
Appendix A. Accessible and weakly accessible period domains1

By Michael Rapoport

0.1. Introduction. The goal of this appendix is to investigate in which situations the
period maps from RZ spaces towards partial flag varieties are surjective. This question
can be posed in two variants: One can either ask that the map is surjective on classical
points, or surjective on all (adic, or equivalently, Berkovich) points. These questions can
be translated into the question whether the weakly admissible, resp. admissible, locus
inside the partial flag variety is the whole partial flag variety. We answer both of these
questions below. It turns out that asking surjectivity for all points is significantly more
restrictive, and occurs essentially only in the Lubin-Tate case.

Most of the material presented in this appendix was explained to the author by
P. Scholze. Moreover, we thank S. Orlik for helpful conversations.

0.2. Recollections on period domains. Let (G, b, {µ}) be a PD-triple2 over the p-

adic field F . This means that G is a reductive algebraic group over F , that b ∈ G(F̆ ), and
that {µ} is a conjugacy class of cocharacters of G. We will assume throughout that {µ}
is minuscule. Two PD-triples (G, b, {µ}) and (G′, b′, {µ′}) are called equivalent if there
is an isomorphism G ' G′ which takes {µ} into {µ′} and b into a σ-conjugate of b′. All
concepts below depend only on the equivalence class of PD-triples. Let E = E(G, {µ})
be the corresponding reflex field. We denote by F(G, {µ}) the corresponding partial

flag variety defined over E, and by F̆(G, {µ}) its base change to Ĕ. We denote by
F(G, {µ})wa the period domain associated to the PD-triple (G, b, {µ}), i.e., the weakly

admissible subset of F̆(G, {µ}), which we consider as an open adic subset. It is defined
by the weak admissibility condition of Fontaine on the Lie algebra of G (semi-stability,
cf. [4, Def. 9.2.14]) and the triviality of the degree in π1(G)Γ,Q.

Definition 0.1. A PD-triple (G, b, {µ}) is weakly accessible if F(G, b, {µ})wa = F̆(G, {µ}),
i.e., the period domain associated to (G, b, {µ}) is the whole partial flag variety.

0.3. The admissible set. Let XF be the Fargues-Fontaine curve relative to F (and
some fixed algebraically closed perfectoid field of characteristic p). By Fargues, [5], there
is a bijection

B(G)→
{
G-bundles on XF

}
/ ', b 7→ Eb. (1)

Restricted to basic elements, this yields even an equivalence of groupoids,

G(F̆ )basic →
{

semi-stable G-bundles on XF

}
.

Here the LHS becomes a groupoid via the action by σ-conjugacy of G(F̆ ). Also, a G-
bundle E is called semi-stable if for all ρ ∈ RepG mapping the center of G into the center
of GLn, the vector bundle ρ∗(E) on XF is semi-stable in the sense of Mumford (recall
that deg and rank are well-defined for vector bundles on XF ). It is enough to check this
for ρ the adjoint representation of G.

Definition 0.2. Fix a PD-triple (G, b, {µ}) over F . Let C be an algebraically closed

non-archimedean field extension of F̆ , and use the tilt C[ of C to build XF ; denote by
∞ ∈ XF (C) the corresponding distinguished point of XF .

1Appendix to: P. Scholze, On the p-adic cohomology of the Lubin-Tate tower.
2In [4, Ex. 9.1.22], to (G, b) is associated an augmented affine group scheme G over the category of

F -isocrystals, and in [4, Def. 9.5.1] one considers the PD-pair associated to (G, {µ}), rather than the
triple (G, b, {µ}).
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To any point x ∈ F(G, {µ})(C), there is associated a G-bundle Eb,x on XF which is
called the modification of Eb at ∞ along x.

Remark 0.3. If E is a vector bundle of rank n on XF , and {µ} is a minuscule cocharacter
class of GLn, then it is clear how to define the modification Ex for x ∈ F(GLn, {µ})(C).
On the other hand, for non-minuscule {µ}, or general G (and then even for minuscule
cocharacters), it is nontrivial to define the modification Eb,x. Indeed, the definition

involves the BdR-Grassmannian Gr
B+

dR
G . One uses the Bialynicki-Birula morphism, valid

for any {µ},
Gr

B+
dR

G,{µ} → F̆(G, {µ}),
which is an isomorphism if {µ} is minuscule. We refer to [2] for a precise discussion

of this point. We note however that on points defined over a finite extension of F̆ , the
Bialynicki-Birula morphism is a bijection (for all {µ}).

Definition 0.4. A point x ∈ F(G, {µ})(C) is called admissible with respect to b if the
associated G-bundle Eb,x is semi-stable. Equivalently, the image of Eb,x under the map

in Corollary 0.10 is the unique basic class [b∗] with κ([b∗]) = κ([b])− µ\.

Remarks 0.5. (i) An admissible point x ∈ F(G, {µ})(C) is automatically weakly ad-

missible. If x is defined over a finite extension of F̆ , the converse is true. For points
defined over finite extensions of F̆ , these assertions can be reduced to the case of GLn
by using the adjoint representation, for which see [3]. Now the admissible locus is an
open subset of F(G, {µ}) (cf. below) which on classical points agrees with the weakly
admissible locus. As the weakly admissible locus is maximal among open subsets with
given classical points, it follows that the admissible locus is contained in the weakly
admissible locus.

(ii) Assume that (G, {µ}) ⊂ (GLn, {µ(1(r),0(n−r))}), i.e., the PD-triple (G, b, {µ}) is of

Hodge type. Then Faltings and Hartl have defined the notion of admissibility of a point
in F(G, {µ})(C), cf. [4, ch. XI, §4] (Faltings’ definition uses base change to Bcris(C);

Hartl’s definition uses the Robba ring B̃†rig(C); Hartl has shown that these definitions

coincide, comp. [4, Thm. 11.4.11]). The definition of admissibility above specializes in
this case to their definition.

Definition 0.6. Fix a PD-triple (G, b, {µ}) over F . The admissible locus F(G, b, {µ})a

is the unique open adic subset of F̆(G, {µ}) whose C-valued points are the admissible
points of F(G, {µ})(C), for any algebraically closed non-archimedean field extension of

F̆ .

It follows from [9] that the admissible set is indeed an open adic subset of F̆(G, {µ}),
again using the adjoint representation of G to reduce to the case G = GLn.

Remarks 0.7. Whereas we have a fairly accurate picture of what the weakly admissible
locus looks like (and one of the main attractions of the corresponding theory is to
determine explicitly this locus in specific cases, cf. [12, Ch. I]), the admissible locus
seems quite amorphous, and is explicitly known in only very few cases. Here are two
examples.

(i) Let (G, b, {µ}) = (GLn, b, {µ(1(1),0(n−1))}), where [b] is the unique basic element of

B(G, {µ}). This case is called the Lubin-Tate case. In this case, all points of F̆(G, {µ})
are admissible. This follows by Gross/Hopkins [8] from Theorem 0.17 below. Another,
more direct, proof is due to Hartl, comp. [4, Prop. 11.4.14]. The same holds for
(GLn, b, {µ(1(n−1),0(1))}), where again [b] is the unique basic element of B(G, {µ}).

(ii) Let (G, b, {µ}) = (D 1
n
, b, {µ(1(1),0(n−1))}), where [b] is the unique basic element of

B(G, {µ}). This case is called the Drinfeld case. In this case, all weakly admissible
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points of F̆(G, {µ}) are admissible. They form the Drinfeld halfspace inside Pn−1. This
follows by Faltings’ theorem [12, ch. 5] from Theorem 0.17 below, but has also been
shown by Hartl, comp. [4, Prop. 11.4.14]. The same holds for (D− 1

n
, b, {µ(1(n−1),0(1))}),

where again [b] is the unique basic element of B(G, {µ}).

Definition 0.8. A PD-triple (G, b, {µ}) is accessible if F(G, b, {µ})a = F̆(G, b, {µ}),
i.e., the admissible set associated to (G, b, {µ}) is the whole partial flag variety.

From Remarks 0.5, (i) it follows that an accessible PD-triple is weakly accessible.

Proposition 0.9. Associating to a G-bundle its isomorphism class, we obtain from (1)
a bijection{

iso-classes of G-bundles of the form E1,x | x ∈ F(G, {µ−1})
}
→ B(G, {µ}).

Proof. Let b ∈ G(F̆ ). If [b] lies in the image of the map, it follows from the construction
of E1,x that κ([b]) = µ\ in π1(G)Γ. Now b represents an element of the image of the map
if and only if Eb is of the form E1,x; equivalently, if and only if Eb,x∗ is the trivial G-bundle
for some x∗ ∈ F(G, {µ}). In other words, this holds if and only if there exists x∗ such
that Eb,x∗ is a semi-stable G-bundle. Hence this is equivalent to F(G, b, {µ})a 6= ∅. This
in turn is equivalent to the condition that F(G, b, {µ})wa 6= ∅, as these are two open sets
with the same classical points. By [4, Thm. 9.5.10] this is equivalent to [b] ∈ A(G, {µ}).
Since we saw already the equality κ(b) = µ\, this is equivalent to [b] ∈ B(G, {µ}). �

Corollary 0.10. Let b ∈ G(F̆ ) be basic. Then there is a bijection{
iso-classes of G-bundles of the form Eb,x | x ∈ F(G, {µ−1})

}
→ B(Jb, {µ}+ νb).

Here νb is the central cocharacter associated to the basic element b.

Proof. This follows by translation with b from the previous proposition, cf. [10, 4.18].
Alternatively, one can apply the functor Hom(Eb, ) to the assertion of the corollary, to
reduce to the previous proposition. �

0.4. Weakly accessible PD-triples. Our first aim is to determine all weakly accessi-
ble PD-Pairs. The following lemma reduces this problem to the core cases. We always
make the assumption that the period domain associated to any PD-triple considered
below is non-empty.

Lemma 0.11. (i) (G, b, {µ}) is weakly accessible if and only if (Gad, bad, {µad}) is weakly
accessible.

(ii)
(
G1 × G2, (b1, b2), {(µ1, µ2}

)
is weakly accessible if and only if (G1, b1, {µ1}) and

(G2, b2, {µ2}) are both weakly accessible.

(iii) If {µ} is central, then (G, b, {µ}) is weakly accessible.

Proof. (i) Let π : F̆(G, {µ}) → F̆(Gad, {µad}) denote the natural morphism. Then the
assertion follows from

F(G, {µ})wa = π−1
(
F(Gad, {µad})wa

)
(recall that we are assuming both period domains to be non-empty).

Finally, (ii) and (iii) are obvious. �

After the previous reduction steps, the following proposition gives the complete clas-
sification of all weakly accessible PD-triples.

Proposition 0.12. Let (G, b, {µ}) be a PD-triple defining a non-empty period domain,
where G is F -simple adjoint and {µ} is non-trivial. Then the PD-triple (G, b, {µ}) is
weakly accessible if and only if the F -group Jb is anisotropic, in which case [b] is basic.
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Proof. We note that, G being of adjoint type, weak admissibility is equivalent to semi-
stability in the sense of [4], i.e, F(G, b, {µ})wa = F(G, b, {µ})ss, cf. [4, top of p.272].
We also note that the last sentence follows because if J is anisotropic, then b is basic.
Indeed, if b is not basic, then the slope vector νb is a non-trivial cocharacter of J defined
over F , cf. [10, after (3.4.1)].

Assume that there exists a point x ∈ F(G, {µ}) \ F(G, b, {µ})ss. Then, applying [4,
Thm. 9.7.3], we obtain a 1-PS λ of Jb defined over F which violates the Hilbert-Mumford
inequality. In particular, λ is non-trivial, and Jb is not anisotropic.

Conversely, assume that F(G, b, {µ})ss = F(G, {µ}). We claim that then Jb is
anisotropic. To prove this, we may change b within its σ-conjugacy class [b], since
this leaves the isomorphism class of Jb unchanged. We argue by contradiction. So, let
us assume that T is a maximal torus of Jb such that X∗(T )Γ 6= (0). Here Γ = Gal(F̄ /F ).

Then T ⊗F F̆ is also a maximal torus of G ⊗F F̆ . By assumption, for any µ ∈ X∗(T )
defining an element x ∈ F(G, {µ}), the pair (b,Fx) is semi-stable. To apply the Hilbert-
Mumford inequality, we fix an invariant inner product ( , ) on G, cf. [4, Def. 6.2.1].
Hence by the Hilbert-Mumford inequality [4, Thm. 9.7.3], we obtain

(λ, µ− νb) ≥ 0, ∀λ ∈ X∗(T )Γ,

where νb ∈ X∗(T )Q denotes the slope vector of b. Indeed, the LHS is equal to µL(x, λ),
by [4, Lemma 11.1.3] (in loc. cit., the situation over a finite field is considered; but the
lemma holds in the present situation mutatis mutandum). Replacing λ by its negative,
we see that (λ, µ − νb) = 0. Hence (λ, µ) is independent of µ ∈ X∗(T ) in its geometric
conjugacy class. It follows that for any w,w′ in the geometric Weyl group W of T in G,

(λ,wµ− w′µ) = 0. (2)

We wish to show that this implies that λ = 0, which would yield the desired contradic-
tion. We write G = ResF ′/F (G′), where G′ is an absolutely simple adjoint group over
the extension field F ′ of F . Let F ′0 be the maximal unramified subextension of F ′/F .
Then

G(F̆ ) =
∏

i∈Z/fZ

G′(F̆ ′), (3)

where Z/fZ denotes the Galois group of F ′0/F , and where F̆ , resp. F̆ ′, denotes the
completion of the maximal unramified extension of F , resp. F ′. Furthermore, it is easy
to see that any b ∈ G(F̆ ) is σ-conjugate to an element in the product on the RHS of (3)
of the form (b′0, 1, . . . , 1), and that then

Jb = ResF ′/FJ
′
b′0
.

Correspondingly, T = ResF ′/F (T ′), where T ′ is a maximal torus of J ′b′0
defined over F ′.

Hence

X∗(T )Q =
∏

τ∈HomF (F ′,F̄ )

X∗(T
′)Q, (4)

with its action by Γ induced by the action of Γ′ = Gal(F̄ /F ′) on X∗(T
′)Q. Since

0 6= λ ∈ X∗(T )Γ, all components λτ of λ in the product decomposition (4) are non-zero,

and are determined by any one of them. Now T ′⊗F ′ F̆ ′ is a maximal torus of G′⊗F ′ F̆ ′
and, since G′ is absolutely simple, its geometric Weyl group W ′ acts irreducibly on
X∗(T

′)Q, cf. [1, Cor. of Prop. 5 in VI, §1.2]. Furthermore, the geometric Weyl group of
T is the product of copies of W ′ over the same index set as in (4). Hence the identity (2)
implies that any time the component µτ of µ is non-trivial, the component λτ is zero.
Hence the assumption λ ∈ X∗(T )Γ implies λ = 0, since the assumption µ 6= 0 implies
that µτ 6= 0 for some τ . This yields the desired contradiction. �
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Corollary 0.13. In Proposition 0.12, assume that G is absolutely simple adjoint and
that {µ} is non-trivial. Then (G, b, {µ}) satisfies the condition of Proposition 0.12 if
and only if G is the algebraic group associated to a simple central algebra D of some
rank n2 over F , [b] is basic, and the difference between the Hasse invariant of D in
Z/nZ ' π1(G)Γ and the class κ([b]) lies in (Z/n)×. �

Remark 0.14. Note that the class {µ} does not intervene in Proposition 0.12. It does,
however, enter in the condition that the period domain F(G, b, {µ})wa be non-empty.
Indeed, this condition is equivalent to the condition that [b] ∈ A(G, {µ}), cf. [4, Thm.
9.5.10], i.e., that [b] be acceptable with respect to {µ} in the sense of [11].

0.5. Accessible PD-triples. Here the classification is much more narrow.

Proposition 0.15. A PD-triple (G, b, {µ}) is accessible if and only if b is basic, and
the pair (Jb, {µ}) is uniform in the sense of [10, §6], i.e. B(Jb, {µ}) contains precisely
one element.

Proof. The accessibility of (G, b, {µ}) implies its weak accessibility, cf. Remark 0.5,
(i); hence b is basic by Proposition 0.12. The assumption that (G, b, {µ}) is accessible
is equivalent to saying that any modification Eb,x for x ∈ F(G, {µ}) is semi-stable.
Hence, by Corollary 0.10, the set B(Jb, {µ−1} + νb) contains only one element, i.e.,
(Jb, {µ−1}+νb) is uniform. The assertion follows since (Jb, {µ−1}+νb) is uniform if and
only if (Jb, {µ−1}) is uniform, if and only if (Jb, {µ}) is uniform. �

Kottwitz [10, §6] has given a complete classification of uniform pairs (G, {µ}). Ap-
plying his result, we obtain the following corollary.

Corollary 0.16. Let (G, b, {µ}) be a PD-triple. Assume that G is absolutely simple
adjoint, that {µ} is non-trivial, and that [b] ∈ B(G, {µ}). Then (G, b, {µ}) is accessible
if and only if G ' PGLn, and {µ} corresponds to (1, 0, . . . , 0) or (1, 1, . . . , 1, 0). �

0.6. An application to the crystalline period map. Let (G, b, {µ}) be a local
Shimura datum over F , cf. [11], i.e., a PD-triple such that {µ} is minuscule and such
that [b] ∈ B(G, {µ}). Conjecturally, there is an associated local Shimura variety, i.e., a

tower of rigid-analytic spaces over Ĕ, with members enumerated by the open compact
subgroups of G(Qp),

{MK}K = {M(G, b, {µ})K}K , (5)

on which G(Qp) acts as Hecke correspondences. The tower comes with a compatible
system of morphisms

φK : MK → F̆(G, {µ}). (6)

The morphism φK is called the crystalline period morphism at level K of the local
Shimura variety attached to (G, b, {µ}).

Theorem 0.17. Assume that the local Shimura variety associated to (G, b, {µ}) comes
from an RZ-space of type EL or PEL, in which case the local Shimura variety exists.
Then the image of the crystalline period morphisms coincides with the admissible locus
F(G, b, {µ})a.

Proof. See [7] (which uses [6]) and [13]. �

Example 0.18. (i) In the Lubin-Tate case (see Remarks 0.7, (i)), Gross and Hopkins [8]
have shown that the image of the crystalline period morphism is the whole projective
space F(G, {µ}).

(ii) In the Drinfeld case (see Remarks 0.7, (ii)), the image of the crystalline period
map is the Drinfeld half-space, cf. [12, ch. 5].
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Corollary 0.19. Assume that the local Shimura variety associated to (G, b, {µ}) comes
from an RZ-space of type EL or PEL, in which case the local Shimura variety exists.
Also, assume that G is absolutely simple. Then the crystalline period morphisms are
surjective if and only if the local Shimura variety is of Lubin-Tate type. �

0.7. Open questions. Here we list some open questions.

Question 0.20. When is F(G, b, {µ})a = F(G, b, {µ})wa?

This question was answered by Hartl in the case when G = GLn. Besides the Lubin-
Tate case and the Drinfeld case, there is one essentially new case related to GL4. B.
Gross asks whether the PD-triples formed by an adjoint orthogonal group G, its natural
minuscule coweight {µ} (the one attached to a Shimura variety for SO(n − 2, 2)) and
the unique basic element in B(G, {µ}) give further examples.

For the next question, recall that for any standard parabolic P ∗ in the quasi-split
form G∗ of G, there is a subset B(G)P ∗ defined in terms of the Newton map on B(G).
If P ∗ = G∗, then B(G)G∗ = B(G)basic. We call the inverse image of B(G)P ∗ under
the map in Corollary 0.10 the HN-stratum F(G, b, {µ})P ∗ attached to P ∗. Hence for
P ∗ = G∗ the corresponding HN-stratum is the admissible set.

Question 0.21. For which P ∗ is the HN-stratum non-empty? Does the decomposition
into disjoint sets F(G, b, {µ})P ∗ of F̆(G, {µ}) have the stratification property? Which
strata F(G, b, {µ})P ∗ have classical points?

The first question is non-empty, as is shown by the Lubin-Tate case, in which only
F(G, b, {µ})G∗ is non-empty. There are examples of strata F(G, b, {µ})P ∗ without clas-
sical points: One gets these by looking at cases of weakly accessible, but non-accessible,
PD-triples, in which case all strata with P ∗ 6= G∗ have no classical points, but some of
them are nonempty.

There is also a HN-decomposition of F̆(G, {µ}) in the sense of [4]. It does not have the
stratification property. Here we have an understanding of the structure of the individual
strata, in terms of period domains of PD-triples of smaller dimension. However, even for
these simpler strata, the question of the non-emptiness of strata is only partially solved
(by Orlik).

Question 0.22. What is the relation between the two stratifications?
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