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1 Introduction

Model theory explores the relationships between formal theories—collections
of sentences in a formal language—and the mathematical structures, or models,
in which these statements hold true. Examples of such theories include alge-
braically closed fields, infinite sets, linear orders, Boolean algebras, the random
graph, and ZFC. Given the vast array of possible theories, one might initially
perceive them as a “formless magma”, prompting the question: Is there any un-
derlying organization? Since its inception in the early twentieth century, model
theory has gradually merged its syntactical origins in mathematical logic with
the semantics of the structures it studies. This evolution has led to the develop-
ment of appropriate notions and properties that not only answer this question
affirmatively but also provide a comprehensive classification of all first-order
theories.

This achievement represents the culmination of extensive contributions from
many mathematicians, each working on key areas that have shaped the devel-
opment of model theory. In the 1970s, Saharon Shelah, through his work on
stability theory, formalized the Classification Program and unified these diverse
efforts into a coherent framework, establishing it as the central focus of model
theory. Bruno Poizat highlighted the significance of this transformation in his
review of John T. Baldwin’s book Classification Theory [Bal88a]:

“Perhaps the editor found it too sensitive to use a more ambitious
title, as it might convey a sense of arrogance or imply an intention to
exclude those working in more traditional areas... However, those of
us unconcerned with such scruples will restore to this book the only
title it truly deserves: Model Theory.” [Poi90]

Since the 1980s, model theorists have made significant progress in advanc-
ing the Classification Program. Various virtuous properties of theories beyond
stability, such as simplicity, distality, and o-minimality, are now considered im-
portant dividing lines for classification, and numerous theories have been posi-
tioned within this framework. Notably, many of the theories under investigation,
such as valued fields and differentially closed fields, are also central to algebraic
geometry, and bidirectional results—linking model theory with algebraic geome-
try and vice versa—are effectively bridging the historical gap between logic and
“classical mathematics”.

Since 2013, Gabriel Conant, from the University of Illinois at Chicago, has
been visualizing these advancements in what he calls the Map of the Universe.
This map not only depicts the various implications among these fundamental
properties leading to possible classes of theories, but also places specific theories
within each class and provides references for the papers from which these results
are derived. As such, it serves as both a crucial point of reference for under-
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standing these intricate relationships and a foundation for the present work.

In the Map of the Universe the red dots represent individual theories while the
blue dividing lines delineate the boundaries between different classes of theories.1

The current version is as follows:

Figure 1: Gabriel Conant’s Map of the Universe.

The aim of this work is to offer a comprehensive survey of the historical de-
velopments that have shaped model theory from its inception to the present,
with a particular focus on the evolution of classification theory—specifically, the
emergence of the various Building Blocks that form the Map of the Universe. By
providing context for the properties and theories represented in this map, this
work aims to serve as a self-contained, accessible introduction to the subject.

The work is divided into four main parts that trace the historical develop-
ment of model theory. However, the results are presented using contemporary
terminology, so foundational notions like language, theory, and model are in-
troduced earlier in the narrative than when they were formally established. To
address this, a preliminary section titled “What is a Model?” is included, pro-
viding answers to this question and introducing the essential concepts needed to
understand the subsequent historical progression.

Chapter 2 starts in the late 19th century, covering the prehistory of model the-
ory and marking the inception of the field with Löwenheim’s Theorem in 1915.
It explores foundational contributions by Hilbert, Tarski, and Gödel in the 1920s
and 1930s, focusing on concepts like completeness and decidability, and exam-

1 An interactive version of this diagram is available on Conant’s website: https://www.

forkinganddividing.com
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ines key developments from the 1950s and 1960s, including  Loś’s ultraproducts,
Fräıssé’s back-and-forth methods, and Robinson’s use of diagrams.

Chapter 3 addresses the emergence of the concept of the space of types and its
significance in understanding the definable sets of a structure. It examines the
work of Vaught and Ehrenfeucht on constructing desirable models and discusses
Ryll-Nardzewski’s findings on the number of models a theory can have. This
progression leads to Morley’s Categoricity Theorem in 1965, and its implications
for the development of geometric model theory.

Chapter 4 highlights Shelah’s contributions, especially his work on stable theo-
ries and the non-forking independence relation, which serves as a tool for assign-
ing dimensions to models. It outlines Shelah’s stability hierarchy, represented in
the bottom left quadrant of Conant’s map, and situates this within his broader
classification program. The chapter also examines the Main Gap Theorem, which
establishes a fundamental dichotomy between theories and serves as the culmi-
nation of his classification efforts.

Chapter 5 slightly deviates from the linear historical narrative to survey Co-
nant’s map beyond stability, drawing attention to the most remarkable results
in each class. It explores simple theories as part of the broader non strict order
property (NsOP) class in the bottom right quadrant, and examines o-minimal
theories as a representative of the non independence property (NIP) class in the
top left quadrant.

A wealth of excellent literature addresses these topics, particularly those in
Chapters 1, 2, and 3. This work has greatly benefited from classical, detailed
textbooks such as Model Theory: An Introduction by Marker [Mar03] and Fun-
damentals of Stability Theory by Baldwin [Bal88b], as well as comprehensive
philosophical works like Philosophy and Model Theory by Button and Walsh
[BW18] and Model Theory and the Philosophy of Mathematical Practice by Bald-
win [Bal18].

However, this work aims to bridge the gap between highly specialized text-
books and broader philosophical expositions, targeting readers who are inter-
ested but not yet specialists. On the one hand, the work has a formal mathe-
matical style, presenting definitions and theorems rigorously, and ensuring that
concepts build logically on each other. On the other hand, it provides a narrated
explanation, focusing on understanding ideas rather than on exhaustive proofs.

Due to the scope and limitations of this project, certain topics are necessarily
omitted and this selection reflects a personal preference. Some of the results
that will not be covered are abstract elementary classes, regular cardinals, finite
model theory, nonstandard analysis or infinitary logic. Specifically, the theories
discussed will always be assumed to be in a countable first-order language unless
explicitly stated otherwise.

A basic familiarity with the syntax and semantics of first-order logic, along
with some experience in formulating mathematical statements within this frame-
work, may be helpful, though a brief description is provided in the section What
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is a Model?. Familiarity with basic set theory and combinatorics will also be ben-
eficial, but key concepts are introduced as needed. While model theory intersects
with various areas of mathematics, the focus here is primarily on familiar theo-
ries arising from algebraic geometry, such as algebraically closed fields, and on
intuitive axiomatizations like the random graph. Detailed axioms defining these
theories are not explored; for those specifics, readers are referred to classical
textbooks like Model Theory: An Introduction by Marker.

Finally, as an implicit contribution to the philosophy of mathematics, this book
aims to reflect Lakatos’s view that mathematical knowledge evolves through a
dialectical process [Lak76]. It also aims to echo the significant paradigm shift
that model theory underwent in the 1960s, as highlighted by Baldwin [Bal19],
which aligns with a specific interpretation of Kuhn’s theory of paradigm shifts
[Kuh62].

This work was inspired by Christian d’Elbée’s course, “Axiomatic Theory of
Independence Relations in Model Theory”, held during the summer semester of
2023 at the University of Bonn. I am deeply grateful to him for introducing
me to this captivating field. I also wish to express my gratitude to my advisor,
Philipp Hieronymi, for his reliable support and encouragement throughout this
unconventional project. I owe special thanks to my high school teacher, Carlos
Usón, whose inspiring lessons ignited my passion for mathematics. I had also the
pleasure of discussing specific topics with Daniel Ibaibarriaga, whose knowledge
and generosity were invaluable to this work. Lastly, my warmest thanks go to
Nil Rodellas for his unconditional trust and to my family for their unwavering
love.
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1.1 What is a Model?

A formal definition of the syntax and semantics of first-order logic can often be
more tedious than illuminating. Instead, a brief overview is provided here, with
examples and historical context to help clarify the ideas. For those interested in
a more detailed exploration of these concepts, standard texts in logic or model
theory, such as those by Marker [Mar03] and Poizat [Poi00], are recommended.

Baldwin conveys the essence of model-theoretic methods:

“Model theory is the activity of a ‘self-conscious’ mathematician.
This mathematician distinguishes an object language (syntax) and a
class of structures for this language and ‘definable’ subsets of those
structures (semantics).” [Bal10]

In terms of syntax, first-order logic contains several logical symbols: equality
=, a sequence of variables vi, the logical connectives ∧,¬,∨ and the quantifiers
∀,∃, which can only range over elements of the model. A language L for first-
order logic consists of a collection of relation symbols R, function symbols F
and constant symbols C that is appropriate for the area of mathematics being
formalized. Each function and relation symbol has an associated integer, nf or
nR, indicating that f is a function of nf variables and R is an nR-ary relation.
For example, the language of rings Lr = {+,−, ·, 0, 1} includes binary function
symbols +, −, ·, and constants 0, 1. On top of this, the set of L-terms is built
up inductively from constants and variables using the function symbols of the
language.

An atomic formula is an expression of the form R(t1, . . . , tn), where R is a
relation symbol with n arguments, and the ti are terms, or an equation of the
form ti = tj . The set of L-formulas is the smallest set of formulas containing
all atomic formulas and closed under the Boolean operations and quantification
over individuals. Examples of formulas are x1 = 0∨x1 > 0 or ∃x2 (x2 ·x2 = x1).
Particularly important are L-sentences, which are formulas in which no variable
x appears outside the scope of the quantifier ∃x or ∀x, in other words, no variable
is free. Lastly, a L-theory T simply refers to a set of L-sentences.

As an example, consider the language L = {<}, where < is a binary relation
symbol. The theory of linear orders can be axiomatized by the following L-
sentences: ∀x¬(x < x), ∀x∀y∀z ((x < y ∧ y < z) → x < z), ∀x∀y (x < y ∨ x =
y ∨ y < x). It is possible to define an extension of this theory by adding the
sentence ∀x∀y (x < y → ∃z (x < z ∧ z < y)) and thus get the theory of dense
linear orders, or DLO.

In terms of semantics, an L-structure M consists of a nonempty domain M and
an interpretation of the symbols in L. An interpretation consist on the following:
a function from Mn into M for each function symbol with n arguments in the
language; a subset of Mn for each n-ary relation symbols, and lastly an element
from M for each constant symbol. The cardinality of M is the cardinality of its
domain M . For instance, in the language L = {·, e}, where · is a binary function
symbol and e is a constant symbol, an L-structure could be M = (R, ·, 1), where
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the domain is R, · is interpreted as real multiplication, and e is interpreted as
1. Given two L-structures M and N , an L-embedding η is a one-to-one map in
the domains η : M → N that preserves the interpretation of all of the symbols
of L. If it is bijective, it is called an L-isomorphism.

The central notion for defining a model is that of truth in a structure, which
is also defined inductively. If there are no quantifiers, a formula is true in the
structure M if the interpretation of the terms lies in the relation which is the
interpretation of the formula. The truth of Boolean combinations and of quan-
tified formulas is defined in the natural way. For example, M |= (∃x)φ(x) if for
some a ∈ M , M |= φ(a). In this case, φ(a) is said to be true in M, or that M
satisfies φ(a).

With these elements established, it is now time to answer the main question
of this section:

Definition 1.1.1. Let T be an L-theory and let M be an L -structure. The
structure M is a model of T (or M models T ) if M |= σ for all sentences σ ∈ T .

As is evident, the notion of a model is intricate, and its historical development
is equally nuanced. However, drawing on insights from Hodges [Hod00; Hod93],
several events deserve mention. The practice of using of a set of statements to
define a class of structures dates back to the late 19th century, notably in the
foundations of geometry, as exemplified by Hilbert’s Grundlagen der Geome-
trie [Hil99]. In 1903, Russell likely provided the first clear account of how such
statements define a class [Rus03]. However, until the mid-1950s, the distinction
between variables with changing interpretations and constants with fixed inter-
pretations remained ambiguous. The specific emergence and evolution of the
notions of satisfaction and truth in a structure are explored in Chapter 2.3.
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2 An Increasing Role of Semantics in Logic

2.1 The Algebra of Logic Tradition and Löwenheim’s
Theorem

The origins of Model Theory can be traced back to the algebra of logic tradition
in the second half of the 19th century, which aimed to develop an explicit alge-
braic system to uncover the underlying mathematical structure of logic [BL21].
This tradition finds its roots in George Peacock’s work on symbolical algebra,
which shifted the emphasis from the meaning of symbols and signs to the laws of
operation. An important aspect of his conception of symbolical algebra was that
“whilst remaining a science of undefined symbols and signs, an interpretation of
algebraic symbols and signs could follow, even if it did not precede, algebraic
manipulation” [Pyc81].

Using this same idea in the realm of logic, George Boole founded the algebra of
logic tradition. In the 1850s, logic was still largely based on Aristotle’s syllogistic
framework, but Boole sought to develop a mathematical treatment of logic. His
goal was to provide classical logic with a systematic foundation and extend its
scope by assigning precise meanings to logical symbols, similarly to the methods
of symbolical algebra. As Boole noted, this new algebraic approach represented
“a proper ‘science of reasoning’, and not a ‘mnemonic art’ like traditional syllo-
gistics” [GB97]. He first presented this framework in The Mathematical Analysis
of Logic [Boo47] and later refined it in his more famous work, An Investigation
of the Laws of Thought [Boo54].

According to Peckhaus, Boole founded his methods on the concept of classes,
groups of things to which a name or description applies, and was driven by
the desire to retain as much of the standard algebraic formalism as possible
[Pec09]. Indeed, a central aspect of his work was the use of algebraic formulas to
represent logical relations. For example, Boole defined addition as the union of
sets. However, he imposed a crucial restriction: the expression x+y (representing
the class containing elements from either x or y) was valid only when xy = 0,
indicating that the intersection of x and y is empty. According to Schlimm, this
restriction was intended to prevent the equation x+x = x, which would conflict
with the common algebraic principles of natural numbers [Sch85].

Similarly, Boole associate multiplication to the intersection of sets, which re-
sulted in his idempotent law, x2 = x. While this equation is true when variables
represent classes, it does not hold for natural numbers, except when x = 0 or
x = 1. This observation led Boole to focus on a new system that used only the
numbers 0 and 1. One of the key applications of this system was a method for
facilitating logical reasoning by eliminating certain class symbols in equations.
This led Boole to formulate his Elimination Theorem for the calculus of classes.
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The theorem proposed that by substituting class symbols with 0 and 1 in all pos-
sible combinations, multiplying the resulting expressions, and setting the final
product to 0, one could effectively eliminate the class symbol from the equation.

Although Boole’s commitment to drawing analogies between algebra and logic
was instrumental in developing his calculus of classes, it also limited his ability
to create a system that met other desirable criteria. Subsequent logicians, such
as William Stanley Jevons, sought to move beyond this analogy to advance the
calculus of logic. In 1864, Jevons retained the use of equations as the fundamental
form of logical statements, but shifted the focus from classes associated with
quantity to predicates related to quality [Jev64]. This shift involved replacing
Boole’s partial operation of addition with the modern one, which also accounts
for non-disjoint classes and supports the law x+ x = x. According to Peckhaus,
moving away from Boole’s close analogy to mathematical notation was indeed
the defining feature of Jevons’ logic, and marked a considerable step forward in
the calculus of logic [Pec09].

In this context, Charles Peirce, along with his student O. H. Mitchell, intro-
duced several innovative ideas. He defined a binary relation called “subsump-
tion”, which could be interpreted in various ways, such as a subclass relation
or implication, moving beyond the use of equality as the sole primitive symbol.
He also incorporated unrestricted unions (Σ) and intersections (Π) into Boole’s
framework [Pei97], laying the groundwork for modern quantifier notation [Bra00].
Later, Peirce developed a “general algebra” centered around quantifiers, where
he made the first distinction between first-order and second-order logic [Bad04].

Peirce’s framework, especially his concept of subsumption, significantly influ-
enced Ernst Schröder’s work. In his three-volume Vorlesungen über die Algebra
der Logik [Sch90], Schröder provided the first comprehensive axiomatization of
the calculus of classes and expanded the theory of relations. His goal was to
build a general algebraic theory with broad applications, centered around the
algebra of logic. As Brady observed [Bra00], this work introduced abstract lat-
tice theory and Dedekind’s theory of chains, but its most notable contribution to
model theory was the revival of Boole’s Elimination Theorem. Schröder stated:

“Getting a handle on the consequences of any premises, or at least
the fastest methods for obtaining these consequences, seems to me
to be the noblest, if not the ultimate goal of mathematics and logic.”
[Sch90]

Schröder approached this goal as follows. Given a premise ϕ(x, y) involving
classes x and y, the aim is to derive ψ(y). If it is possible to find a witness relation
φ0(y) such that ∃xϕ(x, y) ⇐⇒ φ0(y), then the task reduces to deriving ψ(y)
from the seemingly simpler statement φ0(y). After exploring this approach in
several specific cases, Schröder recognized the significance of finding such witness
relations and recommended this topic as an important area of research, which
became known as the Elimination Problem.

In approaching this problem, Schröder also embraced Peirce’s distinction be-
tween first-order and second-order logic. Specifically, he realized that higher-
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order statements could describe complex, uncountable structures—such as the
second-order axioms for the real numbers. However, it remained unclear whether
certain first-order sentences could only have uncountable models. These ques-
tions, and particularly the general framework of the algebra of logic as described
in Schröder’s work, became the most advanced form of mathematical logic at
the time [Bra00].

Despite this, the emphasis in mathematical logic began to shift towards type
theory with the publication of Principia Mathematica [RW10]. Nevertheless, in
1915, Leopold Löwenheim renewed interest in the algebra of logic tradition with
his publication On Possibilities in the Calculus of Relatives [Löw67], where he
answered Schröder’s question negatively.

In modern terms, Löwenheim’s theorem states that if a first-order sentence
is true in every finite model but not in every model, then it can be falsified
in a model with elements from a countably infinite domain. However, it is
important to note that the contemporary formulation—if a first-order sentence
φ has a model M, then it also has a countable model N—tacitly relies on Gödel’s
completeness theorem [Göd29] and is attributed to Malcev in 1936 [Mal71b].

In his works [Sko67a; Sko67b], Thoralf Skolem extended Löwenheim’s result
to cover not just individual sentences but any countable set of sentences. More
significantly, he demonstrated that the countable model N could always be se-
lected as a submodel of the original model M, or, in modern terms, as an
elementary submodel of M (see Definition 2.4.2). This joint result, known as
the Downward Löwenheim-Skolem Theorem, remains one of the most significant
and widely used theorems in model theory to this day.

Theorem 2.1.1 (Downward Löwenheim-Skolem Theorem). Let M be an L-
structure and let κ be an infinite cardinal such that |L| ≤ κ ≤ |M |. Then there
exists an elementary substructure of M of cardinality κ.

Skolem’s proof built on the work of Löwenheim, who himself drew from Schrö-
der’s concept of witness relations. In his approach, Skolem expanded the lan-
guage of a theory T by introducing a function fφ(x) for each formula φ(x) of the
form ∃yψ(x, y); these functions are now known as Skolem functions. He then
added the corresponding axioms ∀x ((∃y)ψ(x, y) → ψ(x, fφ(x))] to T , resulting
in what is now called the Skolemization of T . With this modified theory, Skolem
demonstrated that it was enough to prove the theorem for sentences in this spe-
cific form. This strategy laid the groundwork for quantifier elimination, which
would soon became a central tool in model theory.

Beyond its proof, Löwenheim’s theorem was groundbreaking because it was
the first to establish a meaningful link between a first-order sentence, a syntactic
construct, and its models, a semantic construction. However, in the 19th century,
logic was still primarily treated as a syntactic discipline, and the distinction
between syntax and semantics was not clearly defined. As a result, the prevailing
view, shaped by van Heijenoort [Hei67a], was that Löwenheim had presented a
flawed argument.
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Badesa [Bad04], through a detailed analysis of Löwenheim’s paper and its
historical context, argues that Löwenheim did indeed provide a complete and
correct proof of the theorem. He believes that Löwenheim’s work marked the
beginning of “the logic community’s gradual understanding of the modern dis-
tinction between syntax and semantics, that is, between systems of symbolic
expressions and the meanings that can be assigned to them” [Avi06]. Given the
importance of this distinction, Badesa considers the publication of Löwenheim’s
On Possibilities in the Calculus of Relatives as the birth of Model Theory.

2.2 Completeness, Compactness & Decidability

A pivotal aspect of model theory is its emphasis on first-order logic. Although
Peirce first recognized the distinction between first- and second-order logic, and
Löwenheim’s theorem revealed a key property in first-order logic, neither fully
explored its practical significance. The breakthrough came with David Hilbert,
who, inspired by the Principia Mathematica [RW10], set out to develop his own
axiomatic systems for various logics, including first-order logic. In his 1917 lec-
tures [Hil17], Hilbert re-discovered it and introduced new metamathematical
techniques, distinguishing the syntactic presentation of a formal system from its
interpretation in a given domain. Hilbert also emphasized the importance of
addressing fundamental questions about completeness, consistency, and decid-
ability, recognizing the value of metamathematics in tackling these issues.

Even so, throughout the 1920s, first-order logic was mostly regarded as just
a component of type theory. It was not until 1928, with the publication of
Grundzüge der Theoretischen Logik by Hilbert and Ackermann [HA28], that first-
order logic was clearly established as a distinct system [Ewa19]. In this influential
work, they demonstrated how to prove the completeness of propositional calculus
[Ewa19] and highlighted the question of whether first-order logic “is complete
in the sense that from it all logical formulas that are correct for each domain of
individuals can be derived” [Hei67b, p. 48].

This was proved by Kurt Gödel in 1929, whose completeness theorem states
that if a formula is logically valid, then it is provable. The extension of this
result to uncountable theories was first achieved by Anatoly Malcev [Mal71a],
and later, independently, by Leon Henkin [Hen49], who is often credited with
the stronger form of the completeness theorem:

Theorem 2.2.1 (Completeness of First-Order Logic). Let T be an L-theory
and φ an L-sentence, then T ⊨ φ if and only if T ⊢ φ. In particular, if T is
consistent, then T has a model.

Gödel’s proof closely followed the methods of Löwenheim and Skolem, re-
quiring the expansion of the language with additional relation symbols of all
arities. In contrast, Henkin’s took a different approach by first expanding the
theory to a maximal syntactically consistent set, thus requiring the addition
only of constants to the given language L. He added sufficient constants so that
they served as witnesses of existential formulas. This ensured that for any L-
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formula φ(v) with one free variable v, there exists a constant c ∈ L such that
T |= (∃v φ(v)) → φ(c). This construction is known as the Henkinization of T .
Like Skolemization, it acknowledges quantifiers, Henkinization using constants
and Skolemization using Skolem functions. Beyond the future impact of this
construction, Baldwin notes that Henkin’s approach is noteworthy for its focus
on working within the given vocabulary, marking a important step towards the
modern conception of model theory [Bal18].

A key consequence of the completeness theorem, recognized by Gödel just a
year later, is the compactness theorem [Göd86]. The compactness theorem arises
from the observation that any proof is finite and thus relies on only a finite subset
of assumptions. Consequently, if a theory T is contradictory, some finite T0 ⊆ T
must also yield the contradiction. While this provides a syntactic proof, in
subsequent years, more model-theoretic proofs emerged, the most notable being
 Los’s using ultrafilters (see Definition 2.4.7) [ Loś55]).

Theorem 2.2.2 (Compactness Theorem). A theory T is is satisfiable if and
only if every finite subset of T is satisfiable.

The compactness theorem is one of the most important results in model theory,
primarily because it serves as a powerful tool for constructing models. For
example, if an L-theory T has an infinite model M, building a model N of
cardinality κ, can be done by expanding L by adding κ constants. A theory T ′

can be then formed by adding the sentences ci ̸= cj for each i < j < κ to T . By
the compactness theorem, there exists a model of T ′ and, a fortiori, a model of
T with cardinality at least κ.

The earliest written proof of this result was given by Malcev [Mal71a], but
Robert Vaught [Vau86] notes that Tarski first identified it during his 1927–28
seminar. Because of its parallel to the downward version, it is often called
the Upward Löwenheim–Skolem–Tarski Theorem. Despite Tarski’s central role,
his name is frequently omitted, while Skolem’s remains tied to the theorem.
Ironically, as Hodges [Hod00] points out, Skolem himself found this attribution
troubling, as he considered uncountable sets fictional and the result meaningless.

Theorem 2.2.3 (Upward Löwenheim-Skolem-Tarski Theorem). If T is a count-
able first-order theory with a model M, then T also has a model in every un-
countable cardinality.

The naming of the theorem can still be justified due to its deeper connection to
compactness, from which it is derived. While compactness formally follows from
Gödel’s completeness theorem, some aspects of Gödel’s result were arguably im-
plicit in Skolem’s earlier work. However, neither Skolem nor his contemporaries
fully realized this link, as the metamathematical framework needed to articulate
it had yet to be developed. Gödel wrote:

“The Completeness Theorem, mathematically, is indeed an almost
trivial consequence of Skolem 1923. However, the fact is that, at
that time, nobody (including Skolem himself) drew this conclusion
neither from Skolem 1923 nor, as I did, from similar considerations

13



of his own... This blindness (or prejudice, or whatever you may call
it) of logicians is indeed surprising. But I think the explanation is
not hard to find. It lies in the widespread lack, at that time, of
the required epistemological attitude toward metamathematics and
toward non-finitary reasoning.” [Fef+03]

The absence of a mature metamathematical perspective in the 1920s partly
explains this “blindness”, but Dreben and van Heijenoort suggest that much
of the attention at the time was actually focused on the quest for decidability
[DH86]. Hilbert, in particular, made the decision problem a key part of his
efforts to establish a formal foundation for mathematics. He believed that every
mathematical problem had a solution, meaning it should always be possible to
determine whether any given mathematical statement is true or false. In 1921
[Beh22], Heinrich Behmann first introduced the term “Entscheidungsproblem”
for the decision problem, and by 1928, Hilbert and Ackermann emphasized its
importance, identifying it as one of the central challenges in mathematical logic
[HA28].

Definition 2.2.4. Let T be an L-theory. The theory T is said to be decidable if
there is an effective procedure that takes as input an L-sentence σ and returns
the truth value of T |= σ.

During this period, the concept of decidability was already beginning to take
shape in the work of Löwenheim and Skolem, although they considered their
results to be purely algebraic, as the notion was embedded within their early
efforts in quantifier elimination [Bal18]. Similarly, Langford established the de-
cidability of dense and discrete linear orders without explicitly recognizing it, as
his focus was on using Löwenheim and Skolem’s methods to identify complete
sets of axioms for these theories.

Starting in 1927, Alfred Tarski took a crucial step by recognizing the potential
of quantifier elimination as a general method for solving traditional mathemat-
ical problems [MZ15]. Originally, quantifier elimination involved simplifying a
formula by removing its quantifiers and reducing it to a Boolean combination
of simpler, sometimes quantifier-free formulas, with the same truth assignments
as the original formula. Over time, this technique evolved to studying entire
theories by applying this process to every statement within a theory. In the best
cases, it led to the following property [Sho67]:

Definition 2.2.5. Let T be an L-theory. The theory T is said to have quantifier
elimination if for every L-formula φ(x1, . . . , xn), there exists a quantifier-free L-
formula ψ(x1, . . . , xn) such that T |= φ↔ ψ.

Tarski and his students explored quantifier elimination across various mathe-
matical theories, discovering that in certain cases, quantifiers could be eliminated
after slightly extending the language. Mojżesz Presburger, one of Tarski’s stu-
dents, applied this strategy to study the first-order theory of the integers with the
standard arithmetic operations in the language L = {+,−, 0, 1}. He enriched the
language by introducing an infinite collection of predicates Pn, each representing
divisibility by n for every natural number. Although quantifier elimination was
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not feasible within the original language L, Presburger’s extension enabled the
elimination of quantifiers in the new language L′ [Pre30].

It is always possible to find an extended language that allows quantifier elimi-
nation, but such constructions are usually impractical as the resulting quantifier-
free sets can become more complex. In Presburger’s case, however, the extended
language L′ remains simple enough that these definable sets (see Definition 2.2.6)
are still easy to describe, allowing for a clear proof of the theory’s completeness.
Furthermore, Presburger noted that a similar method could be applied to the
ordered group of integers in the language L = {+,−, <, 0, 1}, a theory nowadays
known as Presburger arithmetic.

As hinted earlier, the significance of these quantifier elimination results be-
comes clearer when examining their implications. Removing quantifiers yields
an axiomatisation of the set of all first-order sentences true in the structure.
This, in turn, enables the development of an algorithm to test the truth of any
statement within the structure, thereby establishing the theory’s decidability.
However, this crucial connection was not initially apparent, and it was only in
1940 that Tarski explicitly highlighted this relationship.

“It is possible to defend the standpoint that in all cases in which a
theory is tested with respect to its completeness, the essence of the
problem is not in the mere proof of completeness, but in giving a
decision procedure (or in the demonstration that it is impossible to
give such a procedure).” [Tar67]

Although the concept of decidability remained somewhat obscure for many
years, an important aspect of quantifier elimination was its ability to clarify
the definable sets within a structure. Essentially, it aimed to address the core
question: what sets are definable in a given structure A using formulas from
a specific formal language L? This question has remained central. Indeed,
Marker describes model theory as “a branch of mathematical logic where we
study mathematical structures by considering the first-order sentences true in
those structures and the sets definable by first-order formulas” [Mar03].

Although E. Schröder initiated the study of first-order definable sets and re-
lations [Sch90], it was Tarski who fully advanced this framework and formalised
its definition [Tar83a].

Definition 2.2.6. Let M be an L-structure. A subset X ⊆ Mn is definable if
and only if there is an L-formula φ(v1, . . . , vn, w1, . . . , wm) and b ∈Mm such that
X = {a ∈ Mn : M |= φ(a, b)}. The subset X is A-definable or definable over A
if there is a formula ψ(v, w1, . . . , wl) and b ∈ Al such that ψ(v, b) defines X.

Tarski introduced definable sets in his analysis of the real field, leading to one
of the most significant results of that period [Tar31]. The theory of real numbers
does not have quantifier elimination in the language of rings Lr = {+,−, ·, 0, 1}.
Instead, Tarski considered the real numbers expanded language of ordered rings
Lor = Lr ∪ {<}. Since the order relation x < y can be expressed in the real
field using the formula ∃z (z ̸= 0 ∧ x+ z2 = y) any subset of Rn definable with
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an Lor-formula is already definable using an Lr-formula. In the language Lor,
Tarski proved quantifier elimination for the theory of the ordered real field, and
as a consequence, established its completeness and decidability.

A key result of Tarski’s quantifier elimination, which holds lasting importance
for contemporary model theory (see Definition 5.3.1), is that the definable sub-
sets in R are exactly the unions of finitely many sets, each being either a singleton
or an open interval with endpoints in the field or ±∞. These sets are now known
as semialgebraic sets:

Definition 2.2.7. We say a subset of Rn is semialgebraic if it can be expressed
as a finite union of sets of the form {a ∈ Rn : p(a) = 0, q1(a) > 0, . . . , qm(a) > 0}
where p, q1, . . . , qm ∈ R[X1, . . . , Xn].

Semialgebraic sets have several notable properties, such as being closed under
Boolean operations (finite unions, intersections, and complements) and under
Cartesian products. The most crucial property, however, is that semialgebraic
sets defined by polynomial equations and inequalities in (n+1)-dimensional space
can be projected down to n-dimensional space while preserving their definability
using polynomial identities and inequalities. This property is formalized in the
Tarski–Seidenberg Theorem [Sei74; Tar31]:

Theorem 2.2.8 (Tarski–Seidenberg). Let X ⊆ Rn+1 be a semialgebraic set and
let π : Rn+1 → Rn be the projection map onto the first n-coordinates. Then
π(X) ⊆ Rn is semialgebraic.

In his work on the real field, Tarski also identified a set T of sentences that
axiomatizes the real field, meaning a first-order sentence is true in the field if
and only if it is provable from T [Tar31]. It was later realized that T precisely
constitutes the axioms defining real closed fields, so these results extend imme-
diately to every real closed field. This made evident that quantifier elimination
provides a crucial framework for understanding first-order definable relations
across a wide range of important mathematical structures.

2.3 Truth in a Structure

Tarski’s most significant contribution is arguably his formalization of the con-
cept of truth, a project he began in the late 1920s influenced by Whitehead
and Russell [RW10]. Although he was deeply engaged with the philosophical
debates on truth, he also saw that the prevailing mathematical approaches were
equally insufficient. Despite the progress, Tarski felt that a purely mathemati-
cal connection between sentences and structures was still missing. He expressed
his concern, stating: “I shall not make use of any semantical concept if I am
not able previously to reduce it to other concepts” [Tar33]. Motivated by both
mathematical and philosophical considerations, Tarski set out to define truth in
a way that relied entirely on set theory and syntax [Hod00]. His work on truth
was first published in Polish in 1933 [Tar33] and was later translated as On
the Concept of Truth in Formal Languages [Tar83a]. Vaught described Tarski’s
achievements:
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“Since the notion ‘φ is true in M’ is highly intuitive, it had been
possible to go even as far as the completeness theorem by treating
truth essentially as an undefined notion. But no one had made an
analysis of truth, not even of exactly what is involved in treating it
in the way just mentioned. [...] In 1933, Tarski made the needed
analysis of truth. For one thing, he discussed just what axioms are
needed if truth is taken (as above) to be undefined. But his major
contribution was to show that the notion ‘φ is true in M’ can simply
be defined inside ordinary mathematics.” [Vau74]

When considering a language L within a consistent metalanguage L′, Tarski
reached two key conclusions about defining truth, depending on the relationship
between L and L′ [Hod22]. First, if L and L′ are identical, any attempt to
define truth within L fails because it leads to contradictions. This is the essence
of Tarski’s undefinability theorem, which shows that truth in L cannot be defined
from within the language itself and requires a higher-level metalanguage [Cie15].
The second scenario occurs when L′ contains second-order logic and the Peano
Arithmetic axioms [KP80]. In this case, truth for L can be defined in L′ by
encoding syntactic notions through number theory, where formulas correspond
to specific numerical properties.

Tarski’s construction of truth in this second scenario begins by first address-
ing the broader concept of satisfaction. To define satisfaction, Tarski considers a
language L with precisely defined syntax, with two levels of symbols: constants,
which carry fixed meanings, and variables, which lack inherent meaning. How-
ever, it is possible to assign an object to each variable and evaluate whether a
given formula ϕ in L holds true when each variable represents its assigned object.
If A is an allowed assignment of objects to variables and A makes ϕ true, then
A (or A) is said to satisfy or to be a model of ϕ, and ϕ is said to be true in A.

With this definition of satisfaction, Tarski was able to express truth when ϕ is
a formal sentence whose non-logical symbols are interpreted within a fixed struc-
ture M. He did so by constructing a metamathematical formula φ(M, ϕ) in L′,
using only higher-order logic, syntax, and the symbols of L, which expressed:
“the sentence ϕ is true in the structure M”. However, this approach didn’t fully
capture a model-theoretic definition that could define truth consistently across
varying structures M. The issue arises because, alongside constants and vari-
ables, model-theoretic languages use a third kind of symbols, such as quantifiers,
which only take on meaning when applied to a specific structure [Hod85].

Hodges notes that Tarski’s first clear model-theoretic definition of truth in
a structure appeared in his 1957 joint paper with Robert Vaught, Arithmetical
Extensions of Relational Systems [TV57]. In this paper, they resolved the earlier
issue by replacing the non-logical symbols in ϕ with variables x̄ and then applying
Tarski’s original truth definition to express that M satisfies the new formula
ϕ(x̄), expressing the truth of ϕ in M, as required.

The significance of this model-theoretic definition of truth is clear, as it con-
tinues to serve as the standard in modern model theory. Tarski’s 1933 definition
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was also profoundly impactful in its time, forming the basis for much of his
subsequent work in metamathematics, especially his paper On the Concept of
Logical Consequence [Tar83b]. In this paper, he argued that a conclusion follows
logically from its premises if and only if every model of the premises is also a
model of the conclusion, thereby redefining the notion of validity. These contri-
butions, along with major advances in completeness and decidability, made the
period from 1915 to 1935, in words of Vaught, extraordinary [Vau74].

2.4 Equivalence & Mappings of Structures

In the 1950s, model theory shifted its focus from examining the properties of
various logics to the systematic study of first-order theories [Bal18]. The primary
aim became understanding how the syntactic properties of a theory relate to the
nature of its models and, conversely, how structural features of models determine
whether they satisfy the same set of sentences. This perspective, influenced
by contemporary developments such as the rise of category theory, emphasized
various notions of equivalence between structures and the study of mappings
between them [Hod00].

The central notion of equivalence between structures, attributed to Tarski, is
that of elementary equivalence. Tarski first introduced the idea of elementary
equivalence as part of his early work on the axiomatization of the field of real
numbers during the 1930s [Tar35]. However, it was not until the 1950s that
he formalized the modern definition of elementary equivalence that is still used
today [Tar52].

Definition 2.4.1. Two L-structures M and N are said to be elementary equiv-
alent, denoted by M ≡ N if M |= ϕ if and only if N |= ϕ for all L-sentences ϕ.

Another description of elementary equivalence of M and N is by writing
Th(M) = Th(N ), where Th(M) denotes the set of all sentences of L that hold
in the L-structure M, also referred to as the complete theory of M. Moreover,
elementary equivalence is a weakening of isomorphism of structures, underscor-
ing the expressive power of first-order languages to capture core properties of
structures while disregarding specific details [Ewa19].

To illustrate this definition, consider the real numbers R and the rational
numbers Q each in the language L = {<}. As both satisfy the theory of dense
linear orders and this theory is complete any two of its models satisfy exactly
the same set of sentences, and therefore are elementarily equivalent. However,
the two structures are not isomorphic as they differ in cardinality.

A few years later, Tarski and Vaught formalized the stronger concept of an
elementary extension, where M is a substructure of N , and introduced the
broader notion of an elementary embedding [TV57]. Notably, if there is an
elementary embedding from M to N , then M and N are elementary equivalent.
This concept naturally leads to the definition of the appropriate category for
first-order model theory: the class of models of a complete first-order theory
with elementary embeddings as the morphisms [MV62].
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Definition 2.4.2. Let M,N be L-structures, and let f : A → N be such that
A ⊆ M. The function f is elementary if for every L-formula φ(x1, . . . , xn) and
every a1, . . . , an ∈ A: M |= φ(a1, . . . , an) if and only if N |= φ(f(a1), . . . , f(an)).

If A = M , f is called an elementary embedding. If M is a substructure of N ,
M is called an elementary substructure of N , written M ≼ N , if the inclusion
map is elementary, in this case N is called an elementary extension of M.

Recognizing that embeddings in algebraically closed fields of the same char-
acteristic are elementary, Abraham Robinson focused his work on these fields
[Rob52]. To explore it further, Robinson introduced the concept of elementary
diagrams, comprehensive collections of first-order sentences that describe a struc-
ture.1 By associating each element of a structure with an individual constant,
Robinson showed that a structure M satisfies the elementary diagram of another
structure N if and only if M is an elementary substructure of N .

Definition 2.4.3. Let L be a language and let M be an L-structure. For
A ⊆ M , denote by LA the language L ∪ {ca : a ∈ A}; that is, the language
obtained from L by adding constant symbols for every a ∈ A. The elementary
diagram of A in M is the LA-theory {φ(ca1 , . . . , can) : M |= φ(a1, . . . , an)}.

Robinson used elementary diagrams to construct embeddings, proving that
the first-order theory of algebraically closed fields with a given characteristic is
complete. Although Tarski had already established this result using quantifier
elimination2 [Tar98], Robinson’s method stood out for its innovative approach
intertwining model theory with algebraic results. He combined the use of map-
pings between structures with the algebraic fact that two algebraically closed
fields with the same characteristic and transcendence degree are isomorphic.
Building on this work, Robinson introduced the notion of model completion
[Mac77].

Definition 2.4.4. Let T be an L-theory. The theory T is model complete if
for all M,N |= T , if M is a substructure of N , then M is an elementary
substructure of N .

According to Baldwin, Robinson’s identification of model-complete theories to-
gether with his focus on the complete theories of significant algebraic structures
[Rob56] was an early instance of studying classes of theories [Bal18]. Another
major contribution of Robinson, was his criterion for quantifier elimination and
model completeness, from which follows that if a theory T has quantifier elimi-
nation, then T is model complete.

1 In [Hod93] Hodges suggests that the concept of diagrams can be traced back to Wittgen-
stein’s Tractatus Logico-Philosophicus [Wit21], where he states: “Die Angabe aller wahren
Elementarsatze beschreibt die Welt vollstandig. Die Welt ist vollstandig beschrieben durch
die Angaben aller Elementarsatze plus der Angabe, welche von ihnen wahr und welche falsch
sind.”

2 Bruno Poizat [Poi00] notes that this result can be viewed as a modern articulation of the
ancient method of solving systems of polynomial equations and inequalities by successively
eliminating unknowns. Thus, this technique dates back to Babylonian mathematics and was
further refined during the Chinese Middle Ages [Hoe77].

19



Theorem 2.4.5. Let T be an L-theory. T is model complete if and only if for
every L-formula φ, there is a universal L-formula ψ such that T |= φ↔ ψ.

This result was particularly important because it simplifies the analysis of
definable subsets within a model of T . One of the earliest applications of these
ideas was the development of a test for completeness by Robert L. Vaught in
1954 [Vau54], which was independently discovered by Jerzy  Loś the same year
[ Loś54].

Theorem 2.4.6 ( Loś–Vaught Test). Let T be a countable theory with only one
model (up to isomorphism) of cardinality λ for some infinite cardinal λ and has
no finite models. Then T is complete.

A year later,  Loś published his influential work on ultraproducts, offering a dif-
ferent approach to understanding the equivalence of structures [ Loś55]. However,
ultraproducts had been used sporadically prior to that time, notably in [Sko34],
where an ultraproduct was employed to construct a nonstandard model of arith-
metic, laying the groundwork for Robinson’s nonstandard analysis [Rob61].

 Loś’ construction involved taking the product M =
∏

i∈I Ni of structures in a
fixed language L, alongside an ultrafilter D on I (a maximal filter on the powerset
P(I)). In this setup, function and constant symbols are defined based on the
indices where they hold. Similarly, two elements of the product are considered
equal if, and only if, the set of indices where they agree belongs to D.

Definition 2.4.7. Let L be a language and suppose that I is an infinite set.
Suppose that Mi is an L-structure for each i ∈ I. Let D be an ultrafilter on I.
Define a new structure M =

∏
i∈I Mi/D, which is called the ultraproduct of the

Mi using D. Define a relation ∼ on

X =
∏
i∈I

Mi = {f : I →
⋃
i∈I

Mi | f(i) ∈Mi for all i ∈ I}

by f ∼ g if and only if {i ∈ I | f(i) = g(i)} ∈ D. If all Mi are the same, M is
called an ultrapower.

 Loś provided a key result characterizing how a first-order formula φ(x) is
satisfied in an ultraproduct M based on its satisfaction in the corresponding
Ni. This result, known as the fundamental theorem of ultraproducts, influenced
Keisler’s work on ultrapowers [Kei61], which eventually led to Shelah’s proof that
two structures are elementarily equivalent if and only if they have isomorphic
ultrapowers [She71a].

Theorem 2.4.8 ( Loś’s Theorem). Let φ(x1, . . . , xm) be an L-formula and let
g1, . . . , gm ∈

∏
i∈I Mi. Then M ⊨ φ([g1]D, . . . , [gm]D) if and only if

{i ∈ I : Mi ⊨ φ(g1(i), . . . , gm(i))} ∈ D.

An alternative characterization elementary equivalence was introduced by Roland
Fräıssé [Fra56]. Rather than focusing on formulas, Fräıssé’s approach relies on
comparing two structures, M and N , through mappings between them. How-
ever, this idea became widely known when Andrzej Ehrenfeucht reframed it as a
game [Ehr61], which is now called the Ehrenfeucht–Fräıssé back-and-forth game.
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In Ehrenfeucht’s version [Mar03], two players take turns in a game Gk(M,N ),
which lasts for k rounds and is used to compare the structures M and N . In each
round, Player I starts by either picking an element mi ∈ M , challenging Player
II to match it by choosing ni ∈ N , or picking ni ∈ N , challenging Player II to
respond with mi ∈M . Player II loses if, at any point in the game, the elements
chosen from one structure satisfy a quantifier-free formula that isn’t satisfied
by the corresponding elements in the other structure. Otherwise, Player II has
a strategy that allows her to continue playing for at least k stages, and this
happens if and only if the countable structures M and N agree on all sentences
of quantifier rank at most k [Hod00]. Extending this to every finite k gives a full
characterization of elementary equivalence.

Theorem 2.4.9. Let L be a finite language without function symbols, and let
M and N be L-structures. Then, M ≡ N if and only if the second player has a
winning strategy in Gn(M,N ) for all n.

Aside from his work on equivalence, Fräıssé is best known for his 1954 con-
struction of structures [Fra54]. He pointed out that finite linear orderings can
be thought of as approximations of the ordering of the rationals. Building on
this idea, he developed a method for constructing structures from these finite
approximations, which is similar to the concept of a direct limit in category the-
ory. One of the key ideas he highlighted was the amalgamation property, which
ensures that combining elements from different structures is done in a consistent
and compatible way.

Definition 2.4.10. We say that T has the amalgamation property if and only if
whenever M0, M1, and M2 are models of T and fi : M0 → Mi are embeddings,
there exists N |= T and gi : Mi → N such that f1 ◦ g1 = f2 ◦ g2. The merging
structure N can be seen as the push-out in the following diagram.

M0 M1

M2 N

f1

f2 g1

g2

Referring to this diagram, in 1993, Hodges wrote:

“Everything that has happened in model theory during the last thirty
years has confirmed how important this diagram is. To see why,
imagine some structure N and a small part M0 of N , and ask, ‘How
does N sit around M0?’ For the answer, we need to know how M0

can be extended within N to structures M1, M2, etc. But then we
also need to know how any two of these extensions M1, M2 of M0

are related to each other inside N : what formulas relate the elements
of M1 to the elements of M2? An amalgam of M1 and M2 over
M0 answers this last question.” [Hod93]

The events that Hodges refers to here mainly branch into two directions. One
is to use amalgamation to exploring possible extensions of the base structure and
classifying how these extensions can be amalgamated. In favorable cases, this,
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non-trivially, leads to a structural understanding of all models of a theory (see
Chapter 4.3). The second use, which Fräıssé originally worked on, involves taking
small structures, extending them, and then amalgamating these extensions to
form a larger structure with significant properties.

Theorem 2.4.11 (Fräıssé’s Theorem). Let L be a countable language, and let K
be a countable set of finitely generated structures that have the hereditary prop-
erty,3 the joint embedding property,4 and the amalgamation property. Then there
exists a countable structure N , known as Fräıssé limit or Fräıssé construction,
which is both universal and homogeneous.

These two properties are very significant. They imply that N is a model in
which all the structures in K can be embedded (universal), and any isomorphism
between finite substructures extends to an isomorphism of N (homegeneous).
This idea of a homogeneous-universal structure was extended by Jónsson in
[Jón56; Jón60], removing the limitation to finite and countable structures in
Fräıssé’s construction.

Definition 2.4.12. Let κ be an infinite cardinal. A model M |= T is κ-
homogeneous if, whenever A ⊆ M with |A| < κ, and f : A → M is a partial
elementary map, and a ∈M , there exists f ′ ⊇ f such that f ′ : A∪{a} → M is a
partial elementary map. The model M is homogeneous if it is |M |-homogeneous.

Definition 2.4.13. A model M |= T is κ-universal if for all N |= T with
|N | < κ, there is an elementary embedding of N into M. The model M is
universal if it is |M |+-universal.

Ten years later, this construction would become crucial for stability theory
and, in turn, for model theory as a whole, but its significance wasn’t immedi-
ately recognized. In fact, after the great achievements discussed, by the late
1950s, first-order theory was considered largely understood. The focus shifted
to infinitary languages, aiming to extend the techniques developed for first-order
languages. Daniel Lascar described the situation as “a moment of pause, as if the
machinery, ready to run, didn’t know which direction to take.” [Las98] Hodges
also recalls two anecdotes:

“In about 1970 a Polish logician reported that a senior colleague of
his had advised him not to publish a textbook on first-order model
theory, because the subject was dead. And in 1966 David Park, who
had just completed a PhD in first-order model theory with Hartley
Rogers at MIT, visited the research group in Oxford and urged us
to get out of first-order model theory because it no longer had any
interesting questions.” [Hod00]

At this point Michael Morley appeared in the scene, causing what has been
called the second birth of Model Theory [Poi00].

3 The hereditary property property states that any finitely generated substructure of a structure
in K, is isomorphic to a structure in K.

4 The joint embedding property states that for any two structures in K, there exists a third
structure in K into which both of the given structures can be embedded.
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3 The Second Birth of Model Theory

3.1 Realizing and Omitting Types

In model theory, a common approach to studying a first-order theory is to
analyze the complexity of the Boolean algebras formed by the definable sets in
a models. Equivalently, one can analyse the complexity of their Stone duals,
which are known as type spaces. Types encapsulate the relationships within a
mathematical structure M, addressing questions such as whether one part of
M can remain small while another expands. In essence, a type is a collection
of formulas that describe potential or actual elements within a structure, and is
comparable to minimal polynomials in field theory.

The notion of a type emerged in the 1950s through the merging of logic and
topology. As Schlimm explains, this unification was achieved through successive
analogies: of propositional logic with algebra by Boole, of Boolean algebras with
rings by Stone, and of deductive systems with Boolean algebra by Tarski [Sch85].
This historical progression established a fruitful interplay between algebraic and
topological perspectives, a dynamic that remains at the heart of modern model
theory.

Consider a set V of n propositional variables. From this set, one can construct
a Boolean algebra B that includes these variables along with the constants 0 and 1
(representing truth values) and logical operators [Boo47]. Each truth assignment
corresponds to an ultrafilter on the set of formulas—that is, the collection of all
formulas true under that assignment. Consequently, the Boolean algebra B can
be associated with a topological space of ultrafilters, denoted Sn(B), known as
the n-th Stone space of B.

In 1936, Stone proved that the map sending each element b ∈ B to the set of
all ultrafilters containing b is an isomorphism [Sto36]. This result implies that
every Boolean algebra B is isomorphic to the algebra of subsets of its Stone space
Sn(B), and thus Boolean algebras can be represented by Stone spaces. Moreover,
the natural topology on Sn(B), with basis sets of the form Ub = {p ∈ Sn(B) |
b ∈ p} for b ∈ B, implies that the image of each b is a clopen set.

Lindenbaum and Tarski generalized this result from propositional logic to
first-order logic [Tar35]. For a first-order theory T , they considered the set
of L-formulas with free variables among v1, . . . , vn and partitioned them into
equivalence classes where two formulas φ and ψ are equivalent if T |= φ ↔ ψ.
The set of these equivalence classes, equipped with the algebraic operations cor-
responding to the connectives, forms the Lindenbaum-Tarski algebra Bn(T ) of
the theory T , where the n represents the number of variables.

Using the reasoning above, the Stone space of the Lindenbaum-Tarski algebra
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of T is denoted as Sn(Bn(T )), which is usually abbreviated to Sn(T ) and referred
to as the n-th Stone space of T . In this context, the clopen sets are of the form:
[φ] = {p ∈ Sn(T ) | p |= φ} where p |= φ means that the type p satisfies the
formula φ. The elements p of Sn(T ) are called complete n-types. A particularly
noteworthy case is the 0-th Stone space S0(T ), which, up to theory equivalence,
corresponds to the set of all complete L-theories extending T .

Although this topological perspective is valuable, the concept of a type can
also be defined directly in terms of formulas:

Definition 3.1.1. Let T be an L-theory, and let p(x1, . . . , xn) be a set of L-
formulas. This set p(x1, . . . , xn) is called a type of T if T ∪ p(x1, . . . , xn) is
satisfiable. A n-type p(x1, . . . , xn) is called complete if, for every L-formula
φ(x1, . . . , xn), either φ ∈ p or ¬φ ∈ p, and the set of all complete n-types is
denoted by Sn(T ). Sometimes S(T ) is used to denote

⋃
n<ω Sn(T ) (sometimes,

equivalently, S1(T )).

To say that T ∪ p(x1, . . . , xn) is satisfiable means that there exists a structure
M and a tuple a ∈ Mn such that M |= T and M |= φ(a) for every formula
φ(x1, . . . , xn) ∈ p.

Building on this idea, the notion of types of a theory can be extended to define
types of a theory T within a specific model M |= T over a subset A ⊆M . This
extension makes it possible to identify which elements of M can be described
using formulas with parameters from A. To formalize this, the language L
is expanded to LA, where LA includes additional constant symbols for each
a ∈ A. In this expanded language, M is naturally viewed as an LA-structure by
interpreting these new symbols as their corresponding elements in A.

Definition 3.1.2. Let M be an L-structure, A ⊆M , and let p(x1, . . . , xn) be a
set of LA-formulas. The set p(x1, . . . , xn) is called an n-type of M over A if for
all k ∈ N and φ1, . . . , φk ∈ p, there exists a ∈ Mk such that M |=

∧k
i=1 φi(a).

Let SM
n (A) be the set of all complete n-types.

For complete theories T , the core correspondence is given by Sn(T ) = SM
n (∅).

To illustrate this definition, consider the structure Q in the language L = {<}
and let A ⊆ Q be the set of natural numbers. Define p(x) = {x > 1, x > 2, x >
3, . . .}. By the Compactness Theorem, p(v) ∪ ThA(M) is satisfiable and p(x)
is a 1-type of Q over N. Similarly, let q(x) = {φ(x) ∈ LA : Q |= φ

(
2
3

)
}. For

example, x < 1 belongs to q(x), whereas x > 2 does not. For any LA-formula
ψ(x), either Q |= ψ

(
2
3

)
or Q |= ¬ψ

(
2
3

)
, making q(x) a complete 1-type.

This construction generalizes to characterize specific elements and complete
types in arbitrary structures. Given an L-structure M, A ⊆ M , and a =
(a1, . . . , an) ∈Mn, the type of a over A is defined as: tpM(a/A) = {φ(v1, . . . , vn) ∈
LA : M |= φ(a1, . . . , an)}. This set is a complete n-type. When A = ∅, it is
simply written as tpM(a). The model M is omitted when clear.

An important property of a type is whether or not it is realized:

Definition 3.1.3. Let M be an L-structure, A ⊆ M , and let p(x1, . . . , xn) be
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a type over A. A tuple a ∈ Mn realizes p if M |= φ(a) for every φ ∈ p. In this
case, p is said to be realized in M. If no such a exists, p is omitted in M.

By the Compactness Theorem, any type can be realized in an elementary
extension of M. Notably, if N is an elementary extension of M, then ThA(M) =
ThA(N ), which implies SM

n (A) = SN
n (A). However, a more insightful approach

is to study models that realize as many types as possible themselves, a property
known as saturation. This concept was first introduced by Vaught in its weaker
form of ω-saturation [Vau61].

Definition 3.1.4. Let κ be an infinite cardinal and let M be an L-structure.
An L-structure M is called κ-saturated if every type p(x1, . . . , xn) over A is
realized in M for all A ⊆ M with |A| < κ and for every n ∈ N. The structure
M is considered saturated if it is |M |-saturated.

As an example, consider the theory of algebraically closed fields of character-
istic 0 in the language L = {+, ·, 0, 1}. The structure of the algebraic closure
of Q, Qalg, is not ℵ0-saturated, as it does not realize the type p(x) = {f(x) ̸=
0 : f(x) ∈ Z[x]}, which describes a transcendental element. In contrast, the
structure C, being ℵ1-saturated, realizes all such types, illustrating the richer
structure of a saturated model.

In the same work [Vau61], Vaught established an important equivalence be-
tween the space of types Sn(T ) and the concept of saturation, establishing a
milestone in modern model theory.

Theorem 3.1.5. Let T be a complete L-theory with infinite models. Then T
has a countable saturated model if and only if |Sn(T )| ≤ ℵ0 for all n ∈ N.

Morley and Vaught [MV62] extended these ideas by adapting Fräıssé and
Jónsson’s notion of universal-homogeneous structures to focus on models of a
complete theory. They showed that this shift amounts to requiring that every
type over a subset of size less than κ be realized in a model M, leading to the
broader notion of saturation. This approach bridged the gap between seman-
tic and syntactic perspectives, demonstrating that the homogeneous-universal
property—an algebraic trait of a class of models—corresponds to saturation, a
model-theoretic feature of a single structure and its complete theory.

Theorem 3.1.6. A structure M is saturated if and only if it is homogeneous-
universal for the class of models of Th(M) with cardinality less than |M | under
the relation of elementary substructure. Moreover, any two saturated, elementary
equivalent structures M ≡ N of the same cardinality are isomorphic M ∼= N .

Because of its homogeneity and universality, a saturated model of a complete
theory T is often viewed as the “most typical” model of T and serves as a conve-
nient working structure. However, not every theory T guarantees the existence
of a saturated model. Nevertheless, for any κ ≥ |L|, and for any structure M
with |M | ≤ 2κ, there exists a κ+-saturated elementary extension C ≻ M. This
κ+-saturated model can be constructed by realizing types and taking unions of
elementary chains.1

1 An elementary chain is a sequence of L-structures (Mi : i ∈ I) indexed by a linear order
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About a decade later, Shelah [She78] built on this concept by introducing the
universal domain, now commonly known as the monster model, a term coined
by John Baldwin. This model, denoted by C |= T , is κ-saturated, κ-universal,
and κ-homogeneous for a very large cardinal κ. Thefore, the monster model
facilitates the study of all models of a complete first-order theory T by treating
them as elementary submodels of C.

The use of the monster model significantly simplifies arguments. For instance,
instead of stating “let N ≻M contain a realization a |= p(x)”, it suffices to say
“let a |= p(x) within C”. Additionally, any consistent type over a small set A,
where |A| < κ, is realized in C. This eliminates the dependency on a specific
model M containing A ⊆ M when analyzing types over A. Many proofs also
become more elegant with automorphism arguments, where solutions to a type
p ∈ Sn(A) are treated as orbits of the automorphism group of C that fix A.

The monster model has become a foundational tool in model theory, repre-
senting a shift in perspective comparable to the changes in algebraic geometry
during the 1970s. It functions as an “equivariant Grothendieck universe” for the
definable sets of a first-order theory T , analogous to Weil’s universal domain,
which serves as a monster model for the theory of algebraically closed fields. As
Hrushovski observes [Hru02], its role is to illuminate the geometric structure of
a theory while minimizing dependence on specific algebraic constructs.

While saturated models aim to realize the maximum number of types, unsat-
urated models that omit specific types are equally important. By deliberately
excluding certain types, these models avoid “problematic” conditions that might
otherwise complicate the theory. One significant class of types in this context is
the isolated types:

Definition 3.1.7. An n-type p(x1, . . . , xn) of M over A is called isolated if there
is an LA-formula φ(x1, . . . , xn) such that for every LA-formula ψ(x1, . . . , xn) in
p, M |= φ→ ψ.

An isolated type can only be omitted if its isolating formula is not witnessed
in the model. In particular, if the theory is complete, then every isolated type
is realized. For countable languages, this is also a sufficient condition. This
result, known as the Omitting Types Theorem, was established by Robert Vaught
[Vau61], who credited Andrzej Ehrenfeucht, and built on earlier work by Leon
Henkin [Hen54] and Steven Orey [Ore56]. It can easily be generalized to allow
the omission of countably many types simultaneously.

Theorem 3.1.8. Let T an L-theory. Suppose X is a countable collection of non-
isolated types over ∅, where a type p is considered isolated in Sn(T ) if {p} = [φ]
for some formula φ. Then, there exists a countable model M |= T that omits all
types p ∈ X.

This theorem provides a powerful tool for constructing controlled models. In

(I,<), where Mi ⊆ Mj for i < j, and Mi ≺ Mj (elementarily embedded) for i < j. In [TV57]
Tarski and Vaught proved that unions of elementary chains are elementary extensions of each
(Mi : i ∈ I).
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particular, it allows the construction of small models of a complete theory that
retain its essential features. In model-theoretic terms, such models are minimal
in the sense that for any other model of the theory, there exists an elementary
embedding from the smaller model into it. Vaught coined the term prime models
for such structures [Vau61]. While saturated models realize as many types as
possible, a prime model realizes only the necessary types, containing only the
essential features of the theory.

Definition 3.1.9. An M |= T is called a prime model of T if, for any N |= T ,
there exists an elementary embedding of M into N .

An example of this is found in the theory of algebraically closed fields of char-
acteristic 0. The field Qalg, the algebraic closure of Q, serves as a prime model
of ACF0. For any model M |= ACF0, there exists an elementary embedding
of Qalg into M, highlighting how prime models capture the essential algebraic
properties of the theory. Because ACF0 is model complete, this embedding is
always elementary.

Vaught further developed the theory of prime models, proving their unique-
ness and establishing necessary and sufficient conditions for their existence in
countable complete theories.

Theorem 3.1.10. Let T is a complete L-theory with infinite models and A ⊆
M |= T is countable. If |Sn(T )| < 2ℵ0, then T has a prime model. Moreover, if
M and N are prime models of T , then M ∼= N .

In retrospect, these concepts arising in the 1960s around the space of types,
largely due to Vaught, will become cornerstones of the field. Morley will showcase
the importance of the topology of Stone spaces and pioneer the sophisticated use
of saturation, aided by the new notion of a prime model over potentially infinite
sets. Moreover, as foreshadowed, Shelah will establish the monster model as the
new standard framework in model theory.

3.2 Indiscernibles & Combinatorics

In the 1950s, Andrzej Ehrenfeucht and Andrzej Mostowski introduced a method
of using linearly ordered sets to analyze and construct mathematical structures.
Central to their approach was the concept of an indiscernible set—a collection
of elements within a structure that cannot be distinguished from each other by
any first-order formula. This concept is closely related to Fräıssé’s earlier exam-
ination of chainable relations [Fra54], in which elements form an indiscernible
set when considering quantifier-free formulas.

Definition 3.2.1. Let I be an infinite set and suppose that X = {xi : i ∈ I}
is a set of distinct elements of M . The set X is called an indiscernible set (or
totally indiscernible) if whenever i1, . . . , im and j1, . . . , jm are two sequences of
m distinct elements of I, then M |= φ(xi1 , . . . , xim) ↔ φ(xj1 , . . . , xjm) for any
L-formula φ with m free variables.

To illustrate this definition, consider an algebraically closed field F with in-
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finite transcendence degree. Let {x1, x2, . . .} be an infinite set of algebraically
independent elements in F . For any two finite sequences of indices i1, . . . , im and
j1, . . . , jm, there exists an automorphism of F mapping each xik to xjk . This
symmetry implies that {x1, x2, . . .} forms an infinite set of indiscernibles.

However, not all structures admit infinite sets of indiscernibles. For instance,
in an infinite linear order, any two distinct elements a and b satisfy exactly one
of the relations a < b or b < a, inherently distinguishing them. As a result, no
indiscernible set of even two elements can exist. To address this, Ehrenfeucht and
Mostowski introduced the weaker notion order indiscernibles, where the order of
the elements is taken into account.

Definition 3.2.2. Let (I,<) be an ordered set, and let (xi : i ∈ I) be a sequence
of distinct elements of M . The set (xi : i ∈ I) is a sequence of (order) indis-
cernibles if whenever i1 < i2 < · · · < im and j1 < · · · < jm are two increasing
sequences from I, then M |= φ(xi1 , . . . , xim) ↔ φ(xj1 , . . . , xjm).

In 1956 [EM79], Ehrenfeucht and Mostowski introduced a method for con-
structing structures around sequences of order indiscernibles. Their method
allowed the properties of these linearly ordered sets to dictate the characteristics
of the resulting models. This approach relied heavily on combinatorial set theory,
using results from partition calculus, such as Ramsey’s Theorem [Ram30] and
the Erdős–Rado Theorem [ER56], which later became standard tools in model
theory.

Theorem 3.2.3. 1. Ramsey’s Theorem: ω → (ω)nk .

2. Erdős–Rado Theorem: ℶµ+ → (µ+)n+1
µ , where ℶ denotes the beth func-

tion.2

For a set κ and a natural number n, let [κ]n be the set of all n-element subsets
of κ. The notation κ → (λ)nµ means that for any function f : [κ]n → µ, there is
a subset A ⊆ κ with |A| = λ such that f is constant on [A]n.

These theorems extend the fundamental combinatorial principle that in large
sets, certain patterns or regularities are inevitable. Specifically, given a suffi-
ciently large collection of objects and a finite set of properties, some objects
will unavoidably be indistinguishable based on those properties. This means
that, under the right conditions, elements within a structure cannot be distin-
guished from one another using only a finite set of properties. By leveraging
these combinatorial principles, in particular, Ramsey’s Theorem, Ehrenfeucht
and Mostowski demonstrated that it is always possible to construct models con-
taining infinite sequences of order indiscernibles.

Theorem 3.2.4. Let T be an L-theory infinite models. For any ordered set
(I,<), there exists a model M |= T containing a sequence (xi : i ∈ I) of order
indiscernibles.

2 The beth function ℶ is defined for an ordinal α and a cardinal µ as follows. Start by setting
ℶ0(µ) = µ. For successor ordinals, when α = β + 1, define ℶα(µ) = 2ℶβ(µ). If α is a
limit ordinal, then ℶα(µ) is defined as the supremum of all previous beth numbers, that is,
ℶα(µ) = supβ<α ℶβ(µ). Additionally, define ℶα to be ℶα(ℵ0).
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Furthermore, if M is the closure of a set X under Skolem functions (as can
always be arranged), then M is called an Ehrenfeucht–Mostowski model of T .
Additionally, by choosing the sets (X,<) and (X ′, <′) sufficiently different, it
is often possible to ensure that the Ehrenfeucht–Mostowski models constructed
from these sets are not isomorphic. From this, Ehrenfeucht observed that if a
theory defines an infinite linear ordering on n-tuples of elements, it must have a
large number of non-isomorphic models of the same cardinality [Ehr61].

Theorem 3.2.5. Let T be an L-theory with infinite models. Suppose that for
some n < ω, the Stone space Sn(T ) is uncountable. Then, for every infinite
cardinal λ, T has at least 2ω models of cardinality λ which are pairwise non-
isomorphic.

This illustrates how the properties of an ordered set I can be intricately mir-
rored within models of the theory T , providing a powerful method for construct-
ing models with desired characteristics. Looking ahead, Ehrenfeucht–Mostowski
models will become pivotal in model theory as Morley demonstrates their flex-
ibility to either realize or omit types, Moreover, this last result regarding non-
isomorphic models will be central in Shelah’s classification program.

3.3 Countable Categoricity

During the 1960s, the study of models exhibiting distinct properties, such as
saturated, prime, or Ehrenfeucht–Mostowski models, sparked a renewed interest
in understanding the isomorphism classes of these models across various cardi-
nalities. However, this focus on isomorphic models dates significantly further
back. In 1904, in his work on geometry, Oswald Veblen introduced the concept
of categoricity, defining it as a property of a system of axioms that “is sufficient
for the complete determination of a class of objects or elements” [Veb04]. In
contemporary terms, this describes a theory that has exactly one model up to
isomorphism.

With first-order logic as the standard framework, however, achieving categoric-
ity for a theory with infinite models was impossible. The Löwenheim–Skolem
theorem (Theorems 2.1.1 and 2.2.3) establishes that any first-order theory with
at least one infinite model must have models of every infinite cardinality, en-
suring the existence of non-isomorphic models of different sizes. This limitation
is particularly striking because many foundational theories, such as arithmetic,
analysis, and set theory, possess infinite models and, consequently, fail to be
categorical.3

In response to this limitation, Robert Vaught [Vau54] and Jerzy  Loś [ Loś54]
independently introduced the weaker notion of κ-categoricity in 1954, which
served as a significant refinement and provided a key criterion for understanding
completeness in theories with infinite models.

3 The most straightforward way to achieve a categorical theory of arithmetic is to shift from first-
order logic to second-order logic. Dedekind famously established the categoricity of second-
order Peano Arithmetic in [Ded88].
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Definition 3.3.1. Let κ be an infinite cardinal and let T be an L-theory.
The theory T is called κ-categorical if it has models of cardinality κ and ev-
ery two models of T of cardinality κ are L-isomorphic. T is categorical if it is
κ-categorical for every κ.

Theorem 3.3.2 ( Los-Vaught Test). Let T be an L-theory with no finite models.
If T is κ-categorical for some infinite cardinal κ with κ ≥ |L|, then T is complete.

Early results on κ-categoricity focused on countable models, specifically on
κ-categoricity for κ = ℵ0.

4 For instance, Georg Cantor demonstrated that the
complete first-order theory of the rationals as a linear order has exactly one
countable model up to isomorphism [Can95], making it ω-categorical. This re-
sult follows immediately from Fräıssé’s work (see Theorem 2.4.9), provided it
is established that any two models M and N admit a back-and-forth system.
While the back-and-forth method is sometimes attributed to Cantor, his origi-
nal proof employed a different approach. According to Silver [Sil94], the earliest
known instance of the back-and-forth proof appears in the work of Felix Haus-
dorff [Hau14].

The first significant result in the study of countable models was presented by
 Loś [ Loś54], who established a criterion for determining when a theory reaches
the maximum possible number of countable models. His approach used the
cardinality of the theory’s type space S(T ), making it one of the earliest results
to link the semantic properties of a theory with the size of its type space.

Theorem 3.3.3. For any complete theory T , if S(T ) is uncountable, then T has
2ℵ0 countable models.

At the opposite end of  Loś’s theorem, when S(T ) is finite, Erwin Engeler
[Eng59], Lars Svenonius [Sve59], and Czes law Ryll-Nardzewski [Ryl59] indepen-
dently showed that this finiteness condition characterizes ω-categoricity. Al-
though each made similar contributions, the result is often credited to Ryll-
Nardzewski due to the historical impact of his method. Ryll-Nardzewski rein-
terpreted Henkin and Orey’s omitting types theorem, originally stated in terms
of ω-consistency without explicit reference to types, and presented it as a se-
mantic criterion based on n-types, with whom to describe points in models.
Thus,  Loś and Vaught (see Theorem 3.1.5, which built on these findings) and
Ryll-Nardzewski were the originators of the semantic use of types.

Theorem 3.3.4. A countable complete theory T is ω-categorical if and only if
S(T ) is finite for every natural number n.

Beyond this equivalence, the full version of the theorem has several other equiv-
alences and provides a precise characterization of ω-categoricity. For instance,
Lars Svenonius showed that models of ω-categorical theories are exactly those
structures whose automorphism groups have finitely many orbits on n-element
subsets for each finite n.

Beyond ω-categorical theories, Vaught aimed to explore the range of possible

4 Historically, ℵ0-categoricity has been referred to as ω-categoricity, so the symbols ω and ℵ0

are used interchangeably in this context.
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numbers of countable models for a given theory. In his 1961 paper, Denumerable
Models of Complete Theories, Vaught defined the countable spectrum function
I(T,ℵ0), which measures the number of nonisomorphic models of a complete
theory T with cardinality ℵ0. In his initial results, Vaught showed that a com-
plete theory cannot have exactly two countable models, i.e., I(T,ℵ0) ̸= 2. He
formulated the following conjecture:

Conjecture 3.3.5 (Vaught’s Conjecture). Can it be proved, without using the
continuum hypothesis, that there exists a complete theory with exactly ℵ1 non-
isomorphic countable models, meaning ℵ0 < I(T,ℵ0) < 2ℵ0?

Vaught conjectured that there is no such theory. In 1970, Morley made signif-
icant progress on this conjecture by proving the following result [Mor70]:

Theorem 3.3.6. Let T be a complete theory. Then, I(T,ℵ0) is either finite, ℵ0,
ℵ1, or 2ℵ0.

Morley’s theorem essentially resolved the conjecture, except in cases where
the continuum hypothesis fails. In such scenarios, Vaught’s Conjecture remains
open for arbitrary theories. However, it has been confirmed for several significant
classes, including ω-stable theories [SHM84] (see Definition 3.4.5), o-minimal
theories [May88] (see Definition 5.3.1), theories of linear orders with unary pred-
icates [Mil81], and theories of trees [Ste78].

3.4 Uncountable Categoricity

Uncountable categoricity refers to κ-categoricity for cardinals κ > ℵ0. While it
may seem that the set of uncountable cardinals for which a theory is κ-categorical
could vary arbitrarily, many natural theories have exactly one model up to iso-
morphism for any uncountable cardinality. Take for instance the theory ACFp

of algebraically closed fields of characteristic p, where p is a prime or zero. It is
a well known result in algebra that two algebraically closed fields are isomorphic
if and only if they have the same characteristic and the same transcendence de-
gree over their prime field. Thus, since for any κ > ℵ0, any algebraically closed
field with transcendence degree κ has cardinality κ, the theory is immediately
κ-categorical for every uncountable κ. Inspired by such examples, in 1954,  Loś
proposed the following conjecture [ Loś54]:

Conjecture 3.4.1. A complete theory that is categorical in one uncountable
cardinality is categorical in all uncountable cardinalities .

As Hodges notes, this was an extraordinarily timely conjecture for two main
reasons [Hod00]. First, the necessary tools to address this question were just
beginning to emerge. Second, the conjecture was notable because it sought to
characterize the behavior of all uncountable models of a theory, which would
require the formulation of a structure theorem to explain the construction of
any model within that theory, an objective that subsequently became central in
model theory.

In 1965, in Categoricity in Power, Michael Morley proved  Loś’s conjecture.
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Theorem 3.4.2 (Morley’s Categoricity Theorem). Let T be a complete theory
in a countable language with infinite models. If T is κ-categorical for some
uncountable κ, then T is κ′-categorical for every uncountable κ′, i.e., I(T, κ) = 1
if and only if I(T, κ′) = 1 for every uncountable κ and κ′.

Morley’s theorem was not only remarkable for its unification of the categoric-
ity property but also for introducing several innovative techniques in its proof.
One of the most influential contributions of his proof emerged from his collab-
oration with Marshall Stone, where Morley identified the importance of type
space topology in studying the structural properties of theories. By refining the
Cantor–Bendixson rank on the Stone space, Morley developed a new topologi-
cal rank for types, now called Morley rank. This rank assigns an ordinal value
to complete types over arbitrary parameter sets A, extending beyond the earlier
work of  Loś and Ryll-Nardzewski, which did not work over parameters. Morley’s
rank for formulas is defined as follows:

Definition 3.4.3. Let M be an L-structure, let φ(x) be an LM-formula, and let
α be an ordinal. Let φ(M) denote {x ∈Mn : M |= φ(x)}. Define RMM(φ) ≥ α
recursively as follows:

1. RMM(φ) ≥ 0 if and only if φ(M) is non-empty.

2. If α = β + 1 for some ordinal β, then RMM(φ) ≥ α if and only if there
exists a family (ψi(x))i∈N of LM -formulas such that for all i, j ∈ N:

(a) RMM(ψi) ≥ β,

(b) ψi(M) ∩ ψj(M) = ∅ whenever i ̸= j,

(c) ψi(M) ⊆ φ(M).

3. If α is a limit ordinal, then: RMM(φ) ≥ α if and only if RMM(φ) ≥
β for all ordinals β < α.

If φ(M) is non-empty, define the Morley rank of φ in M, denoted by RMM(φ),
as the maximal ordinal α such that RMM(φ) ≥ α, if such an ordinal exists, and
∞ otherwise. If φ(M) is empty, set RMM(φ) = −1.5

The primary lasting significance of Morley rank was that it provided a notion
of “dimension” for definable sets, serving as a model-theoretic analogue of the
concept of dimension in linear algebra.

Definition 3.4.4. Suppose that M |= T and X ⊆ Mn is defined by the LM-
formula φ(v). Define RM(X), the Morley rank of X, to be RM(φ).

In particular, Morley rank has several basic properties that make it suitable
as a notion of dimension. For instance, if M is ℵ0-saturated and X ⊆ Mn

is definable, then RM(X) ≥ α + 1 if and only if there exist pairwise disjoint
definable subsets Y1, Y2, . . . of X with Morley rank at least α. Moreover, if X
and Y are definable subsets of Mn, then X ⊆ Y implies RM(X) ≤ RM(Y ).
Similarly, RM(X ∪ Y ) is equal to the maximum of RM(X) and RM(Y ).

5 By working in the monster model C, Morley rank does not depend on the model from which
the parameters are taken. It is sufficient to write RM(φ).
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Another key innovation in Morley’s proof is the introduction of totally tran-
scendental theories. A theory T is defined as totally transcendental if, in any
model M, every formula has a finite Morley rank.6 Morley showed that this
topological condition imposes restrictions on the cardinality of the type space
for such theories. His result established a foundational connection between Mor-
ley rank and stability. While Morley did not explicitly define the notion of κ-
stability, the concept was soon introduced by Frederick Rowbottom in his work
on the uncountable analog of Morley’s theorem, and soon became the standard
terminology [Row64].

Definition 3.4.5. Let κ be an infinite cardinal. A theory is κ-stable if |SM
n (A)| ≤

κ for all models M and for every set A ⊆M of size at most κ.7

The central form of κ-stability in Morley’s work is ω-stability, where |A| ≤ ω
implies that |SM

n (A)| ≤ ω. One of Morley’s primary contributions was showing
that not only are ω-stable theories totally transcendental, but the converse is also
true for theories in countable languages. Because this work focuses on countable
languages, the main discussion will center on ω-stable theories, though many of
the subsequent results extend naturally to uncountable languages as well. As
Morley’s aim was to study κ-categorical theories, he established that ω-stability
serves as a broader generalization of this property:

Theorem 3.4.6. Let T be a complete theory in a countable language with infinite
models, and let κ ≥ ℵ1. If T is κ-categorical, then T is ω-stable.

This theorem highlights that, much like ℵ0-categorical theories, the number
of complete types in an ℵ1-categorical theory is tightly constrained, though not
necessarily finite. Moreover, Morley demonstrated that ω-stability represents
the strongest form of κ-stability:

Theorem 3.4.7. Let T be a complete theory in a countable language. If T is
ω-stable, then T is κ-stable for all infinite cardinals κ.

To achieve these results, Morley refined several important techniques. He
showed that indiscernibles, particularly Ehrenfeucht–Mostowski models, could
be used to construct a large model that realize only a limited number of types.
Specifically, in such model M for any κ ≥ ℵ0 and A ⊆ M , the number of types
realized in SM

n (A) is at most |A|+ℵ0. Additionally, he applied the Erdős–Rado
Theorem to build large models with indiscernibles that omit certain types. Mor-
ley also expanded Vaught’s notion of prime models by allowing dependence on
a parameter set A. Essentially, prime models over A are prime models for the
enriched L(A)-theory. Morley demonstrated that in ω-stable theories such prime
models always exist, and Shelah later proved their uniqueness [She72].

Morley’s contributions to model theory were widely recognized, earning him
the Leroy P. Steele Prize for Seminal Contribution to Research from the Ameri-
can Mathematical Society in 2003. The prize committee praised his work, stating

6 The term “totally transcendental” originates from transcendental extensions in field theory.
7 Using the monster model C removes dependence on a specific model. It is also sufficient to
verify this condition for n = 1, though it must hold for all sets A of size κ.
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that he “set in motion an extensive development of pure model theory by prov-
ing the first deep theorem in this subject and introducing entirely new tools to
analyze theories and their models”. Baldwin and Lachlan similarly highlighted
the significance of Categoricity in Power, asserting that it “marked the beginning
of modern model theory and laid the foundation for decades of future develop-
ments” [BM21]. Even more concisely, Poizat referred to Morley’s work as the
“second birth” of model theory [Poi00].

3.5 On Strongly Minimal Sets

After Morley unified the understanding of uncountably categorical theories,
model theorists turned to a deeper exploration of their internal structure. Zilber
highlighted that ”the main logical problem, after resolving  Loś’s question, was to
determine what properties of T ensure κ-categoricity for uncountable κ” [Zil10].
In 1971, Baldwin and Lachlan addressed this issue by refining Morley’s results,
providing a precise characterization of ℵ1-categorical theories [BL71].

Their work built on Vaught’s study on two-cardinal models. Vaught sought to
understand the possible cardinalities of definable subsets of a model relative to
the cardinality of the model itself. To formalize this, he introduced the concept
of a (κ, λ)-model.

Definition 3.5.1. Let κ > λ ≥ ℵ0. An L-theory T is said to have a (κ, λ)-
model if there exists M |= T and an L-formula φ(v) such that |M| = κ and
|φ(M)| = λ.

The first two-cardinal theorem was established by Vaught himself, who showed
that an ℵ1-categorical theory T has no two-cardinal model [Vau61]. This result
was later generalized to state that for any κ > λ a two cardinal model for (κ, λ)
implies that for (ω1, ω) [MV62]. Seeking a Löwenheim-Skolem-like behavior,
Vaught then posed the question of which quadruples of cardinals κ > λ, κ′ ≥ λ′

satisfy the implication (κ, λ) ⇒ (κ′, λ′) [Vau65], making this a prominent line of
inquiry in set theory.

Ultimately, a solution was provided for stable theories by Shelah (see Defini-
tion 4.1.1) and Lachlan [She69; Lac72], and for o-minimal theories by Bays see
Definition 5.3.1) [Bay98]. In these cases, it was shown that if T admits a (κ, λ)-
model for κ > λ and κ′ ≥ λ′, then T also admits a (κ′, λ′)-model. Baldwin noted
that this answer recast Vaught’s original set-theoretic question, which asked “for
which cardinals. . . ?”, to a model-theoretic one, reframing it as “for which the-
ories. . . ?”—highlighting a crucial aspect of the mid-century shift [Bal18]. In
words of Baldwin, “for most practitioners of late 20th century model theory and
especially for applications in traditional mathematics the effect of this shift was
to lessen the links with set theory that had seemed evident in the 1960’s.”

The Baldwin-Lachlan theorem is often described using the notion of a Vaugh-
tian pair, which Tent and Ziegler introduced as a more semantic and robust
analogue of two-cardinal models [TZ12].
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Definition 3.5.2. Two models M and N of T form a Vaughtian pair, denoted
(N ,M), if M ≠ N , M ≺ N , and there exists an LM-formula φ(v̄) such that
φ(M) is infinite and φ(M) = φ(N ).

By compactness, the existence of a Vaughtian pair serves as an obstacle to
categoricity, and, in fact, it is the only such obstacle aside from a theory not
being ω-stable. The theorem oof Baldwin and Lachlan is as follows:

Theorem 3.5.3 (Baldwin-Lachlan). Let T be a complete theory in a countable
language with infinite models, and let κ be an uncountable cardinal. Then T is
κ-categorical if and only if T is ω-stable and has no Vaughtian pairs.

This result directly leads to Morley’s Categoricity Theorem, as the character-
ization does not depend on a specific uncountable cardinal κ. Diving deeper, it
also reveals the structure of uncountable categorical theories through the notion
of a strongly minimal set, introduced by Marsh [Mar66].

Definition 3.5.4. Let M be an L-structure and let D ⊆ Mn be an infinite
definable set. D is said to be minimal in M if for any definable Y ⊆ D, either
Y is finite or D \Y is finite. If φ(x, a) is the formula that defines D, then φ(x, a)
is also called minimal. Moreover, D and φ are said to be strongly minimal if φ
is minimal in any elementary extension N of M.

A theory T is called strongly minimal if the formula x = x is strongly minimal,
i.e., if for all models M |= T , every definable subset of M is either finite or
cofinite.

One important remark is that if a set D defined in M by ψ(x, ā) with parame-
ters A0, the property of being strongly minimal depends only on the type of A0,
rather than the particular model. Using this observation, Baldwin and Lach-
lan introduced a model-theoretic abstract dependence relation by restricting the
algebraic closure relation to the strongly minimal set D, denoted as aclD(A),
where the subscript D is often ommitted.

Definition 3.5.5. Let M be an L-structure and A ⊆ M . An element b ∈ M
is algebraic over A if there exists a formula φ(x, ā) with ā ∈ A such that M |=
φ(b, ā) and φ(M, ā) := {y ∈ M : M |= φ(y, ā)} is finite. The algebraic closure
of A, acl(A), is defined as the set of all elements in M that are algebraic over A.

Given a set D ⊆ M definable over A0 ⊆ M, define: aclD(A) := acl(A∪A0)∩D
A strongly minimal set can be viewed as a pregeometry, as it satisfies all the

axioms of a pregeometry, providing a natural associated notion of independence
that generalizes linear independence in vector spaces and algebraic independence
in algebraically closed fields.

Definition 3.5.6. Let X be a set and let cl : P(X) → P(X). The pair (X, cl)
is called a pregeometry (or: combinatorial pregeometry, if for all A,B ⊆ X and
for all a, b ∈ X:

1. A ⊆ cl(A) and cl(cl(A)) = cl(A),

2. if A ⊆ B, then cl(A) ⊆ cl(B),

35



3. if a ∈ cl(A), then there exists a finite set F ⊆ A such that a ∈ cl(F ),

4. if b ∈ cl(A ∪ {a}) \ cl(A), then a ∈ cl(A ∪ {b}).

Thus, a notion of independence and basis can be defined analogously. Given
an L-theory T and a model M |= T , let D ⊆ M be a strongly minimal set
defined over A0. A set A ⊆ D is called independent over A0 if a /∈ aclD(A \ {a})
for every a ∈ A. This notion is localized to depend on the set of parameters A0

defining the strongly minimal set. Given C ⊆ D, A is said to be independent of
C over A0 if a /∈ aclD((C ∪A) \ {a}) for every a ∈ A.

A subset B ⊆ Y is called a acl-basis for Y if B is independent over A0 and
aclD(B) = aclD(Y ). As for any pregeometry, this yields a well-defined notion of
dimension. Thus, for any Y ⊆ D, the dimension of Y , denoted by dim(Y ), is
precisely the cardinality of any basis of Y .

In strongly minimal theories, this notion of dimension aligns with Morley rank.
More importantly, it is sufficient to show that every model of a strongly minimal
theory is uniquely determined up to isomorphism by its dimension.

Theorem 3.5.7. Suppose T is a strongly minimal theory and M,N |= T , then
M ∼= N if and only if dim(M) = dim(N ). Therefore, if T is a strongly minimal
theory, then T is κ-categorical for κ ≥ ℵ1.

More precisely, given a strongly minimal formula ϕ, two models are isomorphic
if and only if ϕ(M) and ϕ(N ) have the same dimension. This isomorphism is
obtained by extending the bijection between two acl-bases of ϕ(M) and ϕ(N ) 8.
This strategy was precisely the core of the Baldwin and Lachlan theorem.

Baldwin and Lachlan showed that being ω-stable and having no Vaughtian
pairs implied the existence of a strongly minimal formula ϕ. They used this
formula, together with a dimension argument, to construct a partial isomorphism
from ϕ(M) to ϕ(N ) which extends to an isomorphism from M to N . This
extension was justified by relying on the properties of prime models over sets
to extend the domain and on the non-existence of Vaughtian pairs to establish
surjectivity.

It is worth noting that the proof by Baldwin and Lachlan also showed that any
two models with same dimension are isomorphic. In particular, this implies an
effective bound on the number of countable models of uncountably categorical
theories:

Theorem 3.5.8. If T is uncountably categorical, then I(T,ℵ0) ≤ ℵ0.

This result had been previously established by Morley [Mor67]. However, using
their detailed understanding of the spectrum function, Baldwin and Lachlan ex-
tended it to the following result, which resolved affirmatively another conjecture
posed by Vaught [Vau61]:

Theorem 3.5.9. If T is ℵ1- categorical but not ℵ0-categorical, I(T,ℵ0) = ℵ0.

8 The crucial detail in constructing such a map is to define the strongly minimal formula ϕ
over a set of parameters in the prime model [Iba23].
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Across the previous two sections, several implications have been established,
but two are especially significant for the current aim. On one hand, Morley
demonstrated (Theorem 3.4.6) that ℵ1-categoricity implies ω-stability. On the
other hand, Baldwin and Lachlan showed that strong minimality implies ℵ1-
categoricity. Therefore, strong minimality implies ω-stability, which is one of
the implications in Conant’s Map of the Universe:

Figure 2: First Building Block of the Map of the Universe.

3.6 Geometric Model Theory

Morley’s seminal paper concluded with seven provocative questions that had
a crucial impact on the subsequent development of model theory. Among these,
the second question asked whether there exists an ℵ1-categorical but not ℵ0-
categorical theory that is finitely axiomatizable. Fifteen years later, Peretyatkin
[Per80] provided an affirmative answer by constructing such a theory. More
importantly, Zilber and, independently, Cherlin, Harrington, and Lachlan proved
that no theory countable in all infinite powers is finitely axiomatizable [CHL85;
Zil84]. Although this problem had been phrased as a logical one, its solution
revealed deep structural properties of such theories, leading to the emergence of
geometric model theory, one of the most fruitful branches of model theory.

Geometric model theory, sometimes known as geometric stability theory, fo-
cuses on the study of combinatorial geometries that emerge from sets with well-
behaved independence relations, such as strongly minimal sets. For example,
Zilber’s early result demonstrated that every model of an ℵ1-categorical theory
can be decomposed into finite “ladders” of strongly minimal sets [Zil93]. This
field also relies on the study of classical algebraic structures, such as groups and
fields, that are interpretable within these sets. Notably, the proof by Cherlin,
Harrington, and Lachlan drew on the classification of finite simple groups.

Initially motivated by analogies with algebraic geometry, Zilber delved into
the study of ℵ1-categorical theories. His work soon expanded into an ambitious
program aimed at classifying uncountably categorical theories—a problem that,
after Baldwin and Lachlan’s theorem, ultimately reduces to the classification
of strongly minimal sets. Zilber succeeded in classifying the pregeometries of
strongly minimal sets into three distinct classes: trivial or degenerate, non-trivial
locally modular, and non-modular [Zil81].

The first class, the trivial or degenerate class, consists of structures where ev-
ery set is closed under the algebraic closure operator, meaning acl(X) = X for all
subsets X. An example is the dependence relation where an element is dependent
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only on sets containing it. The second class, non-trivial locally modular, includes
structures that are not trivial but in which the lattice of closed subsets of the ge-
ometry is a modular lattice, meaning dim(A∪B) = dim(A)+dim(B)−dim(A∩B)
holds for all closed sets A,B ⊂ X, provided that dim(A ∩ B) > 0 . A classical
example is a vector space. The third class, non-modular pregeometries, encom-
passes structures that do not fit into the previous categories. An example are
algebraically closed fields, where the algebraic closure of a set A is the smallest
subfield containing A such that every non-zero polynomial with coefficients in
the field has its roots within the field.

Building upon this classification, at the 1984 International Congress Zilber
conjectured the following:

Conjecture 3.6.1 (Zilber’s Trichotomy Conjecture). If M is strongly minimal,
then one of the following must hold: the geometry of M is either trivial, or
it is an affine or projective geometry over a division ring, or M interprets an
algebraically closed field.

However, in 1993, Ehud Hrushovski refuted the conjecture in his paper A new
strongly minimal set [Hru93]. He introduced special forms of Fräıssé limits, now
known as the Hrushovski construction, to produce a non-locally modular strongly
minimal set that does not interpret an algebraically closed field. Despite the
refutation, his contruction remains artificial, and Zilber’s conjecture has indeed
been proved in several restricted scenarios.

An important restricted version of the trichotomy conjecture was established
by Hrushovski and Zilber [HZ96]. They strengthened the hypothesis from a
strongly minimal set to a so-called Zariski geometry, demonstrating that cer-
tain of these geometries are mutually interpretable with an algebraically closed
field. These results were utilized by Hrushovski to prove, for the first time, the
Mordell–Lang Conjecture in all characteristics [Hru96]. This is a central result
in Diophantine geometry which, roughly speaking, describes the properties of
the intersection of a subvariety X of a semi-abelian variety A, both defined by
polynomial equations over a function field K, with specific subgroups Γ of A.
The application of model theory to prove the Mordell–Lang Conjecture is thus
historical for bridging seemingly distinct areas of mathematics.

Hrushovski later applied a similar approach to prove the Manin–Mumford
Conjecture in algebraic geometry [Hru01]. This conjecture for number fields, is
a deep and important finiteness question regarding the intersection of a curve
with the torsion subgroup of its Jacobian. Given this remarkable unification,
in his Short Model Theory, Hodges references Hrushovski’s work as part of the
motivation for viewing model theory as algebraic geometry - fields [Hod97].

Research in the field remains highly active and productive. A significant ad-
vancement was made in 2022 when Benjamin Castle resolved the following re-
stricted trichotomy, which had been long overdue: If M is a non-locally mod-
ular strongly minimal structure interpretable in an algebraically closed field K
of characteristic 0, then M interprets K [Cas22]. In 2024, Castle further ex-
tended this work by proving the higher-dimensional case of the o-minimal vari-
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ant of the conjecture [Cas24], by building on earlier contributions by Peterzil
and Starchenko in o-minimal theories [PS98].
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4 The Classification Program

4.1 The Stability Hierarchy

Morley’s third question among his seven sought to extend his Categoricity
Theorem to uncountable languages. In 1971, Saharon Shelah addressed this
question with a proof that introduced the notion of stability [She74a]. This con-
cept, along with Shelah’s pioneering work, became foundational to what would
soon be known as stability theory, which, as Väänänen notes, “is now the ac-
cepted state-of-the-art and the focus of research for all those working in model
theory” [Vää20].

The intuition behind stability, as for ω-stability, is that it limits the complexity
of type spaces by bounding their cardinalities. Since types describe the potential
behaviors of elements in models (or in elementary extensions), constraining the
number of possible types over parameter sets implies that the theory exhibits a
controlled and well-behaved structure. In his first paper in 1969, Shelah formally
introduced the concepts of a stable theory and its stronger form, superstability,
extending Rowbottom’s notion of κ-stability.

Definition 4.1.1. Recall that given an infinite cardinal κ, a theory is κ-stable
if |Sn(A)| ≤ κ for every set A ⊆M of size at most κ.

• A theory T is stable if it is κ-stable for some cardinal κ ≥ ℵ0. Otherwise,
it is called unstable.

• A theory T is superstable if there exists some cardinal λ such that T is
κ-stable for all κ ≥ λ.

While studying these properties, Shelah discovered that crucial syntactic prop-
erties of ω-stable theories could be generalized by restricting some of Morley’s
notions from types involving all formulas to types containing only instances of a
single formula ϕ(x, y). He introduced the notion of complete ϕ-types, which are
not complete types in the usual sense but are “complete for ϕ” as follows:

Definition 4.1.2. Let ϕ(x, y) be a formula. A complete ϕ-type over a set of
parameters A ⊆ M is a maximal consistent collection of formulas of the form
ϕ(x, b) or ¬ϕ(x, b), where b ranges over A. The space of all complete ϕ-types
over A is denoted by Sϕ(A).

Shelah defined a formula ϕ as stable if there exists a cardinal λ such that for
all sets B with |B| ≤ λ, the size of Sϕ(B) is at most λ. The name is due to the
following key equivalence: a theory T is stable in Rowbottom’s original sense if
and only if all its formulas are stable in terms of ϕ-types. Therefore, if a theory T
is unstable, meaning it is not κ-stable for any κ, this instability can be detected
by a single formula ϕ for which there are too many ϕ-types.
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By extending Moley’s implication that, in ω-stable theories, |A| ≤ ℵ0 leads
to |Sn(M,A)| ≤ ℵ0 for ϕ-types, Shelah was able to generalize Morley’s result
that ω-stability implies stability in all ordinals. The outcome was a mere im-
plication such as “κ-stable implies κ′-stable”, but an overarching result. Shelah
demonstrated that there are only a limited number of possibilities for the set of
cardinals κ in which a theory can be κ-stable, resulting in a classification of all
theories into four disjoint classes [She69].

Theorem 4.1.3 (The Stability Hierarchy). Every countable complete first-order
theory T falls into exactly one of the following classes:

1. Unstable: There are no cardinals κ such that T is κ-stable.

2. Strictly Stable: T is stable in exactly those cardinals κ such that κω = κ.

3. Strictly Superstable: T is stable in exactly those cardinals κ ≥ 2ℵ0.

4. ω-Stable: T is stable in all infinite cardinals κ.

This result was formulated in terms of the stability spectrum function gT (λ),
defined as gmT (λ) = sup{|Sm(M)| : M |= T, |M | ≤ λ}, where, if m is omitted,
m = 1. Shelah proved that there are only four possible stability spectrum func-
tions for any theory. To further analyze this, Shelah introduced various notions
of topological rank for the space of ϕ-types, based on Morley’s work and vari-
ations of the Cantor-Bendixson rank. Using these ranks, Shelah translated the
four possible stability functions into specific syntactic conditions, thus providing
a purely syntactic description of the stability hierarchy.

However, the most notable syntactic characterization remains that of unstable
theories. By 1971 [She71b], Shelah demonstrated that instability can be char-
acterized not only by counting types but also by a local combinatorial property
involving a single formula and a countable set of elements. This property, known
as the order property:.

Definition 4.1.4. A formula φ(x, y) has the order property (OP) in a model M
if there exist sequences (ai)i<ω and (bj)j<ω in M such that M |= φ(ai, bj) ⇐⇒
i < j. A complete first-order theory T has the order property if there is a formula
φ(x, y) that has the order property in some model of T .

Theorem 4.1.5. Let T be a complete theory. Then, T is stable if and only if T
does not have the order property.

Morley had used linear orderings to construct Ehrenfeucht–Mostowski mod-
els, and Shelah recognized their potential as a powerful tool for characteriz-
ing unstable theories, particularly in relation to the number of models, as seen
in Ehrenfeucht’s work (Theorem 3.2.5). For any unstable theory, Shelah con-
structed 2κ linear orderings and demonstrated that the corresponding Ehren-
feucht–Mostowski models remain non-isomorphic [She71b], proving that unsta-
ble theories have the maximum number of models. A few years later, he extended
this argument to unsuperstable theories by replacing the linear order with trees
of width κ and height ω + 1 [She74b].

Theorem 4.1.6. Let T be a complete theory. If T is either unstable or unsu-

41



perstable, then for any uncountable κ, T has 2κ models of size κ.

Before introducing Shelah’s notion of forking, it’s worthwhile to visualize the
implications discussed in this section. With the introduction of the stability
spectrum, Shelah moved beyond analysing individual classes of theories, such
as ω-stable or ℵ1-categorical theories, and, for the first time, established an
overarching hierarchy that encompasses all theories. In doing so, Shelah had a
comprehensive view of the Map of the Universe.

Figure 3: Second Building Block of the Map of the Universe.

4.2 Forking Independence

The central concept underlying the analysis of stability is forking, which pro-
vides a combinatorial framework of dimension rather than a topological one. As
Kim describes:

“The merit of forking theory is that it supplies such an independence
notion to any stable structure. Two stable structures may not have
any common phenomena without observing those via model theory.
Furthermore, ‘forking’ is a basic tool of stability theory for proving
classification theorems. Forking can be said to be a core notion of
stability theory.”[Kim98]

Shelah was initially motivated by the desire to understand the possible “bad
behavior” of a type when extending it over a larger set of parameters, or con-
versely, the “good behavior” of an extension of a type that does not introduce
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new constraints to its set of realizations. Given a type p ∈ Sn(A) with A ⊆ B,
Shelah sought to identify a type q ∈ Sn(B) extending p such that q remains as
“free” as possible. He termed such extensions non-forking extensions.1 To for-
malize this characterization of types, Shelah defined forking for a single formula,
which itself relies on the weaker notion of dividing [She78].

Definition 4.2.1. Let A ∪ {a} ∪ {aj : j < n} be a subset of a model of T .

1. A set of formulas X = {φ(x, ai) : i < ω} is k-inconsistent if every k-element
subset of X is inconsistent.

2. The formula φ(x, b) k-divides over A if there exists a set I = {bi : i < ω}
such that {φ(x, bi) : i < ω} is k-inconsistent and all the bi realize tp(b/A).
The formula φ divides over A if it k-divides over A for some k. A type p
divides over A if it implies some φ(x, b) which divides over A.

3. A formula p(x, b) forks over A if there exists a finite set of formulas
{ψj(x, bj) : j < n} such that p(x, b) implies

∨
j<n ψj(x, bj) and each

ψj(x, bj) divides over A. A type p forks over A if it implies some φ(x, b)
which forks over A.

Intuitively, if a formula φ(x, b) divides over A, any element c satisfying φ(c, b)
is more constrained by A ∪ {b} than by A alone. To illustrate these definitions,
consider the theory of dense linear orders (DLO). In this theory, the formula
b1 < x < b2 2-divides over the empty set, whereas the type p = {x > a | a ∈ Q}
does not divide over the empty set for any natural number k. Moreover, while
dividing implies forking, there are formulas that fork but do not divide, as seen
in the following example. Let T be the theory of the circle S, with a ternary
relation R(x, y, z) which describes that y lies on the arc between x and z, ordered
clockwise. Since this theory has quantifier elimination, there is a unique 2-type
p(x, y) that is consistent with the formula x ̸= y. As in DLO, the formula
R(a, y, b) divides over the empty set for any elements a, b. However, the formula
x = x forks over the empty set but does not divide.

Building upon the notion of forking for types, Shelah introduced the non-
forking independence relation, denoted |⌣, which provides a notion of indepen-
dence between subsets of the monster model.

Definition 4.2.2. Given A and B and C (usually with C ⊆ B) subsets of the
monster model, A is said to be independent from B over C, denoted by A |⌣

C

B,

if tp(a/B ∪ C) does not fork over C, for any finite tuple a from A. This is
sometimes written as tp(A/B ∪ C) does not fork over C .

Since C ⊆ B, stating that tp(a/B ∪ C) does not fork over C is equivalent to
saying that tp(a/B ∪ C) is a non-forking extension of tp(a/C) to the larger set
B ∪ C, often abbreviated as BC.

In parallel to the non-forking independence relation, Shelah introduced the

1 Shelah originally called these non-splitting extensions (in Hebrew) and asked Chang for a
similar English term, who suggested forking [Bal88b].
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non-dividing independence relation A |⌣
C

d
B, which holds when tp(A/B ∪ C)

does not divide over C. In stable theories, these two concepts are equivalent, but
this distinction becomes crucial when forking is extended to unstable theories.

Despite being named an “independence relation”, forking, with its associated
closure operator, given by a ∈ cl(B) over C if tp(a/B) forks over C, does not
satisfy all the properties of a pregeometry (see Definition 3.5.6). For stable
theories, it fails to satisfy transitivity. Shelah addressed this issue by restricting
the definition to regular types. Initially, he considered global types, which are
types over the model. By working in the monster model C |= T , a global type can
be written as p ∈ S(C) 2 Shelah proved that in stable theories, global types have
a unique non-forking extension to any superset, a property called stationarity.
This is a crucial characteristic, but it is not sufficient to achieve transitivity, as
the unique non-forking extension must also be independent, which is precisely
satisfied by regular types. Shelah’s result can then be stated as follows [She78].

Theorem 4.2.3. Let p ∈ S(C) be a regular type and X the set of realizations
of p. Then for a ∈ X and B ⊂ X, the relation tp(a/B) forks over C defines a
pregeometry on X.

Similar to how strongly minimal sets and algebraic closure lead to a notion
of independence, this theorem introduces a forking dimension for subsets of the
model. Specifically, for any regular type p, it becomes possible to define the
dimension of the set of realizations of p within the monster model C. In fact,
Shelah proved a striking unification. In ω-stable theories, tp(a/B ∪C) is a non-
forking extension of tp(a/C) if and only if RM(a/B ∪C) = RM(a/C), showing
that regular types generalize Morley rank 1 types, which are precisely strongly
minimal sets.

Shelah proved that in stable theories, non-forking independence, with its un-
derlying pregeometry, exhibits many notable features. Some of these are more
intuitive when viewed through the lens of independence, while others are bet-
ter understood through non-forking extensions. The complexity of forking often
stems from the interplay between these two. In terms of extension, Shelah proved
the following result [She90].

Theorem 4.2.4. Let T is a stable theory. Then the following hold:

1. Local Character: For any type p(x̄) ∈ S(A) (where x̄ is a finite tuple),
there exists a subset A0 ⊆ A of cardinality at most |T | such that p does not
fork over A0.

2. Extension: For any p(x̄) ∈ S(A) and B ⊇ A, there is a type q(x̄) ∈ S(B)
such that p ⊆ q and q does not fork over A (Such a q is called a non-forking
extension of p over B).

3. Symmetry: For any A ⊆ B and tuple ā, tp(ā/B) does not fork over A if

2 While S(C) is more precise, it is standard to use the more sober font, especially as the monster
model effectively becomes the new standard model in the context of these results. The same
convention will be followed from here onwards.
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and only if for every tuple b̄ from B, tp(b̄/A ∪ {ā}) does not fork over A.

4. Transitivity: For any A ⊆ B ⊆ C and tuple ā, tp(ā/C) does not fork over
A if and only if tp(ā/C) does not fork over B and tp(ā/B) does not fork
over A.

5. Stationarity over models: If M is a model and p(x̄) ∈ S(M), then for any
B ⊇M , p has a unique non-forking extension over B.

By counting types, these properties also establish the converse, showing that
any theory satisfying them is indeed stable. The fifth property is especially
significant, as it guarantees that any global type is stationary. Interestingly, the
axiomatic characterization of non-forking independence in stable theories may
have been first recognized not by Shelah, but by Harnik and Harrington in 1984
[HH84]. This result is central and will play a key role in extending the concept
of forking beyond the study of stability alone.

However, the dissemination of forking and stability was not solely Shelah’s ef-
fort. Shelah’s presentation of the basics of stability theory was notably complex,
written in a unique expository style that, combined with the inherent intricacy of
the subject, made the material challenging to digest even for experienced math-
ematicians. In the 1970s, Daniel Lascar and Bruno Poizat introduced a clearer,
more accessible approach to forking theory. Because they were based in Paris,
this approach became known as the French school.

In their 1979 joint publication, Introduction to Forking, Lascar and Poizat
reformulated forking theory by replacing Shelah’s original combinatorial defini-
tion of forking with one more closely tied to the notion of definability. In 1971
[She71b], Shelah had established the definability of types as a characterizing
property of stability, so Lascar and Poizat used this result as the foundation for
deriving other properties.

Definition 4.2.5. Let φ(x; y) be a partitioned formula. A type p(x) ∈ Sφ(B)
is said to be A-definable if there exists a formula ψ(y) ∈ LA such that, for all
b ∈ B, φ(x; b) ∈ p ⇐⇒ |= ψ(b).

Lascar and Poizat based their characterisation on the notions of heir and
coheir. This terminology stemmed from the concept of viewing an extension as
a fils (son), with a non-forking extension being a fils âıné (eldest son), a term
which Harnik and Harrington later translated to heir [HH84]. These notions
were first introduced by Lascar [Las73; Las75], and subsequently characterized
in greater generality by Poizat [Poi77].

Definition 4.2.6. Let p be a type over a model M |= T , and let q ∈ S(B) be
an extension of p to some B ⊃M .

1. The type q is called a heir of p if, for every LM -formula φ(x, y) such that
φ(x, b) ∈ q for some b ∈ B, there exists m ∈M with φ(x,m) ∈ p.

2. The type q is called a coheir of p if q is finitely satisfiable in M.

Heirs, coheirs, and definable type extensions all extend types to larger sets
while maintaining the essential properties of the original type without adding
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significant new information. Lascar and Poizat showed that, in stable theories,
these extensions are equivalent and correspond to non-forking extensions [LP79].

Theorem 4.2.7. Let T be a stable theory, p a type over a model M, and A
an extension of M . Then p has a unique extension q ∈ S(A) that satisfies the
following equivalent properties: q does not fork over M , q is definable over M ,
q is an heir of p, and q is a coheir of p.

The approach of the French school significantly enhanced the accessibility of
forking, fostering broader engagement with stability theory. A notable example
is Pillay’s An Introduction to Stability Theory [Pil83], published in 1983, which
was framed in these terms. This broader understanding, in turn, propelled
advancements in specific areas of geometric model theory, such as the model
theory of modules [Zie84] and the model theory of groups of finite Morley rank
[Che79].

4.3 Uncountable Spectra

Shelah’s work on the stability hierarchy and his use of forking to assign di-
mensions to regular types were the stepping stones of his greater aim: the Clas-
sification Program. This ambitious program was originally motivated by what is
perhaps the most influential of Morley’s questions.3 In the 1960s, Robert Vaught
highlighted the importance of the countable spectrum function I(T,ℵ0), which
counts the number of non-isomorphic countable models of a theory T . Morley
expanded this by looking at the uncountable spectrum function I(T, κ), which
counts the non-isomorphic models of T for a given uncountable cardinality κ.
Morley conjectured that it is non-decreasing.

Conjecture 4.3.1 (Morley’s Conjecture). Let T be a complete first-order the-
ory, and let κ and κ+ be uncountable cardinals with κ+ ≥ κ. Then I(T, κ+) ≥
I(T, κ).

Shelah’s first step toward this problem was proving that for any unstable the-
ory T , the number of models I(T, κ) = 2κ for every uncountable κ (Theorem
4.1.6). For Shelah, this distinction represented a crucial division between good
theories, which have relatively few models of the same cardinality, and bad the-
ories, which have many. This division led him to reformulate Morley’s question
into a broader classification program centered on the number of (non-isomorphic)
models a theory can have. In 1978, Shelah published his landmark book Clas-
sification Theory and the Number of Nonisomorphic Models [She78], which was
later expanded in a second edition in 1990 [She90]. Most results related to the
classification program are found in these works. Shelah outlined the program’s
goals as follows:

“The basic thesis of the Classification Program is that reasonable
families of classes of mathematical structures should have natural
dividing lines. Here a dividing line means a partition into low, an-

3 The conjecture is listed as Problem 19 in Friedman’s 1975 work [Fri75], where it is credited
to Morley; however, it appears that Morley never formally published it.
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alyzable, tame classes on the one hand, and high, complicated, wild
classes on the other. These partitions will generate a tameness hier-
archy. For each such partition, if the class is on the tame side one
should have useful structural analyses applying to all structures in
the class, while if the class is on the wild side one should have strong
evidence of chaotic behavior (set theoretic complexity). These re-
sults should be complementary, proving that the dividing lines are
not merely sufficient conditions for being low complexity, or sufficient
conditions for being high complexity.” [She12]

Shelah’s classification program had two intertwined goals, first, to classify
first-order theories, and second, to classify the mathematical structures that
these theories describe.

The first goal is to classify theories by distinguishing between wild theories,
also referred to as “non-structures”, and tame theories, sometimes called “struc-
tures”. This requires identifying dividing lines—specific properties of a theory
that, when present or absent, lead to significant structural outcomes. If a the-
ory has certain undesirable features, it is categorized as non-structural, meaning
its models are chaotic, numerous, and hard to differentiate from one another.
On the other hand, when these problematic features are not present, the the-
ory is considered to have a structure theory, enabling a more systematic and
constructive analysis. In such cases, theories have relatively few non-isomorphic
models.4

The second goal is to classify the models of tame theories through a system
of invariants. These invariants are based on the forking dimensions of specific
systems of regular types. Typically, they are arranged in a tree-like structure,
representing the interactions between various parts of the model, with each part
having its own dimension. Strongly minimal theories are the simplest example,
where a single dimension provides complete control over the models.

In 1982, Shelah published a paper with the title Why Am I So Happy? [She82]
celebrating the success of the classification program with the formulation of the
Main Gap Theorem, which established his long-sought division between between
tame and wild theories. As Hodges noted

“He had just brought to a successful conclusion a line of research
which had cost him fourteen years of intensive work and nearly a
hundred published books and papers. During this work, he estab-
lished a new range of questions about mathematics with implications
extending far beyond mathematical logic.” [Hod87]

The Main Gap Theorem essentially states that a theory either has the maxi-
mum possible number of models in every uncountable cardinality or has a struc-
ture theory, revealing a surprising regularity in the landscape of countable theo-

4 Shelah consistently highlighted that having many non-isomorphic models indicates non-
structure. However, scholars like Button and Walsh argue that he provides limited reason-
ing for linking structure theory with classifiability in a straightforward sense. They suggest
stronger criteria, like using topological measures of complexity, to assess classifiability [BW18].
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ries. Moreover, the two scenarios described by the theorem can be distinguished
purely through model-theoretic properties of T , without needing to count the
models themselves. Following the exposition by Button and Walsh [BW18], the
theorem, as stated in 1985 [She85], is as follows:

Theorem 4.3.2 (Main Gap Theorem). Let T be a complete theory in a countable
language. Then exactly one of the following holds:

1. I(T, κ) = 2κ for all uncountable cardinals κ.

2. I(T,ℵγ) ≤ ℶω(max(|γ|, ω)), and T has a structure theory with countable
depth.5

The name “Main Gap” refers to the gap between ℶω(max(|γ|, ω)) and 2ℵγ .
The theorem asserts that no theory T has a number of models of size κ between
these two quantities. Depending on γ, there may be no gap, but generally,
ℶω(max(|γ|, ω)) grows much more slowly than 2ℵγ .

The “structure theory with countable depth” characterising the tame case,
where I(T,ℵγ) ≤ ℶω(max(|γ|, ω)), is described using cardinal invariants Invα.
These invariants reflect the fundamental building blocks of models and the meth-
ods for constructing models from them. Shelah provided a recursive definition:

Definition 4.3.3. For an infinite cardinal κ and an ordinal α:

1. Inv0(κ) = {λ | λ ≤ κ}.

2. Invα+1(κ) consists of sequences of length less than or equal to the contin-
uum, where each element is a function f : Invα(κ) → {λ | λ ≤ κ}.

3. For limit ordinals α, Invα(κ) =
⋃

β<α Invβ(κ).

Finally, Invα is the union of Invα(λ) as λ ranges over all infinite cardinals.

Intuitively, α represents the depth of the construction process for these invari-
ants, while κ corresponds to the cardinality of the models. Using these invariants,
Shelah defined what it means for a theory to have a structure theory:

Definition 4.3.4. A theory T has a structure theory of depth α if there exists
a function ι from the set of models of T to Invα such that:

1. For any model M of size κ, ι(M) ∈ Invα(κ).

2. For any models M,N of T , M ∼= N if and only if ι(M) = ι(N).

Finally, T has a structure theory if there is an α such that T has a structure
theory of depth α. In this case, the theory is called shallow ; otherwise, if there
is no such α, the theory is called deep.

The idea behind Shelah’s structure theory is that the regular types realized
in a model provide the skeleton of that model. The dimensions of these regular
types give rise to cardinal invariants that classify models up to isomorphism.
Thus, the Main Gap Theorem essentially shows that regular types are sufficient
to control the structure of a model.

5 In this case, κ = ℵγ , where ℵγ represents the γ-th infinite cardinal, since the bound depends
on the γ defining κ.
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The notion of depth arises as a dividing line because its absence (shallowness)
leads to significant structural consequences and a well-behaved structure theory.
Meanwhile, its presence leads to the maximum number of models. While Shelah’s
program began by observing that unstable theories have the maximum number
of models, stability itself is not strictly a dividing line6 as some stable theories
also have the maximum number of models. The dividing line within the stability
hierarchy is superstability.7

In the classical versions of the Main Gap Theorem, two other dividing lines
come into play, the dimensional order property and the omitting types order
property.8 When combined with shallowness and superstability, these lead to an
even stronger structure theory.

Theorem 4.3.5 (Main Gap Theorem). Let T be a countable, complete first-
order theory. If T is superstable and lacks the omitting types order property or
the dimensional order property, and is shallow, then each model of cardinality
λ can be decomposed into countable models indexed by a tree of countable height
and width λ. Thus, for any ordinal α > 0, I(T,ℵγ) < ℶδ(|α|) (for a countable
ordinal δ depending on T ); otherwise, I(T,ℵγ) = 2κα.

Bradd Hart, Ehud Hrushovski, and Michael C. Laskowski summarised this
result:

“Shelah identified several dividing lines among complete theories,
which, although defined without reference to uncountable objects,
play a crucial role in distinguishing between different classes of un-
countable models. On one side of these dividing lines, for theories in
the non-structure category, Shelah demonstrated that their models
embed a certain amount of set theory. As a result, the spectrum of
such theories is maximal, meaning I(T, κ) = 2κ for all uncountable
κ. This is seen as a negative feature, as it prevents the existence of
a reasonable structure theorem for the class of models of the theory.

Conversely, for theories on the structure side of these dividing lines,
their models can be associated with a system of combinatorial ge-
ometries. The isomorphism type of a model of such a theory is de-
termined by local information, specifically the behavior of countable
substructures, along with numerical invariants such as dimensions
for the corresponding geometries. This implies that the uncountable
spectrum of such a theory cannot be maximal. Therefore, the un-
countable spectrum of a complete theory in a countable language is
not maximal if and only if every model of the theory can be described,

6 Different authors use this term in varying ways. For Baldwin [Bal88b], a property is a
“dividing line” if both it and its complement are virtuous, i.e., they impact the understanding
of the models of T . This impact is, however, somewhat relative, and indeed many authors
now employ this notion more broadly.

7 One might consider ω-stability as a potential dividing line. While ω-stability enables strong
structural theorems through the construction of prime models over sets, it is not an effective
dividing line because many non-ω-stable theories have relatively few models.

8 For a detailed definition of these properties, see [Bal88b].
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up to isomorphism, by a well-founded, independent tree of countable
substructures.” [HHL00]

Returning to Morley’s conjecture, Shelah had bounded the uncountable spec-
tra, but the conjecture itself remained partly unresolved. In 2000, Hart, Hrushovski,
and Laskowski provided a complete solution. They introduced three new divid-
ing lines, the first two measuring how far a theory is from being ω-stable (or
totally transcendental), while the third refined the distinction between different
types of spectra. When combined with Shelah’s divisions, these lines fully char-
acterized the uncountable spectra of all complete first-order theories, effectively
determining I(T, κ) for any uncountable cardinal κ = ℵγ .

Their classification showed that spectrum functions are either maximal or fall
into one of twelve well-understood forms. At one extreme, the constant func-
tion 1 represents uncountably categorical theories; at the other, 2ℵγ represents
maximal complexity. Between these extremes lie intermediate forms, such as
min(2ℵγ ,ℶα+1(|γ + ω|)), where α represents the depth of the decomposing tree
and |γ + ω| the number of cardinals below ℵγ , indicating the possible dimen-
sions of a component. For example, a theory with this spectrum function might
include equivalence relations Eβ for each β, where every Eθ class is a union of
infinitely many Eβ classes, and each E0 class is infinite.

By proving that each of these spectrum functions is non-decreasing, Hart,
Hrushovski, and Laskowski fully answered Morley’s conjecture regarding un-
countable cardinalities. However, the problem for countable cardinalities re-
mains unsolved. In particular, Vaught’s conjecture asking whether a countable
first-order theory can have exactly ℵ1 countable models (see Conjecture 3.3.5),
is still the only unanswered problem regarding the possible values of I(T, κ) for
any infinite cardinal κ.
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5 Classification Beyond Stability

When Shelah began developing classification theory, the test question was
counting the possible number of models. However, the most profound progress
emerged from identifying dividing lines that provided deeper insights into well-
behaved theories, with stable theories being central. There was a widespread
belief that the techniques and machinery applied only within this narrow scope,
and for nearly two decades, pure model theory largely remained confined to this
stable framework. Yet, many other notions of well-behaved theories, some of
them arising from Shelah’s earliest works, have recently come to light.

In 1971 [She71b], while establishing that every unstable theory exhibits the
order property (OP), Shelah introduced two weaker properties: the strict order
property (sOP)1 and the independence property (IP) . These properties, like OP,
are syntactic conditions for a single formula that lead to the maximal number
of models in each cardinality.

Definition 5.0.1. 1. A formula φ(x, y) has the strict order property (sOP)
if there are (ai)i<ω such that ⊢ ∃x (φ(x, aj) ∧ ¬φ(x, ai)) ⇐⇒ i < j. A
theory is NsOP if no formula has the strict order property.

2. A formula φ(x, y) has the independence property (IP) in a model M if for
every m, there are {ai : i < m} and {bX : X ⊆ m} such that φ(ai, bX)
if and only if i ∈ X. A theory is NIP (dependent) if no formula has the
independence property.

Shelah demonstrated that every unstable theory must exhibit at least one of
these two syntactic conditions [She71b]. Therefore, if a theory possesses nei-
ther, it is stable. Consequently, NIP and NsOP theories emerge as two natural,
orthogonal generalizations of stability within the realm of unstable structures.

Theorem 5.0.2. A theory T is stable if and only if it is NsOP and NIP.

Interest in these classes of theories grew substantially throughout the 1980s
and 1990s. Major progress came from studying simple theories, which belong to
the NsOP class, and o-minimal theories, which fall under the NIP class. These
classes have proven valuable not only for their robust structural properties but
also for their remarkable applications across various fields of mathematics. In
1998, two years after their work on simple theories, Kim and Pillay reflected on
this growing momentum:

“The question arises, in this post-classification theory period, what,
if anything, is the aim or final purpose of ‘pure’ model theory? [...]
Many of the notions that emerged from classification theory have
found meaning and implications in various mathematical contexts,

1 The strict order property is denoted as sOP to distinguish it from the strong order property,
denoted SOP. This notation follows Conant [Con13].
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such as number theory and differential equations. The generalization
of these notions outside the context of stable theories is of great
importance.

Let us mention some general themes that could inform future di-
rections in model theory. One is dimension theory, and another
is the search for general notions of independence. [...] One more
theme is the classification of first-order theories. Note that arith-
metic (the theory of the ring of integers, or the field of rationals) is,
in all possible senses, ‘wild’, although the search for an understanding
of it drives much of mathematics. It is interesting that the auxiliary
structures which mathematicians have used, or even invented, to help
understand arithmetic—such as the local fields R, Qp, and the finite
fields Fq—are key unstable structures that support dimension theo-
ries, which model theorists are currently generalizing.” [KP98]

The themes Kim and Pillay highlighted have become central to the past 30
years of model theory. By extending many of the tools developed for stable the-
ories, numerous dividing lines have been established within the NIP and NsOP
classes, consolidating a field now known as “Neostability Theory”.2

Thus, Neostability Theory arose from the following Map of the Universe, fo-
cusing, though not restricted, on the top-left and bottom-right quadrants.

Figure 4: Third Building Block of the Map of the Universe.

2 Several BIRS meetings under the title “Neostability Theory” took place in 2009, 2012, 2015,
2018, and 2023.
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It is worth noting that arithmetic exhibits both the strict order property and
the independence property, placing it in the top-right totally unstable quadrant.
As Baldwin suggests, this may help explain why much of modern algebraic num-
ber theory doesn’t take place directly in first-order Peano arithmetic. Instead,
more tame auxiliary structures, such as algebraically closed or valued fields, serve
as the framework for proving number-theoretic results [Bal18].

5.1 Simple Theories

Simple theories stem from Shelah’s 1978 work, Classification Theory, where,
while investigating stable theories, he identified local character (see Theorem
4.2.4) as a key property of non-forking independence. In 1980, Shelah formalized
the definition of simple theories in Simple Unstable Theories [She80], defining
them as those where local character holds:

Definition 5.1.1. A theory T is simple if, for all sets B and complete types p
in Sn(B), there exists A ⊆ B such that |A| ≤ |T | and p does not fork over A.3

From this definition, the simplicity of the random graph, which is the proto-
typical example of a simple theory, can be derived. The theory of the random
graph is axiomatized as follows: for all distinct x1, . . . , xn, y1, . . . , yn, there exists
z such that R(z, xi) for i = 1, . . . , n and ¬R(z, yi) for all i = 1, . . . , n. In this

theory, forking is characterized by the condition A |⌣
f

C

B ⇐⇒ A ∩ B ⊆ C.

Using this characterization, it can be shown that any complete 1-type does not
fork over a finite set, thereby confirming that the random graph is simple.

In the same paper, Shelah provided several equivalent definitions of simplicity,
the most notable being based on a combinatorial property of formulas known as
the tree property.

Definition 5.1.2. The formula φ(x; y) has the tree property (TP) if there is
k < ω and a tree of tuples (aη)η∈ω<ω in M such that

1. for all η ∈ ωω, {φ(x; aη|α) : α < ω} is consistent,

2. for all η ∈ ω<ω, {φ(x; aη⌢⟨i⟩) : i < ω} is k-inconsistent.

A complete theory T is simple (or NTP) if no formula has the tree property.

Shelah proved that stable theories do not have the tree property.4 Therefore,
all stable theories are simple. Furthermore, since the strict order property implies
the tree property, simple unstable theories do not have the strict order property
and thus belong to the NsOP class.

Shelah observed that the breakdown of local character occurs in one of two
ways, depending on whether the tree property manifests as TP1 (the tree prop-
erty of the first kind) or TP2 (the tree property of the second kind). These
represent opposite extremes, based on the behavior of tuples aη and aν for in-

3 As is often the case with such properties, it suffices to consider complete 1-types.
4 Shelah showed that stability is equivalent to a stronger concept called NBTP, which means
no formula exhibits the binary order property [She71b].
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comparable pairs η and ν that are not siblings. TP1 requires that all such pairs
are inconsistent, while TP2 requires that all such pairs are consistent. This dis-
tinction gives rise to two classes of theories: NTP1 (no formula has TP1) and
NTP2 (no formula has TP2).

Definition 5.1.3. 1. The formula φ(x; y) has the tree property of the first
kind (TP1) if there is a tree of tuples (aη)η∈ω<ω in M such that

• for all η ∈ ωω, {φ(x; aη|α) : α < ω} is consistent,

• for all η ⊥ ν in ω<ω, {φ(x; aη), φ(x; aν)} is inconsistent.

2. The formula φ(x; y) has the tree property of the second kind (TP2) if there
is a k < ω and an array (aα,i)α<ω,i<ω in M such that

• for all functions f : ω → ω, {φ(x; aα,f(α)) : α < ω} is consistent,

• for all α, {φ(x; aα,i) : i < ω} is k-inconsistent.

T has one of the above properties if some formula does.

Shelah established that a theory has the tree property if and only if it exhibits
either TP1 or TP2. This can be restated as:

Theorem 5.1.4. A theory T is simple (NTP) if and only if it has NTP1 and
NTP2.

Building on the notion of local character, Shelah sought to extend key prop-
erties from stable to simple theories. Although he succeeded in proving the
extension axiom, symmetry and transitivity eluded him (see Theorem 4.2.4).
Additionally, Lascar and Poizat’s notions of heir and coheir were unsuccessful,
as types in simple theories are generally not definable. As a result, interest
in simple theories waned in the 1990s. However, simple-like behavior began to
emerge in certain unstable structures, driven by algebraic questions in geometric
model theory [CH99]. Several authors demonstrated that pseudo-finite fields and
ACFA are simple, which later played an important role in Hrushovski’s proof of
the Manin-Mumford conjecture [CDM92; Hru93; Hru01].

Inspired by these discoveries, Byunghan Kim revisited simple theories in 1996.
Together with Pillay, they quickly developed a comprehensive understanding
of simple theories, closely tied to the concept of forking. To properly explain
their results, it is necessary to introduce the notion of a Morley sequence–an
indiscernible sequence tied to a specific type.

Definition 5.1.5. Let (I,<) be an ordered set, (ai : i ∈ I) be a sequence
of distinct elements of M , and A a set of parameters. A sequence (ai : i ∈
I) is indiscernibles over A, or A-indiscernibles if if for every n ∈ ω, and for
every set of indices i0 < · · · < in and j0 < · · · < jn, the following holds:
tp(ai0 , ai1 , . . . , ain/A) = tp(aj0 , aj1 , . . . , ajn/A).5

Definition 5.1.6. Let p be a complete type over A. A Morley sequence in p of
length α, is an A-indiscernible sequence (bi : i < α) of realizations of p such that
tp(bi/A ∪ {bj : j < i}) does not fork over A for each i < α.

5 The original definition (see Definition 3.2.2) can be recovered as ∅-indiscernible.
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The central result of Kim’s 1996 paper is an equivalence between dividing
and Morley sequences. However, it built upon Shelah’s well-known characteri-
zation of dividing in terms of indiscernibles [She78], which states that a formula
φ(x, b) divides over A if there exists an A-indiscernible sequence (bi : i < ω)
starting with b, such that (φ(x, bi) : i < ω) is inconsistent. Kim’s contribu-
tion was to transform the existential quantifier in this definition “there exists
an A-indiscernible sequence such that...” into a universal one “for every Morley
sequence over A...” [Kim98]. This result is now known as Kim’s Lemma:

Theorem 5.1.7 (Kim’s Lemma). Let T be simple, let φ(x, b) be a formula, and
A a set of parameters. Then the following are equivalent:

1. The formula φ(x, b) divides over A,

2. There is Morley sequence (bi : i < ω) in tp(b/A), such that {φ(x, bi) : i <
ω} is inconsistent,

3. For any Morley sequence (bi : i < ω) in tp(b/A), {φ(x, bi) : i < ω} is
inconsistent,

4. The formula φ(x, b) forks over A.

From this lemma, Kim concluded that in simple theories, as in stable theories,
forking and dividing are equivalent. Additionally, he derived the long-sought
result that forking in simple theories satisfies both transitivity and symmetry.
To illustrate the latter, consider the case where tp(b/A∪{a}) does not fork over
A. Using local character and standard techniques to obtain indiscernibles, one
can construct a sequence (bi : i < ω) that is indiscernible over A ∪ {a}, with
b0 = b, and such that tp(bi/A∪{a}) does not fork over A for all i. This sequence
is a Morley sequence in tp(b/A). Additionally, for any formula φ(x, y) over A
that holds for (a, b), the element a satisfies φ(x, bi) for all i. By the equivalence
of the third and fourth properties in Kim’s Lemma, tp(a/A ∪ {b}) does not
fork over A. Later, Kim demonstrated the equivalence between simplicity and
the symmetry of forking, establishing that Kim’s Lemma characterizes simple
theories [Kim01].

With this result, the only significant aspect of forking in stable theories that
had not been extended to simple theories was stationarity over models. How-
ever, stationarity could not hold in simple theories, as it would lead to their
equivalence with stable theories (see Theorem 4.2.4). Instead, Kim and Pil-
lay sought an appropriate analogue of stationarity for simple theories. On his
work on pseudo-finite fields, Hrushovski had identified a crucial property of in-
dependence [HP94], and building on this foundation, in 1997, Kim and Pillay
formulated the Independence Theorem for simple theories [KP97].

Theorem 5.1.8 (The Independence Theorem). Let T be a simple, then T sat-
isfies the independence theorem over a models, which is as follows. Let M be
a model and p a complete type over M. Let A ⊃ M and B ⊃ M be such that
A is independent from B over M (that is, tp(A/B) does not fork over M). Let
p1 ∈ S(A) and p2 ∈ S(B) be non-forking extensions of p(x). Then p1 and p2
have a common non-forking extension q(x) over A ∪B.
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For stable theories, this property is a direct consequence of stationarity over
models, as the unique non-forking extension of p over A∪B must extend both p1
and p2. In fact, stationarity over models, along with local character, extension,
symmetry, and transitivity, is sufficient to characterize stable theories. Kim
and Pillay established a parallel result for simple theories [KP97], stating “the
Independence Theorem is to simple theories what the stationarity of types over
models is to stable theories” [KP97].

Theorem 5.1.9 (Kim-Pillay). Suppose that T supports some notion of indepen-
dence |⌣

′
satisfying properties of local character, extension, symmetry, transi-

tivity and the independence theorem over a model. Then T must be simple, and
this notion of independence must coincide with non-forking.

Recognising the close relationship between simple and stable theories, Kim
and Pillay wrote in the introduction to their 1997 paper:

“It should be clear from the material in this paper that the study of
simple theories is essentially just the study of forking in full general-
ity, and that stable theories should be viewed just as a particularly
nice class of simple theories.” [KP97]

As the characterisation of simple theories, the Kim-Pillay theorem is a pivotal
result in the characterization of simple theories, offering significant practical ap-
plications. To determine whether a theory is simple, instead of verifying that
no formula φ(x, y) has the tree property, which requires a deep understanding
of definable sets, one can instead identify a ternary relation |⌣ and show that
it satisfies the axioms of the Kim-Pillay theorem. While establishing the inde-
pendence theorem can be challenging, it is generally more feasible than proving
the absence of the tree property. Furthermore, applying the Kim-Pillay theorem
provides valuable insights into the independence relation, ensuring it coincides
with forking and can be expressed through formulas.

In addition to their work on simple theories, Kim and Pillay also defined su-
persimple theories, to name the theories which are both stable and superstable.
Their are defined analogously to simple theories, by strengthening local charac-
ter.

Definition 5.1.10. A theory T is supersimple if for all sets B and complete
types p in Sn(B), there exists a finite A ⊆ B such that p does not fork over A.
A stable, supersimple theory is called superstable.

Kim proved a result concerning the countable spectrum for supersimple the-
ories [Kim99], generalizing Lachlan’s result for superstable theories, which in
turn was a generalization of the corresponding result for ℵ1-categorical theories
by Baldwin and Lachlan (see Theorem 3.5.9).

Theorem 5.1.11. If T is a supersimple, not ω-categorical theory, I(T,ℵ0) = ℵ0.

Theorem 5.1.12. If T is a superstable, not ω-categorical theory, I(T,ℵ0) = ℵ0.

A deeper exploration of supersimplicity involves various ranks that offer stronger,
equivalent characterizations of local character. One such rank is the Lascar rank.
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The Lascar rank of a type tp(a/B) measures the length of the longest forking
chain starting with tp(a/B). In superstable theories, the Lascar rank satisfies
U(a/B) <∞ for every n. Indeed this is also a sufficient condition. For example,
in the theory of the random graph, the formula x = x has a Lascar rank of 1,
and hence the random graph is supersimple.

By collecting the results from this section, a more refined classification appears
on the Map of the Universe. Most notably, simplicity emerges as a generalization
of stability. Due to the orthogonality between NsOP and NIP, stable theories
are often viewed as the intersection of NIP with simplicity or NTP1. Although
certain equivalences, such as NIP implying NTP2 or NTP1 implying NsOP, were
not explicitly stated, they follow directly from the definitions and are found in
several works such as Shelah’s [She78; She80]. It is also interesting to note that a
suitable definition of ω-simplicity, or total simplicity, has not yet been proposed
[Wag02]. The next properties to be investigated will offer a finer subdivision
within the categories of simple and NsOP theories.

Figure 5: Fourth Building Block of the Map of the Universe.

5.2 NsOP Theories

In 1996’s Toward Classifying Unstable Theories Shelah aimed to explore new
instances of instability while focusing on theories that do not have the strict
order property (NsOP). When considering the strict order property in terms
of saturation, several weaker properties naturally emerge. A theory T is said
to have the strict order property (SOP) if there exists a formula φ(x, y) such
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that, in every ℵ0-saturated model of T , φ(x, y) defines a partial order on Mn

containing an infinite chain. This concept led Shelah to introduce a sequence
of weaker properties, known as the n-strong order property (SOPn), which he
defined as follows [She96]:

Definition 5.2.1. Fix n ≥ 3 and a formula φ(x, y) with |x| = |y|. Then:

• Then φ(x, y) has the n-strong order property (SOPn) if the set {φ(x1, x2),
. . . , φ(xn−1, xn), φ(xn, x1)} is inconsistent, and there is a sequence (ai)i<ω

such that φ(ai, aj) holds for all i < j. A theory is NSOPn if no formula
has SOPn.

• Then φ(x, y) has the strong order property (SOP) if it has the n-strong
order property for all n. A theory is NSOP if no formula has SOP.

• A theory had the no finitary strong order property (NFSOP) if no formula
has the strong order property with |x| finite.

Intuitively, a theory T has the n-strong order property, SOPn, for any (n ≥ 3)
if there is a formula φ(x, y) that defines a directed graph with an infinite chain
but no cycle of length ≤ n. By extending this to all n, a theory T has the
strong order property, SOP, if a type p(x, y) defines a directed graph that has an
infinite chain but no cycle. Shelah established a natural hierarchy among these
properties:

Theorem 5.2.2. The following implications hold: OP ⇒ sOP ⇒ FSOP ⇒
SOP ⇒ · · · ⇒ SOPn+1 ⇒ SOP4 ⇒ SOP3

None of these implications are reversible, except that T has SOP if and only
if it has SOPn for all n ≥ 3.

Shelah originally restricted his definition of the n-strong order property to
n ≥ 3 because extending it to n = 1 or n = 2 would result in trivial properties.
Specifically, SOP1, using the formula x ̸= y, would merely indicate the existence
of an infinite model, while SOP2 would reduce to the order property (OP). To
address this, Mirna Džamonja and Shelah proposed alternative definitions for
SOP1 and SOP2 in 2004, using tree structures to frame these concepts in a
non-trivial way.

Definition 5.2.3. 1. The formula φ(x; y) has SOP2 if there is a collection of
tuples (aη)η∈2<ω so that.

• For all η ∈ 2ω, {φ(x; aη↾α) : α < ω} is consistent.

• If η, ν ∈ 2<ω and η ⊥ ν, then {φ(x; aη), φ(x; aν)} is inconsistent.

2. A formula φ(x; y) exemplifies SOP1 if and only if there are (aη)η∈2<ω so
that

• For all η ∈ 2ω, {φ(x; aη↾n) : n < ω} is consistent,

• If η⌢0 ⊴ ν ∈ 2<ω, then {φ(x; aη⌢1), φ(x; aν)} is inconsistent.

T has one of the above properties if some formula does.

Džamonja and Shelah demonstrated that these properties fall into a specific
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hierarchy. The implication from the first strong order property, SOP1, to the
tree property tp was proven to be strict, showing that not every theory with
SOP1 is simple. However, whether the implications between SOP1, SOP2, and
SOP3 are strict remained an open question.

Theorem 5.2.4. The implication relations among the notions for T are as fol-
lows: SOP3 ⇒ SOP2( ⇐⇒ TP1) ⇒ SOP1 ⇒ TP (simple).

To deepen the understanding of these properties, Byunghan Kim and Hyeung-
Joon Kim introduced two infinite families of properties in 2011: k-TP1 and
weak k-TP1 for k ≥ 2 [KK11]. Initially, they established the following chain of
implications: TP1 ⇐⇒ k-TP1 ⇐⇒ weak 2-TP1 ⇐⇒ weak 3-TP1 ⇒ · · · ⇒
SOP1. However, in their later work On Model-Theoretic Tree Properties, Artem
Chernikov and Nicholas Ramsey demonstrated that this hierarchy collapses and
that all these properties are, in fact, equivalent to TP1 [CR16].

In that same work, Chernikov and Ramsey characterized NSOP1 theories
through a weak independence theorem for invariant types, extending one di-
rection of the Kim-Pillay theorem. Through this characterization, many alge-
braic theories naturally emerged as NSOP1. Building on earlier work by Chatzi-
dakis on ω-free pseudo-algebraically closed fields and by Granger on infinite-
dimensional vector spaces with a generic bilinear form, Chernikov and Ramsey
demonstrated that both of these theories are NSOP1 [Gra99; Cha02].

These advancements marked significant progress in understanding NSOP1 the-
ories. However, the next challenge was to prove the counter part of the the
Kim-Pillay theorem, creating a full theory of independence for NSOP1 theo-
ries. In 2017, Itay Kaplan and Nicholas Ramsey addressed this with their work
On Kim-Independence [KR17]. They introduced a new notion, Kim-dividing,6

which states that a formula φ(x; b) Kim-divides over a model M if it divides
along a Morley sequence for a global M -invariant type extending tp(b/M). Ka-
plan and Ramsey demonstrated that Kim-dividing serves as a natural extension
of dividing to NSOP1 theories.

Much like Kim’s 1996 paper, the centerpiece of Kaplan and Ramsey’s work
was a generalization of Kim’s lemma to NSOP1 theories. They proved that
in NSOP1 theories, forking is not witnessed by generic sequences, unless it is
simple. Consequently, forking and dividing do not always coincide in NSOP1

theories. Nevertheless, their work, along with earlier results by Chernikov and
Ramsey, paved the way for a Kim-Pillay style characterization of independence
in NSOP1 theories. This characterization is distinct from the one in simple
theories, particularly as it does not involve the local character property, which
would otherwise imply simplicity. Nevertheless, their Kim’s Lemma, along with
earlier results by Chernikov and Ramsey, paved the way for a Kim-Pillay style
characterization of independence in NSOP1 theories. This characterization is
framed in terms of independence.

6 Kim-dividing was named after Kim, who had suggested defining an independence relation
based on dividing witnessed by every relevant Morley sequence [Kim09].
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Theorem 5.2.5. Let |⌣
′

be an independence relation on small subsets of the
monster model M |= T , invariant under Aut(M), and satisfying the following
properties for any arbitrary M |= T and tuples from M :

1. Strong finite character: If a ̸ |⌣
′
Mb, then there exists a formula φ(x, b,m) ∈

tp(a/bM) such that for any a′ |= φ(x, b,m), a′ ̸ |⌣
′
Mb.

2. Existence over models: For any M |= T , a |⌣
′
M M holds for any a.

3. Monotonicity: a ∪ a′ |⌣
′
M b ∪ b′ ⇒ a |⌣

′
M b.

4. Symmetry: a |⌣
′
M b ⇐⇒ b |⌣

′
M a.

5. Independence theorem for invariant types: If c0 |⌣
′
M c1, b0 |⌣

′
M c0, b1 |⌣

′
M

c1, and tp(b0/c0 ∪ M) = tp(b1/c0 ∪ M), then there exists b such that
tp(b/c1 ∪M) = tp(b1/c1 ∪M) and tp(b/c0 ∪M) = tp(b0/c0 ∪M).

Then T is NSOP1 and |⌣
′

strengthens |⌣
K

. If, moreover, |⌣
′

satisfies

6. Witnessing: if a ̸ |⌣
′
Mb is witnessed by φ(x; b) and (bi)i<ω is a Morley

sequence over M in a global M -invariant type extending tp(b/M), then
{φ(x; bi) : i < ω} is inconsistent.

then |⌣
′
= |⌣

K
over models, i.e., if M |= T , a |⌣M b if and only if a |⌣

K
M b.

The result above underscored the central role of Kim’s Lemma, but in show-
casing this, Kaplan and Ramsey built on the earlier work on a Kim’s Lemma for
NTP2 by Chernikov and Kaplan[CK11]. Chernikov and Kaplan demonstrated
that in an NTP2 theory, a formula φ(x; b) divides over a model M if and only if
it divides along Morley sequences for every M -invariant type extending tp(b/M)
[CK11]. From this, they derived the equivalence of forking and dividing over
models in NTP2 theories. This generalized form of Kim’s Lemma was shown to
characterize NTP2 theories in [Che14].

In the last years, the most remarkable result come by Scott Mutchnik who,
answering a question that had been open for many years, established the equiv-
alence of NSOP1 and NSOP2 [Mut23], thereby eliminating the dividing line
between the two.

These results can once again be depicted on the Map of the Universe. For the
infinitely many n-strong order properties, only the lower ones are shown as rep-
resentatives of their entire class. Additionally, the strong order property (NSOP)
is included in the hierarchy, though not explicitly illustrated (the outermost class
represents the strict order property, here denoted as NsOP). The classes of k-
TP1 and weak k-TP1 are omitted, as Chernikov and Ramsey demonstrated their
equivalence to TP1. After Mutchnik’s result, NSOP1 and NSOP2 collapse into
the same class, along with TP1, based on earlier work by Džamonja and Shelah.
However, whether NSOP3 and NSOP2 are equivalent remains an open question,
and their dividing line is shown as discontinuous.

Possible new dividing lines include NATP and NBTP. The Antichain Tree
Property (ATP) was recently introduced by Ahn and Kim [AK24], who proved
that ATP properly implies both SOP1 and TP2, meaning the class of NATP
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theories (those without ATP) contains both NSOP1 and NTP2 theories. On the
other hand, the Bizarre Tree Property (BTP) was introduced more recently by
Kruckman and Ramsey using a variant of Kim’s Lemma [KR24]. They showed
that the class of NBTP theories (those without BTP) similarly includes both
NTP2 and NSOP1. They established that NBTP implies NATP, but the reverse
implication remains an open question.

Figure 6: Fifth Building Block of the Map of the Universe.

5.3 O-Minimality

Among the various dividing lines in model theory, o-minimality stands out as
one of the oldest, tracing its origins back to Alfred Tarski’s work on the real
field [Tar31]. In his 1931 monograph, Tarski explored whether his results could
extend to Rexp, where exp denotes the real exponential function. In that same
work, he observed that the definable subsets of the real numbers are precisely
finite unions of intervals an points or, in other words, of semialgebraic sets (see
Theorem 2.2.7). This significant insight was largely overlooked until Lou van
den Dries revived it in the 1980s.

In 1982, while van den Dries did not resolve Tarski’s question regarding Rexp,
he recognized that adopting the properties of semialgebraic sets as axioms en-
abled him to derive many known characteristics of definable sets in higher di-
mensions [Dri84]. Building upon this idea, in 1986, Anand Pillay and Charles
Steinhorn introduced the concept of o-minimality [PS86]. In their paper Defin-
able Sets in Ordered Structures I, Pillay and Steinhorn provided a concise set of
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axioms that both characterized and generalized semialgebraic sets.

Definition 5.3.1. Let L be a language containing a binary relation <. An L-
structure M is said to be o-minimal if any definable subset of M is a a finite
union of points in M and intervals (a, b) where a ∈ M or a = −∞ and b ∈ M
or b = +∞. Moreover, M is sad to be strongly o-minimal if any N elementary
equivalent of M is o-minimal.

An L-theory T is said to be (strongly) o-minimal if every model of T is o-
minimal.

Initially, the term strongly o-minimal was used, paralleling the terminology of
strongly minimal theories. However, in a subsequent paper with Julia Knight,
Pillay and Steinhorn proved that any structure elementary equivalent to an o-
minimal structure is also o-minimal, implying that any o-minimal structure is
strongly o-minimal [KPS86]. Since then, the term has been shortened to o-
minimal both for structures and for theories. This finding was also crucial in
demonstrating that not only the real field but all real closed fields are o-minimal.

Pillay and Steinhorn developed the concept of o-minimality by extending ideas
from stability theory, particularly drawing from the notion of strongly minimal
structures (see Definition 3.5.4). They observed that, in strongly minimal L-
structures, every definable subset is either finite or cofinite, making the definable
sets as simple as possible given that L includes the symbol =, as it is always
assumed. Likewise, in L′-structures, where L′ also includes <, any Boolean
combination of intervals can be reduced to a finite union of intervals. Thus, they
defined a structure as o-minimal if its definable subsets are no more complex than
those necessarily arising from its linear ordering. Hence the term o-minimal,
short for order-minimal.

Knight, Pillay, and Steinhorn further showed that the similarities with strongly
minimal theories go beyond definitions. In both cases, definable sets can be in-
terpreted geometrically. In o-minimal structures, this leads to a generalization
of semialgebraic geometry, dealing with polynomial equations and inequalities
over R. In the strongly minimal case, it parallels classical algebraic geometry,
involving polynomial equations over C. Among the results that transfer from
the semialgebraic geometry to the setting of o-minimal structures, are the Mono-
tonicity Theorem and the Cell Decomposition Theorem for definable sets, which
generalizes the Cylindrical Algebraic Decomposition Theorem of semialgebraic
sets. These results were initially established by van den Dries for semialgebraic
sets [Dri84] and later extended to o-minimal structures by Pillay, Steinhorn, and
Knight [PS86; KPS86].

Theorem 5.3.2 (Monotonicity-Continuity Theorem). Let R be an o-minimal
expansion of the dense linear order (R,<). In particular, it is not assumed that
R carries a group or ring structure. Let f : R→ R be definable, meaning that its
graph is a definable subset. Then, there exist a1, . . . , an ∈ R with −∞ =: a0 <
a1 < · · · < an < an+1 := ∞ such that for every i ∈ {0, . . . , n}, the restriction
f |(ai,ai+1) is continuous and either constant or strictly monotone.
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Building on this, Pillay, Steinhorn and Knight considered a closure operator
analogous to the algebraic closure in strongly minimal theories (see Definition
3.5.5). The definable closure of a set A ⊆ R, denoted dcl(A), consists of all ele-
ments b ∈ R such that {b} is definable over A [KPS86]. Using the Monotonicity-
Continuity Theorem, they demonstrated that (R,dcl) forms a pregeometry, es-
tablishing a well-defined notion of dimension on particularly “well-behaved” de-
finable subsets of Rn, known as cells.

Definition 5.3.3. Let R be an o-minimal expansion of the dense linear order
(R,<). A cylindrical definable cell decomposition (cdcd) C of Rn is a finite
partition of Rn into definable sets (ci)i∈I such that:

• If n = 1, then there are a1 < · · · < aℓ ∈ R with C = {{ai} : i ∈ {1, . . . , ℓ}}∪
{(ai, ai+1) : i ∈ {0, . . . , ℓ}}

• If n > 1, there is a cdcd D of Rn−1 such that for each D ∈ D, there are con-
tinuous definable functions gD,1, . . . , gD,ℓD : D → R such that gD,1 < · · · <
gD,ℓD and C =

⋃
D∈D ({Γ(gi) | i ∈ [ℓD]} ∪ {(gi, gi+1) | i ∈ {0, . . . , ℓD}})

With the above notation, a set of the form (gi, gi+1) is called a band.

An element of C is called a cell. A cell in R is called a 1-cell if it is an interval,
and a 0-cell if it is a point. If C is a cdcd of Rn arising from a cdcd D in
Rn−1 as above, then a cell C ∈ C is called an (i1, . . . , in−1, 1)-cell if it is a band
over an (i1, . . . , in−1)-cell in D, or a (i1, . . . , in−1, 0)-cell if it is a graph over an
(i1, . . . , in−1)-cell in D. The dimension of an (i1, . . . , in)-cell is i1 + · · · + in. If
X ⊆ Rn is a finite union C1 ∪ · · · ∪ Cn of cells, then the dimension of X is
maxn

i=1 dim(Ci).

Pillay, Steinhorn, and Knight recognized that in an o-minimal structure, the
mere definability of cells does not always ensure desirable geometric properties.
To address this, they demonstrated that every cell C ⊆ Rn satisfies a stronger
property called definable connectedness. This result was key in establishing
the Cylindrical Definable Cell Decomposition for o-minimal structures. While
o-minimality provides insights into definable sets in one variable, this theorem
extends this understanding to definable sets in multiple variables. The theorem
comprises three fundamental results, all of which are closely interrelated in their
proofs.

Theorem 5.3.4. Let R be an o-minimal expansion of the dense linear order
(R,<).

1. Cell Decomposition (CDCDn): Let A1, . . . , Ak be definable subsets of Rn.
There is a cdcd of Rn such that each Ai is a union of cells. A cdcd of Rn

satisfying the property of the theorem will be called adapted to A1, . . . , Ak.

2. Uniform Finiteness (UFn): Let A ⊆ Rn be definable such that Ax = {y ∈
R ; (x, y) ∈ A} is finite for every x ∈ Rn−1. Then there exists k ∈ N such
that |Ax| ≤ k for every x ∈ Rn−1.

3. Piecewise Continuity (PCn): Let A be a definable subset of Rn and f :
A→ R a definable function. There is a cdcd of Rn adapted to A such that,
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for every cell C contained in A, the restriction f |C is continuous.

With this theorem, Pillay, Steinhorn, and Knight extended the notion of di-
mension from cells to any definable set in an o-minimal structure. The dimension
of a cell is defined inductively in a natural way and is then extended to all de-
finable sets A ⊆ Rn by defining dimA := max{dim(C) | C ⊆ A is a cell} for
nonempty sets, and dim(∅) = −∞. Although this definition of dimension relies
on the choice of a cylindrical definable cell decomposition (cdcd) adapted to A,
they proved that the resulting dimension is intrinsic to A and does not depend
on the particular cdcd used.

The geometric properties of o-minimal structures resonate with Alexander
Grothendieck’s concept of a “tame topology”. In his influential 1984 proposal,
the Esquisse d’un Programme [Gro97], Grothendieck proposed a new foundation
for topology and geometry that would avoid the problematic, counter-intuitive
examples often found in classical geometry. He aimed for a framework more
in line with geometric intuition, incorporating ideas like stratification, which
breaks sets into progressively simpler, lower-dimensional parts, as seen in the
moduli spaces. In the view of van den Dries, o-minimality can be regarded
as a realization of Grothendieck’s idea of tame topology through an axiomatic,
model-theoretic approach. Van den Dries, quoting Hrushovski, captures this
connection:

“Another significant influence is Grothendieck’s 1984 work Esquisse
d’un Programme, which presents an eloquent argument for devel-
oping tame topology (topologie modérée). Many suggestions from
sections 5 and 6 of his program bear a strong resemblance to cur-
rent o-minimal results. This is logical, as much of model theory
focuses on discovering and mapping out the ‘tame’ regions of math-
ematics, those areas where wild phenomena, like space-filling curves
and Gödel incompleteness, are either absent or under control. As
Hrushovski recently described: Model Theory = Geography of Tame
Mathematics.” [Dri99]

Beyond its foundational significance, o-minimality has, in recent decades, be-
come one of the most productive tools for applications of model theory [Hod00].
Perhaps the most renowned example is Alex Wilkie’s work in 1996 [Wil96].
Building on a geometric result by Khovanskii [Kho80], Wilkie proved that Rexp,
the real field with exponentiation, is model-complete and therefore o-minimal.
However, Tarski’s original question regarding the decidability of the real field
with exponentiation remains unsolved. This problem likely depends on achiev-
ing quantifier elimination, which is closely tied to a deep conjecture in number
theory known as Schanuel’s Conjecture. Nevertheless, Macintyre and Wilkie
showed that, assuming the real version of Schanuel’s Conjecture holds, Texp
would be decidable [MW96].

These results sparked a continuing study of o-minimal structures, which have
many connections with real algebraic geometry. The main theme of current re-
search is to include increasingly richer classes of functions and sets in o-minimal
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structures on R. In 1986, building on the work of  Lojasiewicz [ Loj65] and
Gabrielov [Gab68], van den Dries established the o-minimality of globally suban-
alytic sets, often denoted Ran [Dri86]. This culminated in the proof by Lou van
den Dries and Chris Miller that the structure Ran,exp is also o-minimal [DM94].
Along similar lines, Wilkie proved that the structure of the real field with Pfaf-
fian functions—which include, for instance, the exponential function—denoted
RPfaff , is o-minimal as well [Wil99].

More recently, and in a slightly different direction, a celebrated theorem from
2006 by Jonathan Pila and Alex Wilkie demonstrated that, excluding subsets
defined using only polynomial inequalities, definable subsets in an o-minimal
expansion of the real field have few rational points [PW06]. Following a strategy
first employed by Pila and Umberto Zannier to reprove the Manin-Mumford
conjecture [PZ08], various authors have used this o-minimal counting theorem
to solve significant open problems in Diophantine geometry. Notably, in 2021,
Pila, Ananth Shankar, and Jacob Tsimerman settled the André-Oort conjecture
regarding Shimura varieties [Pil+22].

These applications have gone hand-in-hand with significant advancements be-
yond o-minimality. In 2006, Miller introduced d-minimality, a generalization of
o-minimality where “points” are replaced by “discrete sets” [Mil05]. Another
important notion was introduced by Toffalori and Vozoris in 2009, known as
locally o-minimal structures. In these structures, for every a ∈ R and every
definable set X ⊆ R, there exists an interval I containing a such that X ∩ I
is a finite union of points and intervals [TV09]. Other notable classes of struc-
tures include weakly o-minimal structures [Dic87], quasi o-minimal structures
[BPW00], strongly locally o-minimal structures [TV09], and structures with o-
minimal open cores [DMS09]. These classes represent variations of o-minimality
that maintain a certain level of tameness.7

To position o-minimality within the Map of the Universe it is first necessary to
examine how it related to the other dividing lines among NIP theories. Hence,
this visualization will be postponed until these relationships are clarified, which
will be addressed in the next section.

5.4 NIP Theories

Theories without the independence property (NIP), which Shelah refers to
as dependent theories, generalize stable theories while allowing for an ordering.
Initially, this class received limited attention. However, over time, various struc-
tures were found to be unstable yet NIP, such as the field of p-adic numbers
Qp [Bél99] and ordered abelian groups [GS84]. Despite these discoveries, NIP
theories were not extensively studied as a distinct class until the development of
o-minimality, which brought forth numerous examples and techniques highlight-
ing their significance. Adler suggests that the importance of NIP theories lies

7 In the case of d-minimality, it is not a model-theoretic tameness notion, as there is a locally
o-minimal structure R that interprets first-order arithmetic [FM05; Hie22].
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in their ability to unify stability and o-minimality, two of the most influential
classes of theories:

“One could say that the main point about NIP is that it is a natu-
ral common generalization of stability and o-minimality. It appears
that stability theory takes much of its strength from the coincidence
of a nice combinatorial machinery and nice geometric notions. O-
minimal theories behave nicely from both points of view, but the
combinatorial and geometric notions do not coincide. NIP general-
izes the nice combinatorial aspects that are common to stable and
o-minimal theories.” [Adl08]

Interestingly, the same year that Shelah introduced the independence prop-
erty in model theory, Vladimir Vapnik and Alexey Chervonenkis developed the
concept of the VC dimension in statistical learning theory [VC71]. The VC di-
mension measures the complexity of a class of data sets and plays a crucial role
in understanding the capacity of statistical models [Vap99].

Definition 5.4.1. Let X be a set, and let S ⊆ P(X) be a family of subsets of X.
A subset A ⊆ X is said to be shattered by S if every subset of A can be obtained
by intersecting A with some member of S; that is, P(A) = {A ∩ S | S ∈ S}.

The VC-dimension of S is the maximum cardinality n ∈ ω such that there
exists a subset of X of size n that is shattered by S, or ∞ if S shatters finite
sets of arbitrarily large cardinality.

In model theory, the VC dimension can be interpreted by viewing formulas as
uniformly definable families of subsets of a model. Consider a formula φ(x; y),
where the free variables are partitioned into object variables x, ranging over
elements of the model, and parameter variables y, ranging over parameters from
the model. This allows us to associate φ with a family of definable sets Φ =
{φ(x; b) : b ∈M}, where the subsets of the model are defined by the formula as
y varies across the model M.

This connection between model theory and VC dimension was first recognized
by Laskowski, who in 1992 demonstrated that a complete first-order theory is
NIP, as defined by Shelah, if and only if, in each model, every definable family
of sets has finite VC dimension [Las92].

Theorem 5.4.2. A formula φ(x; y) has IP if and only if {φ(x; b) : b ∈ C} ⊆
P (C) has infinite VC-dimension.

Over time, this line of research has expanded. Efforts include establishing ex-
plicit bounds on the VC dimension for definable families in o-minimal structures
[KM97], and exploring related concepts such as VC density and VC minimal-
ity [Asc+16; GL13]. This research connects model theory to fields like learning
theory, computational geometry, and probability theory.

In pure model theory, the characterization of NIP theories often relies on
indiscernible sequences, as studied by Shelah and Poizat in the 1980s [She80;
Poi81]. Poizat, in particular, showed that determining whether a theory is NIP
can be done by examining formulas where the tuple of object variables consists
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of a single variable [Poi00].

Theorem 5.4.3. If all formulas in T of the form φ(x; y) with |x| = 1 are NIP,
then the theory T is NIP.

This criterion is particularly useful when one has a good understanding of
one-dimensional definable sets. For example, in an o-minimal theory, a formula
φ(x; y) with |x| = 1 defines a finite union of intervals and points. By compact-
ness, there is an integer n such that every instance of φ(x; b), for b ∈M , can be
expressed as a union of at most n intervals and points. Thus, the VC dimen-
sion of φ(x; y) satisfies VC(φ(x; y)) ≤ 2n, implying finiteness. Consequently,
o-minimal theories belong to the class of NIP theories.

A related area of research involves counting types in NIP theories. For any
theory T , it holds that κ ≤ gT (κ) ≤ 2κ for all cardinals κ ≥ |T |. Building
on Shelah’s work on the stability hierarchy, Keisler’s Classification Theorem
showed that the stability spectrum function for any countable theory T takes
one of six forms: κ, κ+ 2ℵ0 , κℵ0 , ded(κ), (ded(κ))ℵ0 , 2κ, where ded(κ)
is the supremum of the cardinalities of all linear orders containing a dense subset
of cardinality κ [Kei78]. Since κ < ded(κ) ≤ (ded(κ))ℵ0 ≤ 2κ for all infinite
cardinals κ, the Generalized Continuum Hypothesis implies a collapse of the last
three functions. As NIP theories include unstable ones for which gT (κ) = 2κ,
separating NIP from IP theories by counting types, as it is done for stable and
unstable theories, is not feasible without additional set-theoretic assumptions.
Under the assumption ded(κ) < 2κ, in [She78] Shelah proved the following:

Theorem 5.4.4. If T is NIP, then gT (κ) ≤ (ded(κ))ℵ0 . Conversely, if T has the
independence property (IP), then gT (κ) = 2κ.

The significance of this result lies in the fact that, in 1972, Mitchell had demon-
strated that for an appropriate κ, there exists an extension of the set-theoretic
universe in which ded(κ) < 2κ [Mit72]. In such an extension, a formula φ(x; y)
has the independence property if and only if gT (κ) = 2κ. Therefore, the pres-
ence of the independence property can always be detected by counting types,
although not necessarily in the standard model of ZFC.

Inspired by this insight, in 2012, Chernikov, Kaplan, and Shelah introduced
the non-forking spectrum as a generalization of the stability function, aiming to
identify finer dividing lines in unstable theories by also counting types. It is a
function of two cardinals κ and λ, representing the supremum of the possible
number of types over a model of size λ that do not fork over a submodel of size
κ. They succeeded in showing that the possible values a non-forking spectrum
can take are limited [CKS12].

One of the most remarkable subclasses of NIP theories emerged from Shelah’s
work in 2009 [She09]. Shelah introduced the concept of strongly dependent theo-
ries, which were meant to play a role in NIP theories similar to how superstability
strengthens stability. It is defined in terms of the the dp-rank:

Definition 5.4.5. Let (It : t ∈ X) be a family of sequences and A a set of
parameters. The sequences (It : t ∈ X) is said to be mutually indiscernible over
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A if for each t ∈ X, the sequence It is indiscernible over A ∪ I ̸=t.

Let p be a partial type over a set A, and let κ be a cardinal. The dp-rk(p,A) <
κ if for every family (It : t < κ) of mutually indiscernible sequences over A and
b |= p, there is t < κ such that It is indiscernible over A ∪ b.

The dp-rank serves as a measure of the complexity of types within a theory. In
any NIP theory, given a type p over a set A, there exists a cardinal κ such that
dp-rk(p,A) < κ. Notably, the converse holds as well, providing a characterization
of NIP theories in terms of dp-rank. In 2009, Shelah defined strong dependence
by setting a stricter upper bound on dp-rank [She09]. To years later, building on
Shelah’s strong dependence, Alf Onshuus and Alexander Usvyatsoc introduced
dp-minimality as a notion of minimality for dependent theories which generalises
many of the usual notions of minimality [OU11].

Definition 5.4.6. The NIP theory T is strongly dependent if for any finite
tuple of variables x, dp-rk(x = x, ∅) < ℵ0. The theory T is dp-minimal if
dp-rk(x = x, ∅) = 1, for x a singleton.

In particular, strongly minimal theories and o-minimal theories are classic
examples of dp-minimal theories [OU11]. Recently, there have been several im-
portant developments regarding dp-rank and dp-minimal theories. Key results
include the additivity of dp-rank [KOU13], and Guingona’s proof of the uniform
definability of types over finite sets in dp-minimal theories [Gui12]. This result
was later generalized to all NIP theories by Chernikov and Simon [CS15], im-
plying that types over finite sets behave in a stable-like manner, which relates
to long-standing problems in learning theory.

One of the most recent dividing line within NIP theories is that of distality,
introduced by Pierre Simon in 2012 [Sim13]. Distal theories aim to characterize
NIP structures that are completely unstable. As Simon expressed:

“One basic intuition we have about NIP structures is that they
are somehow built out of stable components and linear orders. In
this view, the theory ACVF of algebraically closed valued fields is
archetypical: it has a stable part embodied in the residue field, an
order part which is the value group, and the whole structure is in
some sense dominated by those two components. Stable theories ap-
pear as NIP theories which are degenerate in a certain way. The idea
of distality is to characterize the other extreme: NIP theories which
are as far away from stable as possible.” [Sim13]

A key theorem in stability states that T is stable if and only if every indis-
cernible sequence is totally indiscernible. For distal theories, no infinite non-
constant indiscernible sequence is totally indiscernible. Moreover, if the theory
is also dp-minimal, the converse holds. This demonstrates the intuition that
distal theories represent the opposite extreme of NIP. In terms of indiscernibles,
distal theories are defined as follows:

Definition 5.4.7. A theory T is distal if, for any parameter set A, any A-
indiscernible sequence I, and any tuple b, if I = I1 + I2 for some sequences I1
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and I2 without endpoints, and I1 + b + I2 is indiscernible, then I1 + b + I2 is
A-indiscernible.

Although this definition is often the simplest way to verify a theory’s distality,
there is another valuable characterization based on honest definitions. Honest
definitions, introduced by Chernikov and Simon, offer a deeper understanding
of definable sets in NIP theories [CS10]. They demonstrate that a weak form of
definability of types exists in NIP theories, with the weakest case being that of
distal theories.

Using the descriptions from honest definitions, one can prove that any dp-
minimal linearly ordered theory, such as o-minimal or weakly o-minimal theories,
is distal. These are implications among classes of theories that therefore can be
depicted in the Map of the Universe.

As Simon envisioned, distal theories occupy the opposite end of NIP theories
relative to stable theories. Moreover, distal theories include o-minimal theories,
which, both theoretically and pictorially, share multiple features with strongly
minimal theories. Both classes also fall within the broader framework of dp-
minimality. Here, the dividing line parallels that of NIP, since dp-minimality di-
rectly strengthens NIP in terms of dp-rank. Looking ahead, several new dividing
lines are emerging, including variations of o-minimality like weak o-minimality
and local o-minimality, as well as further refinements of NIP, such as theories
with finite dp-rank and strongly dependent theories.

Figure 7: Sixth Building Block of the Map of the Universe.
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6 Conclusion

In 1988, Stephen Hawking told Der Spiegel :

“We are just an advanced breed of monkeys on a minor planet of a
very average star. But we can understand the Universe. That makes
us something very special.”

The modern understanding of the Universe might be said to have been trig-
gered by Albert Einstein’s general relativity, introduced in The Field Equations
of Gravitation, which he published in 1915. That same year, Leopold Löwenheim
published On Possibilities in the Calculus of Relatives, quietly triggering, in par-
allel, the understanding of the Model Theoretic Universe.

Over the next half-century, the work of Skolem, Tarski, Henkin, and Robinson,
along with the development of key concepts like completeness, decidability, and
quantifier elimination, led to the emergence of first-order logic. This, in turn,
enabled the description of first-order theories, which became central objects in
the model-theoretic universe. Contributions from  Loś, Vaught, Ryll-Nardzewski,
and Morley further advanced the field by introducing syntactic characterizations
of semantic properties. This shift created a new perspective, where models were
no longer viewed in isolation but rather as part of the broader family of models
associated with their corresponding theories. However, there was still no clear
framework for organizing families of theories.

A major breakthrough came in the 1970s with Shelah’s stability hierarchy
and the subsequent Classification Program. These developments showed that
theories in the universe are either chaotic or governed by structure theorems
that provide detailed descriptions of their models. Shelah, together with Hart,
Hrushovski, and Laskowski, proved that, rather than there existing 2ω distinct
spectrum functions corresponding to the 2ω complete theories, only a finite num-
ber of such functions exist. This discovery highlighted an underlying regularity
in the landscape of theories, bringing order to what was previously seen as a
chaotic expanse.

Since then, model theorists such as Zilber, Hrushovski, Lascar, Baldwin, van
den Dries, and more recently Kaplan, Ramsey, Simon, Pila, Wilkie, and of course
Shelah, have continued to develop a systematic classification of complete first-
order theories. Beyond stability, new ideas have been introduced—simplicity,
NSOP3, distality, strong dependence, NTP2, and o-minimality—to further ex-
plore and understand the more complex unstable regions of the model-theoretic
universe.

As of 2024, the field, now known as Neostability theory, remains a thriving
and interconnected area of study, influencing domains such as combinatorics,
Diophantine geometry, and differential equations. While long-standing questions
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like Vaught’s conjecture remain unsolved, new lines of research are constantly
emerging. In this dynamic era, Gabriel Conant’s Map of the Universe visually
captures the progress and reveals both established insights and areas ripe for
exploration, making it an invaluable resource for navigating the field.

In the end, despite the many unanswered questions, after a century of explo-
ration, this advanced breed of monkeys can proudly claim to understand the
Model Theoretic Universe. And perhaps, by invoking Tarski’s theory of truth,
viewing model theory as a branch of mathematics, and, in turn, seeing math-
ematics as the appropriate metalanguage in which to define the truth of the
world, it can be said that a deeper understanding of the Universe itself has also
been gained.
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ries”. In: Notices of the American Mathematical Society 11 (1964),
p. 248.

[Rus03] Bertrand Russell. Principles of Mathematics. Routledge, 1903.
[RW10] Bertrand Russell and Alfred North Whitehead. Principia Mathemat-

ica Vol. I. Cambridge University Press, 1910.

80



[Ryl59] Czes law Ryll-Nardzewski. “On Categoricity in Power ≤ ℵ0”. In: Bul-
letin of the Polish Academy of Sciences. Mathematics, Astronomy,
and Physics 7 (1959), pp. 545–548.

[Sch85] Dirk Schlimm. “Bridging Theories with Axioms: Boole, Stone, Tarski”.
In: New Perspectives on Mathematical Practices: Essays in Philoso-
phy and History of Mathematics. Ed. by B. Van Kerhove. World
Scientific, 1985, pp. 222–235.
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of a Theorem of L. Löwenheim and Generalizations of the Theorem”.
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[Vää20] Jouko Väänänen. “An Overview of Saharon Shelah’s Contributions
to Mathematical Logic, in Particular to Model Theory”. In: Theoria
87.2 (2020), pp. 349–360.

[Vap99] Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer:
New York, 1999.

[Vau54] Robert L. Vaught. “Applications of the Löwenheim–Skolem–Tarski
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