄p, ηp) describes also a

point of A?
K?,Ĕν

(SEcν ). But if we want to identify the inverse image of this point by σ̂S we must
take into account the twist χba

0 . This inverse image is again given by (σ̂?SA, σ̂
?
Sι, σ̂

?
Sλ, σ̂

∗
S η̄

p) as
before, but the new rigidification at the banal places is

Λba(χba
0 )Ecν

∼= σ̂∗(Λba)(χba
0 )Ecν

σ̂∗(ηp)−→ σ̂∗(Tp(Aω)). (7.4.30)

The first isomorphism comes from the fact that both sides are the inverse image of Λba(χba
0 )

considered as a sheaf on Spec Ĕν . Therefore this isomorphism is the descent datum on the
constant sheaf, which is the multiplication by χba

0 (σ). We obtain

Λba(χba
0 )

χba
0 (σ)−→ σ̂∗(Λba)(χba

0 )
σ̂∗(ηp)−→ σ̂∗(Tp(Aω)).

This proves that σA∗ = χh
0(σ)σA. If we apply this to the diagram (7.4.27), we obtain

idA∗ × σ̂ = χh
0(σ)(idA × σ̂).

�

We now drop the assumption on K?
p that it be contained in Kp and come from a product of

K?
p. More precisely, let K?

p ⊂ G(Qp) be of the form

K?
p = G(Qp) ∩KpvK

?,ba
p , (7.4.31)

where K?,ba
p is an arbitrary open compact subgroup of Gba(Qp). Since Kpv is a normal subgroup

of Gpv and G(Qp), this class of subgroups is stable under conjugation by elements of G(Qp).
Therefore, using the naturality of the construction in Proposition 7.4.10, we can extend the
definition of A?K? to all such K? = K?

pK
p by first passing to a small enough normal subgroup of

finite index and then dividing out by the factor group.
We make this extension process more explicit by defining the functor Â?K? without using the

choice of Λp. Thereby the action of the Hecke operators becomes more obvious.
Let θ : X → Y be an isogeny of p-divisible OF ⊗ Zp-modules. Let pv be a prime of OF over

p. We say that θ is an isogeny of order prime to pv if θpv is an isomorphism. We use a similar
terminology for abelian varieties with action by OF .
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We consider a scheme S over Spf OĔν . We consider abelian schemes Ā over S up to isogeny of
order prime to pv which are endowed with an action ι : OK → End Ā and with a Q-homogeneous
polarization λ̄ such that the Rosati involution induces the conjugation on OK . Moreover, we
assume that there is a triple (A, ι, λ) as in Definition 7.1.2 which represents (Ā, ι, λ̄) such that
(A, ι) satisfies the conditions (KCr) and (ECr) and such that (A, ι, λ) satisfies the conditions
(i) and (ii) of Definition 7.1.2. Then call (Ā, ι, λ̄) an admissible prime-to-pv-isogeny class. Let
X =

∏
pXp be the p-divisible group of A. Then (CXba , ξλ) makes sense and (CXba ⊗ Q, ξλ)

depends only on (Ā, ι, λ̄). Let (X, ιX, λX) as in Definition 7.4.5.

Definition 7.4.14. We define a functor Â?K? on the category of schemes S over Spf OĔν . A
point of Â?K?(S) consists of the following data:

(1) an admissible prime-to-pv-isogeny class (Ā, ι, λ̄) over S.

(2) a class of isomorphisms

η̄p : CXba ⊗Q→ CĀ[p∞]ba ⊗Q mod K?,ba
p ,

which respects the bilinear forms on both sides up to a factor in Q×p .

We explain in more detail what is meant by (2). We assume that S is connected and we choose
a geometric point ω of S. Then the meaning of (2) is that we have a class of isomorphisms

ηp : (CXba)ω ⊗Q→ (CĀ[p∞]ba)ω ⊗Q mod K?,ba
p

which respects the bilinear forms on both sides up to a factor in Q×p and such that the class is
preserved by the action of π1(S, ω).

Let K?
p as in Definition 7.4.5. Then the functors of the Definitions 7.4.5 and 7.4.14 coincide.

Indeed, let us start with a point of Definition 7.4.14. Also, fix a triple (A, ι, λ) which represents
(Ā, ι, λ̄), as before Definition 7.4.14. The sublattice Λba

p ⊂ CXba)ω is fixed by K?,ba
p . Therefore

the image C of Λba
p by ηp depends only on the class η̄p and is invariant by π1(S, ω). Therefore

C defines a p-adic étale sheaf on S. We endow it with the polarization induced by ςba, cf.
(7.4.6). Therefore, using the contracting functor C defines a p-divisible OKba-module Y ba with
a polarization. Then Y := Xpv × Y ba is isogenous to the p-divisible group X of A. The
polarization on Y differs from the polarization induced from λ on A by a factor in Z×p , as we
see by comparing the degrees of the polarizations. Therefore we obtain a point (A1, ι1, λ̄1) of
Â?K?(S) which is isogenous to (Ā, ι, λ̄). This proves that the point we started with comes from
a point of the functor in Definition 7.4.5. It is clear that we have a bijection.

We have an action of Gba(Qp) on the tower Â?K? for varying K?
p. This action extends to the

algebraization A?K? and coincides via Theorem 7.4.11 with the Hecke operators on the tower
AK?,E .

Corollary 7.4.15. For every K? = K?
pK

p with (7.4.31) , there exists a normal scheme A?K?

over SpecOĔν such that for the p-adic completion of this scheme there is an isomorphism

Â?K? ' J(Q)\[(Ω̂Fv ×Spf OFv
Spf OĔν )×Gba(Qp)/K?,ba

p ×G(Apf )/Kp].

For varying K?, these schemes form a tower with an action of the group G(Qp)×G(Apf ), where
the action of G(Qp) factors through G(Qp)→ Gba(Qp). The isomorphism of formal schemes is
compatible with these actions.

The general fiber of A?K? is a Galois twist of AK?,E ×SpecE Spec Ĕν by the character χh
0 , cf.

(7.4.26) and Remark 7.4.13. The Galois twist respects the Hecke operators (cf. section 7.6 for
an explicit description of χh

0).

Proof. This is a consequence of Proposition 7.4.4 and the general pattern of p-adic uniformiza-
tion, cf. (7.3.1). The last assertion follows because χ0 : Gal(Eab

ν /Eν)→ G(Qp) factors through
the center. �
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7.5. The rigid-analytic uniformization. Let Arig
K denote the rigid-analytic space over SpEν

associated to AK,E . Then Theorem 7.3.3 implies the following corollary concerning generic
fibers.

Corollary 7.5.1. Let K = KpK
p as in (7.1.8). There exists an isomorphism of rigid-analytic

spaces over Sp Ĕν ,

Arig
K ×SpEν Sp Ĕν ' J(Q)\

[(
ΩFv ×SpFv Sp Ĕν

)
× Ĝ′(Qp)/Ĝ′(Zp)×G(Apf )/Kp

]
.

For varying Kp, this isomorphism is compatible with the action of G(Apf ) through Hecke corre-
spondences on both sides. �

Here ΩFv = P1
Fv
\ P1(Fv) is Drinfeld’s p-adic halfspace corresponding to the p-adic field Fv.

Similarly, Corollary 7.4.15 implies the following corollary concerning generic fibers for deeper
level structures.

Corollary 7.5.2. Assume that there are banal primes. Let K? = K?
pK

p with (7.4.31). Let Arig
K?

denote the rigid-analytic space over SpEν associated to AK?,E. There exists an isomorphism of
rigid-analytic spaces over Sp Ĕab

ν ,

Arig
K∗ ×SpEν Sp Ĕab

ν ' J(Q)\[(ΩFv ×SpFv Sp Ĕab
ν )×Gba(Qp)/K∗,ba

p ×G(Apf )/Kp].

For variable K?, this isomorphism is compatible with the Hecke correspondences by G(Qp) ×
G(Apf ). �

7.6. Determination of the character χh
0. In this section we give an explicit description of

the character χh
0 (7.4.26) which is used in Corollary 7.4.15. In the case where pv is ramified in

K/F , we only obtain the restriction of χh
0 to the Galois group of a quadratic extension of Ĕν .

It is enough to describe χp,0 (7.4.25) for each banal prime p. This is done by Proposition 7.6.5
below.

Let K/F be a CM-field. Let Ξ ⊂ HomQ-Alg(K,C) be a CM-type. We denote the reflex field
by H. We define an algebraic torus over Q, with Q-valued points

T (Q) = {a ∈ K× | aā ∈ Q×}.
We use the notation V = K for K regarded as a K-vector space.

We recall the reciprocity law. We define the homomorphism

µ : C× → (K ⊗Q C)× ∼=
∏

ϕ:K→C
C×.

The element µ(z), for z ∈ C, has component z for ϕ ∈ Ξ and has component 1 for ϕ /∈ Ξ on the
right hand side. We find µµ̄ = 1⊗ z ∈ (K⊗QC)×. We obtain a homomorphism of algebraic tori

µ : Gm,C → TC.

This homomorphism is defined over H,

µ : Gm,H → TH .

From this we deduce the reciprocity map

r : ResH/Q(Gm,H)
µ−→ ResH/Q(TH)

NmH/Q−→ T. (7.6.1)

We consider over the algebraic closure H̄ = Q̄ the set of tuples (A, ι, λ̄, κ), where (A, ι) is an
abelian variety over H̄ of CM-type Ξ, endowed with a Q-homogeneous polarization λ̄ which
induces on K the conjugation over F and an isomorphism κ : V̂ (A) → V ⊗ Af of K ⊗ Af -
modules. We call a second tuple (A′, ι′, λ̄′, κ′) equivalent to (A, ι, λ̄, κ) if there is a quasi-isogeny

α : (A, ι, λ̄)→ (A′, ι′, λ̄′) (7.6.2)

such that the following diagram

V̂ (A)

κ
$$

α // V̂ (A′)

κ′
zz

V ⊗ Af
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commutes. We also say that (A, ι, λ̄, κ) is quasi-isogenous to (A′, ι′, λ̄′, κ′).
Let CΞ be the set of tuples (A, ι, λ̄, κ) up to equivalence. Let σ ∈ Gal(H̄/H). Taking the

inverse image of (A, ι, λ̄, κ) by σ̂ := Specσ : Spec H̄ → Spec H̄ gives a left action of Gal(H̄/H)
on CΞ. We denote the inverse image by σ(A, ι, λ̄, κ).

We formulate the main theorem of complex multiplication of Shimura and Taniyama.

Theorem 7.6.1. ([9, Thm. 4.19]) The Galois group Gal(H̄/H) acts on CΞ via its maximal
abelian quotient Gal(Hab/H). Let e ∈ (H ⊗ A)× and let rec(e) ∈ Gal(Hab/H) be the automor-
phism given by the reciprocity law of class field theory. The following tuples are equivalent:

rec(e)(A, ι, λ̄, κ) ≡ (A, ι, λ̄, r(ef )κ),

where ef is the finite part of the idèle e.

Remark 7.6.2. Let (H×)∧ ⊂ (H ⊗ Af )× be the closure of H×. We deduce a homomorphism

Gal(H̄/H)→ (H ⊗ Af )×/(H×)∧
r−→ T (Af )/T (Q), (7.6.3)

where the first arrow is deduced from class field reciprocity and the second arrow exists because
T (Q) = T (Q)∧. To see this last fact, we note that the group of units in T (Q) is finite. Indeed,
the units are elements of K× with all absolute values equal to 1 at all places including the infinite
ones. Therefore T (Q) = T (Q)∧ by Chevalley’s theorem.

Theorem 7.6.1 says that the action of Gal(H̄/H) on CΞ is via (7.6.3). One can consider the
Shimura variety ShT . We may choose as usual a bijection

ShT (H̄) = ShT (C) = T (Af )/T (Q)∧.

Then the theorem may be regarded as a consequence of Langlands’ description of the reduction
of this Shimura variety at good places [17].

We fix an embedding Q̄ −→ Q̄p. The p-adic place which is induced on a subfield of Q̄ will be
denoted by ν.

Proposition 7.6.3. Let L ⊂ Q̄ be a number field such that H ⊂ L. Let (A0, ι0, λ0) be an abelian
variety over L with an action ι0 : OK → EndA0 which is of CM-type Ξ. We assume that A0

has good reduction at ν. The group Gal(L̄ν/Lν) acts on the Tate module Tp(A0) via its maximal
abelian quotient Gal(Lab

ν /Lν). Let Iν ⊂ Gal(Lab
ν /Lν) be the inertia group. The action of Iν on

the Tate module can be described as follows.
The inverse of the map (7.6.1) induces a homomorphism

ρ : L×ν
NmLν/Hν−→ H×ν ⊂ (H ⊗Qp)×

r−1

−→ (K ⊗Qp)×.
Composing ρ with the reciprocity law of local class field theory yields

Iν
rec' O×Lν

ρ−→ (OK ⊗ Zp)×.
The action of an element σ ∈ Iν on the Tate-module is the multiplication by the image in the
right hand side.

Proof. We set A = A0 ⊗H H̄ with the OK-action and the induced polarization. We set Λ =
OK ⊂ V and Λ̂ = OK ⊗ Ẑ. We choose a rigidification κ : T̂ (A)

∼→ Λ̂. We consider the tuple
(A, ι, λ̄, κ). Let

σ ∈ Ĩν ⊂ Gal(H̄ν/Hν) ⊂ Gal(H̄/H)

be an element of the inertia group at ν. The image in Gal(Hab/H) corresponds to an idèle in
(H ⊗ A)× which has components 1 outside ν and a component eν ∈ O×Hν at the place ν. We
denote the idèle also by eν . By Theorem 7.6.1, we have a quasi-isogeny

σ̂∗(A, ι, λ̄, κ) ∼= (A, ι, λ̄, r(eν)κ).

Let us moreover assume that σ fixes the elements of L. Since (A, ι, λ̄) is defined over L, it is not
changed by σ̂∗. Now we consider the product of the Tate modules for all primes,

T̂ (A) = σ̂∗(T̂ (A))
σ̂∗(κ)−→ Λ̂.

The first identification is due to the fact that T̂ (A) is a projective limit of étale sheaves on
SpecL.
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Lemma 7.6.4. Denote by T̂ (σ) the action of σ on T̂ (A). Then

σ̂∗(κ)T̂ (σ) = κ.

We postpone the proof of the Lemma. Because we have good reduction, the element T̂ (σ)
acts trivially on the Tate modules T`(A) for ` 6= p. On Tp(A) it acts by multiplication with an
element u(σ) ∈ (OK ⊗ Zp)×. Therefore we have a quasi-isogeny

(A, ι, λ̄, r(eν)κ) ∼= (A, ι, λ̄, u(σ)−1κ) (7.6.4)

The quasi-isogeny giving this equivalence must be trivial on the Tate modules V`(A) for ` 6= p.
It is therefore the identity. The proposition follows therefore from Lemma 7.6.4. �

Proof. (of Lemma 7.6.4) We consider an étale sheaf G over SpecL where L is any field. Let
Ls be the separable closure of L. For σ ∈ Gal(Ls/L) we denote by G(σ) : G(Ls) → G(Ls) the
natural action. Let Γ be a constant sheaf on SpecL associated to a set Γ. Let

κ : G→ Γ

be an isomorphism of sheaves on (SpecLs)ét. There are canonical isomorphisms σ̂∗(G) ∼= G and
σ̂∗(Γ) ∼= Γ because both sheaves are defined over L. We must show that the map

κ′ : G(Ls) ∼= σ̂∗(G)(Ls)
σ̂∗(κ)−→ σ̂∗(Γ)(Ls) = Γ

coincides with κG(σ−1).
Let A be a finite étale algebra over Ls. By definition of the inverse image, we have σ̂∗(G)(A) =

G(A[σ]). Therefore the Ls-algebra isomorphism σ : Ls → Ls[σ] induces a natural mapG[σ] : G(Ls)→
σ̂∗(G)(Ls). Our assertion follows from the commutative diagram, in which the composition of
the two upper horizontal arrows is G(σ),

G(Ls)
G[σ]
//

κ

��

σ̂∗(G)(Ls)

σ̂∗(κ)

��

∼ // G(Ls)

κ′

xx
Γ

Γ[σ]=id
// Γ

�

Let K/F, r,E → Q̄p, ν be as in section 7.1. Let p be a banal prime of K. Let (Xp,0, ιp,0) be
the unique CM-pair of CM-type rp/2 over SpecOĔν . We set

Ξp = {ϕ ∈ Φp | rϕ = 2},

where Φp = HomQp-Alg(Kp, Q̄p), as in (7.1.9). We consider the homomorphism

µp : Q̄×p → (Kp ⊗ Q̄p)×
∼→
∏
Φp

Q̄×p

such that the component of µp(a), a ∈ Q̄p, is equal to a for ϕ ∈ Ξp and is 1 for ϕ /∈ Ξp. This
morphism is defined over Eν . We define the local reciprocity law rp as

rp : E×ν
µp−→ (Kp ⊗Q Eν)×

NmEν/Qp−→ K×p . (7.6.5)

Let Iν ⊂ Gal(Ĕab
ν /Ĕν) be the inertia group. As before (7.4.25), let Ecν be the algebraic closure

of Ĕν in the completion of Q̄p. By the reciprocity law of local class field theory, we define

ρp : Gal(Ecν/Ĕν)→ Gal(Ĕab
ν /Ĕν)

rec' O×Eν
r−1
p−→ O×Kp

.

Proposition 7.6.5. Let p be a banal prime of K. Let χp,0 : Gal(Ecν/Ĕν)→ O×Kp
be the character

given by the action on Tp(Xp,0), compare (7.4.25). Then the restriction of this character to the
subgroup

Gal(Ecν/Ĕνϕ0(Kpv )) ⊂ Gal(Ecν/Ĕν)

coincides with the restriction of ρp to this subgroup.
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We remark that Ĕνϕ0(Kpv ) equals Ĕν if pv is unramified in K/F and is a quadratic extension
of Ĕν if pv is ramified in K/F .

Proof. It follows from the functoriality of rec that the proposition implies the same statement
for a finite extension E′ν of Eν .

We define a CM-type Ξ ⊂ Φ = HomQ-Alg(K,C) by choosing ϕ0 : K → C with rϕ0
= 1 and

setting
Ξ = {ϕ ∈ Φ | rϕ = 2} ∪ {ϕ0}.

We denote by H the reflex field of Ξ. We find that Hϕ0(K) = Eϕ0(K). We claim that there
exists an extension of number fields L/H which is unramified at ν and a tuple (A, ι, λ̄, κ) which
is defined over L and such that A has good reduction Ã over OLν . Let Y be the p-divisible group
of Ã, which we write as Y =

∏
p Yp, where p runs through the prime ideals of OK over p. Let p

be banal. Then (Yp, ι)⊗OLν OL̆ν is a CM-pair of type rp/2 which satisfies the Kottwitz condition
and the Eisenstein condition. Therefore it is isomorphic to (Xp,0, ιXp,0

) which is defined over
OH̆ν . Therefore the proposition follows from Proposition (7.6.3).

It remains to show the existence of L. We fix an open compact subgroup C ⊂ T (Af ) which
is maximal in p and is small enough. The Shimura variety ShΞ,C which is associated to (T, µ)
and C is representable by a moduli problem AΞ,C,H which is finite and étale over H. Moreover
it has a model AΞ,C over OHν . It is defined exactly in the same way as AK. Since for the
moduli problem AΞ,C each prime p of OK is banal, it is representable by a finite étale scheme
over OHν . We conclude the AΞ,C,H =

∐m
i=1 SpecLi for some finite field extensions Li/H which

are unramified over ν. Restricting the universal abelian scheme over AΞ,C,H to some L = Li,
we obtain a tuple as required. �

8. Appendix: Adjusted invariants

In this appendix we first collect some facts about anti-hermitian forms. Then we give a
correction to [20, Prop. 3.2], by introducing the r-adjusted invariant of a CM-triple. Finally, we
relate the r-adjusted invariant to the contracting functor of section 4.

8.1. Recollections on binary anti-hermitian forms over p-adic local fields. We first
recall the invariant of an anti-hermitian form in the case relevant to us. A good reference for
this material is [15].

Let K/F be a quadratic extension of fields of characteristic 0. We denote by a 7→ ā the
non-trivial automorphism of K over F . Let V be an 2-dimensional vector space over K. Let

κ : V × V −→ K,

be a sesquilinear form which is linear in the first argument and anti-linear in the second. We
assume that κ is anti-hermitian:

κ(x, y) = −κ(y, x).

We choose a basis {v1, v2} of V . Then det(κ(vi, vj))i,j∈{1,2} ∈ F×. We denote by

dK/F (V,κ) ∈ F×/NmK/F K
× (8.1.1)

the residue class of this element. It is independent of the choice of the basis and is called the
discriminant of (V,κ).

Definition 8.1.1. Let F be a p-adic local field and K/F a quadratic field extension. Let (V,κ)
be a K-vector space of dimension 2 with an anti-hermitian form κ which is nondegenerate.
We denote by inv(V,κ) ∈ {±1} the image of dK/F (V,κ) under the canonical isomorphism
F×/NmK/F K

× ' {±1}. The invariant determines (V,κ) up to isomorphism, cf. [15].

We note that an anti-hermitian form κ can equivalently be given by an alternating non-
degenerate Qp-bilinear form

ψ : V × V −→ Qp (8.1.2)
such that

ψ(ax, y) = ψ(x, āy), x, y ∈ V, a ∈ K.
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The anti-hermitian form κ is defined by the equation

TrK/Qp aκ(x, y) = ψ(ax, y).

In this case we set
inv(V, ψ) = inv(V,κ).

The invariant inv(V, ψ) determines (V, ψ) up to isomorphism.
Let Λ ⊂ V be an OK-lattice such that ψ induces a pairing

ψ : Λ× Λ −→ Zp, (8.1.3)

i.e., ψ is integral on Λ. We consider the map

Λ −→ HomZp(Λ,Zp)
y 7−→ `y, where `y(x) = ψ(x, y)

(8.1.4)

This is an anti-linear map of OK-modules. Therefore the image of this map is an OK-submodule.
We denote the length of the cokernel as an OK-module by h(Λ, ψ).

Lemma 8.1.2 ([15], Thm. 7.1). Let F be a local p-adic field and K/F an unramified field
extension. Let V be a 2-dimensional K-vector space. Let

ψ : V × V −→ Qp

as in (8.1.2). Then inv(V, ψ) = 1 iff there exists an OK-lattice Λ ⊂ V such that ψ is integral on
Λ and such that h(Λ, ψ) = 0, i.e., such that ψ|Λ×Λ is a perfect pairing. Moreover, Λ is uniquely
determined up to Aut(V, ψ).

Similarly, inv(V, ψ) = −1 iff there exists an OK-lattice Λ ⊂ V , such that ψ is integral on Λ
and such that h(Λ, ψ) = 1. Moreover, Λ is uniquely determined up to Aut(V, ψ). In this case,
ψ|Λ×Λ is called almost perfect.

Proof. This reduces to the analogous statement for the anti-hermitian form ψ̃ : V × V −→ K
defined by

t(ξψ̃(x1, x2)) = ψ(ξx1, x2), x1, x2 ∈ V, ξ ∈ K.
where t : K −→ Qp is defined by t(a) = trK/Qp(ϑ−1a), where ϑ denotes the different of K/Qp.
Then it follows from loc. cit. �

Lemma 8.1.3 ([15], Prop. 8.1 a)). Let p 6= 2, and let F be a local p-adic field and K/F a
ramified quadratic field extension. Let V be a 2-dimensional K-vector space. Let

ψ : V × V −→ Qp.

as in (8.1.2). Then there exists an OK-lattice Λ ⊂ V such that ψ induces a perfect form

ψ : Λ× Λ −→ Zp.

Moreover Λ is unique up to Aut(V, ψ). �

8.2. The r-adjusted invariant. Let K be a CM-field, with totally real subfield F . We set
Φ = HomQ-Alg(K, Q̄). Let r be a generalized CM-type of rank n, i.e., rϕ + rϕ̄ = n for all ϕ ∈ Φ.
Throughout this subsection, we assume that n is even. Let E = Er be the reflex field, cf. [20,
§2]. A CM-triple over an OE-algebra R is a triple (A, ι, λ) where A is an abelian scheme over R
with an action ι : OK → EndA with satisfies the Kottwitz condition (KCr) and a polarization
λ whose Rosati involution induces the conjugation of K/F . In the case n = 2 this is a CM-
triple with satisfies the Kottwitz condition, cf. section 2.3. Let v be a place of F . We define
an r-adjusted invariant invrv(A, ι, λ) attached to a triple (A, ι, λ) of CM-type r, defined over a
field k that is at the same time an OE-algebra. When v is non-archimedean split in K, then
invrv(A, ι, λ) = invv(A, ι, λ) = 1. If v is archimedean, or non-archimedean non-split in K, with
residue characteristic of v different from the characteristic of k, then invrv(A, ι, λ) = invv(A, ι, λ),
i.e., the adjusted invariant coincides with the invariant of [20, §3]. Comp. section 2.4 for the
definition of the latter invariant for n = 2. The case of general even n is substantially the same.
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Now let v be non-split with residue characteristic equal to the characteristic p of k. We may
assume that k is algebraically closed. Let us first assume that the OE-algebra structure of k is
induced by a OQ-algebra structure. Let ν̃ be the induced p-adic place of Q. Let

Φv = {ϕ : K −→ Q | ν̃ ◦ ϕ induces v }. (8.2.1)

Then
Φv = HomQp(Kv,Qν̃).

Also let
rv = r|Φv .

Now define
invrv(A, ι, λ) = invv(A, ι, λ) sgn(rv), (8.2.2)

with
sgn(rv) = (−1)

(n2 dv−
∑
ϕ∈Φ

+
v
rϕ)

= (−1)
1
2

∑
ϕ∈Φ

+
v

(rϕ−rϕ̄)
. (8.2.3)

Here Φ+
v is a half-system of embeddings in Φv, which has cardinality dv = [Fv : Qp]. Since

rϕ + rϕ = n for all ϕ ∈ Φv, and n is supposed to be even, (8.2.3) is independent of Φ+
v . Note

that sgn(rv) only depends on the place ν of E induced by ν̃.
The correct version of [20, Prop. 3.2] is now as follows.

Proposition 8.2.1. Let S be an OE-scheme. Let (A, ι, λ) be a CM-triple over S which satisfies
(KCr). Let c ∈ {±1}. Then for every place v of F , the set of points s ∈ S such that

invrv(As, ιs, λs) = c

is open and closed in S.

Proof. Clearly we may assume that S is an OE-scheme of finite type. Further we can assume
that S is irreducible. Obviously the invariant is constant on the generic fiber of S. Also, we may
assume that v is non-archimedean non-split in K.

First we consider the case when S is an irreducible scheme of finite type over κEν . Since each
local ring of S is dominated by a discrete valuation ring R, it is enough to consider the case
S = SpecR. We may replace R by a discrete valuation ring that dominates R. Therefore we
can assume that R is complete with algebraically closed residue class field, i.e., R ∼= k[[t]] for an
algebraically closed field k. According to the action of F ⊗ Qp, the p-divisible group X of A is
isogenous to a product

∏
w|pXw. We consider the factor Xv. Let P be the display of Xv over R,

cf. (3.1.9). We note that P is the value of the crystal of Xv at the pd-thickening W (R)/R. By
Lemma 8.2.2 below, there is an element x ∈ ∧nOKv⊗ZpW (R)P such that Fx = pn/2x. We define
the anti-hermitian form

κ : PQ × PQ → Kv ⊗Zp W (R)

as in (2.4.3). We consider the hermitian form h = ∧nOKv⊗ZpW (R)κ on ∧nOKv⊗ZpW (R)PQ. From
the equation

h(Fy1, Fy2) = pn Fh(y1, y2), y1, y2 ∈ ∧nOKv⊗ZpW (R)PQ,

we obtain that h(x, x) lies in the invariants (Kv ⊗Zp W (R))F = Kv. Because h is hermitian, we
obtain h(x, x) ∈ Fv. The element x can be used to determine the invariant of the Dieudonné
module P ⊗W (R) W (L) obtained for arbitrary base change R → L to a perfect field. Therefore
invv(As, ιs, λs) = invv(Aη, ιη, λη) and invrv(As, ιs, λs) = invrv(Aη, ιη, λη), where s and η denote
the special and the generic point of SpecR. For the comparison with the definition of the
invariant of a Dieudonné module we should remark that the equations Fx = pn/2x and V x =
pn/2x are equivalent because FV = pn on ∧nOKv⊗ZpW (R)P .

Now we consider the case when the function field of S has characteristic 0. This case can be
reduced to the case when S = SpecOL, where L is the completion of a subfield of Qp which
contains E and such that its ring of integers O = OL is a discrete valuation ring with residue
field Fp. We denote by AL the generic fiber of A, and by Ak its special fiber.
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We decompose the rational p-adic Tate module of AL, resp. the rational Dieudonné module
of Ak, with respect to the actions of F ⊗Qp,

Vp(AL) =
⊕
w|p

Vw(AL), M(Ak)Q =
⊕
w|p

M(Ak)Q,w.

Here Vw(AL) is a free K⊗F Fw-module of rank n, and M(Ak)Q,w is a free K⊗F Fw⊗QpW (k)Q-
module of rank n. Set Q̆p = W (k)Q.

Let Sv =
∧n
Kv

Vv(AL) and NQ,v =
∧n
Kv

M(Ak)Q,v. Both are equipped with hermitian forms
(for the first module, cf. [20, section 3, case b)]; for the second module, cf. subsection 2.4). Also,
we have NQ,v = 1v(

n
2 ), where 1v is a multiple of the unit object in the category of Dieudonné

modules, comp. (2.4.5), or Lemma 8.2.2. Let Uv be the image under the Fontaine functor of
NQ,v(−n2 ). We need to compare the two hermitian vector spaces Sv(−n2 ) and Uv.

Let T be the torus over Qp which is the kernel of the map defined by the norm of Kv/Fv,

1 −→ T −→ ResKv/Qp Gm,Kv −→ ResFv/Qp Gm,Fv −→ 1.

Then H1(Qp, T ) = F×v /Nm(Kv). We may regard the isomorphisms of hermitian vector spaces
Isom(Uv, Sv(−n2 )) as an etale sheaf on SpecFv. This is a T -torsor. Its class cl(Uv, Sv(−n2 )) is
calculated by [29, Prop. 1. 20].

To evaluate this formula, note that the first summand, κ(b), in loc. cit. is trivial. To evaluate
the second summand, µ], we use the following description of the filtration on NQ,v ⊗Q̆p Q̆p. For

the filtration of M(Ak)Q,v ⊗Q̆p Q̆p = ⊕ϕ∈ΦvM(Ak)Q,v,ϕ we have that the jumps are in degree 0

and 1, with
(0) ⊂ Fil1ϕ ⊂rϕ M(Ak)Q,v,ϕ. (8.2.4)

The upper index means that the cokernel has dimension rϕ. For the filtration of the one-
dimensional vector space NQ,v,ϕ, this means that the unique jump is in degree n − rϕ. We use
the identification

X∗(T ) = Ker
(
IndKvFv (IndFvQp(Z)) −→ IndFvQp(Z)

)
.

Then the corresponding filtration on N(A)Q,v,ϕ(−n2 ) is given by the cocharacter µ ∈ X∗(T ) with

µϕ =
n

2
− rϕ, ϕ ∈ Φv. (8.2.5)

We have to determine the image µ] of µ in X∗(T )Γ. Under the identification X∗(T )Γ =
H1(Qp, T ) = Z/2, we obtain

cl(Uv, Sv(−
n

2
)) = µ] =

∑
ϕ∈Φ+

v

µϕ =
n

2
dv −

∑
ϕ∈Φ+

v

rϕ , (8.2.6)

where we used the notation introduced for (8.2.3). We deduce invrv(Ak, ιk, λk) = invv(AL, ιL, λL),
as desired. �

In the proof of Proposition 8.2.1, we used the following lemma.

Lemma 8.2.2. Let F/Qp be a finite field extension of degree d and K/F be a quadratic field
extension. Let n be an even natural number. Let k be an algebraically closed field of characteristic
p. Let (X, ι) be a p-divisible group over k[[t]] of dimension nd and height 2nd with an action
OK → EndX. Let (P, ι) be the display of X, cf. (3.1.9). Then there exists a non-zero element
x ∈ ∧nOK⊗ZpW (k)[[t]]P such that

∧nF (x) = pn/2x.

Proof. We consider the Zp-frame Bk = (W (k)[[t]], pW (k)[[t]], k[[t]], σ, σ̇), where σ is the extension
of the Frobenius on W (k) to the power series ring given by σ(t) = tp and where σ̇ = (1/p)σ.
The evaluation P1 of the crystal of X at the pd-thickening W (k)[[t]]/k[[t]] has the structure of
a Bk-display. The display P is obtained by base change with respect to a morphism of frames
Bk →W(k[[t]]), cf. [36] and [23]. Therefore, it is enough to prove our assertion for the Bk-display
of X which we will now denote by P.

We consider first the case when K/F is ramified. When writing detW (k)[[t]] F , we mean
this with respect to an arbitrary W (k)[[t]]-basis of P . This determinant is well determined



142 STEPHEN KUDLA, MICHAEL RAPOPORT, AND THOMAS ZINK

up to multiplication with a unit in W (k)[[t]]. We know that detW (k)[[t]] F = phdu1 for some
u1 ∈ (W (k)[[t]])×.

We consider the decomposition P = ⊕Pψ according to

OK ⊗W (k)[[t]] =
∏
ψ

OK ⊗OFt ,ψ̃ W (k)[[t]].

The Frobenius is graded, F : Pψ → Pψσ. We conclude that detW (k)[[t]](F
f |Pψ) = pndu2 for

some unit u2 ∈ (W (k)[[t]])×. We fix ψ. Up to a unit we have

NmK/F t detOK⊗O
Ft
,ψ̃W (k)[[t]](F

f |Pψ) = detW (k)[[t]](F
f |Pψ). (8.2.7)

We fix a normal extension L of W (k)Q which contains K ⊗OFt ,ψ̃ W (k). The left hand side of
(8.2.7) is the product of conjugates c1, . . . , c2e ∈ OL[[t]] of detOK⊗O

Ft
,ψ̃W (k)[[t]](F

f |Pψ). These
elements have the same order with respect to the prime element ωL of L which is a prime element
in the regular local ring OL[[t]]. We rewrite (8.2.7)

c1 · c2 · . . . · c2e = pnd · u3,

for some unit u3. Since OL[[t]] is factorial, we find ci = pfn/2µi for some units µi. We conclude
that

detOK⊗O
Ft
,ψ̃W (k)[[t]](F

f |Pψ) = pfn/2u4

for some unit u4 ∈ (OK ⊗OFt ,ψ̃ W (k)[[t]])×. Since Pψ is a free OK ⊗OFt ,ψ̃ W (k)[[t]]-module
of rank n, we find that, for each element yψ ∈ ∧nOK⊗O

Ft
,ψ̃W (k)[[t]]Pψ, there is an equation

∧nF fyψ = pfn/2u(yψ)yψ for some unit u(yψ) ∈ OK ⊗OFt ,ψ̃ W (k)[[t]]. On the last ring, σf acts
via the second factor. There is a unit ζ ∈ OK ⊗OFt ,ψ̃ W (k)[[t]] such that

σf (ζ)ζ−1 = u(yψ).

Indeed, consider the image ū of u(yψ) in OK ⊗OFt ,ψ̃ W (k) by setting t = 0. It is well-known
that in this ring σf (ζ̄)ζ̄−1 = ū is solvable. One can lift ζ̄ successively modulo tn to a solution ζ.
Then xψ = ζyψ satisfies

∧nF fxψ = pfn/2xψ.

We define xψσi ∈ PQ by ∧nF ixψ = pin/2xψσi for i = 1, . . . , f . Then x = (xψ) ∈ P ⊗Q satisfies
∧hF (x) = pn/2x. Multiplying by a power of p we can arrange that x ∈ P .

The proof in the unramified case is almost the same. We indicate the differences. In this case
HomQp-Alg(F t,W (k)Q) has 2f elements. Therefore we have the equation (8.2.7) with f replaced
by 2f ,

detOK⊗O
Ft
,ψ̃W (k)[[t]](F

2f |Pψ) = pfnu4.

We define xψσi ∈ PQ by ∧nF ixψ = pin/2xψσi for i = 1, . . . , 2f . Then x = (xψ) ∈ P ⊗Q satisfies
∧hF (x) = pn/2x. �

Remarks 8.2.3. (i) The remarks and results on a product formula at the end of §3 of [20] become
correct when the invariants invv(A, ι, λ) are replaced by the adjusted invariants invrv(A, ι, λ).

(ii) In the definition of Mr,h,V in [20, (4.3)], the invariants invv(A, ι, λ) have to be replaced
by the adjusted invariants invrv(A, ι, λ).

(iii) One defines in the obvious way the r-adjusted invariant invr(X, ι, λ) of a local CM-triple
of type r, (X, ι, λ), over a field of characteristic p.

8.3. r-adjusted invariant and the contracting functor. In this subsection, we return to
the situation in section 2.1. We assume that K/F is a field extension. Let k be an algebraically
closed field of characteristic p with an OF -algebra structure, i.e., k ∈ NilpOF .

We consider the case where r is special. Consider an object (Pc, ιc, βc) ∈ dRpol
k cf. Definition

4.4.10. We write Pc = (Pc, Fc, Vc) for the corresponding WOF (k)-Dieudonné module. To avoid
too many double notations we denote the Frobenius automorphism on WOF (k) by τ . The
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Verschiebung on WOF (k) is then πτ−1. For our purposes it is more convenient to allow quasi-
polarizations, i.e., βc is a WOF (k)-bilinear form

Pc ⊗Q × Pc ⊗Q −→WOF (k)Q,

such that (Pc, ιc, p
tβc) ∈ dRpol

k for large enough t ∈ Z. Then βc is alternating and the following
equations hold:

βc(Fcu1, Fcu2) = πτ(βc(u1, u2)), u1, u2 ∈ Pc ⊗Q,
βc(ιc(a)u1, u2) = βc(u1, ιc(ā)u2), a ∈ K.

The polarization βc defines an anti-hermitian form

κc : Pc ⊗Q× Pc ⊗Q −→ K ⊗OF WOF (k), (8.3.1)

by the formula

TrK/F aκc(u1, u2) = βc(au1, u2), a ∈ K ⊗OF WOF (k), u1, u2 ∈ Pc ⊗Q.
We note that, by Lemma 3.1.15, Pc ⊗Q is a free K ⊗OF WOF (k)-module of rank two.

Since LiePc has dimension 2, we have ordπ detWOF (k)(Vc|Pc) = 2. We recall that, for an
arbitrary K ⊗OF WOF (k)-linear map V ]c : Pc ⊗Q −→ Pc ⊗Q,

NmK/F detK⊗OFWOF
(k)(V

]
c |Pc ⊗Q) = detWOF

(k)(V
]
c |Pc ⊗Q).

We conclude that
ordΠ detK⊗OFWOF

(k)(Vc|Pc) = 2, K/F ramified,

ordπ detK⊗OFWOF
(k)(Vc|Pc) = 2, K/F unramified.

(8.3.2)

With our convention π = Π in the unramified case, this is the same formula.
Let

Hc =

2∧
K⊗OFWOF

(k)

Pc ⊗Q.

This is a free K ⊗OF WOF (k)-module of rank 1. There is an element xc ∈ Hc such that

∧2 Vc xc = πxc. (8.3.3)

The existence of xc follows from (8.3.2) and the fact that the τ -conjugacy class of an element
ξ ∈ K ⊗OF WOF (k) is determined by its order, compare (2.4.2).

The anti-hermitian form κc induces on Hc an hermitian form

hc = ∧2κc : Hc ×Hc −→ K ⊗OF WOF (k).

We find

hc(∧2Vc x1,∧2Vc x2) = π2τ−1(hc(x1, x2)), (8.3.4)
where τ acts on K ⊗OF WOF (k) via the second factor. Using (8.3.3) this implies

hc(xc, xc) ∈ F× ⊂ K ⊗OF WOF (k).

The following definition is analogous to (2.4.7).

Definition 8.3.1. The invariant inv(Pc, ιc, βc) ∈ {±1} is defined as the image of hc(xc, xc) by
the canonical map

F× −→ F×/NmK/F K
× ∼−→ {±1},

The following proposition relates this invariant with the invariant (2.4.7) under the contracting
functor.

Proposition 8.3.2. Let K/F be a field extension and let r be special. Recall the reflex field E
associated to r. Let k ∈ NilpOĔ be an algebraically closed field. Let (P, ι, β) ∈ dPpol

r,k and let
(Pc, ιc, βc) ∈ dRpol

k be its image by the contracting functor Cpol
r,k , cf. (4.4.14). Then

invr(P, ι, β) = inv(Pc, ιc, βc).

Here the r-adjusted invariant is given by

invr(P, ι, β) = (−1)d−1inv(P, ι, β).
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Proof. The second assertion follows from the definition of sgn(r), cf. (8.2.3). Let us prove the
first assertion.

We begin with the ramified case. We have the decomposition P = ⊕ψPψ, cf. (4.3.6). By the
definition of the contracting functor for Dieudonné modules, we have

Pc = Pψ0
, Vc = Π−ef+1V,

cf. Remark 4.4.12. The bilinear form β̃c on Pc is the restriction of β̃ of Proposition 4.4.5. Since
we may change β̃ by a factor in F× without changing the invariant, we may replace β̃ by ϑ−1β̃,
i.e., we may assume that TrF/Qp β̃ = β. We define the anti-hermitian form

κ : P ⊗Q × P ⊗Q −→ K ⊗Zp W (k)

by TrK/F κ = β̃. On

H =

2∧
K⊗W (k)

P ⊗Q (8.3.5)

we obtain the hermitian form h = ∧2κ. We have the decomposition

H =
⊕
ψ

2∧
K⊗O

Ft
,ψ̃W (k)

Pψ ⊗Q =
⊕
ψ

Hψ.

The hermitian form h is the orthogonal sum of the induced forms

hψ : Hψ ×Hψ −→ K ⊗OFt ,ψ̃ W (k).

To determine inv(Pc, ιc, βc), we consider κc defined by TrK/F κc = βc and the hermitian form
hc = ∧2κc on Hc = Hψ0

. The form hψ0
coincides with the hermitian form deduced from the

form β̃c above. By definition βc = ηf0.kβ̃c, cf. (4.4.21). Hence we have

hc = η2f
0,khψ0

.

We choose an element x ∈ H such that

∧2V (x) = px.

Let xψ0 be the ψ0-component of x. Then inv(P, ι, β) is given by the element

hψ0(xψ0 , xψ0) ∈ F×.

We set zψ0
= η−f0,kxψ0

. Then we find

hc(zψ0
, zψ0

) = η2f
0,khψ0

(η−f0,kxψ0
, η−f0,kxψ0

) = hψ0
(xψ0

, xψ0
).

From Vc = Π−d+1V f and ∧2V fxψ0
= pfxψ0

, we obtain

∧2Vc(xψ0
) = (−1)d−1π(p/πe)fxψ0

∧2Vc(zψ0
) = τ−1(η−f0,k )(−1)d−1π(p/πe)fηf0,kzψ0

= (−1)d−1πzψ0
.

By Lemma 8.3.3 below, hc(zψ0 , zψ0) ∈ F× defines (−1)d−1inv(Pc, ιc, βc).
We consider now the unramified case. As before, we have H with its hermitian form h, cf.

(8.3.5). We consider the decomposition

H =
⊕
ψ

( 2∧
K⊗O

Kt
,ψ̃W (k)

Pψ ⊗Q
)

=
⊕
ψ

Hψ, (8.3.6)

which has now 2f summands. Now Hψ1
and Hψ2

are orthogonal for ψ1 6= ψ̄2. We denote by

hψ : Hψ ×Hψ̄ −→ K ⊗OtK ,ψ̃ W (k)

the sesquilinear form induced by h. Let x = (xψ) ∈ H such that ∧2V (x) = px or, equivalently,
∧2V (xψ) = pxψσ−1 for all ψ. The invariant of (P, ι, β) is the class in F×/NmK/F K

× of
hψ(xψ, xψ̄) ∈ F ⊂ K ⊗OKt ,ψ̃ W (k). This is independent of ψ. Equivalently, we can consider
ordπ hψ(xψ, xψ̄) ∈ Z/2Z. Note that ordπ makes sense for each element of K ⊗OKt ,ψ̃ W (k).
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The invariant of (Pc, ιc, βc) is defined by Hc = Hψ0
⊕Hψ̄0

and hc, via

ordπ hc(xc,ψ0
, xc,ψ̄0

), (8.3.7)

where xc = (xc,ψ0
, xc,ψ̄0

) ∈ Hψ0
⊕Hψ̄0

is the element of (8.3.3). We note that we can change hc

and the elements xc,ψ0 , resp. xc,ψ̄0
, by a unit in K ⊗OKt ,ψ̃ W (k) without changing (8.3.7). In

particular, (8.3.7) is equal to ordπ hψ0
(xc,ψ0

, xc,ψ̄0
).

For an element y = (yψ0
, yψ̄0

) ∈ Hc we obtain from (4.4.3)

∧2Vc(yψ0
) = π−2gψ̄0 ∧2 V (yψ0

), ∧2Vc(yψ̄0
) = π−2gψ0 ∧2 V (yψ̄0

).

We set
zψ0

= π−gψ0xψ0
, zψ̄0

= π−gψ̄0xψ̄0
.

We find
∧2Vc(zψ0

) = π−gψ0π−2gψ̄0pfxψ̄0
= π−gψ0

−gψ̄0pfzψ̄0
,

∧2Vc(zψ̄0
) = π−gψ̄0

−gψ0pfzψ0
.

We have ordπ(π−gψ̄0
−gψ0pf ) = 1. Therefore we obtain an element xc as in (8.3.3) if we change

zψ0
and zψ̄0

by a unit, cf. Lemma 8.3.5 below. Therefore the invariant of (Pc, ιc, βc) is

ordπ hψ0
(zψ0

, zψ̄0
) = (−gψ0

− gψ̄0
) + ordπ hψ0

(xψ0
, xψ̄0

) = (1− d) + ordπ hψ0
(xψ0

, xψ̄0
).

This proves the unramified case. �

In the previous proof, we used two lemmas which we state as Lemmas 8.3.3 and 8.3.5.

Lemma 8.3.3. Let K/F be ramified and let r be special. Let yc ∈ Hc be an element such that

∧2Vc(yc) = −πyc.

Then hc(yc, yc) ∈ F× and the image of this element in {±1} is −inv(Pc, ιc, βc).

Proof. We choose an element ζ ∈WOF (k)× such that

τ−1(ζ)ζ−1 = −1.

Then τ2(ζ) = ζ and therefore ζ ∈ OF ′ ⊂ WOF (k) where F ′/F is the unramified extension of
degree 2. More explicitly, we take an element c ∈ κF ′ such that τ(c) = −c and define ζ = [c] to
be the Teichmüller representative.

We set xc = ζyc. Then the equation (8.3.3) is satisfied. We find

hc(xc, xc) = ζ2hc(yc, yc). (8.3.8)

Since ζ2 mod π = c2 ∈ κF is not a square in this field, we conclude that ζ2 is not in the image
of NmK/F : O×K −→ O×F since the norm is the square on the residue fields. Therefore the image
of the right hand side of (8.3.8) in {±1} is different from the image of hc(yc, yc). �

The last lemma has the following variant which we need in the banal case.

Lemma 8.3.4. Let K/F be ramified and let r be arbitrary. Let (P, ι, β) be a CM-triple of type
r over an algebraically closed field k. Let y ∈ ∧2

K⊗W (k)PQ be an element such that

∧2V (y) = −py.

Set h = ∧2κ. Then h(y, y) ∈ F ⊂ F ⊗W (k) and

h(y, y) ≡ (−1)f inv(P, ι, β) mod NmK/F K
×.

Proof. We consider the decomposition

OF ⊗W (k) =
∏
ψ

OF ⊗OFt ,ψ̃ W (k).

We denote by σ the Frobenius acting on W (k). It induces via any of the embeddings ψ̃ the
Frobenius σ ∈ Gal(F t/Qp). The decomposition induces a decomposition P = ⊕ψPψ and

∧2
K⊗W (k)PQ = ⊕ψ ∧2

K⊗O
Ft
,ψ̃W (k) Pψ,Q,
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which is orthogonal with respect to h. By restriction of h, we obtain

hψ : ∧2
K⊗O

Ft
,ψ̃W (k)Pψ,Q × ∧

2
K⊗O

Ft
,ψ̃W (k)Pψ,Q −→ K ⊗OFt ,ψ̃ W (k).

We find ζ ∈ OF ⊗W (k) such that σ−1(ζ)ζ−1 = −1 or equivalently σ(ζ) = −ζ. We set x = ζy.
Then we find

∧2V (x) = σ−1(ζ) ∧2 V (y) = −σ−1(ζ)py = −σ−1(ζ)ζ−1px = px

Therefore inv(P, ι, β) is the class of

h(ζy, ζy) = ζ2h(y, y) mod NmK/F K
×. (8.3.9)

This shows in particular that h(y, y) ∈ F× because ζ2 ∈ F×. We can replace in (8.3.9) the left
hand side by ζψhψ(y, y) which gives for all ψ the same element of F . The equation σ(ζ) = −ζ
may be written as σ(ζψ) = −ζψσ. If we choose for a given ψ an element ζψ ∈ OF ⊗OFt W (k)

such that σf (ζψ) = (−1)fζψ, we obtain from this element a unique ζ.
In the case where f is even, we can choose ζψ = 1, which proves the Lemma in this case. If

f is odd, we obtain that ζ ∈ F ′ \ F . This implies as in the last Lemma that ζ2 /∈ NmK/F K
×.

This proves the case where f is odd. �

The following fact is well-known.

Lemma 8.3.5. Let K/F be unramified. Let u ∈ OK ⊗OFt ,ψ̃0
W (k) be a unit. Then there exists

a unit ζ ∈ OK ⊗OFt ,ψ̃0
W (k) such that

σ−f (ζ) · ζ−1 = u.

�

Proposition 8.3.6. Let r be banal, and let K/F be a field extension. Let R = k be an alge-
braically closed field. Let (CP , ι, φ) be the image of (P, ι, β) ∈ dPpol

r,k by the polarized contraction
functor Cpol

r,k , cf. Theorem 4.5.11. Then

inv(CP , ι, φ) = invr(P, ι, β).

Here the r-adjusted invariant is given by

invr(P, ι, β) = (−1)dinv(P, ι, β).

Proof. We begin with the ramified case. We choose κ̄E ⊂ k. Let F ηη−1 = πe/p = ρ, η ∈
OF ⊗ W (κ̄E) as in (4.5.19). We define β̃ : P × P −→ OF ⊗ W (k) by (4.5.8) and the anti-
hermitian form κ : PQ × PQ −→ K ⊗W (k) by Trκ = β̃. This κ differs from the κ of (2.4.3) by
a constant in F . We can use it to compute invr(P, ι, β). We set

β̃′ = ηβ̃, κ′ = ηκ.
We set V ′ = Π−eV . Then we have CP = {y ∈ P | V ′y = y}, cf. Remark 4.5.13. From this, one
deduces

ρ · F β̃(y1, y2) = β̃(y1, y2), y1, y2 ∈ CP ,
cf. (4.5.9). This implies

F β̃′(y1, y2) = β̃′(y1, y2)

The restriction of β̃′ to CP is the form φ, cf. Remark 4.5.13.
We choose an element x ∈ ∧2PQ := ∧2

K⊗W (k)PQ such that ∧2V (x) = (−1)epx. By Lemma
8.3.4 the class of ∧2κ(x, x) ∈ F×/NmK/F K

× = {±1} is (−1)feinv(P, ι, β) = invr(P, ι, β).
We note that ∧2V ′ = (−1)eπ−e ∧2 V . We set

z = η−1x ∈ ∧2PQ.

Then we find

∧2V ′(z) = F−1

(η−1)(−1)eπ−e ∧2 V (x) = F−1

(η−1)(−1)eπ−e(−1)epx = F−1

(η−1)ηπ−epz = z.

Therefore z ∈ ∧2
KCP ⊗ Q. The invariant inv(CP , ι, φ) is given by ∧2κ′(z, z). Therefore the

equality of invariants follows from

∧2κ′(z, z) = η2 ∧2 κ(η−1x, η−1x) = ∧2κ(x, x).
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Now we consider the case where K/F is unramified. We use the notation H,h,Hψ, hψ from
(8.3.6). We have by (4.5.13) that

∧2
OKCP = {z ∈ H | ∧2 V (z) = π2

rz}.
Using the decomposition (8.3.6), the condition for z = (zψ) becomes

∧2V (zψσ) = π2aψzψ.

We choose z 6= 0. Then
inv(CP , ι, φ) = (−1)ordπ hψ(zψ,zψ̄),

for any ψ. We set gψ = aψ + aψσ + . . . aψσf−1 . Then we obtain

gψσ − gψ = aψσf − aψ = aψ̄ − aψ = e− 2aψ.

We set uψ = πgψzψ. Then u = (uψ) satisfies

∧2V (u) = πeu.

Indeed,

∧2V (uψσ) = πgψσ ∧2 V (zψσ) = πgψσπ2aψzψ = πgψσπ2aψπ−gψuψ = πeuψ.

Let again η ∈ OF ⊗W (κ̄E) be the element defined after (4.5.19). It satisfies η−1 F−1

η = (p/πe).
We set x = ηu. Then ∧2V (x) = px. Therefore

inv(P, ι, β) = (−1)ordπ hψ(xψ,xψ̄),

for any ψ. Therefore the unramified case follows from

ordπ hψ(xψ, xψ̄) = ordπ hψ(ηπgψzψ, ηπ
gψ̄zψ̄) = (gψ+gψ̄)+ordπ hψ(zψ, zψ̄) = ef+ordπ hψ(zψ, zψ̄).

�
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inv(X, ι, λ), 17

inv(V,κ), 138
invrv(A, ι, λ), 140

J , 4, 19, 118
J1, 19
JDr, 84
J∗r, 84
J∗ur, 84
J ·, 85
J ′, 100, 103, 108
J(Qp), 107, 119
J(Zp), 107
J(Qp)o, 107
J ′(Zp), 108
Jp, 119
J(Q), 123

K?, 4
K?
p, 4

(KCr), 11
(KCψ,r), 47
Kp, 113
Kp, 113
K?,ba
p , 125

L, 39
LP , 47

MK/F,r, 18, 98
Mr =MK/F,r, 19
MK/F,r,ε, 19
MDr, 82
M̃Dr, 82
M̃r, 99
M̃r, 102, 119
M̃r,ε, 105
M̃r± , 108
M̃K?

p
, 126

M̃ba
K?
p
, 127

NilpO, 10
Ñ , 85
Ñ , 93
N (i), 84
Ñ [e], 100

OF (ρ), 71

Pm,F , 21
P(ε), 21
Plt, 32
Pa, 37
P∇, 42
(P∆

1 , ι
∆
1 ), 65
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Pr,S , 45
dPr,S , 45
Ppol
r,S , 45

dPpol
r,S , 45

P′r,R, 58
dP′r,R, 58
dP′ nilp

r,R , 58
dPr,S/R, 60
Pss
r,R, 62

P
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r,R , 62

dPss,pol
r,R , 67

r, 3
(RCr), 11
R[τ ], 82
rp, 113
r, 135
dRR, 62
dRnilp

R , 62
dRpol

R , 67
dRnilp,pol

R , 67

Sψ, 12
sgn(rv), 140

t, 63, 139

Up, 113

V̂ p(A), 5
v, 112

w′r, 121
WO(R), 20

WO(S/R), 21
Wε
O(R), 33

(X∨, ι∧), 14
X∆ = (X∇, ι∆), 84
(Xc, ιc), 93
Xba, 126

(Y, ιY), 82

εψ, 11
Θ, 57, 122
ϑ, 63, 139
κ, 112
Λ∨, 10
Λp, 113
Λba, 130
ν, 4, 112
Ξ, 135
Π, 10
ς, 112
Φ, 3, 112
Φψ, 11
ϕ̆0, 66
χp,0, 132
χh

0 , 132
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ΩR, 1
ΩFv , 2
Ω̂Fv , 6
ωMDr , 83
ωτ , 83
ωN , 85, 93
ωMr

, 99, 119
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r-adjusted invariant, 139
étale Frobenius module, 69

Ahsendorf frame, 29
Ahsendorf frame for S/R, 35
Ahsendorf functor, 28
Ahsendorf functor for S/R, 35
almost principal polarization, 15
almost self-dual, 10
Anti-linear polarization form, 45

banal ψ, 47
base change of a display, 22
bilinear form of F-displays, 26

Cherednik’s theorem, 2
CL-level structure, 126
CM-triple, 139
compatible semi-local CM-triple, 119
conjugate p-divisible OK-module, 93
conjugate dual local CM-pair, 14
conjugate Faltings dual, 65
contracting functor for polarized CM-pairs,

67
contracting functor, 62, 70
contraction, 3

Dieudonné module of a perfect display, 22
dimension of a display, 21
discriminant, 17
discriminant of an anti-hermitian form, 138
display over a frame, 21
divided Witt polynomials, 21
Drinfeld halfplane, 2
Drinfeld homomorphism, 28
Drinfeld polarization, 79
dual of a strict formal p-divisible

O-module, 28

Eisenstein condition, 12

Faltings conjugate dual, 84
Faltings dual, 42, 45
frame, 20
framing object, 18, 82

Galois twist of a scheme, 132
generalized local CM-type, special or banal

(split or non-split), 10
generalized CM-type, 139
generalized special CM-type, 3

height of a display, 21
height of a polarization of an F-display, 28

height of an isogeny of displays, 25
heights and the Ahsendorf functor, 35

isogeny of displays, 25

Kottwitz condition, 11, 46

Lie algebra of a display, 21
local CM-pair, 14
local CM-triple, polarized local CM-pair, 15
logarithmic Teichmüller representative, 21
Lubin-Tate display, 39
Lubin-Tate frame, 32
Lubin-Tate frame for S/R, 36

morphism of O-frames, 20
multiplicative F-display, 21
Mumford, 2

nilpotent display, 23
normal decomposition of a display, 22

perfect O-frame, 22
polarization of an F-display, 28
pre-contracting functor, 53, 58
principal polarization of an F-display, 28

quaternionic Shimura curve, 2

rank condition, 11
reflex field, 4
relative polarization, 44

self-dual, 10
semi-global integral model, 5
semi-local CM-triple, 118
Shimura pair, 4
special ψ, 47
special CM-type, 112
special formal OD-module, 77
special local CM-type, 10
strict action, 23
supersingular object of dPr,R, 58

Tate uniformization, 2
translation action, 82
twist of a display, 21

uniformization morphism, 122

Varshavsky, 2

Witt frame for S/R relative to O, 21
Witt frame relative to O, 20
Witt polynomials relative to O, 20
Witt ring relative to O, 20
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