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Introduction

The present thesis concerns a quite recent solution to a classical problem: the Pila-Zannier
proof of the Manin-Mumford conjecture. In 2008, Pila and Zannier gave a substantially new
proof to a Diophantine problem using mathematical logic, more precisely using o-minimal
geometry [PZ08]. Following their method, we present a proof of the Manin-Mumford conjecture
in the following form:

Theorem. Let A be a complex Abelian variety and let V ⊆ A be a closed algebraic subvariety.
Suppose that V does not contain any translate of a positive dimensional Abelian subvariety of
A. Then V contains only finitely many torsion points of A.

This statement was first proved by Raynaud in 1983 [Ray83]. The Pila-Zannier proof differs
from Raynaud’s proof completely and is remarkable for several reasons. It is the first proof of
Manin-Mumford relying on real methods. Moreover, the method of the proof has turned out
to be applicable to problems going far beyond the case of Abelian varieties. As recently as
2021, Pila, Shankar and Tsimerman proved the André-Oort conjecture using the Pila-Zannier
strategy, thereby giving the first proof of André-Oort in full generality [PST21].

The Pila-Zannier method exposes a connection between o-minimal geometry and Diphantine
geometry. These are two subjects which we, at first glance, would not expect to harmonise well.
O-minimal geometry is a branch of model theory concerning structures with a dense linear
order and an extra condition that yields a tame geometric structure theory for the definable
sets. Diophantine geometry belongs to algebraic geometry and studies the geometry and
arithmetic of solution sets to polynomial equations, often aiming to understand special points
on varieties such as torsion points with respect to a group structure. Due to the presence of
order, o-minimality seems to be a framework suitable for applications in analysis, rather than
algebra. In particular, interesting examples of o-minimal structures arise as expansions of
the real ordered field. Contrary to this, in Diophantine geometry, we classically work over an
algebraically closed field, which cannot be an ordered field. Definable sets in expansions of
the real ordered field are naturally equipped with the Euclidean topology, whereas varieties
are usually equipped the Zariski topology. The success of the Pila-Zannier method is thus, at
least in view of this naive comparison, very surprising.

We begin with looking at a problem related to the Manin-Mumford conjecture, known as
Mann’s Theorem. This will provide a motivation for the key ideas of the Pila-Zannier method
without requiring much abstract machinery (Section 1). Afterwards, we introduce and discuss
Abelian varieties, providing the relevant background from algebraic geometry (Section 2). We
then come to the model theoretic foundation of the Pila-Zannier method, most importantly
to the Pila-Wilkie Counting Theorem (Section 3). Based on these foundations, we will be
able to obtain a proof of Manin-Mumford (Section 4).
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Conventions

The natural numbers N contain 0. The cardinality of a set M is denoted by #M . For an
ordered set M and a ∈M , we write M≥a for {x ∈M : x ≥ a}, and similarly M>a.

Let R be a ring and m ∈ N≥1. We donte elements in the polynomial ring R[X1, . . . , Xm] or
in the ring of formal power series RJX1, . . . , XmK in m variables over R by

∑
α∈Nm bαX

α,
where bα ∈ R and Xα := Xα1

1 · · ·Xαm
m . For α ∈ Nm, we set |α| =

∑m
i=1 αi.

Let k be a field and m ∈ N≥1. An algebraic set in km is the zero set of polynomials f1, . . . , fr
in k[X1, . . . , Xm] for some r ∈ N≥1. We will then denote it by V (f1, . . . , fr).

The term definable will always mean definable with parameters. Structures M,N , . . . are
understood to have the underlying sets M,N, . . ., respectively. We fix the language of ordered
rings Loring = {+,−, ·, 0, 1, <} and fix the real ordered field as an Loring-structure Ralg.

If not specified otherwise, by a space we always mean a topological space. To avoid confusion,
we will sometimes write clTX(Y ) for the closure of Y in X with respect to the topology T , and
moreover clT (Y ) if the ambient space is fixed.

If G is a group and X ⊆ G a subset, then by a translate of X we will always mean a subset of
G of the form aX = {ax : x ∈ X} for some a ∈ G. If X is a subgroup of G, this is the usual
notion of a coset. The set of torsion elements of a group G will be denoted by Gtor. When we
say that a torsion element has order n, then we always that it has exact order n.

Let k′/k be a field extension. Its degree is denoted by [k′ : k] and its automorphism group is
denoted by Aut(k′/k). If k′/k is Galois, we also write Gal(k′/k) for Aut(k′/k). For a field k,
we denote by k an algebraic closure of k.

Text in bold font indicates definitions, while italics emphasise terms for various reasons.

2



1 Roots of unity on an algebraic set

The aim of this first section is to give an outline of the Pila-Zannier strategy and a motivation
for the content of the following sections. We do this hands-on by discussing a problem related
to the Manin-Mumford conjecture. The following theorem concerns (C×)n, the n-th cartesian
power of the multiplicative group of units in C, which we denote by Gn.

Theorem 1.1. Let Y ⊆ Cn be an algebraic set. Suppose that Y does not contain any translate
of an infinite algebraic subgroup of Gn. Then the set Y ∩Gn

tor is finite, i.e., there are only
finitely many points (ζ1, . . . , ζn) on Y such that each ζj is a root of unity.

This theorem is often referred to as multiplicative Manin-Mumford or Mann’s Theorem and is
easier to prove than Manin-Mumford. In fact, it was shown by Mann in 1965, even before
the Manin-Mumford conjecture was formulated [Man65]. Although the resemblance of this
statement to Manin-Mumford as stated in the introduction is striking, it is not, strictly
speaking, a special case. This is so because Gn is not an Abelian variety, as will become clear
in the section on Abelian varieties (Section 2). We could weaken the statement by replacing
infinite algebraic subgroup by infinite subgroup, thereby omitting the reference to algebraic
groups, which will be formally defined in the next section. In this motivating section, by an
algebraic subgroup of Gn me mean an subgroup H of Gn such that H = Gn ∩ Z for some
algebraic set Z ⊆ Cn. We should remark, however, that the statement above is already a
weak version. In fact, for any algebraic set Y ⊆ Cn, the intersection Y ∩Gn

tor is a finite union
of translates of algebraic subgroups of Gn (cf. [Mar10], Section 8).

The geometry is easier in the case of Mann’s Theorem than in the case of Manin-Mumford,
but the three key ingredients o-minimality, Galois bounds and functional transcendence play
the same role in both proofs. The Pila-Zannier method proceeds in the following steps:

1. Transfer the problem to an o-minimal structure. By doing so, reduce the problem to
the study of the algebraic and the transcendental part of a definable set.

2. Prove that the transcendental part in question yields finitely many torsion points by
playing upper bounds from o-minimality against lower bounds from Galois theory.

3. Show that the algebraic part in question yields a well-structured set of torsion points by
proving or applying functional transcendence results.

These general three steps will be elaborated for Mann’s Theorem in the following three
subsections. Since this section has mainly a motivating purpose, we delay some details until
later sections. Our presentation is based on two survey articles by Scanlon [Sca12,Sca17].

1.1 O-minimality enters the stage

As outlined in the introduction, o-minimality is known to be a framework suitable for
applications in an analytic rather than an algebraic setting. Mann’s Theorem is stated purely
in algebraic terms, so let us first analytify the problem. There is a complex analytic group
homomorphism

E : Cn → Gn, (z1, . . . , zn) 7→ (e2πiz1 , . . . , e2πizn).

For a ∈ C, the nonzero complex number e2πia is a root of unity if and only if a ∈ Q. Hence,
ζ ∈ Gn is a tuple of roots of unity if and only if there is z ∈ Qn such that E(z) = ζ.

Let f1, . . . , fr ∈ C[X1, . . . , Xn] be polynomials whose zero set is Y . In order to understand
roots of unity on Y , we could try to understand rational solutions to the transcendental
equations fk(E(z)) = 0 for all k ∈ {1, . . . , r}, i.e. the rational points of the set

E−1(Y ) = {z ∈ Cn : fk(E(z)) = 0 for all k ∈ {1, . . . , r}}.
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This is an analytic set in Cn (for a definition, see (4.4)). At first glance, it may seem
like we have converted a difficult problem into an unsolvable problem, since understanding
rational points on analytic sets is notoriously hard. Even if we assume that our analytic
set is in fact algebraic, understanding its rational points is (arguably) the fundamental
problem of arithmetic geometry. Also from a model theoretic point of view, we cannot expect
much in this situation. It is natural to consider E−1(Y ) as a definable set in the structure
Cexp = (C,+,−, ·, 0, 1, exp). Since also Z = {z ∈ C : e2πiz = 1} is definable in Cexp and
inherits multiplication, the structure Cexp suffers from Gödel’s Incompleteness Theorems and
its definable sets are far from being tame. The next lemma provides a solution to this problem.

Lemma 1.2 (Key observation). The map E restricts to a bijection [0, 1)n ∩Qn → Gn
tor.

Proof. This follows from basic properties of the complex exponential function. The map
[0, 1) → S1 = {ζ ∈ C : |ζ| = 1}, z 7→ e2πiz is bijective. As z ∈ [0, 1) is rational if and only if
e2πiz is a root of unity, the map restricts to a bijection [0, 1) ∩Q → Gtor, which is the desired
bijection in each coordinate.

So we can restrict E to the smaller domain F := [0, 1)n without losing torsion points in the
image. Thus, we define Ẽ : F → Gn as the restriction E|F . We identify Cn with R2n by
separating real and imaginary parts, i.e. with the isomorphism of real vector spaces

Φ: Cn → R2n, (z1, . . . , zn) 7→ (Re(z1), Im(z1), . . . ,Re(zn), Im(zn)).

With this identification, Ẽ : [0, 1)n → R2n is definable in Ran (for a definition of this structure,
see (3.2)). In more detail, the map Φ|Gn ◦ Ẽ is given by

[0, 1)n → R2n, (x1, . . . , xn) 7→ (cos(2πxj), sin(2πxj))
n
j=1,

and thus indeed definable in Ran. Again, by separating real and imaginary parts, we see that
the polynomials fj for j ∈ {1, . . . , r} whose zero set is Y yield functions R2n → R2 that are
real polynomials in each coordinate, hence also definable in Ran. We conclude that the set

X := Ẽ−1(Y ) = {z ∈ F : fk(Ẽ(z)) = 0 for all k ∈ {1, . . . , r}} ⊆ [0, 1)n ⊆ Rn

is definable in Ran. This definable set X will be our central object of study.

As  Lojasievicz and Gabrielov proved implicitly and van den Dries proved explicitly, the
structure Ran is o-minimal [ Loj65, Gab68, vdD86]. The upshot of this is that we have
translated our problem to a geometrically tame setting. Some features of o-minimal structures
justifying the term tame will be discussed later on (Section 3). Postponing this more extensive
discussion, let us come to the surprising consequence o-minimality has in the present situation.
We will argue that there are few rational points on the transcendental part of X. To make
this precise, we introduce some definitions.

Definition 1.3. We define h : Q → N≥1 by sending a/b with a ∈ N, b ∈ Z \ {0} coprime (and
b = 1 for a = 0) to max{|a|, |b|}. For n ∈ N≥1, we extend h to the classical height function

H : Qn → N≥1, (q1, . . . , qn) 7→ max{h(q1), . . . , h(qn)}.

For X ⊆ Rn the set of rational points on X, denoted by X(Q), is X ∩Qn. For t ∈ R≥0 we
define X(Q, t) := {x ∈ X(Q) : H(x) ≤ t} and N(X, t) := #X(Q, t).

A key idea of the Pila-Zannier method is to partition the definable set X into two subsets,
one of which we expect to have a well structured set of rational points and the other of which
we expect to have few rational points. For the respective definitions of the algebraic and the
transcendental part of X, we first recall the definition if a semialgebraic set.
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Definition 1.4. A set X ⊆ Rn is semialgebraic if it is a finite union of sets of the form

{x ∈ Rn : p(x) = 0, q1(x) > 0, . . . , qr(x) > 0}

for some r ∈ N and some polynomials p, q1, . . . , qr ∈ R[X1, . . . , Xn]. For a semialgebraic set
X ⊆ Rn, a map f : X → Rm is semialgebraic if its graph is a semialgebraic set in Rn+m.

It follows from quantifier elimination for Ralg (also known as the Tarski-Seidenberg theorem)
that the semialgebraic sets are precisely the definable sets in Ralg and that Ralg is o-minimal.

Definition 1.5. Let X ⊆ Rm. We define the algebraic part of X, denoted by Xalg, to be
the union of all connected infinite semialgebraic subsets of X. We define the transcendental
part of X, denoted by Xtrans, to be X \Xalg.

There are various equivalent definitions of the algebraic part, due to the tameness of the
o-minimal structure Ralg. For example, there is a well behaved notion of dimension for
semialgebraic sets (e.g. via cell decomposition, see (3.6)) and we could replace infinite by
positive dimensional. Another very useful fact is that for all but finitely many x ∈ Xalg we
find a continuous semialgebraic nonconstant map γ : (−1, 1) → X with x in its image. This
can be deduced, for example, from the Cell Decomposition Theorem for o-minimal structures
(3.6). Since Ralg admits an analytic cell decomposition (cf. Remark 3.33 in [Sca17]), we can
even assume that γ is analytic (Lemma 3.36 in [Sca17]). The fact that we might miss finitely
many points is not relevant for the finiteness result we are aiming for in this section.

In the present situation of Mann’s Theorem, we have already introduced a set X, which is
definable in the o-minimal structure Ran. Let us extend our key observation (1.2).

Lemma 1.6 (Key observation, extended). The map E restricts to a bijection

X(Q) = X ∩Qn → Y ∩Gn
tor.

Moreover, given x = (a1/b1, . . . , an/bn) ∈ [0, 1)n ∩Qn with aj ∈ N, bj ∈ N \ {0} coprime and
bj = 1 for aj = 0, then

H(x) = max{b1, . . . , bn} and ord(E(x)) = lcm(b1, . . . , bn).

In particular, we have H(x) ≤ ord(E(x)) ≤ H(x)n.

Proof. The preimage of Y ∩ Gn
tor under the bijection [0, 1)n ∩ Qn → Gn

tor from the initial
key observation (1.2) is precisely X ∩ Qn, so this bijection restricts further to a bijection
X ∩ Qn → Y ∩ Gn

tor. Given x = (a1/b1, . . . , an/bn) ∈ [0, 1)n ∩ Qn with aj ∈ N, bj ∈ N \ {0}
coprime and bj = 1 for aj = 0, we have 0 ≤ aj < bj for all j ∈ {1, . . . , n}, so indeed H(x)
equals max{b1, . . . , bn}. On the other hand, as the aj and bj are coprime, each e2πiaj/bj has
exact order bj , so the tuple E(x) = (e2πia1/b1 , . . . , e2πian/bn) ∈ Gn

tor has order lcm(b1, . . . , bn).
In particular, we have H(x) ≤ ord(E(x)) ≤ H(x)n as claimed.

The upshot of this is that we can bound the orders of points on Y ∩Gn
tor by bounding the

heights of points on X(Q). Moreover, the set Y ∩Gn
tor can be written as a disjoint union

Y ∩Gn
tor = E(Xtrans(Q)) ∪ E(Xalg(Q)).

The remaining discussion now naturally splits into two parts. First, we show that E(Xtrans(Q)))
is finite. The most remarkable ingredient to the proof of this statement is following theorem,
which lies at the heart of the Pila-Zannier method:

Theorem 1.7 (Pila-Wilkie Counting Theorem). Let X be definable in an o-minimal expansion
of Ralg. Then for all ε > 0 there exists a constant C, only depending on X and ε, such that
N(Xtrans, t) ≤ Ctε for all t ∈ R≥0.
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So roughly speaking, the number of rational points on Xtrans of height up to t grows slower
that any power of t. By this Counting Theorem, there are few points in Xtrans(Q), and we
can conclude that there are few points in E(Xtrans(Q)). The objective is now to show that
there are in fact only finitely many torsion points in the image of the transcendental part.
This result will be achieved using Galois theory.

In a final part, we understand the structure of Xalg and show that, under the present
assumption of Mann’s Theorem, Xalg and therefore also E(Xalg(Q)) is empty. This part will
use functional transcendence.

1.2 From few to finite with Galois theory

In this subsection, we will show that the transcendental part Xtrans of the definable set X in
question is finite. The Counting Theorem (1.7) provides an upper bound for the number of
rational points below any given height, but not a finiteness result yet. To get from few to
finite, we will play the upper bounds from o-minimality against lower bounds from Galois
theory. For this to succeed, we have to work over a number field, which we are allowed to
do by the following lemma. Recall that an algebraic set Y ⊆ Cn is said to be defined over a
subfield k of C if Y can be written as the vanishing set of polynomials in k[X1, . . . , Xn].

Lemma 1.8. We may assume that Y is defined over a number field k.

Proof. Let Z := Y ∩Gn
tor be the Zariski closure of Y ∩Gn

tor in Cn. We first show that Y and
Z contain the same torsion points of Gn. The inclusion Y ∩ Gn

tor ⊆ Z ∩ Gn
tor is immediate.

The reverse inclusion holds for purely topological reasons. The set Y ∩Gn
tor is Zariski closed

in Gn
tor, hence Z ∩Gn

tor = Y ∩Gn
tor ∩Gn

tor ⊆ Y ∩Gn
tor.

So we can replace Y by Z. All coordinates of points in Gn
tor are algebraic over Q, being

solutions to equations Xℓ − 1 for some ℓ ∈ N≥1. Hence Y contains the Zariski dense set
Y ∩Gn

tor of points with coordinates in Q.

Claim. If an algebraic set Y ⊆ Cn contains a Zariski dense set of points with coordinates in
Q, then Y is already defined over Q.

Proof of the Claim. Since V (f1, . . . , fr) = V (f1) ∩ · · · ∩ V (fr), it is enough to consider the
case Y = V (f) for some f ∈ C[X1, . . . , Xn]. Let (bi)i∈I be a basis of the infinite dimensional
Q-vector space C. Writing every coefficient of f as a finite sum of basis elements, we obtain

f =
s∑

j=1

bjgj

with pairwise distinct bj among the (bi)i∈I and gj ∈ Q[X1, . . . , Xn] for j ∈ {1, . . . , s}. We
claim that V (f) = V (g1, . . . , gs). Indeed, the inclusion V (f) ⊇ V (g1, . . . , gs) is immediate.
For the other inclusion, first let a ∈ V (f) ∩Qn

. Then

s∑
j=1

bjgj(a) = 0,

and we have gj(a) ∈ Q. But the bj are distinct basis elements, so gj(a) = 0 for all j ∈ {1, . . . , s}.
Therefore, the g1, . . . , gs vanish on the dense subset V (f)∩Qn

of V (f), and thus on all of V (f).
We conclude that V (f) ⊆ V (g1, . . . , gr) and hence V (f) = V (g1, . . . , gr). (Claim)

The proof of the claim also gives that Y can be defined by finitely many polynomials in
Q[X1, . . . , Xn], which of course also directly follows from the fact that this ring is Noetherian.
So Y is defined over the number field k obtained by adjoining the finitely many coefficients of
these polynomials to Q.
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Proposition 1.9. For sufficiently large t ∈ N≥1 (in fact for all t > 6), if there is a point of
height t in Xtrans(Q), then there are at least

√
t/[k : Q] points of height t in Xtrans(Q).

Proof. Every field automorphism of Q = k fixing k permutes the zeros of polynomials with
coefficients in k. Thus, since Y is defined over k, we get an action of Aut(Q/k) on Y
by σ.y := (σ(y1), . . . , σ(yn)). Furthermore, since all polynomials Xℓ − 1 for ℓ ∈ N≥1 have
coefficients in Q ⊆ k, the action of Aut(Q/k) in each coordinate also preserves ℓ-th roots of
unity. In fact, it even preserves primitive ℓ-th roots of unity. Indeed, let ζ be a primitive ℓ-th
root of unity. Every automorphism σ ∈ Aut(Q/k) fixes Q ⊆ k, hence permutes the zeros of
the minimal polynomial µζ,Q of ζ over Q. But this polynomial splits over Q as the product∏

1≤m≤ℓ, gcd(ℓ,m)=1

(X − ζm),

so its zeros in Q are precisely all the primitive ℓ-th roots of unity. As claimed, σ must send
primitive ℓ-th roots of unity to primitive ℓ-th roots of unity. Hence, we get an order-preserving
action of Aut(Q/k) on Y ∩Gn

tor. Given (e2πia1/b1 , . . . , e2πian/bn) ∈ Y ∩Gn
tor with 0 ≤ aj < bj ,

aj and bj coprime and aj = 0 for bj = 1, as well as σ ∈ Aut(Q/k), we can write explicitly

σ.(e2πia1/b1 , . . . , e2πian/bn) = (e2πia
′
1/b1 , . . . , e2πia

′
n/bn)

for unique a′j ∈ N such that 0 ≤ a′j < bj with a′j , bj coprime and a′j = 0 for bj = 1. Through

the bijection X(Q) → Y ∩Gn
tor the group Aut(Q/k) then also acts on X(Q) by

σ.

(
a1
b1
, . . . ,

an
bn

)
:=

(
a′1
b1
, . . . ,

a′n
bn

)
.

This action preserves the denominators, and hence also the heights. In the next subsection we
will prove independently from the present proposition that Xtrans = X holds (1.15), so we
obtain an action of Aut(Q/k) on Xtrans(Q).

Now assume that there is x ∈ Xtrans(Q) of height t. We write x = (a1/b1, · · · , an/bn) with
aj ∈ N bj ∈ Z \ {0} coprime and bj = 1 if aj = 0 for all j ∈ {1, . . . , n}. As in our extended
key observation (1.6) we then have t = max{b1, . . . , bn} and each e2πiaj/bj is a primitive bj-th
root of unity. The height-preserving action described above yields that also the so-called
Galois conjugates σ.x of x for σ ∈ Aut(Q/k) are points in Xtrans(Q) of height t. To prove
the proposition, it thus suffices to show that the set {σ.x : σ ∈ Aut(Q/k)} has cardinality
least

√
t/[k : Q]. Take j′ ∈ {1, . . . , n} such that bj′ is maximal, i.e. such that bj′ = t. Then

e2πaj′/bj′ is a primitive t-th root of unity which we denote by ζ.

It is a basic result from Galois theory that given an algebraic field extension L/K and an
intermediate field K ⊆ Z ⊆ L, then for every homomorphism σ : Z → K fixing K there is a
homomorphism L→ K extending σ. Applying this to K = k, Z = k(ζ) and L = K = Q, it
suffices to show that the set {σ.x : σ ∈ Aut(k(ζ)/k)} has cardinality at least

√
t/[k : Q].

Every σ ∈ Aut(k(ζ)/k) is uniquely determined by where it sends ζ, thus if σ, τ ∈ Aut(k(ζ)/k)
are distinct then σ(ζ) ̸= τ(ζ), and thus σ.x ̸= τ.x, as they differ in the j′-th coordinate. We
therefore reduced our problem to showing that # Aut(k(ζ)/k) ≥

√
t/[k : Q].

The field extension k(ζ)/k is separable as these fields are of characteristic zero. Moreover,
µζ,k must divide µζ,Q, so all zeros of µζ,k in Q are primitive roots of unity, which are already
contained in k(ζ), so k(ζ)/k is also normal. Therefore, k(ζ)/k is Galois. We compute

# Gal(k(ζ)/k) = [k(ζ) : k] =
[k(ζ) : Q]

[k : Q]
≥ [Q(ζ) : Q]

[k : Q]
.
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But [Q(ζ) : Q] is precisely the number of distinct t-th roots of unity, that is φ(t), where
φ : N≥1 → N, t 7→ #(Z/tZ)× is the Euler totient function. We have the elementary and very
rough estimate φ(t) ≥

√
t if t > 6, and conclude that

# Gal(k(ζ)/k) ≥ [Q(ζ) : Q]

[k : Q]
≥

√
t

[k : Q]

if t > 6, completing the proof of the proposition.

We can now compare the bounds from Pila-Wilkie (1.7) and the preceding proposition (1.9).

Corollary 1.10. The set Xtrans(Q) is finite. In particular, there are only finitely many points
in its image E(Xtrans(Q)) ⊆ Gn

tor.

Proof. It suffices to show that the height of points in Xtrans(Q) is bounded. To be explicit,
take ε = 1/3 in Pila-Wilkie (1.7) and let C be the corresponding constant. So for every
t ∈ R≥0 there are at most Ct1/3 points of height up to t in X(Q).

Let x ∈ Xtrans(Q) be a point of height H(x) = t ∈ N>6. By the previous proposition (1.9),
there are at least t1/2/[k : Q] points of exact height t in Xtrans(Q). By Pila-Wilkie, there exist
at most Ct1/3 points of height up to t in Xtrans(Q). We obtain the inequality

t1/2

[k : Q]
≤ Ct1/3,

which holds if and only if t ≤ (C[k : Q])6. As a result, the height of rational points in Xtrans

is bounded by max{6, (C[k : Q])6}.

1.3 Functional transcendence

This final subsection on Mann’s theorem concerns the algebraic part of X. The central
ingredient will be a power series version of Schanuel’s conjecture, which was proved by Ax in
1971 [Ax71].

Definition 1.11. Let V be a K-vector space and let W ⊆ V be a K-subspace. Then
v1, . . . , vn ∈ V are linearly independent over K modulo W if for all a1, . . . , an ∈ K, we
have that

∑n
j=1 ajvj ∈W implies a1 = · · · = an = 0.

Theorem 1.12 (Cor. 1 in [Ax71]). Let γ1, . . . , γn ∈ CJtK be complex power series with no
constant term that are linearly independent over Q modulo C. Then the transcendence degree of

C(γ1, . . . , γn, exp(γ1), . . . , exp(γn))

over C is at least n+ 1.

We will elaborate a little more on the background of this theorem later on (Subsection 4.2).

Definition 1.13. Let n ∈ N≥1 and let Y ⊆ Cn be an algebraic set. The special locus of Y
in Gn, denoted by SpLn(Y ), is defined as the union⋃

(a,H)∈S

aH ⊆ Y,

where S is the set of all pairs (a,H) with a ∈ Gn and H an infinite algebraic subgroup of Gn

such that aH ⊆ Y .

Remark. With the present assumption of Mann’s Theorem, we have SpLn(Y ) = ∅.
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We will now argue that Xalg corresponds to this special locus under E. Unfortunately, the
proof of this requires some machinery that is not elementary enough to be discussed on the spot.
Therefore, the proof will be less detailed, hopefully conveying the central ideas nevertheless.
We refer to Humphrey’s book for relevant results on linear algebraic groups [Hum75].

Proposition 1.14. We have E(Xalg) ⊆ SpLn(Y ).

Proof. For Y = Cn we get SpLn(Y ) = Gn, and for Y = ∅ we get E(Xalg) = ∅. Thus, we may
assume that ∅ ⊊ Y ⊊ Cn. As remarked after the definition of the algebraic part (1.5), at the
cost of missing out finitely many points, we may suppose that

Xalg =
⋃

γ : (−1,1)→X real analytic,
semialgebraic and nonconstant

im(γ)

so it suffices to prove the following:

Claim. Let Y ⊆ Cn be a proper nonempty algebraic set. Every real analytic semialgebraic
nonconstant map γ : (−1, 1) → X satisfies E(im(γ)) ⊆ SpLn(Y ).

Proof of the Claim. Let γ : (−1, 1) → X ⊆ Rn be a real analytic semialgebraic nonconstant
map. By analytic continuation, we find δ > 0 such that γ extends to a complex analytic map
on (−1, 1) + i(−δ, δ) → Cn. We proceed by induction on n.

For the base case, let n = 1. Then the algebraic set Y ⊊ C is a finite number of points, and
we also know that E : C → G, z 7→ e2πiz is a local homeomorphism, so E−1(Y ) is discrete.
Thus, any continuous function γ : (−1, 1) → X ⊆ E−1(Y ) is constant and the claim holds.

Let n > 1 and suppose that the claim holds for n− 1. Choosing a different basis if necessary,
we write γ in coordinates (γ1, . . . , γn) where γj(0) = 0 for all j ∈ {1, . . . , n}, so that the
respective power series have no constant term. We have im(γ) ⊆ X ⊆ E−1(Y ), and thus

(e2πiγ1(t), . . . , e2πiγn(t)) ∈ Y

for all t ∈ (−1, 1). Let f1, . . . , fr be the polynomials whose zero set is Y . Since Y ⊊ Cn, there
is ℓ ∈ {1, . . . , r} such that fℓ is nonzero. We then have

fℓ(e
2πiγ1(t), . . . , e2πiγn(t)) = 0

for all t ∈ (−1, 1), hence also for all t ∈ (−1, 1) + i(−δ, δ) by the identity theorem. We
conclude that the functions e2πiγ1 , . . . , e2πiγn are algebraically dependent over C, hence so are
the respective complex power series. Moreover, as γ is semialgebraic, the transcendence degree
of C(2πiγ1, . . . , 2πiγn) over C can be seen to be 1. Therefore, the transcendence degree of

C(2πiγ1, . . . , 2πiγn, e
2πiγ1 , . . . , e2πiγn)

over C is smaller or equal then 1 + (n− 1) = n. It follows from Ax’s theorem (1.12) that the
2πiγ1, . . . , 2πiγn are linearly dependent over Q modulo C, say

∑n
j=1 aj2πiγj = w ∈ C, with

aj ∈ Q for j ∈ {1, . . . , n}, some of which are nonzero. So the image of γ is contained in the zero
set of the linear polynomial

∑n
j=1 2πiajXj − w. This is a translate of an (n− 1)-dimensional

linear subspace of Cn, so its image under E will be a translate of an (n − 1)-dimensional
algebraic subgroup of Gn, as we can prove with more detail:

Subclaim. Let h =
∑n

j=1 2πiajXj −w be a linear polynomial with aj ∈ Q for j ∈ {1, . . . , n},
some of which are nonzero, and w ∈ C. Then the vanishing set V (h) ⊆ Cn is a translate of
an (n− 1)-dimensional linear subspace U of Cn and E(V (h)) is the translate of an (n− 1)-
dimensional algebraic subgroup of Gn.
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Proof of the Subclaim. We can multiply h with the least common multiple of the denominators
of the aj to obtain h̃ =

∑n
j=1 2πimjXj − w̃ with mj ∈ Z for j ∈ {1, . . . , n} and w̃ ∈ C. This

does not change the zero set, i.e. V (h) = V (h̃). We define

M+ := {j ∈ {1, . . . , n} : mj > 0} and M− := {j ∈ {1, . . . , n} : mj < 0}.

Replacing w̃ with w̃/(2πi#(M+ ∪M−)), we can write h̃ =
∑

j∈M+∪M−
2πimj(Xj − w̃/mj),

so V (h) is the translate of the vector subspace

U := V (
∑n

k=1
2πimkXk)

of Cn by the vector ŵ = (ŵ1, . . . , ŵn) where ŵk for k ∈ {1, . . . , n} is w̃/mk if mk ̸= 0 and 0
otherwise. We obtain

E(V (h)) = E(V (h̃))

= {(e2πiz1 , . . . , e2πizn) : (z1, . . . , zn) ∈ Cn,
∑

j∈M+∪M−
2πimj(zj − w̃

mj
) = 0}

= {(e2πiz1 , . . . , e2πizn) : (z1, . . . , zn) ∈ Cn, exp(
∑

j∈M+∪M−
2πimj(zj − w̃

mj
)) = 1}

= {(e2πiz1 , . . . , e2πizn) : (z1, . . . , zn) ∈ Cn,
∏

j∈M+∪M−
(e2πizje−2πiw̃/mj )mj = 1}

= {(ζ1, . . . , ζn) ∈ Gn :
∏

j∈M+
(e−2πiw̃/mjζj)

mj −
∏

j∈M−
(e−2πiw̃/mjζj)

−mj = 0}

= (a1, . . . , an) · {(ζ1, . . . , ζn) ∈ Gn :
∏

j∈M+
ζ
mj

j −
∏

j∈M−
ζ
−mj

j = 0}

where aj for j ∈ {1, . . . , n} is e2πiw̃/mj if mj ̸= 0 and 1 otherwise. As a result, we can write
E(V (h̃)) as the translate of the Zariski closed subset

H := Gn ∩ V (
∏

j∈M+
X

mj

j −
∏

j∈M−
X

−mj

j )

of Gn by a := (a1, . . . , an) ∈ Gn. Moreover, H is in fact a subgroup of Gn. This can be seen
directly from the description or from the fact that H corresponds to the image of a zero set of
a linear polynomial with zero constant term under E, i.e. to the image of a vector subspace
of Cn under E, and that E maps vector subspaces of Cn to subgroups of Gn. Furthermore,
the algebraic set V (

∏
j∈M+

X
mj

j −
∏

j∈M−
X

−mj

j ) has codimension 1 in Cn. (Subclaim)

We now know that E(V (h)) = aH for some (n − 1)-dimensional algebraic subgroup H of
Gn and a ∈ Gn. We use a nontrivial fact from the theory of linear algebraic groups: Every
connected algebraic subgroup of Gn is isomorphic to Gn′

for some n′ ≤ n (cf. Theorem in
16.2 in [Hum75]). While H might not be connected, its identity component, i.e. the con-
nected component of H that contains the neutral element, is connected. Furthermore, every
other connected component is a translate of this identity component (cf. 7.3. in [Hum75]).
Hence, by replacing H with its identity component, we may assume that Gn−1 ∼= H. With
notation as in the proof of the Subclaim, our situation can be displayed in the following diagram

(−1, 1)

Cn−1 U ŵ + U Cn

Gn−1 H aH Gn.

E′ E

γ

ŵ+

a·∼=

∼=

By scaling with a−1 and then applying the inverse of the isomorphism Gn−1 → H, we
can view Y ∩ aH as a Zariski closed subset of Gn−1 and γ as a map to the preimage of
Y ∩ aH. Identifying Gn−1 with the algebraic subgroup H of Gn, the special locus of Y ∩ aH
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in Gn−1 is then contained the special locus of Y in Gn by definition. As a result, we obtain
E(im(γ)) ⊆ SpLn−1(Y ∩ aH) ⊆ SpLn(Y ) by induction as desired. (Claim)

This completes the proof of Proposition 1.14.

Under the assumption of Mann’s Theorem, we have SpL(Y ) = ∅, so by the previous proposition
(1.14) also Xalg = ∅. This means that X = Xtrans(Q). As promised in the previous subsection,
we obtain the following:

Corollary 1.15. The action of Gal(Q/k) on X(Q) in the proof of Proposition 1.9 is in fact
an action on Xtrans(Q).

Let us conclude the proof of Mann’s Theorem.

Proof of Mann’s Theorem (1.1). We assume that the algebraic set Y ⊆ Cn does not contain
any translate of an infinite closed algebraic subgroup of Gn and want to show that Y ∩Gn

tor is
finite. We have

Y ∩Gn
tor = E(Xtrans(Q)) ∪ E(Xalg(Q)).

We proved with bounds from o-minimality and Galois theory that E(Xtrans(Q)) is finite (1.10).
Moreover, E(Xalg(Q)) = E(Xalg) ∩Gn

tor is contained in SpL(Y ) by the previous proposition
(1.14). However, by the present assumption of Mann’s Theorem, SpL(Y ) is empty, hence also
E(Xalg(Q)) is empty. We conclude that Y ∩Gn

tor is finite.
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2 Elementary theory of Abelian varieties

In this section, we introduce Abelian varieties, which are the central objects to the statement
of Manin-Mumford. After a very brief subsection on abstract algebraic varieties, we discuss
complete varieties. Completeness is a main feature of Abelian varieties that distinguishes
them from other algebraic groups. In a third subsection, we finally introduce Abelian varieties
and prove basic properties. A final part is devoted to complex Abelian varieties and the
connections between the Zariski topology and the Euclidean topology on them.

Throughout, let k denote an algebraically closed field.

2.1 Review of algebraic varieties

We should clarify what we mean by an algebraic variety, for which there are many approaches.

From the viewpoint of basic model theory, algebraic sets are what we want to work with. They
are precisely the sets definable by quantifier- and negation-free formulas in (k,+,−, ·, 0, 1).
Also projective algebraic sets can often be studied conveniently with basic model theory
by considering their affine cones. From the viewpoint of algebraic geometry, however, the
fact that algebraic sets are always embedded into some kn is considered a disadvantage, an
obstruction from studying them intrinsically. If we were to look at varieties without sheaves,
we would narrow our view too much, while defining them as reduced schemes of finite type
over k would make it a bit cumbersome to translate back to model theory.

We will try to strike a balance by considering abstract algebraic varieties in the sense of FAC,
i.e. varieties as Serre defined them in Faisceaux algébriques cohérents [Ser55]. These are not
defined as schemes, but nevertheless as spaces equipped with a sheaf. An instructive treatment
of them can be found in lecture notes by Milne, on which much of this section is based [Mil17].
Let us briefly recall some definitions, of course not remotely presenting all of the theory.

Definition 2.1. For an open subset U of an algebraic set V , we call a function f : U → k
regular if for all points p ∈ U there exist g and h in the coordinate ring k[V ] of V with
h(p) ̸= 0 such that f = g/h in some open neighbourhood of p.

The set of regular functions on an open subset U of V is naturally a k-algebra, denoted
by OV (U), and the functor Ouv(V ) → k-Alg, U 7→ OV (U) is a sheaf of k-algebras on V , where
Ouv(V ) denotes the category of open subsets of V with reversed inclusions as morphisms.
This gives (V,OV ) the structure of a k-ringed space (cf. Prop. 3.9. in [Mil17]).

Definition 2.2. An affine variety over k is a k-ringed space isomorphic to (V,OV ), where
V is an algebraic set and OV assigns to an open subset U ⊆ X the regular functions on U .

A central subject of analytic geometry is not the study of open subsets in some Cn but of
objects that are just locally open subsets of Cn. We could define a complex analytic manifold
as a C-ringed space (M,OM ) such that M is Hausdorff and every point in M has an open
neighbourhood U such that (U,OM |U), where OM |U denotes the restriction, is isomorphic as
a C-ringed space to the C-ringed space of an open subset of Cn with its sheaf of holomorphic
functions. This motivates the definition of algebraic (pre)varieties, which are objects that are
locally affine but may globally look different.

Definition 2.3. An (algebraic) prevariety over k is a k-ringed space (V,OV ) such that V
is quasi-compact and for every point P in V there is an open neighbourhood U of P such
that (U,OV |U) is an affine variety.

Remark. By quasi-compactness, every algebraic prevariery (V,OV ) admits a finite open
cover V =

⋃n
i=1 Ui by affine varieties (Ui,OV |Ui). We call such opens the open affines.
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The definition of algebraic prevarieties still allows some pathological objects such as the line
with two origins.

In the Euclidean setting, we can impose the Hausdorff condition to avoid such examples. The
Zariski topology is way too coarse to be Hausdorff, so we need a substitute. Recall that a
continuous map into a Hausdorff space is determined by its values on a dense subset. This
motivates the following definition.

Definition 2.4. An algebraic prevariety V is separated if for every algebraic prevariety W
and any two morphisms of k-ringed spaces µ1, µ2 : W → V , the set {w ∈W : µ1(w) = µ2(w)}
is closed in W . An (algebraic) variety over k is a separated prevariety over k.

A pleasant feature of these definitions is that the respective morphisms can be defined concisely.

Definition 2.5. A map of affine varieties, prevarieties or varieties over k is regular if it is a
morphisms of k-ringed spaces (cf. section 3.d. in [Mil17]).

In terms of category theory, we have full subcategories

affine varieties ⊆ algebraic varieties ⊆ prevarieties ⊆ k-ringed spaces.

As Abelian varieties are projective, the most important examples of algebraic varieties for us
will be the projective space and its closed subvarieties.

Construction 2.6. The underlying set of the projective n-space over k, denoted by Pn(k),
is the set of orbits

Pn(k) := (kn+1 \ {0})/k×

of kn+1 \ {0} under the action of k× by coordinatewise multiplication. We topologise Pn(k) by
defining its closed subsets to be the zero sets of homogeneous polynomials in k[X0, . . . , Xn].
For i ∈ {0, . . . , n}, the open subsets

Ui := {[x0 : . . . : xn] ∈ Pn(k) : xi ̸= 0}

of Pn(k) form a finite open cover Pn(k) =
⋃n

i=0 Ui. We have maps to the affine n-space
An(k) = kn with its sheaf of regular functions given by

µi : Ui → An(k), [x0 : . . . : xn] 7→
(
x0
xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)
and it can be proved that there is a unique structure of an algebraic variety on Pn(k) such that
the Ui are the open affines with each µi yielding an isomorphism of varieties, cf. Proposition
6.12 in [Mil17]. By a projective variety, we will always mean a closed subvariety of Pn(k),
cf. section 5.e. in [Mil17].

There are many more topics that will be used in our following discussions, but for which an
adequate treatment would be too lengthy. Even constructions such as subvarieties or products
of varieties require some effort to be carried out properly, cf. sections 5.e,f,g in [Mil17]. Purely
topological concepts such as irreducibility and Krull dimension can be defined for abstract
varieties as in the case of algebraic sets. For smoothness and tangent spaces, we refer to section
4 in [Mil17]. For extensions of scalars and varieties over non algebraically closed fields, we
refer to section 11 in [Mil12]. The special case of extension of scalars from R to C is presented
in much detail in the book by Mangolte [Man20].
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2.2 Complete varieties

In topology, we learn that compact manifolds are exceptionally well-behaved. Completeness is
for algebraic geometers what compactness is for analytic geometers. Recall that a space X is
quasi-compact if and only if for all spaces Y , the projection pr2 : X × Y → Y is a closed map.

Definition 2.7. An algebraic variety X is complete if for all algebraic varieties Y , the
projection pr2 : X × Y → Y is a closed map.

Because the Zariski topology on X × Y usually does not agree with the product topology,
this is not equivalent to quasi-compactness of Y (which holds by the definition of varieties).

Example 2.8. The affine line A1(C) is not complete. Consider the algebraic set V (XY − 1)
in A2(C) ∼= A1(C) × A1(C). Under the projection pr2 : A1(C) × A1(C) → A1(C) it is mapped
to A1(C) \ {0}, which is not closed.

Let us summarise some basic results:

Lemma 2.9 (7.3.-7.11. in [Mil17]).

(a) Closed subvarieties of complete varieties are complete.

(b) A variety is complete if and only if its irreducible components are complete.

(c) Finite products of complete varieties are complete.

(d) If µ : X → Y is a regular map of varieties and X is complete, then the image of µ is a
complete closed subvariety of Y .

(e) A regular map from a complete connected variety to an affine variety is constant. In
particular, every complete connected affine variety is a point.

(f) A variety X is complete if and only if for every affine variety Y the map pr2 : X×Y → Y
is closed. In fact, X is complete if and only if pr2 : X × An(k) → An(k) is closed.

We will now show that every projective variety is complete. There are various proofs known
for this. We will give a model theoretic one due to van den Dries [vdD82]. For a purely
algebraic proof, see Theorem 7.22. in [Mil17].

Theorem 2.10. Every projective variety is complete.

The proof can be found below, we first present the required background from model theory
and valuation theory. We will reduce the statement to showing that a certain subset of
An(k) is closed, i.e. an affine algebraic set. The affine algebraic sets are precisely the sets
definable by positive quantifier free formulas in (k,+,−, ·, 0, 1). Therefore, we will need a
positive, i.e. negation-free, version of quantifier elimination. The following result, called the
Lyndon-Robinson type Lemma, can be proved from the compactness theorem.
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Lemma 2.11 (Exercise 3.4.21 in [Mar02] and the first lemma in [vdD82]). Let L be a language
that contains a constant symbol. Let T be an L-theory and let φ(x⃗) be an L-formula. Suppose
that for all models K and K′ of T , every L-substructure A of K and each L-homomorphism
σ : A → K′ we have the following:

If a⃗ ∈ An and K |= φ(⃗a), then K′ |= φ(σ(⃗a)).

Then there exists a positive quantifier free formula ψ(x⃗) such that T |= φ(x⃗) ↔ ψ(x⃗).

Remark. We only need the assumption that the language contains a constant symbol in the
case where φ is an L-sentence.

Recall that a valuation ring of a field k is a subring O of k such that for all a ∈ k we have
a ∈ O or a−1 ∈ O. The following results can be found in Lang’s Algebra [Lan02].

Lemma 2.12 (VII §3 Corollary 3.3. in [Lan02]). Let k be a field and let σ : A → k′ be a
ring homomorphism of a subring A of k into an algebraically closed field k′. Then σ can be
extended to a ring homomorphism O → k′, where O is a valuation ring of k.

Lang’s formulation of the next lemma is slightly different, but his discussion proceeding it
shows that our formulation is equivalent, cf. page 349 in [Lan02].

Lemma 2.13 (VII §3 Proposition 3.4. in [Lan02]). Let O be a valuation ring of k. Let q ∈ N.
Given finitely many nonzero elements b0, . . . , bq ∈ k, there exists an index j ∈ {0, . . . , q} such
that bp/bj ∈ V for all p ∈ {0, . . . , q}.

With these three lemmas at hand, we can prove that projective varieties are complete.

Proof of Theorem 2.10. We have to show that for a projective variety X and any algebraic
varitey Y , the projection pr2 : X × Y → Y is closed. Because closed subvarieties of complete
varieties are complete (2.9(a)), it is enough to consider X = Pn(k). We can also assume
Y = Am(k) (2.9(f)), so it remains to prove that pr2 : Pn(k) × Am(k) → Am(k) is closed.

Let Z ⊆ Pn(k)×Am(k) be closed. We show that pr2(Z) is closed in An(k). We find polynomials

f1, . . . , fr ∈ k[X0, . . . , Xn, Y1, . . . , Ym]

homogeneous in X0, . . . , Xn whose zero set in Pn(k) × An(k) is Z. We first assume that the
fi have integer coefficients. Let the homogeneous degree of fi in X1, . . . , Xn be di and write

fi =
∑

β∈Nm,|β|=di

gi,βX
β

with gi,β ∈ Z[Y1, . . . , Ym] for all i ∈ {1, . . . , r} and all β ∈ Nm. Now pr2(Z) is the subset of
km defined by the Lring-formula

∃x0 · · · ∃xn

(
n∨

j=0

xj ̸= 0 ∧
r∧

i=1

∑
β∈Nm,|β|=di

gi,β(y1, . . . , ym)xβ1
0 · · ·xβn

n = 0

)
.

Let us call this formula φ(y1, . . . , ym). We have to show that φ is equivalent to a positive
quantifier free Lring-formula. We check the assumptions of Lyndon-Robinson (2.11), considering
Lring-theory of algebraically closed fields.

Let k and k′ be algebraically closed fields, let A ⊆ k be a subring and let σ : A → k′ be a
ring homomorphism. Suppose that there is a ∈ km such that φ(a) holds in k. Let b ∈ kn+1

witness that φ(a) holds in k, so b ̸= 0 and for all i ∈ {1, . . . , r} we have∑
β∈Nm,|β|=di

gi,β(a1, . . . , am)bβ1
0 · · · bβn

n = 0.
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We find a valuation ring O of k containing A and can extend σ to σ̃ : O → k′ (2.12). Let
bℓ0 , . . . , bℓq be the finitely many nonzero coordinates of b = (b0, . . . , bn). Since b ̸= 0, we have
q ≥ 0 and thus find j ∈ {ℓ0, . . . , ℓq} such that blp/bj ∈ O for all p ∈ {0, . . . , q} (2.13). Let
d = (d0, . . . , dn) := (b0/bj , . . . , bn/bj) and d′ := σ̃(d) ∈ k′. We claim that φ(σ(a)) holds in k′,
witnessed by d′. Since the j-th entry of d is 1, so also is j-th entry of d′ and one of the entries
of d′ is nonzero. The gi,β have integer coeffcients and σ is a ring homomorphism, thus∑

β∈Nm,|β|=di

gi,β(σ(a1), . . . , σ(am))d′
β1
0 · · · d′βn

n = 0

for all i ∈ {1, . . . , r}. Indeed, φ(σ(a)) holds in k′, witnessed by d′.

For the general case, now let f1, . . . , fr have any coefficients in k. Let (µi)
N
i=1 be the these

finitely many coefficients. Replacing each µi by a new variable Wi, we obtain polynomials

f̃1, . . . , f̃r ∈ Z[X0, . . . , Xn, Y1, . . . , Ym,W1, . . . ,WN ],

which are homogeneous in theX0, . . . , Xn. Let Z̃ denote their vanishing set in Pn(k)×Am+N (k).
Consider the commutative diagram

(Pn(k) × Am(k)) × AN (k) Am(k) × AN (k)

Pn(k) × Am(k) Am(k)

pr2 × id

p′p

pr2

where the vertical maps p and p′ are the projection maps to the first factor (as indicated by
the parentheses). By the statement for integer coefficients, the map pr2× id is closed. The
projection p restricts to a homeomorphism V ((Wi − µi)

N
i=1) → Pn(k) × Am(k) under which

the closed set Z̃ ∩ V ((Wi − µi)
N
i=1) is mapped to Z. Moreover, we have

(pr2× id)(Z̃ ∩ V ((Wi − µi)
N
i=1)) = (pr2× id)(Z̃) ∩ V ((Wi − µi)

N
i=1),

and this set is closed in Am(k) × AN (k) because (pr2× id)(Z̃) is closed. Similarly, p′ restricts
to a homeomorphism V ((Wi − µi)

N
i=1) → Am(k) under which (pr2× id)(Z̃) ∩ V ((Wi − µi)

N
i=1)

is mapped to pr2(Z). We conclude that pr2(Z) is closed.

Remark. The intermediate result we proved for polynomials with integer coefficients is
called the main theorem of elimination theory : Let f1, . . . , fr ∈ Z[X0, . . . , Xn, Y1, . . . , Ym] be
homogeneous in the X0, . . . , Xn. Then there exist polynomials g1, . . . , gs ∈ Z[Y1, . . . , Yn] such
that for all a ∈ km the system f1(X, a) = · · · = fr(X, a) = 0 has a nontrivial solution in k if
and only if g1(a) = · · · = gs(a) = 0. You can ask for good algorithms to compute the gi, and
so elimination theory regained popularity with the rise of computers. Although the presented
proof requires the axiom of choice, it suggests that questions of complexity in elimination
theory can be related to the complexity of positive quantifier elimination.

We now know a large and important class of complete varieties. Coming back to their
properties, the following theorem will be the key ingredient for understanding the group
structure of Abelian varieties.

Theorem 2.14 (Rigidity Theorem). Let V,W and T be algebraic varieties such that V is
complete and irreducible and such that W irreducible. Let φ : V ×W → T be a regular map.
Suppose that there is w0 ∈W such that φ(−, w0) : V → T is constant. Then there is a regular
map g : W → T such that φ(v, w) = g(w) for all v ∈ V and w ∈W , i.e. such that the diagram

V ×W T

W

φ

pr2 g

commutes.
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Proof following 7.34. in [Mil17]. Since irreducible varieties are nonempty by definition, we
can choose v0 ∈ V and define

g : W → T, w 7→ φ(v0, w).

We have to show that g ◦ pr2 = φ. Take an open affine neighbourhood U ⊆ T of φ(v0, w0).
Since T \U is closed in T , the inverse image φ−1(T \U) is closed in V ×W and by completeness
of V , also C := pr2(φ

−1(T \ U)) is closed in W . By the definition of C, we have

W \ C = {w ∈W : φ(V × {w}) ⊆ U}.

Since φ(V,w0) = {φ(v0, w0)} ⊆ U , we have w0 ∈ W \ C. So W \ C is a nonempty open
subspace of the irreducible space W , hence dense in W . Since V × {w} is isomorphic to V ,
the variety V × {w} is complete and, as V is irreducible, also connected. Therefore, whenever
w ∈W \ C, the map φ restricts to a regular map V × {w} → U from a complete connected
variety to an affine variety, hence to a constant map (2.9(e)). Now

φ(V × {w}) = φ(v0, w) = g(w)

for all w ∈W \ C. We can conclude that φ and g ◦ q agree on the dense subset V × (W \ C)
of V ×W . Since the algebraic variety T is separated, φ and g ◦ q agree on V ×W .

Corollary 2.15. Let V,W and T be algebraic varieties such that V is complete and irreducible
and such that W irreducible. Let φ : V ×W → T be a regular map. Suppose that there are
v0 ∈ V,w0 ∈W and t0 ∈ T such that

φ(V × {w0}) = {t0} = φ({v0} ×W ).

Then φ(V ×W ) = {t0}.

Proof. By the Rigidity Theorem (2.14), there is g : W → T such that φ(v, w) = g(w) for all
v ∈ V and w ∈W . Then φ(v, w) = g(w) = φ(v0, w) = t0 for all v ∈ V and all w ∈W .

Intuitively, the previous corollary means that if two coordinate axes of V ×W are collapsed
to a point, then already V ×W is collapsed to a point. In this sense, V ×W is rigid.

2.3 Abelian varieties

Having recalled some algebraic geometry, we will now discuss Abelian varieties. Excellent
resources on their theory are Milne’s online notes [Mil08] and the book of Mumford [Mum70].

The best way to motivate them is to first look at one dimensional Abelian varieties, which
are elliptic curves. For simplicity, let k be an algebraically closed field with char(k) /∈ {2, 3}.
Good references for elliptic curves are the books by Silverman, e.g. [Sil09].

Definition 2.16. An elliptic curve E over k is a projective plane curve over k of the form

E : Y 2 = 4X3 − aX − b

where a, b ∈ k with a3 − 27b2 ̸= 0.

Remark. The equation above defines an affine curve in A2(k). The projective in the definition
means that we take the closure of this curve in P2(k), i.e. the solution set of the homogenised
equation

ZY 2 = 4X3 − aXZ2 − bZ3

in P2(k). Geometrically, taking this closure amounts to taking the affine curve and adding
the point with homogeneous coordinates [0 : 1 : 0] at infinity. The condition a3 − 27b2 ≠ 0
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guarantees that the curve is smooth. We will also call an algebraic variety that is isomorphic
to a curve given as above an elliptic curve. In this sense, the definition above is a bit arbitrary
and different authors have different conventions for the coefficients. Although we cannot easily
visualise P2(C), we can draw the real solutions to the affine equation of an elliptlic curve.

Examples 2.17. Let k = C and consider the following curves as projective curves in P2(C).

E1 : Y 2 = 4X3 −X E2 : Y 2 = 4X3 −X + 1 E3 : Y 2 = 4X3

The curves E1 and E2 are elliptic curves, whereas E3 is not an elliptic curve.

Elliptic curves carry a group structure, which can be defined in various ways. Let us elaborate
on the very geometric chord-and-tangent construction.

Construction 2.18. Define the neutral element P0 to be the point at infinity [0 : 1 : 0], and
set P0 +Q = Q+ P0 = Q for all Q on E. Define the sum of two distinct points P and Q on
the affine part of E as follows: If P and Q have the same X-coordinate, define P +Q to be
P0, the point at infinity. If P and Q have distinct X-coordinates, then take a line through
P and Q. This line will intersect the affine part of E in precisely one other point R. Define
P +Q to be the point obtained from R by flipping the sign of the Y -coordinate.

Addition of two points on the affine part with distinct Y -coordinates.

Define the sum of a point P on the affine part with itself as follows: Take a tangent line at P .
If this line does not intersect the affine part in a point different from P , define P + P = P0.
Otherwise, take the other affine intersection point, flip its Y -coordinate, and define the
resulting point as P +Q. The fact that we indeed have the right intersection multiplicities in
this construction follows from Bézout’s theorem.

There are various proofs that this actually defines a commutative group structure on E, cf.
III. Proposition 2.2. in [Sil09]. The inverse of a point on the affine part is obtained by flipping
its Y -coordinate, and we have −P0 = P0. It can be proved that addition +: E × E → E and
the inverse map − : E → E are regular maps, cf. Theorem 3.6. in [Sil09].

Abelian varieties will be natural generalisations of elliptic curves to higher dimensions. From
the current very explicit definition, it is not clear how such a generalisation can be achieved.
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In fact, there are no easy descriptions for Abelian varieties of dimension larger than 1 in terms
of the homogeneous polynomials defining them. We need a different approach. There are two
paths we can take here, the analytic and the algebraic one, whose connection is essential to
the Pila-Zannier method. We will start with the algebraic approach and come back to the
analytic approach later on (2.51). The key result for the algebraic one is the following:

Theorem 2.19. Let V be a projective curve. The following are equivalent:

(a) The curve V is isomorphic to an elliptic curve (as defined above).

(b) The curve V is a connected and admits a a group structure such that multiplication
V × V → V and the inverse map V → V are regular.

The proof requires more tools of algebraic geometry and topology than we can cover in our
exposition (e.g. the Riemann-Roch theorem and the Lefschetz trace formula), cf. Proposition
3.1 in [Sil09] and the introduction of [Mil08].

The first step towards a definition Abelian varieties is the definition of algebaic groups.

Definition 2.20. An algebraic group over k is an algebraic variety G over k with a group
structure defined by regular maps m : G×G→ G (multiplication) and i : G→ G (inverse),
as well as a distinguished point e ∈ G (neutral element).

Example 2.21.

(a) Elliptic curves are algebraic groups.

(b) The n-th power Gn of multiplicative group G = A1(C) \ {0}, which we studied in the
first section, is an algebraic group.

(c) The general linear groups GLn(k) := {A ∈ Matn(k) : det(A) ̸= 0} and the special linear
groups SLn(k) := {A ∈ Matn(k) : det(A) = 1} are algebraic groups. They are not
commutative for n ≥ 2.

Definition 2.22. An Abelian variety over k is a connected and projective algebraic group
over k. A morphism of Abelian varieties is a regular map that is also a group homomorphism.
The dimension of an Abelian variety is its dimension as an algebraic variety.

The historically more correct definition of Abelian varieties would be to replace projective by
complete. We already proved that every projective variety is complete (2.10). The projectivity
of a complete connected algebraic group, however, is highly nontrivial (cf. Section 6 in [Mil08]).

Example 2.23.

(a) Elliptic curves are Abelian varieties. Also their products are Abelian varieties.

(b) An important example that motivated the study of Abelian varieties are Jacobian
varieties, cf. part 3 in [Mil08].

(c) The algebraic groups Gn are not an Abelian varieties, because they fail to be complete.
It suffices to check this for G1 ∼= A1(C)\{0} (2.9(d)). This is an affine variety isomorphic
to V (XY − 1) ⊆ A2(C), hence a connected affine variety (we should not be fooled by
the real picture). Since every complete connected affine variety is a point (2.9(e)), we
conclude that G1 is not complete.

It is remarkable how short our definition of an ablian variety is. We do not assume that
Abelian varieties are Abelian as groups, smooth or irreducible. It is surprising that all of
these properties hold.

Commutativity is a direct consequence of the Rigidity Theorem (2.14):
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Proposition 2.24. The group structure of an Abelian variety is commutative.

Proof. We consider the conjugation map

c : A×A→ A, (a, b) 7→ aba−1b−1.

Because multiplication and inverses are regular, so also is c. But c|{e}×A and c|A×{e} are
constant with image {e}. Hence also c is constant with image {e} by a corollary of the Rigidity
Theorem (2.15). We conclude that ab = ba for all a, b ∈ A, so A is an Abelian group.

Because of the proved commutativity, we will write the group law of an Abelian variety
additively from now on. A result of a similar flavour is the following:

Proposition 2.25. Let A and B be Abelian varieties. Every regular map α : A→ B is the
composition of a group homomorphism with a translation.

Proof. Let b := α(0) ∈ B. We can compose α with translation by −b to assume that α(0) = 0.
It is then left to show that α is a group homomorphism. Consider the map

φ : A×A→ B, (a, a′) 7→ α(a+ a′) − α(a) − α(a′).

It is regular, as it is the difference of the two regular maps m ◦ (α×α) : A×A→ B ×B → B
and α◦m : A×A→ A→ B. We have φ({0}×A) = {0} = φ(A×{0}), hence φ(A×A) = {0}
by rigidity (2.15). Thus, α is a group homomorphism.

In particular, every regular map A → B sending 0 to 0 is already a group homomorphism
(hence a morphism of Abelian varieteis). We obtain the following corollary, which is also
associated with the slogan Geometry determines Algebra.

Corollary 2.26. It two Abelian varieties are isomorphic as varieties, then they are also
isomorphic as groups.

Proposition 2.27. Abelian varieties are smooth and irreducible.

Proof. Let A be an Abelian variety. Recall that the set of smooth points of any variety is
dense and open (by Theorem 4.37 in [Mil17] this holds for every open affine, hence also for
the entire variety). So there is a regular point a ∈ A.

Now let a′ ∈ A be any point. The morphism ta′−a : A→ A, b 7→ b+ a′ − a is an isomorphsim
of varieties sending a to a′. Hence also a′ is regular. In more detail, let us use the definition
that b ∈ A is smooth if b lies on a single irreducible component C of A and the dimension
of this component equals the dimension of the tangent space of A at b, cf. Definition 4.35
in [Mil17]. The automorphism ta′−a induces a bijection on the irreducible components of A,
hence a′ lies on a single irreducible component. It also induces an isomorphism on the tangent
spaces TaA → Ta′A. Let Ca and Ca′ be the irreducible components on which a and a′ lie,
respectively, then

dimCa′ = dimCa = dimTaA = Ta′A

and A is smooth at a′. Since a′ was arbitrary, A is smooth. Moreover, a smooth connected
variety is irreducible.

Definition 2.28. Let A be an Abelian variety. An Abelian subvariety of A is a closed
algebraic subvariety of A that is an Abelian variety with the induced group structure.

A closed algebraic subgroup G of an Abelian variety A is not necessarily an Abelian subvariety,
because it might fail to be connected. However, we can take the irreducible component
(equivalently, the connected component) G◦ of G that contains the neutral element. Then G◦

is a connected closed subvariety of A and since the inclusion G◦ → A is a regular map sending
0 to 0, it is already a group homomorphism (2.25). Thus G◦ is an Abelian subvariety of A.

Definition 2.29. Let A be an Abelian variety and G an algebraic subgroup of A. We call
the Abelian subvariety G◦ of A the identity component of G.
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2.4 Analytification and complex tori

The Zariski topology differs from the Euclidean topology in many ways. The Zariski topology
is not Hausdorff, products of varieties do not carry the product topology and there are Zariski
quasi-compact nonclosed sets. It is therefore surprising that in fact strong statements can be
made on the connections between these topologies if the ground field is C. One of the most
important references on this topic is Serre’s Géométrie algébrique et géométrie analytique,
often just called GAGA, which is mainly concerned with the sheaf cohomology for both
algebraic and analytic spaces. [Ser56]. A more elementary treatment of some of Serre’s GAGA
results can be found in [Wer11]. As a start, it is not hard to prove the following:

Proposition 2.30 (Essentially Theorem 3.1. in [Wer11]). We can equip all algebraic varieties
over C with a unique topology, which we will call the Euclidean topology, such that we have:

(a) For An(C), the Euclidean topology is the Euclidean topology on Cn.

(b) For closed subsets of An(C), i.e. algebraic sets, the Euclidean topology is the induced
topology from the Euclidean topology on An(C).

(c) Regular maps of algebraic varieties are Euclidean continuous.

(d) The Euclidean topology is finer that the Zariski topology.

The construction yields a functor −an : AlgVarC → Top from the category of algebraic varieties
to the category of topological spaces.

The Euclidean topology behaves as we would expect. For example, the Euclidean topology is
Hausdorff, and the Euclidean topology on X × Y is the product topology of the Euclidean
topologies on X and Y .

In the following eight results we collect facts that will be needed in the following discussion and
the proof of Manin-Mumford. In all of them, varieties are assumed to be complex varieties.

Proposition 2.31. Let V be an irreducible algebraic set of Krull dimension n > 1. Then V
is unbounded in the Euclidean topology.

Proof. By the geometric form of Noether normalisation (on p. 42 in [Mum88]), there is a
surjective regular map V → An(C). It becomes a continuous surjective map for the Euclidean
topology. Since Cn is not Euclidean compact for n > 1, also V cannot be Euclidean compact.
However, V is Euclidean closed, as the Euclidean topology is finer than the Zariski topology.
Therefore, V must be unbounded in the Euclidean topology.

Proposition 2.32 (I. §10, Thm 1. in [Mum88]). Let V be an irreducible variety. If U is a
nonempty Zariski open subvariety of V , then U is Euclidean dense in X.

Recall that a subset of a variety V is Zariski constructible if it is a finite union of locally-closed
subsets of V .

Corollary 2.33 (I. §10, Cor. 1. in [Mum88]). Let V be an irreducible variety and let Z ⊆ V
be Zariski constructible. Then the Zariski closure and the Euclidean closure of Z in V agree.

We have motivated completeness by considering it as the Zariski analogue for Euclidean
compactness. By the following theorem, this is more than just an analogy.

Proposition 2.34 (I. §10, Thm 2. in [Mum88]). Let V be an irreducible variety. Then V is
complete if and only if V is Euclidean compact.

Every Euclidean connected variety is also Zariski connected, because the former topology is
finer than the latter. Surprisingly, we also have the following:
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Proposition 2.35 (Thm 8.3. in [Wer11]). Let V be an irreducible variety (in particular
Zariski connected). Then V is Euclidean connected.

In fact, even more is true. The following two results will not be used in this section, but will
be relevant for minor details in the proof of Manin-Mumford. A proof of the second part
in the following proposition is attributed to Ramanujam and can be found in an article of
Ramanan [R+78].

Proposition 2.36. Let V be an irreducible variety. Then V is Euclidean path connected. In
fact, any two points on an irreducible variety can be joined by an irreducible curve.

Proposition 2.37 (Corollary 4.16. in [Mum76]). Let V be an irreducible complex projective
variety and W ⊊ V a proper closed subvariety. Then V \W is Euclidean connected.

The following proposition, however, is essential to the rest of this section.

Proposition 2.38 (Thm. 4.5. in [Wer11]). If V is a smooth variety, then in the Euclidean
topology, V can be given the structure of a complex analytic manifold. This can be realised in
a functorial way. We have a commutative diagram of functors

SmAlgVarC AnManC

AlgVarC Top,

−an

−an

where the functor on the right sends a manifold to its underlying space.

Now suppose that A is an Abelian variety over C. Since A is Zariski irreducible (2.27),
A is Euclidean connected (2.35). Since A is also complete (2.10), A is Euclidean compact
(2.34). Because A is smooth (2.27), A can be given the structure of a smooth manifold (2.38),
and by the functoriality of −an : SmAlgVarC → AnManC, the resulting manifold inherits a
commutative group structure given by smooth maps. In conlclusion, this proves the following:

Proposition 2.39. An Abelian variety over C is a compact and connected complex Lie group.

Remark. Of course, we mean that the analytification Aan with the induced maps +an and
−an is a compact connected complex Lie group. If the context is clear, we will just write A,+
and −. For a definition of complex Lie groups, cf. IV.2. in [FG02].

Remark. We did not include the commutativity in the statement (2.39), because every
compact connected complex Lie group is commutative. This gives another proof for the
commutativity of the group law of Abelian varieties over C, cf. 1.(1) in [Mum70].

As a result, the rich analytic theory of complex Lie groups can be used to understand Abelian
varieties. We will now investigate how exactly the Lie groups arising from Abelian varieties
look like. Recall the following definition.

Definition 2.40. Let V be a finite dimensional complex vector space. A lattice in V is a
discrete additive subgroup Λ of V . We say that a lattice Λ ⊆ V is full if it has rank dimR V .

Recall that for a lattice Λ ⊆ V there exist R-linearly independent λ1, . . . , λr ∈ Λ such that
Λ = Zλ1 ⊕ · · · ⊕ Zλr.

Definition 2.41. Let Λ be a lattice in V and let λ1, . . . , λr ∈ Λ such that Λ = Zλ1⊕· · ·⊕Zλr.
Then we call 

r∑
j=1

ajλj : aj ∈ [0, 1) for 1 ≤ j ≤ r

 .

a fundamental domain for Λ.
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Remark. A fundamental domain for Λ is in particular a fundamental domain for the natural
action of Λ on V by translation, i.e. it contains precisely one point from each orbit.

The following two lemmas have very elementary proofs which we ommit.

Lemma 2.42. Let V be a finite dimensional complex vector space and let Λ ⊆ V be a subgroup.
The following are equivalent.

(a) The subgroup Λ is discrete, i.e. a lattice.

(b) There is an open subset U of V such that U ∩ Λ = {0}.

Lemma 2.43. Let V be a finite dimensional complex vector space and let Λ ⊆ V be a lattice.
The following are equivalent:

(a) The lattice Λ has full rank.

(b) The (topological) quotient V/Λ by the translation action of Λ on V is compact.

Example 2.44. A full lattice in C and a fundamental domain (shaded) for it.

We will see that every Abelian variety is isomorphic as a complex Lie group to a complex
torus, which is defined as follows:

Definition 2.45. A complex torus is a complex Lie group of the form V/Λ where V is a
finite dimensional complex vector space and Λ ⊆ V is a full lattice.

Remark. The quotient map π : V → V/Λ is always a covering map, because the group action
is free and properly discontinuous. In fact, topologically, a complex torus V/Λ is indeed a
torus V/Λ ∼= (S1)dimR V , and π is its universal covering. As complex manifolds, however,
different lattices will yield different complex tori.

We will prove that every Abelian variety is a complex torus. For this, we need some differential
geometry. The following proposition summarises some of the results in sections IV.5 and IV.6
in the book of Boothby [Boo86]. He considers real Lie groups, but the same proofs work in
the complex case.

Proposition 2.46. Let G be a complex Lie group with neutral element e. For every v ∈ TeG,
there is a unique analytic group homomorphism φv : C → G with the following properties: We
have φv(0) = e and dφv(0) = v, the map φ−(−) : Te(G) × C → G, (v, z) 7→ φv(z) is analytic
and we have φzv(w) = φv(zw) for all v ∈ Te(G) and all z, w ∈ C.

Consider the map π : TeG → G, v 7→ φv(1). Then π is analytic and we have φv(z) = π(zv)
for all v ∈ V and z ∈ C. Moreover, if G is commutative, then π is a group homomorphism.
If we identify the tangent space at 0 of Te(G) with Te(G) itself, then the differential of π at 0
is the identity Te(G) → Te(G).

Definition 2.47. Let G be a complex Lie group with neutral element e. We call φv the
one-parameter-subgroup of v and π the exponential map for G.
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Example 2.48. Consider G = C× as a complex Lie group. The tangent space of G at 1 is
(isomorphic to) C and π is the usual exponential map z 7→ ez.

We can now describe the exponential map for Abelian varieties.

Proposition 2.49. Let A be an Abelian variety of dimension g over C. Let

π : T0(A) → A

be the exponential map for the complex Lie group A. Then π is surjective and its kernel is a
full lattice in T0(A). In particular, choosing a basis for T0(A), we obtain an isomorphism of
complex Lie groups A ∼= Cg/Λ for some full lattice Λ ⊆ Cg.

Remark. By T0(A), we mean the analytic tangent space. We should remark that the Zariski
and manifold tangent spaces of a smooth variety at point will always be isomorphic. For
algebraic sets in Cn, this can be seen because both tangent spaces can be defined by the same
linear polynomials, cf. section 4.b in [Mil17].

Proof of Proposition 2.49, following 2.1. in [Mil08]. Let us first show that π is surjective.
Since π is a homomorphism, its image H in A is certainly a subgroup of A. The differential
dπ of π is an isomorphism, as it is the identity under a suitable choice of a basis (2.46). By
the inverse mapping theorem, π restricts to a biholomorphic map on a neighbourhood of 0.
In particular, there is an open neighbourhood U of 0 in H. Then since H is additively closed,
for every a ∈ H we get an open neighbourhood a+ U of a contained in H, so H is open. But

A \H =
⋃

a∈A\H

a+H

is the union of translates of H, hence open too. So H is nonempty and both open and
closed in A, thus H = A because A is connected. This proves the surjectivity of π. Since
π is biholomorphic between neighbourhoods of the respective neutral elements, there is a
neighbourhood U of 0 in T0(A) such that π|U is injective. Phrased differently,

U ∩ ker(π) = ker(π|U ) = {0}.

But this suffices to see that ker(π) is a lattice in T0(A) (2.42). Furthermore, the quotient
T0(A)/ ker(π) ∼= im(π) = A is compact (2.39), so ker(π) is a full lattice in T0A (2.43).

Corollary 2.50. Let A be an Abelian variety of dimension g over C. The torsion points Ator

in A are isomorphic to (Q/Z)2g as a group. Moreover, for n ∈ N, the torsion points A[n] in
A of order n are isomorphic to (Z/nZ)2g as a group.

Proof. As a complex Lie group, so in particular as a group, A is isomorphic to Cg/Λ for some
full lattice Λ ⊆ Cg. Then

Ator
∼= QΛ/Λ ∼= (Q/Z)2g and A[n] ∼=

1

n
Λ/Λ ∼= (Z/nZ)2g,

because Λ ∼= Z2g.

We have seen that every Abelian variety of dimension g over C yields a full lattice Λ ⊆ Cg such
that A ∼= Cg/Λ as complex Lie groups. It is a natural question whether the converse holds,
i.e. if for every full lattice Λ ⊆ Cg there is is an Abelian variety A over C of dimension g such
that A ∼= Cg/Λ. For elliptic curves, this is true and we can give a very explicit construction.
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Proposition 2.51 (VI.3 Prop. 3.6 in [Sil09]). Let Λ ⊆ C be a full lattice. The coefficients

g2 := 60
∑

λ∈Λ\0

1

λ4
and g3 := 140

∑
λ∈Λ\0

1

λ6

are well-defined and g32 − 27g33 is nonzero. Thus E : Y 2 = 4X3 − g2X − g3 is an elliptic curve.
The Weierstrass ℘-function

℘(z) =
1

z2
+

∑
λ∈Λ\{0}

(
1

(z − λ)2
− 1

λ2

)
,

is indeed a well-defined function and the map

π : C → E ⊆ P2(C), z 7→

{
[℘(z) : ℘′(z) : 1] for z ∈ C \ Λ

[0 : 1 : 0] for z ∈ Λ

is a homomorphism of complex Lie groups with kernel Λ.

So indeed, every complex torus C/Λ is isomorphic as a complex Lie group to the analytification
of an elliptic curve. This is in fact an equivalent definition of elliptic curves (by the equivalence
of categories below (2.55)). However, the same cannot be said about higher dimensional
Abelian varieties. In general, a complex torus Cg/Λ is isomorphic to the analytification of an
Abelian variety of dimension g if and only if the lattice Λ admits a Riemann form:

Definition 2.52. Let V be a finite dimensional complex vector space and let Λ be a full
lattice in V . A Riemann form on (V,Λ) is a symplectic bilinear form s : Λ × Λ → Z such
that for the R-bilinear extension sR : V × V → R of s, the following hold:

(a) For all u, v ∈ V , we have sR(iu, iv) = sR(u, v).

(b) For all v ∈ V \ {0}, we have sR(iv, v) > 0.

A complex torus V/Λ is polarisable if (V,Λ) admits a Riemann form.

It can be shown that Riemann forms s : Λ × Λ → Z on (V,Λ) on Λ are in correspondence
with positive dimenional Hermitian forms h : V × V → C such that h(Λ × Λ) ⊆ Z. Using this
correspondence and with substantially more work, the following theorem can be proved.

Theorem 2.53 (Section 3, Corollary in [Mum70]). A complex torus V/Λ is isomorphic to
the analytification of an Abelian variety if and only if V/Λ is polarisable.

Definition 2.54. Let V/Λ and V ′/Λ′ be complex tori. A morphism of complex tori is a
C-linear map Φ: V → V ′ such that Φ(Λ) ⊆ Λ′.

If A and A′ are complex Abelian varieties isomorphic to tori V/Λ and V ′/Λ′, respectively,
then every regular map φ : A→ A′ lifts to a linear map Φ: V → V ′ such that Φ(Λ) ⊆ Λ′. On
the other hand, every linear map Φ: V → V with Φ(Λ) ⊆ Λ′ induces a holomorphic map
V/Λ → V/Λ′. It then follows from Chow’s theorem (cf. chapter 4 in [Mum76]) applied to the
graph of this holomorphic map, that it is in fact regular. We obtain:

Theorem 2.55. The analytification functor −an restricts to an equivalence between the
category of Abelian varieties to the category of polarisable tori.

This theorem is remarkable because it gives us an equivalence between an algebraic and an
analytic category (although these terms are not strict). The equivalence can be exploited for
many important constructions such as the dual Abelian variety and, with more work via line
bundles, quotients of Abelian varieties by Abelian subvarieties. We will have to work with
them in the proof of Manin-Mumford, so let us state what we need.
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Proposition 2.56. Let A be an Abelian variety and let B ⊆ A be an Abelian subvariety. Then
there exists an Abelian variety C and a surjective morphism of Abelian varieties φ : A→ C
such that ker(φ) = B. In particular, the underlying group of C is isomorphic to the quotient
group A/B. If π : Cg → A is the exponential map for A and Θ ⊆ Cg is a complex vector
subspace of A such that π(Θ) = B, then we get an induced map of groups Cg/Θ → A/B which
is the exponential map for C for an identification of Cg/Θ with T0(C).

Definition 2.57. In the situation of the previous proposition, we call C the quotient
Abelian variety of A by B and denote it by A/B.

Quotients of Abelian varieties by subvarieties are not contained in Mumfords book [Mum70]
or Milne’s notes [Mil08]. For the construction, we refer to [Lin14].
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3 O-minimality and the Pila-Wilkie Counting Theorem

This section is devoted to the model theoretic background of the Pila-Zannier method.
After an introductory subsection concerning examples of o-minimal structures and the Cell
Decomposition Theorem, we discuss the Pila-Wilkie Counting Theorem, which allows o-
minimality to enter the world of Diophantine geometry.

Throughout, let R = (R,<, . . .) be a model of the theory of dense linear orders without
endpoints. By definable we will always mean definable in R. For a ∈ R the sets [a,∞), (a,∞),
(−∞, a], (−∞, a) and R itself are understood to be intervals in R. In this section, we always
equip R with the topology induced by the order, and Rm with the respective product topology.

3.1 Basic o-minimal geometry

Let us start with presenting some results on o-minimal structures, mostly without proofs. An
excellent introduction to o-minimal geometry is the book of van den Dries [vdD98].

Definition 3.1. The structure R is o-minimal if every definable subset of R is a finite union
of intervals and points.

Although this condition looks quite simple, proving the o-minimality of a structure can be
a very hard task. It often requires a lot of effort studying the algebra, analysis and model
theory involved. Let us elaborate on that by giving some examples.

Examples 3.2.

(a) The real ordered field Ralg = (R,+,−, ·, 0, 1, <) is o-minimal. This follows from quanti-
fier elimination for the theory of real closed fields, which is also known as the Tarski-
Seidenberg theorem. Geometrically, it asserts that a coordinate projection of a semialge-
braic set is again semialgebraic. In fact, the study of o-minimality was strongly motivated
by the aim to generalise results from semialgebraic geometry, cf. [Tar49,vdD86].

(b) The real ordered field with restricted analytic functions Ran is o-minimal. This is
implicitly due to  Lojasievicz and Gabrielov, cf. [ Loj65] and [Gab68], and was extracted
within the framework of o-minimality by van den Dries, cf. [vdD86]. The structure Ran

will be central for our proof of Manin-Mumford, so let us make its definition precise.
We call a tuple r = (r1, . . . , rm) ∈ Rm

>0 a polyradius. For polyradii r, s ∈ Rm
> , we

write r > s if rj > sj for all j ∈ {1, . . . ,m}. We define R{X1, . . . , Xm}r to be{∑
α∈Nm bαX

α ∈ RJX1, . . . , XmK :
∑

α∈Nm |bα|rα <∞
}

and set

R{X1, . . . , Xm}1+ :=
⋃

r>(1,...,1)

R{X1, . . . , Xm}r,

the power series that converge in some neighbourhood of the cube [−1, 1]m. Every
formal power series f ∈ R{X1, . . . , Xm}1+ defines a function

f̃ : Rm → R, f̃(x) :=

{
f(x) for x ∈ [−1, 1]m

0 for x ∈ Rm \ [−1, 1]m.

We call a function of this form a restricted analytic function. We define Lan to be
the language of ordered rings {+,−, ·, <, 0, 1} augmented by new function symbols for
each restricted analytic function f̃ : Rm → R for all m ∈ N. The real ordered field with
restricted analytic functions, denoted by Ran, is the Lan-structure (R, 0, 1,+,−, ·, (f̃i)i),
the f̃i being all interpreted naturally as restricted analytic functions. Of course, the
cube [−1, 1]m can be replaced by its image under any definable automorphism of Rm.
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(c) The real ordered field with the exponential function Rexp = (R,+,−, ·, 0, 1, <, exp) is
o-minimal. This was proved by Wilkie, who more generally studied the model theory of
the real ordered field expanded by pfaffian functions, cf. [Wil96].

(d) Merging the two previous examples, also the real ordered field with restricted analytic
functions and (unrestricted) exponentiation Ran,exp = (R,+,−, ·, 0, 1, <, (f̃i), exp) is o-
minimal. This was first proved by Miller and van den Dries [vdDM94] and reproved by van
den Dries, Mackintyire and Marker, who axiomatised the theory of Ran,exp [vdDMM94].
Both proofs require a lot of algebra. The structure Ran,exp is the structure most used in
Diophantine applications. In particular, the recent proof of the André-Oort conjecture
requires the o-minimality of Ran,exp and not just of Ran [PST21].

The o-minimality of these structures would not have been studied so intensively if it was not
for the striking consequences of o-minimality. Arguably, the Cell Decomposition Theorem is
the most fundamental result among these consequences. According to it, the innocent looking
one-dimensional condition characterising o-minimal structures also forces the definable sets in
higher dimensions to obey a tame structure theory. Following van den Dries [vdD98], let us
introduce the relevant definitions and state the theorem.

Definition 3.3. For X ⊆ Rm definable in R, we set

C(X) := {f : X → R : f is definable and continuous},
C∞(X) := C(X) ∪ {−∞,∞},

viewing −∞ and ∞ as constant functions on X. For f, g ∈ C∞(X), we write f < g if
f(x) < g(x) for all x ∈ X. Let (i1, . . . , im) ∈ {0, 1}m. With induction on m, we define an
(i1, . . . , im)-cell in Rm as follows:

(a) A (0)-cell is a singleton {r} ⊆ R. A (1)-cell is an interval (a, b) ⊆ R.

(b) Supoose that (i1, . . . , im)-cells are defined. An (i1, . . . , im, 0)-cell is the graph Γ(f) of a
function f ∈ C(X), where X is an (i1, . . . , im)-cell. An (i1, . . . , im, 1)-cell is a set of the
form

{(x, r) ∈ X ×R : f(x) < r < g(x)}
for an (i1, . . . , im)-cell X and f, g ∈ C∞(X). with f < g.

We also define a ()-cell to be the one point space R0. A cell in Rm is an (i1, . . . , im)-cell for
some (i1, . . . , im) ∈ {0, 1}m. We call the (1, . . . , 1)-cells and the unqiue ()-cell open cells.
The dimension of an (i1, . . . , im)-cell is the natural number i1 + · · · + im and the dimension
of the ()-cell is −∞.

Visualisation of cells.

The open cells are indeed open in Rm and all other cells have empty interior in Rm.
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Lemma 3.4. Let i = (i1, . . . , im) ∈ {0, 1}m. For every i-cell C ⊆ Rm there is a coordinate
projection pri : R

m → Rk, only depending on i, that maps C homeomorphically to an open
cell. We can choose k = i1 + · · · + im.

Proof. Let j(1) < · · · < j(k) be precisely the indices such that ij(ℓ) = 1 for 1 ≤ ℓ ≤ k. Then
we have k = i1 + · · · + im. Define

pri : R
m → Rk, (x1, . . . , xm) 7→ (xj(1), . . . , xj(k)).

It is not hard to prove by induction on m that this restricts to a homeomorphism from each
i-cell to an open cell.

Definition 3.5. A decomposition of Rm is a finite partition D = {C1, . . . , Cn} of Rm into
cells that is defined inductively on m as follows.

(a) A decomposition of R1 is a finite partition of R1 of the form

{(−∞, a1), (a1, a2), . . . , (ak,∞), {a1}, . . . , {ak})},

for some a1, . . . , ak ∈ R.

(b) Suppose that it is defined what a decomposition of Rm is. A decomposition of Rm+1 is a
finite partition of Rm+1 into cells {C1, . . . , Cn} such that the set {pr(Ci) : i ∈ {1, . . . , k}}
is a decomposition of Rm, where pr : Rm+1 = Rm ×R→ Rm denotes the projection.

Let X ⊆ Rm. We say that a decomposition D of Rm partitions X if for each cell C ∈ D we
have C ⊆ X or C ∩X = ∅. Then we call {C ∈ D : C ⊆ X} a cell decomposition for X.

Each definable set admits a cell decomposition, and in fact even more holds. The statement
of the Cell Decomposition Theorem is as follows:

Theorem 3.6 (Cell Decomposition Theorem, Ch. 3, Thm. 2.11. in [vdD98]). Let m ∈ N.

(a) Let X1, . . . , Xn ⊆ Rm be definable. Then there is a decomposition of Rm partitioning
each of the X1, . . . , Xn.

(b) Let X ⊆ Rm and let f : X → R be a definable function. Then there is a decomposition D
of Rm partitioning X such that for each C ∈ D with C ⊆ X the restriction f |C : C → R
is continuous.

The proof of this theorem is by a nested induction and takes several pages. For m = 1,
the first part of the theorem is the definition o-minimality and the second statement is the
monotonicity theorem for o-minimal structures, cf. 1.2. in [vdD98].

Having introduced the dimension of a cell and knowing that each definable set has a cell
decomposition, it is natural to define the dimension of a definable set X to be the maximal
dimension of a cell in a cell decomposition for X. This does not depend on the chosen
decomposition, which is an immediate consequene of the following result.

Proposition 3.7 (c.f. 3.14, 3.17(4) in [Cos99] and 3.20 in [Cos02]). Let X ⊆ Rm be definable
and nonempty. Then the following natural numbers are well-defined and coincide:

(a) the maximal d ∈ N such that there exists an injective map Rd → X,

(b) the maximal d ∈ N such that there is a d-dimensional cell in a cell decomposition for X.

For R = Ralg and X ⊆ Rm, these numbers also agree with the Krull dimension of the real
Zariski closure of X in Rm.
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Definition 3.8. Let X ⊆ Rm be definable. The dimension of X, denoted by dim(X), is
maximal d ∈ N such that there is a d-dimensional cell in some cell decomposition for X if
X ̸= ∅ and −∞ if X = ∅.

It can be proved that the dimension behaves as expected. For example, for a definable map
f : X → Rn, we have dim(f(X)) ≤ dim(X) and for definable X ⊆ Rm and Y ⊆ Rn, we
have dim(X × Y ) = dim(X) + dim(Y ). Among many other results, this fits into the general
conception that o-minimality provides a tame structure theory, not allowing pathological
phenomena such as space filling curves.

Another interesting consequence of the Cell Decomposition Theorem is that every definable set
only has finitely many definably connected components, which are by definition the maximal
subsets of X that are not the disjoint union of two definable nonempty open subsets. These
components of a definable set also partition it, cf. Ch. 3 Proposition 2.18 in [vdD98].

We finish this subsection with a brief discussion of definable families, which will be relevant
for the proof sketch of Pila-Wilkie in the next part. The presentation of the following results
is based on [BvdD22].

Definition 3.9. Suppose that S ⊆ Rd and X ⊆ S × Rm are definable. For s ∈ S we define

X (s) := {x ∈ Rm : (s, x) ∈ X}.

We call (X (s))s∈S a definable family.

Example 3.10. Let e ∈ N≥1. Recall that a hypersurface in Rm is a real algebraic set
that is the zero set V (f) of a single nonzero polynomial f ∈ R[X1, . . . , Xm]. We say that a
hypersurface H = V (f) has degree at most e if f has degree at most e. For m ∈ N≥1, the
hypersurfaces in Rm of degree at most e form a semialgebraic family. Indeed, the dimension
of the real vector space P of polynomials in m variables of degree at most e is d :=

(
e+m
m

)
.

Let Φ: Rd → P be an isomorphism of real vector spaces, A := Rd \ {0} and define

H := {(a1, . . . , ad, b1, . . . , bm) ∈ Rd × Rm : Ralg |= a ̸= 0 ∧ Φ(a1, . . . , ad)(b1, . . . , bm) = 0}.

Then both H and A are definable in Ralg, each H(a) = V (Φ(a)) for a ∈ A is a hypersurface
of degree at most m and every such hypersuface is of this form.

Proposition 3.11 (Essentially Ch. 3, Cor. 3.6. [vdD98]). Let (X (s))s∈S be a definable family
given by definable S ⊆ Rd and X ⊆ S ×Rm. Let D be a decomposition of Rd+m partitioning
X . Let pr denote the projection Rd+m → Rd, (x1, . . . , xd+m) 7→ (x1, . . . , xd). Then for all
s ∈ S, the set

D(s) := {C(s) : C ∈ D, s ∈ pr(C)}
is a decomposition of Rm partitioning X (s). Here, as for X (s), we write C(s) for the set
{x ∈ Rm : (x, s) ∈ C}. In particular, there is M ∈ N such that each X (s) has at most M
definably connected components.

From the Cell Decomposition Theorem (3.6), the previous proposition (3.11) and our preceding
discussion of hypersurfaces (3.12), the following can be deduced:

Corollary 3.12. Let m, e ∈ N≥1 and let d :=
(
e+m
m

)
. As defined above (3.10), let H be the

subset of Rd \ {0} × Rm such that (H(a))a∈Rd\{0} is the semialgebraic family of hypersurfaces
in Rm of degree at most e. Then there are L ∈ N≥1 and semialgebraic subsets C1, . . . , CL of
(Rd \ {0}) × Rm such that the following holds. For all a ∈ Rd \ {0} we have

H(a) =

L⋃
ℓ=1

Cℓ(a)

and for each ℓ ∈ {1, . . . , L} there is a tuple iℓ = (iℓ1, . . . , i
ℓ
m) ∈ {0, 1}m \ {(1, . . . , 1)} such that

each Cℓ(a) is a semialgebraic iℓ-cell or empty.
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3.2 The Pila-Wilkie Counting Theorem

This section is devoted to the Pila-Wilkie Counting Theorem. A complete proof of this theorem
would be too lengthy, whereas the mere statement of it would not do justice to its central
and characterising role in the Pila-Zannier strategy. Therefore, we will provide some context,
state main ingredients and deduce the theorem from them. This subsection is based on the
first two sections of an expository paper by Bhardwaj and van den Dries [BvdD22].

Recall the definition of the height function H : Qm → N≥1 (1.3), and that for X ⊆ Rm we set

X(Q) := X ∩Qm, X(Q, t) := {x ∈ X(Q) : H(x) ≤ t}, and N(X, t) := #X(Q, t).

Furthermore, recall the definition of the algebraic part Xalg and the trascendental part Xtrans

of X ⊆ Rm (1.5). The most common form of the Pila-Wilkie theorem goes as follows:

Theorem 3.13 (Thm. 1.8. in [PW06]). Let X be definable in an o-minimal expansion of
Ralg. Then for all ε > 0 there exists a constant C, only depending on X and ε, such that
N(Xtrans, t) ≤ Ctε for all t ∈ R≥0.

We will discuss a slightly stronger version that gives a uniform bound for definable families.

Theorem 3.14 (Thm. 1.9. in [PW06]). Let (X (s))s∈S be a definable family in an o-minimal
expansion of Ralg given by definable S ⊆ Rd and X ⊆ S ×Rm. Then for all ε > 0 there exists
a constant C, only depending on X and ε, such that N(X (s)trans, t) ≤ Ctε for all t ∈ R≥0 and
all s ∈ S.

We should remark that it is possible to strengthen the theorem even further, cf. Theorem
1.10 in [PW06]. Towards a proof, we start with three short lemmas that provide a better
understanding of the algebraic and transcendental parts.

Lemma 3.15. Let m ∈ N≥1 and let X ⊆ Rm be open. Then Xtrans = ∅.

Proof. For every x ∈ X there is ε > 0 such that the infinite connected semialgebraic set
(x1 − ε, x1 + ε) × · · · × (xm − ε, xm + ε) is a subset of X containing x, so x ∈ Xalg.

Lemma 3.16. Suppose that X = X1 ∪ · · · ∪Xn. Then Xtrans ⊆ Xtrans
1 ∪ · · · ∪Xtrans

n . More
precisely, if x ∈ Xi ∩Xtrans, then x ∈ Xtrans

i .

Proof. Let x ∈ Xtrans and k ∈ {1, . . . , n} such that x ∈ Xi. By the definition of the algebraic

part, we have Xalg
1 ∪ · · · ∪Xalg

m ⊆ Xalg, hence x /∈ Xalg
i , and we conclude that x ∈ Xtrans

i .

Lemma 3.17. Let W ⊆ Rm be semialgebraic and X ⊆ W . Let f : W → Rℓ be an injective
semialgebraic map. If f |X : X → f(X) is a homeomorphism, then f(Xalg) = f(X)alg and
f(Xtrans) = f(X)trans.

Proof. Since f |X : X → f(X) is bijective, it suffices to prove f(Xalg) = f(X)alg. Let S be
an infinite connected semialgebraic subset of X. Since f is injective and semialgebraic, f(S)
is infinite and semialgebraic. Since f |X is continuous, f(S) is connected. This proves that
f(Xalg) ⊆ f(X)alg. Now let T be an infinite connected semialgebraic subset of f(X). Since
f and T are semialgebraic, f−1(T ) ⊆ W is semialgebraic. Since f is injective, f−1(T ) ⊆
f−1(f(X)) = X. Hence, because f |X is a homeomorphism, f−1(T ) ⊆ X is also infinite and
connected. This proves f(Xalg) ⊇ f(X)alg, and we conclude that f(Xalg) = f(X)alg.

In the proof of Pila-Wilkie below, we will just refer to these lemmas as the Interior Lemma,
the Union Lemma and the Function Lemma, respectively.

As announced, we will use two nontrivial intermediate theorems to deduce the Counting
Theorem. The first result does not concern o-minimality. According to it, the rational points
on a set can be covered effectively by hypersurfaces if the set admits a strong k-parametrisation.
Let us define this term and make the statement precise.
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Definition 3.18. Let X ⊆ Rm and let k ∈ N≥1. A strong k-parametrisation of X is a
Ck-map f : (0, 1)n → Rm with n < m and image X such that |f (α)(b)| ≤ 1 for all α ∈ Nn

with |α| ≤ k and all b ∈ (0, 1)n. Here, f (α) denotes the derivative (∂|α|/∂xα)f .

In the following, we write x = x(y, z) to indicate that x only depends on y and z.

Theorem 3.19 (Thm. 1.2. in [BvdD22]). Let m ≥ 1. Then for all e ≥ 1 there are
k = k(m, e) ∈ N≥1, ε = ε(m, e) ∈ R>0, and c = c(m, e) ∈ R>0 such that if X ⊆ Rm has a
strong k-parametrisation. Then there exists N ∈ N with N ≤ ctε such that N hypersurfaces in
Rm of degree at most e suffice to cover X(Q, t). We can arrange that ε(m, e) → 0 for e→ ∞.

In the proof of Pila-Wilkie, we will just refer to this theorem as the Hypersurface Theorem.
It is not clear why rational points lying on a hypersurface should be easier to control. The
key motivation for considering hypersurfaces in the present proof is that they decrease the
dimension, thereby allowing for an induction argument.

The second main ingredient guarantees the existence of strong k-parametrisations under
suitable assumptions, and will enable us to apply the Hypersurface Theorem (3.19) in the
proof of Pila-Wilkie.

Theorem 3.20 (Thm. 1.2. in [BvdD22]). Let R be an o-minimal extension of Ralg. Let
(X (s))s∈S be a definable family in R given by definable S ⊆ Rℓ and X ⊆ S × Rm. Assume
that for all s ∈ S, the set X (s) is contained in [−1, 1]m and has empty interior in Rm. Then
for every k ∈ N≥1 there is M ∈ N such that each X (s) is a union of at most M subsets, each
of which admits a strong k-parametrisation.

Below, we will refer to this theroem as the Parametrisation Theorem. In contrast to the
Hypersurface Theorem (3.19), the proof of the Paramtetrisation Theorem requires some model
theory, such as passing to ℵ0-saturated elementary extensions.

Proof of Theorem 3.14, following section 2 of [BvdD22]. Let (X (s))s∈S be definable family of
subsets X (s) ⊆ Rm in an o-minimal expansion of Ralg and let ε > 0. Our goal is to find a
constant C such that

N(X (s)trans, t) = #X (s)trans(Q, t) ≤ Ctε

for all t ∈ R≥0. Since N(X (s)trans, t) is zero for t < 1, we can assume throughout that t ≥ 1.
We proceed by induction on m. For m = 0, each X (s) is empty or a singleton, so we can
take C := 1. Now let m > 0 and suppose that the claim holds for all m′ < m. To apply the
Parametrisation Theorem (3.20) to X, we need the following reduction.

Claim 1. We can assume that X (s) is contained in [−1, 1]m and has empty interior in Rm

for all s ∈ S.

We fix s ∈ S and consider X := X (s). Let us deal with the first condition. For any Z ⊆ Rm

and I ⊆ {1, . . . ,m} we consider the set

ZI := {z ∈ Z : |zi| > 1 for all i ∈ I and |zi| ≤ 1 for all i /∈ I}.

We also consider the map

fI : Rm
I → Rm, (a1, . . . , am) 7→ (b1, . . . , bm),

with bi := 1/ai for i ∈ I and bi := ai for i /∈ I. The map fI is a homeomorphism onto its image
f(Rm

I ), which is contained in [−1, 1]m. Moreover, for q ∈ Qm ∩ Rm
I we have H(q) = H(fI(q))

since inverting rational numbers does not change their height. Both the set RI and the
map fI : Rm

I → Rm are semialgebraic. Furthermore, fI is injective and maps each XI ⊆ RI

homeomorphically onto its image. Thus, we can conclude by the Function Lemma (3.17) that

fI(Xtrans
I ) = fI(XI)trans.
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By these observations, we have N(Xtrans
I , t) = N(fI(XI)

trans, t) for each I. We can write
each X as a disjoint union X =

⋃
I⊆{1,...,m}XI , so by the Union Lemma (3.16) we have

Xtrans ⊆
⋃

I⊆{1,...,m}X
trans
I . We can conclude that

N(Xtrans, t) ≤
∑

I⊆{1,...,m}

N(Xtrans
I , t) =

∑
I⊆{1,...,m}

N(fI(XI)trans, t).

Since fI(XI) ⊆ [−1, 1]m and the number of summands only depends on m, it indeed suffices to
consider subsets of [−1, 1]m. We can also assume that X has empty interior in [−1, 1]m, which
can be seen as follows. Let X◦ be the interior of X in Rm. Then X = (X)∪(X \X◦), and thus
Xtrans ⊆ (X◦)trans ∪ (X \X◦)trans by the Union Lemma (3.16). However, (X◦)trans = ∅ by the
Interior Lemma (3.15), so we can indeed remove the interior of X in Rm from X. (Claim 1)

Let us come back to the main proof. We choose e ∈ N≥1 sufficiently large such that for
k = k(m, e) ≥ 1, ε(m, e) and c = c(m, e) as in the Hypersurface Theorem (3.19), we have
ε(m, e) ≤ ε/2, with respect to the ε > 0 we are given. By the Parametrisation Theorem (3.20),
we find M ∈ N such that each X (s) is a union

X (s) =

M⋃
i=1

Y (s)i

of at most M subsets, each of which admits a strong k-paramtetrisation. By the Hypersurface
Theorem (3.19), we can cover each Y (s)i(Q, t) by at at most ctε(m,e) hypersurfaces in Rm of
degree at most e. Let N := ⌊ctε(m,e)⌋ and let Hi1(s), . . . ,HiN (s) be these hypersurfaces, so

X (s)(Q, t) =

M⋃
i=1

N⋃
j=1

(X (s)(Q, t) ∩Hij(s)).

By the Union Lemma (3.16), for x ∈ X (s)trans ∩Hij(s), we have x ∈ (X (s)trans ∩Hij(s))
trans,

so we can conclude that

X(s)trans(Q, t) ⊆
M⋃
i=1

N⋃
j=1

(X (s) ∩Hij(s))
trans(Q, t).

We will now estimate N((X (s) ∩ Hij(s))
trans, t) from above. We want the bound to be

independent of the chosen hypersurface and s.

Claim 2. There exists a constant c′ ∈ R>0 such that for any hypersurface H in Rm of degree
at most e and all s ∈ S, we have N((X (s) ∩H)trans, t) ≤ c′tε/2 for all t ∈ R≥0.

Let d :=
(
m+e
m

)
be the dimension of the real vector space of polynomials in m variables of

degree up to e. We discussed at the end of the previous subsection that there are definable
families H, C1, . . . , CL ⊆ (Rd \ {0}) × Rm for some L ∈ N≥1 such that (H(a))a∈Rd\{0} is the
collection of hypersurfaces in Rm of degree at most e, we have

H(a) =
L⋃

ℓ=1

Cℓ(a)

for all a ∈ Rd\{0}, and for each ℓ ∈ {1, . . . , L} there is iℓ = (iℓ1, . . . , i
ℓ
m) ∈ {0, 1}m\{(1, . . . , 1)}

such that each Cℓ(a) is a semialgebraic iℓ-cell or empty (3.12). By the Union Lemma (3.16),
we have

(X (s) ∩H(a))trans ⊆
L⋃

ℓ=1

(X (s) ∩ Cℓ(a))trans (1)
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Let priℓ : Rm → Rmℓ be the coordinate projection that maps each Cℓ(a) homeomorphically
to an open cell or to the empty set if Cℓ(a) = ∅ (3.4). Then each X (s) ∩ Cℓ(a) is mapped
homeomorphically by priℓ to its image

X ′
ℓ(s, a) := priℓ(X (s) ∩ Cℓ(a)) ⊆ priℓ(Cℓ(a)) ⊆ Rmℓ .

If q ∈ Cℓ(a) ∩Qm, then priℓ(q) ∈ Qmℓ and H(priℓ(q)) ≤ H(q), because we take the maximum
of the heights over fewer coordinates. Furthermore, by the Function Lemma (3.17), we have
X ′
ℓ(s, a)trans = priℓ((X (s) ∩ Cℓ(a)trans). Hence we get

N((X (s) ∩ Cℓ(a))trans, t) ≤ N((X ′
ℓ(s, a)trans, t). (2)

We can consider the X ′
ℓ(s, a) as a members of a definable family (X ′

ℓ(s, a))(s,a)∈S×(Rd\{0}) with

X ′
ℓ = {(s, a, x) ∈ (S × (Rd \ {0})) × Rmℓ : x ∈ priℓ(X (s) ∩ Cℓ(a))}.

We have mℓ = iℓ1 + · · · + iℓm < m, so by the induction hypothesis, for all ℓ ∈ {1, . . . , L} we
find constants cℓ > 0 with

N(X ′
ℓ(s, a)trans, t) ≤ cℓt

ε/2 (3)

Let us conclude the claim. If H is a hypersurface in Rm of degree at most e, then there is
a ∈ Rd \ {0} such that H = H(a). Given any s ∈ S, for all t ∈ R≥0 we obtain

N((X (s) ∩H(a))trans, t)
(1)

≤
L∑

ℓ=1

N((X (s) ∩ Cℓ(a))trans, t)

(2)

≤
L∑

ℓ=1

N((X ′
ℓ(s, a)trans, t)

(3)

≤ L(c1 + · · · + cℓ)t
ε/2.

The desired statement follows with c′ := L(c1 + · · · + cn). (Claim 2)

Recall that we had already proved

X (s)trans(Q, t) ⊆
M⋃
i=1

N⋃
j=1

(X (s) ∩Hij(s))
trans(Q, t).

By Claim 2., we also have #(X (s) ∩ Hij(s))
trans(Q, t) ≤ c′tε/2 for all t ∈ R≥0 with c′

independent of s, i and j. Reminding ourselves that we chose N such that N ≤ ctε(m,e), and
e such that ε(m, e) ≤ ε/2, we conclude that

N(X (s)trans, t) ≤MNc′tε/2 ≤Mc′ctε/2tε/2 = Mc′ctε.

The estimate in the Counting Theorem holds with C := Mc′c.

It is a natural question whether we can achieve sharper bounds. Allowing arbitrary definable
sets in Ran, there are examples showing that the bound of the Counting Theorem cannot
be improved (e.g. Pila’s Example 7.5. in [Pil04]). The following result, known as Wilkie’s
conjecture, is Conjecture 1.11 in the paper in which Pila and Wilkie proved the Counting
Theorem [PW06].

Theorem 3.21. Let X ⊆ Rm be definable in Rexp. Then there are constants C and K
depending only on X such that for t ≥ 1 we have N(Xtrans, t) ≤ C(log t)K .

This result was proved in 2022 by Binyamini, Novikov and Zack [BNZ22], demonstrating that
not only applications of the Pila-Wilkie theorem, but also variations of the theorem itself are
of high interest in current research projects.
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4 An o-minimality proof of Manin-Mumford

In this section, we will finally give a proof of Manin-Mumford. Recall the statement:

Theorem 4.1. Let A be a complex Abelian variety and let V ⊆ A be a closed algebraic
subvariety. Suppose that V does not contain any translate of a positive dimensional Abelian
subvariety of A. Then V contains only finitely many torsion points of A.

We begin our journey towards a proof with a relation between algebraic, semialgebraic and
analytic sets. In a second subsection, which forms the main part of the proof, we demonstrate
the Ax-Lindemann-Weierstraß theorem. This can be recognised as the study of the algebraic
part in the general pattern of the Pila-Zannier strategy and corresponds to the main Theorem
2.1. in the original paper [PZ08]. By proving Ax-Lindemann-Weierstraß, we do not strictly
follow the original work of Pila and Zannier for two reasons. Firstly, the success of the
Pila-Zannier strategy has led to some clarifications of arguments in the proof. These are not
only preferable for simplicity, but also because they can be adapted more easily towards proofs
of related problems such as the André-Oort conjecture. Secondly, we can (and will) give an
o-minimality proof of Ax-Lindemann-Weierstraß. In Pila’s and Zannier’s original work, it
is just a side note after the proof of Lemma 2.2. that their study of the algebraic part can
be related to the o-minimality of Ran. We will elaborate on this, emphasising the power of
o-minimality in Diophantine applications. In a final part, we deduce Manin-Mumford. As in
the general pattern, there will be an algebraic part, which corresponds to a well structured
set of torsion points, and a transcendental part, which corresponds to finitely many torsion
points. The Ax-Lindemann-Weierstraß theorem will help us to understand the algebraic part.
With the Pila-Wilkie Counting Theorem, we will then see that there are few points on the
trancendental part. As in the case of Mann’s Theorem, we need to consider Galois orbits to
get from few to finite. However, the required bound, given by Masser’s Theorem, is much
harder to obtain in the case of Abelian varieties. Its proof is of a completely different nature
than the algebro- and tame-geometric considerations for the other parts. Therefore, as Pila
and Zannier do, we will use Masser’s result without a proof.

Many results obtained in this section require a lot of machinery from algebraic, analytic and
semialgebraic geometry. While the previous two sections were aiming to give an introduction
to the relevant concepts from algebraic geometry and o-minimality, other topics such as real
algebraic varieties and analytic varieties remained untouched. The theory of real algebraic
varieties and their interplay with complex algebraic varieties is very well explained by
Mangolte [Man20]. For an overview on analytic varieties that covers most of the results we
use in this section, we refer to Adamus [Ada13]. A detailed treatment of complex geometry is
provided by the book of Fritzsche and Grauert [FG02].

4.1 Relating algebraic, semialgebraic and analytic sets

A central theme in the Pila-Zannier strategy is the study of connections between different kinds
of geometry. This subsection is devoted to a result of this kind. The following proposition
relates complex algebraic, (real) semialgebraic and complex analytic sets. It will play a key role
for the proof of Ax-Lindemann-Weierstraß, as well as for the conclusion of Manin-Mumford.

Proposition 4.2. Let Z be a complex analytic subset of Cg and let W ⊆ Cg be a connected
irreducible semialgebraic subset such that W ⊆ Z. Then there exists an irreducible complex
algebraic set X ′ in Cg such that W ⊆ X ′ ⊆ Z.

The proof can be found below and is very technical. Nevertheless, the elegance of the statement
connecting algebraic, semialgebraic and analytic geometry is remarkable for certain. The
proposition generalises Lemma 2.1. from the original paper, in which Pila and Zannier only
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consider curves. The statement above (4.2) was first proved by Pila and Tsimerman (Lemma
4.1. in [PT13]). Before we give a proof, we have to define some terms in the statement and
give a brief review on complex analytic sets.

As in the discussion of Mann’s Theorem, by a semialgebraic subset of Cg, we mean a subset of
Cg that is mapped to a semialgebraic set in R2g under any isomorphism of real vector spaces
Cg ∼= R2g. We also define the following:

Definition 4.3. A semialgebraic set X ⊆ R2g is irreducible if it is irreducible with the
subspace topology from the real Zariski topology on R2g.

Remark. In other words, a semialgebraic set X ⊆ R2g is irreducible if and only if it is
nonempty and can not be written as a union X = X ′ ∪ X ′′ where X ′ and X ′′ are proper
closed subsets of X with respect to the subspace topology on from the real Zariski topology
on R2g. As closures and dense subspaces of irreducible spaces are irreducible, X is irreducible
if and only if its real Zariski closure in R2g an irreducible real algebraic set.

We have devoted two sections to algebraic and o-minimal (hence also semialgebraic) geometry.
Let us also summarise some definitions and results on complex analytic sets. For the rest of
this subsection, by a (sub)manifold we always mean a complex analytic (sub)manifold.

In contrast to algebraic and semialgebraic sets, analytic sets are usually defined already by a
local property:

Definition 4.4. Let M be manifold. We call a subset Z ⊆M analytic in M if for every x ∈M
there exist an open neighbourhood U of x in M and holomorphic functions f1, . . . , fr : U → C
such that Z ∩U = {z ∈M : fj(z) = 0 for all j ∈ {1, . . . , r}}. We call Z globally analytic if
we can arrange U = M .

Example 4.5. Every algebraic set is an analytic set in Cg. Every projective set in Pg(C) is
an analytic set in the analytification of Pg(C), i.e. in Pg(C) considered as a complex manifold.

Remark. An analytic set Z of a manifold M is closed in M , for if Ux denotes the neighbour-
hood of x in M for every x ∈M as in the definition, then we have M \Z =

⋃
x∈M Ux\(Ux∩Z).

Analytic subsets behave like algebraic varieties in many ways. This could be made very clear
sheaf-theoretically via the notion of analytic spaces and Serre’s GAGA theorems, cf. section
9 in [Ada13] and [Ser56]. However, in the proof of Manin-Mumford we will in fact only
encounter analytic sets in Cg, so we will treat analytic sets hands-on.

It can be readily checked that analytic sets allow for many natural constructions. For example,
preimages of analytic sets under holomorphic maps of manifolds are analytic. Also arbitrary
unions and finite intersections of analytic subsets of a manifold are again analytic. In fact,
also the following nontrivial result holds:

Proposition 4.6 (Thm. 7.11. in [Ada13]). An arbitrary intersection of analytic subsets of a
complex manifold M is again an analytic subset of M .

There are natural notions for dimension, smoothness, and irreducibility for analytic sets:

Definition 4.7. Let M be a manifold and let X ⊆M be any subset. We define the dimension
of X as

dim(X) := max{dimN : N is a submanifold of M and N ⊆ X}

if X ̸= ∅ and as dim(X) := −∞ if X = ∅. For x ∈M , the dimension of X at x is

dimx(X) := min{dim(X ∩ U) : U us an open neighbourhood of x in M}.

For elementary facts on these notions of dimension, cf. section 1.3. in [Ada13].
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Definition 4.8. Let Z be an analytic subset of a manifold M . A point z ∈ Z is regular or
smooth, if there is an open neighbourhood U of z in M such that Z ∩ U is a submanifold of
M . We denote the set of regular points of Z by Zreg, and its complement, the set of singular
points of Z, by Zsing.

Proposition 4.9 (Thm. 2.11. and Thm. 9.16. in [Ada13]). Let Z be an analytic subset of a
manifold M . Then Zreg is Euclidean open and dense in Z. On the other hand, Zsing is again
an analytic subset of M .

Definition 4.10. Let Z be an analytic subset of a complex manifold M and let p ∈ Zreg. The
tangent space of Z at p, denoted by TpZ, is the usual manifold tangent space Tp(Z ∩ U),
where U is an open neighbourhood of p in M such that Z ∩ U is a submanifold of M .

Definition 4.11. An analytic subset Z of a manifold M is (analytically) irreducible
if there are no proper subsets Z1 and Z2 of Z that are analytic subsets of M such that
Z = Z1 ∪ Z2.

Proposition 4.12 (Cor. 7.10 in [Ada13]). Let Z be an irreducible analytic subset of a
manifold M . If Y is an analytic subset of M with Y ⊆ Z and dimY = dimZ, then Y = Z.

Every algebraic set is also an analytic set, and the introduced analytic notions behave well
with the respective algebraic notions (and often they agree). This can usually be deduced
from Serre’s GAGA theorems, cf. [Ser56]. Although Serre‘s results are highly nontrivial, such
comparison arguments are often considered standard in the literature. Comparison of tangent
spaces, which will be important in the proof, can be justified for algebraic sets as follows:

The Zariski regular and the analytically regular points on an algebraic set coincide. This is
the underlying reason why we get a functor −an : SmAlgVarC → AnManC and can be proved
by quite elementary methods, cf. Theorem 4.5. in [Wer11]. Furthermore, also the Zariski
tangent space and the analytic tangent space of an algebraic set at a smooth point agree. In
Cg, this holds as the respective naive constructions use the vanishing sets of the same linear
polynomials: It does not matter whether we take formal derivatives for Zariski tangent spaces
or usual derivatives for tangent spaces of submanifolds, cf. Section 4 in [Mil17].

Let us explain one more important result on the interplay of analytic and algebraic notions:

Proposition 4.13. An algebraic set V in Cg is analytically irreducible if and only if it is
algebraically irreducible.

Proof. Certainly, if Z is analytically irreducible, then it is also algebraically irreducible. The
other implication is far from trivial. An analytic set is irreducible if and only if its set of
regular points is Euclidean connected (Corollary 7.9. in [Ada13]). But the Zariski regular
and the analytically regular points of an algebraic set coincide, so it suffices to prove that the
Zariski regular points V reg of an irreducible algebraic set V are Euclidean connected. This
is indeed the case: Corollary 4.16 in [Mum70] asserts that if X is an irreducible projective
variety and Y ⊆ X a proper closed subset, then X \ Y is Euclidean connected. To use this in
the present situation, recall that the singular points V sing of an algebraic set V ⊆ Cg form a
proper algebraic subset (Theorem 4.37 in [Mil17]). We can consider V as a subset of Pg(C) via
Ag(C) ∼= U0 ⊆ Pg(C) (2.6). Let X be the closure of V in Pg(C), let H := Pg(C)\U0

∼= Pg−1(C)
be the hyperplane at infinity and set Y := (X ∩H) ∪ V sing. Then Y is a proper closed subset
of the irreducible projective variety X, and thus X \ Y ∼= V reg is Euclidean connected.

With these facts at hand, let us prove the main result of this subsection (4.2).

Proof of Proposition 4.2, following 8.1. in [Orr15]. We are given a complex analytic set Z
in Cg and a connected irreducible semialgebraic set W ⊆ Cg such that W ⊆ Z. We have to
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show that there is an irreducible complex algebraic set X ′ with W ⊆ X ′ ⊆ Z.

In this proof, it is convenient to identify Cg with R2g by separating real and imaginary parts,
so let Φ: R2g → Cg be the isomorphism of real vector spaces

(x1, y1, . . . , xg, yg) 7→ (x1 + iy1, . . . , xg + iyg)

and let X ⊆ R2g be a connected irreducible semialgebraic set such that Φ(X) = W .

We will enlarge Φ(X) to obtain a complex algebraic set, and then verify that this set is
irreducible and still contained in Z. Let us first take the real Zariski closure of X in R2g

and denote it by S. This is a real algebraic set in R2g, which we can make into a complex
algebraic set SC by defining SC to be the complex Zariski closure clC-Zar(ι(S)) of ι(S) in C2g.
In fact, SC is the extension of scalars of S, so it is defined by the same polynomials as S, cf.
sections 2.1-2.3 in [Man20]. If we compose ι with the surjective regular map

f : C2g → Cg, (x1, y1, . . . , xg, yg) 7→ (x1 + iy1, . . . , xg + iyg),

then the resulting map f ◦ ι : R2g → Cg is precisely the isomorphism Φ we use to identify R2g

with Cg. Now let S′ := f(SC). The present situation is depicted in the following diagram:

S R2g

SC C2g

S′ Cg

⊆

⊆

⊆

ι

f

Φ ∼=

Finally, we define X ′ to be the complex Zariski closure of S′ in Cg. This finishes the
construction of X ′. We will now show that X ′ is a witness for the statement of the theorem.
Our construction immediately yields

Φ(X) ⊆ Φ(S) = f(ι(S)) ⊆ f(SC) = S′ ⊆ X ′.

It remains to prove the irreducibility of X ′ and that X ′ ⊆ Z.

Claim 1. We have dimCellX = dimKrull S and the complex algebraic set SC is irreducible. In
particular, also X ′ is irreducible.

Proof of Claim 1. It is a general result from semialgebraic geometry that the dimension
of a semialgebraic set equals the Krull dimension of its real Zariski closure (e.g. Theorem
3.20 in [Cos02]). This proves the first part. For the second part, we first observe that S is
irreducible by the definition of irreducibility for the semialgebraic set X. By separating real
and imaginary parts, we see that the inclusion ι : R2g → Cg is continuous for the real and
complex Zariski topologies, respectively. But then SC = clC-Zar(ι(S)) is the closure of the
image of an irrducible space under a continuous map, hence irreducible. We can conclude
that X ′ is irreducible by the same arguments. Indeed, f is complex Zariski continuous as a
regular map, so S′ = f(SC) is irreducible. Again, because irreducibility is preserved under
taking closures, X ′ = clC-Zar(S′) is irreducible. (Claim 1)

Claim 2. The set X ′ is also the Euclidean closure of S′ in Cg.

Proof of Claim 2. We defined X ′ to be the Zariski closure of S′ = f(SC) in Cg. The map
f : C2g → Cg is given by a polynomial in each coordinate, so it is a regular map. Since SC is
an algebraic set, it is in particular Zariski constructible and hence so also is S′ = f(SC) by
Cheavalley’s theorem (Corollary 3.2.8. in [Mar02]). The Zariski closure and the Euclidean
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closure of subsets of Zariski constructable subsets of irreducible varieties agree (2.33). Since
Cg is irreducible, the claim follows. (Claim 2)

Claim 3. There exists no analytic set Z̃ ⊆ Cg such that ι(X) ⊆ Z̃ ⊊ SC.

Proof of Claim 3. Towards a contradiction, we assume that there is such an analytic set. Since
analytic sets are stable under arbitrary intersections (4.6), we may pick Z̃ inclusion-minimal
such that ι(X) ⊆ Z̃ ⊊ SC. The singular points Z̃sing of an analytic set Z̃ in Cg form another
analytic set in Cg (4.9). By the minimality of Z̃, we can thus conclude that ι(X) ̸⊆ Z̃sing, so
ι(X) ∩ Z̃reg ≠ ∅. On the other hand, the smooth points Z̃reg of the analytic set Z̃ form a
nonempty open subset of Z̃ (4.9). Therefore, the set

ι|−1
X (Z̃reg ∩ ι(X))

of points x ∈ X such that ι(x) is a smooth point of Z̃ is a nonempty open subset of X. In
particular, it intersects a semialgebraic cell of maximal dimension in X nontrivially (3.3). We
can thus pick x ∈ X lying in a maximal dimensional semialgebraic cell of X such that Z̃ is
smooth at ι(x). Since x lies on a maximal dimensional cell, also S is smooth at x, and S and
X coincide in a Euclidean open neighbourhood of x.

We can conclude the proof with a comparision of tangent spaces. Since ι(X) ⊆ Z̃, we have

ι(TxS) ⊆ Tι(x)Z̃.

Here, S is a real algebraic subset of R2g and we consider its real Zariski tangent space TxS at
the smooth point x, whereas the space Tι(x)Z̃ is the complex analytic tangent space of Z̃ at a
smooth point ι(x). The map ι : R2g → C2g is an R-linear map of vector spaces and it follows
that also the complex linear hull Cι(TxS) of ι(TxS) is contained in the complex vector space
Tι(x)Z̃. Moreover, unfolding the definitions, we see that

Cι(TxS) = Tι(x)SC

because both spaces are the vanishing sets of the same linear polynomials. As a result, we get
an inclusion of complex vector spaces

Tι(x)SC ⊆ Tι(x)Z̃.

Furthermore, we have dimTι(x)Z̃ = dimι(x) Z̃, because Z̃ is smooth at ι(x). We also have

dimι(x) Z̃ ≤ dimSC, since Z̃ ⊆ SC by assumption. Since in general for Zariski tangent spaces
we have dimSC ≤ dimTι(x)SC, we can conclude that

dimTι(x)SC ≤ dimTι(x)Z̃ = dimι(x) Z̃ ≤ dimSC ≤ dimTι(x)SC.

These inequalities must be equalities, so dimι(x) Z̃ = dimSC. But SC is algebraically irreducible,

hence analytically irreducible (4.13), and we get Z̃ = SC (4.12), a contradiction. (Claim 3)

Let us now finish the proof of the proposition. We have to show that X ′ ⊆ Z. Consider
the subset f−1(Z) ∩ SC ⊆ C2g. We have Φ(X) ⊆ Z, and thus ι(X) ⊆ f−1(Z) because of
Φ = f ◦ ι. Since ι(X) ⊆ SC by the definition of SC, we get ι(X) ⊆ f−1(Z) ∩ SC. Moreover,
f−1(Z)∩SC is an analytic set in Cg, so it follows from the third claim that f−1(Z)∩SC = SC,
and therefore f(SC) ⊆ Z. Being a complex analytic subset of Cg, the set Z is Euclidean
closed in Cg. Because f(SC) is Euclidean dense in X ′ by the second claim, we get X ′ ⊆ Z as
desired.
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4.2 Ax-Lindemann-Weierstraß

The main result of this subsection corresponds to the main theorem in the original work of
Pila and Zannier (Theorem 2.1. in [PZ08]), yielding a proof of Manin-Mumford. We will
present a proof of the following theorem:

Theorem 4.14 (Ax-Lindemann-Weierstraß). Let A be a complex Abelian variety of dimension
g and let π : Cg → A be its exponential map. Let V be a closed algebraic subvariety of A, and
let Y be a maximal irreducible complex algebraic subvariety contained in π−1(V ). Then π(Y )
is a translate of an Abelian subvariety of A.

Here, Y being a maximal irreducible complex algebraic subvariety in π−1(V ) means that there
is no irreducible complex algebraic subvariety Y ′ of Cg such that Y ⊊ Y ′ ⊆ Z.

None of the mathematicians occuring in the name proved Ax-Lindemann-Weierstraß in this
form. However, the theorem can be deduced from transcendence results due to Ax, and it can
be viewed as a geometric analogue of the Lindemann-Weierstraß theorem in transcendental
number theory. This and more is explained in more detail by Pila in his expository article
Functional transcendence via o-minimality [Pil15]. Let us just very briefly elaborate on the
background. There is a famous conjecture in transcendental number theory due to Schanuel:

Conjecture 4.15 (Schanuel). Suppose that z1, . . . , zn ∈ C are linearly independent over Q,
then the transcendence degree of Q(z1, . . . , zn, e

z1 , . . . , ezn) over Q is at least n.

Example 4.16. Suppose that the conjecture holds, then e and π are algebraically independent
over Q. Indeed, take z1 = 1 and z2 = πi in the statement.

Schanuel’s conjecture is unproved and has surprising connections to other fields of mathematics.
For example, Macintyre and Wilkie proved that Schanuel’s conjecture implies the decidability
of Rexp, cf. [MW96]. A remarkable positive result is the power series version of Schanuel’s con-
jecture due to Ax, which we have already encountered in the proof of Mann’s Theorem (1.12):
If γ1, . . . , γn ∈ CJtK are complex power series with no constant term that are linearly indepen-
dent over Q modulo C, then the transcendence degree of C(γ1, . . . , γn, exp(γ1), . . . , exp(γn))
over C is at least n+ 1, cf. Corolary 1 in [Ax71]. Shortly after his publication of the theorem,
Ax related and expanded his results for applications to algebraic groups, cf. [Ax72]. The
Ax-Lindemann-Weierstraß theorem as stated above (4.14) can be deduced from Theorem 3
in [Ax72]. However, this deduction is still nontrivial.

It is interesting to view Ax-Lindemann-Weierstraß in the context of transcendence results.
However, we take a different path. We closely follow Orr and present a proof using the
Pila-Wilkie Counting Theorem (3.13), cf. section 7 in [Orr15].

0. Setup, notations and outline. We are given a complex Abelian variety A of dimension g
over C, the exponential map π : Cg → A, a closed algebraic subvariety V of A, and a maximal
irreducible algebraic subvariety contained in π−1(V ), denoted by Y . The situation is displayed
in the following diagram:

Y π−1(V ) Cg

π(Y ) V A

⊆ ⊆

π

⊆ ⊆

Our goal is to show that π(Y ) is the translate of an Abelian subvariety of A. By carefully
looking at the statement, we can already make two minor reductions.

(a) We can assume that dimY > 0. If dimY = 0, then Y is a point by irreducibility, and
hence so also is π(Y ). Every point in A is the translate of the trivial Abelian subvariety.
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(b) We can assume that V is the Zariski closure of π(Y ) in A. By definition, this closure
is a complex algebraic subvariety of A. It is only left to show that Y is maximal
among the irreducible algebraic subvarieties contained in π−1(clC-ZarA π(Y )). We have
Y ⊆ π−1(clC-ZarA π(Y )) and clC-ZarA π(Y ) ⊆ V , hence

Y ⊆ π−1(clC-ZarA π(Y )) ⊆ π−1(V ).

Thus, if Z ⊆ Cg is an irreducible closed algebraic variety with Y ⊆ Z ⊆ π−1(clC-ZarA π(Y )),
then also Y ⊆ Z ⊆ π−1(V ) and it follows that Y = Z.

Let us fix some notations. As usual, we denote the kernel of π by Λ, which is a lattice in Cg.
Let λ1, . . . , λ2g be a Z-basis for Λ. We can define a height function on Λ by

H : Λ → N,
2g∑
k=1

akλk 7→ max{|a1|, . . . , |a2g|}.

The λ1, . . . , λ2g form a basis for the real vector space Cg, hence we can identify R2g and Cg

with the isomorphism of real vector spaces

Ψ: R2g → Cg, (a1, . . . , a2g) 7→
2g∑
k=1

akλk

and call X ⊆ Cn definable if Ψ−1(X) is definable. Since automorphisms given by base change
matrices R2g → R2g are definable in any expansion of Ralg, the choice of Ψ is irrelevant for
questions of definability. However, the isomorphism Ψ is particularly suitable for us to work
with, because under Ψ the lattice Λ ⊆ Cg corresponds to Z2g ⊆ R2g and the height function
above on Λ corresponds to the restriction of the classical height function on Q2g to Z2g.

We also fix the interior of a fundamental domain F for Λ, say

F :=

{
2g∑
k=1

akλk : ak ∈ (0, 1) for 1 ≤ k ≤ 2g

}
.

A central object of study in the proof will be the set

Σ := {x ∈ Cg : (Y + x) ∩ F ̸= ∅ and Y + x ⊆ π−1(V )}.

The condition (Y + x) ∩ F will ensure that Σ is definable, and the condition Y + x ⊆ π−1(V )
will be exploited to see that the (setwise) stabiliser of Y in Cg has positive dimension. Relating
this stabiliser to the stabiliser of V in A, we will be able to take quotients and finish the proof.
In more detail, the strategy goes as follows.

1. Prove that the number of points on Σ ∩ Λ of height up to t grows at least linearly in t.

2. Show that Σ is definable in Ran. Conlcude with Pila-Wilkie and the lower bound from 1.
that Σ contains a connected semialgebraic set of positive dimension with a lattice point.

3. Use this semialgebraic set to prove that the stabiliser Θ of Y in C has positive dimension.
Show that the image of this stabiliser under π is the identity component B of the
stabiliser of V in A.

4. Take the quotients of Cg by Θ and of A by B. Conclude the proof by applying the
arguments from before to the quotients.
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Let us begin with the proof.

1. A lower bound for lattice points in Σ. We show that the number of points on Σ ∩ Λ
of height up to t grows at least linearly in t. If x ∈ Λ, then Y + x ⊆ π−1(V ), because x is in
the kernel of π and Y ⊆ π−1(V ). Hence

Σ ∩ Λ = {x ∈ Λ : (Y + x) ∩ F ̸= ∅}.

Lemma 4.17. There is t0 ∈ R such that for all t > t0 we have #{x ∈ Σ∩Λ : H(x) ≤ t} ≥ t/2.

Proof. Because it is an irreducible positive dimensional complex affine variety, Y is unbounded
and path connected in the Euclidean topology (2.31,2.36). Therefore, we find a Euclidean
continuous function γ : [0, 1) → Y with unbounded image. We consider

Λγ = {x ∈ Λ : (F − x) ∩ im γ ̸= ∅},

We have Λγ ⊆ Σ ∩ Λ, because (F − x) ∩ im γ ≠ ∅ implies that (Y + x) ∩ F ̸= ∅. If the image
of γ crosses from some F − x to an adjacent F − x′, then the heights H(x) and H(x′) differ by
at most 1. Thus

{H(x) : x ∈ Λγ}

is a set of consecutive natural numbers. Because im γ is unbounded in Cg, the set Λγ contains
points of arbitratily large height. Take x0 ∈ Λγ , then for all h ≥ H(x0), the set Λγ contains at
least one point of height h. Set t0 := 2H(x0), then for all t > t0 we have

#{x ∈ Λγ : H(x) ≤ t} =

t∑
k=0

#{x ∈ Λγ : H(x) = k} ≥
t∑

k=H(x0)+1

1 = t− H(x0) > t/2.

Since Λγ ⊆ Σ ∩ Λ, this proves the lemma.

Remark. There is a gap in this proof. We have chosen F to be open, so a priori, γ could
also run inside the boundaries of the open boxes, and must not cross from one F − x to an
adjacent F − x′. We cannot easily take the F to be half open (take [0, 1) in the definition and
not (0, 1)), because then an identity theorem argument in the next step would fail. The author
of this thesis and Dr. Orr have discussed the problem did not (yet) find a solution. The gap
might be fixable by a more careful choice of γ. In fact, any two points on Y can be joined by
an irreducible curve inside Y (2.36). Note however, that such curves are no longer paths in
the usual topological sense, because they are 1-dimensional as complex varieties. However,
it would still be possible to take an unbounded sequence (yi)i∈N of points in Y , join yi and
yi+1 with an irreducible curve Ci in Y , and replace Λγ with the points x ∈ Λ such that F − x
intersects some Ci nontrivially.

2. A semialgebraic set of positive dimension in Σ. We prove that Σ contains a
connected semialgebraic set of positive dimension that contains a lattice point. So we will
prove that Σalg ∩ Λ, or more precisely Ψ−1(Σ)alg ∩ Z2g, is nonempty. We already know that
there are many points in Σ ∩ Λ in the sense of the lower bound from the first step. The idea
is now to prove with Pila-Wilkie that there are few points in Ψ−1(Σ)trans ∩ Z2g. Let us first
prove that Σ is definable.

Lemma 4.18. The subset Σ of Cg is definable in Ran.

Proof. We prove that Ψ−1(Σ) ⊆ R2g is definable in Ran. Recall the definition

Σ = {x ∈ Cg : (Y + x) ∩ F ̸= ∅ and Y + x ⊆ π−1(V )}.
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Because in the second condition we have the unrestricted analytic function π : Cg → A, the
definabilitry of Σ in Ran is nontrivial. The trick is to show that Σ equals

Σ′ := {x ∈ Cg : (Y + x) ∩ F ̸= ∅ and (Y + x) ∩ F ⊆ π−1(V ) ∩ F},

which we will see to be definable because (Y +x)∩F and π|−1
F (V ) are sets defined by analytic

functions restricted to F . Let us first show that indeed Σ = Σ′ holds. The inclusion Σ ⊆ Σ′ is
immeadiate. For Σ′ ⊆ Σ, take x ∈ Cg such that (Y +x)∩F ≠ ∅ and (Y +x)∩F ⊆ π−1(V )∩F .
We have to show that Y + x ⊆ π−1(V ). Let g1, . . . , gs ∈ C[X0, . . . , Xn] be homogeneous
polynomials defining V for some chosen projective embedding. From (Y + x) ∩ F ⊆ π−1(V ),
it follows that the analytic functions gj ◦ π vanish on (Y + x) ∩ F for all j ∈ {1, . . . , s}. But
Y +x is irreducible as an algebraic set, hence also irreducible as an analytic set (4.13). This is
equivalent to the fact that the regular points of Y + x are Euclidean connected (cf. the proof
of (4.13)). The functions gj ◦ π restrict to analytic functions of connected complex manifolds
(Y + x)reg → C, which vanish on the nonempty open subset (Y + x)reg ∩ F , thus already on
all of (Y + x)reg by the identity theorem for complex manifolds (Theorem 1.8. in [Ada13]).
Since (Y + x)reg is Euclidean open and dense in Y + x (4.9), it follows that the gj ◦ π vanish
on all of Y + x. This proves π(Y + x) ⊆ V , and thus Σ = Σ′.

Let us now verify that Ψ−1(Σ′) is definable in Ran. It is the intersection of the preimages of

Σ1 := {x ∈ Cg : (Y + x) ∩ F ̸= ∅} and Σ2 = {x ∈ Cg : (Y + x) ∩ F ⊆ π−1(V ) ∩ F}.

In the following, we shorten notation by using logical symbols before knowing that we actually
work with Lan-formulas. The set Σ1 is even definable in Ralg. Indeed, we have

Ψ−1(Σ1) = {a ∈ R2g : (Ψ−1(Y ) + a) ∩ Ψ−1(F) ̸= ∅}
= {a ∈ R2g : Ralg |= ∃b(b ∈ Ψ−1(Y ) ∧ b+ a ∈ (0, 1)2g)},

and since (0, 1)2g is definable in Ralg, it suffices to show that the same holds for Ψ−1(Y ). Let
f1, . . . , fr in C[X1, . . . , Xn] be polynomials whose zero set is Y , then we have

Ψ−1(Y ) =
{
b ∈ R2g : Ralg |=

∧r

j=1
fj(Ψ(b)) = 0

}
.

Identifying C and R2 with real and imaginary parts, the maps fj◦Ψ: R2g → R2 are polynomials
in each coordinate, hence their zero sets are definable in Ralg. So Ψ−1(Σ1) is definable in Ralg.

Similar arguments work for Σ2. Unfolding the definition, we see that Ψ−1(Σ2) equals

{a ∈ R2g : Ran |= ∀c(∃b(b ∈ Ψ−1(Y ) ∧ c = b+ a ∧ c ∈ Ψ−1(F)) → c ∈ Ψ−1(π−1(V ) ∩ F))}.

As before, Ψ−1(Y ) and Ψ−1(F) are definable in Ralg, and it remains to show that

Ψ−1(π−1(V ) ∩ F) = {a ∈ R2g : π|F (Ψ(x)) ∈ V }

is definable in Ran. Take homogeneous polynomials g1, . . . , gs ∈ C[X0, . . . , Xn] defining V for
some projective embedding. Separating real and imaginary parts, the functions

gj ◦ π ◦ Ψ: R2g → C ∼= R2

are real analytic on an open neighbourhood of [0, 1]2g in every coordinate. By compactness,
we find finitely many open boxes covering [0, 1]2g on each of which these functions are given
by convergent power series in every coordinate. Restricting further to (0, 1)2g = Ψ−1(F), we
obtain definablility of the functions and hence their zero sets in Ran.

Corollary 4.19. The set Σalg ∩ Λ is nonempty, i.e. Ψ−1(Σ)alg ∩ Z2g is nonempty.

43



Proof. By the previous lemma (4.18), the set π−1(Σ) is definable in Ran and we can apply
Pila-Wilkie with an ε strictly smaller than 1, say ε = 1/2. So we find a constant C such that
for all t ≥ 1, we have

#{a ∈ Ψ−1(Σ)trans ∩Q2g : H(a) ≤ t} ≤ Ct1/2.

and in particular
#{a ∈ Ψ−1(Σ)trans ∩ Z2g : H(a) ≤ t} ≤ Ct1/2. (1)

On the other hand, we know that for sufficiently large t, we have

#{a ∈ Ψ−1(Σ) ∩ Z2g : H(a) ≤ t} = #{x ∈ Σ ∩ Λ : H(x) ≤ t} ≥ t/2 (2)

by the first step (4.17). Comparing the bounds (1) and (2), we see that

Ψ−1(Σ)alg ∩ Z2g = (Ψ−1(Σ) \ Ψ−1(Σ)trans) ∩ Z2g

is nonempty.

Corollary 4.20. There is a positive dimensional connected semialgebraic subset W ⊆ Σ with
a lattice point w0 ∈W ∩ Λ. We can also assume that W is irreducible.

Proof. The first part is the content of the previous corollary (4.19). We can assume that W
is irreducible because R2n and thus also W is Noetherian with the Zariski topology.

3. The stabilisers of Y in Cg and of V in A. Let Θ be the stabiliser of Y in Cg, i.e.

Θ = {x ∈ Cg : x+ y ∈ Y for all y ∈ Y },

which is an additive subgroup of Cg. We even have more:

Lemma 4.21. The additive subgroup Θ of Cg is an algebraic set and in fact a complex vector
subspace of Cg.

Proof. We have Θ = {x ∈ Cg : x+y ∈ Y for all y ∈ Y } =
⋂

y∈Y Y −y, which is an intersection
of Zariski closed sets, hence Zariski closed.

To prove that Θ is a subspace, let x ∈ Θ \ {0}. We have to show that zx ∈ Θ for all z ∈ C.
Let L be the 1-dimensional vector subspace of Cg spanned by x, which is also a 1-dimensional
irreducible algebraic set. Since x ̸= 0, the set {nx : n ∈ Z} is an infinite subset of the algebraic
set L ∩ Θ. But this set has Krull dimension at most 1, so L ∩ Θ = L, and thus L ⊆ Θ.

We can also consider the stabiliser of V in A. In general, this will only be an algebraic subgroup
and not be an Abelian subvariety. But the Zariski identity component of this subgroup is
an Abelian subvariety (2.29). Let us denote the identity component of the stabiliser of V in
A by B. We will prove that Θ and B are positive dimensional and that π(Θ) = B. Let us
begin with proving that Θ has positive dimension. As it is a complex vector subspace of Cg,
it suffices to show that it is not discrete. The idea is to show that W − w0 ⊆ Θ.

Lemma 4.22. We have W − w0 ⊆ Θ, In fact, if W ⊆ Σ is any connected irreducible
semialgebraic set with some point w0 ∈W ∩ Λ, then Y +W − w0 = Y .

Proof. For all w ∈W we have w ∈ Σ, hence Y + w ⊆ π−1(V ) by the definition of Σ. We can
conclude that Y +W ⊆ π−1(V ). Since w0 is in Λ, which is the kernel of π, we get

Y +W − w0 ⊆ π−1(V ).

Note that Y +W −w0 is a connected irreducible real semialgebraic set. Certainly, Y +W −w0

is semialgebraic. As an irreducible complex algebraic set, Y is Euclidean connected in Cg
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(2.35). Since also W is Euclidean connected in Cg, we get that Y ×W ⊆ Cg ×Cg is Euclidean
connected. Because +: Cg ×Cg → Cg is Euclidean continuous, the image Y +W is Euclidean
connected. Irreducibility follows by the same pattern, using that +: R2g×R2g → R2g is Zariski
continuous and that products and continuous images of irreducible spaces are irreducible.

Since π−1(V ) is a complex analytic set, we can now apply the main result of the previous
subsection (4.2) to see that there is an irreducible complex algebraic set Y ′ ⊆ Cg with

Y +W − w0 ⊆ Y ′ ⊆ π−1(V ).

However, Y is assumed to be maximal among the closed irreducible algebraic varieties
contained in π−1(V ) and we have Y ⊆ Y +W −w0, so it follows that Y = Y +W −w0 = Y ′.
The first of these equalities is the claim of the lemma.

We conclude that Θ is a positive dimensional subspace of Cg, because it is not discrete by the
previous lemma (4.22).

Lemma 4.23. We have π(Θ) = B.

Proof. Let us first show that π(Θ) ⊆ B. Let x ∈ Θ, i.e. Y + x = Y . Since Y ⊆ π−1(V ), we
get Y ⊆ π−1(V ) − x, and thus π(Y ) ⊆ V − π(x). Since we also have π(Y ) ⊆ V , we obtain

π(Y ) ⊆ V ∩ (V − π(x)).

As V is a complex algebraic subvariety of A, so also is V ∩ (V − π(x)). But we assumed that
V is the Zariski closure of π(Y ) in A, so from the above inclusion it already follows that

V ⊆ V ∩ (V − π(x)),

and hence V ⊆ V − π(x). Applying the same argument to −x, we see that V ⊆ V + π(x).
This yields the inclusions

V − π(x) ⊆ V ⊆ V − π(x),

which have to be equalities. We conclude that V +π(x) = V , so π(Θ) is a subset of the stabiliser
of V in A. For the first inclusion, it remains to show that π(Θ) is contained in the identity
component the stabiliser of V in A. Being a subspace of Cg, the stabiliser Θ is Euclidean
connected, hence also its image π(Θ) is Euclidean connected. Because the Euclidean topology
is finer than the Zariski topology, we see that π(Θ) is also Zariski connected. Moreover, π is a
group homomorphism and 0 ∈ Θ, thus the identity element of A is in π(Θ). This completes
the proof of π(Θ) ⊆ B.

Let us prove the other inclusion B ⊆ π(Θ). We know that π−1(B) is a Lie subgroup of the
additive group Cg and may take its Euclidean identity component Θ′, which is again an Lie
subgroup of Cg (it is additively closed because + is Euclidean continuous). As for Θ, in fact
more holds. By considering their exponential map, it can be proved that every connected
Abelian complex Lie group is a quotient of some Cm by a lattice. Since Θ′ ⊆ Cg must be
torsion free in the present case, the lattice must be trivial, and Θ′ is a complex subspace.

The image π(Θ′) is an Lie subgroup of B. Because π is a covering map, taking images and
preimages under π does not change the dimension of manifolds. Also taking the Euclidean
identity component of a Lie group does not change the dimension. Therefore, π(Θ′) is a Lie
subgroup of B of the same dimension as B, and both of these are finite dimensional and
connected. This in fact suffices for B = π(Θ′), as we will briefly argue. From the fact that
π(Θ′) and B have the same dimension, it follows that π′(Θ′) is Euclidean open in B, but
then π′(Θ′) already equals B, because B \ π(Θ′) is a union of translates of B, hence open too.
Since B is connected, we conclude that B = π(Θ′).
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To prove that B ⊆ π(Θ) it thus suffices to show that Θ′ ⊆ Θ. We know that B stabilises V ,
hence π−1(B) stabilises π−1(V ) and in particular Θ′ ⊆ π−1(B) stabilises π−1(V ). Moreover,
we have Y ⊆ π−1(V ), so

Y + Θ′ ⊆ π−1(V ).

As a complex vector space, Θ′ is an irreducible algebraic set. Thus also, Y +Θ′ is an irreducible
complex algebraic set containing Y , and the maximality of Y implies that Y + Θ′ = Y . This
proves Θ′ ⊆ Θ. In conclusion, we have π(Θ) = B as claimed.

Corollary 4.24. The Abelian subvariety B of V has positive dimension.

Proof. We know that Θ is a positive dimensional vector subspace of Cg and that π : Cg → A
is a covering map with π(Θ) = B. So B is positive dimensional as a complex manifold, and
thus also positive dimensional as an Abelian variety.

4. End of the proof. We consider the quotient Abelian variety A/B, as well as the quotient
vector space Cg/Θ (2.56). Let q : A→ A/B and q̃ : Cg → Cg/Θ denote the respective quotient
maps. Since π(Θ) = B by the previous step, we have Θ ⊆ ker(q ◦ π), and get an induced map
π′ : Cg/Θ → A/B such that the diagram

Cg Cg/Θ

A A/B

q̃

π′π

q

commutes. Moreover, π′ is the exponential map for Cg/Θ (2.56). Our goal was to prove that
π(Y ) is the translate of an Abelian subvariety of A. We prove that π(Y ) is a translate of B.

Let V ′ := q(V ) ⊆ A/B and let Y ′ be the Zariski closure of q̃(Y ) in Cg/Θ. Since q̃ is linear,
hence regular, Y ′ is irreducible and closed. Formally, Y ′ is an abstract algebraic variety, but
we can identify Cg/Θ with Cg−dimΘ to treat it as an algebraic set.

Lemma 4.25. We have V = q−1(V ′).

Proof. We only have to prove that q−1(q(V )) ⊆ V . Let x ∈ q−1(q(V )) ⊆ V , so

x+B = q(x) ∈ q(V ) = {v +B : v ∈ V }

and we find v ∈ V with x+B = v +B. Because we chose B to be the identity component,
in particular we have x ∈ v + B. But since B is a subset of the stabiliser of V , we have
v +B ⊆ V , hence x ∈ V .

Lemma 4.26.

(a) The subvariety V ′ of A/B is the Zariski closure of π′(Y ′) in A/B.

(b) The subvariety Y ′ of Cg/Θ is a maximal irreducible algebraic subvariety contained in
π′−1(V ′).

Proof. To prove (a), let Z ′ be Zariski closed in A/B with π′(Y ′) ⊆ Z ′ ⊆ V ′. Then

q−1(π′(Y ′)) ⊆ q−1(Z ′) ⊆ q−1(V ′)

However, q−1(V ′) = V by the previous lemma (4.25) and by chasing the above diagram, we
see that for all S ⊆ Cg/Θ we have π(q̃−1(S)) ⊆ q−1(π′(S)). Applying this to S = Y ′ and
using that π(Y ) ⊆ π(q̃−1(Y ′)), we obtain

π(Y ) ⊆ q−1(Z ′) ⊆ V.
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However, the quotient map q of Abelian varieties is regular, hence q−1(Z ′) is a subvariety
of A and the fact that V is the closure of π(Y ) in A implies that q−1(Z ′) = V , yielding
Z ′ = q(V ) = V ′. Hence (a) holds.

For (b), let Z ′ be an irreducible algebraic subvariety of Cg/Θ with Y ′ ⊆ Z ′ ⊆ π′−1(V ′). We
then have Y ⊆ q̃−1(Y ′) ⊆ q̃−1(Z ′) and by q−1(V ′) = V and the commutativity of the above
diagram q̃−1(Z ′) ⊆ π−1(V ), thus

Y ⊆ q̃−1(Z ′) ⊆ π−1(V ).

Because q̃ is linear, q̃−1(Z ′) is an algebraic set in Cg. By its maximality, Y must be one of the
irreducible components of the algebraic set q̃−1(Z ′). Hence, Y ′ = clC-Zar(q̃(Y )) must be among
the irreducible components of q̃(q̃−1(Z ′)) = Z ′. However, Z ′ is irreducible by assumption, so
Y ′ = Z ′ as desired.

We prove a final corollary before concluding Ax-Lindemann-Weierstraß.

Corollary 4.27. The algebraic set Y ′ is a point.

Proof. Since Y ′ is irreducible, it suffices to prove that dimY ′ = 0. Assume towards a
contradiction that dimY ′ > 0. Since V ′ is the Zariski closure of π′(Y ′) and Y ′ is a maximal
irreducible algebraic subvariety contained in π′−1(V ′) by the previous lemma (4.26), we can
apply the steps 1 to 3 to (A/B, V ′, Y ′). This yields the conclusion that the identity component
B′ of the stabiliser of V ′ in A′ has positive dimension. But q−1(B′) stabilises V , so this
contradicts the fact that ker q = B is the identity component of the stabiliser of V .

We now know that Y ′ = q̃(Y ) is a point, hence π′(q̃(Y )) = q(π(Y )) is a point, say a+B ∈ A/B
for some a ∈ π(Y ). So for all x ∈ π(Y ), we have x+B = a+B, and in particular x+0 ∈ a+B.
Thus, π(Y ) ⊆ a+B follows. For the other inclusion, let y ∈ Y such that a = π(y) and take
any b = π(ϑ) ∈ π(Θ) = B with ϑ ∈ Θ, then a+ b = π(y + ϑ) ∈ π(Y ). Hence, we also have
a+B ⊆ π(Y ) and conclude that a+B = π(Y ).

As desired, π(Y ) is a translate of an Abelian subvariety of A. (Theorem 4.14)

4.3 Concluding Manin-Mumford

We will now deduce Manin-Mumford. We have discussed two main ingredients in detail:

Theorem (Pila-Wilkie (3.13)). Let X be definable in an o-minimal expansion of Ralg. Then
for all ε > 0 there exists a constant C, only depending on X and ε, such that N(Xtrans, t) ≤ Ctε

for all t ∈ R≥0.

Theorem (Ax-Lindemann-Weierstraß (4.14)). Let A be a complex Abelian variety of dimension
g and let π : Cg → A be its exponential map. Let V be a closed algebraic subvariety of A, and
let Y be a maximal irreducible complex algebraic subvariety contained in π−1(V ). Then π(Y )
is a translate of an Abelian subvariety of A.

We will also once more use the main result from the beginning of the present section.

Proposition (4.2). Let Z be a complex analytic subset of Cg and let W ⊆ Cg be a connected
irreducible semialgebraic subset such that W ⊆ Z. Then there exists an irreducible complex
algebraic set X ′ in Cg such that W ⊆ X ′ ⊆ Z.

Below, we will refer to this proposition as the Comparison Result.

To prove Manin-Mumford, there is only one ingredient missing. Recall how we played the
upper bound of Pila-Wilkie against a lower bound from Galois theory in the first section on
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Mann’s Theorem (1.10). To show that Y ∩Gn
tor is finite, we first reduced to the case that Y is

defined over a number field k. Then for a tuple of roots of unity P = (e2πia1/b1 , . . . , e2πian/bn)
on Y , we considered the a field extension k(P ) := k(e2πia1/b1 , . . . , e2πian/bn) and proved that
the respective Galois conjugates of P are also torsion points of the same order as P .

Similar arguments work in the present case of Abelian varieties, where we want to understand
V ∩Ator. However, it is substantially more difficult to obtain the lower bound. Let us just
mention the central ideas. As before in this section, we can fix some projective embedding
of A into Pn(C). Then A is the zero set of homogeneous polynomials with coefficients in C.
Using nontrivial specialisation arguments, it can be proved that we may assume that A is
defined over a number field. Of course, we could also add this assumption to the statement of
the theorem. Given that A is defined over k, it can be proved that the coordinates of torsion
points of A are algebraic over k. Similar to the argument we gave in the multiplicative case,
we can then in fact also suppose that the closed subvariety V of A is defined over a number
field. Taking the composite of these fields, we may suppose that A and V are defined over the
same number field k. For a torsion point P = [P1 : . . . : Pn] of A on V , we can consider the
finite field extension k(P ) = k(P1, . . . , Pn) of k and for every σ ∈ Aut(k(P )/k), also σ(P ) is
a torsion point on V . Moreover, it can be proved that the Galois conjugates of P have the
same order as P . The relevant bound is then provided by Masser’s Theorem:

Theorem 4.28 (Masser [Mas84]). Let A be an Abelian variety of dimension g defined over a
number field k. Then there exists a constant c depending on A and k, and ρ > 0 depending
only on the dimension g, such that for all torsion points P of A of order t, we have

[k(P ) : k] ≥ ctρ.

Alongside Masser’s original paper [Mas84], we refer to an expository paper by Habegger [Hab15].
In Habegger’s article, the bound is proved for elliptic curves, and some of the reductions
outlined above are explained in more detail.

With these ingredients at hand, we can finally prove Manin-Mumford.

Theorem 4.29. Let A be a complex Abelian variety and let V ⊆ A be a closed algebraic
subvariety. Suppose that V does not contain any translate of a positive dimensional Abelian
subvariety of A. Then V contains only finitely many torsion points of A.

Proof. Let π : Cg → A be the exponential map and let Λ be the kernel of π, which is a lattice
in Cg. Choose a Z-basis λ1, . . . , λ2g and the respective fundamental domain F for Λ. As
in the previous subsection, we identify Cg with R2g via the basis λ1, . . . , λ2g, i.e. using the
isomorphism of real vector spaces

Ψ: R2g → Cg, (a1, . . . , a2g) 7→
2g∑
k=1

akλk.

Note that we chose F so that Ψ−1(F) = [0, 1)2g, not Ψ−1(F) = (0, 1)2g as in the previous
part. A fundamental domain of a lattice is in particular a fundamental domain for its action,
hence the exponential map π restrcits to a bijection between F and A ∼= Cg/Λ. We define

X := π|−1
F (V ).

By the description of the torsion points on a complex Abelian variety (2.50), the exponential
map π restricts to a bijection between the rational points on Ψ−1(X) and the torsion points
of A on V . Abusing notation, we also write X for Ψ−1(X). Similar to the multiplicative
case (1.6), we can relate heights of elements in X ∩Q2g = X(Q) to the orders of their images
in V ∩ Ator. For q ∈ X(Q), say q = (a1/b1, . . . , a2g/b2g) with aj ∈ N, bj ∈ N \ {0} coprime
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and bj = 1 for aj = 0, we have H(q) = max{b1, . . . , b2g}, while the order of Ψ(q) in A is the
same as the order of q in (Q/Z)2g (2.50), i.e. the least common multiple of the b1, . . . , b2g. In
particular, as in the proof of Mann’s theorem,

H(q) ≤ ord(π(q)) ≤ H(q)2g,

and to prove that V ∩Ator is finite it suffices to show that there is an upper bound for the
heights of rational points on X. In the previous subsection, we proved with a straightforward
compactness argument that π−1(V ) ∩ (0, 1)g is definable in Ran (at the end of the proof of
(4.18)). The same argument shows that

π−1(V ) ∩ [0, 1)2g = X

is definable in Ran, so we conclude that X is definable in Ran.

Analogously to our proof of Mann’s Theorem (1.13), we define the special locus of V in A by

SpL(V ) :=
⋃

(a,H)∈S

a+H,

where S is the set of pairs (a,H) such that a ∈ A and H is a closed positive dimensional
Abelian subvariety of A with a+H ⊆ V .

Claim. We have π(Xalg) ⊆ SpL(V ).

Proof of the Claim. Let x ∈ Xalg. By the definition of Xalg, there is a positive dimensional
connected semialgebraic subset W ⊆ X with x ∈W . Because W is Noetherian with the real
Zariski topology from R2g, we can assume that W is irreducible, cf. (4.20). As X ⊆ π−1(V ),
we also have W ⊆ π−1(V ), and thus W is a connected irreducible semialgebraic set contained
in the analytic set π−1(V ). By the Comparison Result (4.2), we find an irreducible complex
algebraic set X ′ in Cg with

W ⊆ X ′ ⊆ π−1(V ).

Since Cg has finite Krull dimension, we can also assume that X ′ is a maximal irreducible
set contained in π−1(V ). From Ax-Lindemann-Weierstraß (4.14), we obtain that π(X ′) is a
translate of an Abelian subvariety of A. But W is infinite, hence X ′ is infinite, and thus also
π(X ′) is infinite. We conclude that π(x) is contained in a translate of a positive dimensional
Abelian subvariety of A contained in V , that is, π(x) ∈ SpL(V ). (Claim)

Under the present assumptions of Manin-Mumford, the set V does not contain any translate
of a positive dimensional Abelian subvariety, hence SpL(V ) = ∅, and we conclude that Xalg is
empty. For the statement of Manin-Mumford, it now suffices consider Xtrans.

We can assume that A and V are defined over a number field k and apply Masser’s Theorem
(4.28). There exist constants c > 0 and ρ > 0 such that for every torsion point P on A of
order t we have

[k(P ) : k] ≥ ctρ.

The Galois conjugates of torsion points in V of order t are also torsion points in V of order t.
Thus, if there exists one torsion point of order t on V ∩ Ator, then there exist at least ctρ

many such points.

On the other hand, taking ε := ρ/2 in the Pila-Wilkie Theorem (3.13), we get a constant C
such that

N(Xtrans, t) ≤ Ctρ/2

for all t ∈ R≥0. Our objective is to show that the order of torsion points of A on V is bounded.
Let t ∈ N≥1 be the order of a torsion point P ∈ V ∩Ator. Then

N(Xtrans, t)
(1)
= #{q ∈ Xtrans(Q) : H(q) ≤ t}

(2)

≥ #{Q ∈ V ∩Ator : ord(Q) = t}
(3)

≥ ctρ.
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The equality (1) holds by definition. The inequality (2) holds since π restricts to a bijection
Xtrans(Q) → V ∩ Ator, and because H(q) ≤ ord(π(q)) for all q ∈ Xtrans(Q). The inequality
(3) holds by Masser’s Theorem, since we assumed that there exists a torsion point P on V of
order n. On the other hand, by Pila-Wilkie, we have N(Xtrans, n) ≤ Ctρ/2. We obtain

ctρ ≤ Ctρ/2,

which holds if and only if t ≤ (C/c)2/ρ. We found an upper bound for the orders of torsion
points of A on V , and conclude that V contains only finitely many torsion points of A.
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