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Introduction

Inspired by Zilber’s trichotomy conjecture [16], a common theme in model theory
has been to investigate, if non-linear behavior in model-theoretically tame structures
leads to definability of fields. While Zilber’s conjecture ultimately turned out to be
false [12], other results in this direction turned out to be true. For instance in
[10] Hieronymi and Walsberg consider the class of type A expansions of (R, <,+),
constituting a vast generalization of o-minimality in this setting. An expansion of
(R, <,+) is said to be type A, if it does not define a linearly ordered set (X,≺) of
order type ω, such that X ⊆ R is dense in some open interval. Among other things
they establish the following Zilber-style dichotomy.

Theorem ([10, Theorem A]). Suppose R is a type A expansion of (R, <,+). Exactly
one of the following statements holds:

(a) R is field-type.

(b) Every DΣ function f : U → Rn, with U ⊆ Rm open and definable, is locally
affine on a dense open definable subset V of U .

Here R is said to be field-type, if there is a bounded open interval I and de-
finable (which will always mean “definable with parameters”) binary operations
⊕,⊗ : I2 → I making (I,<,⊕,⊗) isomorphic to the ordered field of real numbers
(R, <,+, ∗). A DΣ function is a function whose graph is a DΣ set, which for now
can be thought of as a definable analogue of an Fσ set.

The goal of this thesis is to extend the notion of type A from expansions of
(R, <,+) to expansions of (R,<,+), which in this thesis will always denote the ad-
ditive ordered group of an ordered field (R,<,+, ∗). We then derive the above and
related results in this setting. We will now outline the obtained results.

We work in a structure R expanding (R,<,+). We let R∗ denote the struc-
ture we obtain by adding the multiplication ∗ of the ordered field (R,<,+, ∗) to
R. We assume R to be equipped with the order topology. A set X ⊆ Rn is said
to be pseudo-finite if it is closed bounded and discrete. A linear order (X,≺), with
X ⊆ Rn is said to be a pseudo ω-order if every initial segment of the order is
pseudo-finite. A structure R expanding (R,<,+) is said to be of type A, if it does
not define a pseudo ω-order (X,≺), with X ⊆ R dense in some open interval and if
additionally R∗ is definably complete, that is every bounded R∗-definable subset of
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Introduction 3

R has a supremum and an infimum. While it is not too hard to see that a pseudo
ω-order is a first-order analogue of an ω-order in this context, it might not be imme-
diately obvious, why one would only want to consider only those expansions R, with
R∗ definably complete. When moving away from the real additive ordered group
one loses topological completeness, so one should ask for some first-order analogue
of topological completeness to be present and “definable completeness” certainly is
such a first-order analogue, see e.g. [15] where the term is coined. But why is it not
enough to only require R instead of R∗ to be definably complete? We will return
to this question after presenting the main results.

For the first result we have to introduce some notation. A set A ⊆ Rn is DΣ, if
there is a definable family (As,t)s,t>0 of closed and bounded subsets of Rn, increasing
in s and decreasing in t, such that A =

⋃
s,tAs,t. Using a definable version of the

Baire Category Theorem for definably complete expansions of (R,<,+, ∗), we are
able to prove the following theorem, essentially by methods presented in [8] and [11].

Theorem A. If R is type A, every DΣ set either has interior or is nowhere dense.

In Chapter 3 we extend a classical differentiability criterion from [1] due to Boas and
Widder to a certain class of definably complete expansions of (R,<,+∗). Following
[10] we use Theorem A and the differentiability criterion to prove:

Theorem 4.1. Let R be a type A structure. Let f : (a, b) → R be a definable
continuous function. Then f is Ck on a dense open subset of I.

For a more succinct notation we will say that a property holds generically on
an open definable set U ⊆ Rn if the given property holds on a definable dense open
subset V of U . For example the previous theorem says, that in type A structures,
definable continuous functions f : (a, b) → R are generically Ck on (a, b). Generic
Ck-smoothness of one variable functions will be the key tool to establish the Zilber-
style dichotomy for the type A expansions of (R,<,+).

Theorem B. Let R be type A. Exactly one of the following statements holds:

(a) R is field-type,

(b) Every DΣ function f : U → Rn, with U ⊆ Rm open and definable, is generically
locally affine on U .

As a corollary of this dichotomy we obtain that DΣ functions in several variables
are generically Ck.

Theorem C. Let R be type A. Every DΣ function f : U → Rn, where U ⊆ Rm is
open, is generically Ck.

Namely we first use that as a consequence of the SBCT, DΣ functions are gener-
ically continuous to reduce the claim to definable continuous functions. The di-
chotomy now says that R is either not field-type, in which case all functions are
generically C∞, or R defines a field. Roughly said we then use that the field R



4 Introduction

defines, induces a differentiable structures on Rn, which is Ck-compatible with the
usual differentiable structure induced by (R,<,+, ∗) and an observation from 2.1
due to Fornasiero and Hieronymi to establish the theorem.

We now wish to return to the earlier question, why we want R∗ to be definably
complete, instead of just R. For instance one could define a type A′ structure
to be a definably complete expansion of (R,<,+) that does not define a dense
pseudo ω-order, such that additionally (R,<,+, ∗) is definably complete. Note that
the condition of (R,<,+, ∗) being definably complete is necessary, if one wants to
have a chance to use the above version of being field-type, as the R-definable field
(I,<,⊕,⊗) will inherit definable completeness from R. A careful read of this thesis
however will show, that all of the theorems listed in the introduction crucially use
the fact that R∗ is definable complete one way or another. So it seems quite unlikely
that with this weaker type A notion the same results could be obtained by techniques
similar to the presented ones. On the other hand the author could not come up with
an example, proving that the proposed type A′ notion is to weak to yield Theorem
B. We thus end this introduction with the following:
Question. Is there a type A′ structure, for which Theorem B does not hold?

Notation and Conventions
The natural numbers N are assumed to contain 0. If not declared otherwise k,m, n
are assumed to be natural numbers.

If f : X → Y is a map of sets, we let Γf = {(x, y) ∈ X × Y : f(x) = y} be its graph.

(R,<,+, ∗) will always be an ordered field and R will always denote its domain. We
equip R with the order topology and powers of R are assumed to carry the product
topology. For x ∈ R, |x| denotes the absolute value of x, which is x, if x ≥ 0 and
−x otherwise. For x ∈ Rn we set ||x|| = max{|x1|, . . . , |xn|}. Note that open balls,
sets of the form Bϵ(x) = {y ∈ Rn : ||x − y|| < ϵ}, for x ∈ Rn, ϵ ∈ R>0 form a base
of the topology of Rn. If not declared otherwise ϵ and δ will be elements of R and
I and J will be open subintervals of R.

R will always denote an expansion of (R,<,+). Given a structure R we let R∗ be
the expansion ofR one obtains by adding multiplication toR. E.g. ifR = (R,<,+),
then R∗ = (R,<,+, ∗). “Definable” always means “definable with parameters”. To
stress that some set is definable with respect to the structure R we will say that the
set is R-definable. Let U ⊆ Rm be an open set.

If A ⊆ Rm+n and x ∈ Rm we put Ax = {y ∈ Rn : (x, y) ∈ A}. If Z ⊆ Rm

is a set, a family of (Az)z∈Z of subsets of Rn is said to be definable, if the set
{(x, z) ∈ Rn+m : z ∈ Z and x ∈ Az} is definable. If (Az)z∈Z is definable, the sets Z,⋃

z Az,
⋂

z Az and Az for every z ∈ Z are definable sets.



Chapter 1

Preliminaries

1.1 Definably complete structures
As a consequence of passing from expansions of (R, <,+) to expansions of (R,<,+),
one loses topological completeness. A natural remedy for this problem is, to replace
topological completeness by a suitable first order analogue, definable completeness.
An expansion of (R,<,+) is called definably complete, if every definable bounded
subset of R has a supremum and an infimum. This concept was first introduced and
investigated by Miller in [15]. It turns out that many results from elementary real
analysis carry over to the definably complete setting, especially when considering
definably complete expansions of ordered fields, as multiplication is crucial for the
concept of differentiability. In this chapter we give a summary of relevant results.
We first fix a definably complete expansion of (R,<,+).

Definition. A set A ⊆ Rn is called definably connected, if it is definable and when-
ever U and V are two definable subsets of A, open with respect to the subspace
topology of A, with A = U ∪ V , then A = U or A = V .

Fact 1.1 ([15]). Every interval, closed, open or half-open, is definably connected. If
moreover I1, . . . , In are intervals (closed, open or half-open), the box I1×· · ·×In ⊆ Rn

is definably connected.

Fact 1.2 ([15]). Every continuous definable function f : [a, b] → R has the Interme-
diate Value Property, that is it takes on all values between f(a) and f(b).

Definition. A set A ⊆ Rn is said to be CBD, if it is closed, definable and bounded.

If R = R the CBD sets are precisely the definable compact sets and in general a
lot of desirable properties of compact sets translate to CBD sets. Among them, the
following useful results.

Fact 1.3 ([15]). (1) The image of a CBD set under a continuous definable map
is CBD.

(2) Let (At)t>0 be a definable family of CBD sets which is either increasing or
decreasing in t. Then

⋂
tAt = ∅ if and only if there is some t > 0 with At = ∅.
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6 Preliminaries

(3) Every non-empty CBD set A ⊆ Rn has a lexicographic minimum lexminA,
which is an element of A inductively defined as follows. If n = 1, then
lexminA = minA. If n > 1 let π : Rn → Rn−1 be the coordinate projec-
tion missing the last coordinate. Then lexminA = (x,minAx), where x =
lexmin π(A).

We now turn towards differentiability. In order to do so, we fix a definably
complete expansion of (R,<,+, ∗). Many definitions carry over from elementary
real analysis to the definably complete setting without modification. We will quickly
review the relevant ones. The following material is taken from [3, Chapter 7]. Note
that the reference assumes the structures to be o-minimal, but for the stated results,
only definable completeness, if at all, is needed.

Let f : I → Rn be a function (not necessarily definable). It is said to be differ-
entiable in x ∈ I, if there is a ∈ Rn, with

lim
t→0

f(x+ t)− f(x)
t

= a.

Note that then a is necessarily unique, so we may write f ′(x) = a. Moreover f
is necessarily continuous in x. If f is differentiable in all x ∈ I, it is said to be a
differentiable function. The class of Ck functions on I is defined in the usual way.
C0 denotes the continuous functions and for k > 0 the class of Ck functions are those
differentiable functions I → Rn, whose derivative is a Ck−1 function. If f : I → Rn

is definable and differentiable, f ′ is definable as well, since we work in an expansion
of (R,<,+, ∗). If U ⊆ Rm is open, f is a function U → Rn, x ∈ U and 1 ≤ i ≤ m
the i-th partial derivative of f in x exists, if there is a ∈ Rn with

lim
t→0

f(x+ tei)− f(x)
t

= a,

where ei ∈ Rm denotes the i-th standard basis vector. Again, if the limit exists
it is unique and we write ∂if(x) for the i-th partial derivative in x. The class of
Ck functions on U are defined similarly as in the one variable case. C0 are the
continuous functions on U and for k > 0, Ck will be the class of functions such that
for all 1 ≤ i ≤ m, ∂if(x) exists for all x ∈ U and ∂if : U → Rn is a Ck−1 function.

Fact 1.4. Let f, g : I → R be definable and differentiable in x ∈ I. Then f + g and
f ∗ g are differentiable in x and

(f + g)′(x) = f ′(x) + g′(x),
(f ∗ g)′(x) = f ′(x) ∗ g(x) + f(x) ∗ g′(x).

Fact 1.5 (Chain Rule). Let f : I → R, g : J → Rn be definable functions, such that
f is differentiable in x ∈ I and g is differentiable in f(x) ∈ J . Then g ◦ f , which is
defined on f−1(J) is differentiable in x and

(g ◦ f)′(x) = g′(f(x)) ∗ f ′(x).

As a corollary of the two preceding facts we obtain:
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Fact 1.6. Sums, products and compositions of definable Ck functions are definable
Ck functions.

Fact 1.7 (Mean Value Theorem). Let f : [a, b] → R be definable, continuous and
differentiable on (a, b). Then there is x ∈ (a, b) with f(b)− f(a) = (b− a) ∗ f ′(x).

Fact 1.8 (Theorem on Constants). Let f : [a, b] → R be definable, continuous and
differentiable on (a, b). If f ′(x) = 0 for all x ∈ (a, b), then f is constant.

Fact 1.9 (Inverse Function Theorem). Let f : I → J be Ck, k ≥ 1 and bijective
such that f ′ is nowhere zero, then f−1 : J → I is Ck.

Proof. An application of the Mean Value Theorem shows that continuity of f ′ im-
plies that f is strictly increasing or strictly decreasing. We may assume that f is
strictly increasing, as the decreasing case can be proved by a minor change of the
argument. We will follow the argument given in [14, Differentiaton der Umkehrfunk-
tion, Chapter 9.2] to show that f−1 is differentiable in every y0 ∈ J .

Let x0 ∈ I with f(x0) = y0. Since f is differentiable in x, there is a continuous
definable function ϕ : I → R such that for all x ∈ I

f(x)− f(x0) = ϕ(x) ∗ (x− x0)

and f ′(x0) = ϕ(x0). Since f is strictly increasing by assumption and its derivative
in x0 does not vanish, ϕ(x) ̸= 0 for all x ∈ I. So for every y ∈ I we have

f−1(y)− f−1(y0) =
1

ϕ(f−1(y)) ∗ (y − y0).

Continuity of 1/(ϕ◦f−1) in y0 implies that f−1 is differentiable in y0 and its deriva-
tive is 1/f ′(f−1(y0)).

This moreover shows that f−1 is a C1 function as its derivative is continuous as
the composition of continuous functions. Using induction on j ≤ k and the fact,
that the composition of Cj functions is Cj again, it follows that f−1 is Cj for every
j ≤ k, in particular f−1 is Ck.

Fact 1.10. Let f : I → R be differentiable and f ′ ≥ 0. Then f is strictly increasing
if and only if {x ∈ I : f ′(x) = 0} does not have interior.

Proof. f ′ ≥ 0 implies that f is increasing. Namely if f were decreasing, the Mean
Value Theorem would provide an x ∈ I with f ′(x) < 0.

Suppose f is strictly increasing. Let (a, b) ⊆ I be an interval. By the Mean Value
Theorem, there is x ∈ (a, b) with f ′(x) = f(b)−f(a)

b−a > 0, so (a, b) ̸⊆ {x ∈ I : f ′(x) =
0}, which implies that {x ∈ I : f ′(x) = 0} does not have interior.

Conversely suppose {x ∈ I : f ′(x) = 0} does not have interior and let a < b ∈ I.
Then there is x ∈ (a, b) where f ′(x) > 0, so there is a small δ > 0, such that
f(x+ δ)− f(x) > 0. Hence f(a) ≤ f(x) < f(x+ δ) ≤ f(b).
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1.2 DΣ and definably meager sets
For this section we return to the setting of definably complete expansions of (R,<
,+).

Definition. A set A ⊆ Rn is called a DΣ set or simply DΣ, if there is a definable
family (As, t)s,t>0 of CBD sets increasing in s and decreasing in t, such that A =⋃

s,tAs,t. The family (As,t)s,t is said to witness that A is DΣ. A function is said to
be DΣ, if its graph is a DΣ set.

Remark. Every DΣ set is definable. Moreover it is easy to see that if R = R, every
DΣ set is an Fσ set and in fact DΣ sets should be viewed as a definable version of
Fσ sets.

Fact 1.11. (1) Open and closed definable sets are DΣ.

(2) Finite unions and finite intersections of DΣ sets are DΣ.

(3) If A ⊆ Rm+n is DΣ, then Ax is DΣ for every x ∈ Rm.

(4) The image and the preimage of a DΣ set under a continuous definable map is
DΣ. In particular a continuous definable function with a DΣ domain, is DΣ.

(5) If A ⊆ Rm+n is DΣ, then {x ∈ Rm : Ax has interior} is DΣ.

Proof. For (1) to (4), see [2]. For (5), see [8, Fact 2.9 (1)]. While the proof in [8] is
written for R = R, the argument works without modification for arbitrary R.

Definition. A set A ⊆ Rn is said to be definably meager, if there is a definable
family (As,t)s,t>0 of nowhere dense sets, increasing in s and decreasing in t such that
X =

⋃
s,tAs,t.

Remark. A DΣ set is either definably meager or has interior.
The following two facts will be crucial ingredients for the proof of Theorem A in

the next chapter.

Fact 1.12 ([7, Lemma 6.5]). Let A ⊆ Rm+n be a DΣ set. Then A is definably
meager if and only if {x ∈ Rm : Ax has interior } is definably meager. Equivalently
A has interior if and only if {x ∈ Rm : Ax has interior } has interior.

If R = R, every definably meager set is meager in the ordinary sense, that is
it is a countable union of nowhere dense sets. So when dealing with expansions of
(R, <,+) the fact that R is a Baire space implies, that a definably meager set does
not have interior. This result was extended by Hieronymi to definably complete
expansions of ordered fields in [9].

Fact 1.13 (Baire Category). Every definably meager set, definable in a definably
complete expansion of an ordered field, does not have interior.

Proof. See [4, Theorem 1.2] for a more general version of this theorem and a proof
thereof.



Chapter 2

The Strong Baire Category
Theorem

In this chapter we introduce type A expansions of (R,<,+). They were first intro-
duced by Hieronymi and Walsberg for expansions of (R, <,+) in [10]. Their defini-
tion extends naturally to arbitrary expansions of (R,<,+). Following the work of
Fornasiero and Hieronymi in [7], [8] and [11] we prove the Strong Baire Category
Theorem (SBCT) for type A expansions of (R,<,+).

Theorem A (SBCT). If R is type A, every DΣ set either has interior or is nowhere
dense.

Afterwards we collect some useful, straightforward corollaries thereof.

2.1 Type A structures

In [10] Hieronymi and Walsberg define type A expansions of (R, <,+) to be those
structures that do not define a dense ω-order. Here a definable ω-order is a tuple
(X,≺) consisting of a definable set X ⊆ R and a definable linear order ≺ on X,
such that each initial segment of X with respect to the order ≺ is finite. An ω-order
is said to be dense, if it is dense in some subinterval of R. According to [10] “all
the usual model-theoretic and geometric tameness notions in the literature imply
type A” and the authors believe that type A structures constitute “the ultimate
generalization of o-minimality in the setting of expansions of (R, <,+)”.

The fact that being finite is not first order definable in an arbitrary expansion of
(R,<,+) suggests that the naive generalization of type A to arbitrary expansions of
(R,<,+) is not the way to go. The property of being closed, bounded and discrete,
which we will call pseudo-finite, is however definable in arbitrary expansions of (R,<
,+). IfR = R the pseudo-finite sets are precisely the finite sets and moreover work by
Fornasiero in [5] indicates that being closed, bounded and discrete is indeed a suitable
first order analogue of finiteness in the context of definably complete expansions of
(R,<,+), justifying the name pseudo-finite. This motivates the following.

9



10 The Strong Baire Category Theorem

Definition. A setX ⊆ Rn is called pseudo-finite, if it is closed bounded and discrete.
A tuple (X,≺), with X ⊆ Rn is called a pseudo ω-order, if ≺ is a linear order on X
such that for every x ∈ X, {y ∈ X : y ≺ x} is a pseudo-finite set.

Definition. A structure R is said to be of type A, if R does not define a pseudo
ω-order (X,≺), with X ⊆ R dense in some subinterval of R and if additionally R∗
is definably complete.

Remark. If R expands (R, <,+), the structure R∗ is always definably complete, so
R is type A in the sense of this thesis if and only if it is type A in the sense of [10].

In [7] Fornasiero and Hieronymi show that the definably complete expansions of
an ordered field (R,<,+, ∗) can be divided into two distinct classes, the restrained
and the unrestrained expansions. A definably complete expansion of (R,<,+, ∗)
is called unrestrained if it defines a discrete subring Z ⊆ R, that is Z is a discrete
definable subset of R and (Z,+|Z , ∗|Z) is a subring of (R,+, ∗). It is called restrained
otherwise.

Definition. A type A structure R is called restrained, if its expansion R∗ is re-
strained in the above sense. It is called unrestrained otherwise.

The dichotomy into restrained and unrestrained type A structures is a useful
tool to prove statements about arbitrary type A structures. In order to show that
a statement holds for every type A structure, we can now treat the restrained and
unrestrained case separately. In the restrained case many of the statements this
thesis is concerned with were already proved in [7], while in the unrestrained case
the definability of Z, an analogue for the integers of R, allows for the adaptation of
proofs for type A expansions of (R, <,+) from [8], [10] and [11]. We will illustrate
this technique with the proof of the SBCT, Theorem A. Namely the following result
implies the SBCT for restrained type A structures.

Fact 2.1 ([7, Lemma 6.16]). Let R be a definably complete restrained expansion of
(R,<,+, ∗). Every definably meager set is nowhere dense, in particular every DΣ
set is either nowhere dense or has interior.

Thus we only need to prove the SBCT for unrestrained type A structures. Before
we dive into the proof, we will collect and establish some elementary, useful results
for unrestrained expansions of (R,<,+, ∗), which will be needed in the proof of the
SBCT and throughout this thesis.

For the remainder of this section we fix an unrestrained definably complete ex-
pansion of (R,<,+, ∗). By [7], a definable discrete subring of R is necessarily unique
and we denote its domain by Z. More precisely Z is the unique definable discrete
subset of R, such that (Z,+|Z , ∗|Z) is a nontrivial ring. Let N be the definable sub-
set of Z consisting of the nonnegative elements and Q the definable field of fractions
of Z.

Fact 2.2 ([7], Proposition 3.8). (N,<,+, ∗) is a model of first-order Peano Arith-
metic.
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We will use this to show that whenever we want to prove that some first-order
property holds for all of N we can essentially do this by induction. We will call this
style of proof definable induction or Definable Induction Principle to distinguish it
from ordinary induction and to remind ourselves that we can only apply it to prove
properties that are first order expressible in the language of the structure we are
currently working in.

Lemma 2.3 (Definable Induction Principle). Let A ⊆ R be a definable subset of N ,
that is inductive, so 0 ∈ A and whenever n ∈ A also n+ 1 ∈ A. Then A = N .

Proof. Using Fact 2.2 we see that R\N equals
⋃

n∈N (n, n+1)∪(−∞, 0), as for every
n ∈ N there is no element of N in between n and n+ 1. So N is a closed, discrete
and definable subset of R. Towards a contradiction assume N \ A was non-empty.
Since R is definably complete and N \ A is closed, definable and bounded below,
N \ A has a minimal element, say b. As 0 ∈ A, b cannot be 0, which means that
b− 1 ∈ A. But then b ∈ A, contradicting the fact that b ∈ N \A.

Fact 2.4. There are definable surjective maps N → Z, N → N2 and N → Q.

Proof. The definable map Z → N , that sends z to 2z if z ≥ 0 and to −2z −
1 otherwise is easily seen to be bijective using the Definable Induction Principle.
Likewise the definable map N2 → N, (x, y) 7→ (x+y)(x+y+1)

2 + x is easily seen to be
bijective using the Definable Induction Principle. Finally the composition

N → N2 → Z ×N → Q,

where the map Z×N → Q is given by (z, n) 7→ z
n+1 , is surjective and definable.

Fact 2.5 ([7], Corollary 5.12). Let c ∈ R and g : R → R be definable. There is a
unique definable function f : N → R, such that f(0) = c and for all n ∈ N

f(n+ 1) = g(f(n)).

Corollary 2.6. Let (c, i) ∈ R × N and g : R × N → R × N definable. Then there
exists a unique definable function f : N → R×N such that f(0) = (c, i) and for all
n ∈ N

f(n+ 1) = g(f(n)).

Proof. There is a definable bijection φ : (0, 1] → (0, 1) given by φ(x) = x, whenever
1/x ̸∈ N and by φ(x) = 1/(1 + 1/x), whenever 1/x ∈ N . This means there is a
definable bijection ψ : R → R ×N given as the composition of the straightforward
definable bijections

R→ (0, 1]× Z → (0, 1)× Z → (0, 1)×N → R×N.

Let g : R×N → R×N be definable and (c, i) ∈ R×N . Set g̃ = ψ−1◦g◦ψ. Using Fact
2.5 we get a definable map f̃ : N → R with f̃(0) = ψ−1(c, i) and f̃(n+1) = g̃(f̃(n))
for all n ∈ N . It is easy to see that f = ψ ◦ f̃ has the desired properties. Uniqueness
of f follows using definable induction on n.
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Corollary 2.7. Let h : N → R be a definable map. Then there is a unique definable
map H : N → R such that H(0) = h(0) and for all n ∈ N

H(n+ 1) = H(n) + h(n+ 1).

Proof. Given h consider the definable map g : R × N → R × N , sending (x, i) to
(x+ h(i+ 1), i+ 1). By Corollary 2.6 there exists a unique definable map f : N →
R×N such that f(0) = (h(0), 0) and for all n ∈ N

f(n+ 1) = g(f(n)).

Let π : R × N → R be the projection onto the first coordinate and set H = π ◦
f . Definable induction on n shows that f(n) = (H(n), n), so H has the desired
properties.

If h and H are as described in Corollary 2.7, for every n ∈ N ⊆ N the equality
H(n) =

∑n
i=0 h(i) holds and in general H behaves just as we would expect a finite

sum to behave (see Lemma 2.8). We therefore define:

Definition. Let h : N → R definable. Let H be as defined in Corollary 2.7. For
every n ∈ N we will write

∑n
i=0 h(i) instead of H(n).

Lemma 2.8. Let g, h : N → R be definable functions and c ∈ R. For all n ∈ N we
have

n∑
i=0

g(i) +
n∑

i=0
h(i) =

n∑
i=0

g(i) + h(i),

n∑
i=0

g(i)−
n∑

i=0
h(i) =

n∑
i=0

g(i)− h(i),

n∑
i=0

c = (n+ 1) ∗ c.

Proof. Definable induction on n.

Definition. Let X be a set. An X valued N -sequence is a function a : N → X
which we will denote by (ai)i∈N , where ai = a(i) for every i ∈ N .

Remark. By Fact 2.2 (N,≤) is a linear order, so in particular a directed set. This
means that an N -sequence is a net. If X carries a topology we say an N -sequence
converges to a ∈ X, if it converges to a as a net. Spelled out this equals the
familiar notion of convergence of a sequence: (ai)i∈N converges to a ∈ X, if for
every neighbourhood U of a, there is n ∈ N such that ai ∈ U for all i ∈ N>n. If
f : X → Y is a continuous map of topological spaces and (ai)i∈N is an X valued
N -sequence converging to a ∈ X, (f(ai))i∈N is a Y valued N -sequence converging
to f(a). See [13, Chapters 2 and 3] for details.

Lemma 2.9. For every x ∈ R there is a Q valued N -sequence converging to x in
R. In particular Q is dense in R.
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Proof. Using Fact 2.5 we can inductively define 1/2n for every n ∈ N by setting
1/20 = 1 and if 1/2n is already defined 1/2n+1 is defined to be 1/2 · 1/2n. Using
definable induction on n it is easy to see that 1/2n ∈ Q>0 for all n ∈ N and that for
every δ > 0, there is some n ∈ N such that 1/2i < δ for all i ∈ N>n.

To get an N -sequence in Q approximating some x ∈ R it suffices to check that
the definable set

A = {n ∈ N : for all x ∈ R there is q ∈ Q with q ≤ x < q + 1/2n}

is inductive. 0 ∈ A since N is a closed, definable and discrete subset of R, so
for every x ∈ R, the element q = supN≤x ∈ N has the property x ∈ [q, q + 1),
so |x − q| < 1. Now suppose that n ∈ A. Let x ∈ R and choose q ∈ Q with
q ≤ x < q + 1/2n. Now either q ≤ x < q + 1/2n+1 or q + 1/2n+1 ≤ x < q + 1/2n.
Since 1/2n+1 + 1/2n+1 = 1/2n and q + 1/2n+1 ∈ Q, also n+ 1 ∈ A.

2.2 Proof of the Strong Baire Category Theorem
Recall that by Fact 2.1, Theorem A holds true whenever R is a restrained type A
structure. So for the remainder of this section we assume that R is an unrestrained
type A structure. Let N,Z and Q be the R∗-definable subsets of R introduced in
the last section.

Lemma 2.10 ([11, Lemma 3.1]). Let (Xt)t>0 be a definable family of pseudo-finite
subsets of R, which is either increasing or decreasing in t. Then

⋃
tXt is nowhere

dense.

Proof. As R is type A, it suffices to show that X =
⋃

tXt admits a pseudo ω-order.
We assume that (Xt)t>0 is increasing as a slight modification of the argument proves
the decreasing case. Let τ : X → R>0 be the definable map, sending x ∈ X to
inf{t > 0: x ∈ Xt}. For x, y ∈ X, we declare x ≺ y if τ(x) < τ(y), or if τ(x) = τ(y)
and x < y. This defines a linear order on X and for every x ∈ X, the set X≺x is
pseudo-finite, as it is a subset of Xt for every t > τ(x).

Definition. A subset D ⊆ R>0 is called a sequence set, if it is bounded, discrete
and its closure in R is D ∪ {0}.

Remark. If D ⊆ R>0 is a sequence set and t ∈ D, then {s ∈ D : s ≥ t} is pseudo-
finite.

Lemma 2.11 ([11, Lemma 3.2]). One of the following statements holds:

(a) Every bounded nowhere dense definable subset of R is pseudo-finite.

(b) R defines a sequence set.

Proof. Suppose (a) does not hold. Then R defines a bounded nowhere dense set
X ⊆ R which is not discrete. As X is not discrete it has an accumulation point
x ∈ X. Replacing X by −x+X we may assume that the accumulation point is 0 and
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by replacing X by −X if necessary, we may also assume that 0 is an accumulation
point of Y = X>0. We will now construct a definable sequence set D from Y . For
every ϵ > 0 let

Lϵ = {δ > 0: ∃x, y ∈ Y≤ϵ with y = x+ δ and Y ∩ (x, y) = ∅}

be the bounded definable set of lengths of complementary intervals of Y≤ϵ. As Y
is nowhere dense Lϵ is nonempty for every ϵ > 0. Let lϵ = supLϵ and note that
R>0 → R, ϵ 7→ lϵ is a definable function. Let

Mϵ = {x ∈ R : ∃δ ∈ [ lϵ2 , lϵ] with x− δ
2 , x+ δ

2 ∈ Y≤ϵ and Y ∩ (x− δ
2 , x+ δ

2) = ∅}

be the definable nonempty set of midpoints of complementary intervals of Y≤ϵ of
length between lϵ/2 and lϵ. Let xϵ = infMϵ = minMϵ. Again R>0 → R, ϵ 7→ xϵ
is a definable function. Let D = {xϵ : ϵ > 0}. We will now check that D is a
definable sequence set. It is easy to see, that D is a definable bounded subset of
R>0. Moreover 0 < xϵ < ϵ, for every ϵ > 0, so 0 is indeed an accumulation point of
D. Finally D is discrete, as for every ϵ > 0, xϵ is at least lϵ

4 apart from every other
element of D.

Remark. Note that Lemma 2.11 precisely says that R does not define a sequence
set if and only if every nowhere dense CBD subset of R is pseudo-finite.

Lemma 2.12 ([11, Lemma 3.3]). Let (Xt)t>0 be a definable family of nowhere dense
subsets of R, either increasing or decreasing in t. Then

⋃
tXt is nowhere dense.

Proof. The proof given in [11] goes through word for word if one replaces each in-
stance of finite by pseudo-finite and uses that by [6, Lemma 4.22] a pseudo-finite
union of pseudo-finite sets is pseudo-finite again, as well as the following.

Claim. If (Ct)t>0 is an R-definable family of subsets of R either increasing or
decreasing in t, such that C =

⋃
t>0Ct is dense in some bounded set A, then for

every ϵ > 0 there is t > 0 such that Ct is ϵ-dense in A, that is for every a ∈ A there
is x ∈ Ct with |x− a| < ϵ.

Proof of Claim. We only demonstrate the increasing case, as the decreasing case
works analogously with very minor modifications. Let ϵ > 0. Take n ∈ N such
that 1

n < ϵ. Let B ⊆ Z be the R∗-definable and bounded set of z ∈ Z such
that ( z−1

n , z+1
n ) ∩ A ̸= ∅. As C is dense in A for every z ∈ B there is t > 0

such that Ct ∩ ( z−1
n , z+1

n ) ̸= ∅. Moreover, as the family (Ct)t is decreasing we have
Cs ∩ ( z−1

n , z+1
n ) ̸= ∅ for every 0 < s < t. Note that the map

f : B → R>0 ∪ {∞}, z 7→ 1
2 sup{t ∈ R>0 : Ct ∩ (z − 1

n
,
z + 1
n

) ̸= ∅}

is R∗-definable and that Cf(z)∩ ( z−1
n , z+1

n ) ̸= ∅ for every z ∈ B. Using the Definable
Induction Principle it is not hard to show, that infz∈B f(z) > 0, as B is a pseudo-
finite set. With t = infz∈B f(z), Ct is 2ϵ-dense in A. ■



The Strong Baire Category Theorem 15

Lemma 2.13 ([11, Lemma 3.4]). Let (Xs,t)s,t>0 be a definable family of nowhere
dense subset of R, increasing in s and decreasing in t. Then

⋃
s,tXs,t is nowhere

dense.

Proof. This is a formal consequence of Lemma 2.12. See [11] for details.

Proof of Theorem A. We will prove by induction on n, that every DΣ set A ⊆ Rn

either has interior or is nowhere dense. To this end it suffices to prove that once
A is somewhere dense, it has interior already. So suppose A is dense in the open
set U ⊆ Rn. If n = 1, Lemma 2.13 implies that A has interior. Now suppose
n > 1. After shrinking U if necessary we may suppose that U = V × I, where V is
a definable open set and I is some open interval. Since A ∩ U is a DΣ set we may
suppose that A is contained in U .

We will now show that

B = {x ∈ V : Ax is dense in I}

is an R∗-definably comeager subset of V . Fact 2.4 implies that there is a definable
surjection N → {(p, q) ∈ Q2 : p < q}, n 7→ (ln, un). For n ∈ N define

Cn = {x ∈ V : Ax ∩ (ln, un) ̸= ∅}

and note that (Cn)n∈N is an R∗-definable family with
⋂

n∈N Cn = B. Each Cn is
DΣ as it is the projection of the DΣ set A∩V × (ln, un). As A∩V × (ln, un) is dense
in V × (ln, un), Cn is dense in V . As we have cl(V ) = int(Cn) ∪ (cl(Cn) \ int(Cn))
with both sets on the right hand side DΣ the inductive assumption implies that
int(Cn) is dense in V . For n ∈ N set Dn = V \ Cn and D̃n =

⋃
m∈N≤n

Dm. Note
that (D̃n)n∈N is a definable family increasing in n. Definable induction on n shows
that for each n ∈ N , D̃n is a nowhere dense set. We have

V \B =
⋃
t>0

D̃⌊t⌋,

with ⌊t⌋ = sup{n ∈ N : n ≤ t}, so the set V \B is R∗-definably meager. The Baire
Category Theorem, Fact 1.13 implies that B cannot be R∗-definably meager, as V
is not definably meager.

For every x ∈ B, the inductive assumption implies that Ax has interior, so B
is a subset of {x ∈ Rn−1 : Ax has interior }. Thus {x ∈ Rn−1 : Ax has interior } is
not definably meager and as it is DΣ, it has interior. Fact 1.12 implies that A has
interior.

2.3 Corollaries of the strong Baire Category Theorem

The following results are consequences of the SBCT.
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Proposition 2.14 ([8, Prop. 5.5]). Suppose R is type A. Let A ⊆ Rm+n be DΣ
such that π(A) has interior, where π : Rm+n → Rm is the projection onto the first
m coordinates. Then there is a definable open subset V ⊆ Rm with V ⊆ π(A) and a
continuous definable f : V → Rn such that Γf ⊆ A.

Theorem 2.15 ([10], Theorem 2.4). Suppose R is type A. Let U ⊆ Rm be definable
and open and let f : U → Rn be a DΣ function. Then f is generically continuous
on U .

Theorem 2.16 ([10], Fact 2.5). Suppose R is type A. Let Z ⊆ Rn be definable and
let (fz : Iz → R)z∈Z be a definable family of continuous functions, where each Iz is
an open interval. Then there is a definable family (Uz)z∈Z such that Uz is an open
dense subsets of Iz and for every z ∈ Z the function fz is strictly increasing, strictly
decreasing or constant on each definably connected component of Uz.

We will start by proving Proposition 2.14.

Definition. Let X ⊆ Rm, f : X → Rn and ϵ > 0. The function f is said to have
ϵ-oscillation at x ∈ X if for all δ > 0 there are y, y′ ∈ X with ||x− y||, ||x− y′|| < δ
and ||f(y)− f(y′)|| ≥ ϵ.

Lemma 2.17 ([8], Lemma 5.2). Let U ⊆ Rm be open and definable and f : U → Rn

be definable. The set of points at which f is discontinuous is DΣ. Furthermore one
of the following holds:

(a) There is a nonempty definable open V ⊆ U such that f |V is continuous.

(b) There is a nonempty definable open V ⊆ U and ϵ > 0 such that f has ϵ-
oscillation at every x ∈ V .

Proof. The proof given in [8] in case of R = R works for every type A structure.

This is enough to prove Proposition 2.14. The proof goes through just as in [8]
with the exception that we have to give a different argument to start the induction.
For the convenience of the reader the whole proof is included.

Proof of Proposition 2.14. We will first reduce to the case that A is a CBD set. Let
(As,t)s,t>0 be a definable family of subsets of Rm+n witnessing that A is DΣ. Since
projections of CBD sets are CBD again, (π(As,t))s,t witnesses that π(A) ⊆ Rm is
DΣ. Since π(A) has interior it is not definably meager, so there are s, t > 0 such
that π(As,t) has interior. Replacing A by As,t if necessary, we may assume that A is
CBD. Take an open definable U ⊆ π(A). Let f : U → Rn be the definable function
that sends x ∈ U to the lexicographic minimum of Ax. Note that Γf ⊆ A, by Fact
1.3.

We will now use induction on n to show that f is continuous on a nonempty
open subset of U . Suppose n = 1. In this case f(x) = minAx for all x ∈ U . Assume
towards a contradiction that f is not continuous on some definable open subset
V ⊆ U . Lemma 2.17 implies that there are a nonempty definable open V ⊆ U
and ϵ > 0 such that f has 2ϵ-oscillation at every x ∈ V . The set f(V ) ⊆ R is
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bounded and definable so it has a supremum in R. Pick x ∈ V such that f(x)
lies within ϵ/2 of sup f(V ). Let X ⊆ V be a closed box with x ∈ int(X). Define
A′ = A∩X × (−∞, f(x)− ϵ]. Note that A′ and hence π(A′) are CBD sets and that
x ̸∈ π(A′).

We will derive a contradiction by showing that x lies in the closure of π(A′).
Since f has oscillation 2ϵ on V , for every δ > 0 there is x′ ∈ X, with ||x − x′|| < δ
and |f(x)− f(x′)| ≥ ϵ. Since f(x) lies within ϵ/2 of sup f(V ), f(x′) ≤ f(x)− ϵ, so
x′ lies in π(A′). This shows that x ∈ cl(π(A′)), a contradiction.

Suppose n ≥ 2. Let ρ : Rm+n → Rm+n−1 be the coordinate projection missing
the last coordinate. Let B = ρ(A). Note that B is a CBD set. Let g : U → Rn−1

be the definable function sending x to the lexicographic minimum of Bx ⊆ Rn−1.
By the definition of the lexicographic minimum g(x) = ρ(f(x)), for all x ∈ U .
The inductive hypothesis implies, that g is continuous on some nonempty definable
U ′ ⊆ U . By possibly shrinking U ′ we may assume that g is continuous on the closure
of U ′. Let C ⊆ cl(U ′) × R be the set consisting of all (x, t) with (x, g(x), t) ∈ A.
Note that C is CBD as it is a coordinate projection of the set CBD set Γg ×R ∩A.
Let h : U ′ → R, x 7→ minCx. The same argument as in the case n = 1 shows, that
h is continuous on some nonempty definable open V ⊆ U . Since f(x) = (g(x), h(x))
for every x ∈ U ′, we obtain that f |V is continuous.

Having established Proposition 2.14, we can derive Theorem 2.15 without much
trouble.

Proof of Theorem 2.15. Let D ⊆ U be the set of points where f is discontinuous.
It suffices to show that D is nowhere dense, as this implies that U \ cl(D) is a
dense open definable subset of U , restricted to which f is continuous. By Lemma
2.17, D is DΣ, so the SBCT implies that D is either nowhere dense or has interior.
Towards a contradiction assume hat D has interior. By replacing U with an open
definable subset of D, we may assume that f is a DΣ function which is nowhere
continuous. Let π : Rm+n → Rm be the coordinate projection onto the first m
coordinates. Since π(Γf ) = U has interior, there is a nonempty open definable V
and a continuous definable g : V → Rn with Γg ⊆ Γf , by Proposition 2.14. This
means that f |V = g is continuous, contradicting the assumption that f is nowhere
continuous.

To prove Theorem 2.16 we need a lemma, which is proved in [11] in the case of
R = R. Proposition 2.14 allows for a short proof for general R.

Lemma 2.18 ([11, Prop. 4.2]). Suppose R is type A. Let I ⊆ R be an open interval
and f : I → R a nonconstant continuous definable function. Then there is an open
subinterval of I on which f is strictly increasing or strictly decreasing.

Proof. Continuous functions are DΣ, so A = {(f(x), x) : x ∈ I} is a DΣ set. Let
π : R2 → R be the projection onto the first coordinate. The Intermediate Value
Theorem implies that the projection π(A) = f(I) has interior, so by Proposition 2.14
there is an open interval J ⊆ f(I) and a continuous definable function g : J → R
with Γg ⊆ A. This precisely means that, f ◦ g(y) = y for all y ∈ J . With I ′ = f(J),
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we see that g : J → I ′ is a definable homeomorphism whose continuous inverse is
f : J → I ′. This implies that I ′ is an open subinterval of I on which f is strictly
increasing or strictly decreasing.

We can now follow the proof of [11, Thm. 4.3] to establish Theorem 2.16.

Proof of Theorem 2.16. Let z ∈ Z. Define the following disjoint subsets of Iz.

Uz,1 = {x ∈ Iz : fz is strictly increasing on an open interval around x},
Uz,2 = {x ∈ Iz : fz is strictly decreasing on an open interval around x},
Uz,3 = {x ∈ Iz : fz is constant on an open interval around x}.

Set Uz = Uz,1 ∪ Uz,2 ∪ Uz,3. This is open and definable, as Uz,1, Uz,2 and Uz,3 are
definable open sets. By Lemma 2.18 every open subinterval of Iz contains an open
interval on which fz is strictly increasing, strictly decreasing or constant. Thus
Uz is a dense open subset of Iz. Since {Uz,1, Uz,2, Uz,3} is a disjoint open cover
of Uz every definably connected component of Uz is contained in Uz,i for a unique
i ∈ {1, 2, 3} and is therefore a connected component of Uz,i. Because (Uz)z∈Z is
a definable family it is left to show that for each z ∈ Z, fz is strictly increasing
on the definably connected components of Uz,1, strictly decreasing on the definably
connected components of Uz,2 and constant on the definably connected components
of Uz,3.

Let C ⊆ Uz,1 be a definably connected component of Uz,3. For every x ∈ C,
consider the definable set Dx = {y ∈ C : y > x and fz(y) ≤ fz(x)}. If Dx were
nonempty it had an infimum y′ ∈ C. Since fz is strictly increasing around x, it
follows that x < y′. But fz is also strictly increasing around y′, so it cannot be the
infimum of Dx, meaning that Dx is empty and fz is in fact strictly increasing on
C. The analogous argument shows that fz is strictly decreasing on any definably
connected component of Uz,2.

Finally let C ⊆ Uz,3 be a definably connected component of Uz,3 and let x ∈ C.
Consider the definable sets {y ∈ C : fz(y) = fz(x)} and {y ∈ C : fz(y) ̸= fz(x)},
they are both open and definable and form a disjoint cover of C. Therefore the
latter set is empty and fz is indeed constant on C.



Chapter 3

A differentiability criterion

In this chapter we will establish Theorem 3.1, a differentiability criterion for a con-
tinuous function f : (a, b) → R, definable in an unrestrained definably complete ex-
pansion R of a real closed field (R,<,+, ∗). Importantly it is first order expressible
in the structure (R,<,+, f), so it will be the crucial ingredient in proving Theorem
4.1. For the field of real numbers, this differentiability criterion was proved by Boas
and Widder in [1]. It turns out that essentially their technique carries over to unre-
strained definably complete expansions of ordered fields. Throughout this chapter
we fix a definably complete unrestrained expansion of (R,<,+, ∗). We let N,Z and
Q be the definable subsets of R described in Section 2.1.

3.1 The differentiablity criterion

To state the result we need two definitions first.

Definition. Let f : (a, b) → R be a function. For arbitrary δ ≥ 0 we define ∆0
δf = f

and recursively for k > 0

∆k
δf : (a, b− kδ) → R, x 7→ ∆k−1

δ f(x+ δ)−∆k−1
δ f(x).

To ease notation we will write ∆δf instead of ∆1
δf . Using induction on k we can

establish the following formula needed later on in the proof:

∆k
δf(x) =

k∑
i=0

(−1)k−i

(
k

i

)
f(x+ iδ), ∀δ ≥ 0, ∀x ∈ (a, b− kδ).

Definition. Let a, b, c, d ∈ R with a ≤ c < d ≤ b. We say a function f : (a, b) → R
satisfies Hk on (c, d), if f |(c,d) is continuous and ∆k

δf(x) ≥ 0 for all δ > 0 and
x ∈ (c, d− kδ).

Theorem 3.1. Let R be an unrestrained definably complete expansion of (R,<,+, ∗)
and let k ≥ 1. Every definable function (a, b) → R that satisfies Hk+2 on (a, b) is
Ck.

19
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3.2 Proof of the differentiability criterion
We will now establish Theorem 3.1 by a series of lemmas, following the structure of
the proof given in [1] closely. For the convenience of the reader we also include those
proofs which carry over to our setting word for word. Until the end of this section
f will always denote a definable function (a, b) → R.

Lemma 3.2 ([1, Lemma 1]). Let k ≥ 2 and let f satisfy Hk on (a, b). For
δ1, . . . , δk ≥ 0 and x ∈ (a, b−

∑k
i=1 δi) it holds

∆δ1 · · ·∆δkf(x) ≥ 0.

Proof. Let n ∈ N>0, h > 0 and x ∈ (a, b − h). Using definable induction on n we
establish

∆hf(x) =
n−1∑
i=0

∆h/nf(x+ ih/n).

Given k and x ∈ (a, b − (k − 1)h) the previous identity together with Lemma 2.8
and induction on k gives us

∆k−1
h f(x) =

n−1∑
i1=0

· · ·
n−1∑

ik−1=0
∆k−1

h/n
f(x+ (i1 + · · ·+ ik−1)h/n).

This together with Lemma 2.8 implies that for x ∈ (a, b− h/n− (k − 1)h) we have

∆h/n∆k−1
h f(x) =

n−1∑
i1=0

· · ·
n−1∑

ik−1=0
∆k

h/nf(x+ (i1 + · · ·+ ik−1)h/n) ≥ 0. (3.1)

If m ∈ N and x ∈ (a, b−mh/n− (k − 1)h) inequality (3.1) and definable induction
on m implies

∆k−1
h f(x) ≤ ∆k−1

h f(x+mh/n). (3.2)

Given δ1 > 0 and x ∈ (a, b− δ1(k − 1)h) we can choose an N -sequence (mi/ni)i∈N
with mi, ni ∈ N>0 and 0 < mi/ni < δ1/h, ∀i ∈ N converging to δ1/h. Continuity of
f together with (3.2) implies

∆k−1
h f(x) ≤ ∆k−1

h f(x+ δ1),

or

∆k−1
h ∆δ1f(x) ≥ 0. (3.3)

If k = 2 this is the desired conclusion. Suppose k > 2 and that the lemma has been
established for k − 1. Inequality (3.3) shows that for δ1 ∈ (0, b − a), the function
x 7→ ∆δ1f(x) satisfies Hk−1 on (a, b− δ1). The inductive hypothesis implies that for
all δ2, . . . , δk ≥ 0 with x ∈ (a, b−

∑k
i=0 δi) we have

∆δ2 · · ·∆δn∆δ1f(x) ≥ 0.

Since δ1 ∈ (0, b − a) can be chosen arbitrarily the conclusion of the lemma follows
for k.
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Lemma 3.3 ([1, Lemma 2]). Let k ≥ 2 and f satisfy Hk on (a, b). For arbitrary
ϵ > 0 the functions

(a, b− (k − 1)ϵ) → R, x 7→ ∆k−1
ϵ f(x),

(a+ ϵ, b− (k − 2)ϵ) → R, x 7→ ∆k−1
ϵ f(x− ϵ)

are non-decreasing.

Proof. Let ϵ > 0 and let y, z ∈ (a, b− (k − 1)ϵ) with y < z. Set δ = z − y. Lemma
3.2 with δ1 = δ and δ2 = · · · δn = ϵ implies that

∆k−1
ϵ f(y) ≤ ∆k−1

ϵ f(z).

This shows that the first function is non-decreasing. This immediately implies that
the second function is non-decreasing as it is merely a translated version of the first
function.

Lemma 3.4 ([1, Lemma 3]). Let f satisfy H2 on (a, b). For all x ∈ (a, b),

(0, b− x) → R, h 7→ f(x+ h)− f(x)
h

is a non-decreasing function and

(0, x− a) → R, h 7→ f(x)− f(x− h)
h

is a non-increasing function.

Proof. We will only show that the first function is non-increasing as the argument
for the second function is analogous. Let x ∈ (a, b).

Claim. For all m,n ∈ N and all ϵ > 0 with 0 < m < n and x+ nϵ < b it holds
1
m
∆mϵf(x) ≤

1
n
∆nϵf(x).

Proof of claim. Using definable induction this immediately reduce to the following
claim: For all m ∈ N>0 with x+ (m+ 1)ϵ < b it holds

1
m
∆mϵf(x) ≤

1
m+ 1∆(m+1)ϵf(x),

or equivalently

∆mϵf(x) ≤ m∆ϵf(x+mϵ). (3.4)

We will now prove (3.4) by definable induction on m. The case m = 1 follows from
Lemma 3.3. So let m > 1 and suppose (3.4) is already established for m− 1. Using
this inductive hypothesis and Lemma 3.3 we obtain:

∆mϵf(x) = ∆ϵf(x+ (m− 1)ϵ) + ∆(m−1)ϵf(x)
≤ ∆ϵf(x+mϵ) + (m− 1)∆ϵf(x+ (m− 1)ϵ)
≤ m∆ϵf(x+mϵ).

■
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The claim applied to ϵ = δ/n states that for all m,n ∈ N , 0 < m < n and all
δ > 0 with and x+ δ < b it holds:

1
mδ/n

∆mδ/nf(x) ≤
1
δ
∆δf(x). (3.5)

Given 0 < ϵ < δ and x ∈ (a, b− δ) choose an N -sequence (mi/ni)i∈N , mi, ni ∈ N>0,
mi < ni converging to ϵ/δ. Continuity of f together with (3.5) finally gives us

1
ϵ
∆ϵf(x) ≤

1
δ
∆δf(x).

Lemma 3.5 ([1, Lemma 4]). Let f satisfy H2 on (a, b). f ′+(x) = limδ→0+
∆δf(x)

δ and
f ′−(x) = limδ→0+

∆δf(x−δ)
δ define non-decreasing functions (a, b) → R respectively.

Proof. Lemma 3.4 implies that for every x ∈ (a, b), f ′+(x) and f ′−(x) exist in R ∪
{±∞}, as R is definably complete. Let ϵ > δ > 0, z ∈ (a+ ϵ, x) and y ∈ (x, b− ϵ).
Using Lemma 3.3 and 3.4 we obtain

∆ϵf(z − ϵ)
ϵ

≤ ∆ϵf(x− ϵ)
ϵ

≤ ∆δf(x− δ)
δ

≤ ∆δf(x)
δ

≤ ∆ϵf(x)
ϵ

≤ ∆ϵf(y)
ϵ

.

This shows that ∆ϵf(z−ϵ)
ϵ ≤ f ′−(x) ≤ f ′+(x) ≤ ∆ϵf(y)

ϵ , so f ′−(x), f ′+(x) ∈ R and
f ′−(z) ≤ f ′−(x) ≤ f ′+(x) ≤ f ′+(y). In particular f ′− and f ′+ are non-decreasing.

Lemma 3.6 ([1, Lemma 6]). Let c ∈ (a, b). If f satisfies H2 on (c, b) and addition-
ally limx→c+ f(x) = f(c) holds, f ′+(c) exists in R ∪ {∞}. If f satisfies H2 on (a, c)
and additionally limx→c− f(x) = f(c) holds, f ′−(c) exists in R ∪ {−∞}.

Proof. Say f satisfies H2 on (c, b) and limx→c+ f(x) = f(c). Choose ϵ ∈ (0, b − c).
By definable completeness of R it suffices to show that the definable function

d : (0, ϵ) → R, h 7→ 1
h
∆hf(c)

is non-decreasing. For large enough n ∈ N the assignment dn(h) = 1
h∆hf(c+ 1/n)

gives a (definable) function (0, ϵ) → R, which is non-decreasing by Lemma 3.4. Now
d is the pointwise limit of the N -sequence of functions dn which are defined for large
enough n. It is easy to check that d is non-decreasing.

An analogous argument works for the second case.

The common hypothesis for Lemmas 3.7 through 3.10 is that k ≥ 3 and f satisfies
Hk on (a, b).

Lemma 3.7 ([1, Lemma 7]). For any x ∈ (a, b)

(0, b−x
k−1) → R, h 7→ 1

hk−1∆
k−1
h f(x)

is a non-decreasing function.
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Proof. We prove the Lemma by induction on k. The base case k = 2 is Lemma 3.4.
Now suppose k > 2 and the lemma has been established for k − 1. Let δ, h > 0 and
x ∈ (a, b− 2δ − (k − 2)h). Lemma 3.2 with δ1 = δ2 = δ, δ3 = · · · = δk = h implies

∆2
δ∆

k−2
h f(x) ≥ 0,

so ∆k−2
h f(x) satisfies H2 on (a, b− (k − 2)h) and by Lemma 3.4

(0, b− (k − 2)h− x) → R, δ 7→ 1
δ
∆δ∆k−2

h f(x)

is a non-decreasing function. So for x ∈ (a, b) and δ, ϵ ∈ (0, b−x
k−1), with δ < ϵ we

obtain

∆k−1
ϵ f(x)
ϵk−1 = 1

ϵk−2
∆ϵ∆k−2

ϵ f(x)
ϵ

≥ 1
ϵk−2

∆δ∆k−2
ϵ f(x)
δ

= 1
δ

∆k−2
ϵ ∆δf(x)
ϵk−2 (3.6)

Now let δ, h > 0 and x ∈ (a, b− (k−1)h− δ). Lemma 3.2 with δ1 = · · · = δk−1 =
h, δk = δ implies ∆k−1

h ∆δf(x) ≥ 0, so

(a, b− δ) → R, x 7→ ∆δf(x)

satisfies Hk−1 on (a, b − δ). Using the induction hypothesis this implies that for
x ∈ (a, b) and δ, ϵ ∈ (0, b−x

k−1) with δ < ϵ it holds

1
δ

∆k−2
ϵ ∆δf(x)
ϵk−2 ≥ 1

δ

∆k−2
δ ∆δf(x)
δk−2 =

∆k−1
δ f(x)
δk−1 . (3.7)

Combining (3.6) and (3.7) yields the conclusion of the Lemma for k.

Lemma 3.8 ([1, Lemma 8]). There is c ∈ [a, b] such that f satisfies Hk−1 on (c, b)
and −f satisfies Hk−1 on (a, c).

Proof. Consider the definable sets

A = {x ∈ (a, b) : ∆k−1
δ f(x) ≥ 0, for all δ ∈ (0, b−x

k−1)},
B = {x ∈ (a, b) : ∃δ > 0

(
(k − 1)δ < b− x ∧∆k−1

δ f(x) < 0
)
}.

A and B are disjoint and A ∪ B = (a, b). For every y ∈ B there is δ > 0, with
(k− 1)δ < b− y and ∆k−1

δ f(y) < 0. By Lemma 3.3, ∆k−1
δ f(−) is non-decreasing so

for every z ∈ A necessarily y < z. Definable completeness of R ensures the existence
of c ∈ [a, b] with (a, c) ⊆ B and (c, b) ⊆ A. By definition of A, f satisfies Hk−1 on
(c, b).

It remains to check that −f satisfies Hk−1 on (a, c). For every x ∈ (a, c) there
is ϵ > 0 with (k − 1)ϵ < b − x and ∆k−1

ϵ f(x) < 0. Using Lemma 3.7 we see that
∆k−1

δ f(x) < 0 for all δ ∈ (0, ϵ) and using Lemma 3.3 we see that ∆k−1
ϵ f(y) for all

y ∈ (a, x). Consider the function

ϵ : (a, c) → R>0, x 7→ 1
2 sup{ϵ ∈ (0, b−x

k−1) : ∆
k−1
ϵ f(x) < 0}.
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Note that by the previous discussion ϵ is a non-increasing function and for all x ∈
(a, c) it holds ∆k−1

ϵ(x)f(x) < 0.
Let δ > 0 and x ∈ (a, c − (k − 1)δ). Choose y ∈ (x + (k − 1)δ, c). Take some

n ∈ N with δ/n < ϵ(y). The same argument as in the proof of Lemma 3.2 gives us
the identity

∆k−1
δ f(x) =

n−1∑
i1=0

· · ·
n−1∑

ik−1=0
∆k

δ/nf(x+ (i1 + · · ·+ ik−1)δ/n).

Note that for every i1+ · · ·+ ik−1 occurring in the above sum we have δ/n < ϵ(y) ≤
ϵ(x+ (i1 + · · ·+ ik−1)δ/n) since ϵ is non-increasing and therefore every term in the
above sum is smaller than 0. Using definable induction on n, one easily establishes
∆k−1

δ f(x) < 0, so −f satisfies Hk−1 on (a, c).

Lemma 3.9 ([1, Lemma 11]). For all x ∈ (a, b), f ′(x) exists in R.

Proof. Using induction on k and Lemma 3.8 we find a = x0 < x1 < · · · < xp = b,
1 ≤ p ≤ 2k−1 such that for each i ∈ {0, . . . , p − 1} either f or −f satisfies H2 on
(xi, xi+1). This implies that for all x ∈

⋃p−1
i=0 (xi, xi+1), f ′+(x) and f ′−(x) exist in R

by Lemma 3.5. For i ∈ {1, . . . , p − 1}, Lemma 3.6 implies that f ′+(xi) and f ′−(xi)
exist in R ∪ {±∞}.

We will now show that f ′+(xi) ∈ R for i ∈ {1, . . . , p − 1}. Suppose f ′+(xi) = ∞
for some i. For all δ > 0 with δ < xi−xi−1

k and δ < xi+1 − xi we have

∆k−1
δ f ′+(xi − (k − 2)δ) = −∞,

i.e.

lim
h→0+

1
h
∆k−1

δ ∆hf(xi − (k − 2)δ) = −∞,

so for sufficiently small h > 0 we have ∆h∆k−1
δ f(xi − (k − 2)δ) < 0, contradicting

Lemma 3.2. If f ′+(xi) = −∞ for some i we let 0 < δ < xi−xi−1
k−1 . Then

∆k−1
δ f ′+(xi − (k − 1)δ) = −∞,

an we reach a contradiction in similar fashion. This shows that f ′+(xi) ∈ R for all
i ∈ {1, . . . , p− 1}

To conclude, we show that f ′−(x) = f ′+(x) for all x ∈ (a, b). So let x ∈ (a, b) and
let h > 0 with h < x−a

k , h < b−x
2 . Let p be k − 2 or k − 1. Then

∆k
hf(x− ph) =

k∑
i=0

(−1)k−i

(
k

i

)
f(x+ (i− p)h) ≥ 0,

and since we have
∑k

i=0(−1)k−i = 0 we obtain:
k∑

i=0
i ̸=p

(−1)k−i

(
k

i

)
f(x+ (i− p)h)− f(x)

(i− p)h (i− p) ≥ 0.
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Letting h→ 0+, we deduce

Apf
′
−(x) +Bpf

′
+(x) ≥ 0, (3.8)

with

Ap =
p−1∑
i=0

(−1)k−i

(
k

i

)
(i− p), Bp =

k∑
i=p+1

(−1)k−i

(
k

i

)
(i− p).

A little calculation shows Ap +Bp = 0, so Ap = −Bp. If p = k − 2, Ap = k − 2 > 0,
so f ′−(x) ≥ f ′+(x) and if p = k − 1, Ap = −1, so f ′+(x) ≥ f ′−(x) by (3.8). In total
f ′+(x) = f ′−(x).

Lemma 3.10 ([1, Lemma 13]). f ′ : (a, b) → R satisfies Hk−1 on (a, b).

Proof. Let h > 0 and x ∈ (a, b− (k − 1)h). Then

∆k−1
h f ′(x) = lim

δ→0+

∆δ∆k−1
h f(x)
δ

≥ 0

by Lemma 3.2 so we are left showing continuity of f ′.
Let x ∈ (a, b). Using Lemma 3.8 k and induction on k, we find δ > 0 such that

f or −f satisfies H2 on (x − δ) and (x, x + δ). By Lemma 3.5 f ′ is monotonic on
(x − δ) and (x, x + δ). Thus f ′(x+) and f ′(x−) exist in R ∪ {±∞}. With h > 0,
h < x−a

k and h < b−x
2 as well as p ∈ {k − 2, k − 1} we have

∆k−1
h f ′(x− (p− 1

2)h) =
k−1∑
i=0

(−1)k−i−1
(
k − 1
i

)
f ′(x+ (i− p+ 1

2)) ≥ 0.

Letting h→ 0+ we obtain

Apf
′(x−)−Apf

′(x+) ≥ 0,

where Ap =
∑p−1

i=0 (−1)k−i−1(k−1
i

)
= −

∑k−1
i=p (−1)k−i−1(k−1

i

)
. We have Ak−2 = k −

2 > 0 and Ak−1 = −1 so we get:

f ′(x+) = f ′(x−).

Similarly using ∆k−1
h f ′(x − ph) ≥ 0 for sufficiently small h > 0 and again letting

h→ 0+ gives us

Bpf
′(x+)−Bpf

′(x) ≥ 0,

with

Bp =
k−1∑
i=0
i ̸=p

(−1)k−1−i

(
k − 1
i

)
= (−1)k−p

(
k − 1
p

)
.

Now Bk−2 = k − 1 and Bp = −1, so

f ′(x) = f ′(x+) = f ′(x−),

which establishes continuity of f ′ on (a, b).

Proof of Theorem 3.1. Induction on k using Lemma 3.10.



Chapter 4

Differentiability of functions of
one variable

Together with the tools we developed in the previous chapters we will now prove
the key result towards the Zilber style dichotomy for type A structures.

Theorem 4.1. Let R be a type A structure. Let f : I → R be a definable continuous
function. Then f is Ck on a dense open subset of I.

To prove Theorem 4.1 we again want to distinguish between restrained and
unrestrained type A structures. In the restrained case the theorem immediately
follows from the following result by Fornasiero and Hieronymi.

Fact 4.2 ([7, Lemma 6.19]). Let R be a restrained definably complete expansion of
an ordered field (R,<,+, ∗). Let U ⊆ Rn be open and definable and let f : U → R
be a definable continuous function. Then f is Ck on a dense open definable subset
of U .

So we may assume that R is an unrestrained type A structure. Following sec-
tion 4 of [10] closely, we will establish a stronger version of Theorem 4.1 for those
structures. Namely we will show that a continuous definable function f : I → R
is Ck on a dense open definable subset of its domain. The proof will require us to
further divide the structures at hand into two distinct classes. Namely we will first
prove Theorem 4.1 for those structures that do not define a sequence set. This will
be done in Section 4.1. Afterwards we give a proof for those structures that define
a sequence set in Section 4.2.

4.1 If R does not define a sequence set

As indicated above, for this section we assume R to be an unrestrained type A struc-
ture that does not define a sequence set. Note that by Lemma 2.11 every bounded
nowhere dense definable subset of R is pseudo-finite. We begin by establishing some
easy results towards the proof of Theorem 4.5.

26
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Lemma 4.3. Let X ⊆ R be a pseudo-finite set. Then X is DΣ and for every
definable family (As,t)s,t>0 witnessing that X is DΣ, there are s, t > 0 with X = As,t.

Proof. For every s, t > 0 set Cs,t = X \ As,t. X being closed and discrete implies
that each Cs,t is CBD. The family (As,t)s,t>0 is increasing in s and decreasing in t,
so (Cs,t)s,t>0 is decreasing in s and increasing in t. For every s > 0 set Ds =

⋂
tCs,t

and note that that (Ds)s>0 is an increasing definable family of CBD sets. We have

∅ =
⋂
s,t

Cs,t =
⋂
s

⋂
t

Cs,t =
⋂
s

Ds,

so by Fact 1.3 there has to be some s > 0 with Ds = ∅. Applying the same fact to
the decreasing family (Cs,t)t>0 whose intersection is empty, we obtain t > 0, such
that Cs,t = ∅. This precisely means that X = As,t.

Lemma 4.4. Let X ⊆ I×R>0 be DΣ such that Xx is pseudo-finite for every x ∈ I.
Then there is a nonempty open J ⊆ I and ϵ > 0 such that J × [0, ϵ] is disjoint from
X.

Proof. Let π : I × R>0 be the projection onto the first coordinate. The projection
π(X) is still DΣ so it is either nowhere dense or has interior by the SBCT. If it is
nowhere dense, there is open nonempty J ⊆ I disjoint from π(X), so J × R≥0 is
disjoint from X.

Now suppose that π(X) has interior. By choosing an open subinterval I ′ ⊆ π(X)
and replacing X by the DΣ set X ∩ I ′ × R, we may suppose that π(X) = I. Let
(As,t)s,t>0 be a DΣ family witnessing that X is DΣ. For all s, t > 0 set

Cs,t = π(X \As,t),
Ds,t = I \ Cs,t.

Note that for every x ∈ I we have x ∈ Ds,t if and only if Xx ⊆ (As,t)x. For every
x ∈ I, Xx is pseudo-finite and ((As,t)x)s,t>0 is a DΣ family witnessing that it is
DΣ. Lemma 4.3 provides s, t > 0 with Xx = (As,t)x, hence I =

⋃
s,t>0Ds,t. The

SBCT implies that there are s, t > 0 such that Ds,t is somewhere dense. Namely
the definable family (cl(Ds,t))s,t>0 is a DΣ family whose union has interior, so there
have to be s, t > 0 such that cl(Ds,t) has interior. Fix such s and t and an open
nonempty I ′ ⊆ I contained in the closure of Ds,t. It is easy to see that Cs,t is DΣ
and since Ds,t∩I ′ is dense in I ′, Cs,t∩I ′ cannot have interior. Since R is SBCT type
it is nowhere dense, implying that there is an open nonempty subinterval J ⊆ I ′

whose closure is contained in Ds,t. Fix such a J .
Consider the definable continuous map d : R2×R2 → R≥0, (x, y) 7→ ||x−y||. The

CBD sets cl(J)×{0} and As,t are disjoint, so the CBD set d(cl(J)×{0}×As,t) does
not contain 0. Since R is definably complete there is ϵ > 0 with ϵ < inf d(cl(J) ×
{0} ×As,t). This means cl(J)× [0, ϵ] ∩As,t = ∅ and since we chose J in a way that

X ∩ cl(J)×R = As,t ∩ cl(J)×R,

we see that J × [0, ϵ] is disjoint from X.
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Theorem 4.5. Suppose R does not define a sequence set. Let f : I → R be a
definable continuous function. Then there is a dense open definable subset U of I,
such that f is Ck on U .

Proof. Set

S = {(x, h) ∈ I ×R>0 : x+ (k + 2)δ ∈ I},

and

W = {(x, h) ∈ S : ∆k+2
h f(x) = 0} \ int{(x, h) ∈ S : ∆k+2

h f(x) = 0}.

Note that both sets are definable, S is open and W is closed in S, so W is DΣ.
Consider

Y = {x ∈ I : Wx has interior},

which is DΣ by Fact 1.11. W does not have interior, so Fact 1.12 implies that Y
does not have interior. The SBCT implies that Y is nowhere dense, so Ũ = I \cl(Y )
is open and dense in I.

Consider

V = {x ∈ Ũ : ∀δ, ϵ > 0 with (x− δ, x+ δ)× (0, ϵ) ∩W ̸= ∅}.

We will now show that V is nowhere dense. First note, that for all x ∈ Ũ , Wx is
pseudo-finite, as its closure is pseudo-finite by Lemma 2.11. Towards a contradiction
suppose there is an open interval J ⊆ I, in which V is dense. The definable set
(J ×R>0)∩W is DΣ so we can apply Lemma 4.4 to get an open subinterval J ′ ⊆ J
and ϵ > 0 with J ′ × (0, ϵ) disjoint from W . So V is disjoint from J ′ contradicting
its density in J .

Finally set U = I \ cl(V ), which is a dense open subset of I. It is left to
show that f is Ck on U . Let x ∈ U . Since x ̸∈ V there are ϵ, δ > 0 such that
(x− δ, x+ δ)× (0, ϵ) ∩W = ∅. By decreasing ϵ and δ if necessary, we may assume
that (x − δ, x + δ) × (0, ϵ) ⊆ S. The set S \W is the disjoint union of the three
open definable sets {(x, h) ∈ S : ∆k+2

h f(x) > 0}, {(x, h) ∈ S : ∆k+2
h f(x) < 0} and

int{(x, h) ∈ S : ∆k+2
h f(x) = 0} and because (x−δ, x+δ)×(0, ϵ) is definably connected

it has to be contained in exactly one of the three open sets. If necessary decrease δ
so that 2δ < (k+2)ϵ. Now it is easy to check, that f satisfies Hk+2 on (x− δ, x+ δ),
so Theorem 3.1 implies that f is Ck around x.

4.2 If R defines a sequence set
It remains to treat the case that R is an unrestrained type A structure that defines
a sequence set. First we establish a couple of auxiliary results.

Lemma 4.6. Let D be a definable sequence set and let {Xd : d ∈ D} be a definable
family of subsets of Rn, such that Xd is nowhere dense for each d ∈ D. Then⋃

d∈DXd is nowhere dense.
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Proof. For every t ∈ R>0 define Yt =
⋃

c∈D≥t
Xc. Since (Xc)c∈D≥t

is a pseudo-finite
family of nowhere dense sets, being nowhere dense is a definable property and finite
unions of nowhere dense sets are nowhere dense [6, Lemma 4.22] implies that each
Yt is nowhere dense. The SBCT implies that

⋃
t>0 Yt is nowhere dense.

For the proof of Theorem 4.9 we need a refined version of k-th difference ∆k
δf of

a function f : I → R which we defined in Chapter 3.

Definition. Let f : (a, b) → R. Let k > 0 and let h ∈ Rk
≥0. Note that ∆1

hf has
already been defined in Chapter 3. For k > 1 define

∆k
hf : (a, b−

k∑
i=1

hi) → R, x 7→ ∆k−1
(h1,...,hk−1)

f(x+ hk)−∆k−1
(h1,...,hk−1)

f(x).

Lemma 4.7. Let k > 0, let f, g : I → R be definable, let h = (u, v) ∈ R≥0 × Rk−1
≥0

and let x ∈ I with x+ u+
∑

i vi ∈ I. Then:

(1) ∆k
(u,v)f(x) = ∆k−1

v ∆uf(x).

(2) ∆k
h(f + g)(x) = ∆k

hf(x) + ∆k
hg(x).

(3) ∆k
h(−f)(x) = −∆k

hf(x).

Proof. Induction on k.

Lemma 4.8. Let f : I → R be a continuous definable function and let D be a
definable sequence set. If ∆k

(d,h)f(x) ≥ 0 for all d ∈ D, h ∈ Rk−1
≥0 and x ∈ I with

x + d +
∑

i hi, then ∆k
wf(x) for all w ∈ Rk

≥0 and x ∈ I with x +
∑

iwi ∈ I, that is
f satisfies Hk on I.

Proof. Let SI,k = {(x,w) ∈ I×Rk
≥0 : x+

∑
iwi ∈ I}. To establish the desired result

it suffices to prove that the closed set {(x,w) ∈ SI,k : ∆k
wf(x) ≥ 0} is dense in SI,k.

To prove density we want to use the definable induction principle discussed in
section 2.1. Therefore we pass to the unrestrained structure R∗ and denote the non-
negative elements of the unique discrete definable subring by N just as in Section
2.1. Take an open, nonempty U ⊆ SI,k and let (u, v, x) ∈ U , where u ∈ R≥0 and
v ∈ Rk−1

≥0 . Since U is open, there is δ > 0 with (u− δ, u+ δ)× {v} × {x} ⊆ U . Pick
a d ∈ D with d < δ. Note that {m ∈ N : md ≤ u} is bounded above and definable
in R∗, so by definable completeness of R∗ it has a supremum n. From nd ≤ u and
u < (n+ 1)d it follows that 0 ≤ u− nd < d, so (nd, u, x) ∈ U .

Therefore it suffices to prove that for all m ∈ N with 1 ≤ m ≤ n we have
(md, v, x) ∈ SI,k and ∆k

(nd,v)f(x) ≥ 0. The first result follows from the fact that for
all m ∈ N≤n

I ∋ x < x+md+
∑
i

vi < x+ nd+
∑
i

vi ∈ I.
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We will establish the second result by definable induction on m. The case m = 1
follows from the assumption. Now suppose m < n. Using the inductive hypothesis,
Lemma 4.7 and the fact that by assumption ∆k

(d,v)f(x+md) ≥ 0, we obtain

∆k
((m+1)d,v)f(x) = ∆k−1

v ∆(m+1)df(x)

= ∆k−1
v (f(x+md+ d− f(x))

= ∆k−1
v (∆df(x+md) + ∆mdf(x))

= ∆k−1
v ∆df(x+md) + ∆k−1

v ∆mdf(x)
= ∆k

(d,v)f(x+md) + ∆k
(md,v)f(x) ≥ 0.

The definable induction principle establishes the second claim and hence the lemma.

Now we can give a proof of Theorem 4.1 for the structures at hand. We will
actually prove the following uniform version of the theorem, which is tailored to the
style of proof.

Theorem 4.9. Suppose R defines a sequence set. Let Z ⊆ Rn be definable, let
(Iz)z∈Z be a definable family of bounded open intervals and let (fz : Iz → R)z∈Z be
a definable family of continuous functions. Then there is a definable family (Uz)z∈Z
of open dense subsets of Iz such that fz is Ck on Uz for each z ∈ Z.

Proof. For every z ∈ Z write Iz = (az, bz). By Theorem 3.1 it suffices to show that
for every k ≥ 1 and every definable family (fz : Iz → R)z∈Z there is a definable
family (Uz)z∈Z , with Uz ⊆ Iz open and dense, such that for every z ∈ Z and every
definably connected component J of Uz we have

(a) ∆k
hfz(x) ≥ 0 for all h ∈ Rk

≥0 and x ∈ J with x+
∑

i hi ∈ J , or

(b) ∆k
hfz(x) ≤ 0 for all h ∈ Rk

≥0 and x ∈ J with x+
∑

i hi ∈ J .

We will achieve this by induction on k. The Weak Monotonicity Theorem, Theorem
2.16 provides a family (Uz)z∈Z which has the desired properties for k = 1.

Now let k > 1 and let D be a definable sequence set. Applying the inductive
hypothesis to the definable family

(∆dfz : (az, bz − d) → R, x 7→ fz(d+ x)− dz(x))(z,d)∈Z×D

we obtain a definable family (Uz,d)(z,d), where Uz,d ⊆ (az, bz − d) is dense and open
and for each connected component J of Uz,d we have

(a) ∆k−1
h ∆dfz(x) ≥ 0 for all h ∈ Rk−1

≥0 and x ∈ J with x+
∑

i hi ∈ J , or

(b) ∆k−1
h ∆dfz(x) ≤ 0 for all h ∈ Rk−1

≥0 and x ∈ J with x+
∑

i hi ∈ J .
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For each (z, d) ∈ Z ×D set

Xz,d = {bz − d} ∪ (az, bz − d) \ Uz,d.

Each Xz,d is nowhere dense, so by Lemma 4.6
⋃

d∈DXz,d is nowhere dense for each
z ∈ Z. Set

Uz = Iz \ cl(
⋃
d∈D

Xz,d).

Note that (Uz)z∈Z is a definable family of open sets, each Uz being dense in Iz.

We will now show that for each z ∈ Z and each connected component J of Uz, f
satisfies Hk on J . To this end let J ⊆ Uz be such a connected component. For each
d ∈ D we have bz − d ̸∈ Uz, so either J ⊆ (bz − d, bz) or J ⊆ (az, bz − d). Let

D′ = {d ∈ D : J ⊆ (az, bz − d)}.

Since J has a positive length δ, D≤δ ⊆ D′, which implies that D′ is a sequence set.
Observe that for every d ∈ D′ we have J ⊆ Uz,d. This means that together with the
two sets

D′
≥ = {d ∈ D′ : ∆k−1

h ∆dfz(x) ≥ 0 for all (h, x) ∈ Rk−1
≥0 × J with x+

∑
i

hi ∈ J},

D′
≤ = {d ∈ D′ : ∆k−1

h ∆dfz(x) ≤ 0 for all (h, x) ∈ Rk−1
≥0 × J with x+

∑
i

hi ∈ J}

we have D′ = D′
≥ ∪D′

≤ implying that D′
≥ or D′

≤ has to be a sequence set.
Suppose D′

≥ is a sequence set. We want to show, that ∆k
wf(x) ≥ 0 for all

(w, x) ∈ Rk
≥0 × J with x +

∑
iwi ∈ J . By Lemma 4.8 it suffices to show that

∆k
(d,h)f(x) ≥ 0 for all (d, h, x) ∈ D′

≥ ×Rk−1
≥0 × J with x+ d+

∑
i hi ∈ J . If (d, h, x)

is such a triple, then x+
∑

i hi ∈ J , so by definition of D′
≥ together with Lemma 4.7

we obtain

∆k
(d,h)fz(x) = ∆k−1

h ∆dfz(x) ≥ 0.

If D′
≤ is a sequence set the same argument works to show that ∆k

w(−f(x)) ≥ 0 for
all (w, x) ∈ Rk

≥0 × J with x +
∑

iwi ∈ J , so by Lemma 4.7, ∆k
wf(x) ≤ 0 for all

(w, x) ∈ Rk
≥0 × J with x+

∑
iwi ∈ J .



Chapter 5

The dichotomy

With the aid of Theorem 4.1, we will now establish the dichotomy for type A struc-
tures, Theorem B. To state the result we need the following definitions.

Definition. An expansion of (R,<,+) is called field-type if there is a bounded open
interval I and definable functions ⊕,⊗ : I2 → I such that (I,<,⊕,⊗) is an ordered
field isomorphic to (R,<,+, ∗).

Definition. Let U ⊆ Rm be open and f : U → Rn. The function f is said to be
locally affine if every x ∈ U has a neighbourhood, restricted to which f is of the
form x 7→ Ax+ b, where A is some R-valued n×m matrix and b ∈ Rn.

Theorem B. Let R be type A. Exactly one of the following statements holds:

(a) R is field-type,

(b) Every DΣ function f : U → Rn, with U ⊆ Rm open and definable, is generically
locally affine on U .

The proof is split into two parts. We will first find a better characterization
of the structures that exhibit linear only behavior in Proposition 5.1 and use this
characterization to determine the field-type structures in Theorem 5.5. Throughout
this chapter we assume that R is a type A structure.

5.1 Affine expansions

We start by giving a different characterization for linearity of type A structures.

Proposition 5.1. Let R be type A. The following statements are equivalent:

(i) Every continuous definable function I → Rn is generically locally affine on I.

(ii) Every DΣ function f : U → Rn, with U ⊆ Rm open and definable, is generically
locally affine on U .

We collect a few easy result needed to establish the proposition.

32
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Lemma 5.2. Let U ⊆ Rm be open and definable. Any definable function f : U →
Rn, which is locally affine on some dense subset of U , is generically locally affine.

Proof. Let V ⊆ U be the set of points in which f is locally affine. Note that V is
open. We will show that V is definable. For x ∈ Rm and ϵ > 0 let Bϵ(x) be the
open box (x1− ϵ, x1+ ϵ)×· · ·× (xm− ϵ, xm+ ϵ). Let V ′ be the set of x ∈ U with the
following property. There is ϵ > 0 with Bϵ(x) ⊆ U such that for every y, y′ ∈ Bϵ(x)
there is δ > 0 with Bδ(y) ⊆ U and Bδ(y′) ⊆ U such that for every d ∈ Bδ(0) the
equality f(y + d)− f(y) = f(y′ + d)− f(y′) holds.

The set V ′ is definable and open and contains all points from V . If conversely
x ∈ V ′, the density of V in U implies that f is locally affine at x, so V = V ′.

Lemma 5.3. Let f : I → R be a definable continuous function, that is locally affine
on I. Then f is affine on I.

Proof. We may pass to the definably complete structure R∗, where the slope of f is
definable at every x ∈ I. Since the slope is locally constant, it has to be constant on
all of I, as every interval is definably connected. Say a ∈ R is the slope of f . Then
g : I → R, x 7→ f(x)− ax is a locally constant definable function. As I is definably
connected, g is constant, proving that f is affine on I.

The following lemma is exactly [10, Lemma 5.3]. Since the proof is written for
R = R, we recall it here to demonstrate that it works for arbitrary type A structures.

Lemma 5.4. Let A ⊆ Rm ×R be definable such that At ⊆ Rm is locally closed and
bounded for all t ∈ R. Let π be the coordinate projection Rm ×R→ R onto the last
coordinate. Then there is a definable function g : π(A) → Rm such that (g(t), t) ∈ A
for all t ∈ π(A).

Proof. For each t ∈ π(A) let Wr be the union of open boxes B ⊆ Rm of edge length
at most 1 such that B ∩ At is nonempty and closed in B. The definable family
(Wt)t∈π(A) consits of bounded open sets such that At ⊆ Wt and At is closed in Wt

for every t ∈ π(A). Let

d : Rm ×Rm → R, (x, y) 7→ ||x− y||

which is a continuous definable function and observe that x 7→ d(x,Rm \ Wt) =
inf{d(x, y) : y ∈ Rm \ Wt} describes a continuous definable function Rm → R≥0.
Moreover the infimum is actually a minimum. Now let C ⊆ Rm×R be the definable
set of (x, t) ∈ A such that

d(x,Rm \Wt) = sup{d(y,Rm \Wt) : y ∈ At}.

Using the fact that At is closed in Wt, it is easy to see that for every t ∈ π(A) the
set Ct is nonempty and consists precisely of the points from At which have maximal
distance to Rm \Wt among all points of At. Moreover Ct is closed and bounded for
every t ∈ π(A). We obtain the definable map g : π(A) → Rm, t 7→ lexmin(Ct) with
(g(t), t) ∈ A for every t ∈ π(A).



34 The dichotomy

To establish Proposition 5.1 we can essentially follow the proof of [10, Lemma
5.1].

Proof of Proposition 5.1. Clearly (ii) implies (i). So assume (i) holds. By Lemma
5.2 it suffices to show that every DΣ function f = (f1, . . . , fn) : U → Rm is locally
affine on a dense subset V ⊆ U , as V will automatically be open. In order to show
that f is locally affine on a dense subset of U it is enough to construct an open box
B ⊆ U restricted to which f is affine. Note that we may assume n = 1, as we can
first find an open box B1 such that f1 is affine on B1, then find an open box inside
B1, restricted to which f2 is affine and so on. The open box Bn we end up with, is
the desired open box, restricted to which f is affine. We apply induction on m to
construct such an open box. m = 1 is immediate.

Let m > 1. By Theorem 2.15 there is an open box B = I1 × · · · × Im in U
restricted to which f is continuous and let B′ = I1 × · · · × Im−1. For every x ∈ B′

set fx : Im → R, x 7→ f(x, t). For δ > 0 let

Eδ = {(x, t) ∈ B′ × Im : (t− δ, t+ δ) is a subset of Im on which fx is affine }.

We will now show that (Eδ)δ>0 is a decreasing definable family of bounded sets each
of which is closed in B. Clearly the family is decreasing. Writing Im = (a, b) we see
that for every δ > 0

{(x, t) ∈ B′ × [a+ δ, b− δ] : for all y < z ∈ (−δ, δ) and for all ϵ ∈ (−δ − y, δ − z)
it holds fx(t+ y + ϵ)− fx(t+ y) = fx(t+ z + ϵ)− fx(t+ z)}

equals Eδ, as (x, t) is in the displayed set if and only if fx is locally affine on
(t− δ, t+ δ), which, by Lemma 5.3, is equivalent to fx being affine on (t− δ, t+ δ).
This also shows that the continuity of f implies that Eδ is closed.

Let E =
⋃

δ>0Eδ and note that (x, t) ∈ E if and only if fx is locally affine in t.
Since E = B ∩

⋃
δ>0 cl(Eδ), it is a DΣ set such that for every x ∈ B′ the fibre Ex is

a dense open subset of Im. Fact 1.12 implies that E has interior, so after possibly
shrinking B, we may assume that for every x ∈ B′, fx is locally affine on Im and
hence affine on Im by Lemma 5.3. Therefore there are functions α, β : B′ → R with
fx(t) = α(x)t+ β(x) for all (x, t) ∈ B.

We will now show that α is constant. Suppose not. Let y, y′ ∈ Im, with d =
y′ − y > 0. For every x ∈ B′ let α̃(x) = fx(y′) − fx(y) = α(x)d. The function α̃ is
definable and continuous and is constant if and only if α is constant. By Fact 1.2
there is an open interval L contained in the image of α̃. Let A ⊆ Rm × R be the
graph of α̃ restricted to the open definable set α̃−1(L). Continuity of α̃ ensures that
Ar is locally closed for every r ∈ L, so by Lemma 5.4 there is a definable function
g : L → Rm with α̃ ◦ g = idL. In particular fg(r) has slope r

d for every r ∈ L.
Choose s ∈ Im and s′ ∈ L. Then there is δ > 0 such that (s − δ, s + δ) ⊆ Im and
(s′ − δ, s′ + δ) ⊆ L. Define

h : (s− δ, s+ δ) → R, t 7→ fg(t+s′−s)(t)− fg(t+s′−s)(s).



The dichotomy 35

For every t ∈ (s − δ, s + δ) we have h(t) = 1
d(t

2 + t(s′ − 2s) − s(s′ − s)), so h is a
continuous definable function which is nowhere locally affine. This contradicts (i),
so α has to be constant.

Let a ∈ R with α(x) = a for all x ∈ B′ and choose t ∈ Im. Then β(x) = fx(t)−at,
for every x ∈ B′, so β is definable and continuous. By the inductive assumption
there is an open box B′′ ⊆ B′ restricted to which β is affine. Thus f is affine on
B′′ × Im.

5.2 Defining a field

We will now demonstrate how to define a field from a continuous definable function
I → R, that is not generically locally affine. More precisely we will prove:

Theorem 5.5. Let R be type A. Exactly one of the following statements holds:

(a) R is field-type,

(b) Every definable continuous function f : I → R is generically locally affine on
I.

We first establish some results used in the proof of Theorem 5.5.

Lemma 5.6 ([10, Lemma 3.5]). Let f : [0, b) → R be a definable C2 function, X ⊆
Rn a definable set and (gt : It → R)t∈X a definable family of C2 functions such that

(1) f ′+(0) = 0 and f ′(x) > 0 for all x ∈ (0, b),

(2) It is an open interval containing 0 and gt(0) = 0 for all t ∈ X.

Then the relations g′t(0) < g′s(0), g′t(0) ≤ g′s(0) and g′t(0) = g′s(0) are definable on
X.

Proof. The proof given in [10] goes through word for word.

Proposition 5.7. If R defines a continuous function f : I → R, that is not gener-
ically locally affine, then for every k ≥ 3 there is b > 0 and a definable Ck function
g : (0, b) → R such that its derivative g′ : (0, b) → (0, 1) is increasing and bijective.

Remark. The preceding proposition is more or less straightforward in case R equals
R or more generally in case that R is an archimedean field. Namely by Theorem 4.1
we can assume without loss of generality that f is Ck. Moreover by reparameterizing
f we may assume that f ′ is increasing. Choose a, b ∈ I with a < b and f(a) rational.
Since R is archimedean there is c ∈ N with c(f ′(b) − f ′(a)) > 1. By replacing f
with the definable cf and decreasing b, we can assume that f ′(b) − f ′(a) = 1.
Finally the function x 7→ f(a)x is definable, as f(a) is rational, so defining g to be
x 7→ f(x)− f(a)x gives a function (a, b) → R with g′(a) = 0 and g′(b) = 1.

To establish Proposition 5.7 we need a couple of auxiliary results.
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Lemma 5.8. Let k ≥ 3. If R defines a continuous function f : I → R which is not
generically locally affine, then R also defines a Ck function g : (0, b) → R with b > 0
such that

(1) g′(x) > 0 for all x ∈ (0, b) and limx→b g
′(x) = ∞,

(2) g′ is strictly increasing.

Proof. By Theorem 4.1 there is a dense open subset U of I on which f is Ck. As f
is not generically locally affine, there has to be x0 ∈ U with f ′′(x0) ̸= 0. By possibly
replacing f with −f we may assume that f ′′(x0) > 0. Continuity of f ′′ gives us
an open interval J = (c, d) ⊆ U with x0 ∈ J and f ′′(x) > 0 for all x ∈ J . Fact
1.10 implies that f ′ is strictly increasing on J , so after possibly shrinking J we may
assume that f ′ has either positive only or negative only values on J . In the latter
case we replace f by x 7→ −f(c + d − x). Finally we can shift f to assume that
c < 0 < d.

Let h : ( c2 ,
d
2) → R be the definable Ck function with h(x) = 1

2f(2x) − f(x).
Then h′(0) = 0 and h′′(0) > 0. By decreasing d we can assume that h′′(x) > 0 for
all x ∈ (0, d2), which in turn implies h′(x) > 0 for all x ∈ (0, d2). Let b′ = d

2 and
replace h by definable map (0, b′) → R, x 7→ h(x) − h(0). With b = h(b′), h is a
definable increasing bijection (0, b′) → (0, b). Let g̃ : (0, b) → (0, b′) be the definable
Ck inverse of h. The Chain Rule of differentiation implies that

g̃′(x) = 1
h′(g̃(x)) > 0, ∀x ∈ (0, b),

so g̃′ is strictly decreasing and limx→0 g̃
′(x) = ∞. Therefore

g : (0, b) → R, x 7→ −g̃(b− x)

is the desired function.

Lemma 5.9. If k ≥ 3 and R defines a function f : [0, c] → R with c > 0 that is Ck

on (0, c) such that

(1) f ′(x) > 0, for all x ∈ (0, c) and limx→0 f
′(x) = 0,

(2) f ′′(x) > 0, for all x ∈ (0, c),

(3) f ′′′(x) ≤ 0, for all x ∈ (0, c),

then R also defines a Ck function g : (0, b) → R with b > 0 such that its derivative
g′ : (0, b) → (0, 1) is increasing and bijective.

Proof. In a first step we will construct a definable map h : [0, c] → R, which is Ck

on (0, c) with the properties

(1) h′(x) > 0, for all x ∈ (0, c) and limx→c h
′(x) = ∞,

(2) h′′(x) > 0, for all x ∈ (0, c),
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(3) h′′ is strictly increasing on (0, c).

The function f is a strictly increasing continuous definable function, so by replacing
f with x 7→ f(x) − f(0), we may assume that f : [0, c] → [0, d] is bijective, where
d = f(c). Let h̃ : [0, d] → [0, c] be its compositional inverse, which is Ck on (0, d) by
the Inverse Function Theorem. Using the chain rule of differentiation we see that
for every x ∈ (0, c)

h̃′(f(x)) = 1
f ′(x) > 0,

h̃′′(f(x)) = − f ′′(x)
f ′(x)3 < 0,

h̃′′′(f(x)) = 3f
′′(x)2

f ′(x)5 − f ′′′(x)
f ′(x)4 > 0.

Moreover limx→0 h̃
′(x) = ∞. Therefore the chain rule of differentiation implies that

h : [0, d] → R, x 7→ −h̃(d−x) has the desired properties. This finishes the first step.
In the second step we will construct a map g with the desired properties using

h. Note that h′ is definable in the definably complete structure R∗. This implies
that there is δ ∈ (0, d2) with h

′(d2 + δ)− h′(d2) = 1. Let b′ = d
2 − δ and define

g̃ : [0, b′] → R, x 7→ h(x+ δ + d
2)− h(x+ d

2)− h(δ + d
2) + h(d2)).

By construction we have limx→0 g̃
′(x) = 1 and limx→b′ g̃

′(x) = ∞. Moreover for
every x ∈ (0, b′) we have g̃′′(x) > 0, as h′′ is strictly increasing. This means that g̃′
is a strictly increasing bijection (0, b′) → (1,∞). Let b = g̃(b′). Note that g̃ is an
increasing bijection [0, b′] → [0, b] which is Ck on (0, b′). Let g̃−1 : [0, b] → [0, b′] be
its compositional inverse, which is Ck on (0, b). Finally it is easy to check that

g : (0, b) → R, x 7→ −g̃−1(b− x)

has the desired properties.

Proof of Proposition 5.7. By Lemma 5.8 there is a definable Ck function h : (0, c) →
R, with h′ strictly increasing, h′(x) > 0 for all x ∈ (0, c) and limx→c h

′(x) = ∞. We
will first show that at least one of the following three statements is true.

(a) h′′ is strictly increasing.

(b) h′′ is strictly decreasing somewhere, i.e. h′′′ < 0 on some subinterval J ⊆ (0, c).

(c) h′′ is constant on some subinterval J ⊆ (0, c).

Consider the continuous map h′′′ : (0, c) → R, which is definable in R∗. If h′′′(x) < 0
for some x ∈ (0, c), then there is an open interval J ⊆ (0, c) with h′′′(x) < 0 for all
x ∈ J . So in this case (b) holds true. So suppose that h′′′(x) ≥ 0 for all x ∈ (0, c).
If {x ∈ I : h′′′(x) = 0} has interior, (c) holds. If {x ∈ I : h′′′(x) = 0} does not have
interior, Fact 1.10 implies that h′′ is strictly increasing.
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First suppose that (a) holds. As h′ is strictly increasing we know that h′′(x) ≥ 0
for all x ∈ (0, c). As h′′ is strictly increasing we even have h′′(x) > 0 for all x ∈ (0, c).
The second step in the proof of Lemma 5.9 provides the desired map g.

Suppose (b) holds. By restricting to a smaller closed subinterval of (0, c) and
shifting h we may assume that h is Ck on [0, d] and that h′′(0) > 0 and h′′′(0) < 0.
Let f : [0, d] → R, x 7→ 1

2h(2x) − h(x). Using the chain rule and the fact that h is
Ck in 0, we calculate f ′(0) = 0, f ′′(0) > 0 and f ′′′(0) < 0. Decreasing d if necessary,
we may assume that for every x ∈ (0, d) it holds f ′′(x) > 0 and f ′′′(0) < 0. This in
turn implies that f ′(x) > 0 for all x ∈ (0, c). Now we can apply Lemma 5.9 to find
g.

Finally suppose (c) holds. Let J = (a, b) ⊆ (0, c) be some interval with h′′′(x) = 0
for all x ∈ I. Applying the Theorem on Constants three times shows that h is a
polynomial of degree at most 2 on J . As h′ is strictly increasing on (0, c), it has to
be a polynomial of degree exactly 2. This also implies that h′′(x) > 0 for all x ∈ J .
It is easy to check that

f : (0, b−a
2 ) → R, x 7→ 1

2h(2x+ a)− h(x+ a)

satisfies f ′(x) > 0, f ′′(x) > 0 and f ′′′ = 0 for all x ∈ (0, b−a
2 as well as limx→0 f

′(x) =
0. Again Lemma 5.9 provides the desired function g.

We can now prove Theorem 5.5 by the ideas presented in [10].

Proof of Theorem 5.5. We begin by proving that (a) and (b) are exclusive. So sup-
pose that R is field-type, that is there is an open bounded interval I and two defin-
able functions ⊕,⊗ : I2 → I such that (I,<,⊕,⊗) is an ordered field isomorphic to
(R,<,+, ∗). It is easy to see that ⊕ and ⊗ are continuous maps. Therefore

f : I3 → I, (x, y, z) 7→ (x⊗ z)⊕ y

is a definable continuous map. Once we show that f is not generically locally affine,
Theorem 5.1 shows that there is a continuous definable map J → R which is not
generically locally affine. Towards a contradiction assume that f is generically locally
affine. By restricting to an open definable subset U of I3 we may assume that f
is affine. So there are linear maps hx, hy, hz : R → R and b ∈ R such that for all
(x, y, z) ∈ U we have

f(x, y, z) = hx(x) + hy(y) + hz(z) + b.

As f locally varies in x, y and z, hx, hy and hz are all non constant. This implies
that we find (x, y), (x′, y′) ∈ R2 with x ̸= x′ and hx(x)+hy(y) = hx(x′)+hy(y′) such
that U(x,y) and U(x′,y′) are non empty respectively. So for every z ∈ U(x,y) ∩ U(x′,y′)
we have (x⊗y)⊕z = (x′⊗y′)⊕z. Using that (I,⊕,⊗) is a field, we see that there can
at most be one z ∈ I with this property, contradicting the fact that U(x,y) ∩ U(x′,y′)
is open and non empty. This shows that f is not locally affine, so (a) and (b) are
indeed exclusive.
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We finish the proof by demonstrating that whenever R defines a continuous function
I → R which is not locally affine, it has to be field-type. Let k ≥ 3. By Proposition
5.9 there is b > 0 and a continuous Ck function g : (0, b) → R with g′ : (0, b) → (0, 1)
strictly increasing and bijective. The Mean Value Theorem implies that g is bounded
and by the Intermediate Value Theorem the image of g is an interval. Moreover the
interval is necessarily open. Set f : [0, b2) → R, x 7→ 1

2g(
b
2 + 2x) − f( b2 + x) and let

F = (−2b, 2b). One easily checks that f is C1 as well as

(1) f ′+(0) = 0,

(2) f ′(x) > 0 for all x ∈ (0, b2).

We will now construct a definable family of functions indexed by F . For t ∈ (0, b)
let It = (−t, b− t) ⊆ R and gt : It → R, x 7→ g(t+ x)− g(t). Note that gt is strictly
increasing and Ck and that its image is a bounded open interval, say Jt. If t ∈ (b, 2b)
we let gt : J2b−t → R be the compositional inverse of g2b−t. If t ∈ (−b, 0), let
gt : I−t → R, x 7→ −g−t(x), with image −J−t. If t ∈ (−2b,−b), let gt : − J2b+t → R
be the compositional inverse of g−(2b+t). Finally let g0 : R → R, x 7→ 0, gb : R →
R, x 7→ x and g−b : R→ R, x 7→ −x. We have constructed a definable family of Ck

functions (gt : It → R)t∈F with the following properties:

(1) For every x ∈ R there is a unique t ∈ F with g′t(0) = x,

(2) if s, t ∈ F , then s < t if and only if g′s(0) < f ′t(0),

(3) gt(0) = 0 for all t ∈ F ,

(4) It is an open neighbourhood of 0 for every t ∈ F .

Now we define ⊕ and ⊗ on F . For s, t ∈ F we set s⊕ t to be the unique element
of F with

g′s⊕t(0) = (gs + gt)′(0)

and we set s⊗ t to be the unique element of F with

g′s⊗t(0) = (gs ◦ gt)′(0).

(Note that gs ◦ gt is defined on some open interval around 0.) Using Lemma 5.6
together with f it follows, that ⊕ and ⊗ are definable functions F 2 → F . The
construction guarantees that for all s, t ∈ F

g′s⊕t(0) = g′s(0) + g′t(0) and g′s⊗t = g′s(0)g′t(0).

So the mapping t 7→ g′t(0) is an isomorphism τ : (F,<,⊕,⊗) → (R,<,+, ∗). Since
g′ : (0, b) → (0, 1) is Ck−1 and bijective, the Inverse Function Theorem implies that
it is a Ck−1 diffeomorphism, so τ viewed as a map F \ {−b, 0, b} → R \ {−1, 0, 1} is
a Ck diffeomorphism as well.



Chapter 6

Generic differentiability in
several variables

In this last chapter we want to use Theorem B to prove, that every DΣ function
U → Rn, with U ⊆ Rm open is generically Ck, in doing so obtaining a strengthened
multivariable version of Theorem 4.1.

Theorem C. Let R be type A. Every DΣ function f : U → Rn, where U ⊆ Rm is
open, is generically Ck.

To establish Theorem C we will essentially follow the proof of [10, Theorem
B], which roughly goes as follows. By Theorem B of this thesis, we only need to
consider type A structures, which are field-type, as generically locally affine functions
are generically locally C∞. Lemma 6.1 allows us to reduce the problem to type A
expansions of (R,<,+, ∗). But as we will see in Lemma 6.2, those expansions have
to be restrained, so the desired result follows from Fact 4.2.

Lemma 6.1 ([10, Lemma 6.2]). Let k ≥ 2 and suppose that R is field-type. Then
there is an open interval I, definable functions ⊕,⊗ : I2 → I an isomorphism
τ : (I,<,⊕,⊗) → (R,<,+, ∗) and an open interval J ⊆ I such that the restriction
of τ to J is a Ck-diffeomorphism J → τ(J), with τ(J) ⊆ R open.

Proof. If R is field-type, for a given k ≥ 2 the proof of Theorem 5.5 constructs
I = (−2b, 2b) for some b > 0 and definable ⊕,⊗ : I2 → I such that the isomorphism
τ : (I,<,⊕,⊗) → (R,<,+, ∗) restricts to a Ck−1-diffeomorphism (0, b) → (0, 1).

Lemma 6.2 ([10, Lemma 6.3]). If R = (R,<,+, ∗, . . . ) is type A, every DΣ function
U → Rm, with U ⊆ Rn open, is generically Ck.

Proof. Note that R is restrained. Namely suppose R were unrestrained. Then there
is a definable surjection g : N 7→ Q by Fact 2.4. For t > 0 define

Xt = {g(n) : n ∈ N≤t}.

Definable induction shows that for every n ∈ N , Xn is nowhere dense, in particular
(Xt)t>0 is an increasing family of nowhere dense sets, whose union is Q. By Lemma

40
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2.9, Q is dense in R, so this contradicts the SBCT, which holds in all type A
expansions. Thus R cannot be unrestrained.

Write f = (f1, . . . , fn), with fi : U → R for i = 1, . . . , n. Each fi is a DΣ
function, so generically continuous. Fact 4.2 implies that for every k, each fi is
generically Ck. This implies that for every k, f is generically Ck.

Proof of Theorem C. Recall that we only need to consider type A structures, which
are field-type.

Let k ≥ 2 and I, J,⊕,⊗ and τ : I → R as described in Lemma 6.1. Let U ⊆ Rm

be open and f : U → Rn be a DΣ function. We will show, that f is generically Ck.
By Theorem 2.15, we may assume that f is continuous. Let I be the expansion of
(I,<,⊕,⊗) by all R-definable sets A ⊆ Ii, for i ∈ N. Note that I is a definably
complete expansion of an ordered field. Moreover I is type A. Fix x0 ∈ Jm. For
x ∈ U let

fx : (x0 − x+ U) ∩ Jm → Rn, y 7→ f(y + x− x0).

For every x ∈ U , Vx = f−1
x (Jn) ⊆ Jm is an open neighbourhood of x0 and fx(Vx) ⊆

Jn. Thus fx : Vx → Jn is I-definable for every x ∈ U , so Lemma 6.2 implies, that
fx is I-generically Ck with respect to the field structure of I. As τ : J → τ(J) is a
Ck-diffeomorphism, fx is Ck in y ∈ Vx with respect to the field structure of I if and
only if fx is Ck in y with respect to the field structure of R∗. Namely define

τi : J i → τ(J)i, (x1, . . . xi) 7→ (τ(x1), . . . , τ(xi))

for i ∈ N. fx is Ck with respect to the field structure of I if and only if τn ◦ fx ◦
τ−1
m is Ck with respect to the field structure of R∗. All τi : J i → τ(J)i are Ck-
diffeomorphisms respectively, so this is equivalent to fx being Ck with respect to
the field structure of R∗.

Since ⊕ and ⊗ are R-definable, fx is R-generically Ck with respect to the field
structure of R∗. Moreover for every y ∈ Vx, fx is Ck in y if and only if f is Ck in
y − x0 + x. This demonstrates that f is generically Ck on U .
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