
Formalization of Fräıssé
limits in Lean

Gabin Kolly

April 8, 2025

Master’s Thesis Mathematics

Advisor: Prof. Hieronymi

Second Advisor: Prof. van Doorn

Mathematisches Institut

Mathematisch-Naturwissenschaftliche Fakultät der

Rheinischen Friedrich-Wilhelms-Universität Bonn

Acknowledgments

I would like to thank Aaron Anderson for his precious guidance during the project,
especially design decisions on how to implement the proof of the back-and-forth.
I’m grateful to Prof. Floris van Doorn for his assistance when I was completely stuck
on a terrible recursive construction.
I appreciated Mario Carneiro and Kyle Miller taking the time to answer my questions
on the Lean Zulip forum.
Finally, this work would not have been possible without the supervision, advice and
encouragement from my advisor Prof. Philipp Hieronymi.

Introduction

In modern mathematics, studying embeddings between structures within a given class
often yields deeper insights into the properties of that class. For some well-behaved
classes of structures, restricting attention to finitely generated structures reveals par-
ticularly nice properties concerning embeddings. Such classes are referred to as Fräıssé
classes, and they are characterized by their essential equivalence to the set of substruc-
tures of a countable homogeneous structure. This structure, known as the Fräıssé limit
of the class, can be viewed as the most generic or universal object within the class.

This thesis presents progress in implementing key results about Fräıssé limits in Math-
lib, the primary mathematical library for the Lean theorem prover. Fräıssé limits were
first introduced by Roland Fräıssé, a French mathematical logician [Hod97]. We estab-
lish the existence of Fräıssé limits for Fräıssé classes and prove their uniqueness up to
equivalence. Additionally, we develop the back-and-forth method, a fundamental tool in
model theory often used to construct isomorphisms between countable structures.

All the non-formal proofs in this thesis are standard and could be found in most
presentations on the subject, for example in Hodges’ A Shorter Model Theory [Hod97].

Interactive theorem provers

Automated and interactive theorem provers have gained significant popularity in recent
years, driven by multiple factors. As noted by Massot [Mas21], formalizing mathematics
provides substantial benefits in terms of rigor and verification. The complexity of modern
proofs continues to grow, with some famous cases—such as the classification of finite
simple groups and Fermat’s Last Theorem—reaching a size and intricacy that make it
nearly impossible for any single mathematician to fully comprehend them. Computer-
verified proofs offer greater assurance of correctness for such results.

Massot further argues that proof assistants are not only virtuous tools for ensuring
rigor but can also be highly practical aids during the proof process. They help users keep
track of the current goal, available assumptions, and intermediate results. Additionally,
if a subtle change is made to a definition, the software can pinpoint where earlier parts
of the proof may no longer hold. Of course, for the moment it is harder to use interactive
theorem provers than to do mathematics in the classical way, but one could hope that

1

advances in the development of these proof assistants would offer more advantages than
burden. In the future, such tools could even tailor the presentation of a proof to suit the
reader’s level of familiarity with the subject, translating formal arguments into varying
levels of detail. Furthermore, interactive theorem provers provide a structured framework
that is well-suited for training artificial intelligence to do mathematics, as demonstrated
by recent advances in this domain [Alp24].

All the formal proofs in this work were carried out using Lean 4. Lean 4 is a functional
programming language and interactive theorem prover based on dependent type theory.
One of its standout features is the ability to write custom automation scripts, called
tactics, to streamline parts of the proof. The first version of Lean, developed by Leonardo
de Moura, was released in 2015, and Lean 4, the successor to Lean 3, was published in
2021 [MU21]. Lean has been used to formalize many significant and complex proofs. A
particularly notable project is the Liquid Tensor Experiment, in which a team spent two
years formalizing a key lemma from the recent and highly technical work of Scholze and
Clausen [Com22].

Mathlib

Mathlib is a collaborative, open-source project aimed at creating a unified library of
pure mathematics in Lean, with the goal of formalizing foundational results across most
domains [Com20] [Mat21]. Currently, the library is most developed in areas such as
algebra and analysis, while less progress has been made in fields like algebraic and
geometric topology, classical geometry, and more applied disciplines such as probability
and numerical analysis. As of January 2025, Mathlib contains over 92,000 definitions
and 179,000 theorems and has had contributions from more than 370 developers [Mat25].

Unlike many libraries for interactive theorem provers, Mathlib emphasizes classical
mathematics over constructive mathematics. It is designed with a high level of modular-
ity and compatibility between its components, ensuring maintainability, scalability, and
the ability to serve as a common framework and language for projects in Lean. Another
distinctive feature of Mathlib is its decentralized governance model: decisions are made
collaboratively by the community rather than being centralized in a small group. This
approach aligns with the breadth and depth of mathematics, where researchers often
specialize in only a small subset of the field.

Contributions to Mathlib

One objective of this thesis is to contribute code to Mathlib, expanding its coverage of
basic model theory. This requires adhering to Mathlib’s conventions on style, naming,
and theorem organization, while ensuring the code meets the library’s standards for us-
ability and maintainability. As of January 2024, the formalization of the back-and-forth
method and the proof of the uniqueness of Fräıssé limits have been already integrated to
Mathlib, with the help of Aaron Anderson [KA24]. The proof of the existence of Fräıssé
limits and the characterization of the Fräıssé limit of finite simple graphs are for the
moment proposed as pull requests for the library and need to be reviewed by others in

2

the community [Kol24] [Kol25].

Previous works

Few theorems from model theory have been formalized with proof assistants. Proofs
of Gödel’s completeness [JJS12] [Fro21] [Ber07] and incompleteness theorems [Pau13]
[O’C05] [Tea23], the compactness theorem [SdLAR24], the Löwenheim-Skolem theorems
[Ber07] and Loś’s theorem [Mat21] have been done in multiple proof assistants. All of
these theorems are also in Mathlib, except the incompleteness theorems. The subjects
of categoricity, stability, and relations with geometry have been mostly unexplored.
In Lean, the Flypitch project [HvD19] [HvD20], done by Han and von Doorn, proved
the independence of the continuum hypothesis. The Flypitch project is particularly
important for this work, since they made some of the basic definitions and theorems
from first order logic and model theory which were added to Mathlib and used in this
work.

3

Contents

Introduction 1

Conventions 5

1 Implementation of Model Theory in Lean 6
1.1 Language . 6
1.2 Structures . 6
1.3 Embeddings and equivalences . 6
1.4 Substructures . 7
1.5 Direct limits . 9
1.6 Equivalences between substructures . 11

2 Back-And-Forth 12
2.1 Limit of a directed system of partial equivalences 13
2.2 Proof of the back-and-forth . 16

3 Fräıssé Limits 20
3.1 Bundled structures . 20
3.2 Embeddings between equal structures . 21
3.3 Definition of Fräıssé limits . 22
3.4 Cardinality of FGEquiv . 27
3.5 Fräıssé limits exist . 29
3.6 Fräıssé limits are unique . 42
3.7 Fräıssé limit of finite graphs . 45

4 Future works 54

Bibliography 55

4

Conventions

In this paper, we will use the following conventions:

• L will always designate a language.

• M and N will be L-structures.

• Since we will never have two different languages at the same time, we will say
”structure” instead of ”L-structure”.

All the snippets of code will be mostly the same as what is present in the code files. There
will be minor changes that help comprehension and make the links with the mathematical
proofs clearer, for example change of names of variables. We will also remove technical
modifiers, for example protected or private keywords before theorems, since they are
not important for this discussion and are related to the organization of the Mathlib
library. When the code is not written by the author of the thesis, it will be said before
the code. Its source will always be Mathlib [Mat21] or a branch of Mathlib, which will
be indicated by a citation, and we will also indicate where in Mathlib the file containing
the code is located by writing ”Code in X/Y” to indicate the file ‘Mathlib/X/Y.lean‘.
When the code is written by someone else, comments by the author will sometimes be
added in the code, preceded by ”author:”.

5

1 Implementation of Model Theory in Lean

We will present the formalization of basic definitions from model theory that we will
need. The way languages and structures are formalized has been developed by Jesse
Michael Han and Floris van Doorn during the Flypitch project [HvD20], and Aaron
Anderson has written the definitions and results about substructures and direct limits
that we will present in this section for Mathlib. Only the subsection about equivalence
between substructures is original work.

1.1 Language

A language in Lean is defined as a structure with two functions, giving for each natural
number a type of symbols for the functions of that arity, and a type of symbols for the
relations of that arity.

Language

-- Code in ModelTheory/Basic, written by Han and van Doorn [AHvD]
structure Language where

/-- For every arity, a ‘Type*‘ of functions of that arity -/

Functions : N → Type u

/-- For every arity, a ‘Type*‘ of relations of that arity -/

Relations : N → Type v

For the rest of this paper, the variable L will always be a language.

1.2 Structures

We can define an L-structure on a type M as interpretations of the function and relation
symbols as functions and relations on M :

Structure

-- Code in ModelTheory/Basic, written by Han and van Doorn [AHvD]
class Structure where

/-- Interpretation of the function symbols -/

funMap : ∀ {n}, L.Functions n → (Fin n → M) → M

/-- Interpretation of the relation symbols -/

RelMap : ∀ {n}, L.Relations n → (Fin n → M) → Prop

The type Fin n → M is the type of n-tuples of elements of M , so at each symbol of
functions, funMap associates a symbol of function to a function from n-tuples to M , i.e.
an n-ary function. Similarly, RelMap associates to any relation symbol a function which
takes as input an n-tuple and returns an element of Prop, so either True or False.

1.3 Embeddings and equivalences

Embedding are structures (in the programming sense) with a function and propositions
saying that it is injective and commutes with the functions and relations.

6

Embedding

-- Code in ModelTheory/Basic, written by Han and van Doorn [AHvD]
structure Embedding extends M ↪→ N where

map_fun’ : ∀ {n} (f : L.Functions n) (x), toFun (funMap f x) = funMap f

(toFun ◦ x)

map_rel’ : ∀ {n} (r : L.Relations n) (x), RelMap r (toFun ◦ x) ↔ RelMap r x

scoped[FirstOrder] notation:25 A " ↪→[" L "] " B =>

FirstOrder.Language.Embedding L A B

The last line allows us to write M ↪→[L] N for the type of embeddings from M to N . This
structure is an extension of the non-model theoretic embedding structure, written M ↪→
N, which is the type of injective functions from M to N , which is why the proposition

that the function is not injective is not present in the definition above.
We also have equivalences as bijective functions which commutes with functions and

relations:

Equiv

-- Code in ModelTheory/Basic, written by Han and van Doorn [AHvD]
structure Equiv extends M ≃ N where

map_fun’ : ∀ {n} (f : L.Functions n) (x), toFun (funMap f x) = funMap f

(toFun ◦ x)

map_rel’ : ∀ {n} (r : L.Relations n) (x), RelMap r (toFun ◦ x) ↔ RelMap r x

scoped[FirstOrder] notation:25 A " ≃[" L "] " B => FirstOrder.Language.Equiv L

A B

The last line allows us to write the type of equivalences between M and N as M ≃[L] N.
This structure extends the structure of non-model theoretic equivalences, written M ≃ N,
which is the type of bijective functions.

Both embeddings and equivalences have a FunLike instance, which allows us to apply
them to elements directly, like functions, and write f m for the image of m by the
underlying function of f , for f an embedding or an equivalence:

variable (f : M ↪→[L] N) (m : M)

#check f m -- Lean message: f m : N, confirming that f m is of type N

However, to compose them, we don’t write f ◦ g, but f.comp g, otherwise Lean com-
poses them as functions and outputs a function.

1.4 Substructures

We will also need the definition of substructures. The type of substructures of M is a
structure containing a subset of M and a proof that it is closed under all the interpre-
tations of the function symbols:

Substructure

-- Code in ModelTheory/Substructures, written by Anderson [AKc]

7

def ClosedUnder : Prop :=

∀ x : Fin n → M, (∀ i : Fin n, x i ∈ s) → funMap f x ∈ s

structure Substructure where

carrier : Set M

fun_mem : ∀ {n}, ∀ f : L.Functions n, ClosedUnder f carrier

They have a SetLike instance, so Lean can coerce a substructure to a subset if needed,
for example for a substructure S and an element m, we can write m ∈ S, to signify
that m is contained in the substructure. A set S of a type T can be coerced to a type,
which will be the type of pairs of elements of T with a Prop that they are in S, so any
substructure has also a coercion to a type, and we can write m : S. In this case, m can be
understood as a pair of an element of M (the whole structure) and a proposition saying
that it is contained in S. We can define an instance of structure on each substructure,
more precisely on the coercion of this substructure to a type, so that a substructure of
a structure is automatically considered as a structure by Lean. This is essential to work
comfortably with them:

Induced structure on substructure

-- Code written by Anderson [AKc]
instance inducedStructure {S : L.Substructure M} : L.Structure S where

funMap {_} f x := ⟨funMap f fun i => x i, S.fun_mem f (fun i => x i) fun i

=> (x i).2⟩
RelMap {_} r x := RelMap r fun i => (x i : M)

There is a partial order on substructures induced by the partial order on subsets,
and this partial order is a complete lattice, meaning that we can take the infimum and
supremum of sets of substructures. For a subset S of M , we have a function which
returns the substructure generated by s, defined here as the infimum of substructures
containing s:

Generated substructure

-- Code in ModelTheory/Substructures, written by Anderson [AKc]
/-- The ‘L.Substructure‘ generated by a set. -/

def closure : LowerAdjoint ((↑) : L.Substructure M → Set M) :=

⟨fun s => sInf { S | s ⊆ S }, fun _ _ =>

⟨Set.Subset.trans fun _x hx => mem_sInf.2 fun _S hS => hS hx, fun h =>

sInf_le h⟩⟩

We have a bit more information in fact: the definition also tells us that the closure forms
a Galois connection with the map sending a substructure to its underlying subset. We
can define a countably, respectively finitely generated substructure as a substructure
which is equal to the closure of a countable, respectively finite set:

Countably and finitely generated substructures

-- Code in ModelTheory/FinitelyGenerated, written by Anderson [AKb]
/-- A substructure of ‘M‘ is countably generated if it is the closure of a

countable subset of ‘M‘.-/

8

def CG (N : L.Substructure M) : Prop :=

∃ S : Set M, S.Countable ∧ closure L S = N

/-- A substructure of ‘M‘ is finitely generated if it is the closure of a

finite subset of ‘M‘. -/

def FG (N : L.Substructure M) : Prop :=

∃ S : Finset M, closure L S = N

We write ⊤ for the substructure corresponding to the whole structure, and a structure
is finitely, resp. countably generated if ⊤ is finitely, resp. countably generated:

Countably and finitely generated structures

-- Code in ModelTheory/FinitelyGenerated, written by Anderson [AKb]
/-- A structure is countably generated if it is the closure of a countable

subset. -/

class CG : Prop where

out : (⊤ : L.Substructure M).CG

/-- A structure is finitely generated if it is the closure of a finite subset.

-/

class FG : Prop where

out : (⊤ : L.Substructure M).FG

There are four other definitions that we will use: the preimage of a substructure along
a homomorphism, its image along a homomorphism, its inclusion in the whole structure,
and for two substructures A,B such that A ≤ B, the inclusion A ↪→ B:

Important functions on substructures

-- Code in ModelTheory/Substructures, written by Anderson [AKc]
/-- The preimage of a substructure along a homomorphism is a substructure. -/

def comap (φ : M →[L] N) (S : L.Substructure N) : L.Substructure M := . . .

/-- The image of a substructure along a homomorphism is a substructure. -/

def map (φ : M →[L] N) (S : L.Substructure M) : L.Substructure N := . . .

/-- The natural embedding of an ‘L.Substructure‘ of ‘M‘ into ‘M‘. -/

def subtype (S : L.Substructure M) : S ↪→[L] M := . . .

/-- The embedding associated to an inclusion of substructures. -/

def inclusion {S T : L.Substructure M} (h : S ≤ T) : S ↪→[L] T := . . .

1.5 Direct limits

If we have a directed system of structures, we can take its direct limit. We define a
directed system of structures as a set S of structures, with a partial order on it, and for
each M ≤ N , we have an embedding fMN : M ↪→ N , so that for any M ≤ N ≤ O, we
have fMO = FNO ◦ FMN . We also ask that the partial order be directed, i.e. any two
elements have an upper bound. In Lean, the setting looks like this:

9

Setting for direct limits

variable {ι : Type v} [Preorder ι] -- The set of indices, with a preorder on it.

variable {G : ι → Type w}

-- Author: This is the definition of a directed system in Mathlib, which could

be interpreted as a functor from a preorder to some category. Confusingly,

the definition does not require the preorder to be directed, probably

because it was defined originally for systems of modules in algebra, and

in this case it is not necessary for the system to be directed to be able

to define a limit.

class DirectedSystem (f : ∀ i j, i ≤ j → G i → G j) : Prop where

map_self’ : ∀ i x h, f i i h x = x

map_map’ : ∀ {i j k} (hij hjk x), f j k hjk (f i j hij x) = f i k (le_trans

hij hjk) x

variable {L : Language} [∀ i, L.Structure (G i)]

variable (f : ∀ i j, i ≤ j → G i ↪→[L] G j)

-- Author: We write ‘[DirectedSystem G fun i j h => f i j h]‘ and not

‘[DirectedSystem G f]‘, because here Lean wants a function that outputs a

function, not an embedding, and f outputs an embedding, so we replace it

by the function which to i j h associates ‘f i j h‘. Of course ‘f i j h‘

is still an embedding, but Lean coerces it automatically to the underlying

function, so this is equivalent to ‘[DirectedSystem G (fun i j h 7→ (f i j

h).toFun)]‘

variable [IsDirected ι (· ≤ ·)] [DirectedSystem G fun i j h => f i j h]

So instead of a directed set of structures, we have a directed type ι, a map G associating
to any index a type, and any type in the image of G has an instance of structure. This
is because it is generally much more convenient to index structures with a set of indices
that is already ordered, for example if you construct recursively a sequence of structures.
We define an equivalence relation on the disjoint union of all the structures, generated
by the maps between the structures, so if fi,j(a) = b for a ∈ S i, b ∈ S j, then a ∼ b.
The direct limit is defined as the quotient of the disjoint union with respect to this
equivalence relation:

Direct limit

-- Code in ModelTheory/DirectLimit, written by Anderson [AKa]
/-- The direct limit of a directed system is the structures glued together

along the embeddings. -/

def DirectLimit [DirectedSystem G fun i j h => f i j h] [IsDirected ι (· ≤ ·)]
:=

Quotient (DirectLimit.setoid G f)

We also define a structure on it. There are two important maps related to a direct limit:
lifts that we get from its universal property, and embeddings from any indexed structure
to the direct limit:

-- Code in ModelTheory/DirectLimit, written by Anderson [AKa]
/-- The canonical map from a component to the direct limit. -/

def of (i : ι) : G i ↪→[L] DirectLimit G f where

10

-- Author: ‘Sigma.mk‘ takes the image in the disjoint union, and ‘J · K‘
sends to the quotient.

toFun := fun a => J.mk f i aK
. . .

-- Author: The ‘of‘ maps commute when composed with the maps between the

components.

theorem of_f {i j : ι} {hij : i ≤ j} {x : G i} : of L ι G f j (f i j hij x) =

of L ι G f i x := . . .

/-- The universal property of the direct limit: maps from the components to

another module that respect the directed system structure (i.e. make some

diagram commute) give rise to a unique map out of the direct limit. -/

def lift (g : ∀ i, G i ↪→[L] P) (Hg : ∀ i j hij x, g j (f i j hij x) = g i x) :

DirectLimit G f ↪→[L] P where

. . .

-- Author: ‘lift‘ verifies the universal property.

theorem lift_of {i} (x : G i) : lift L ι G f g Hg (of L ι G f i x) = g i x :=

1.6 Equivalences between substructures

From now on, the code has been written by the author, except when we mention oth-
erwise. To be able to write a simple proof of the back-and-forth method in Lean, we
need a practical way to deal with equivalences between substructures. So in this work
we defined a new type of equivalences between substructures, and developed an API to
work with them. We call equivalences between substructures of two structures M and
N partial equivalences between M and N .

Partial equivalences

-- Code in ModelTheory/PartialEquiv [AKWa]
structure PartialEquiv where

/-- The substructure which is the domain of the equivalence. -/

dom : L.Substructure M

/-- The substructure which is the codomain of the equivalence. -/

cod : L.Substructure N

/-- The equivalence between the two subdomains. -/

toEquiv : dom ≃[L] cod

scoped[FirstOrder] notation:25 M " ≃p[" L "] " N =>

FirstOrder.Language.PartialEquiv L M N

It is simply a structure with a substructure of M , a substructure of N , and an equivalence
between them. We could have a shorter definition, with only a substructure A of M , and
an embedding f : A ↪→ N , but we often need to access both the domain and codomain of
a PartialEquiv, and the inverse of a partial equivalence is easier to define and work with.
We could also have defined it as a subset of M × N with some properties, but most

11

important definitions, like the domain and codomain, would be more complicated to
define. We can use the notation M ≃p[L] N to designate the type of partial equivalences
between M and N . The partial order on partial equivalences was defined as follows:

Partial order on partial equivalences

-- Code in ModelTheory/PartialEquiv [AKWa]
instance : LE (M ≃p[L] N) :=

⟨fun f g 7→ ∃ h : f.dom ≤ g.dom,

(subtype _).comp (g.toEquiv.toEmbedding.comp (Substructure.inclusion h)) =

(subtype _).comp f.toEquiv.toEmbedding⟩

The first part is of course that the domain of f is contained in the domain of g, but
saying that f(x) = g(x) for all x in the domain of f is a bit tricky, because f and g
don’t have the same codomain as functions. Their codomains are substructures, not the
full structure. So we compose with additional maps so that we have both sides with the
same domain and codomain, giving

(f.dom ↪→ g.dom
g
≃ g.cod ↪→M) = (f.dom

f
≃ f.cod ↪→M)

Definition 1.1 (Mapping of a partial equivalence). For g : A ≃ B an equivalence
between substructures of M , and f : M ↪→ N , we define the mapping of g through
f as

f ◦ g ◦ (f−1 ↾ f(A)) : f(A) ≃ f(B)

In Lean:

Mapping of a partial equivalence

-- Code in ModelTheory/PartialEquiv [Kol24]
/-- Map of a self-PartialEquiv through an embedding. -/

def map (f : M ↪→[L] N) (g : M ≃p[L] M) : N ≃p[L] N where

dom := g.dom.map f.toHom

cod := g.cod.map f.toHom

-- ‘f.substructureEquivMap A‘ is the equivalence between ‘A‘ and ‘f(A)‘, so

the restriction of ‘f‘ to ‘A‘. The notation ‘<|‘ is equivalent to putting

everything after between parentheses, it is used sometimes to make the

code cleaner instead of having a lot of parentheses.

toEquiv := (f.substructureEquivMap g.cod).comp <|

g.toEquiv.comp (f.substructureEquivMap g.dom).symm

We will write g.map f for the mapping of g through f .

2 Back-And-Forth

A basic technique in model theory is the back-and-forth method, and we formalized
it in Lean in the course of this work, since it is used to show both the existence and
uniqueness of Fräıssé limits. The main theorem can be formulated as follows:

12

Theorem 2.1 (Back-And-Forth). For two countable structures M and N , A ⊆M
and B ⊆ N finitely generated substructures, and f : A ≃ B an equivalence, if any
equivalence between finitely generated substructures of M and N can be extended
to have any element of M in its domain or any element of N in its image, then there
is an equivalence g : M ≃ N extending f .

Proof. Let M = {m1,m2, . . .} and N = {n1, n2, . . .} be enumerations of M and N , we
define recursively a sequence f0 := f, f1, . . . of equivalences between finitely generated
substructures in the following way: we get fk+1 by extending fk so that it has mk+1 in
its domain and nk+1 in its image, and then restricting it to the substructure generated
by the domain of fk, mk+1, and the preimage of nk+1, so that its domain and image are
still finitely generated. The union of these maps is still an equivalence, and it has M as
domain and N as image.

In the proof of the back-and-forth, we will construct the equivalence as the limit of
partial equivalences. The proof of the back-and-forth was adapted in part from David
Wärn’s approach to countable dense linear orders which was already present in Mathlib,
which was a specialization of the back-and-forth for linear orders. We will also prove a
very similar result, a sort of half back-and-forth. We will use it when we’ll characterize
the Fräıssé limit of finite simple graphs:

Theorem 2.2. For a countable structures M and a structure N , A ⊆M and B ⊆ N
finitely generated substructures, and f : A ≃ B an equivalence, if any equivalence
between finitely generated substructures of M and N can be extended to have any
element in M in its domain, then there is an embedding g : M ↪→ N extending f .

2.1 Limit of a directed system of partial equivalences

During the proof of the back-and-forth, we will construct an increasing sequence of
partial equivalences, and we will take its limit, so we need to define what the limit of
a directed system of partial equivalences is. There are two lemmas about direct limits
that were needed for the definition. The first one is:

Lemma 2.3. Let M be a structure, and S a directed system of substructures of
M . Then

lim
−→

S ≃
⋃

S

The proof is quite simple: since each substructure A in S has an embedding A ↪→
⋃
S,

and these embeddings commute with the inclusions between substructures, you get an
embedding from the direct limit by the universal property of the direct limit, and it is
surjective, therefore it is an equivalence. Here is how we write this in Lean:

13

-- Code in ModelTheory/DirectLimit, written by Anderson [AKWa]
noncomputable def Equiv_iSup :

-- Author: We have to write ‘(iSup S : L.Substructure M)‘ and not just ‘iSup

S‘, because otherwise Lean gets confused and cannot find what the type of

the output is supposed to be, for reasons unclear to the author. ‘iSup‘ is

of type ‘iSup.{u, v} {α : Type u} {ι : Sort v} [SupSet α] (s : ι → α) : α
‘, so the end type and its ‘SupSet‘ instance are implicit, and apparently

it is too much uncertainty for Lean here, even though it should be able to

deduce that α is ‘L.Substructure M‘ since it is the codomain of ‘S‘.

Similarly, if we write ‘DirectLimit S‘, Lean gets confused, because it

wants a function which associates to each element of ι a type, not a

substructure, and it wants an L-structure instance on this type.

DirectLimit (fun i 7→ S i) (fun _ _ h 7→ Substructure.inclusion

(S.monotone h)) ≃[L]
(iSup S : L.Substructure M) := by

-- Author: ‘liftInclusion‘ is the embedding from the direct limit into ‘M‘

and this lemma says that its image is contained in the supremum.

have liftInclusion_in_sup : ∀ x, liftInclusion S x ∈ (⊔ i, S i) := by

simp only [← rangeLiftInclusion, Hom.mem_range, Embedding.coe_toHom]

intro x; use x

-- Author: This is the restriction of ‘liftInclusion‘ so that its codomain

is the supremum, instead of being the whole structure.

let F := Embedding.codRestrict (⊔ i, S i) _ liftInclusion_in_sup

have F_surj : Function.Surjective F := by

rintro ⟨m, hm⟩
rw [← rangeLiftInclusion, Hom.mem_range] at hm

rcases hm with ⟨a, _⟩; use a

simpa only [F, Embedding.codRestrict_apply’, Subtype.mk.injEq]

-- Author: From F, and the fact that it is injective and surjective, we get

an equivalence.

exact ⟨Equiv.ofBijective F ⟨F.injective, F_surj⟩, F.map_fun’, F.map_rel’⟩

We will need another result: two isomorphic systems have isomorphic direct limits.
More precisely:

Lemma 2.4. For two systems G and G′ of structures and embeddings indexed by ι,
and for each index i, an equivalence gi : G i ≃ G′ i such that everything commutes,
then the direct limit of G is isomorphic to the direct limit of G′.

Here is the proof in Lean:

Limits of isomorphic systems

-- Code in ModelTheory/DirectLimit [AKa]
variable (g : ∀ i, G i ≃[L] G’ i)

/-- The isomorphism between limits of isomorphic systems. -/

noncomputable def equiv_lift (H_commuting : ∀ i j hij x, g j (f i j hij x) =

f’ i j hij (g i x)) : DirectLimit G f ≃[L] DirectLimit G’ f’ := by

14

-- Each component ‘G i‘ has an embedding ‘U i‘ to the direct limit of ‘G’‘.

let U i : G i ↪→[L] DirectLimit G’ f’ := (of L _ G’ f’ i).comp (g

i).toEmbedding

-- ‘F‘ is the lift that we get from all the ‘U i‘ maps. We just need to

prove that it is surjective.

let F : DirectLimit G f ↪→[L] DirectLimit G’ f’ := lift L _ G f U <| by

intro _ _ _ _

simp only [U, Embedding.comp_apply, Equiv.coe_toEmbedding, H_commuting,

of_f]

have surj_f : Function.Surjective F := by

intro x

-- We have some element ‘x‘ in the direct limit of ‘G’‘, and we need to

find a preimage.

-- This just says that ‘x‘ is represented by an element ‘pre_x‘ in some

component ‘G’ i‘.

rcases x with ⟨i, pre_x⟩
-- We take the preimage by ‘g i‘, and then we map it to the direct limit

of ‘G‘.

use of L _ G f i ((g i).symm pre_x)

-- We simplify everything to show that this element is indeed sent to ‘x‘

by ‘F‘.

simp only [F, U, lift_of, Embedding.comp_apply, Equiv.coe_toEmbedding,

Equiv.apply_symm_apply]

rfl

-- From a surjective embedding, we can get an equivalence.

exact ⟨Equiv.ofBijective F ⟨F.injective, surj_f⟩, F.map_fun’, F.map_rel’⟩

We apply lemmas 2.3 and 2.4 to define the limit of a directed system of partial equiv-
alences:

Direct limit of PartialEquivs

-- Code in ModelTheory/PartialEquiv [AKWa]
variable {ι : Type*} [Preorder ι] [Nonempty ι] [IsDirected ι (· ≤ ·)]
-- ‘A →o B‘ is the type of monotone maps from ‘A‘ to ‘B‘.

variable (S : ι →o M ≃p[L] N)

/-- The limit of a directed system of PartialEquivs. -/

noncomputable def partialEquivLimit : M ≃p[L] N where

dom := iSup (fun i 7→ (S i).dom)

cod := iSup (fun i 7→ (S i).cod)

toEquiv :=

(Equiv_iSup {

toFun := (fun i 7→ (S i).cod)

monotone’ := monotone_cod.comp S.monotone}

).comp

15

((DirectLimit.equiv_lift L ι (fun i 7→ (S i).dom)

(fun _ _ hij 7→ Substructure.inclusion (dom_le_dom (S.monotone hij)))

(fun i 7→ (S i).cod)

(fun _ _ hij 7→ Substructure.inclusion (cod_le_cod (S.monotone hij)))

(fun i 7→ (S i).toEquiv)

(fun _ _ hij _ 7→ toEquiv_inclusion_apply (S.monotone hij) _)

).comp

(Equiv_iSup {

toFun := (fun i 7→ (S i).dom)

monotone’ := monotone_dom.comp S.monotone}).symm)

So the equivalence is defined as the composition⋃
i

(S i).dom ≃ lim
i

(S i).dom ≃ lim
i

(S i).cod ≃
⋃
i

(S i).cod

We get the first and third equivalences by lemma 2.3, and the second equivalence by
lemma 2.4. It has the crucial property that it extends any partial equivalence in the
system:

theorem le_partialEquivLimit (i : ι) : S i ≤ partialEquivLimit S := . . .

In particular, its domain is greater than the domain of each component, and its codomain
is greater than the codomain of each component.

2.2 Proof of the back-and-forth

We define FGEquiv the type of partial equivalences between finitely generated substruc-
tures:

FGEquiv

-- Code in ModelTheory/PartialEquiv [AKWa]
/-- The type of equivalences between finitely generated substructures. -/

abbrev FGEquiv := {f : M ≃p[L] N // f.dom.FG}

For any f : L.FGEquiv M N, we write f.val for the underlying partial equivalence, f.val.dom
for its domain and f.val.cod for its codomain.

We will also use this definition:

Definition 2.5 (Extension pair). Two structures M and N form an extension pair
if for any equivalence f between finitely generated substructures of M and N , and
any element m in M , f can be extended to contain m in its domain.

In Lean [AKWa]:

Extension pair

16

/-- Two structures ‘M‘ and ‘N‘ form an extension pair if the domain of any

finitely-generated map from ‘M‘ to ‘N‘ can be extended to include any

element of ‘M‘. -/

def IsExtensionPair : Prop := ∀ (f : L.FGEquiv M N) (m : M), ∃ g, m ∈ g.1.dom ∧
f ≤ g

Therefore, in the case of the back-and-forth, we have that M and N form an extension
pair, and also that N and M form an extension pair (this is not a symmetric relation).
Another way to formulate this property is to say that if M and N form an extension
pair, then for any m ∈M , we have that the FGEquivs with m in their domains form a
cofinal set in FGEquiv, i.e. they contain arbitrarily large elements.

definedAtLeft and definedAtRight

-- Code in ModelTheory/PartialEquiv [AKWa]
/-- The cofinal set of finite equivalences with a given element in their

domain. -/

def definedAtLeft

(h : L.IsExtensionPair M N) (m : M) : Order.Cofinal (FGEquiv L M N) where

carrier := {f | m ∈ f.val.dom}

mem_gt := fun f => h f m

/-- The cofinal set of finite equivalences with a given element in their

codomain. -/

def definedAtRight

(h : L.IsExtensionPair N M) (n : N) : Order.Cofinal (FGEquiv L M N) where

carrier := {f | n ∈ f.val.cod}

mem_gt := fun f => h.cod f n

This is a useful reformulation since there was already a result about cofinal sets in
mathlib that will be quite handy for the proof [Wä]:

-- Code in Order/Ideal, written by David Warn

/-- Given a starting point, and a countable family of cofinal sets,

this is an increasing sequence that intersects each cofinal set. -/

noncomputable def sequenceOfCofinals : N → P := . . .

In our case, intersecting a cofinal set of the form definedAtLeft _ m would mean that
m is in the domain, and intersecting a cofinal set of the form definedAtRight _ n would
mean that n is in the codomain. And since M and N are countably generated, we only
need to intersect countably many such sets, therefore we can apply this result. We have
everything to prove the back-and-forth:

Proof of Theorem 2.2

-- Code in ModelTheory/PartialEquiv [AKWa]
/-- For a countably generated structure ‘M‘ and a structure ‘N‘, if any

partial equivalence between finitely generated substructures can be

extended to any element in the domain, then there exists an embedding of

‘M‘ in ‘N‘. -/

theorem embedding_from_cg (M_cg : Structure.CG L M) (g : L.FGEquiv M N)

17

(H : L.IsExtensionPair M N) :

∃ f : M ↪→[L] N, g ≤ f.toPartialEquiv := by

-- We get a countable set ‘X‘ which generates ‘M‘.

rcases M_cg with ⟨X, _, X_gen⟩

-- Here we get that ‘X‘ is ‘Encodable‘, which is the constructive version of

being ‘Countable‘. However since we’re working in classical logic, it is

equivalent to ‘Countable‘ and we get it for free. We need it because

‘sequenceOfCofinals‘ asks for it.

have _ : Encodable (↑X : Type _) := @Encodable.ofCountable _ (by simpa only

[countable_coe_iff])

-- ‘D‘ associates each element ‘x‘ of ‘X‘ with the cofinal set of FGEequivs

with ‘x‘ in their domains.

let D : X → Order.Cofinal (FGEquiv L M N) := fun x 7→ H.definedAtLeft x

-- Using ‘sequenceOfCofinals‘, we define an increasing sequence ‘S‘ of

partial equivalences that will intersect with all ‘D x‘.

let S : N →o M ≃p[L] N :=

⟨Subtype.val ◦ (Order.sequenceOfCofinals g D),

(Subtype.mono_coe _).comp (Order.sequenceOfCofinals.monotone _ _)⟩

-- ‘F‘ is the limit of ‘S‘, and should have ‘M‘ as its domain, as we will

prove next.

let F := DirectLimit.partialEquivLimit S

have _ : X ⊆ F.dom := by

intro x hx

have := Order.sequenceOfCofinals.encode_mem g D ⟨x, hx⟩
exact dom_le_dom

(le_partialEquivLimit S (Encodable.encode (⟨x, hx⟩ : X) + 1)) this

-- This says that indeed the domain of ‘F‘ is ‘M‘.

have isTop : F.dom = ⊤ := by rwa [← top_le_iff, ← X_gen,

Substructure.closure_le]

-- From a partial equivalence whose domain is the whole structure, we can

get an embedding.

exact ⟨toEmbeddingOfEqTop isTop,

-- We still need to prove that this equivalence extends ‘g‘. We conclude

from the lemma that the direct limit of a system of partial equivalences

extends any partial equivalence in the system, and ‘g‘ is the starting

point of the system.

by convert (le_partialEquivLimit S 0); apply

Embedding.toPartialEquiv_toEmbedding⟩

The proof of the back-and-forth is mostly the same, except that we have to verify

18

properties for the codomain too.

Proof of Theorem 2.1

-- Code in ModelTheory/PartialEquiv [AKWa]
/-- For two countably generated structure ‘M‘ and ‘N‘, if any PartialEquiv

between finitely generated substructures can be extended to any element in the

domain and to

any element in the codomain, then there exists an equivalence between ‘M‘ and

‘N‘. -/

theorem equiv_between_cg (M_cg : Structure.CG L M) (N_cg : Structure.CG L N)

(g : L.FGEquiv M N)

(ext_dom : L.IsExtensionPair M N)

(ext_cod : L.IsExtensionPair N M) :

∃ f : M ≃[L] N, g ≤ f.toEmbedding.toPartialEquiv := by

-- We get a countable set ‘X‘ generating ‘M‘.

rcases M_cg with ⟨X, X_count, X_gen⟩
-- We get a countable set ‘Y‘ generating ‘N‘

rcases N_cg with ⟨Y, Y_count, Y_gen⟩

have _ : Encodable (↑X : Type _) := @Encodable.ofCountable _ (by simpa only

[countable_coe_iff])

have _ : Encodable (↑Y : Type _) := @Encodable.ofCountable _ (by simpa only

[countable_coe_iff])

-- ‘D‘ has domain the disjoint union of ‘X‘ and ‘Y‘, and associates to each

element the corresponding cofinal set.

let D : Sum X Y → Order.Cofinal (FGEquiv L M N) := fun p 7→
Sum.recOn p (fun x 7→ ext_dom.definedAtLeft x) (fun y 7→
ext_cod.definedAtRight y)

-- ‘S‘ is an increasing sequence intersecting all cofinal sets ‘D x‘ and ‘D

y‘.

let S : N →o M ≃p[L] N :=

⟨Subtype.val ◦ (Order.sequenceOfCofinals g D),

(Subtype.mono_coe _).comp (Order.sequenceOfCofinals.monotone _ _)⟩

-- ‘F‘ is the limit of ‘S‘, it should have ‘M‘ as domain and ‘N‘ as

codomain, as we will prove next.

let F := @DirectLimit.partialEquivLimit L M N _ _ N _ _ _ S

have _ : X ⊆ F.dom := by

intro x hx

have := Order.sequenceOfCofinals.encode_mem g D (Sum.inl ⟨x, hx⟩)
exact dom_le_dom

(le_partialEquivLimit S (Encodable.encode (Sum.inl (⟨x, hx⟩ : X)) + 1))

this

have _ : Y ⊆ F.cod := by

intro y hy

have := Order.sequenceOfCofinals.encode_mem g D (Sum.inr ⟨y, hy⟩)

19

exact cod_le_cod

(le_partialEquivLimit S (Encodable.encode (Sum.inr (⟨y, hy⟩ : Y)) + 1))

this

-- This says that the domain of ‘F‘ is all of ‘M‘.

have dom_top : F.dom = ⊤ := by rwa [← top_le_iff, ← X_gen,

Substructure.closure_le]

-- This says that the codomain of ‘F‘ is all of ‘N‘.

have cod_top : F.cod = ⊤ := by rwa [← top_le_iff, ← Y_gen,

Substructure.closure_le]

-- From a partial equivalence whose domain and codomain are the whole

structures, we can get an equivalence.

refine ⟨toEquivOfEqTop dom_top cod_top, ?_⟩

-- We still need to prove that this equivalence extends ‘g‘. We conclude

from the lemma that the direct limit of a system of partial equivalences

extends any partial equivalence in the system, and ‘g‘ is the starting

point of the system.

convert le_partialEquivLimit S 0

rw [toEquivOfEqTop_toEmbedding]

apply Embedding.toPartialEquiv_toEmbedding

3 Fräıssé Limits

In this section, we will suppose that in the language L, there are only countably many
function symbols. Therefore, a structure is countable if and only if it is countably
generated.

3.1 Bundled structures

For this part, we will talk about classes of structures having an embedding in some
structure, and for that, it will be helpful to always pair each type with the structure it
is supposed to have. Remember that until now, we were working with types for which
there was also an instance of structure, but here it is more comfortable to have a type
corresponding to pairs of one type and one structure instance on it. We write this type
as Bundled.{w} L.Structure. Here, w indicates in which universe we are working, but it
will not be important for the rest of the paper. You can understand this type as the
type of pairs (M : Type w) × L.Structure M. Lean will coerce it automatically to a type
when needed, and remember that this type has an instance of structure. We can also
coerce a bundled structure M to a type explicitly by writing ↑M. A class of structures
will have the type Set (Bundled.{w} L.Structure).

20

3.2 Embeddings between equal structures

Multiple times when we will prove the existence of Fräıssé limits, we will have structures
that we can prove are equal, but that are not definitionally equal. In Lean, and in
other proof assistants as well, we distinguish two elements being definitionally equal and
propositionally equal. They are definitionally equal if the internal system of Lean can see
that they have the same definition (up to unfolding of some notations). Two elements
x and y are propositionally equal if you can prove that they are equal, meaning that
you can construct an element of the type x = y, and this is a weaker property. So for
example, you could be in this situation:

variable {M N P Q : Bundled.{w} L.Structure}

variable (h : M = N)

variable (f : P ↪→[L] M) (g : N ↪→[L] Q)

-- Trying to compose ‘f‘ and ‘g‘:

#check g.comp f

/-

Lean error: application type mismatch

g.comp f

argument

f

has type

↑P ↪→[L] ↑M : Type w

but is expected to have type

?m.16673 ↪→[L] ↑N : Type (max ?u.16660 w)

-/

Although we know that M and N are propositionally equal, they are not definitionally
equal, so the type M ↪→[L] Q is not the same as N ↪→[L] Q (but we could prove that
they are propositionally equal), and Lean won’t accept an element of one type when it
expects an element of the other type. To bridge this gap, by induction on the equality
type we define a function that gives us an embedding between two structures when we
know that they are equal and that should behave similarly to the identity function:

Embeddings between equal structures

-- Code in ModelTheory/Bundled [Kol24]
variable {M N P : Bundled.{w} L.Structure}

/-- Embedding between equal structures.-/

def ofEq (h : M = N) : M ↪→[L] N := by

cases h

exact refl L M

-- If the equality is of type ‘M = M‘, ‘ofEq‘ is simply the identity map.

@[simp]

theorem ofEq_refl : ofEq (Eq.refl M) = refl L M := rfl

-- Two ‘ofEq‘ compose well with each other, being another map of the form

‘ofEq _‘.

21

@[simp]

theorem ofEq_comp (h : M = N) (h’ : N = P) :

(ofEq h’).comp (ofEq h) = ofEq (h.trans h’) := by

cases h

cases h’

rfl

Then, if we are in the same way as before, we can now compose the two maps as
follows:

variable (h : M = N)

variable (f : P ↪→[L] M) (g : N ↪→[L] Q)

#check g.comp ((ofEq h).comp f)

-- Lean message: g.comp ((ofEq h).comp f) : ↑P ↪→[L] ↑Q

3.3 Definition of Fräıssé limits

The definitions of Fräıssé classes and Fräıssé classes were already implemented by Aaron
Anderson in Mathlib before this work. Here is how it has been done:

Definition 3.1 (Age of a structure). The age of a structure M is the class of finitely
generated structures who embed in M .

In Lean:

Age of a structure

-- Code in ModelTheory/Fraisse, written by Anderson [AKWb]
/-- The age of a structure ‘M‘ is the class of finitely-generated structures

that embed into it. -/

def age (M : Type w) [L.Structure M] : Set (Bundled.{w} L.Structure) :=

{N | Structure.FG L N ∧ Nonempty (N ↪→[L] M)}

Definition 3.2 (Hereditary property). A class K of finitely-generated structures
has the hereditary property if for all M ∈ K, all finitely-generated structures which
embed into M are also in K.

Another way of formulating that is that a class has the hereditary property if it contains
the age of all structures in it. In Lean:

Hereditary property

-- Code in ModelTheory/Fraisse, written by Anderson [AKWb]
variable (K : Set (Bundled.{w} L.Structure))

22

/-- A class ‘K‘ has the hereditary property when all finitely-generated

structures that embed into

structures in ‘K‘ are also in ‘K‘. -/

def Hereditary : Prop :=

∀ M : Bundled.{w} L.Structure, M ∈ K → L.age M ⊆ K

Definition 3.3 (Joint embedding property). A class K of structures has the joint
embedding property if for any M,N ∈ K, there is a structure P ∈ K such that
both M and N embed into P .

In Lean:

Joint embedding property

-- Code in ModelTheory/Fraisse, written by Anderson [AKWb]
/-- A class ‘K‘ has the joint embedding property when for every ‘M‘, ‘N‘ in

‘K‘, there is another structure in ‘K‘ into which both ‘M‘ and ‘N‘ embed.

-/

def JointEmbedding : Prop :=

DirectedOn (fun M N : Bundled.{w} L.Structure => Nonempty (M ↪→[L] N)) K

-- Author: ‘DirectedOn‘ has type ‘DirectedOn.{u} {α : Type u} (r : α → α →
Prop) (s : Set α) : Prop‘, and returns True if for any ‘a, b‘ in ‘s‘,

there exists a ‘c‘ in ‘s‘ such that both ‘r a c‘ and ‘r b c‘ equal ‘True‘.

Definition 3.4 (Essentially countable). A class K of structures is essentially count-
able if it contains only countably many structures up to equivalence.

In Lean:

Essentially countable

-- Code in ModelTheory/Fraisse, written by Anderson [AKWb]
/-- The equivalence relation on bundled ‘L.Structure‘s indicating that they

are isomorphic. -/

instance equivSetoid : Setoid (Bundled.{w} L.Structure) where

r M N := Nonempty (M ≃[L] N)

iseqv := . . .

-- Author: For a function ‘(f : X → Y)‘, and a set ‘(A : set X)‘, we can

write ‘f ’’ A‘ for the image of ‘A‘ by ‘f‘.

-- Author: If there is an instance of an equivalence relation on a type ‘X‘,

then Quotient.mk’ is the quotient map, therefore the definition is saying

that the image of ‘K‘ in the quotient with respect to the equivalence

relation of being equivalent as L-structures is countable.

def is_essentially_countable : Prop := (Quotient.mk’ ’’ K).Countable

23

The non-empty classes verifying these properties are exactly the classes corresponding
to ages of countable structures.

Proposition 3.5. Let K be a non-empty class of finitely generated structures.
Then K has the hereditary and joint embedding property and is essentially count-
able, if and only if there exists a countable structure M such that K = Age M .

Proof. The ’if’ part is clear, so we will show the ’only if’ part. Suppose that K has the
hereditary and joint embedding property, and is essentially countable. Let M1,M2, . . .
be a sequence of structures in K such that any structure in K is equivalent to some Mi.
Then, we can define a sequence

M1 =: N1 ↪→ N2 ↪→ . . .

of structures using the joint property, by taking Nn+1 a structure in K in which both
Mn+1 and Nn embed. We define M as the direct limit of this sequence, and fi : Ni ↪→M
the canonical embeddings. Any finite set A ⊆M as a preimage A′ ⊆ Ni for some integer
i, and the map of closure A′ through fi is equal to closure A, therefore any finitely
generated substructure of M has a preimage in some component, and we get

Age M =
⋃
i∈N

Age Ni = K

The result we use at the end of the proof can be generalized: the age of a direct limit is
the union of the age of each component.

Lemma 3.6 (Age of a direct limit). For G a directed system indexed by ι,

Age (lim G) =
⋃
i∈ι

Age Gi

This lemma was already present in Mathlib and we will need it to prove the existence
of Fräıssé limits:

Age of a direct limit

-- Code written by Anderson, in ModelTheory/Fraisse [AKWb]
/-- The age of a direct limit of structures is the union of the ages of the

structures. -/

theorem age_directLimit {ι : Type w} [Preorder ι] [IsDirected ι (· ≤ ·)]
[Nonempty ι]
(G : ι → Type max w w’) [∀ i, L.Structure (G i)] (f : ∀ i j, i ≤ j → G i

↪→[L] G j)

[DirectedSystem G fun i j h => f i j h] : L.age (DirectLimit G f) =
⋃

i : ι
, L.age (G i) := . . .

24

Definition 3.7 (Amalgamation property). A class K of structures has the amalga-
mation property if for any M,N,P ∈ K, f : M ↪→ N , g : M ↪→ P , there is Q ∈ K
and two embeddings f ′ : N ↪→ Q, g′ : P ↪→ Q, such that

f ′ ◦ f = g′ ◦ g

In Lean:

Amalgamation property

-- Code in ModelTheory/Fraisse, written by Anderson [AKWb]
/-- A class ‘K‘ has the amalgamation property when for any pair of embeddings

of a structure ‘M‘ in ‘K‘ into other structures in ‘K‘, those two

structures can be embedded into a fourth structure in ‘K‘ such that the

resulting square of embeddings commutes. -/

def Amalgamation : Prop :=

∀ (M N P : Bundled.{w} L.Structure) (MN : M ↪→[L] N) (MP : M ↪→[L] P),

M ∈ K → N ∈ K → P ∈ K → ∃ (Q : Bundled.{w} L.Structure) (NQ : N ↪→[L]

Q) (PQ : P ↪→[L] Q),

Q ∈ K ∧ NQ.comp MN = PQ.comp MP

Definition 3.8. A structure M is ultrahomogeneous if any equivalence f between
finitely generated substructures of M can be extended to an automorphism of M .

We could also formulate this property by saying that for any substructure S of M , and
any embedding f : S ↪→M , there exists an equivalence F : M ≃M such that

F ◦ inclS = f

with inclS : S ↪→M being simply the inclusion, and this is how it was written in Mathlib:

ultrahomogeneity

-- Code in ModelTheory/Fraisse, written by Anderson [AKWb]
/-- A structure ‘M‘ is ultrahomogeneous if every embedding of a finitely

generated substructure into ‘M‘ extends to an automorphism of ‘M‘. -/

def IsUltrahomogeneous : Prop :=

∀ (S : L.Substructure M) (_ : S.FG) (f : S ↪→[L] M),

∃ g : M ≃[L] M, f = g.toEmbedding.comp S.subtype

The age of a structure M doesn’t always have the amalgamation property, but it does
if M is ultrahomogeneous:

Lemma 3.9. If a structure M is ultrahomogeneous, then Age M has the amalga-

25

mation property.

Proof. Let’s suppose we have f : A ↪→ B, g : A ↪→ C for some A,B,C ∈ Age M . We
can see B and C as finitely generated substructures of M , and g ◦ f−1 as an equiva-
lence between finitely generated substructures in B and C. Using the ultrahomogenous
property, we can get an automorphism F : M ≃M extending g ◦ f−1. We define

D := closure (F (B) ∪ C)

and defining f ′ : B ↪→ D as the restriction of F to B, and g′ : C ↪→ D simply as the
inclusion, since f ′ restricted to f(A) is equal to F restricted to f(A) which is equal to
g ◦ f−1, we indeed get

f ′ ◦ f = (g ◦ f−1) ◦ f = g = g′ ◦ g

This is not an if and only if: for example, N as a linear order is not ultrahomogeneous,
since the partial equivalence sending 2 to 1 cannot be extended to an automorphism,
but its age contains all finite linear orders and has the amalgamation property. However,
there is an ultrahomogeneous linear order with the same age: Q, which is the Fräıssé
limit of the class of finite linear orders, as we will see.

Definition 3.10 (Fräıssé class). A non-empty class K of finitely generated struc-
tures is Fräıssé if K has the hereditary, joint embedding, amalgamation properties
and is essentially countable.

Definition 3.11 (Fräıssé limit). For a class K of structures, a structure M is a
Fräıssé limit of K if K = Age M and M is countable and ultrahomogeneous.

In Lean:

Fräıssé class and Fräıssé limit

-- Code in ModelTheory/Fraisse, written by Anderson [AKWb]
/-- A Fraisse class is a nonempty, isomorphism-invariant, essentially

countable class of structures satisfying the hereditary, joint embedding,

and amalgamation properties. -/

class IsFraisse : Prop where

is_nonempty : K.Nonempty

FG : ∀ M : Bundled.{w} L.Structure, M ∈ K → Structure.FG L M

is_essentially_countable : (Quotient.mk’ ’’ K).Countable

hereditary : Hereditary K

jointEmbedding : JointEmbedding K

amalgamation : Amalgamation K

26

/-- A structure ‘M‘ is a Fraisse limit for a class ‘K‘ if it is countable,

ultrahomogeneous, and has age ‘K‘. -/

structure IsFraisseLimit [Countable M] : Prop where

ultrahomogeneous : IsUltrahomogeneous L M

age : L.age M = K

From Proposition 3.5 and lemma 3.9, we know that the age of a countable ultraho-
mogeneous structure is a Fräıssé class. The rest of this section will be devoted to prove
that any Fräıssé class has a Fräıssé limit, and that this Fräıssé limit is unique up to
equivalence.

3.4 Cardinality of FGEquiv

During the recursive construction of the directed system whose limit will be the Fräıssé
limit, we will extend a partial equivalence at each step, therefore we need to make sure
that there are not too many of them:

Lemma 3.12. Let M be a countable structure. Then there are only countably
many equivalences between finitely generated substructures of M .

Proof. M has only countably many finitely generated substructures, and for each finitely
generated substructure A, there are only countably many homomorphisms from A to
M , since each map is uniquely characterized by its restriction on the finite generating
set.

So we need two intermediate results to prove this in Lean: that a countable structure
has countably many finitely generated substructures, and that there are only countably
many homomorphisms between a finitely generated structure and a countable structure.

Countably many finitely generated substructures

-- Code in ModelTheory/FinitelyGenerated [Kol24]
theorem Substructure.countable_fg_substructures_of_countable [Countable M] :

Countable { S : L.Substructure M // S.FG } := by

-- We define a function ‘g‘ sending each finitely generated substructure to

a finite set generating it.

let g : { S : L.Substructure M // S.FG } → Finset M :=

fun S 7→ Exists.choose S.prop

-- We show that ‘g‘ is injective.

have g_inj : Function.Injective g := by

intro S S’ h

-- We have ‘g S = g S’‘, and we need to show ‘S = S’‘. The next line

reduces the goal to having only to prove that they are equal as

substructures, not as finitely generate substructures.

apply Subtype.eq

-- We replace ‘S‘ and ‘S’‘ by the closure of ‘g S‘ and the closure of ‘g

S’‘, and we conclude from the equality ‘g S = g S’‘.

27

rw [(Exists.choose_spec S.prop).symm, (Exists.choose_spec S’.prop).symm]

exact congr_arg ((closure L) ◦ Finset.toSet) h

-- It is already proven in Mathlib that a countable type has only countably

many finite subsets, and we gave an injective map to the type of finite

subsets, therefore we can conclude that the type of finitely generated

substructures is countable.

exact Function.Embedding.countable ⟨g, g_inj⟩

Countably many homomorphisms and embeddings

-- Code in ModelTheory/FinitelyGenerated [Kol24]
theorem FG.countable_hom (N : Type*) [L.Structure N] [Countable N] (h : FG L

M) :

Countable (M →[L] N) := by

-- We get a finite set ‘S‘ generating ‘M‘.

let ⟨S, finite_S, closure_S⟩ := fg_iff.1 h

-- We define a function ‘g‘ sending each homomorphism to its restriction to

‘S‘.

let g : (M →[L] N) → (S → N) :=

fun f 7→ f ◦ (↑)
-- We use the lemma ‘Hom.eq_of_eqOn_dense‘ saying that two homomorphisms

that are equal on a generating set must be equal, to conclude that ‘g‘ is

injective.

have g_inj : Function.Injective g := by

intro f f’ h

apply Hom.eq_of_eqOn_dense closure_S

intro x x_in_S

exact congr_fun h ⟨x, x_in_S⟩
-- Lean already knows that ‘S‘ as a set is finite, but we need to tell

explicitely that ‘S‘ as a type is finite.

have : Finite ↑S := (S.finite_coe_iff).2 finite_S

-- The fact that there are only countably many functions between a finite

type and a countable type is already present in Mathlib, so we can

conclude that the type ‘M →[L] N‘ is countable too.

exact Function.Embedding.countable ⟨g, g_inj⟩

And finally, we can prove lemma 3.12 in Lean:

-- Code in ModelTheory/FinitelyGenerated [Kol24]
theorem countable_self_fgequiv_of_countable [Countable M] :

Countable (L.FGEquiv M M) := by

-- We define a function ‘g‘ associating to each ‘FGEquiv‘ ‘f‘ the pair

consisting of its domain and the underlying equivalence composed with the

inclusion in ‘M‘.

let g : L.FGEquiv M M →
Σ U : { S : L.Substructure M // S.FG }, U.val →[L] M :=

fun f 7→ ⟨⟨f.val.dom, f.prop⟩, (subtype _).toHom.comp f.val.toEquiv.toHom⟩

-- We show that ‘g‘ is injective.

have g_inj : Function.Injective g := by

28

intro f f’ h

-- We have ‘g f = g f’‘, and we want to conclude that ‘f = f’‘. The next

line reduces the goal to having to show that ‘f‘ and ‘f’‘ are equal as

partial equivalences instead of as ‘FGEquiv‘.

apply Subtype.eq

-- Since ‘g f = g f’‘, we can deduce ‘f.dom = f’.dom‘, and we want to ask

Lean to replace every instance of ‘f.dom‘ by ‘f’.dom‘. However, for Lean

to be able to do that, we first need to decompose ‘f‘ to a combination of

its subparts: two substructures, an equivalence between them, and the fact

that its domain is finitely generated.

let ⟨⟨dom_f, cod_f, equiv_f⟩, f_fin⟩ := f

cases congr_arg (·.1) h

-- Two partial equivalences are equal if they have equal domains, and if

the image of any ‘x‘ in their domain by the composition of the inclusion

in the whole structure with themselves is the same. We use this result,

and the fact that ‘g f = g f’‘, to conclude.

apply PartialEquiv.ext (by rfl)

simp only [g, Sigma.mk.inj_iff, heq_eq_eq, true_and] at h

exact fun x hx 7→ congr_fun (congr_arg (↑) h) ⟨x, hx⟩

-- We need to tell explicitely to Lean that for any element of the subtype

of substructures that are finitely generated, the underlying substructure

is finitely generated.

have : ∀ U : { S : L.Substructure M // S.FG }, Structure.FG L U.val :=

fun U 7→ (U.val.fg_iff_structure_fg.1 U.prop)

-- We can conclude. Lean knows that if I have a countable type ‘T‘, and a

function ‘F‘ associating to each ‘t : T‘ a countable structure, then the

type ‘Σ t : T, F t‘ of pairs of an element ‘t : T‘ and an element ‘a : F

t‘ is countable. It also knows that there are only countably many finitely

generated substructures, and for finitely generated substructure,

countably many homomorphisms to ‘M‘, and is capable of combining

everything automatically to conclude that

-- ‘Σ U : { S : L.Substructure M // S.FG }, U.val →[L] M‘

-- is countable. This is the power of type class inference in Lean: it is

capable of chaining instances automatically.

exact Function.Embedding.countable ⟨g, g_inj⟩

3.5 Fräıssé limits exist

Countable ultrahomogeneous structures have a nice characterization:

Lemma 3.13. A countable structure M is ultrahomogeneous if and only if it forms
an extension pair with itself.

Proof. If M is ultrahomogeneous, any equivalence between finitely generated substruc-
tures can be extended to an automorphism, so it can be extended to contain any element
in its domain. We get the other direction from Theorem 2.1.

29

We proved this result in Lean in the following way:

-- Code in ModelTheory/Fraisse [Kol24]
/-- A countably generated structure is ultrahomogeneous if and only if any

equivalence between finitely generated substructures can be extended to

any element in the domain.-/

theorem isUltrahomogeneous_iff_IsExtensionPair (M_CG : CG L M) :

L.IsUltrahomogeneous M ↔
L.IsExtensionPair M M := by

constructor

-- Forward implication

· intro M_homog ⟨f, f_FG⟩ m

-- We have a partial equivalence ‘f‘ between finitely generated

substructures, and an element ‘m : M‘. We need to define an extension of

‘f‘ which contains ‘m‘ in its domain.

-- We define ‘S‘ as the substructure generated by the domain of ‘f‘ and

‘m‘.

let S := f.dom ⊔ closure L {m}

have dom_le_S : f.dom ≤ S := le_sup_left

-- From ultrahomogeneity, we get an automorphism ‘F‘ extending ‘f‘.

let ⟨F, hF⟩ := M_homog _ f_FG f.toEmbedding

-- ‘f’‘ is the restriction of ‘F‘ to ‘S‘. This is the one we will use, and

we need to convince Lean that it has the right properties.

let f’ := F.toEmbedding.toPartialEquiv.domRestrict (A := S) (fun {|x|} a 7→
trivial)

use ⟨f’, FG.sup f_FG (fg_closure_singleton m)⟩

-- Its domain is ‘S‘ which contains ‘m‘, and its domain contains the

domain of ‘f‘, by the properties of the supremum.

refine ⟨le_sup_right (b := closure L {m}) (subset_closure (mem_singleton

m)), ⟨dom_le_S, ?_⟩⟩

-- We still need to show that ‘f’‘ extends ‘f‘. For this, it is sufficient

to show that elements in the domain of ‘f‘ have the the same image by both

maps.

ext

simp only [Embedding.comp_apply, Equiv.coe_toEmbedding, coeSubtype, ←
f.toEmbedding_apply, hF]

rfl

-- Backward implication

· intro h S S_FG f

-- We have a substructure ‘S‘ and an embedding ‘f : S ↪→[L] M‘. We need to

get an automorphism extending ‘f‘.

-- We apply back-and-forth to get an automorphism ‘g‘

let ⟨g, ⟨dom_le_dom, eq⟩⟩ :=

equiv_between_cg M_CG M_CG ⟨⟨S, f.toHom.range, f.equivRange⟩, S_FG⟩ h h

30

use g

-- The rest is just to convince Lean that ‘g‘ indeed extends ‘f‘.

simp only [Embedding.subtype_equivRange] at eq

rw [← eq]

ext

rfl

The following definition will be quite useful:

Definition 3.14 (Fully extendable). Let f be an equivalence between substructures
of M , and g : M ↪→ N an embedding. Then f is fully extendable through g if there
exists an equivalence f ′ : A ≃ B between substructures of N such that f ′ extends
the mapping of f through g and g(M) ⊆ A.

In Lean:

Is fully extendable through

-- Code in ModelTheory/PartialEquivs [Kol24]
/-- A partial equivalence ‘f‘ between substructures of ‘M‘ is fully extendable

through an embedding ‘g‘ if there is partial equivalence between

substructures of the codomain of ‘g‘ which extends the map of ‘f‘ and

whose domain contains the image of ‘M‘.-/

def is_fully_extendable_through (f : M ≃p[L] M) (g : M ↪→[L] N) : Prop :=

∃ f’, f.map g ≤ f’ ∧ g.toHom.range ≤ f’.dom

Fräıssé classes have the following nice property:

Lemma 3.15. Let K be a Fräıssé class, M ∈ K, A,B ⊆ M finitely generated
substructures, and f : A ≃ B, then there exists N ∈ K and g : M ↪→ N such that
f is fully extendable through g.

Proof. Applying the amalgamation property to inclA : A ↪→M and inclB ◦ f : A ↪→M ,
we get a structure N ∈ K and two embeddings g, g′ : M ↪→ N such that

g′ = g ◦ f

We define f ′ := g′ ◦ g−1. Then g(M) is in the domain of f ′, and for any a ∈ A, we have

f ′ ◦ g(a) = g′(a) = g ◦ f(a)

therefore f ′ extends the mapping of f through g.

We write this lemma in Lean as:

31

-- Code in ModelTheory/Fraisse [Kol24]
theorem can_extend_FGEquiv (S : K) (f : S ≃p[L] S) (f_fg : f.dom.FG) :

∃ T : K, ∃ incl : S ↪→[L] T, f.is_fully_extendable_through incl := . . .

We can now prove the existence of Fräıssé limits:

Theorem 3.16 (Existence of Fräıssé limits). Any Fräıssé class has a Fräıssé limit.

Proof. Let K be a Fräıssé class. Let M0,M1, . . . be an essentially surjective sequence
of structures in K, meaning that any structure N ∈ K is equivalent to some Mi. By
lemma 3.12, for any M : K, there are only countably many equivalences between finitely
generated substructures of M , so we can fix a sequence f(M, 0), f(M, 1), . . . of all the
equivalences between finitely generated substructures in M . We also fix two maps P,Q :
N → N with the property that n 7→ (P (n), Q(n)) is surjective on N2 and P (n), Q(n) ≤
n. We then define a sequence of structures and embeddings N0 ↪→ N1 ↪→ N2 ↪→ . . .
recursively in the following way: We initialize with N0 := M0. For the inductive step, we
first get f ′

i a partial equivalence on Ni by mapping f(NP (i), Q(i)) through the sequence
of embeddings

NP (i) ↪→ NP (i)+1 ↪→ . . . ↪→ Ni.

We get Ni+1 and gi : Ni ↪→ Ni+1 by first applying the lemma 3.15 on f ′
i and then using

the join property with Mi+1. Note that it means that f ′
i is fully extendable by gi, and

since f ′
i is the mapping of f(NP (i), Q(i)), this partial equivalence is fully extendable by

the composition of embeddings

NP (i) ↪→ NP (i)+1 ↪→ . . . ↪→ Ni+1.

We claim that the direct limit N of this sequence is a Fräıssé limit. Since Mi has
an embedding into the component Ni, it has an embedding into N , so K ⊆ AgeN ,
and AgeN =

⋃
i AgeNi ⊆ K, so K = AgeN , and N is the direct limit of countably

many countable structures, so it is countable. We still need to show that it forms an
extension pair with itself. Let f : A ≃ B be an equivalence between finitely generated
substructures, and m ∈M , and S ⊆ A and T ⊆ B finite generating sets. Then there is
some i ∈ N such that S ∪ T ∪ {m} has a preimage in Ni, therefore A and B also have a
preimage in Ni, and thus f must also have a preimage f(Ni, j) in Ni. Let k ∈ N be a
natural number such that P (k) = i and Q(k) = j. We used lemma 3.15 to define Nk+1,
so we know that there is a partial equivalence in Nk+1 whose domain contains the image
of Ni and which extends the mapping of f(Ni, j). In particular, its domain contains the
preimage of m and its mapping to N is an extension of f , so we can conclude that N is
ultrahomogeneous.

In a set theoretical setting, instead of constructing a sequence of embeddings N0 ↪→
N1 ↪→ . . ., we generally directly suppose that it is an inclusion of sets N0 ⊆ N1 ⊆ . . .,
which makes the proof cleaner, since there is no need to talk about mappings and

32

preimages, the direct limit being simply the union. But when working with types, there
is no notion of ”type inclusion” akin to the notion of ”set inclusion”. Another thing that
makes this proof less straightforward to formalize in Lean is that to define the induction
step Ni+1, we need to have access to all previous steps Nj and maps between them.
Writing the type of this construction is awkward:

-- This would not work since you don’t have access to the maps between them.

def system : N → K := . . .

-- Another idea would be to directly define the type as a sequence of

embeddings between elements of ‘K‘, but without the information that these

maps are composable, it is impossible to write the definition of the

inductive step.

def system : N → (A : K) × (B : K) × (A ↪→[L] B) := . . .

-- Lean allows mutual recursive definitions, and you can write multiple

definitions depending on each other, but these definitions cannot depend

on each other in their types, so the following is not accepted by Lean:

mutual

def system : N → K := . . .

def system_maps : (n : N) → (system n ↪→[L] system (n+1)) := . . .
end

In the end, we used the following type that contains all the information needed, before
being able to write cleanly the sequence of structures:

-- Code in ModelTheory/Fraisse [Kol24]
/-- recursive construction containing all the information to define ‘system‘

and ‘maps_system‘. The left handside of the image gives a sequence of

structures whose limit will be the Fraisse limit. The right handside

stores all the previous structures in the sequence, and maps from them to

the new structure.-/

noncomputable def init_system : (n : N) → (A : K) × (N → (B : K) × (B ↪→[L]

A))

We want init_system to have the following properties:

• (init_system n).1 is Nn.

• for m < n, (init_system n).2 m is the pair composed of Nm and the composition
of maps fn−1 ◦ . . . fm : Nm ↪→ Nn.

• (init_system n).2 n is (Nn, idNn).

We don’t care what (init_system n).2 m is for m > n, since we won’t use it during the
rest of the proof, but in this case it will simply be the pair (Nn, idNn). To write the
definition, we use the three following functions:

extend and join

33

-- Code in ModelTheory/Fraisse [Kol24]
/-- Extends a ‘FGEquiv‘, then joins another structure.-/

noncomputable def extend_and_join (B : K) {A : K} {f : A ≃p[L] A} (f_fg :

f.dom.FG) :

(C : K) × (A ↪→[L] C) := . . .

/-- An essentially surjective sequence of L.structures in a Fraisse class. -/

noncomputable def ess_surj_sequence (n : N) : K := . . .

/-- A surjective sequence of ‘FGEquiv‘.-/

noncomputable def sequence_FGEquiv (A : K) (n : N) : FGEquiv L A A := . . .

And the surjective function N → N2 we will use is this function that was already
present in Mathlib and is in fact bijective:

pair and unpair

-- Code in Data/Nat/Unpair, written by Leonardo de Moura and Mario Carneiro

[dMC]
/-- Unpairing function for the natural numbers. -/

def unpair (n : N) : N × N :=

let s := sqrt n

if n - s * s < s then (n - s * s, s) else (s, n - s * s - s)

def pair (a b : N) : N :=

if a < b then b * b + a else a * a + a + b

theorem pair_unpair (n : N) : pair (unpair n).1 (unpair n).2 = n := . . .

theorem unpair_pair (a b : N) : unpair (pair a b) = (a, b) := . . .

theorem unpair_left_le : ∀ n : N, (unpair n).1 ≤ n := . . .

theorem unpair_right_le (n : N) : (unpair n).2 ≤ n := . . .

We can finally write this complicated definition:

init system and system

-- Code in ModelTheory/Fraisse [Kol24]
/-- recursive construction containing all the information to define ‘system‘

and ‘maps_system‘.

The left handside of the image gives a sequence of structures whose limit will

be the Fraisse limit.

The right handside stores all the previous structures in the sequence, and

maps from them to the new structure.-/

noncomputable def init_system : (n : N) → (A : K) × (N → (B : K) × (B ↪→[L]

A))

-- Initial value

| 0 => ⟨ess_surj_sequence K_fraisse 0,

fun _ => ⟨_, Embedding.refl L _⟩⟩

34

-- Inductive step

| n + 1 => by

-- ‘p‘ is P (n) in the proof

let p := (Nat.unpair n).1

-- ‘q‘ is Q(n)
let q := (Nat.unpair n).2

let Nn := (init_system n).1

let Sn := (init_system n).2

let Np := (Sn p).1

-- ‘Np_to_Nn‘ is the composition gn−1 ◦ . . . ◦ gp.
let Np_to_Nn : Np ↪→[L] Nn := (Sn p).2

-- ‘f‘ is f(Np, q) in the proof

let ⟨f, f_fg⟩ := sequence_FGEquiv K_fraisse Np q

-- ‘N‘ is Nn+1, and ‘Nn_to_N‘ is gn
let ⟨N, Nn_to_N⟩ := extend_and_join K_fraisse

(A := Nn) (B := ess_surj_sequence K_fraisse (n+1))

(f := f.map Np_to_Nn) (PartialEquiv.map_dom Np_to_Nn f ▷ FG.map _ f_fg)

exact ⟨N, fun m 7→ if m ≤ n then ⟨(Sn m).1, Nn_to_N.comp ((Sn m).2)⟩
else ⟨_, Embedding.refl L _⟩⟩

/-- Sequence of structures whose direct limit is the Fraisse limit.-/

noncomputable def system (n : N) : K := (init_system K_fraisse n).1

As we have defined everything, we have the following property:

-- Code in ModelTheory/Fraisse [Kol24]
-- The property that the right side indeed serves as memory for the structures

that appeared in the left side of ‘init_system‘

theorem system_eq {n : N} {m : N} (h : m ≤ n) :

system K_fraisse m = ((init_system K_fraisse n).2 m).1 := . . .

-- Same as the previous lemma, but the equality is as ‘L.Structure‘, not as

elements of ‘K‘.

theorem system_eq_as_structures {n : N} {m : N} (h : m ≤ n) :

(system K_fraisse m : Bundled.{w} L.Structure) = ((init_system K_fraisse

n).2 m).1 := . . .

But this is only a propositional equality, not a definitional equality, which means that
((init_system K_fraisse n).2 m).2 has type

init_system K_fraisse n).2 m).2 : ((init_system K_fraisse n).2 m).1 ↪→[L]

system K_fraisse n

and cannot directly be used directly to define the map system K_fraisse m ↪→[L]

system K_fraisse n. We simply composed it with the embedding we get from the equal-
ity.

maps system

-- Code in ModelTheory/Fraisse [Kol24]

35

/-- Maps to have a directed system on the sequence given by ‘system‘. -/

noncomputable def maps_system {m n : N} (h : m ≤ n):

system K_fraisse m ↪→[L] system K_fraisse n :=

((init_system K_fraisse n).2 m).2.comp (Embedding.ofEq

(system_eq_as_structures K_fraisse h))

Another problem we have is that the definition of init_system contains an ”if-then-
else”, and we will again have problems of types that are equal propositionally but not
definitionally and for which Lean needs help to simplify things:

variable (f : A ↪→[L] C) (g : B ↪→[L] C)

variable (h : P = True)

-- The following is ill-typed

#check (if P then (⟨A, f⟩ : (B : K) × (B ↪→[L] C)) else ⟨B, g⟩).2 = f

/-

type mismatch

f

has type

↑↑A ↪→[L] ↑↑C : Type w

but is expected to have type

↑↑(if P then ⟨A, f⟩ else ⟨B, g⟩).fst ↪→[L] ↑↑C : Type w

-/

So to simplify this expression, we need again to compose it with an embedding we get
from the equality (if P then (⟨A, f⟩ : (B : K) × (B ↪→[L] C)) else ⟨B, g⟩).1 = A:

-- Code in ModelTheory/Fraisse [Kol24]
theorem if_then_else_left_struct {A B C: K} {P : Prop} [Decidable P] (f : A ↪→

[L] C)

(g : B ↪→[L] C) (h : P = True) :

(if P then (⟨A, f⟩ : (B : K) × (B ↪→[L] C)) else ⟨B, g⟩).1 = A := . . .

theorem if_then_else_left {A B C: K} {P : Prop} [Decidable P] (f : A ↪→[L] C)

(g : B ↪→[L] C) (h : P = True) :

(if P then (⟨A, f⟩ : (B : K) × (B ↪→[L] C)) else ⟨B, g⟩).2 =

f.comp (Embedding.ofEq (congr_arg _ (if_then_else_left_struct f g h)))

:= . . .

The auxiliary result if_then_else_left may seem to transform a simple formula into
a more complicated formula, but in fact the new form f.comp (Embedding.ofEq _) will
be easier for Lean to deal with and to see that it is essentially equal to f . We have of
course a similar result for the right hand-side:

-- Code in ModelTheory/Fraisse [Kol24]
theorem if_then_else_right_struct {A B C: K} {P : Prop} [Decidable P] (f : A ↪→

[L] C)

(g : B ↪→[L] C) (h : P = False) :

(if P then (⟨A, f⟩ : (B : K) × (B ↪→[L] C)) else ⟨B, g⟩).1 = B := . . .

theorem if_then_else_right {A B C: K} {P : Prop} [Decidable P] (f : A ↪→[L] C)

36

(g : B ↪→[L] C) (h : P = False) :

(if P then (⟨A, f⟩ : (B : K) × (B ↪→[L] C)) else ⟨B, g⟩).2 =

g.comp (Embedding.ofEq (congr_arg _ (if_then_else_right_struct f g

h))) := . . .

We now have our sequence of structures and we need to prove three properties:

1. The maps given by maps_system commute.

2. Any structure in K embeds in system n for some n.

3. For any m, any FGEquiv f in system m, there is some n > m such that the map
system m ↪→ system n extends f .

We get Property 1. by showing that for m ≤ n the map system m ↪→[L] system n+1 is
equal to the composition system m ↪→ system n ↪→ system n+1, and then doing a simple
proof by induction.

Property 1

-- Code in ModelTheory/Fraisse [Kol24]
/-- Map between successive structures in ‘system‘.-/

noncomputable def map_step (m : N) : system K_fraisse m ↪→[L] system K_fraisse

(m+1) :=

maps_system K_fraisse (Nat.le_add_right m 1)

theorem factorize_with_map_step {m n : N} (h : m ≤ n) :

maps_system K_fraisse (h.trans (Nat.le_add_right n 1)) =

(map_step K_fraisse n).comp (maps_system K_fraisse h) := . . .

theorem transitive_maps_system {m n k : N} (h : m ≤ n) (h’ : n ≤ k) :

(maps_system K_fraisse h’).comp (maps_system K_fraisse h) =

maps_system K_fraisse (h.trans h’) := . . .

Property 2 follows easily from the fact that any structure in K is equivalent to some
ess_surj_sequence n, and that we join this structure at step n:

Property 2

-- Code in ModelTheory/Fraisse [Kol24]
theorem contains_K : ∀ M ∈ K, ∃ n, Nonempty (M ↪→[L] system K_fraisse n) := by

intro A h

-- We get ‘n‘ and an equivalence ‘g : M ≃[L] ess_surj_sequence n‘.

let ⟨n, ⟨g⟩⟩ := ess_surj_sequence_spec K_fraisse ⟨A, h⟩
use n

constructor

-- We need to find an embedding ‘M ↪→[L] system K_fraisse n‘

-- Since we can compose something with ‘g‘, we can reduce to having to find

an embedding ‘ess_surj_sequence n ↪→[L] system K_fraisse n‘.

apply Nonempty.map (Embedding.comp · g.toEmbedding)

37

-- We treat two cases: ‘n = 0‘ and ‘n = m + 1‘.

cases n

-- For ‘n = 0‘ we can take the identity since the definition of ‘system 0‘

is ‘ess_surj_sequence 0‘.

· exact ⟨Embedding.refl ..⟩
-- For ‘n = m + 1‘, it follows from the property of the join function that

we have an embedding.

· simp only [system, init_system]

exact extend_and_join_spec_2 ..

Now we will prove Property 3. The key fact is for that any FGEquiv f defined on
system m, we know that f = sequence_FGEquiv (system m) n for some n. In the defini-
tion of init_system, we see that at step (Nat.pair m n) + 1, we extend the mapping of
sequence_FGEquiv ((init_system K_fraisse (Nat.pair m n)).2 m).1 n, and since sequence_FGEquiv
(system m) n = ((init_system K_fraisse (Nat.pair m n)).2 m).1, it should also ex-
tend f , and the bulk of the proof will be to convince Lean of that.

Property 3

-- Code in ModelTheory/Fraisse [Kol24]
/-- The ‘FGEquiv‘ which is extended at step ‘n+1‘ in ‘system‘.-/

noncomputable def FGEquiv_extended (n : N) :

FGEquiv L ((init_system K_fraisse n).2 (Nat.unpair n).1).1

((init_system K_fraisse n).2 (Nat.unpair n).1).1 :=

sequence_FGEquiv K_fraisse ((init_system K_fraisse n).2 (Nat.unpair n).1).1

(Nat.unpair n).2

theorem map_step_is_extend_and_join (r : N) :

map_step K_fraisse r = ((extend_and_join K_fraisse (ess_surj_sequence

K_fraisse (r+1))

(f := ((FGEquiv_extended K_fraisse r).1.map

((init_system K_fraisse r).2 (Nat.unpair r).1).2))

(PartialEquiv.map_dom (((init_system K_fraisse r).2

(Nat.unpair r).1).2) _ ▷ FG.map _ (FGEquiv_extended K_fraisse

r).2)).2) := . . .

theorem all_fgequiv_extend {m : N} (f : L.FGEquiv (system _ m) (system _ m)) :

∃ n, ∃ h : m ≤ n, f.val.is_fully_extendable_through (maps_system K_fraisse

h) := by

-- First, we reduce to the case ‘f = sequence_FGEquiv (system (Nat.unpair

r).1) (Nat.unpair r).2‘

let ⟨n, hn⟩ := sequence_FGEquiv_spec K_fraisse f

let r := Nat.pair m n

have h_unpair_m : m = (Nat.unpair r).1 := by simp only [Nat.unpair_pair, r]

have h_unpair_n : n = (Nat.unpair r).2 := by simp only [Nat.unpair_pair, r]

-- We would like to replace ‘m‘ by ‘(Nat.unpair r).1‘, and similarly for

‘n‘, but Lean does not accept it, because ‘r‘ is defined in function of

‘m‘ and ‘n‘, and we would get a circular definition. So we first need Lean

to forget the value of ‘r‘, so that it becomes a generic natural.

38

clear_value r

cases h_unpair_m

cases h_unpair_n

use r+1

use (Nat.unpair_left_le r).trans (Nat.le_add_right r 1)

-- The goal is now to prove that ‘f‘ is extended by the embedding ‘system

(Nat.unpair r).1 ↪→[L] system (r+1)‘.

-- We want to apply ‘map_step_is_extend_and_join‘ and the property that

‘extend_and_join‘ extends a partial equivalence, so we need to replace ‘f‘

by ‘FGEquiv_extended r‘ in the goal.

let f’ := f.1.map (Embedding.ofEq (system_eq_as_structures K_fraisse

(Nat.unpair_left_le r)))

have h_f’_map : f’.map ((init_system _ r).2 (Nat.unpair r).1).2 =

f.1.map (maps_system _ (Nat.unpair_left_le r)) := by

apply PartialEquiv.map_map

cases hn

-- mapping ‘f‘ through the embedding we get from the equality ‘system_eq_as

structures‘ gets us ‘FGEquiv_extended r‘.

have h_f’ : f’ = FGEquiv_extended K_fraisse r := by

have H {A B : K} (h : A = B) :

(sequence_FGEquiv K_fraisse A (Nat.unpair r).2).val.map

(Embedding.ofEq (congr_arg Subtype.val h)) =

(sequence_FGEquiv K_fraisse B (Nat.unpair r).2).val := by

cases h

simp only [Embedding.ofEq_refl, PartialEquiv.map_refl]

exact H (system_eq K_fraisse (Nat.unpair_left_le r))

-- We replace ‘system (Nat.unpair r).1 ↪→[L] system (r+1)‘ by the

composition ‘system (Nat.unpair r).1 ↪→[L] system r ↪→[L] system (r+1)‘

rw [← transitive_maps_system K_fraisse (Nat.unpair_left_le r)

(Nat.le_add_right r 1)]

-- We apply ‘comp_is_fully_extendable_through‘, which says that if the

mapping of ‘f‘ through ‘g‘ is extended by ‘h‘, then ‘f‘ is extended by

‘h.comp g‘.

apply PartialEquiv.comp_is_fully_extendable_through

-- We now have to show that the mapping of ‘f‘ to ‘system r‘ is extended by

the embedding ‘system r ↪→[L] system (r+1)‘. Using ‘h_f’‘ and ‘h_f’_map‘,

we can reduce the goal to show that the mapping of ‘FGEquiv_extended r‘ is

extended, which we get from ‘map_step_is_extend_and_join‘.

rw [← h_f’_map, h_f’, ← map_step, map_step_is_extend_and_join]

apply extend_and_join_spec_1

We finally have everything we need to prove that the direct limit of this system is a
Fräıssé limit.

Existence of Fräıssé limits

-- Code in ModelTheory/Fraisse [Kol24]
/-- A Fraisse class in a language with countably many functions has a Fraisse

39

limit.-/

theorem exists_fraisse_limit (K_fraisse : IsFraisse K) : ∃ M : Bundled.{w}

L.Structure,

∃ _ : Countable M, IsFraisseLimit K M := by

-- Auxiliary properties to be able to take the direct limit

let _ (i : N) : L.Structure ((Bundled.α ◦ Subtype.val ◦ system K_fraisse) i)

:=

Bundled.str _

have _ : DirectedSystem (Bundled.α ◦ Subtype.val ◦ system K_fraisse)

fun _ _ h 7→ ⇑(maps_system K_fraisse h) := by

constructor

intro _ _

simp only [Function.comp_apply, maps_system_self, Embedding.refl_apply]

intro _ _ _ _ _ _

simp only [Function.comp_apply, ← Embedding.comp_apply,

transitive_maps_system]

-- ‘M‘ is the direct limit of ‘system‘.

let M := DirectLimit (L := L) (Bundled.α ◦ Subtype.val ◦ system K_fraisse)

(@maps_system _ _ K_fraisse _)

use ⟨M, DirectLimit.instStructureDirectLimit ..⟩
-- ‘M‘ is countable because it is the direct limit of countably many

countable structures.

have M_c : Countable M := by

rw [← Structure.cg_iff_countable (L := L)]

apply DirectLimit.cg

simp only [Function.comp_apply, Structure.cg_of_countable, implies_true]

use M_c

-- ‘of n‘ is the embedding of ‘system n‘ into ‘M‘.

let of (n : N) : (system K_fraisse n ↪→[L] M) :=

DirectLimit.of L N (Bundled.α ◦ Subtype.val ◦ system K_fraisse) _ n

refine ⟨?_, ?_⟩

-- We show that ‘M‘ is ultrahomogeneous‘, by showing that it forms an

extension pair with itself and the fact that it is equivalent to

ultrahomogeneous.

· rw [isUltrahomogeneous_iff_IsExtensionPair Structure.cg_of_countable]

intro ⟨f, f_fg⟩ m

-- We have ‘f‘ a partial equivalence between finitely generated

substructures of ‘M‘, and ‘m : M‘. The goal is to show that there is a

partial equivalence extending ‘f‘ and whose domain contains ‘m‘.

-- ‘A‘ is the substructure of ‘M‘ generated by the domain and codomain of

‘f‘ and ‘m‘.

let A := f.dom ⊔ f.cod ⊔ (closure L {m})

let A_fg : A.FG := FG.sup (FG.sup f_fg (f.dom_fg_iff_cod_fg.1 f_fg))

(fg_closure_singleton m)

-- ‘A’‘ is a substructure of ‘system n‘ whose mapping to ‘M‘ is equal to

‘A‘.

40

let ⟨n, A’, hA’⟩ := DirectLimit.exists_fg_substructure_in_Sigma A A_fg

-- So ‘A‘ is contained in the image of ‘system n‘ in ‘M‘.

have in_range : f.dom ⊔ f.cod ⊔ (closure L {m}) ≤ (of n).toHom.range := by

unfold A at hA’

rw [← hA’]

exact Hom.map_le_range

-- Therefore we can get ‘f’‘ a partial equivalence which is the preimage

of ‘f‘ in ‘system n‘.

let ⟨f’,f’_map⟩ := (PartialEquiv.exists_preimage_map_iff (of n) f).2

(le_sup_left.trans in_range)

have f’_fg : f’.dom.FG := by

apply FG.of_map_embedding (of n)

rwa [← PartialEquiv.map_dom, f’_map]

-- We show that ‘f’‘ is extended by ‘of n‘.

have H : f’.is_fully_extendable_through (of n) := by

-- By Property 3, there is some ‘m‘ such that the embedding ‘system n ↪→
[L] system m‘ extends ‘f’‘.

let ⟨m, hnm, f’_extended⟩ := all_fgequiv_extend K_fraisse ⟨f’, f’_fg⟩
unfold of

-- We can replace ‘of n‘ by the composition ‘system n ↪→[L] system m ↪→
[L] M‘

rw [← DirectLimit.of_comp_f (hij := hnm)]

-- We use a lemma saying that a partial equivalence ‘f‘ is extended by

‘g.comp h‘ if ‘f‘ is extended by ‘h‘.

exact PartialEquiv.is_fully_extendable_through_comp _ _ _ f’_extended

-- From the fact that ‘f’‘ is extended by ‘of n‘, we can get a partial

equivalence ‘g’‘ on ‘M‘ extending the mapping of ‘f’‘ and whose domain

contains the image of ‘system n‘.

let ⟨g’, map_f’_le, range_le_g’⟩ := H

-- And we define ‘g‘ by restricting the domain of ‘g’‘ to ‘A‘.

let g := g’.domRestrict (in_range.trans range_le_g’)

-- We show that ‘g‘ extends ‘f‘ by their definitions and a simple lemma on

restrictions of partial equivalences.

have f_le_g : (⟨f, f_fg⟩ : FGEquiv L M M) ≤ ⟨g, A_fg⟩ := by

rw [Subtype.mk_le_mk]

apply PartialEquiv.le_domRestrict

exact le_sup_left.trans le_sup_left

rw [f’_map] at map_f’_le

exact map_f’_le

-- ‘m‘ is in the domain of ‘g‘.

have m_in_dom : m ∈ g.dom := by

unfold g

unfold PartialEquiv.domRestrict

simp only

rw [← closure_eq f.dom, ← closure_eq f.cod, ← closure_union, ←
closure_union]

apply subset_closure

exact mem_union_right (f.dom ∪ (f.cod : Set M)) rfl

use ⟨g, A_fg⟩

41

-- We show that the age of ‘M‘ is exactly ‘K‘

· -- We use the lemma saying that the age of a direct limit is the union of

the ages of the components.

rw [age_directLimit]

apply Set.ext

intro S

-- We have a structure ‘S‘ and we want to show that it is contained in the

union of ages if and only if it is contained in ‘K‘.

-- ‘mem_iUnion‘ says that an element is contained in an union if and only

if it is contained in some component of the union.

rw [mem_iUnion]

refine ⟨?_, ?_⟩
· -- First suppose it is contained in some component. We use the hereditary

property of ‘K‘.

rintro ⟨i, S_in_age⟩
exact K_fraisse.hereditary ((Subtype.val ◦ system K_fraisse) i)

(by simp only [Function.comp_apply, Subtype.coe_prop]) S_in_age

· -- Then suppose it is contained in ‘K‘. We use Property 2.

intro S_in_K

let ⟨n, ⟨inc_S⟩⟩ := contains_K K_fraisse S S_in_K

use n

simp only [age, Function.comp_apply, mem_setOf_eq]

exact ⟨IsFraisse.FG S S_in_K, ⟨inc_S⟩⟩

3.6 Fräıssé limits are unique

The proof that Fräıssé Limits are unique up to equivalence is easy now that we have the
back-and-forth method.

Lemma 3.17. Let M be an ultrahomogeneous structure, S a finitely generated
structure, T a structure, and three embeddings f : S ↪→ M , g : S ↪→ T and
h : T ↪→M . Then, there exists an embedding h′ : T ↪→M such that h′ ◦ g = f .

Proof. Let A := f(S) and A′ = h(g(S)). We have the equivalence f ◦g−1 ◦h−1 : A′ ≃ A,
and using ultrahomogeneity we can extend it to an automorphism F : M ≃ M . We
define h′ := F ◦ h, and so

h′ ◦ g = F ◦ h ◦ g = f ◦ g−1 ◦ h−1 ◦ h ◦ g = f

In Lean, we do the same, but with a lot of work devoted to prove the sequence of
equations that appears at the end of the proof:

Proof of lemma 3.17

42

-- Code in ModelTheory/Fraisse [AKWb]
-- Any embedding from a finitely generated ‘S‘ to an ultrahomogeneous

structure ‘M‘ can be extended to an embedding from any structure with an

embedding to ‘M‘. -/

theorem IsUltrahomogeneous.extend_embedding (M_homog : L.IsUltrahomogeneous M)

{S : Type*}

[L.Structure S] (S_FG : FG L S) {T : Type*} [L.Structure T] [h : Nonempty

(T ↪→[L] M)]

(f : S ↪→[L] M) (g : S ↪→[L] T) :

∃ f’ : T ↪→[L] M, f = f’.comp g := by

let ⟨r⟩ := h

let s := r.comp g

let ⟨t, eq⟩ := M_homog s.toHom.range (S_FG.range s.toHom) (f.comp

s.equivRange.symm.toEmbedding)

use t.toEmbedding.comp r

-- We have defined the embedding, and the rest is just a bunch of

simplifications of the equation.

change _ = t.toEmbedding.comp s

ext x

have eq’ := congr_fun (congr_arg DFunLike.coe eq) ⟨s x, Hom.mem_range.2 ⟨x,
rfl⟩⟩

simp only [Embedding.comp_apply, Hom.comp_apply,

Equiv.coe_toHom, Embedding.coe_toHom, coeSubtype] at eq’

simp only [Embedding.comp_apply, ← eq’, Equiv.coe_toEmbedding,

EmbeddingLike.apply_eq_iff_eq]

apply (Embedding.equivRange (Embedding.comp r g)).injective

ext

simp only [Equiv.apply_symm_apply, Embedding.equivRange_apply, s]

Theorem 3.18 (Uniqueness of Fräıssé Limits). Fräıssé limits are unique up to
equivalence.

Proof. Let K be a class of finitely generated structures, and M and N be Fräıssé limits
of K. We first show that M and N form an extension pair. Suppose that f : A ≃ B is
an equivalence between finitely generated substructures of M and N , and m ∈ M . Let
S be the substructure generated by A and m. We have AgeM = AgeN , so there exists
an embedding g : S ↪→ N . Using lemma 3.17 with f , the inclusion of A in S, and g, we
get an embedding h : S ↪→ N that extends f .

By symmetry, N and M also form an extension pair. Finally, to apply the theorem
2.1, we just need to show that there exists at least one equivalence between finitely
generated substructures of M and N . Let A ⊆M be the substructure generated by the
empty set, since AgeM = AgeN there is a substructure A′ ⊆ N and an equivalence
A ≃ A′.

In Lean, we first show that two Fräıssé limits form an extension pair. It closely follows
the proof we just did:

43

Fräıssé limits form an extension pair

-- Code in ModelTheory/Fraisse [AKWb]
theorem isExtensionPair (hM : IsFraisseLimit K M) (hN : IsFraisseLimit K N) :

L.IsExtensionPair M N := by

intro ⟨f, f_FG⟩ m

-- We have an equivalence ‘f‘ between finitely generated substructures of

‘M‘ and ‘N‘, and an element ‘m : M‘.

-- ‘S‘ is the substructure generated by the domain of ‘f‘ and ‘m‘.

let S := f.dom ⊔ closure L {m}

have S_FG : S.FG := f_FG.sup (Substructure.fg_closure_singleton _)

-- ‘S‘ is in the age of ‘N‘, since it is in the age of ‘M‘.

have S_in_age_N : ⟨S, inferInstance⟩ ∈ L.age N := by

rw [hN.age, ← hM.age]

exact ⟨(fg_iff_structure_fg S).1 S_FG, ⟨subtype _⟩⟩
-- So ‘S‘ has an embedding in ‘N‘.

have nonempty_S_N : Nonempty (S ↪→[L] N) := S_in_age_N.2

-- We use ‘extend_embedding‘ to get an embedding ‘g : S ↪→[L] N‘ such that

its composition with the inclusion ‘f.dom ↪→[L] S‘ is equal to the

inclusion ‘f.cod ↪→[L] N‘ composed with ‘f‘.

let ⟨g, g_eq⟩ := hN.ultrahomogeneous.extend_embedding

(f.dom.fg_iff_structure_fg.1 f_FG)

((subtype f.cod).comp f.toEquiv.toEmbedding) (inclusion (le_sup_left : _ ≤
S))

refine ⟨⟨⟨S, g.toHom.range, g.equivRange⟩, S_FG⟩,
subset_closure.trans (le_sup_right : _ ≤ S) (mem_singleton m), ⟨
le_sup_left, ?_⟩⟩

-- The rest is showing that ‘g‘ as an equivalence between ‘S‘ and a

substructure of ‘N‘ is indeed an extension of ‘f‘.

ext

simp [Subtype.mk_le_mk, PartialEquiv.le_def, g_eq]

And the proof that Fräıssé limits are unique up to equivalence:

Uniqueness of Fräıssé limits

-- Code in ModelTheory/Fraisse [AKWb]
/-- The Fraisse limit of a class is unique, in that any two Fraisse limits are

isomorphic. -/

theorem nonempty_equiv : Nonempty (M ≃[L] N) := by

-- ‘S‘ is the substructure generated by the empty set in ‘M‘.

let S : L.Substructure M := ⊥
have S_fg : FG L S := (fg_iff_structure_fg _).1 Substructure.fg_bot

-- It has an embedding in ‘N‘, since it is a member of ‘L.age N‘.

obtain ⟨_, ⟨emb_S : S ↪→[L] N⟩⟩ : ⟨S, inferInstance⟩ ∈ L.age N := by

rw [hN.age, ← hM.age]

exact ⟨S_fg, ⟨subtype _⟩⟩
-- Therefore there exists a partial equivalence ‘v‘ between ‘M‘ and ‘N‘.

let v : M ≃p[L] N := {

dom := S

cod := emb_S.toHom.range

44

toEquiv := emb_S.equivRange

}

-- And we apply the back-and-forth method.

exact ⟨Exists.choose (equiv_between_cg cg_of_countable cg_of_countable

⟨v, ((Substructure.fg_iff_structure_fg _).2 S_fg)⟩ (hM.isExtensionPair hN)

(hN.isExtensionPair hM))⟩

3.7 Fräıssé limit of finite graphs

In Mathlib, the Fräıssé limits of finite sets and finite total orders are already present, and
they are respectively the countable sets and the countable total dense orders without
minimal or maximal element. In this subsection, we will prove that any countable simple
graph with the extension property is the Fräıssé limit of the finite simple graphs.

In this subsection, all the graphs are simple graphs. The language of graphs is simply
a binary relation symbol of adjacency ∼, and the theory is that ∼ is irreflexive and
symmetric. This is how it is done in Mathlib:

-- Code in ModelTheory/Graph, written by Anderson [And]
-- Definition of the relation symbols. We only have one for arity 2, ‘adj‘.

inductive graphRel : N → Type

| adj : graphRel 2

deriving DecidableEq

/-- The language consisting of a single relation representing adjacency. -/

def graph : Language := ⟨fun _ => Empty, graphRel⟩
-- This is so that Lean derives automatically that this language is

relational, meaning that there are no function symbols.

deriving IsRelational

/-- The symbol representing the adjacency relation. -/

abbrev adj : Language.graph.Relations 2 := .adj

The last line allows us to write RelMap adj ![x, y] for x ∼ y, and this is how it will be
written in the code. The part ![x, y] is a practical way to define a function from Fin 2

sending 0 to x and 1 to y. The theory is written as:

-- Code in ModelTheory/Graph, written by Anderson [And]
/-- The theory of simple graphs. -/

def Theory.simpleGraph : Language.graph.Theory :=

{adj.irreflexive, adj.symmetric}

The Rado graph, also called the random graph, is an isomorphism class of countable
graphs characterized by the following property:

Definition 3.19 (Extension property). A graph G has the extension property if
for any two disjoint finite sets of vertices A,B ⊆ V (G), there exists some vertex
v ∈ V (G) \ A ∪ B such that v is adjacent to all the vertices in A and not adjacent

45

to all the vertices in B.

The translation in Lean is straightforward:

-- Code in ModelTheory/Graph [Kol25]
/-- A graph has the extension property if for for any two disjoint finite sets

of vertices, there exists a vertex which is adjacent to all vertices in

one and to no vertices in the other. It characterizes the Rado graph. -/

def ExtensionProperty : Prop :=

∀ {A B : Finset V}, ∀ (_ : Disjoint A B), ∃ v /∈ A ∪ B,

(∀ a ∈ A, RelMap adj ![v, a]) ∧ ∀ b ∈ B, ¬ RelMap adj ![v, b]

We will show that a countable graph with this property is the Fräıssé limit of finite
graphs, and that any countable graph can embed in it. First, we show this important
result:

Theorem 3.20. Let G,H be two graphs, and G satisfies the extension property.
Then (H,G) is an extension pair.

Proof. Let f : H ′ ≃ G′ be an equivalence between two finitely generated substructures of
H and G. Since there are no function symbols in the language of graphs, substructures
are finitely generated if and only if they are finite. Also, substructures simply correspond
to subsets of vertices. Let ṽ be a vertex not in G′. We define

A :=
{
f(v) | v ∈ G′, v ∼ ṽ

}
B :=

{
f(v) | v ∈ G′, v ≁ ṽ

}
Since f is injective, A and B are disjoint, so we can use the extension property to get
a vertex w in G such that v ∼ w for all v ∈ A, and v ≁ w for all v ∈ B. Then we can
extend f by sending ṽ to w.

We will now prove that in Lean. First we prove that two vertices in a substructure
are adjacent if and only if they are adjacent in whole structure.

-- Code in ModelTheory/Graph [Kol25]
-- This is saying that in a substructure, the adjacency relation is the same

as the one in the whole structure.

theorem substructure_adj_iff {S : Language.graph.Substructure V} (x y : S) :

RelMap adj ![x, y] ↔ RelMap adj ![(x : V), y] := by

simp only [RelMap, Substructure.inducedStructure]

constructor <;> intro h <;> convert h using 1 <;> rw [←List.ofFn_inj] <;>

rfl

Next, we prove that a substructure is also a model of the theory of graphs. This is easy
using the previous lemma:

46

-- Code in ModelTheory/Graph [Kol25]
theorem substructure_models_simpleGraph (S : Language.graph.Substructure V) :

S |= Theory.simpleGraph := by

-- Replace the theory by its definition, so adjacency being irreflexive and

symmetric.

rw [Theory.simpleGraph_model_iff]

-- We use the previous lemma to replace the adjacency in the substructure

for the adjacency in the whole structure.

simp_rw [substructure_adj_iff]

exact ⟨fun x y 7→ adj_irrefl (V := V) x y, fun _ _ h 7→ adj_symm h⟩

We have all we need to do the proof:

-- Code in ModelTheory/Graph [Kol25]
theorem ExtensionProperty.extensionPair_Countable (ext_prop :

ExtensionProperty V) :

IsExtensionPair Language.graph W V := by

-- This line is so that Lean knows we use classical logic and not

constructive logic, which is necessary for some definitions we use during

the proof.

classical

-- We didn’t give a name to the instances that ‘V‘ and ‘W‘ model the theory

of simple graphs, we can give them a name now with the tactic rename_i.

rename_i V_simple_graph _ W_simple_graph

-- Being an extension pair was defined with partial equivalences, but it is

simpler to use the equivalent definition of being able to extend

embeddings, so we replace it with that.

rw [isExtensionPair_iff_exists_embedding_closure_singleton_sup]

intro S S_fg f m

-- So at this point, we have a substructure ‘S‘, an embedding ‘f‘ of ‘S‘

into ‘V‘, and an element ‘m‘. The goal is to find an embedding ‘g‘ of the

substructure generated by ‘m‘ and ‘S‘ into ‘V‘ which extends ‘f‘.

-- ‘A‘ is the image by ‘f‘ of the set of vertices in ‘S‘ which are adjacent

to ‘m‘.

let A := f ’’ {v | RelMap adj ![m, v]}

-- ‘S‘ is finite since it is finitely generated and the language is

relational.

have : Finite S := S_fg.finite

-- There is a special type for finite sets, ‘Finset‘, which we need to use

the extend property. ‘A‘ is a finite set, since it is the image of ‘S‘

which is finite, so we can construct a ‘Finset‘ element from ‘A‘.

let A_Finset := Set.Finite.toFinset (Finite.Set.finite_image .. : Finite A)

-- ‘B‘ is the image by ‘f‘ of vertices in ‘S‘ not adjacent to ‘m‘.

let B := f ’’ {v | ¬ RelMap adj ![m, v]}

let B_Finset := Set.Finite.toFinset (Finite.Set.finite_image .. : Finite B)

-- We prove that ‘A‘ and ‘B‘ are disjoint as ‘Finset‘ elements.

have A_B_disjoint : Disjoint A_Finset B_Finset := by

-- First we use the fact that they are disjoint as ‘Finset‘ if they are

47

disjoint as sets.

apply Set.Finite.disjoint_toFinset.2

-- Since ‘f‘ is injective, and both ‘A‘ and ‘B‘ were the images of sets by

‘f‘, we can replace them by their preimage.

refine (Set.disjoint_image_iff f.injective).2 ?_

-- Then we use the fact that two sets are disjoint if and only if their

intersection is a subset of the empty set, so any element in their

intersection must be an element of the empty set.

rw [Set.disjoint_iff]

-- We take ‘x‘ a vertex, and ‘hx‘ the property of being contained in the

intersection.

intro x hx

-- The property of being contained in an intersection is equivalent to

being contained in one set and contained in the other set, and being

contained in a set is equivalent to verifying the property that defines

the set, so after that ‘hx‘ is a ‘Prop‘ that tells us that ‘x‘ is adjacent

to ‘m‘ and ‘x‘ is not adjacent to ‘m‘.

simp only [Set.mem_inter_iff, Set.mem_setOf_eq] at hx

-- We separate ‘hx‘ in two different variables.

let ⟨_, _⟩ := hx

-- And we have a contradiction.

contradiction

-- Of course, the image of any vertex in ‘S‘ by ‘f‘ must be contained in the

union of ‘A‘ and ‘B‘.

have A_B_cover_image : ∀ x, f x ∈ A ∪ B := by

intro x

-- We simplify everything to: ‘x‘ is adjacent to ‘m‘ or ‘x‘ is not

adjacent to ‘m‘.

simp only [Set.mem_union, Set.mem_image, Set.mem_setOf_eq,

EmbeddingLike.apply_eq_iff_eq, exists_eq_right, A, B]

-- And we conclude by the law of excluded middle.

exact Classical.em (RelMap adj ![m, ↑x])

-- We use the extension property on ‘A‘ and ‘B‘, so we get a vertex ‘v‘ in

‘V‘ which is not ‘A‘ and not in ‘B‘, which is adjacent to all vertices in

‘A‘ and no vertices in ‘B‘.

let ⟨v, v_not_in_AB, v_adj_A, v_not_adj_B⟩ := ext_prop A_B_disjoint

-- But all these properties were stated with ‘A‘ and ‘B‘ with ‘Finset‘ type,

but we don’t need the fact that they are finite anymore, and it is easier

to work with sets, so the next line replaces everything with sets.

simp only [A_Finset, B_Finset, Finset.mem_union, Set.Finite.mem_toFinset]

at v_not_in_AB v_adj_A v_not_adj_B

-- ‘v‘ is not in the image of ‘S‘ by ‘f‘, since ‘v‘ is not in the union of

‘A‘ and ‘B‘, and they cover the image.

have v_not_in_image : ∀ x, f x ̸= v := fun x h 7→ v_not_in_AB (h ▷
A_B_cover_image x)

-- For any vertex ‘x‘ in ‘S‘, its image is adjacent to ‘v‘ if and only if

its image is in ‘A‘.

48

have v_adj_iff_A : ∀ x : S, RelMap adj ![v, f x] ↔ f x ∈ A := by

intro x

-- the ’if’ part follows from the fact that ‘v‘ is adjacent to all

elements in ‘A‘.

refine ⟨?_, fun H 7→ v_adj_A (f x) H⟩
-- Now for the ’only’ part. Suppose that ‘x‘ is adjacent to ‘v‘.

intro v_adj_fx

-- We know that ‘f x‘ is contained in the union of ‘A‘ and ‘B‘, and this

equivalent to ‘x‘ being in ‘A‘ or in ‘B‘. We will prove for both cases.

cases (Set.mem_union ..).1 (A_B_cover_image x)

-- If ‘x‘ is in ‘A‘, then ‘x‘ is in ‘A‘ obviously.

· assumption
-- If ‘x‘ is in ‘B‘, we will construct a contradiction.

· by_contra
-- ‘v‘ is not adjacent to any elements in ‘B‘, but it is adjacent to ‘f

x‘, and ‘f x‘ is in ‘B‘.

exact v_not_adj_B (f x) (by assumption) (by assumption)

-- We define ‘S’‘ the substructure generated by ‘m‘ and ‘S‘.

let S’ := Substructure.closure Language.graph {m} ⊔ S

-- We will separate in two cases: ‘m‘ is in ‘S‘, and ‘m‘ is not in ‘S‘.

cases Classical.em (m ∈ S)

-- If ‘m‘ is in ‘S‘, it is quite simple.

case inl m_in_S =>

-- ‘S’‘ is equal to ‘S‘ (propositionally, not definitionally). In

particular, it is contained in ‘S‘, so there is an inclusion of this

substructure into ‘S‘. We

have : S’ = S := by

apply sup_eq_right.2

exact Substructure.closure_le.2 (Set.singleton_subset_iff.2 m_in_S)

-- So in particular, ‘S’‘ is contained in ‘S‘, so there is an inclusion of

this substructure into ‘S‘. We compose it with ‘f‘, and Lean can see by

definition that it is an extension of ‘f‘.

use f.comp (Substructure.inclusion (le_of_eq this))

rfl

-- Now the case when ‘m‘ is not in ‘S‘.

case inr m_not_in_S =>

-- We first prove that a vertex is in ‘S’‘ if and only if it is equal to

‘m‘ or it is in ‘S‘.

have mem_S’_iff : ∀ x, x ∈ S’ ↔ x = m ∨ x ∈ S := by

intro x

unfold S’

-- We just simplify everything, using in particular the fact that with a

relational language, the substructure generated by a set doesn’t have

additional elements.

rw [← Substructure.mem_coe, ← Substructure.closure_eq S, ←

49

Substructure.closure_union]

simp only [Set.singleton_union, Substructure.closure_eq_of_isRelational,

Set.mem_insert_iff, SetLike.mem_coe, Substructure.closure_eq]

-- We define ‘g‘, a function from ‘S’‘ to ‘V‘ which sends any element in

‘S‘ to its image by ‘f‘, and otherwise to ‘v‘. We need to prove that this

is an embedding.

let g (s : S’) : V := if h : ↑s ∈ S then f ⟨s, h⟩ else v

-- First, we prove that it commutes with adjacency, so two vertices are

adjacent if and only if their images by ‘g‘ are adjacent.

have g_morphism : ∀ x y, RelMap adj ![x, y] ↔ RelMap adj ![g x, g y] := by

intro ⟨x, hx⟩ ⟨y, hy⟩
unfold g

-- Since we know that an element is in ‘S’‘ if and only if they are

equal to ‘m‘ or they are in ‘S‘, we can separate in four cases for ‘x‘ and

‘y‘. Since for each case we know if ‘x‘ and ‘y‘ are in ‘S‘ or not (since

‘m‘ is not in ‘S‘), we simplify all the "if then", for all the cases in

one line. We also apply the result that two vertices are adjacent if and

only if they are adjacent in the whole structure.

cases (mem_S’_iff x).1 hx <;> cases (mem_S’_iff y).1 hy

<;> rename_i h’ h’’ <;> simp only [h’, h’’, m_not_in_S, ↓reduceDIte,
substructure_adj_iff]

-- First case, both ‘x‘ and ‘y‘ are equal to ‘m‘, so it has already been

simplified to ‘m‘ being adjacent to ‘m‘ if and only if ‘v‘ is adjacent to

‘v‘. We use the fact that adjacency is irreflexive to show that in both

directions, we get a contradiction.

· constructor <;> intro H <;> by_contra <;> exact adj_irrefl _ H

-- This case is simplified to ‘m‘ adjacent to ‘y‘ if and only if ‘v‘ is

adjacent to ‘f y‘. We use that ‘v‘ is adjacent to an element if and only

if it is contained in ‘A‘, and after that it is just simplifications in

autopilot.

· simp only [v_adj_iff_A, Set.mem_image, Set.mem_setOf_eq,

EmbeddingLike.apply_eq_iff_eq, exists_eq_right, A]

-- This case is simplified to ‘x‘ adjacent to ‘m‘ if and only if ‘f x‘

is adjacent to ‘v‘. We use the fact that adjacency is symmetric, and then

we do exactly the same simplifications as for the previous case.

· nth_rw 2 [adj_symm’]

rw [adj_symm’]

simp only [v_adj_iff_A, Set.mem_image, Set.mem_setOf_eq,

EmbeddingLike.apply_eq_iff_eq, exists_eq_right, A]

-- This case is simplified to ‘x‘ adjacent to ‘y‘ if and only if ‘f x‘

is adjacent to ‘f y‘. We can use the fact that ‘f‘ is an embedding, so it

commutes with ‘adjacency‘, but some work is needed since it is not exactly

in the right form with the ‘![·,·]‘ notation.

· have H := f.map_rel adj ![⟨x, h’⟩, ⟨y, h’’⟩]
rw [substructure_adj_iff] at H

convert H.symm

rw [←List.ofFn_inj]

50

rfl

-- We now prove that ‘g‘ is injective.

have g_inj : Function.Injective g := by

-- Suppose that the images of ‘x‘ and ‘y‘ are equal. We need to prove

that ‘x‘ and ‘y‘ are equal as elements of ‘S’‘.

intro ⟨x, hx⟩ ⟨y, hy⟩ h

-- This is equivalent to being equal as elements of ‘W‘.

simp only [Subtype.mk.injEq]

unfold g at h

-- We again separate in all different cases, with ‘x‘ and ‘y‘ being

equal to ‘m‘ or contained in ‘S‘. We also do a bunch of simplifications,

and two cases are already done.

cases (mem_S’_iff x).1 hx <;> cases (mem_S’_iff y).1 hy <;> rename_i h’

h’’ <;>

simp only [h’, h’’, m_not_in_S, ↓reduceDIte, v_not_in_image] at h ⊢
-- First case with ‘x = m‘ and ‘y‘ contained in ‘S‘, we have a

hypothesis that ‘v‘ is equal to ‘f y‘, but we already know that this is

impossible, so we get a contradiction.

· by_contra
exact v_not_in_image _ h.symm

-- In this case, we have ‘x‘ and ‘y‘ both in ‘S‘, so we can conclude by

the fact that ‘f‘ is injective. The second line is because technically ‘f‘

being injective implies that ‘x‘ and ‘y‘ are equal as elements of ‘S‘, not

as elements of ‘V‘.

· convert f.injective h

exact Subtype.mk_eq_mk.symm

-- With all that, we can finally define the embedding with underlying

function ‘g‘, and we use it.

use {

inj’ := g_inj

-- This says that ‘g‘ commutes with adjacency, but again because of

technicalities with the ‘![·,·]‘ function, it is not exactly stated like we

stated it before, and we need to do some transformations.

map_rel’ := by

intro n r

cases r

intro x

have h := (g_morphism (x 0) (x 1)).symm

convert h <;> simp only [←List.ofFn_inj] <;> rfl

}

-- The goal is now to prove that ‘g‘ extends ‘f‘. But it follows by

simplifying everything.

ext x

let ⟨x, x_in_S⟩ := x

simp only [Embedding.comp_apply, Substructure.coe_inclusion,

Set.inclusion_mk,

Embedding.comp_apply]

51

simp only [DFunLike.coe, x_in_S, ↓reduceDIte]

Corollary 3.21. Let G and H be two countable graphs satisfying the extension property.
Then G and H are isomorphic.

Proof. The empty function is an equivalence between the empty substructures of G and
H, and we extend it by Theorem 2.1 to a full equivalence.

We didn’t prove this in Lean since it follows from the fact that they are Fräıssé limits,
which we will prove later.

But we also get that any countable graph embeds in a graph with the extension
property:

Corollary 3.22. Let G and H be two countable graphs, and G satisfies the extension
property. Then H embeds in G.

Proof. The empty function is an equivalence between the empty substructures of H and
G so we get an embedding by Theorem 2.2.

In Lean:

-- Code in ModelTheory/Graph [Kol25]
theorem ExtensionProperty.embedding_from_countable (ext_prop :

ExtensionProperty V) [Countable W] :

Nonempty (W ↪→[Language.graph] V) :=

-- We apply the theorem ‘embedding_from_cg‘. Since this theorem tells us

that there exists an embedding, we use ‘Exists.choose‘ to take one.

⟨Exists.choose <|

embedding_from_cg (L := Language.graph) (M := W) (N := V)

Structure.cg_of_countable

inhabited_FGEquiv_of_IsEmpty_Constants_and_Relations.default

(ext_prop.extensionPair_Countable _)⟩

Corollary 3.23. Any countable graph with the extension property is ultrahomogeneous.

Proof. Follows directly from Lemma 3.13.

With all that, we can finally prove that a countable graph with the extension property
is the Fräıssé limit of finite graphs:

Theorem 3.24. A countable graph G with the extension property is the Fräıssé
limit of finite graphs.

Proof. By the previous corollary, it is ultrahomogeneous. Any finitely generated sub-
structure is a finite graph, and by Corollary 3.22, any finite graph embeds in G, therefore
AgeG is the class of finite graphs.

52

In Lean:

-- Code in ModelTheory/Graph [Kol25]
/-- Any graph satisfying the extension property is the Fraisse limit of the

class of finite

graphs. -/

theorem ExtensionProperty.isFraisseLimit_finite_graphs (ext_prop :

ExtensionProperty V)

[Countable V] : IsFraisseLimit

{ G : CategoryTheory.Bundled Language.graph.Structure | G |=
Theory.simpleGraph ∧ Finite G }

V := by

constructor

-- First we prove that it is ultrahomogeneous.

· rw [isUltrahomogeneous_iff_IsExtensionPair Structure.cg_of_countable]

exact ext_prop.extensionPair_Countable V

-- Then we prove that its age is equal to the class of finitely generated

graphs. This is equivalent to say that for any structure ‘G‘ in the

language of graphs, ‘G‘ is in the age of ‘V‘ if and only if it is in the

class of finitely generated graphs.

· ext G

-- We simplify to ‘G‘ being finite and having an embedding into ‘V‘ if and

only if it is a model of the theory of graphs and it is finite.

simp only [age, Set.mem_setOf_eq, Structure.fg_iff_finite]

constructor

-- First suppose that ‘G‘ is finite and has an embedding ‘f‘ into ‘V‘.

Then we use the fact that any substructure of ‘V‘ must also verify the

theory of graphs.

· intro ⟨G_finite, ⟨f⟩⟩
refine ⟨?_, G_finite⟩
apply StrongHomClass.theory_model f.equivRange.symm

-- Suppose that ‘G‘ models the theory of graphs and is finite, then we use

the previous result that any countable graph embeds in ‘V‘.

· intro ⟨G_graph, G_finite⟩
refine ⟨G_finite, ?_⟩
apply ext_prop.embedding_from_countable (W := G)

Of course, we haven’t proved that there exists a countable graph satisfying the exten-
sion property. The first construction (or at least a directed version of it) was discovered
by Ackermann [Ack37], and then other constructions were discovered and studied by
Erdős and Rényi [ER63] and Rado [Rad64].

Definition 3.25 (Rado graph). We define a series of sets recursively: A0 = ∅, and
An+1 = {a | a ⊆ An}. We then define A :=

⋃
An, and we put a structure of graph

as follows: for any two a, b ∈ A, we have a ∼ b if and only if a ∈ b or b ∈ a.

This construction was discovered by Ackermann. It is only one of many different ways
of constructing a graph satisfying the extension property. All these constructions are

53

equivalent, in the sense that they construct graphs which are all isomorphic.

Theorem 3.26. The Rado graph satisfies the extension property and is countable.

Proof. First, it is a graph, since the definition of the adjacency relation is symmetric,
and it is also irreflexive because no subset contains itself. It is countable, since each An

is finite. Suppose that we have B,C ⊆ A two disjoint finite subsets of vertices. Then
there exists some n such that B,C ⊆ An. We have An ∈ An+1, and we take

D := B ∪ {An} ∈ An+2

D is adjacent to all the vertices in B, since it contains them. It contains no element in C,
since C cannot contain An, since we don’t have An ∈ An, and B and C are disjoint. Also,
it cannot be contained in any element of C, since it would mean that An is contained in
a set contained in a set contained in An and therefore An ∈ An.

We didn’t construct it in Lean, since it was already in project by another contributor
to construct the Rado graph via another method.

4 Future works

There are many promising directions for extending this work. Only a small portion of
model theory has been formalized using interactive theorem provers. Future efforts could
focus on formalizing key definitions and results in areas such as stability, categoricity,
saturation, quantifier elimination, minimality, and o-minimality.

The Hrushovski construction is a simple generalization of Fräıssé limits, and its exis-
tence and uniqueness can be proved in essentially the same way. It could be an interesting
extension of this work to try to formalize this construction in Lean.

54

References

[Ack37] Wilhelm Ackermann. Die widerspruchsfreiheit der allgemeinen mengenlehre.
Mathematische Annalen, 114(1):305–315, 1937.

[AHvD] Aaron Anderson, Jesse Michael Han, and Floris van Doorn. Mod-
eltheory/basic file in the mathlib repository. GitHub repository.
https://github.com/leanprover-community/mathlib4/blob/master/

Mathlib/ModelTheory/Basic.lean, Accessed: January 31, 2025.

[AKa] Aaron Anderson and Gabin Kolly. Modeltheory/directlimit file in
the mathlib repository. GitHub repository. https://github.com/

leanprover-community/mathlib4/blob/master/Mathlib/ModelTheory/

DirectLimit.lean, Accessed: January 31, 2025.

[AKb] Aaron Anderson and Gabin Kolly. Modeltheory/finitelygener-
ated file in the mathlib repository. GitHub repository. https:

//github.com/leanprover-community/mathlib4/blob/master/

Mathlib/ModelTheory/FinitelyGenerated.lean, Accessed: January
31, 2025.

[AKc] Aaron Anderson and Gabin Kolly. Modeltheory/substructures file in
the mathlib repository. GitHub repository. https://github.com/

leanprover-community/mathlib4/blob/master/Mathlib/ModelTheory/

Substructures.lean, Accessed: January 31, 2025.

[AKWa] Aaron Anderson, Gabin Kolly, and David Wärn. Modelthe-
ory/directlimit file in the mathlib repository. GitHub reposi-
tory. https://github.com/leanprover-community/mathlib4/blob/

master/Mathlib/ModelTheory/PartialEquiv.lean, Accessed: January
31, 2025.

[AKWb] Aaron Anderson, Gabin Kolly, and David Wärn. Modelthe-
ory/fraisse file in the mathlib repository. GitHub repository.
https://github.com/leanprover-community/mathlib4/blob/master/

Mathlib/ModelTheory/Fraisse.lean, Accessed: January 31, 2025.

[Alp24] AlphaProof and AlphaGeometry teams. AI achieves silver-
medal standard solving International Mathematical Olympiad
problems. https://deepmind.google/discover/blog/

ai-solves-imo-problems-at-silver-medal-level/, July 2024. Ac-
cessed: 2024-12-18.

[And] Aaron Anderson. Modeltheory/graph file in the mathlib repository. GitHub
repository. https://github.com/leanprover-community/mathlib4/

blob/master/Mathlib/ModelTheory/Graph.lean, Accessed: January 31,
2025.

55

https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/ModelTheory/Basic.lean
https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/ModelTheory/Basic.lean
https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/ModelTheory/DirectLimit.lean
https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/ModelTheory/DirectLimit.lean
https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/ModelTheory/DirectLimit.lean
https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/ModelTheory/FinitelyGenerated.lean
https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/ModelTheory/FinitelyGenerated.lean
https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/ModelTheory/FinitelyGenerated.lean
https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/ModelTheory/Substructures.lean
https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/ModelTheory/Substructures.lean
https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/ModelTheory/Substructures.lean
https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/ModelTheory/PartialEquiv.lean
https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/ModelTheory/PartialEquiv.lean
https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/ModelTheory/Fraisse.lean
https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/ModelTheory/Fraisse.lean
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/ModelTheory/Graph.lean
https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/ModelTheory/Graph.lean

[Ber07] Stefan Berghofer. First-order logic according to fitting. Archive of Formal
Proofs, August 2007. https://isa-afp.org/entries/FOL-Fitting.html,
Formal proof development.

[Com20] Mathlib Community. The lean mathematical library. In Proceedings of the
9th ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2020, page 367–381, New York, NY, USA, 2020. Association
for Computing Machinery.

[Com22] Mathlib Community. Completion of the liquid tensor experiment,
blog post. https://leanprover-community.github.io/blog/posts/

lte-final/, 2022. Accessed: 04.12.2024.

[dMC] Leonardo de Moura and Mario Carneiro. Data/nat/pairing file in
the mathlib repository. GitHub repository. https://github.com/

leanprover-community/mathlib4/blob/master/Mathlib/Data/Nat/

Pairing.lean, Accessed: January 31, 2025.

[ER63] P. Erdős and A. Rényi. Asymmetric graphs. Acta Mathematica Academiae
Scientiarum Hungarica, 14(3):295–315, 1963.

[Fro21] Asta Halkjær From. Soundness and completeness of an axiomatic system
for first-order logic. Archive of Formal Proofs, September 2021. https://

isa-afp.org/entries/FOL_Axiomatic.html, Formal proof development.

[GPTS22] Emmanuel Gunther, Miguel Pagano, Pedro Sánchez Terraf, and Mat́ıas
Steinberg. The independence of the continuum hypothesis in isabelle/zf.
Archive of Formal Proofs, March 2022. https://isa-afp.org/entries/

Independence_CH.html, Formal proof development.

[Hod97] W. Hodges. A Shorter Model Theory. Cambridge University Press, 1997.

[HvD19] Jesse Michael Han and Floris van Doorn. A Formalization of Forcing and
the Unprovability of the Continuum Hypothesis. In John Harrison, John
O’Leary, and Andrew Tolmach, editors, 10th International Conference on
Interactive Theorem Proving (ITP 2019), volume 141 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 19:1–19:19, Dagstuhl, Ger-
many, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[HvD20] Jesse Michael Han and Floris van Doorn. A formal proof of the independence
of the continuum hypothesis. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2020, page
353–366, New York, NY, USA, 2020. Association for Computing Machinery.

[JJS12] Peter Koepke Julian J. Schlöder. The gödel completeness theorem for un-
countable languages. Formalized Mathematics, 20(3):199–203, 2012.

56

https://isa-afp.org/entries/FOL-Fitting.html
https://leanprover-community.github.io/blog/posts/lte-final/
https://leanprover-community.github.io/blog/posts/lte-final/
https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Nat/Pairing.lean
https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Nat/Pairing.lean
https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Nat/Pairing.lean
https://isa-afp.org/entries/FOL_Axiomatic.html
https://isa-afp.org/entries/FOL_Axiomatic.html
https://isa-afp.org/entries/Independence_CH.html
https://isa-afp.org/entries/Independence_CH.html

[KA24] Gabin Kolly and Aaron Anderson. Pull request #9967: Proof that fräıssé
limits are unique, 2024. https://github.com/leanprover-community/

mathlib4/pull/9967, Accepted into Mathlib4.

[Kol24] Gabin Kolly. Pull request #18876: Proof of the existence of fräıssé lim-
its, 2024. https://github.com/leanprover-community/mathlib4/pull/

18876.

[Kol25] Gabin Kolly. Pull request #20649: Characterization of the fräıssé limit
of finite graphs, 2025. https://github.com/leanprover-community/

mathlib4/pull/20649.

[Mas21] Patrick Massot. Why formalize mathematics? https://www.imo.

universite-paris-saclay.fr/~patrick.massot/files/exposition/

why_formalize.pdf, December 2021. Accessed: 2024-12-18.

[Mat21] Mathlib Community. Mathlib4 repository. https://github.com/

leanprover-community/mathlib4, May 2021. GitHub repository created
in May 2021, maintained by the Mathlib Community.

[Mat25] Mathlib Community. Mathlib community statistics. https://

leanprover-community.github.io/mathlib_stats.html, 2025. Ac-
cessed: January 3, 2025.

[MU21] Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and
programming language. In André Platzer and Geoff Sutcliffe, editors, Auto-
mated Deduction – CADE 28, pages 625–635, Cham, 2021. Springer Inter-
national Publishing.

[O’C05] Russell O’Connor. Essential Incompleteness of Arithmetic Verified by Coq,
page 245–260. Springer Berlin Heidelberg, 2005.

[Pau13] Lawrence C. Paulson. Gödel’s incompleteness theorems. Archive
of Formal Proofs, November 2013. https://isa-afp.org/entries/

Incompleteness.html, Formal proof development.

[Rad64] Richard Rado. Universal graphs and universal functions. Acta Arithmetica,
9(4):331–340, 1964. Available as a PDF.

[SdLAR24] Fabián Fernando Serran Suárez, Thaynara Arielly de Lima, and Mauri-
cio Ayala-Rincón. Compactness theorem for propositional logic and com-
binatorial applications. Archive of Formal Proofs, August 2024. https:

//isa-afp.org/entries/Prop_Compactness.html, Formal proof develop-
ment.

[Tea23] Formalized Formal Logic Team. Formalized formal logic. https://github.
com/FormalizedFormalLogic, 2023.

57

https://github.com/leanprover-community/mathlib4/pull/9967
https://github.com/leanprover-community/mathlib4/pull/9967
https://github.com/leanprover-community/mathlib4/pull/18876
https://github.com/leanprover-community/mathlib4/pull/18876
https://github.com/leanprover-community/mathlib4/pull/20649
https://github.com/leanprover-community/mathlib4/pull/20649
https://www.imo.universite-paris-saclay.fr/~patrick.massot/files/exposition/why_formalize.pdf
https://www.imo.universite-paris-saclay.fr/~patrick.massot/files/exposition/why_formalize.pdf
https://www.imo.universite-paris-saclay.fr/~patrick.massot/files/exposition/why_formalize.pdf
https://github.com/leanprover-community/mathlib4
https://github.com/leanprover-community/mathlib4
https://leanprover-community.github.io/mathlib_stats.html
https://leanprover-community.github.io/mathlib_stats.html
https://isa-afp.org/entries/Incompleteness.html
https://isa-afp.org/entries/Incompleteness.html
https://isa-afp.org/entries/Prop_Compactness.html
https://isa-afp.org/entries/Prop_Compactness.html
https://github.com/FormalizedFormalLogic
https://github.com/FormalizedFormalLogic

[Wä] David Wärn. Order/ideal file in the mathlib repository. GitHub repos-
itory. https://github.com/leanprover-community/mathlib4/blob/

master/Mathlib/Order/Ideal.lean, Accessed: January 31, 2025.

58

https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Order/Ideal.lean
https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Order/Ideal.lean

	Introduction
	Conventions
	Implementation of Model Theory in Lean
	Language
	Structures
	Embeddings and equivalences
	Substructures
	Direct limits
	Equivalences between substructures

	Back-And-Forth
	Limit of a directed system of partial equivalences
	Proof of the back-and-forth

	Fraïssé Limits
	Bundled structures
	Embeddings between equal structures
	Definition of Fraïssé limits
	Cardinality of FGEquiv
	Fraïssé limits exist
	Fraïssé limits are unique
	Fraïssé limit of finite graphs

	Future works
	Bibliography

