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ABSTRACT 

Let G be a connected reductive group over Q, and let f?( G. Q,) be the extended Bruhat-Tits building 
of G over Q,. Let L be the completion of the maximal unramified extension of Qp and let B(G, L) be 
the building of G over L. By the theorem of Bruhat and Tits, 23(G, Qp) may be identified with the 
fixed point set of the Frobenius automorphism 0 acting on B(G, L). A special case of our main result 
states that for any c > 0 there exists C > 0 with the property that any point x E L3(G, L) with dis- 
tance d(x, CT(X)) < c is at distance < C from B(G. 8). The results in this paper constitute a quali- 
tative generalization of a result of Drinfeld. 

Bruhat and Tits have associated to a semi-simple, or more generally a reductive 
algebraic group over a non-archimedean local field its building. They proved 
that in many respects the building has properties analogous to those of the 
symmetric space associated to a semi-simple Lie group. In particular there are 
many similarities between buildings and simply connected Riemannian mani- 
folds of negative curvature. 

The purpose of this note is to point out another such similarity, in a very 
special situation. Let F be a finite extension of QP, and let L be a complete 
unramified extension of F with algebraically closed residue field. Let 
cr E Aut(L/F) be the relative Frobenius automorphism, so that F = L<“‘. Let 
G be a reductive group over F and let a(G, F) resp. B(G, L) be the buildings of G 
over F resp. over L. By the Bruhat-Tits fixed point theorem, /3(G, F) is the set of 
fixed points under (T in B(G, L). A special case of the main result of this paper 
(corresponding to the case b = 1 in its statement (1.4)) asserts that the distance 
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between the points x and U(X) of B(G, L) increases with the distance of x from 
B(G, F), and this in fact uniformly. The following picture is supposed to give a 
graphic description of the behaviour of the building in this respect. 

A form of our main result, for G = GL,, is used as an important step in the 
representability theorem of [RZ], and in fact our proof here, in Section 1, is by 
reduction to this case. In order to perform this reduction we need to embed the 
building of an arbitrary reductive group in an equivariant way in the building 
of a general linear group. Fortunately for us, Landvogt rose to the challenge 
and proved the embedding theorem on buildings which we needed for this 
purpose [Ll]. 

Our method of proof entails that we do not know in how far the above pic- 
ture remains valid for more general automorphisms of buildings than Frobe- 
nius automorphisms. In Section 2 we mention a natural conjecture in this di- 
rection. This conjecture is due to Rousseau and arose in discussions we had 
with him on our main theorem. We refer to [Rl] for more details on this con- 
jecture and for Rousseau’s results in this direction. In the final section we ex- 
plain the original question which gave rise to this paper, and which is related to 
a paper of Drinfeld [D]. 

In conclusion we wish to thank M. Aschbacher, E. Landvogt, J. de Jong and 
above all G. Rousseau for very instructive discussions. 

1. THE FINITENESS THEOREM 

1.1. In this section we let k be an algebraically closed field of characteristic 
p > 0. Let K be the fraction field of its ring of Witt vectors W(k) and K be an 
algebraic closure of K. Let F be a finite extension of QP contained in R and let L 

be the compositum of K and F in x. Let 1~ E Aut(L/F) be the relative Frobe- 
nius automorphism ([K], 1.1). Then the fixed field of 0 in L is F. 

1.2. Let G be a connected reductive algebraic group over F. An element 
b E G(L) defines a connected algebraic group J over F, with values in a 
F-algebra R ([RZ], (1.12)) 

J(R) = {g E G(R @F L); a(g) = b-k@ 
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The element b defines an associated slope homomorphism ([K], 4.2) defined 

over L, 

Here D is the diagonizable pro-algebraic group over QP whose character group 
is Q. The slope homomorphism is characterized by the fact that for every 
F-rational representation (I/, Q) of G the Q-filtration on V @F L induced by UJ, 
is the slope filtration of the O-L-space (V 8’~ L, e(b) . (id @ 0)) ([K], $3). For 
s E Q” we use the notation sv for the composite D -5 D + G. For suitable s > 0 
the homomorphism sv factors through the projection D -+ G, induced by the 
inclusion Z c Q of character modules. Let us assume that we have the follow- 
ing identity in the semi-direct product G(L) x (0) (a decency equation for b 

(NX (1.8))) 

(ba)” = svb(r) . d, s > 0. 

Here x denotes a uniformizer in F and s is sufficiently large so that sVb factors 
through G,. Let F, denote the unramified extension of degree s in K, i.e. the 
fixed field of (TV in L. Then ([RZ], (1.9)) Vb is defined over I;, and JF, is the cen- 
tralizer of the l-parameter subgroup SVb of G, hence a Levi subgroup of GF,. We 
remark that by Kottwitz ([K], $4) any a-conjugacy class in G(L) contains ele- 
ments satisfying a decency equation. 

1.3. Let B(G, L) be the extended Bruhat-Tits building of G over L, cf. [Ll] (i.e. 
the center of G contributes a euclidean space to f3( G, L)). We recall that this is a 
metric space which also has the structure of a polysimplicial complex. The 
group G(L) x (0) operates on f?(G, L), and this operation preserves these 
structures. 

Similarly, we denote by B(J, L) resp. B(J, F,) the Bruhat-Tits buildings of J 

over L resp. over F,. Since F, is the fixed field of 0” in L and L is a unramified 
extension of F,, the building B(J, F,) may be identified with the fixed point set 
of C+ in B(J, L) (theorem of Bruhat and Tits), 

B(J, F,) = B(J L)(“‘? , 

Since JF, is a Levi subgroup of GF,, there is a canonical J(L) M (a”)-equivariant 
injective map ([Ll]) 

B(J, L) --+ B(G, L). 

We identify Z?(J, L) with the image under this injection. We may now formulate 
our main result. 

Theorem 1.4. Fix b E G(L) and s > 0 such that a decency equation holds for b 

relative to s, cf: (1.2). Let F, be the corresponding unramljied extension of degree s 

of F. Let c > 0. Then there exists C > 0 with thefollowingproperty. If x E B(G, L) 

is such that d(x, ha(x)) < c then there exists x0 E B(J, F,) with d(x, x0) < C. 
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Here d denotes the metric on B(G, L). 

1.5. We are going to deduce this proposition from a similar statement about 
lattices in a-l-spaces. Let (V, p) be a a-l-space, i.e. I’ is a finite-dimensional 
L-vector space and ‘p is a bijective a-linear endomorphism of I’. Let P’ be iso- 
typic of slope p = Y/S, s > 0. Then the fixed vectors of K’ . qs in Y define a 
ic,-form VO of V ([I(], $3), 

More generally, let V be any a-l-space and let s > 0 be such that s . p E 2 for 
all slopes of all isotypical components VP of V. Let v : DL -+ GL( V) be the 
corresponding slope homomorphism. Then sv factors through Grn~ and the 
fixed vectors of SV(K)-’ - (ps in V define a F,-form Vo of I/ compatible with the 
slope decomposition, 

V&@= v, V[@,L= VP’. 

Proposition 1.6. Let c > 0. Then there exists C > 0 with thefollowingproperty. If 
M is a lattice in V with 

?Fq+kq c A4 c 7+(M) 

then there exists a lattice A40 c Vo with 

and with 

7qMo @OF, R) c M c r+(Mo @o, OL). 

We note that for M as above we have 

7rc’ . (pS(M) c M c 7F’$(M), 

for some constant c’ depending on c and the slopes of V. Conversely any lattice 

MO as above satisfies 

X-CO$(MIJ @Of, OL) c MO 80, Or c n-c”ps(Mo @o, OL) 

for some constant CO depending on the slopes of V. 

Proof. We only sketch the proof which is essentially contained in [RZ], $2 (2.17 - 
2.19). Suppose first that V is isotypic of slope p = r/s. Then 7 = 7r-‘(ps is the re- 
lative Frobenius of V with respect to VO. In loc.cit. it is shown that the lattice in V 

M+~(M)+...+rd-‘(M), d=dimV 

is r-invariant, i.e. of the form MO 80, 0~. for a unique lattice MO c VO (k is 
algebraically closed). The index of M in Ma @oF, 0~ is bounded in terms of 
c, r, s and d. 

In the general case one proceeds by induction over the number of isotypical 
components of V. We write V = V’ & V” where V’ is the isotypical component 
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of maximal slope. We obtain an exact sequence of u-l-spaces and an induced 
exact sequence of lattices, 

0 -----t V’ ---+ V - V” --+ 0 

(1) U U U 
0 - M’ --t A4 - M” - 0. 

By induction hypothesis we may assume that M” resp. M’ is of the form 
M,” moF, 0~ resp. n/id @o, OL where 

Ml = $ (M; n VT). 

We write the slope of V’ in the form p = r/s, s > 0. Replace the exact sequence 
(1) by its push-out by p’ : M’ -+ M’. Then, by [RZ] Lemma 2.19 the sequence 
splits, which gives a decomposition M = M’ $ M”. 
It follows that putting MO = M,j @ M,” we have 

Mo=@(MonVl) 

and 

M = MO @F, OL, 

whence the assertion. •i 

1.7. For the proof of the theorem we need a general fact on Bruhat-Tits build- 
ings. Let (f3, d) be the complete metric space given by the Bruhat-Tits building 
of a connected reductive group over a local field (= discretely valued field with 
perfect residue field). Then for x, y E EJ there is a unique point m E Z? satisfying 
d(x, m) = d(y, m) = i d(x, y), the midpoint of the unique geodesic [x, y] between 
x and y. If z E B is yet another point there is the inequality 

(2) d(x, z)2 + d(y, z)2 2 2 d(m, z)2 + id(x, y)‘. 

The following lemma seems to be well-known to the specialists. We refer to [Rl] 
for a proof. 

Lemma 1.8. Let 0 # C c t3 be a convex closed subset. 
(i) For every z E t? there exists a uniquepoint zo E C with minimal distance. Let 

?r=7r~:l3--+c 

be the corresponding projection map. 
(ii) We have 

d(+x), $Y)) 5 4x7 y), x,y E 13. 

In particular, T is continuous. 

1.9. We wish to reduceTheorem 1.4 to Proposition 1.6. Obviously the assertion 
of Theorem 1.4 only depends on the metric d on L3(G, L) ‘in the large’, i.e. its 
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large scale structure. The correct language to express this is due to Bernstein 
[B]. We recall some concepts from [B]. A semimetric space is a set M with a 
distance function d(.u, y) such that 

d(x,y) = d(y,x), d(x,x) = 0 for x, y E M 

and satisfying the triangular inequality. Two distance functions dt and d2 on the 
same set M are called equivalent if there exists C > 0 such that 

C-‘(d, + 1) I (4 + 1) I C(dt + 1). 

A large scale space is a set with an equivalence class of distance functions. A 
large scale map between two large scale spaces M and N is a map f : A4 -+ N 
such that for some C > 0 

d(f(x),f(y)) L C(d(x,y) + I), X,Y E M. 

Two such mapsfi & are called equivalent (fi -fi) if the distance d(fi (x)&(x)) 
is bounded for all x E M. A large scale mapf : M + N is called a large scale 
equivalence if there exists a large scale map h : N + M such that f o h N idN, 
k of N idM. 

1.10. Let t3 be the Bruhat-Tits building of a connected reductive group G over a 
local field K. As an example of the preceding concepts the reader checks that 
when G is semi-simple the semimetric defined by the combinatorial distance d‘ 

between points is large-scale equivalent to the metric d, 

d ‘(x, y) = length of a minimal gallery joining x and y. 

This remark will not be used in the sequel. 
Let G = GL( V) where V is a finite-dimensional vector space over the local 

field K. Then the Bruhat-Tits building of G may be identified with the space of 
norms on V, i.e. maps Q: : V --f R U {XI} such that 

a(Aw) = Q(U) + ord (A). /\ E K 

a(21 + 71’) > inf (a(z)), ff(v’)), 

o(v) = cc @ U = 0. 

Let Latt( V) be the set of lattices in V. Then any M E Latt V defines a norm a~ 
by the rule 

oM(zt) = inf {V E Z; 7r”. ‘II E M}. 

Here rr denotes a uniformizer in K. On Latt( V) there is the following semi- 
metric which we used in Proposition 1.6, 

dL(M. N) = min {V E Z; #N c A4 c X-“N}. 

It is easy to see (by putting two lattices in one apartment) that this semimetric is 
equivalent to the following one 

d’L(M, N) = lg (M/M n N) + lg (N/M n N). 
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Lemma 1.11. Let G = GL( V). The inclusion 

f : Latt( V) ---+ Z?( G, K) 

is a large scale equivalence. 

Proof. We define a map h in the opposite direction by associating to a point of 
f3(G,K) one of the lattices of closest distance. By putting two points in one 
apartment one checks easily thatf o h - id and h of N id. 0 

Proof of Theorem 1.4 for G = GL( V), where V is a finite-dimensional vector 
space. In this case JF, is the Levi subgroup which is the product of the general 
linear groups of the various isotypic components of V @F F,. We note that the 
F,-form V 8.F F, of V @iF L is the one associated in (1.5) to the o-L-space 
(V @‘F L, by). Consider the natural embeddings of Bruhat-Tits buildings 

WJ,L) c B(G,L) 

B(J:F,) c Z?(G:F,). 

An element A4 E Latt(V @F L) lies in B(J, L) iff M = @(M n (V @F L)p), 
P 

and similarly for MO E Latt( V @F F,). By (Lemma 1.11) we therefore deduce 
from Proposition 1.6 that the assertion of Theorem 1.4 holds in this case. 

Proof of Theorem 1.4 in the general case. We fix a faithful representation over F, 

e:G--+G’=GL(V). 

We denote by b’ = p(b) the image of b in G’(L). Then Ub’ = ~0 Vb is the 
slope homomorphism of b’ which again satisfies a decency equation 
(b’a)” = SV,,I(K) . 8. Let J’ be the corresponding form over F of the Levi sub- 

group Jit of Gk,. 
According to the theorem of Landvogt [Ll] there exists an injective isometric 

map of Bruhat-Tits buildings 

a(G, L) + B(G’, L) 

which is equivariant with respect to the action of G(L) x (0). Identifying 
B(G, L) with its image under this map we obtain a diagram of closed convex 
subsets of f3( G’, L), 

B(G,L) c B(G’,L) 

$L) c B(J’. L) 
U U 

WJ,F,) c B(J’, F,). 

Fix .X E D(G, L) as in the statement of Theorem 1.4. By Theorem 1.4 applied to 
G’, b’ we find a constant C and a point xi E B(J’, F,) such that 
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d(x,xA) < c. 

Let x0 = ~B(G,J)(x,$ be the closest point to x; in f3(G, L). Since x E B(G, L) we 
have by Lemma 1.8, (ii) that 

d(x,xo) 5 d(x,xA) < c. 

By the uniqueness of the closest point mapping, rB(G,&) is equivariant. However, 
xi is fixed by us and by sv(w) where w E 02 is any unit. Hence 

xo E fj(G,L)(“‘““(o~)) = a(J,F,). 

Here the last equality sign combines the theorem of Rousseau ([RI, (5.3.2)) 
asserting that B(J, L) = B(G, L)s“(o~) and the theorem of Bruhat and Tits, 
cf. (1.3). 0 

2. A VARIANT AND A CONJECTURE 

2.1. Let k be an algebraically closed field of characteristic p > 0. Let 
K = k( (T)) be the field of Laurent series in one variable over k and let K be an 
algebraic closure of K. Let F be a finite extension of Fp( (I”)) contained in I? and 
let L be the compositum of K and F in K. Let (T E Aut(L/F) be the relative 
Frobenius automorphism. With these notational changes the main theorem 
holds as stated in Theorem 1.4. The proof is essentially the same. 

2.2. It is natural to ask for generalizations of our main result. The following 
conjecture is due to Rousseau (camp. [Rl], 4.5). Let L be a local field. Let 
0 E Aut(L) be an automorphism of L and put F = L<“‘. Let G be a reduc- 
tive group over F. Let J be the centralizer of a one-parameter subgroup 
X : G, ---f G. We obtain a canonical inclusion of buildings, 

B(J, F) + B(G, L). 

For a point x E B(G, L) we denote by x0 its projection onto the convex subset 
LJ(J, F). The question is whether there exists a constant c > 0 such that 

d(x, X(+(x))’ 2 d(xo, X(Z)Xo)’ + c d(x, xo)2, 

for varying 2 E Lx. 

Our hope in raising these questions is that one can give a purely geometric 
proof of our main result. We refer to [Rl] for encouraging results in this direc- 
tion. 

3. THE ORIGIN OF THIS PAPER 

Let us return to the notation of Section 1. Let (V, ‘p) be a O-L-space. Let 
d = dim V. We consider maximal periodic lattice chains M in V, 

. . cM,cM;+lc... ; kf-d=r.Mi 
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Let us fix an integer r with 0 5 r 5 d. We consider the following condition on 
the lattice chain M. 

(++) For all i we have 

rMi+r C Cp(Mi) C Mi+r with dimk M,+,/lp(M,) = r. 

If r = 0 or r = d, then if M satisfies (*r), then cp(A4i) = M, for all i. Hence all 
slopes of cp are equal to zero, the fixed vectors of ‘p in I/ define an F-form Vo of 
V and all lattices M, of M are rational, i.e. of the form 

M; = Ml,0 @OF OL 

with M,,o = M, n VO. 
Assume now that r = 1 or r = d - 1. Then it is a striking observation of 

Drinfeld [D] that there exists at least one i with cp(Mi) = Mi. Indeed, the 
inclusions A4, c Mj+ 1 induce a chain of morphisms of l-dimensional vector 
spaces over k: 

Mj/cp(M,-l)~M,+~/cp(M,)-,...~~ -‘M,/P(Mj+d- 1). 

The composition of the arrows in this chain is zero because of the condition 
TM, + d c p(M, + d _ 1). Hence one of the morphisms in the chain must be zero, 
which implies the existence of an index i such that Cp(Mi) = Mi. Such indices 
are called critical. Hence in this case again all slopes of cp are equal to zero and 
the lattices Mi for critical indices i are rational. 

The question which arises in this context is whether similar statements hold 
for arbitrary r. It turns out that this is not the case: there are examples of peri- 
odic lattice chains M which satisfy (*r) but where not all slopes of cp are zero. 
Here is an example where d = 4, r = 2. Let 

001 0 
cp= 0 0 0 C’ 

( 1 

7roo 0 
.(T. 

010 0 

The slope vector of ‘p is (t , {, - $, - 4). The following maximal periodic lattice 
chain M satisfies(**) (we use the customary notation for lattices in the stan- 
dard apartment). 

M.: . . . (1111) (1110) (1100) (1000) (0000) . . . 
(PM,_~: . . . (2121) (2120) (2110) (2010) (1010) . 

There still remains the question whether, if all slopes of cp are equal to zero, and 
M satisfies (+), then there exists i with cp(M,) = M,. We would expect that such 
an index i does not exist in general. But the construction of an example seems to 
be more difficult. 

The qualitative sense of Drinfeld’s observation is that since cp moves very 
little the point in the Bruhat-Tits building corresponding to a lattice M, in M, 
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then this point is very close to a rational point. Our main result is the corre- 
sponding statement on general buildings. 
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