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1. Introduction

Among the list of 23 problems David Hilbert presented to the International Congress of
Mathematicians in Paris in the year 1900, the following—particularly short one—stands out.

Hilbert’s Tenth Problem

Eine Diophantische Gleichung mit irgend welchen Unbekannten und mit gan-
zen rationalen Zahlencoefficienten sei vorgelegt: man soll ein Verfahren an-
geben, nach welchem sich mittelst einer endlichen Anzahl von Operationen
entscheiden läßt, ob die Gleichung in ganzen rationalen Zahlen lösbar ist. [10]

Given a diophantine equation with any number of unknown quantities and
with rational integral numerical coefficients: To devise a process according
to which it can be determined by a finite number of operations whether the
equation is solvable in rational integers. [11]

Today, we would say that Hilbert’s Tenth Problem asks for an algorithm that, given a poly-
nomial f(X1, . . . , Xn) with coefficients in Z as input, will output Yes if f(X1, . . . , Xn) has a
solution in Z, and No if f(X1, . . . , Xn) has no solution in Z.

Seventy years after Hilbert had presented his problems, Matiyasevich famously showed that
no such algorithm exists, building on previous work of Robinson, Davis and Putnam. In other
words, Hilbert’s Tenth Problem has a negative answer (see [17] for a self-contained treatment
on this result). It is evident that a rigorous notion of algorithm is needed to prove such a
negative result. Turing machines provide such a rigorous notion, as well as other models of
computation introduced in the 1930s by Church, Kleene and Post (see [5, Chap. 8]).

If we look at Hilbert’s Tenth Problem from the point of view of logic, then this problem is
asking for an algorithm that decides which sentences of the form

∃x1 . . . ∃xn f(x1, . . . , xn) = 0,

in the language of rings Lring = {0, 1,+,−, ·}, hold in Z or not. From this point of view, it
is reasonable to ask for a more general algorithm that would decide for any Lring-sentence φ
whether it is satisfied in Z or not. However, the existence of such an algorithm can be seen
to be ruled out by Gödel’s 1931 landmark work [8] on his Incompleteness Theorems.

So far, we have mentioned two decision problems with a negative solution. There are nonethe-
less important decision problems with a positive solution. Given a first-order language L, we
say that an L-theory T is decidable if there is an algorithm that, given an L-sentence φ as
input, will output Yes if φ ∈ T , and No if φ /∈ T . An L-structureM is said to be decidable
if Th(M) is decidable (see Section 2.1 for more precise definitions). Tarski showed that the
structure of the real ordered field

(R, 0, 1,+,−, ·,≤)

is decidable. He found this result already in 1930; one year later, he mentioned it implicitly
and without proof in [22]. A full proof was published only twenty years later in [23], after the
Second World War. We will briefly discuss the decidability of the theory of the real ordered
field in Section 2.3. Another example of a decidable theory, namely Presburger arithmetic,
will be given in Section 2.1.
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One can describe the negative solution to Hilbert’s Tenth Problem as a metamathematical
theorem of number theory—the objects of study are algorithms that determine, for all Dio-
phantine equations, whether they have an integer solution or not. Motivated, in contrast, by
concrete conjectures about Diophantine equations, Ax and Kochen studied the model theory
of valued fields in 1965 (see [3]). They obtained, among other things, a decidability result
linking back to the subject of decidable theories: they showed that the Lring-theory of the
field Qp of p-adic numbers is decidable [4]. The field Qp, a central object in number theory,
is the completion of Q with respect to the p-adic absolute value | · |p. In Section 2.2, we will
define absolute values and cover other number theoretic prerequisites. We will see that R and
Qp are instances of local fields. In general, there are three types of local fields:

• the real field R and complex field C (archimedean local fields);

• finite extensions K of Qp (p-adic fields);

• fields of formal Laurent series Fq((t)) over finite fields with q = pr elements (local fields
of characteristic p).

It is remarkable that although the decidability of R, C, and all p-adic fields K (see [21, Cor.
5.3]) in the language of rings has been established, it is not known whether or not Fq((t))
is decidable. As of today, this is still a major open problem. There has been some recent
progress, e.g. Anscombe and Fehm [1] showed that the existential theory of Fq((t)) is decidable
(see [12] for a discussion of other partial results).

Until this point, we have only considered questions regarding decidability in the language
of rings or ordered rings. Generalisations of Hilbert’s Tenth Problem can be obtained by
expanding the language we work in. For example, Tarski asked in [23] whether the structure
of the ordered real field together with the exponential function,

Rexp = (R, 0, 1,+,−, ·,≤, exp),
is decidable (Tarski’s exponential function problem). This question leads to the study of
o-minimal structures (see [25] for an introduction to this subject). Macintyre and Wilkie
proved the conditional result that a weak version of Schanuel’s conjecture implies that Rexp

is decidable, see [13].

Another natural expansion of the real ordered field is obtained by adding a relation symbol
for small subgroups of R. Any non-trivial discrete additive subgroup of R is of the form cZ
for some constant c ∈ R>0. Adding a relation symbol for this subgroup leads to the same
obstruction for decidability as we encountered in the structure (Z,+, ·) by virtue of Gödel’s
Incompleteness Theorem. A more interesting question is obtained by adding a relation symbol
for non-trivial discrete multiplicative subgroups. In [24], van den Dries proves that the real
ordered field together with a predicate for 2Z, the cyclic multiplicative subgroup generated by
2 ∈ R, is decidable. This generalises to cyclic subgroups generated by any α ∈ R>1 as follows.

Theorem 1.1 (van den Dries [24]). Let α ∈ R>1 be a fixed constant that is recursive. Then

(R, 0, 1,+,−, ·,≤, αZ)

is decidable.

A real number α is called recursive if there is an algorithm that can compute its decimal
representation to any given degree of accuracy. This includes all real algebraic numbers,
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but also transcendental constants such as e or π. In Section 3.1, we will present van den
Dries proof [24] with minor modifications made necessary by considering a general constant
α ∈ R>1. Let us also mention a similar result for the field of complex numbers:

Theorem 1.2 (van den Dries, Günaydin [26, Cor. 8.8]). Let α ∈ C× be any non-zero complex
number. Then (C, 0, 1,+,−, ·, αZ) is decidable.

In [24], van den Dries asks whether his result also applies to the structure (R,+, ·, 2Z, 3Z).
This was answered negatively by Hieronymi in [9], where he shows that the real field with
predicates for two cyclic subgroups is undecidable.

Theorem 1.3 (Hieronymi [9]). Let α, β ∈ R>1 be two real numbers satisfying αZ ∩βZ = {1},
or equivalently, logα(β) /∈ Q. Then the theory of the structure (R,+, ·, αZ, βZ) is undecidable.

In this thesis, we will investigate questions of decidability for local fields with predicates for
discrete infinite cyclic subgroups. For the field of reals R, we have stated the main results.
The question for the p-adic numbers Qp was considered by Mariaule in [14] and [15].

Theorem 1.4 (Mariaule [14], [15]). Let vp be the p-adic valuation on Qp.

(i) If α ∈ Qp is an element satisfying vp(α) > 0, then (Qp,+, ·, αZ) is decidable.

(ii) If α, β ∈ Qp are two elements with vp(α), vp(β) > 0 and αZ ∩ βZ = {1}, then the theory
of (Qp,+, ·, αZ, βZ) is undecidable.

For the field of formal Laurent series Fq((t)), Pheidas proved the following undecidability
result:

Theorem 1.5 (Pheidas [20]). Let P = {tn | n ∈ Z>0} be the set of positive powers of the
indeterminate t. Then the existential theory of (Fq((t)), 0, 1,+, ·, t, P ) is undecidable.

We will generalise these results, establishing undecidability for all non-archimedean local fields
with enough predicates for discrete infinite cyclic subgroups.

Theorem 1.6. Let K be a p-adic field and v the unique discrete valuation on K. Assume
that α, β ∈ K are two elements with v(α), v(β) > 0 and αZ∩βZ = {1}. Then (K,+, ·, αZ, βZ)
is undecidable.

Theorem 1.7. Let Fq((t)) be a local field of characteristic p and vt its t-adic valuation. Assume
that α ∈ Fq((t)) is an element with vt(α) > 0. Then the existential theory of the structure
(Fq((t)),+, ·, α, αZ) is undecidable. In particular, (Fq((t)),+, ·, αZ) is undecidable.

In our final section (Section 4) we will prove these two theorems, as well as Hieronymi’s
undecidability result for (R,+, ·, αZ, βZ) using various different techniques. It is the main
theme of this thesis that although all types of local fields share topological and number
theoretic properties1, the way we approach decidability questions depends crucially on the

1E.g. they are locally compact topological fields, are complete with respect to their absolute value, and
satisfy the same reciprocity laws in local class field theory.

5



specific arithmetic of the local field. Note that for R and p-adic fieldsK we need two predicates
for cyclic subgroups for undecidability to occur, whereas for Fq((t)) we only need one. So in
particular, the characteristic of the field plays an important role. We will use valuations
for various proofs, but in each case in a different way: in the proof of Theorem 1.1, the
natural valuation of an ordered field (introduced in Section 2.2) will make an appearance as a
systematic way of thinking about infinitesimals, whereas in the proof of Theorem 1.7, we will
use the t-adic valuation to show that certain Artin-Schreier polynomials do not have solutions
in Fq((t)).

The proof of Theorem 1.3 will be fairly analytic in nature. One constructs a particular se-
quence with definable range, to which the lemma on asymptotic extraction of groups (Lemma
4.1.2) can be applied. This way we can show that Z is definable in (R,+, ·, αZ, βZ) by a
formula with one parameter, and undecidability of this structure can be reduced to the un-
decidability of (Z,+, ·). The proofs of Theorem 1.6 and Theorem 1.7 will, at the end, also
invoke the undecidability of (Z,+, ·) or the negative solution to Hilbert’s Tenth Problem.
However, we will not prove that Z is definable in these structures. Instead, we will show
that certain undecidable expansion of Presburger arithmetic (N, 0, 1,+) can be interpreted
in (K,+, ·, αZ, βZ), respectively (Fq((t)),+, ·, α, αZ). Thus we proceed in two steps: first, we
prove that certain expansions of Presburger arithmetic are undecidable.

Proposition. Let p be a prime number. Let vp be the p-adic valuation on N>0, i.e., vp(n) is

the largest k ∈ N such that pk | n. Set vp(0) = 0. Let |p be a binary relation on N defined

by n |p m if and only if ∃k ∈ N m = pkn. Then the elementary theory of (N,+, vp) and the
existential theory of (N, 0, 1,+, |p) are undecidable.

In a second step, we show that (N,+, vp), respectively (N, 0, 1,+, |p), are interpretable in
(K,+, ·, αZ, βZ), respectively (Fq((t)),+, ·, α, αZ). Mariaule [15] and Pheidas [20] follow the
same proof strategy. However, in the proof of Theorem 1.7, we need to modify Pheidas’
interpretation of (N, 0, 1,+, |p) in (Fq((t)),+, ·, α, αZ), which will not work for general α. The
proof changes insofar as that instead of analysing equations by their t-adic valuation, we will
consider their pth-power-omitting t-adic valuation (introduced in Definition 4.3.5).

Acknowledgements. I would like to thank Prof. Philipp Hieronymi for his guidance during the
preparation of this thesis. I am particularly grateful for several helpful remarks, especially
regarding the proof Theorem 4.1. I wish to extend my thanks to Margarete Ketelsen and
Sebastian Meyer who offered valuable comments.
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2. Preliminaries

The purpose of this section is to recall the necessary prerequisites for studying decidability
questions in local fields.

Note on notation. The blackboard bold letter N stands for the non-negative integers.

We will use calligraphic letters A,M,N , . . . etc. for structures and models of theories, and
uppercase letters A,M,N, . . . etc. for their domains of definition. If L is a first-order language
andM an L-structure, then Th(M) resp. Th∃(M) is the set of L-sentences resp. existential
L-sentences that are true inM.

IfM = (M,<, . . .) is an ordered structure, then for any x ∈M , we write

M>x = {y ∈M | y > x}
M≥x = {y ∈M | y ≥ x}.

2.1. Decidable and undecidable theories.

Definition 2.1.1. A subset A of the set of natural numbers N is called recursive (or com-
putable) if the characteristic function χA : N −→ {0, 1}

χA(n) =

{
1 if n ∈ A
0 if n /∈ A

is computable, i.e., there is a Turing machine that for inputs n will output χA(n).

There are many other equivalent ways of defining computability, all of which have in common
that they are descriptions of “effective methods” of computing functions (cf. Church-Turing
thesis, see [5, Chap. 8]).

In logic, one is primarily concerned with formal symbols and formulas, not natural numbers.
However, we can use the notion of computability in logic if we assign to each symbol, term,
and formula a unique natural number called Gödel number. Such an assignment is called
Gödel numbering. Thus we can call a first-order language or a set of formulas recursive, if the
corresponding set of Gödel numbers is recursive (see [5, Chap. 15] for more details on Gödel
numberings and its properties).

Definition 2.1.2. Let L be a countable recursive first-order language and SL the set of all L-
sentences. An L-theory T is called decidable if there is an effective method (i.e. an algorithm)
that determines for any given sentence φ ∈ SL, whether φ ∈ T or φ /∈ T . To be more precise,
we say that T is decidable if the set of Gödel numbers

{⌜φ⌝ | φ ∈ T} ⊆ N
is recursive, where ⌜φ⌝ denotes the Gödel number of φ. We say that an L-structure M is
decidable if Th(M) is decidable, otherwise we say thatM is undecidable.

We will be concerned with the question of whether a certain structure (or family of structures)
is decidable or not. We will need a method of proof both for showing that a theory is decidable
and that a theory is undecidable. The following theorem will be used to show decidability.
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Theorem 2.1.3. Let L be a countable recursive language and M an L-structure. Let Σ be
a complete recursive axiomatisation for M, i.e., M |= Σ, Σ |= Th(M), and Σ is recursive.
ThenM is decidable.

We can give a short reasoning for why this theorem is true. Given φ ∈ Th(M), there must
be a formal derivation of φ from a finite subset Σ0 of Σ by Gödel’s Completeness Theorem.
One can contrive an algorithm, that after receiving an L-sentence ψ ∈ SL as input, goes
one by one through all (countably many) derivations from finite subsets of Σ. After finitely
many steps, it will find a formal derivation whose consequence is either ψ or ¬ψ, because Σ is
complete. Then it will output 1 if ψ is found to be consequence of Σ, and 0 if ¬ψ is found to
be a consequence of Σ. For a more precise proof of the above theorem, we refer to [5, 15.7].

Example 2.1.4. One of the first instances of a theory that was found to be decidable is
Presburger arithmetic2, the theory of (Z, 0, 1,+,−, <). This theory has quantifier elimination
in an expanded language. Consider

LPres = {0, 1,+,−, <} ∪ {Pn}n≥1,

where the Pn are unary relation symbols that are to be interpreted as the multiples of n. Let
TPres be the LPres-theory consisting of

(i) axioms for ordered abelian groups;

(ii) 0 < 1;

(iii) ∀x (x > 0→ x ≥ 1);

(iv) ∀x (Pn(x)↔ ∃y x = y + . . .+ y︸ ︷︷ ︸
n times

) for all n ≥ 1;

(v) ∀x
∨n−1

i=0

[
Pn(x+ 1 + . . .+ 1︸ ︷︷ ︸

i times

) ∧
∧

j ̸=i ¬Pn(x+ 1 + . . .+ 1︸ ︷︷ ︸
j times

)
]
for all n ≥ 1.

Clearly, (Z, 0, 1,+,−, <, {nZ}n≥1) satisfies these axioms. If Z is another model of TPres with
domain Z, then axiom (iii) says that there are no element in Z between 0 and 1, (iv) says
that PZ

n = nZ, and (v) says that Z/nZ ∼= Z/nZ. It turns out that this theory has quantifier
elimination and is in fact a complete axiomatisation for (Z, 0, 1,+,−, <, {nZ}n≥1) (see [16,
Cor. 3.1.21] for a proof of this statement). Looking at the list of axioms in TPres, we see that
it is recursive, so by Theorem 2.1.3 we have that (Z, 0, 1,+,−, <, {nZ}n≥1) is decidable. In
particular, (Z, 0, 1,+,−, <) is also decidable (its theory contains the same sentences, except
those that use the symbols Pn). ⊣

We will later see another example of a decidable theory, the theory of real closed fields (see
Theorem 2.3.7). Section 3.1 will contain a full proof of quantifier elimination for a certain
theory, from which completeness and decidability can be inferred.

We will use the following basic example to show undecidability.

2The theory of (N, 0, 1,+) is also called Presburger arithmetic. One should note that these theories are
mutually interpretable in each other.
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Example 2.1.5. As mentioned in the introduction, the theory of (Z,+, ·) is undecidable
by Gödel’s Incompleteness Theorem. Moreover, Matiyasevich’s negative solution to Hilbert’s
Tenth Problem implies that the existential theory of (Z, 0, 1,+,−, ·) is undecidable. ⊣

If we can show that theory of (Z,+, ·) or the existential theory of (Z, 0, 1,+,−, ·) can be
effectively coded in a given theory T , then T will be undecidable. This method of proof will
be used in Section 4 to show undecidability of expansion of local fields.

2.2. Valuations and local fields.

§ 1. Absolute value and valuation. An absolute value on a field is a measure of distance. It is
defined by three axioms.

Definition 2.2.1. A valued field (K, | · |) is a field K, together with a map | · | : K −→ R≥0

satisfying

(i) |x| = 0⇐⇒ x = 0

(ii) |xy| = |x| · |y|

(iii) |x+ y| ≤ |x|+ |y| (triangle inequality),

for all x, y ∈ K. We call | · | an absolute value on K. We say it is non-archimedean if it
satisfies the strengthened axiom

(iii’) |x+ y| ≤ max{|x|, |y|} (ultrametric inequality).

If this is not the case, we say that | · | is archimedean.

Example 2.2.2. If | · |∞ is the Euclidean norm, then (Q, | · |∞), (R, | · |∞), and (C, | · |∞) are
archimedean valued fields. ⊣

Non-archimedean valued fields have an alternative description.

Definition 2.2.3. A (rank 1) valuation3 on a field K is a map

v : K −→ R ∪ {∞}

satisfying the axioms

(i) v(x) =∞⇐⇒ x = 0

(ii) v(xy) = v(x) + v(y)

(iii) v(x+ y) ≥ min{v(x), v(y)},

for all x, y ∈ K. Here, we assume the conventions

x+∞ =∞+ x =∞+∞ =∞ (2.2.1)

x <∞

for all x ∈ R. The image v(K×) of K× under v is called value group.

3Rank 1 refers to the fact that the value group v(K×) is a subgroup of the ordered group of reals.
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The notions of non-archimedean absolute value and (rank 1) valuation are basically equivalent:

if we fix c ∈ (0, 1), then |x| = cv(x) turns a valuation v into a non-archimedean absolute
value. Conversely, the definition v(x) = logc |x| turns a non-archimedean absolute value into
a valuation. Essentially, we are only switching between additive and multiplicative notation
for the value group. We say that two valuations v1 and v2 are equivalent if there is a constant
C > 0 such that v2 = C · v1. Likewise, we say that two absolute values | · |1 and | · |2 are
equivalent if | · |2 = | · |C1 for some constant C > 0.

If we do not restrict ourselves to value groups v(K×) ⊆ R, but instead allow arbitrary ordered
groups, we get a more general notion.

Definition 2.2.4. Let K be a field and (Γ,≤) a totally ordered abelian group. A valuation
v on K with value group Γ is a surjective map

v : K −↠ Γ ∪ {∞}

satisfying the properties

(i) v(x) =∞⇐⇒ x = 0

(ii) v(xy) = v(x) + v(y)

(iii) v(x+ y) ≥ min{v(x), v(y)},

for all x, y ∈ K. Again, we suppose that ∞ is subject to the relations (2.2.1). We say v
is trivial if it has trivial value group Γ = 0. We say that v is discrete if it has value group
isomorphic to (Z,≤).

In many cases we actually have equality in (iii).

Lemma 2.2.5. Let K be a field with valuation v : K −↠ Γ ∪ {∞}. If x1, . . . , xn ∈ K are
elements of K with pairwise distinct valuation, then

v(x1 + . . .+ xn) = min
1≤i≤n

v(xi).

Proof. Consider the case n = 2. We can assume without loss of generality that v(x1) > v(x2)
and thus v(x1 + x2) ≥ v(x2). If we had strict inequality v(x1 + x2) > v(x2), this would yield
a contradiction:

v(x2) = v((x1 + x2)− x1) ≥ min{v(x1 + x2), v(−x1)} > v(x2).

Hence we have

v(x1 + x2) = min{v(x1), v(x2)}.
The general case follows by induction. □

§ 2. The p-adic valuation. The most important example of a non-archimedean absolute value
is the following.

Definition 2.2.6. Let p be a prime number. Given x ∈ Q×, written as x = pk a
b with p ∤ a, b,

we define

|x|p = p−k.
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The p-adic valuation vp on Q is given by

v(x) = k ∈ Z.

Note that if we restrict ourselves to the positive integers n ∈ Z>0, then vp(n) is just the
exponent of the prime p in the prime factorisation of n.

It is a remarkable fact (see [19, Chap. II, (3.7)]) that this already describes all possible
valuations on Q.

Theorem 2.2.7. Up to equivalence, the p-adic valuations vp are the only valuations on Q.

§ 3. The t-adic valuation. Consider the rational function field k(t) over a field k in one vari-
able.

Definition 2.2.8. Let k be any field. Given x ∈ k(t)×, written as

x = tl
f(t)

g(t)
,

where f(t), g(t) ∈ k[t] have non-zero constant term, we define

vt(x) = l ∈ Z.
We call vt the t-adic valuation on k(t).

§ 4. Valuation ring, unit group, and residue field. Essential to any valuation are the following
algebraic objects associated to it.

Definition/Remark 2.2.9. Let v : K −↠ Γ ∪ {∞} be a valuation. The ring

Ov = {x ∈ K | v(x) ≥ 0}
is a local ring, called the valuation ring, with maximal ideal

Mv = {x ∈ K | v(x) > 0}
and unit group

O×
v = Ov \Mv = {x ∈ K | v(x) = 0}.

The field
kv = Ov/Mv

is called residue field. Note that the group homomorphism v|K× has kernel O×
v , so the value

group Γ is isomorphic to K×/O×
v . ⊣

The final remark indicates that from the valuation ring alone, one can recover the whole
valuation. This will be illustrated by an explicit example in Remark 2.2.16.

Example 2.2.10. (1) Consider the p-adic valuation v = vp on Q. Then

Ov =
{
a
b ∈ Q

∣∣ p ∤ b}
Mv =

{
a
b ∈ Q

∣∣ p | a, p ∤ b}
O×

v =
{
a
b ∈ Q

∣∣ p ∤ a, p ∤ b}
kv = Ov/pOv = Fp.
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(2) Given any field k, consider the t-adic valuation v = vt on k(t). Then

Ov =
{

f(t)
g(t) ∈ k(t)

∣∣∣ g(0) ̸= 0
}

Mv =
{

f(t)
g(t) ∈ k(t)

∣∣∣ f(0) = 0, g(0) ̸= 0
}

O×
v =

{
f(t)
g(t) ∈ k(t)

∣∣∣ f(0) ̸= 0, g(0) ̸= 0
}

kv = Ov/tOv = k. ⊣

§ 5. Local fields. A valued field (K, | · |) is a metric space with distance function

d(x, y) = |x− y|.

When we say that (K, | · |) is complete, we mean that the induced metric space is complete.

Example 2.2.11. The valued field (Q, | · |∞) is not complete, but (R, | · |∞) is. Also, the
valued field (Q, | · |p) is not complete. For example,

an =
n∑

i=1

pi!

defines a Cauchy sequence with respect to the p-adic metric. However, it cannot have a limit
in Q, because any q ∈ Q has periodic p-adic expansion. ⊣

Any valued field (K, | · |) can be extended to a complete valued field (K̂, | · |), called the

completion of K, in a universal way (see [19, Chap. II, §4]). The absolute value on K̂

extends the absolute value on K, and K is dense in K̂. The completion of (K, | · |) is unique
up to unique value-preserving isomorphism fixing K. It is worth noting that when | · | is
non-archimedean, the value group and residue field do not change after completion.

Definition 2.2.12. The field of p-adic numbers Qp is the completion of (Q, | · |p). The field
of formal Laurent series over Fq, written Fq((t)), is the completion of Fq(t) with respect to
the t-adic valuation.

The valued fields Qp and Fq((t)) are basic examples of local fields. Often, it is useful to
represent elements of Qp and Fq((t)) as infinite series. We can write

Qp =

{ ∞∑
i=−n

aip
i
∣∣∣ ai ∈ {0, . . . , p− 1}, n ∈ Z

}

Fq((t)) =

{ ∞∑
i=−n

ait
i
∣∣∣ ai ∈ Fq, n ∈ Z

}
,

and both the p-adic and t-adic valuation are given by min{i | ai ̸= 0}.

Definition 2.2.13. A local field is either a complete archimedean valued field, or a complete
non-archimedean valued field with discrete valuation and finite residue field.

12



By Ostrowski’s theorem [19, Chap. II, (4.2)], any complete archimedean valued field is iso-
morphic to R or C, and its absolute value is equivalent to | · |∞. Moreover, the absolute value
on Qp or Fp((t)) extends uniquely to any finite extension of Qp or Fp((t)), respectively. This,
in fact, already characterises all non-archimedean local fields.

Theorem 2.2.14. Any non-archimedean local fields of characteristic 0 is a finite extension
of Qp for some prime p. Any non-archimedean local field of characteristic p is isomorphic to
Fq((t)) for some finite field Fq.

Proof. See [19, Chap. II, (5.2)]. □

Finally, let us note that local fields arise as completions with respect to an absolute value on
global fields. These are finite extensions of Q (algebraic number fields), or finite extensions of
Fq(t) (global function fields). If K is a global field with absolute value | · |, then the completion
of (K, | · |) will be a local field.

§ 6. The natural valuation of an ordered field. We can define a valuation that is quite different
in nature in comparison to discrete valuations on local fields.

Let (K,≤) be an ordered field, that is, a field K together with a total order ≤ satisfying the
compatibility conditions

(i) x ≤ y =⇒ x+ z ≤ y + z

(ii) 0 < x, y =⇒ 0 < x · y,

for all x, y, z ∈ K. Note that K is necessarily of characteristic 0. To any ordered field (K,≤)
we can assign a valuation in a natural way, as we now describe.

For x ∈ K, we write4

|x| = max{x,−x}.
Given x, y ∈ K, we say that x and y are in the same archimedean class, in symbols x ∼ y, if
there is N ∈ Z>0 such that

1

N
|x| ≤ |y| ≤ N |x|.

Clearly, ∼ defines an equivalence relation. Write ∞ = [0] for the equivalence class of 0, and
Γ ∪ {∞} for the whole set of equivalence classes [x], x ∈ K. We can turn Γ into a totally
ordered abelian group by declaring

[x] + [y] := [x+ y]

[x] ≤ [y] :⇐⇒ ∃x′ ∈ [x], y′ ∈ [y] |x′| ≥ |y′|

for all [x], [y] ∈ Γ. It is not difficult to verify that this is indeed a well-defined totally ordered
abelian group with neutral element [1] (the trivial archimedean class).

By construction, the assignment x 7−→ [x] satisfies axioms (i) and (ii) of a valuation. Moreover,
we have

|x+ y| ≤ |2x| or |x+ y| ≤ |2y|,

4Unfortunately, the notation here is overloaded, as we already used |·| to denote absolute values in Definition
2.2.1. Moving forward, we will not use absolute values anymore, so there should be no ambiguity.
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which implies
[x+ y] ≥ [2x] = [x] or [x+ y] ≥ [2y] = [y],

so x 7−→ [x] does in fact define a valuation.

Definition 2.2.15. Let (K,≤) be an ordered field. We call

vnat : K −↠ Γ ∪ {∞}, x 7−→ [x],

as defined above, the natural valuation of (K,≤).

Remark 2.2.16. We can give an alternative description of vnat by starting with its valuation
ring (this can be done, in general, with any valuation). Let

Fin(K) = {x ∈ K | ∃N ∈ Z>0 |x| < N}
be the ring of finitely bounded elements of K. This is a local ring with unique maximal ideal

Inf(K) =

{
x ∈ K | ∀N ∈ Z>0 |x| <

1

N

}
of infinitesimal elements of K. The unit group of Fin(K) is given by

Fin(K)× = Fin(K) \ Inf(K) =

{
x ∈ K | ∃N ∈ Z>0

1

N
≤ |x| ≤ N

}
= [1].

Hence K×/Fin(K)× is precisely the group of archimedean classes Γ (we divide out the trivial
archimedean class). The canonical projection

v : K× −↠ K×/Fin(K)× = Γ,

together with the assignment v(0) =∞ and ordering

v(x) ≤ v(y) :⇐⇒ y

x
∈ Fin(K)

of K×/Fin(K)×, give another description for vnat. ⊣

Example 2.2.17. (1) Consider the ordered field (R,≤). Its only archimedean classes are
∞ = [0] and 0 = [1], so vnat is the trivial valuation.

(2) Consider the field of formal Laurent series R((t)) over R in one variable. We define a
lexicographical order ≤ on R((t)) by declaring∑

i

ait
i ≤

∑
i

bit
i :⇐⇒ ak ≤ bk, where k = min{i ∈ Z | ai ̸= bi}.

We then have

Fin(R((t))) =
{∑

i ait
i | ∀i < 0 ai = 0

}
= RJtK

Inf(R((t))) =
{∑

i ait
i | ∀i ≤ 0 ai = 0

}
= tRJtK.

Thus vnat is precisely the t-adic valuation vt with residue field R and value group Z.
(3) Consider the field of formal Laurent series R((t, T )) over R in two variables. We would

like to define a total order on R((t, T )) in such a way that t and T are infinitesimals,
and t is infinitesimally small compared to T . This is realised by∑

i,j

aijt
iT j ≤

∑
i,j

bijt
iT j :⇐⇒ akl ≤ bkl, where

{
k = min{i ∈ Z | ∃j aij ̸= bij}
l = min{j ∈ Z | akj ̸= bkj}.
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This valuation has residue field R and value group Z× Z. ⊣

All three examples are actually special cases of Hahn series fields. However, we will not need
this general notion in our study of decidability of local fields.

2.3. Real closed fields. The theory (R, 0, 1,+,−, ·) does not have quantifier elimination:
the subset R≥0 ⊆ R is definable, but not by a quantifier-free formula. This can be remedied
by expanding the language by a relation symbol ≤ for the order on R. To understand the
first-order theory of (R, 0, 1,+,−, ·,≤), one has to study the Artin-Schreier theory of formally
real fields. Its starting point is a simple observation: −1 is not the sum of squares in R.

In general, if we consider an ordered field (K,≤), then again −1 will not be the sum of squares.
This leads to the following definition and characterisation (see [16, Cor. B.7]):

Definition 2.3.1. Let K be a field. We call K formally real if −1 is not the sum of squares
in K.

Proposition 2.3.2. Let K be a field. Then K is formally real if and only if it is orderable,
i.e., there is an order ≤ on K making it into an ordered field.

In the context of ordered fields, the notion of a real closed field takes the place of algebraically
closed fields.

Definition 2.3.3. We say that a formally real field K is real closed if there is no proper
algebraic formally real extension of K.

Any real closed field R has a unique ordering: these fields satisfy the property that for any
a ∈ R, a or −a is a square in R, so that

x ≤ y :⇐⇒ ∃z ∈ R y = x+ z2

defines the unique ordering on R. In other words, the ordering on R is already inherent to
the algebra of the field. The real closure of an ordered field (K,≤) is a real closed field that
is an algebraic extension of K and whose unique ordering extends ≤ on K. In analogy to
the existence and uniqueness of algebraic closures, we have the following theorem [16, Thm.
B.14]:

Theorem 2.3.4. Let (K,≤) be an ordered field. Then (K,≤) can be extended to a real closure
Krc. Moreover, the real closure is unique up to unique isomorphism: if R1 and R2 are real
closures of K, then there exists a unique isomorphism between R1 and R2 over K.

K

R1 R2

⊇ ⊆

∃!
∼=

Note however, that the real closure is not unique if we do not fix an ordering on K beforehand.
We can have non-isomorphic real closures if we start with different orderings on K.
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Tarski showed that real closed fields are elementarily equivalent to the real field R. To see
that this actually gives us an axiomatisation of the first-order theory of R, we will need an
alternative description for real closed fields.

Theorem 2.3.5. Let (K,≤) be an ordered field. Then the following are equivalent:

(i) K is a real closed field.

(ii) The field extension K(i) is algebraically closed, where i2 = −1.
(iii) Any non-negative x ∈ K has a square root and any polynomial f(X) ∈ K[X] of odd

degree has a solution in K.

For proof, see [16, Cor. B.9, Thm B.12]. The last one of the three equivalent statements can
be expressed by first-order sentences. Thus we define:

Definition 2.3.6. Let Lrcf = {0, 1,+,−, ·,≤}. The Lrcf-theory of real closed fields Trcf
consists of

(i) axioms for ordered fields;

(ii) ∀x (x ≥ 0→ ∃y x = y2);

(iii) ∀a0∀a1 . . . ∀an−1∃x (xn + an−1x
n−1 + . . .+ a1x+ a0 = 0) for all odd n.

Thus we can formulate the main theorem of this section.

Theorem 2.3.7. The theory Trcf is complete and has quantifier elimination. Consequently,
(R, 0, 1,+,−, ·,≤) is decidable.

Clearly, R |= Trcf . For the proof of quantifier elimination, see [16, Thm. 3.3.15]. Quantifier
elimination implies completeness, becauseQrc embeds into any real closed field (we will explain
this type of argument in greater detail in the proof of Corollary 3.1.7). Decidability follows
from Theorem 2.1.3, since Trcf is recursive.

We end this section with a lemma about valuations on real closed fields that will be of use in
the next chapter.

Lemma 2.3.8. Let L/K be a field extension and v : L −↠ ΓL ∪ {∞} a valuation on L, that
restricts to v|K : K −↠ ΓK ∪ {∞} with value group ΓK ⊆ ΓL.

(i) If L is real closed, then ΓL is divisible.

(ii) If L is the the real closure of K (with respect to some ordering), then ΓL is the divisible

hull Γ̃K of ΓK .5

(iii) If Γ̃K ⊊ ΓL and x ∈ L× is such that v(x) /∈ Γ̃K , then x is transcendental over K.

Proof. (i) Let γ ∈ ΓL be any element. Choose x ∈ L with v(x) = v(−x) = γ. Since L is
real closed, we can find y ∈ L such that yn = x or yn = −x for any n ≥ 1. But then
n · v(y) = γ, so ΓL is divisible.

5The divisible hull of a torsion-free group G is the smallest divisible group that contains G. It can be
constructed by formally inverting all n ∈ Z>0.
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(ii) We already know that ΓL is divisible. Thus we are left to show that for any v(x) ∈ ΓL,
there is n ≥ 1 such that n·v(x) ∈ ΓK . Since L/K is algebraic, we can find a0, . . . , ak ∈ K
such that

akx
k + . . .+ a1x+ a0 = 0.

It cannot happen that all non-zero aix
i have pairwise distinct valuation, because oth-

erwise the left-hand side would have valuation ̸= ∞ by Lemma 2.2.5. This mean that
we can find 0 ≤ i < j ≤ k with v(ajx

j) = v(aix
i), implying

(j − i) · v(x) = v(ai)− v(aj) ∈ ΓK .

(iii) Follows from (ii). □
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3. Decidable expansion of the real field

3.1. The real field with a cyclic subgroup. In [24], van den Dries shows that the theory of
(R, 0, 1,+,−, ·,≤, 2Z), the real ordered field with a predicate for powers of two, is decidable.
He does so by giving a complete and recursive axiomatisation of this structure. In turn,
completeness follows from quantifier elimination in an expanded language and the observation
that Q embeds into any structure satisfying the axiomatisation. At the end of the paper [24,
p. 194], van den Dries remarks that his results, in particular quantifier elimination, generalise
to the case when 2Z is replaced by any discrete cyclic subgroup αZ, α ∈ R>1. In this section
we present his proof, while making the necessary modifications for general α ∈ R>1 more
explicit.

We start by fixing our language. Let Lrcf ∪ {α,A} be the language of real closed fields

Lrcf = {0, 1,+,−, ·,≤},

together with a constant symbol α and unary relation symbol A. For readability, we will omit
0, 1, +, −, and · from notation of structures in this language.

We propose the following complete axiomatisation for Th(R,≤, α, αZ).

Definition 3.1.1. Let Trcf(α
Z) be the Lrcf ∪ {α,A}-theory consisting of the following sen-

tences:

(R1) the axioms for ordered rings and 0 ̸= 1;

(R2) ∀x∃y (x ̸= 0→ x · y = 1);

(R3) ∀x∃y (x > 0→ x = y2);

(R4) ∀a0∀a1 . . . ∀an−1∃x (xn + an−1x
n−1 + . . .+ a1x+ a0 = 0) for all odd n;

(S1) 1 ∈ A, ∀x∀y (x ∈ A ∧ y ∈ A→ x · y ∈ A), and ∀x∀y (x · y = 1 ∧ x ∈ A→ y ∈ A);

(S2) ∀x (x ∈ A→ x > 0);

(A1) α ≤ N and N + 1 ≤ Nα for some fixed positive integer integer N ;6

(A2) α ∈ A and ∀x (1 < x < α→ x /∈ A);

(A3) ∀x∃y ∈ A (x > 0→ y ≤ x < α · y).

If we are given a concrete α ∈ R>1, then we obtain the Lrcf ∪ {α,A}-theory Trcf(α, αZ) by
adding the sentences

(D) m < nα for all m
n ∈ {q ∈ Q | q < α}, where n > 0, and

m ≥ nα for all m
n /∈ {q ∈ Q | q < α}, where n > 0,

to the theory Trcf(α
Z), and if α is algebraic with minimal polynomial p(X) ∈ Q[X], a sentence

for p(α) = 0.

6This axiom says that the interpretation of α is bounded and bigger than 1 by at least 1/N . Because of
the Compactness Theorem, we have to specify this bound extrinsically. In particular, the theory Trcf(α

Z) thus
defined depends on the constant N .
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If K = (K,≤, α,A) is a model of Trcf(α, α
Z), then (R1)–(R4) say that K is a real closed field,

(S1)–(S2) say that A is a multiplicative subgroup of K>0, (A2)–(A3) say that we can write
K>0 as the disjoint union

K>0 =
⊔
x∈A

[x, αx),

and finally, (D) says that the Dedekind cut of α in R and K coincides. Note that (D) implies
(A1). Thus we do not need to specify N ∈ Z>0 for the theory Trcf(α, α

Z).

We claim that these axioms suffice for an axiomatisation.

Theorem 3.1.2. Let α ∈ R>1 be a fixed constant. Then Trcf(α, α
Z) is a complete axiomati-

sation of (R,≤, α, αZ). In particular, (R,≤, α, αZ) is decidable if and only if α is recursive.

Recall that α ∈ R>1 is recursive if there is an algorithm that can compute its decimal repre-
sentation to any given degree of accuracy. This is equivalent to saying that the set of pairs
(m,n) ∈ N2 satisfying m

n < α is recursive.

Remark 3.1.3. We see immediately that the second part of this theorem is a consequence of
Theorem 2.1.3: the set of axioms (R1)–(R4), (S1)–(S2), (A1)–(A3) is recursive. If the same
is true for (D), then Th(R,≤, α, αZ) will be decidable. Conversely, this theory contains all
sentences that express q < α for q ∈ Q. This means that for “bad” choices of α (meaning
that α is not recursive), Th(R,≤, α, αZ) has no chance of being decidable. This explains the
somewhat artificial condition on α and the subtlety which arises when passing from (R,≤, 2Z)
to (R,≤, α, αZ). ⊣

As mentioned before, Theorem 3.1.2 will follow from quantifier elimination in an expanded
language—which we now define—and the existence of a structure that embeds into any model
of the extended theory.

Definition 3.1.4. For each positive integer n, let Pn be an unary relation symbol. Let f be
an unary function symbol. We write L∗ = Lrcf ∪ {α,A, {Pn}n≥1, f} for the new expanded

language. We obtain the L∗-theory T ∗ = Trcf(α
Z, {Pn}n≥1, f) by adding the sentences

(P) ∀x (x ∈ Pn ↔ ∃ y(y ∈ A ∧ x = yn));

(F) ∀x (x ≤ 0→ f(x) = 0), and

∀x (x > 0→ (f(x) ∈ A ∧ f(x) ≤ x < α · f(x)))

to the theory Trcf(α
Z).

In words: for a model K = (K,≤, α,A, {Pn}n≥1, f) of T ∗, we have that Pn ⊆ A are the nth

powers in A, and f |K>0 : K>0 −→ A is the “floor function” that rounds positive x ∈ K to the
nearest element in A below x.

Example 3.1.5. Our standard model (R,≤, α, αZ) of Trcf(α
Z) expands to a model of T ∗ by

setting Pn = αnZ and

f(x) = α⌊logα(x)⌋

for x ∈ R>0. We denote this model by R. ⊣
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Lemma 3.1.6. Let α ∈ R>1. Let (K,≤) be an ordered field.

(i) Let β ∈ K be an element of K with the same Dedekind cut as α, i.e.,

{q ∈ Q | q < α} = {q ∈ Q | q < β}.

Furthermore, if α is algebraic with minimal polynomial p(X) ∈ Q[X], assume that
p(β) = 0. Then the homomorphism

(Q(α),≤) (Q(β),≤)

(R,≤) (K,≤)

⊂ ⊂
that sends α to β, defines an isomorphism of ordered fields.

(ii) (Q(α),≤) embeds into any model of Trcf(α, α
Z). This embedding expands to an L∗-

embedding.

Proof. (i) Consider any polynomial f(X) = adX
d + . . . + a1X + a0 ∈ Q[X]. Let us show

that

f(α) > 0 =⇒ f(β) > 0

in (R,≤) resp. (K,≤). Choose q0, q1, . . . , qd ∈ Q>0 subject to the conditions
qi < α if ai > 0

qi = 0 if ai = 0

qi > α if ai < 0.

Set Q = adq
d
d + . . . + a1q1 + a0 ∈ Q. Then f(α) > Q and f(β) > Q. If f(α) > 0, we

can choose the qi sufficiently close to α (for all ai ̸= 0) so that f(α) > Q > 0. But then
f(β) > Q > 0. The same argument shows that

f(α) < 0 =⇒ f(β) < 0.

If α is transcendental, then β must be transcendental as well. Hence Q(α) −→ Q(β),
α 7−→ β, defines a field isomorphism that preserves order.

(ii) Let A = (Q(α),≤, α, αZ, {αnZ}n≥1, x 7→ α⌊logα(x)⌋) be the restriction of the standard
model R |= T ∗ to the domain Q(α). Let K = (K,≤, β, A, {Pn}n≥1, f) be the L∗-
expansion of a model of Trcf(α, α

Z). By part (i), the inclusion

ι : Q(α) −→ K, α 7−→ β,

is an embedding in the language Lrcf∪{α}. We will now show that it is an L∗-embedding
as well. Note that for any positive x ∈ Q(α),

αn ≤ x < αn+1 =⇒ βn ≤ ι(x) < βn+1, (3.1.1)

thus f(ι(x)) = βn = ι(αn) = ι(f(x)), so ι is compatible with f . Furthermore, f(y) = y
holds for any y ∈ A. Together with (3.1.1), this implies that for any ι(x) ∈ ι(Q(α))∩A,
it follows that ι(x) = f(ι(x)) ∈ βZ = ι(αZ). Thus ι(αZ) = ι(Q(α))∩A, and by the same
argument, ι(αnZ) = ι(Q(α)) ∩ Pn for all n ≥ 1. □
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Corollary 3.1.7. If T ∗ has quantifier elimination, then Trcf(α, α
Z) is complete.

Proof. This is a well-known argument (cf. [16, Prop. 3.1.14]). Let K1 and K2 be models
of Trcf(α, α

Z). Both expand to models of T ∗. Let A be the L∗-structure from the previous
lemma that embeds into any model of T ∗. Any Lrcf ∪ {α,A}-sentence φ is equivalent to a
quantifier-free L∗-sentence ψ under T ∗. Thus we have

K1 |= φ⇐⇒ K1 |= ψ ⇐⇒ A |= ψ ⇐⇒ K2 |= ψ ⇐⇒ K2 |= φ,

which proves that K1 ≡ K2. □

In other words: we are left to prove quantifier elimination for T ∗, from which the main result
(Theorem 3.1.2) follows by the above discussion. If we compare van den Dries’ proof [24]
with our exposition, we see that the only substantial difference is that for general α ∈ R>1,
we additionally need Lemma 3.1.6. For α = 2 (or α ∈ Q>1 for that matter) it is obsolete,
because then Q is already an L∗-structure that embeds into any model of T ∗.

3.2. Quantifier elimination in T ∗. We will use the following embedding test for quantifier
elimination. It differs only marginally from the one used by van den Dries [24].

Proposition 3.2.1 (Embedding test). Let L be a first-order language with at least one con-
stant symbol. Let Σ be an L-theory. Then the following three statements are equivalent:

(i) Σ has quantifier elimination.

(ii) Given any L-substructure M ⊊ N |= Σ and |N |+-saturated model M ⊆M∗ |= Σ, the
inclusion M ↪−→ M∗ can be extended to a partial L-embedding ι : N −⇀ M∗ with
strictly bigger domain. Written diagrammatically:

M∗

M N

∃ι N ,M∗ |= Σ, M ⊊ dom(ι)

(iii) Given any L-substructure M ⊊ N |= Σ and |N |+-saturated model M ⊆ M∗ |= Σ,
the inclusion M ↪−→ M∗ can be extended to an L-embedding ι : N ↪−→ M∗. Written
diagrammatically:

M∗

M N

∃ι N ,M∗ |= Σ

Proof. The proof of the equivalence of (i) and (iii) can be found in Marker’s book (see [16,
Prop. 4.3.28]). Clearly, (iii) implies (ii).

(ii) =⇒ (iii). Define a sequence of partial embeddings ια : N −⇀ M∗ indexed by ordinals
α. Let ι0 be the embedding M ↪−→ M∗. If we have defined ια and dom(ια) ̸= N , let ια+1

be an extension of ια obtained by an application of (ii). At limit stages λ, we let ιλ be the
union of all ια constructed for α < λ. This process terminates at some ordinal β when we
have dom(ιβ) = N , which will be the full embedding of N intoM∗. □
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We are now going to apply this embedding test to the theory T ∗ = Trcf(α
Z, {Pn}n≥1, f). For

this purpose, we fix L∗-structures
M = (M,≤, α,A, {Pn}n≥1, f |M )

K = (K,≤, α,B, {Qn}n≥1, f)

M∗ = (M∗,≤, α,A∗, {P ∗
n}n≥1, f

∗)

satisfyingM ⊊ K |= T ∗,M ⊆M∗ |= T ∗, andM∗ is |K|+-saturated. We need to show that
we can extend the inclusionM ↪−→M∗ to a partial embedding ι with M ⊊ dom(ι).

M∗

M K

∃ι

Before we can go further, we need to establish a few properties of models of T ∗. This will
give us some structural information that we can use to construct ι.

Remark 3.2.2. M must not be a model of T ∗, as it is merely a substructure of K |= T ∗.
However,M will satisfy any universal sentence that is a consequence of T ∗, including:

(1) (M,≤) satisfies axiom (R1) and ∀x∀y(x ̸= 0∧y ̸= 0→ xy ̸= 0), so (M,≤) is an ordered
integral domain.

(2) M still satisfies (S1)–(S2), so A is a multiplicative subgroup of M>0.

(3) M satisfies (F), and thus (A1)–(A3) as well.

Moreover, considering the natural valuation v = vnat associated to the real closed field (K,≤),
we know from Lemma 2.3.8 that its value group ΓK is divisible. ⊣

Lemma 3.2.3. Let v be the natural valuation associated to (K,≤) and ΓK its value group.
The restriction v|B : B −→ ΓK is surjective and has kernel αZ, i.e.,

B/αZ ∼= ΓK .

The same holds true for any other model of T ∗.

Proof. Consider any γ ∈ ΓK . We can find x > 0 so that v(x) = γ. By (A1) and (F), we know
that x and f(x) lie in the same archimedean class. Thus v(f(x)) = γ, where f(x) ∈ B.
Every element of αZ lies in the trivial archimedean class. If v(x) = 0 for some x ∈ B, then
we can find n ∈ Z with αn ≤ x < αn+1 by virtue of (A1). But then x = f(x) = αn ∈ αZ,
which proves that αZ is the kernel of v|B. The same reasoning applies to any other model of
T ∗. □

Lemma 3.2.4. The structure (B, 1, α, ·,÷, <, {Qn}n≥1) is a model of Presburger arithmetic
(as defined in Example 2.1.4). The same holds true for any other model of T ∗.

Proof. Note that because we are working with αZ, we use multiplicative instead of additive
notation. Properties (S1)–(S2), (A1)–(A2), and (P) imply properties (i)–(iv) of Presburger
arithmetic. Since ΓK is divisible, we have

Qnα
Z/αZ ∼= nΓK = ΓK .
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By several applications of the isomorphism theorems for groups, we get

(B/Qn)/(Qnα
Z/Qn) ∼= B/Qnα

Z = (B/αZ)/(Qnα
Z/αZ) ∼= ΓK/ΓK

∼= {0}.
Combined with

Qnα
Z/Qn

∼= αZ/αnZ ∼= Z/nZ,
this yields B/Qn

∼= Z/nZ, which implies (v), the last axiom of Presburger arithmetic. □

We are now ready for the construction of the extension ι. We consider four cases.

Case 1. If M is not a field, extendM ↪−→M∗ to the field of fractions F = Frac(M) ⊆ K.

Case 2. IfM is a field that is not real closed, extendM ↪−→M∗ to the real closureM rc ⊆ K.

Case 3. If M is a real closed field and A = B, we extendM ↪−→M∗ to all of K.

Case 4. If M is a real closed field and A ̸= B, we extend M ↪−→ M∗ to a simple field
extension M(b) ⊆ K, where b ∈ B \A.

Case 1. M is not a field. We know from property (1) of Remark 3.2.2 that M is an integral
domain, so it has a unique field of fractions inside K,

M ⊊ F := Frac(M) =
{
x
y ∈ K | x ∈M, y ∈M \ {0}

}
⊆ K.

The ordering on F is uniquely determined by the ordering on M via

x
y ≥ 0⇐⇒ xy ≥ 0. (3.2.1)

Consider any positive fraction x
y ∈ F with x, y > 0. Let us determine f

(
x
y

)
∈ B. We have

f(x) ≤ x < αf(x)

α−1f(y)−1 < y−1 ≤ f(y)−1

=⇒ α−1f(x)f(y)−1 < x
y < αf(x)f(y)−1

from which we conclude

f
(
x
y

)
=

{
α−1f(x)f(y)−1 if α−1f(x)f(y)−1 < x

y < f(x)f(y)−1

f(x)f(y)−1 if f(x)f(y)−1 ≤ x
y < αf(x)f(y)−1.

(3.2.2)

This shows that f
(
x
y

)
∈ A, with its precise value being uniquely determined by f |M . If we

combine this with the fact that f |B = idB, we see that for any z ∈ F∩B we have z = f(z) ∈ A.
Thus F ∩B = A and F ∩Qn = Pn for all n ≥ 1.

Combined, this shows that

(F,≤, α,A, {Pn}n≥1, f |F )
is an L∗-substructure of K. Repeating this reasoning insideM∗ will allow us to extendM to
the field of fractions F ′ := Frac(M) ⊆M∗, so that

(F ′,≤, α,A, {Pn}n≥1, f
∗|F ′)

is an L∗-substructure ofM∗. But then, the unique field isomorphism

F F ′

K M∗

ι
∼=⊂ ⊂
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that fixes M will be an L∗-embedding, because the ordering and floor function on F and F ′

are determined by (3.2.1) and (3.2.2).

Case 2. M is an ordered field that is not real closed. We know that K is a real closed field.
Hence we can consider the real closure M rc ⊆ K which will be a proper field extension of M .
As in the previous case, we would like to determine f(x) for any given positive x ∈M rc. This
is where valuation theory of ordered fields comes into play.

Let v : M −↠ ΓM ∪ {∞} be the natural valuation of (M,≤). From Lemma 2.3.8, we know
that this extends to a valuation

v̄ :M rc −↠ Γ̃M ∪ {∞},

with value group Γ̃M the divisible hull of ΓM . Since v(A) = ΓM , we can find n ≥ 1 and y ∈ A
such that

v̄(x) =
1

n
v(y) ∈ Γ̃M

Because of (A1), all elements

y, αy, α2y, . . . , αn−1y

lie in the same archimedean class (and thus have the same valuation), and precisely one of
them is an element of Pn. So without loss of generality, we may assume y ∈ Pn, and therefore

z = y1/n ∈ A. Then we can write v̄(x) = v(y1/n) = v(z) (which in fact shows Γ̃M = ΓM ).
Now that x and z lie in the same archimedean class, we can find a unique integer k ∈ Z such
that

αkz ≤ x < αk+1z. (3.2.3)

This implies f(x) = αkz ∈ A. Like in the first case, we concludeM rc∩B = A andM rc∩Qn =
Pn.

This proves that

(M rc,≤, α,A, {Pn}n≥1, f |Mrc)

is an L∗-substructure of K. Note that by the universal property of the real closure, there is a
unique embedding

ι :M rc ↪−→M∗

into the real closed fieldM∗ overM . This is an Lrcf∪{α}-embedding. In particular, inequality
(3.2.3) is preserved under ι, so that f∗(ι(x)) = ι(f(x)) = αkz for x and z as above. Hence ι
is in fact an L∗-embedding.

Case 3. M is a real closed field and A = B. In this particular case, we have Pn = Qn for all
n ≥ 1. Moreover, Lemma 3.2.3 implies that ΓM = ΓK . This means that for any x ∈ K>0,
there is y ∈ A in the same archimedean class as x. As in Case 2, we can find a unique integer
k ∈ Z satisfying

αky ≤ x < αk+1y, (3.2.4)

so that f(x) = αky ∈ A.

The theory of real closed fields Trcf has quantifier elimination (Theorem 2.3.7). Since K and
M∗ are real closed, we can extend M ↪−→M∗ to an Lrcf -embedding

ι : K ↪−→M∗
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by the implication (i) =⇒ (iii) of the embedding test (Proposition 3.2.1). From inequality
(3.2.4), we see that ι is actually an L∗-embedding by the same argument as in the previous
case.

Case 4. M is a real closed field and A ̸= B. Choose any b ∈ B \ A and consider M(b) ⊆ K,
a simple field extension of M . Let γ = v(b) ∈ ΓK . In view of Lemma 3.2.3, we have γ /∈ ΓM .
By Lemma 2.3.8, b must be transcendental over M . In particular, the value group of M(b) is
generated by ΓM and γ. If we combine this with the fact that ΓM is divisible (which implies
ΓM ∩ γZ = {0}), we obtain the decomposition

v(M(b)×) = ΓM ⊕ γZ ⊆ ΓK .

For any n ≥ 1, v(bn) = nγ /∈ ΓM by divisibility of ΓM . This implies A ∩ bZ = {1}, and shows
that we can decompose the subgroup A⟨b⟩ ⊆ B generated by A and b as the direct product

A⟨b⟩ = A× bZ ⊆ B.

By our usual argument, for any positive x ∈ M(b), we can find y ∈ A, bl ∈ bZ with v(x) =
v(ybl) ∈ ΓM ⊕ γZ, and a unique integer k ∈ Z satisfying

αkybl ≤ x < αk+1ybl. (3.2.5)

As usual, this implies f(x) = αkybl ∈ A⟨b⟩ and thus M(b) ∩B = A⟨b⟩, proving that

M(b) = (M(b),≤, α,A⟨b⟩, {M(b) ∩Qn}n≥1, f |M(b))

is an L∗-substructure of K. In contrast to previous cases, we had to enlarge the multiplicative
subgroup from A to A⟨b⟩. Hence we need the additional step of finding an explicit description
for M(b) ∩Qn for each n ≥ 1. First, note that

M(b) ∩Qn ⊆M(b) ∩B = A⟨b⟩ = A× bZ.

Let rn ∈ {0, 1, . . . , n − 1} be the unique integer with αrnb ∈ Qn. For any ybl ∈ A × bZ that
lies in Qn, we have ybl(αrnb)−l = yα−rnl ∈ A ∩Qn = Pn, thus

M(b) ∩Qn = {y(αrnb)l | y ∈ Pn, l ∈ Z} = Pn × (αrnb)Z,

giving us the desired explicit description.

Recall that in Lemma 3.2.4, we showed that B and A∗ are models of Presburger arithmetic
in multiplicative notation. Moreover, sinceM∗ is |K|+-saturated, A∗ will be |B|+-saturated.
Again, we can apply the embedding test (Proposition 3.2.1), but this time to the theory
TPres that has quantifier elimination (Example 2.1.4). It allows us to extend A ↪−→ A∗ to an
elementary embedding A⟨b⟩ ↪−→ A∗. Let b∗ ∈ A∗ be the image of b under this embedding.
By virtue of this map being elementary, we know that

(i) b∗ /∈ A;

(ii) αrnb∗ ∈ P ∗
n for all n ≥ 1;

(iii) b∗ defines the same cut as b in the ordering of A and because of (F), in the ordering of
M as well.

By the same reasoning as for b ∈ B, (i) implies

(iv) b∗ is transcendental over M .
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Now, we can construct the embedding ι :M(b) ↪−→M∗. By (iv), the homomorphism

ι :M(b) −→M(b∗) ⊆M∗

that fixes M and sends b to b∗ is an isomorphism of fields. By (iii), ι preserves order. As
usual, the inequality (3.2.5) shows that

f∗(ι(x)) = αky(b∗)l = ι(αkybl) = ι(f(x)),

so ι is compatible with the floor function. Finally, by (i) and (ii), we obtain

M(b∗) ∩A∗ = A× (b∗)Z

M(b∗) ∩ P ∗
n = Pn × (αrnb∗)Z

by the same structural analysis as we did for M(b) ∩B and M(b) ∩Qn. Hence ι is indeed an
L∗-embedding. This completes the proof of quantifier elimination in T ∗.
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4. Undecidable expansions of local fields

We prove undecidability results for local fields K extended by predicates for discrete infinite
cyclic subgroups of the multiplicative group K×. We will separately study different types of
local fields, namely,

• the real field R;

• the p-adic fields K (finite extensions of the field of p-adic numbers Qp);

• the fields Fq((t)) of formal Laurent series over fields with q = pr elements.

Note that there is a unique discrete valuation v on K extending the p-adic valuation on Qp,
whereas the field Fq((t)) is endowed with the t-adic valuation vt.

We will prove the following three theorems:

Theorem 4.1. Let α, β ∈ R>1 be two real numbers satisfying αZ∩βZ = {1}. Then the theory
of the structure (R,+, ·, αZ, βZ) is undecidable.

Theorem 4.2. Let K be a p-adic field and α, β ∈ K two elements with v(α), v(β) > 0.
Assume that αZ ∩ βZ = {1}. Then the theory of the structure (K,+, ·, αZ, βZ) is undecidable.

Theorem 4.3. Let α ∈ Fq((t)) be an element with vt(α) > 0. Then the existential theory of
the structure (Fq((t)),+, ·, α, αZ) is undecidable.

Theorem 4.1 is due to Hieronymi [9]. The idea of the proof is to define Z from the range of
a sequence (an)n∈N with converging differences (an+1 − an). Thereupon, one can invoke the
undecidability of (Z,+, ·).

As explained in the introduction, the proofs of Theorem 4.2 and Theorem 4.3 will proceed
by showing that certain undecidable expansion of Presburger arithmetic, namely (N,+, vp)
and (N, 0, 1,+, |p), can be interpreted in our structures of interest. First, we will prove in
Section 4.2 that multiplication in N can be defined in both expansion of Presburger arith-
metic. In Section 4.3 we will then explain how these expansion of Presburger arithmetic can
be interpreted in (K,+, ·, αZ, βZ), respectively (Fq((t)),+, ·, α, αZ), which will complete our
proofs.

For Theorem 4.2, the special case K = Qp is due to Mariaule [15]. Theorem 4.3 for α = t
and αZ>0 instead of αZ is due to Pheidas [20]. We will comment on the changes made for the
general cases when discussing the proofs.

4.1. The real field with two cyclic subgroups. In this section we will present the proof
of Theorem 4.1. This is a corollary of a more general result by Hieronymi [9, Thm. 1.1].

Theorem 4.1.1. Let D ⊆ R be a closed and discrete set and f : Dn −→ R a function such
that f(Dn) is somewhere dense. Then Z can be defined (with parameters) in (R,+, ·, f).

Indeed, the set D = αN ∪ βN is closed and discrete, and

f : D2 −→ R, (x, y) 7−→ x

y
,
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has dense image in R>0. Thus (R,+, ·, αZ, βZ) defines Z. We will present Hieronymi’s
proof specialised to our case of interest D = αN ∪ βN. This will give a definition of Z in
(R,+, ·, αZ, βZ) with one parameter, from which we can deduce undecidability.

Lemma 4.1.2. An expansion of (R,+, ·) defines Z if and only if it defines the range of a
sequence (an)n∈N such that

lim
n→∞

(an+1 − an) ∈ R>0.

Proof. This is Miller’s lemma on asymptotic extraction of groups, see [18]. If we can define
Z, then we can also define N, which is the range of the sequence an = n. Conversely, assume
that A is the definable range of a sequence (an)n∈N with

lim
n→∞

(an+1 − an) = c > 0.

Observe that we can define

cZ = {r ∈ R | ∀ε,N > 0 ∃x, y > N (x, y ∈ A ∧ |x− y − r| < ε)}.

From this we can define c as the smallest positive element of cZ. Thus, Z is definable. □

Lemma 4.1.3. Let D = αN ∪ βN. There is a definable bijection

f : D2 −→ F

in (R,+, ·, αZ, βZ), where F ⊆ R is a closed and discrete subset satisfying |a − b| ≥ 1 for all
distinct a, b ∈ F .

Proof. First, let g : D2 −→ R>0 be the function that maps

(γn, δm) 7−→


α2nβ2m if γn ∈ αN and δm ∈ αN,

α2nβ2m+1 if γn ∈ αN and δm ∈ βN \ {1},
α2n+1β2m if γn ∈ βN \ {1} and δm ∈ αN,

α2n+1β2m+1 if γn ∈ βN \ {1} and δm ∈ βN \ {1}.

By construction, g is injective and definable. Let E = g(D2). Since α, β > 1, we see that E
is a closed and discrete subset of R>0. Let s : E −→ E be the successor function that maps
x ∈ E to the smallest element of E lying above x. Then define h : E −→ R>0 by

x 7−→ x ·max
(
{(s(y)− y)−1 | x > y ∈ E} ∪ {1}

)
.

By construction, h is injective and definable. Thus f = h◦g is definable. It is a bijection onto
F = h(E), where F is closed, discrete, and satisfies |a− b| ≥ 1 for all distinct a, b ∈ F . □

Note that we have modified the first step in the proof of [9, Lem. 2.1], which uses parameters
to define g in the general case.

Lemma 4.1.4. In the structure (R,+, ·, αZ, βZ) we can define Z by a formula with one pa-
rameter.
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Proof. By Lemma 4.1.3, we can assume that we have a definable function f : D −→ R>0,
where D ⊆ R is a definable, closed, and discrete set satisfying |a − b| ≥ 1 for all distinct
a, b ∈ D that has dense image in R>0. After shrinking D, we can assume that D ⊆ R≥1 has
dense image f(D) ⊆ (1, 2), where f : D −→ (1, 2) is now a definable function.

We would like to find a sequence (en)n≥2 with definable range, satisfying en ∈
(
n, n+ 1

n

)
, so

that we can apply the lemma on asymptotic extraction of groups. To do so, we first need to
construct an auxiliary sequence (dn)n≥1. Define, by induction, a sequence (dn)n≥1 satisfying

(i) for all n > m ≥ 1,

f(dm)

(
1 +

d−2
m

m+ 1
m

)
< f(dn)

(
1 +

d−2
n

n+ 1
n

)

f(dn)

(
1 +

d−2
n

n

)
< f(dm)

(
1 +

d−2
m

m

)
< 2;

(ii) for all d ∈ D and d1 ≤ d7n−1 < d < dn, n > 1,

f(d)(1 + d−2) < f(dn) or f(dn)(1 + d−2
n ) < f(d);

(iii) d1 > 4 and dn > max{4, 2n, d49n−1} for all n > 1.

For n = 1, choose d1 ∈ D with d1 > 4 and f(d1)(1 + d−2
1 ) < 2. Assume we have already

constructed d1, . . . , dn satisfying the above properties. We will now define dn+1. A small
calculation (see [9, p. 2166]) shows that the set

S :=

(
f(dn)

(
1 +

d−2
n

n+ 1
n

)
, f(dn)

(
1 +

d−2
n

n

))∖ ⋃
d∈D
d≥d7n

[f(d), f(d)(1 + d−2)]

has positive Lebesgue measure. By the Steinhaus theorem, one can find elements in S arbi-
trarily close together. In particular, we can find s1, s2 ∈ S, s1 < s2, such that the smallest
d ∈ D with s1 < f(d) < s2 satisfies d > max{4, 2n, d49n }. Then define

dn+1 = min{d ∈ D | s1 < f(d) < s2}.

One can easily verify that dn+1 satisfies (i)–(iii) by construction (see [9, p. 2167]).

We can now define the sequence (en)n≥2. Let

c := lim
n→∞

f(dn)

(
1 +

d−2
n

n

)
be a fixed constant. Define

en =
d−2
n f(dn)

c− f(dn)
for all n ≥ 2. Note that (i) implies

f(dn)

(
1 +

d−2
n

n+ 1
n

)
< c < f(dn)

(
1 +

d−2
n

n

)
, (4.1.1)
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which is equivalent to en ∈
(
n, n+ 1

n

)
. By Lemma 4.1.2, we are left to prove that the range

C = {dn}n≥2 of the sequence (dn)n≥2 is definable. If we let φ(x) be the formula

∀y ∈ D (f(y) < c < f(y)(1 + y−2)→ (y < x1/7 ∨ x ≤ y)),
we claim that

C = {d ∈ D | f(d) < c < f(d)(1 + d−2) ∧ d2 ≤ d ∧ φ(d)}. (4.1.2)

Consider any n ≥ 2. Then (4.1.1) implies that f(dn) < c < f(dn)(1 + d−2), so assume that
φ(dn) does not hold, i.e., there is d ∈ D with

d1/7n ≤ d < dn and f(d) < c < f(d)(1 + d−2).

Using that d49n−1 < dn implies d7n−1 < d < dn, we see that (ii) implies

c < f(d)(1 + d−2) < f(dn) or f(dn)(1 + d−2
n ) < f(d) < c,

which contradicts f(d) < c < f(d)(1 + d−2). Thus φ(dn) holds.

Conversely, assume that there is d ∈ D, dn−1 < d < dn, satisfying f(d) < c < f(d)(1 + d−2)
and φ(d). If we apply φ(d) to dn−1, we get d

7
n−1 < d < dn. This yields the same contradiction

as above. Hence (4.1.2) holds true, which defines C by a formula with one parameter. □

Proof of Theorem 4.1. Assume towards a contradiction that there is an algorithm that
decides for each sentence φ, whether (R,+, ·, αZ, βZ) |= φ or not. We claim that this implies
a positive solution to Hilbert’s Tenth Problem.

By Lemma 4.1.4, there is a formula ζ(x, y) with

Z = {r ∈ R | R |= ζ(r, c)},
where c is the constant defined in the lemma. A polynomial p(X1, . . . , Xn) ∈ Z[X1, . . . , Xn]
has a solution in Z if and only if

∃y∃x1 . . . ∃xn[ζ(0, y) ∧ (∀z (ζ(z, y) ∧ z > 0)→ z ≥ 1) ∧ (∀z ζ(z, y)↔ ζ(z + 1, y))]

∧[ζ(x1, y) ∧ . . . ∧ ζ(xn, y) ∧ p(x1, . . . , xn) = 0]

holds in R. Thus, given a polynomial p(X1, . . . , Xn) with integer coefficients, we can apply the
decision algorithm on this sentence to determine whether or not p(X1, . . . , Xn) has a solution
in Z, in contradiction to Matiyasevich’s negative answer to Hilbert’s Tenth Problem. □

The same relativisation argument can be used to reduce the undecidability of (R,+, ·, αZ, βZ)
to the undecidability of (Z,+, ·), instead of Hilbert’s Tenth Problem.

4.2. Expansions of Presburger arithmetic by p-adic operations. The expansions of
Presburger arithmetic of interest to us, are obtained by expanding (N,+) by certain p-adic
operations. Specifically, we consider the following functions and relations on N.

Definition 4.2.1. Fix some prime number p. We use the following notation for func-
tions/relations on N:

vp is the p-adic valuation7 on N;
Vp is a function that maps n to the largest power of p dividing n, which is pvp(n);
p□ is the base p power function that maps n to pn;
|p is a binary relation given by n |p m⇐⇒ ∃k ∈ N m = pkn.
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Example 4.2.2. The symbol |p is somewhat unusual and may take some getting used to.
For example, we have

1 |2 8, 2 |3 18, 10 |5 50,
but also

3 ∤2 5, 1 ∤3 8, 2 ∤3 12.

However, it is precisely this relation that will show up in our study of Fq((t)). ⊣

§ 1. Expansion of Presburger arithmetic by vp. We will show that (N,+,Vp, p□) is undecidable
and, as a corollary, that the same is true for (N,+, vp). For this purpose, it will suffice to
prove that the multiplication operation is definable in these structures. Although not stated
in this form, the fact that (N,+,Vp, p□) is undecidable goes back to Elgot and Rabin [7]. In
[6], Cherlin and Point give a direct argument for the undecidability of (N,+,V2, 2□).

First, we need a criterion for undecidability. The next proposition says that if finite binary
relations A ⊆ N2 can be coded by a natural number, such that there is a formula that
recognises this coding, then multiplication can be defined from addition. Our proof is adapted
from [7, p. 171].

Proposition 4.2.3. Let N be an L-structure that expands (N,+) by finitely many new sym-
bols. Assume that there is an L-formula Rel(x, y, c) with the following property: for any finite
binary relation A ⊆ N2, there is an element C ∈ N such that for all m,n ∈ N,

(m,n) ∈ A if and only if Rel(m,n,C).

Then N is undecidable.

Proof. If suffices to show that we can define multiplication of natural numbers in N . We write
x ≤ y to abbreviate ∃d (y = x+ d). The constants 0 and 1 can also be defined in (N,+). Let
Fcn(b, c) denote the formula

∀x (x ≤ b→ ∃!y Rel(x, y, c)).

For any B,C ∈ N, the formula Fcn(B,C) states that for the code C, Rel(x, y, C) defines a
function for values x ≤ B. But then, x · y = z can be defined by the L-formula

∃c [Fcn(y, c) ∧Rel(0, 0, c) ∧ [∀u∀w(u < x ∧Rel(u,w, c))→ Rel(u+ 1, w + x, c)] ∧Rel(y, z, c)],

which simulates a finite recursion up to y. If N is decidable, then so must be (N,+, ·)
(construct an algorithm that transforms a {+, ·}-sentence into an equivalent L-sentence and
then applies a decision routine to the later). However, (N,+, ·) is undecidable, so N must be
undecidable as well. □

Using a concrete coding for finite binary relations over the language {+,Vp, p□} (slightly
different from the one used in [6, p. 21]), the preceding proposition implies:

7For n = 0 we may take vp(0) to be any natural number, say vp(0) = 0 (in contrast to the usual convention
vp(0) = ∞). We also set Vp(0) = 1.
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Theorem 4.2.4. The theory of the structure (N,+,Vp, p□) is undecidable.

Proof. Given a finite binary relation A ⊆ N2, define the code

C =
∑

(m,n)∈A

pm+pm+n
.

Note that for any two pairs (m1, n1), (m2, n2) ∈ N2, we have

m1 + pm1+n1 = m2 + pm2+n2 ⇐⇒ (m1, n1) = (m2, n2).

In other words, we code a pair (m,n) ∈ A as a 1-digit at position m + pm+n in the p-adic
expansion of C. Using V and p□ this process can be reversed, that is, we can extract (m,n)
from C. Let Rel(x, y, c) be the formula

∃s1∃s2∃s3 (s1 + s2 + s3 = c ∧ s1 < s2 ∧ s2 = px+px+y ∧ (s2 < Vp(s3) ∨ s3 = 0)).

This formula satisfies the defining property in Proposition 4.2.3. Hence (N,+,Vp, p□) is un-
decidable. □

Corollary 4.2.5. The theory of the structure (N,+, vp) is undecidable.

Proof. The relation px = y can be defined by

y ̸= 0 ∧ vp(y) = x ∧ (∀z > 0 (vp(z) = x→ y ≤ z)),

and V(x) = y by y = pvp(x). Thus by the previous theorem, (N,+, vp) is undecidable. □

§ 2. Expansion of Presburger arithmetic by |p. The following theorem is due to Pheidas [20,
Thm. 1].

Theorem 4.2.6. The existential theory of the structure (N, 0, 1,+, |p) is undecidable.

We will reproduce the proof from [20]. Again, we would like to define multiplication in N
from + and |p (by an existential formula). This time though, we will need a few elementary
number theoretic lemmas.

Lemma 4.2.7. Assume that for a, b, c, d ∈ Z>0, we have

(pa − 1)(pb − 1) = (pc − 1)(pd − 1).

Then {a, b} = {c, d}.

Proof. Without loss of generality we may assume a ≥ b, c ≥ d, and b ≥ d. Note that this
implies c ≥ a. We obtain the equation

pa+b − pa − pb = pc+d − pc − pd,

and after cancellation,

pa+b−d − pa−d − pb−d = pc − pc−d − 1.

All powers of p that occur in the above equation are divisible by pb−d (since c ≥ a ≥ b). In
particular, pb−d divides 1, so we have b = d and a = c. □
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Lemma 4.2.8. Let m,n ∈ Z>0 and a ∈ N. Then

m = pan iff n |p m, (n+ 1) |p m+ pa, and (n+ p) |p m+ pa+1.

Proof. One direction is obvious. So assume that

m = npb

m+ pa = (n+ 1)pc

m+ pa+1 = (n+ p)pd,

where b, c, d ∈ N. We need to show a = b. From the above system of equations, we get

n(pb − pc) = pc − pa

n(pb − pd) = pd+1 − pa+1,

and thus

(pc − pa)(pb − pd) = (pb − pc)(pd+1 − pa+1). (4.2.1)

Any one of a = c, a = d, b = c, or b = d, implies a = b. So assume towards a contradiction
that a ̸= c, d and b ̸= c, d. Depending on the order of a, b, c, d, we can further rewrite (4.2.1).

If b > c, d and c, d > a, then

(pc−a − 1)(pb−d − 1)pa+d = (pb−c − 1)(pd−a − 1)pc+a+1.

This implies a + d = c + a + 1 (i.e. d = c + 1), and by Lemma 4.2.7, c − a = b − c and
b− d = d− a, or, c− a = d− a and b− d = b− c (both of which imply c = d). Thus we get a
contradiction in this case.

For other orders of a, b, c, d, we do the same: factor out the biggest power of p on both sides
of (4.2.1) and apply Lemma 4.2.7. It is straightforward to check the remaining cases (see [20,
Lem. 2]). □

Lemma 4.2.9. Let m,n ∈ Z>0. Then n | m if and only if pn − 1 | pm − 1. Moreover, if
m = nk with k ∈ Z>0, then

pm − 1

pn − 1
≡ k (mod pn − 1).

Proof. If n | m, then

pm = (pn)
m
n ≡ 1

m
n = 1 (mod pn − 1).

Conversely, if pn − 1 | pm − 1, write m = qn + r, where q ∈ N and 0 ≤ r < n. But then
pn − 1 | pm − pqn, which implies pn − 1 | pr − 1 and thus r = 0.

If we can write m = nk, then

pm − 1

pn − 1
= (pn)k−1 + . . .+ pn + 1 ≡ 1k−1 + . . .+ 11 + 1 = k (mod pn − 1). □
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Lemma 4.2.10. Let m,n ∈ N. Then

m = n2 iff ∃a, b ∈ N


n < pa − 1, m < p2a − 1,

p2a − 1 | pb − 1,
pb−1
p2a−1

≡ n (mod p2a − 1), and(
pb−1
p2a−1

)2
≡ m (mod p2a − 1).

(4.2.2)

Proof. Assume m = n2. For n = 0, we can take a = 1 and b = 2(p2 − 1). For n ̸= 0, choose
a ∈ Z>0 so that n < pa − 1, m < p2a−1, and let b = 2an ∈ Z>0. The properties then hold by
Lemma 4.2.9.

Conversely, assume that the right-hand side holds for some a, b ∈ N. We have

m ≡
(
pb − 1

p2a − 1

)2

≡ n2 (mod p2a − 1).

Note that n < pa − 1 implies n2 < p2a − 1, so we must have m = n2. □

Proposition 4.2.11. The relation m = n · k in N can be defined by an existential formula in
the language {0, 1,+, |p}.

Proof. It suffices to have an existential definition for m = n2, since

m = n · k iff ∃r, s (r = n2 ∧ s = k2 ∧ (n+ k)2 = r +m+m+ s).

Thus we are left to prove that the conditions in (4.2.2) can be expressed by existential formulas
in the language {0, 1,+, |p}. The definition for m = n2 will begin with

∃P,Q,R [1 |p P ∧ 1 |p R ∧ P |p Q ∧ (P + 1) |p (Q+ P ) ∧ (P + p) |p (Q+ pP )] . . .

which expresses the fact P and R are powers of p (think: pa and pb), and Q = P 2 (think:
p2a) by Lemma 4.2.8. Instead of n < pa − 1 and m < p2a − 1, we can write

∃d P = (n+ 2) + d and ∃e Q = (m+ 2) + e.

The condition p2a − 1 | pb − 1 is equivalent to

∃c (c+ 1)Q = R+ c,

which by Lemma 4.2.8 can be further converted to

∃c [(c+ 1) |p (R+ c) ∧ (c+ 2) |p (R+ c+Q) ∧ (c+ 1 + p) |p (R+ c+ pQ)].

The first equivalence relation in (4.2.2) is equivalent to

∃f R− 1

Q− 1
= n+ f(Q− 1)

←→ ∃f R+ 2fQ+ n = fQ2 + nQ+ f + 1.

Now with several applications of Lemma 4.2.8, this can be rewritten as an existential formula
in the language {0, 1,+, |p} (certainly occupying more than two lines of text). The same can
be done for the second equivalence relation in (4.2.2). □

Now that multiplication in N can be defined in terms of + and |p by an existential formula,
we can easily see that Th∃(N, 0, 1,+, |p) is undecidable:
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Proof of Theorem 4.2.6. The existential theory of (N, 0, 1,+, ·) can be effectively coded
in the existential theory of (N, 0, 1,+, |p). If Th∃(N, 0, 1,+, |p) is decidable, then so must
be Th∃(N, 0, 1,+, ·) (construct an algorithm that translates an existential {0, 1,+, ·}-sentence
into an existential {0, 1,+, |p}-sentence and then applies a decision routine to the later). By
the negative answer to Hilbert’s Tenth Problem, however, Th∃(N, 0, 1,+, ·) is undecidable.
Hence Th∃(N, 0, 1,+, |p) is undecidable as well. □

4.3. Undecidable expansions of non-archimedean local fields. We will use the fact
that (N,+, vp) is undecidable (Corollary 4.2.5) to prove Theorem 4.2. Similarly, we will use
the fact that the existential theory of (N, 0, 1,+, |p) is undecidable (Theorem 4.2.6) to prove
Theorem 4.3.

§ 1. Elementary theory of expansions of p-adic fields. Let us repeat the statement of the
theorem we would like to prove.

Theorem. Let K be a p-adic field and α, β ∈ K two elements with v(α), v(β) > 0. Assume
that αZ ∩ βZ = {1}. Then the theory of the structure (K,+, ·, αZ, βZ) is undecidable.

Proof. Write O for the valuation ring of K, and let π be a uniformiser for the maximal ideal
M of O, i.e.,M = πO. Let e ≥ 1 be the ramification degree of K/Qp. Thus

1
eZ is the value

group of K, since v extends the p-adic valuation vp on Qp.

We may assume without loss of generality, that v(α) = v(β) ∈ Z>0 by replacing α and β
with one of their powers (note that all subgroups of αZ and βZ are definable in our given
structure). Hence α/β ∈ O×. Again, by replacing α and β with suitable powers if necessary,
we may assume α/β = 1 + γ, γ ∈ πe+1O, since O×/(1 + πe+1O) is a finite quotient. From
αZ ∩ βZ = {1} we know that γ ̸= 0. The p-adic logarithm

log(1 + x) = x− x2

2
+
x3

3
− . . .

converges on 1 + πkO for k > e
p−1 , and satisfies v(log(1 + x)) = v(x). In particular, we have

v(log(1 + γ)) = v(γ) and hence

v((1 + γ)n − 1) = v(log((1 + γ)n)) = v(n log(1 + γ)) = vp(n) + v(γ) (4.3.1)

for all n ≥ 1. Using this identity, we will now show that the function αN −→ αN, αn 7−→ αvp(n),
is definable in our structure.

First, note that O and hence the formula v(x) = v(y) are definable. Thus the functions
αZ −→ βZ, αn 7−→ βn, and αZ −→ (1+γ)Z, αn 7−→ (1+γ)n are definable in (K,+, ·, αZ, βZ).
Furthermore, there are unique integers 0 ≤ q, 0 ≤ r < v(α) with

vp(n) = q · v(α) + r = v(αq) + r,

where both αq and r are definable from (1 + γ)n via (4.3.1). Hence

αN −→ αN, αn 7−→
(
αq
)v(α) · αr = αvp(n),

is definable. This shows that we can interpret (N,+, vp) in (K,+, ·, αZ, βZ) via the monoid
αN. Since the theory of (N,+, vp) is undecidable, the theory of (K,+, ·, αZ, βZ) must also be
undecidable. □
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§ 2. Existential theory of expansions of Fq((t)). We consider local fields of characteristic p with
a discrete subgroup generated by an element α ∈ Fq((t)) of positive t-adic valuation. In [20],
Pheidas proved Theorem 1.5 from the introduction by

• showing that the relation n |p m can be effectively coded in Fq((t)) by an existential
formula via αZ>0 , and

• using the fact that Th∃(N, 0, 1,+, |p) is undecidable (Theorem 4.2.6).

Generalising from α = t to any α of positive valuation, we follow the same strategy. However,
in contrast to [20], we will have to treat the case when p divides vt(α) separately. Essential
to the coding is the unique arithmetic of Fq((t)).

Remark 4.3.1. In characteristic p, both the Frobenius map x 7−→ xp, and the Artin-Schreier
map x 7−→ xp − x are additive. Moreover, the Frobenius map is an automorphism on the
finite field Fq, and a non-bijective endomorphism on Fq((t)) with image

Fq((t
p)) =

{ ∞∑
i=−n

apit
pi
∣∣∣ api ∈ Fq, n ∈ Z

}
.

This is the field of pth powers in Fq((t)). ⊣

Lemma 4.3.2. Fix an element α ∈ Fq((t)) with vt(α) > 0 not divisible by p. We can charac-
terise the relation n |p m for m,n ∈ Z>0 as follows:

n |p m iff m ≥ n ∧ ∃a ∈ Fq((t)) α
−m − α−n = ap − a. (4.3.2)

Proof. The proof of [20, Lem. 1], which covers the case α = t, will work here as well. We
repeat it here.

Assume n |p m holds and write m = npk for some k ∈ N. Then the element

a = α−npk−1
+ α−npk−2

+ . . .+ α−n

witnesses that the right-hand side of the equivalence holds. Conversely, assume that for
positive integers m ≥ n there is a ∈ Fq((t)) satisfying

α−m − α−n = ap − a.
We want to show n |p m. Write m = m0p

vp(m) and n = n0p
vp(n), where both m0, n0 ∈ Z>0

are not divisible by p. By the first part of the proof, we can find b, c ∈ Fq((t)) with

α−m − α−m0 = bp − b
α−n − α−n0 = cp − c.

If we set d = a− b+ c, we can combine the above three equations to

α−m0 − α−n0 = dp − d.
Now if m0 = n0, we are done since m ≥ n. So assume m0 ̸= n0. In that case,

vt(d
p − d) = vt(α

−m0 − α−n0) = −vt(α)max{m0, n0}.
At the same time, we know that vt(d) < 0 implies that vt(d

p−d) is divisible by p, contradicting
our assumption that vt(α), m0, n0 are not divisible by p. □
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Remark 4.3.3. Note that (4.3.2) still holds true in the case where we can write α = βp
k
,

k ≥ 1, with vt(β) not divisible by p. Indeed, for m ≥ n, we have that

∃a ∈ Fq((t)) α
−m − α−n = β−mpk − β−npk = ap − a

iff npk |p mpk iff n |p m holds. ⊣

The characterisation of |p given by (4.3.2) will not, however, work for all possible values of α,
as the following example shows.

Example 4.3.4. Consider p = q = 3, and thus the local field F3((t)). Take

α = (t−3 + 1 + t+ t2)−1,

with vt(α) = 3 divisible by p = 3. Then

α−2 − α−1 = a3 − a

has a solution in F3((t)), namely,

a = t−2 + t−1 − t+ t2 +
∑
i≥0

(−1)i(−t4 + t6)3
i
,

as can be seen by direct calculation:

α−2 − α−1 = t−6 + t−3 + 2t−2 + 2t−1 + t+ 2t2 + 2t3 + t4 = a3 − a.

But note that the relation 1 |3 2 does not hold. ⊣

When p divides vt(α), it is hence necessary to change our characterisation of |p in (4.3.2) to
include such α as in the example. For this purpose, we need the following definition:

Definition 4.3.5. Given x ∈ Fq((t)), written as a Laurent series

x =

∞∑
i=−n

ait
i,

define v̂t(x) to be the integer

v̂t(x) = min{i | ai ̸= 0 ∧ p ∤ i},

and v̂t(x) =∞ if this minimum does not exist, i.e., if x ∈ Fq((t
p)).

One could call v̂t the “pth-power-omitting t-adic valuation”.8 It will be of use to us, because
we can capture its behaviour under exponentiation in some important instances.

Lemma 4.3.6. Assume that α ∈ Fq((t)) is not a p
th power, but p | vt(α). Let N ∈ Z>0 be not

divisible by p. Then

v̂t(α
N ) = (N − 1)vt(α) + v̂t(α).

8Strictly speaking, v̂t is not a valuation on Fq((t))—it does not satisfy x = 0 ⇐⇒ v̂t(x) = ∞ and it is not a
group homomorphism.
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Proof. Decompose α as α = β + γ, where β contains all monomials with exponent divisible
by p and γ contains all monomials with exponent not divisible by p. By assumption,

vt(β) = vt(α) < v̂t(α) = v̂t(γ).

If we consider the binomial theorem for (β + γ)n, we see that(
N

N − 1

)
βN−1γ

must contain the monomial with smallest exponent not divisible by p. Thus

v̂t(α
N ) = v̂t(Nβ

N−1γ) = (N − 1)vt(β) + v̂t(γ) = (N − 1)vt(α) + v̂t(α). □

Lemma 4.3.7. Fix an element α ∈ Fq((t)) with valuation vt(α) = C > 0 divisible by p.

Assume in addition that α is not a pth power, so that v̂t(α
−1) = D ∈ Z. Then for any choice

of N ∈ Z>0 satisfying

N >
D

C
+ 1 and p ∤ N,

we have that

n |p m iff m ≥ n ∧ ∃a ∈ Fq((t)) α
−mN − α−nN = ap − a

holds for all m,n ∈ Z>0.

Proof. If n |p m holds, we can virtually take the same witness for a ∈ Fq((t)) as before. For
the converse, consider integers m ≥ n such that there is a ∈ Fq((t)) with

α−mN − α−nN = ap − a.
As in the previous proof, we write m = m0p

vp(m) and n = n0p
vp(n), and can find b, c ∈ Fq((t))

with

α−mN − α−m0N = bp − b
α−nN − α−n0N = cp − c.

If we set d = a− b+ c, this yields

α−m0N − α−n0N = dp − d. (4.3.3)

We are done if m0 = n0. Thus assume without loss of generality that m0 > n0 ≥ 1. Instead
of taking the t-adic valuation on both sides of equation (4.3.3) to arrive at a contradiction, as
we did before, we look at the pth-power-omitting t-adic valuation. By Lemma 4.3.6 and the
fact that p ∤ m0N , we have

v̂t(α
−m0N − α−n0N ) = −(m0N − 1)C +D. (4.3.4)

If we evaluate the right-hand side of (4.3.3), we get

v̂t(d
p − d) = v̂t(d) ≥ vt(d). (4.3.5)

Since vt(d) < 0, we can use

pvt(d) = vt(d
p − d) = vt(α

−m0N − α−n0N ) = −m0NC,

together with (4.3.3), (4.3.4), and (4.3.5), to obtain the inequality

−(m0N − 1)C +D ≥ −m0NC

p
.
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After rearranging, we have

N ≤ Dp+ Cp

m0C(p− 1)
=
D + C

C

p

m0(p− 1)
≤ D

C
+ 1,

contradicting our choice of N . □

Example 4.3.8. Consider α = (t−3 + 1 + t+ t2)−1 ∈ F3((t)) from our previous example. We
have vt(α) = C = 3 and v̂t(α

−1) = D = 1. Hence we can take N = 2 in the preceding lemma.
In particular, the lemma says that the equation

α−4 − α−2 = a3 − a
has no solution a ∈ F3((t)), whereas

α−2 − α−1 = a3 − a
does have one. ⊣

By combining Lemma 4.3.2 and Lemma 4.3.7, we complete our coding of |p inside Fq((t)) for
arbitrary α.

Corollary 4.3.9. Fix an element α ∈ Fq((t)) with valuation vt(α) > 0. There exists a
parameter N ∈ Z>0, depending on α, such that

n |p m iff m ≥ n ∧ ∃a ∈ Fq((t)) α
−mN − α−nN = ap − a

holds for all m,n ∈ Z>0.

Proof. Write α = βp
k
, k ≥ 0, such that β is not a pth power in Fq((t)). We consider two cases:

Case 1. p does not divide vt(β). By Lemma 4.3.2 and Remark 4.3.3, we can choose N = 1.

Case 2. p divides vt(β). By Lemma 4.3.7 and the idea of Remark 4.3.3, we can choose N to

be the smallest natural number not divisible by p bigger than v̂t(β−1)
vt(β)

+ 1. □

From this, we can conclude our main theorem (Theorem 4.3) about the undecidability of the
existential theory of local fields of characteristic p with a discrete infinite cyclic subgroup.

Theorem. Let α ∈ Fq((t)) be an element with vt(α) > 0. Then the existential theory of the
structure (Fq((t)),+, ·, α, αZ) is undecidable.

Proof. First, we need to identify αN in this structure. Because vt(α) > 0, we know that

αN = αZ ∩ FqJtK.

In [2], Anscombe and Koenigsmann show that FqJtK is existentially Lring-definable in Fq((t))
without parameters, so the same is true of αN in (Fq((t)),+, ·, α, αZ). By Corollary 4.3.9,
we can interpret (N, 0, 1,+, |p) in (Fq((t)),+, ·, α, αZ) using existential formulas. Since the
existential theory of (N, 0, 1,+, |p) is undecidable, the existential theory of (Fq((t)),+, ·, α, αZ)
must also be undecidable. □
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