Linear Algebra und Data Science - "

Programmierpraktikum UNIVERSITAT
“Linear algebra is also used in most
THIS 15 YOUR MACHINE LERRNING SYSTET? sciences and fields of engineering,
YUP! YOU POUR THE DATA NTO THIS BIG because it allows modeling many
PILE OF UNEAR ALGEBRA, THEN (OLLECT .
THE ANSLIERS ON THE OTHER SIDE. natural phenomena, and computing
WHAT IF THE ANSLERS ARE LIRONG?) efficiently with such models. ”
Just PILE UNTI - 1ki i
ISR, Wikipedia

“What is data science, if not linear al-
gebra persevering?”
- Vision (maybe)

“Math is the language of engineering,
but coding is believing |[...] it.”
- Chad Jenkins

Koordinaten.

© Dozent: Philipp Hieronymi (hieronymi@math.uni-bonn.de)
© Zeit: Freitag 10.15-12, PC-Pool IAM, Endenicher Allee 60, Nebengebaude
© Erstes Treffen: Freitag 31.10.

Anmeldung. Wichtig! Es gibt 15 Platze in diesem Praktikum. Falls Sie Interesse
haben, schicken Sie bitte bis zum 12.10. eine E-Mail an hieronymi@math.uni-bonn.
de. Teilen Sie mir kurz mit, ob Sie Vorkenntnisse tiber Python haben und ob Sie
einen eigenen Laptop/Tablet zum Praktikum mitbringen kénnen.

Inhalt. Immer wieder stellen Schiilerinnen und Schiiler, aber auch Studierende
die Frage: wozu lerne ich diese abstrakte, vermeintlich anwendungsfreie (reine)
Mathematik? Das ist eigentlich erstaunlich, da viele unsere moderne Technologien
fundamental und direkt auf Resultaten aus der (reinen) Mathematik basieren. In
diesem (Programmier-)Praktikum sollen Studierende lernen, wie apriori abstrakte
Theoreme der Linear Algebra insbesondere in der Informationstechnologie und der
Data Science unmittelbare Anwendung finden. Beispiele sind

© Googles PageRank Algorithmus,

© Bild- und Tonkompressionsmethoden wie JPEG and MP3,
© Automatische Gesichts- und Schrifterkennung,

© Data Science und Machine Learning Anwendungen.

Wir werden auf3erdem die Verteilung von Memes in soziale Netzwerke analysieren,
die Hauptfigur in Game of Thrones bestimmen, eine Karaoke-Version von Queens
Bohemian Rhapsody erstellen und vieles mehr.

Vorkenntnisse. Teilnehmer miissen die Vorlesung Linear Algebra (MBO5) oder eine
entsprechende andere Vorlesung zur linearen Algebra besucht haben. Es wer-

den allerdings auch Videos zur Verfiigung gestellt, um everntuell fehlenden Stoff
1

hieronymi@math.uni-bonn.de
hieronymi@math.uni-bonn.de
hieronymi@math.uni-bonn.de

nachzuholen.

Wir benutzen die Programmiersprache Python tiber die Online-Platform PrairieLearn.
Vorkenntnisse in Python sind sicherlich hilfreich, aber nicht notwendig, wenn die
Bereitschaft vorhanden ist, sich etwas einzuarbeiten. Auch wenn die Veranstaltung
Programmierpraktikum heifst, werden wir Python (und PrairieLearn) eher als einen
hochwertigen Ersatz fiir einen Taschenrechner und nicht als eine eigenstindige
Programmiersprache ansehen. Hier wird es um Mathematik gehen und nicht um
Informatik!

Ablauf. Sie werden an 11 Terminen als kleine Gruppen zusammen an Python Work-
sheets in PrairieLearn arbeiten. Insbesondere fiir Studierende, die noch nie Python
benutzt haben, werden wir ein Python Tutorial in der ersten Woche habe. In jeder
Woche erhalten Sie in PrairieLearn auch eine kleine Programmier-Hausaufgabe.

Termin Lab Thema
31.10. 1 Python tutorial, Working with vectors
7.11. 2 Matrix operations
14.11. 3 Solving systems of linear equations
21.11. 4 Graphs and Algebraic Graph Theory
28.11. 5 Data compression
5.12. 6 Markov Chains
12.12. - Kein Praktikum
19.12. 7 Dynamical Systems
9.1. 8 Linear Regression
16.1 9 SVD and applications
23.1. 10 Principal Component Analysis
30.1. 11 Vortrage
6.2. 12 Vortrage (falls notwendig)

Technische Anforderungen. Wir benutzen das Onlinesystem PrairieLearn. Dies
funktioniert ohne Installation von weiterer Software auf im Prinzip allen Betrieb-
systemen und modernen Browsern. Daher kdnnen Sie einfach Ihren eigenen Laptop
oder Ihr eigenes Tablet benutzen (oder als Gruppe einen Laptop benutzen). Falls
Sie keinen Laptop oder Tablet besitzen, dann ist dies auch kein Problem und Sie
koénnen einen Institutsrechner benutzen.

Eindriicke. Das Material wurde an der University of Illinois entwickelt und ist da-
her auf Englisch. Die Unterrichtssprache wird allerdings Deutsch sein. Auf den
folgenden Seiten finden Sie einige Screenshots, damit Sie einen Eindruck davon
bekommen, was Sie in diesem Praktikum erwartet.

(4 Launcher X | [A] Isolate-audio-channels.ipyr @

B+ X 0O [» m C » Markdown v Python3 O
I Isolating Music Channels

import numpy as np

import scipy.io.wavfile as wav
import IPython.display as ipd
import matplotlib.pyplot as plt
%matplotlib inline

Most music recordings are stored in stereo format, meaning there are separate audio tracks
(channels) that are played on the left and right speakers creating the illusion of an audible
"perspective". Because each channel stores different information, data from each can be used
to isolate tracks for instrumentals, vocals, etc.

For example, many pop songs store vocals in the "center" and so the vocal track can be
removed by checking where both channels overlap with each other. Karaoke versions of songs
are often made in this way.

You are given two audio files, representing a left and right channel respectively. These have the
same duration and audio rate:

e bohemian_1.txt
e bohemian_r.txt

bohemian_rate = 44100

bohemian_1 = np.loadtxt('bohemian_1.txt")
print(bohemian_1.shape)

plt.plot(bohemian_1)

(529200,)

[<matplotlib. lines.Line2D at 0x29366baeba8>]

20000

10000

-10000

—20000

0 100000 200000 300000 400000 500000

bohemian_r = np.loadtxt('bohemian_r.txt")
print(bohemian_r.shape)
plt.plot(bohemian_r)

(529200,)
[<matplotlib. lines.Line2D at 0x293671e8f98>]

o N S

 Launcher X | 7 SVD and Applications.ipyn X
B + X O () » ® C » Markdown v Python 3 C

1) Image Compression

einstein = plt.imread("einstein.png")[:,:,0]
plt.imshow(einstein, cmap="gray"

<matplotlib. image.AxesImage at @x7f4a3f748280>

Now that you know how to obtain the singular value decomposition of a matrix, let's try to better understand the meaning of each of the components.
We will continue to use our notation where W; corresponds to the i” column of U, and v/ the i row of V7.

Check your answers:

Compute the reduced SVD of the Einstein image above.

Store the reduced decomposition in the usual way: U_einstein is a 2d array whose columns are the left singular vectors, S_einstein is a 1d array whose
entries are the singular values, and Vt_einstein is a 2d array whose rows are the right singular vectors.

#grade (enter your code in this cell — DO NOT DELETE THIS LINE)

The SVD of a matrix can also be written as:
X
A=USV = Y ouv!
i=1

We will plot the image obtained from the computation o;u; VlT for a given value of i.

i=e0

plt.figure()

plt.imshow(np.outer(U_einstein[:,i], Vt_einstein[i]) % S_einstein[il, cmap="gray")

Does it look like anything? Try to use different value of i to plot the image using the code provided above. Discuss briefly with your group what you think would
happen when we add these i "layers" together.

Check your answers:
Write a code snippet that adds the first 5 images generated from the outer products o',lLV,T fori € {0...4}.
Store this image as the 2d array M.

Hint: Recall that a column vector multiplied by a row vector results in a matrix. When each w; and v,T is stored as a 1d array, use numpy.outer to enact this outer
product.

#grade (enter your code in this cell — DO NOT DELETE THIS LINE)
num_images = 5 # number of images to add

Plot the image resulting from this summation using plt.imshow(M, cmap="gray") .
plt.imshow(M, cmap="gray")

We get an image that looks somewhat like our original starting image. We can think of the SVD as breaking up our data into different "layers" or "parts" that get
added together, and the 6; component determines how much of each component we add. Here the matrix M is an approximation of the original matrix einstein .

Answer this: What is the rank of the approximated matrix that generates the image above? Think about the definition of matrix rank that you learned in class. You
don't need to do any computation to get this result!

Markov matrices: GoT meets 538

On the fictional island of Westeros, the four great houses (House Targaryen, House Stark, House
Baratheon and House Lannister) are in an eternal power struggle for the Iron Throne. You are working for
the Westeros-equivalent of FiveThirtyEight, and it is your task to determine for each house the long term
probability that one of their members sits on the Iron Throne. Nate Silver already told you that the
transition probabilities from one year to the next are given by the following Markov chain:

House Targaryen) O

0.80

1) Compute the 4 x 4-matrix transition matrix 1" for the above Markov chain. Sort the columns as follows:
House Targaryen, House Stark, House Baratheon, and House Lannister. Store this matrix as

markov_matrix.

2) Compute the steady state vector of this system; that is, find a probability vector which is an
eigenvector of T" with eigenvalue 1. Save this as steady_state.

3) Suppose a member of House Targaryen currently sits on the Iron Throne. What is the probability that a
member of House Stark sits on the throne in exactly three years? Save this as prob_stark.

Your code snippet should define the following variables:

Name Type Description
markov_matrix numpy array Transition matrix
steady_state numpy array Steady state vector
prob_stark float Probability

user_code.py

NOuUAWN P

So many options: Flying from O'Hare to LAX with at most one layover

Connections between airports can be modelled by a graph. The nodes represent airports,
and the edges represent nonstop flight routes between the airports. Two nodes are
connected by a edge if there is a nonstop flight between the two airports; for simplicity,
we assume that if there is a nonstop flight from one airport to another, there is a returning
nonstop flight so that the graph is undirected.

The matrix nonstop_flights represents a network of 100 U.S. airports as described
above. We ask you to determine the number of distinct routes to fly from O'Hare Airport
(ORD) to Los Angeles International Airport (LAX) with at most one layover (that is, either
nonstop or with exactly one layover).

1) Compute a 100 x 100-matrix A such that the entry in the i-th row and the j-th
column of A is the number of walks from node j to node i of length at most 2. Store this
matrix as atmost_1_layover.

2) Assuming that ORD is airport # 31 (the 32 Bd row/column of the adjacency matrix
when one-indexing) and LAX is airport # 70 (the 71 od row/column of the adjacency
matrix when one-indexing). Compute the number of distict routes to fly from ORD to LAX
with at most one layover. Save this as num_options.

The setup code gives the following variables:

Name Type Description
nonstop_flights numpy Network of nonstop flight connections, 100 x 100
array adjacency matrix

Your code snippet should define the following variables:

Name Type Description

atmost_1_layover numpy Network of connections with at most one layover,
array 100 x 100 adjacency matrix

num_options integer Number of routes from ORD to LAX with at most one
layover

user_code.py n

1 dmport numpy as np

2 import numpy.linalg as la
3

4 atmost_1_layover = ...

[/ Launcher X | [A] Audio-Compression.ipynb @
B+ X O » m ¢ » Code v Python3 O

[1: import numpy as np
import numpy.linalg as la
import matplotlib.pyplot as plt
from dct import create_dct_basis
smatplotlib inline

Audio Compression

Variants of the DCT algorithm are used heavily in lossy audio compression. Because
an audio signal is saved as a waveform, expressing it as a sum of cosine waves
seems obvious here.

Here is a randomly generated waveform:

np.random.seed(5)
X = np.linspace(@, 2 * np.pi, 960)
y = np.zeros_like(x)
for i in range(15):
y += np.cos((x + (np.random.rand() % 10) - 5) * (np.random.rand() * !
plt.plot(x, y)

This is randomly generated —— You can try playing it,
but I can't guarantee you'll like what you hear :-)

To simplify things computationally, we will break up the data into smaller chunks of
192 elements. Why does this help? Lets explore what happens if we try to compute
the DCT basis of an entire 4 minute song sampled at 44100 Hz:

(4min X 60sec X 44100Hz)* x 8 bytes per decimal ~ 900TB
So, just a bit too much to store in memory. How about for just the smaller chunks?
1922 x 8 bytes per decimal = 288Kb

That seems better! We will use for this example N = 192 . We first need to
generate the new basis:

N = 192
D = create_dct_basis(192)
D.shape

We will get the number of sections needed to split up our data, and save this into
sections .

sections = len(x) // N
sections

Now, lets plot the frequency domain of each section.

Use the DCT basis given above to convert each section of data into the DCT
frequency space, and then plot each to see which frequencies are most dominant.

Essentially, we are plottingy = DTy for each section of the array y.

SVD: Denoising data sets

Singular value decomposition is often used to clean up noisy experimental data, for
example in particle image velocimetry. In this question, we explore how this is done for an
artifical 2D flow. The plots below show velocity magnitudes corresponding to such a flow.
On the left is the noisy data observed in your experiment; on the right is the clean, exact

data.
48 48
42 42
36 3.6
3.0 3.0
24 24
18 18
12 12
0.6 0.6
0.0 0.0

Noisy measurement data Clean, exact data
You are given the noisy measurement data and the exact data as two matrices B and C
stored as the 2d NumPy arrays measurement and exact_data, respectively. You will
compute low-rank approximations of B and compare them to C using the Frobenius
matrix norm: the Frobenius norm || A|| of an m x n matrix A is defined as

m n
Z Z a.fj. For a 2d NumPy array, the Frobenius norm can be computed using
i=1j=1

np.linalg.norm() with default arguments.

1) Use numpy. linalg.svd() to decompose the matrix Binto the U, X, and VT
matrices. Pass the argument full_matrices=False to compute the reduced SVD. Store
these matrices as U, S, and Vt. Here U and Vt should be 2d arrays while S should be a 1d
array.

2) Let r be the rank of B. Foreachk = 0,...,r — 1, compute

By := crguo'vg + crlul'uf + 4 a’kukv,f
where each o is a singular value, each u; is a column of U, and each 1)%1 is arow of V'T.
Then create an 1d NumPy array differences such that for each k, differences [k]
contains the value of | By, — C|| . This determines the errors between each rank-k
approximation By, of B and the original data C.

3) Find Kmin which minimizes || By, — C|| 7. Save this as num_layers.

4) Compute By, and save it as denoised_data. Note that By, is a sum of (kmin + 1)-
many terms (or /ayers). Use the provided helper function to plot the denoised data and
compare it to the noisy and exact data.

Epilogue: We have seen that the SVD can be used to efficiently denoise data. However,
exact data C'is unknown in practice and kmin must be determined by an educated guess.

For a more sophisticated denoising method based on SVD and how to guess ki effectively see for
example Epps and Krivitzky 'Singular value decomposition of noisy data: noise filtering' Experiments
in Fluids 60 (2019) Article 126.

The setup code gives the following variables:

PageRank is coming: Determining the protagonist of Game of Thrones

Game of Thrones (GoT) is an HBO television series popularizing George R. R. Martin's A
Song of Ice and Fire novel series. The TV series features one the largest-ever ensemble
casts, and it is hard to determine the most important character. In this exercise, we will
use the PageRank algorithm to gauge the relative importance of each character in Season
6 of Game of Thrones.

® .
.
L]
[L .
. .
L]
. . » .
.
.
3 . c‘.
& e ° o A
.
° L L4 . L 3 o
o.. . Y ot
.
A%< - 4 L
bt = . W] 2 .
<« £ 3 ..o X » °
¢ v. . . .o P !
° r .. .o g] ad (]
L]
e o *
° o .
° ° h »
o . b s . °
. e LY, o8, . ° .
e o . e « .
. v » .
. ¥
L3 ..
.
.
L o o ©
Lo 3

Game of Thrones season 6 interaction network

You are given an undirected, weighted adjacency matrix A with the character interaction
data for Season 6 of the show; two characters interact whenever they speak
consecutively, speak about each other, are spoken about together, or appear in a scene
together. The weights of A demark how many interactions each pair of characters has.
The weightedness of this matrix will be handled in the next step, which normalizes our
data. First, convert A to a Markov matrix M. Recall that Markov matrices are normalized
so that the sum of each column is 1. If a character has no interactions, we can model the
character as randomly interaction with each other character with a probability of 1/N we
can model it as randomly going to any other page with a probability of 1/N where IV is
the total number of characters included in A.

For a set value a between 0 and 1, the PageRank model for Markov matrix M is a matrix

1
G = CIM-I- (1 —Oﬂ)ﬁﬂ,
where 1is a matrix with the same shape as M containing 1in every position. The number
a is called the damping factor. You can consider this feature as a model of probable
character interactions in some eventual reboot of the series.

Now, construct the matrix G representing the PageRank model for Game of Thrones.
Use a = 0.85.

Then, use the provided function power_iteration to get the steady-state
eigenvector x of your Game of Thrones matrix G. The steady state is the vector with
the PageRank score for each character. You do not need to implement your own power
iteration method; this is the same function that you created during the computational lab
and has the following signature:

[Launcher X PCA-HW-MNIST.ipynb)
B+ X O [» = C » Markdown v Python 3 O

The MNIST (National Institute of Standards and Technology) datasets contain images of
handwritten numerical digits (the M stands for 'mixed,' since the samples are due to both U.S.
Census Bureau employees and high school students). This database is commonly used to help
develop image processing systems and to gauge performance of machine learning models. The
full MNIST set contains roughly 6,000 labelled images of each digit '0' through '9".

In this example, we will use principal component analysis (PCA) to analyze the MNIST dataset
and construct a simple machine learning (ML) model to classify unlabelled images of digits.

These data are provided in two parts: images is a 2d nhumpy array containing 10,000 images of
handwritten digits (a portion of MNIST). The first coordinate indexes the images themselves,
each of which is represented by a 1d numpy array of 784 integers between 0 and 255 (think of
each image as a 28 X 28 matrix flattened into one long vector). labels is a 1d numpy array
containing the integer label for each digit depicted in the corresponding image.

Here, the data provided in images comprise the training set for our machine learning model.

images = pd.read_csv('mnist_images_10k.csv.gz', compression='gzip', names=1list(ran
labels = np.genfromtxt('mnist_labels_10k.csv', dtype="int")

However, each image is a flattened row in the 2d array images . Let's take a look at the first
image:

images [0].shape

(784,)

Throughout this exercise, it will sometimes be useful to consider each MNIST image as a 2d
numpy array (rather than a 1d one) for visualization. You may achieve this via numpy.reshape ,
passingin (28,28) as the new shape. To undo this transformation, you may use

numpy. flatten .

im = images[0]

print('original shape: {}'.format(im.shape))
im_square = im.reshape((28,28))

print('plotting shape: {}'.format(im_square.shape))
im_flat = im_square.flatten()

print('flattened shape: {}'.format(im_flat.shape))

plt.imshow(im_square, cmap="gray")

original shape: (784,)
plotting shape: (28, 28)
flattened shape: (784,)

<matplotlib.image.AxesImage at @x7f8a9cacd5bo>
0

10

15

10

	Koordinaten
	Anmeldung
	Inhalt
	Vorkenntnisse
	Ablauf
	Technische Anforderungen
	Eindrücke

