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1 Introduction
Throughout the last decades o-minimality, as introduced in [36], has been a thriving
field of study with many groundbreaking results exploiting geometric tameness prop-
erties.1

This raises the question what other classes of geometrically tame structures2 exist.
How do these classes correlate and are all other structures wild? Local o-minimality,
the topic of this thesis, is one such class of geometrically tame structures.

In addition to the geometric tameness of o-minimal structures, there is model theoretic
tameness of the theories of o-minimal structures, so called o-minimal theories. For other
classes of geometrically tame structures, like local o-minimality, this is not necessarily
the case. So, what kind of geometrically tame properties are we able to show for
these classes even without the tools provided by the model theoretic tameness of o-
minimality?

And can we also classify the universe of structures into categories of nice geometric
properties?

These questions have led to many interesting insights regarding reasonable classifica-
tions of structures, and in restricted cases there are substantial results:

First and foremost, in the very restricted case of expansions of the real ordered field
most notably Miller presented several tameness notions (like o-minimality, d-minimality
and noiselessness) in [33] all imposing restrictions on the definable subsets of the uni-
verse to either be “large” or “small” in some sense for tame structures. Depending on
the kind of “largeness” and “smallness” different tame properties are implied. More-
over, Miller conjectured that all expansions of the real ordered field can be divided
into tame classes of structures, the most general being structures with a noiseless open
core, and a wild class of structures which define Z. While this conjecture is not yet
proven there has been progress in this direction. It is shown for all DΣ sets that these
are noiseless in expansions of the real ordered field not defining Z. A comprehensive
elaboration of the historical developments and current progress on this topic can be
found in [23].

Secondly, for the more general setting of expansions of the real ordered additive group,
[24] gives a tetrachotomy into wild structures and different kinds of tame structures.
The results are also included in [23].

In the most general case of arbitrary dense linear orders without endpoints3, the ques-
1In particular, there are relevant applications to algebraic geometry e. g. the Pila Wilkie Theorem

[34] counting rational points and the proof of the Manin-Mumford Conjecture about finiteness of
torsion points on algebraic subvarieties of abelian varieties [35]. These results are also nicely revised
in [39].

2What is still considered as geometrically tame is inconsistent throughout the literature and quite
subjective to the author. Here, we also consider structures as tame that might have some wild
phenomena.

3We only consider dense linear orders without endpoints, since these naturally allow us to consider
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tion, how to classify structures which are geometrically tame, seems to be substantially
harder to answer. O-minimality is the main example where it is well established that
many tame geometric properties hold (confer e. g. [7]). Millers results for the less re-
strictive notions than o-minimality, introduced for his consideration of expansions of
the real ordered field, do not generalize in any way: Neither do generic dense linear
orders necessarily behave wild if they define Z nor is it clear to what extent generaliza-
tions of the tameness notions from Miller imply any geometric tameness in the general
case. Thus, other notions, more general than o-minimality, are required to further
investigate tameness in this setting.

Although there is by far not as good of an understanding for tameness in the general
case as for expansions of the real ordered field or real ordered additive group, there
is also some progress beyond o-minimality in the general case. For this, we consider
a slight generalization of o-minimality, which coincides with o-minimality in the case
of expansions of the real ordered field: local o-minimality. Local o-minimality and
variations of it have been the theme of many recent papers which prove several different
versions of geometric tameness for various settings.

The goal of this thesis is to introduce the reader to this current field of study. In general,
the different notions of local o-minimality and familiar notions require unary definable
sets to be the union of “large” and “small” sets, similar to Millers tameness notions.
Local o-minimality itself was first introduced in [40] as a quite natural generalization
of o-minimality. While o-minimality requires every definable set to be a finite union of
intervals and points, local o-minimality requires every definable set to be a finite union
of intervals and points locally (i. e. in an interval around every point). Other notions
require the intervals to be chosen in some uniform way, require the same condition to
hold also for definable gaps or relax the criterion to being a finite union of convex sets.

In the first part of this thesis, we introduce the common notions of local o-minimality
and familiar notions, relate them to each other and summarize the results in a visual-
ization.

Afterwards, we present which of these notions are fulfilled for several examples from
the literature.

In the next part, we summarize the most foundational and general tameness results
that have been shown for these notions, in order to evaluate to which degree these can
be considered geometrically tame. For all fundamental results, we also present a proof
only assuming some generally known technical lemmata from [7].

While the case of locally o-minimal ordered groups and fields is an interesting topic
for itself where many interesting results have been shown, it is not the main focus of
our studies. Therefore, we only discuss this topic as a short outlook. We summarize
how our tameness results can be strengthened in these settings and state some other

geometric properties like continuity of functions and dimensions of sets. Theoretically, it is also
possible to consider geometric tameness for other structures, but this is beyond the scope of this
thesis.
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interesting results for these structures, both without proofs.

Note that [17] is a prior summary of tameness results of locally o-minimal structures.
However, many of the results presented there are outdated now and stronger results
have been shown since it was published in 2021. In this thesis, we present an updated
and more conclusive summary of this field of study, also including proofs of central
results.

Throughout this thesis, we add citations to all definitions, theorems and lemmata where
either the statements themselves, trivially equivalent statements or stronger statements
implying the presented statements can be found in the literature. The proofs are also
mainly taken from these cited sources (or referenced statements in there) with minor
modifications and adaptions for our purposes. Notable exceptions are Propositions 6.27
and 6.36 and Theorem 6.31.

In conclusion, this thesis should give the reader a conclusive overview over the currently
known tameness results for arbitrary expansions of locally o-minimal dense linear orders
without endpoints and refer the interested reader to suitable literature where more
detailed presentations of the results and topics can be found.
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2 Preliminaries
In this section, we introduce our notations which are coherent with most of the litera-
ture on model theory and tame geometry and recall fundamental definitions from tame
geometry and basic point set topology. A basic familiarity with first order logic and
model theory as in the first chapter of [29] will be assumed.4

Throughout this thesis, let M = (M,<, . . . ) be a model theoretic structure expanding a
dense linear order without endpoints (M,<) (i. e. a structure modeling the theory DLO
e. g. stated in [29, Example 1.2.2]).5 All other structures introduced in this thesis are
also always assumed to be dense linear orders and by dense linear orders, we always
mean dense linear orders without endpoints, unless explicitly stated otherwise. By
definable, we always mean definable with parameters, unless explicitly stated otherwise.

Let LM be the language of M. Note that the order on M naturally induces a topology.
We say a set is open if it is an open set in this topology. This means X ⊆ M is open
if for every x ∈ X there exist y, z ∈ M with y < x < z such that for every x′ ∈ M
with y < x′ < z, x′ ∈ X. A set X ⊆ Mn is called open if for every x ∈ X there
is some open box B ⊆ Mn with x ∈ B ⊆ X. A set Y ⊆ Mn is called closed
if Mn \ Y is open. A set Z ⊆ Mn is called discrete if for every z ∈ Z there is
some open set X ⊆ Mn with X ∩ Z = {z}. A definable function f : A → B with
A ⊆ Mm, B ⊆ Mn is called continuous if for every definable open set V ⊆ B the
definable set U = {a ∈ A : f(a) ∈ V }6 is also open.

For this thesis, regarding intervals, we follow the notation of [7, p. 17] and an interval is
always meant to be an open interval, i. e. a set of the form ]a, b[ := {x ∈M : a < x < b}
for some −∞ ≤ a < b ≤ +∞ where ±∞ is are a positive and negative endpoint added
to M . Similarly, an (open) box is a set of the form B := {(x1, . . . , xn) ∈ Mn :∧n
i=1(ai < xi < bi)} for some a1, . . . , an, b1, . . . , bn with −∞ ≤ ai < bi ≤ +∞.

Moreover, we use the following common notations with the usual meaning:

]a, b] = {x ∈M : a < x ≤ b}, [a, b[ = {x ∈M : a ≤ x < b}, [a, b] = {x ∈M : a ≤ x ≤ b}.

A set X ⊆M is called convex if for any a, b ∈ X and c ∈M with a < c < b, c ∈ X.

4For a reader unfamiliar with model theory, refer to [7, (2.1) and (3.2)] for an alternative (and for
our purposes – we only consider definable sets – equivalent) definition of a structure, that might be
easier to understand. If the reader chooses to work with that definition of structures they can also
find a coherent definition of o-minimality there. In a similar way (definable sets correspond to sets in
the structure) one can easily translate the following definitions regarding local o-minimality to that
setting. For this, one may also confer [17].

5Note that a priori the definition of (local) o-minimality would not require M to be a dense linear
order without endpoints, but for this thesis we only consider dense linear orders. This is still a quite
broad setting and the broadest setting in which local o-minimality has been discussed so far.

6Throughout this thesis, we use commonly known abbreviations for formulas and the definitions
of definable sets, like {a ∈ A : ϕ(a)} as an abbreviation for {a : a ∈ A ∧ ϕ(a)} and (∀ a ∈ A ϕ(a)) as
an abbreviation for (∀ a (a ∈ A → ϕ(a))).
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For some set A ⊆ Mn and some a ∈ Mm with m < n, the notation Aa refers to the
fiber of a in A, defined by Aa := {b ∈ Mn−m : (a, b) ∈ A}. Recall that the fiber of a
definable subset is also definable.

Throughout this thesis, π denotes projections:

πi :M
n →M,

(x1, . . . , xn) 7→ xi is the projection onto the i-th coordinate,
π≤j :M

n →M,

(x1, . . . , xn) 7→ (x1, . . . xj) is the projection on the first j coordinates,
π≥j :M

n →M,

(x1, . . . , xn) 7→ (xj, . . . , xn) is the projection on the last n− j + 1 coordinates.

Now, we formally recall the most important fundamental definitions.

Definition 2.1 (O-Minimality, [7, Definition 5.7]). We call the structure M o-minimal
if every definable subset X ⊆M is a finite union of points and intervals.

Another important fundamental property, that is often required for structures in order
to potentially have tame properties is definable completeness, first introduced in [32,
Corollary 1.5] as the intermediate value property:

Definition 2.2 (Definable Completeness (DC)). We call the structure M definably
complete if every definable, bounded subset of M has an infimum and a supremum in
M .

Every o-minimal structure is already definably complete.7 For local o-minimality this
is not necessarily the case as many examples in Section 5 illustrate.

Moreover, it is easy to check the following equivalence, which gives an alternative
definition of o-minimality, that is sometimes used in the literature.

Remark 2.3. M is o-minimal if and only if M is definably complete and every definable
set either has interior or is finite.

By [32, Corollary 1.5], in the case of expansions of dense linear orders without endpoints
(which is in particular any structure we consider in this thesis)M being DC is equivalent
to M being definably connected:

Definition 2.4 (Definably Connected, [7, Definition 3.5]). A set X ⊆ Mn is called
definably connected if X is definable and X is not the union of two disjoint nonempty
definable open subsets of X.

An important topological property is compactness:

Definition 2.5 (Compactness, [1, Definition 7.2]). A set X ⊆ M is compact if for
every open covering

⋃
i∈I Ui ⊇ X of X with Ui ⊆M , there exists a finite subcovering,

i. e. a finite J ⊆ I such that
⋃
i∈J Ui ⊇ X.

7For a proof, confer Proposition 3.6.
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Other commonly known topological definitions used in this thesis are:

Definition 2.6 (Homeomorphism, [1, Definition 2.7]). A function f : A→ B is called
homeomorphism if it is continuous, bijective (i. e. f−1 : B → A exists) and f−1 is also
continuous.

Definition 2.7 (Closure, [1, Proposition 3.4]). Let X ⊆ Mn. Then, X denotes the
closure of X which is the smallest closed set C ⊆Mn such that X ⊆ C.

Definition 2.8 (Interior, [1, Proposition 3.3]). Let X ⊆ Mn. Then,
◦
X denotes the

interior of X which is the largest open set U ⊆Mn such that U ⊆ X.

Definition 2.9 (Boundary, [23]). Let X ⊆ Mn. Then, bd(X) denotes the boundary
of X defined as bd(X) = X \

◦
X.

Definition 2.10 (Frontier, [23]). Let X ⊆ Mn. Then, fr(X) denotes the frontier of
X defined as fr(X) = X \X.

Remark 2.11. It is well known, that the closure, interior, boundary and frontier of a
definable set are definable.
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3 Notions of Local O-Minimality
In this section, we introduce the various different notions of local o-minimality which are
used in publications and discussed throughout this thesis. Moreover, we evaluate how
these notions relate to each other. These relations are also visualized in Figure 1. For
our considerations, we view the notions being some condition of a (possibly uniform)
way to choose bounded intervals on which a definable set is a finite union of intervals
and points as the notions of local o-minimality. In the general case of arbitrary dense
linear orders, these restrictions on definable sets have been one of the least restrictive
conditions for which significant results can be shown. Therefore, these are the notions
of main interest to us in this thesis.

Historically, the concept of local o-minimality was first introduced by Toffalori and
Vozoris in [40] with the notion of local o-minimality and strong local o-minimality:

Definition 3.1 (Local O-Minimality, [40, Definition 2.1]). We call the structure M
locally o-minimal if for every m ∈M and every definable X ⊆M , there is an interval
I around m such that X ∩ I is a finite union of intervals and points.

Definition 3.2 (Strong Local O-Minimality, [40, Definition 3.1]). We call the structure
M strongly locally o-minimal if for every m ∈M , there is an interval I around m such
that for every definable X ⊆M , X ∩ I is a finite union of intervals and points.

Moreover, in [26] uniform local o-minimality of the first kind is first introduced as
uniform local o-minimality.

Definition 3.3 (Uniform Local O-Minimality of the First Kind, [26, Definition 4]).
M is uniformly locally o-minimal of the first kind if for every definable X ⊆Mn+1 and
a ∈M , there is an open interval I 3 a such that for every b ∈Mn, the set I ∩Xb is a
finite union of intervals and points.

Fujita then added several different other notions of local o-minimality throughout var-
ious papers. Here, we present all of the notions for which substantial results have
been shown. The notions matching our restricted understanding of notions of local
o-minimality are the following two:

Definition 3.4 (Uniform Local O-Minimality of the Second Kind, [16, Definition 2.1]).
M is uniformly locally o-minimal of the second kind if for every definable X ⊆Mn+1,
a ∈ M and b ∈ Mn, there is an open interval I 3 a and an open box B 3 b such that
for every b′ ∈ B, the set I ∩Xb′ is a finite union of intervals and points.

Definition 3.5 (Almost O-Minimal, [10, Definition 1.2]). M is almost o-minimal if
every bounded definable subset X ⊆M is a finite union of points and open intervals.

In Definition 2.2 we defined a structure to have DC, if every bounded definable set has
an infimum and a supremum. Notice that this property is guaranteed in every almost
o-minimal structure:

Proposition 3.6 ([10, Lemma 4.6]). Every almost o-minimal structure is definably
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complete.

Proof. Let X ⊆ M be a bounded, definable subset. By almost o-minimality, X is a
finite union of intervals and points. Thus, bd(X) is finite and sup(X) = max(bd(X)) ∈
M and inf(X) = min(bd(X)) ∈M .

For all weaker notions of local o-minimality, this is not necessarily the case, as presented
in Section 5. This crucially complicates efforts to prove tameness results for locally
o-minimal structures which are not almost o-minimal since many of the proofs for
o-minimal structures use definable completeness. It turns out to be meaningful to
consider these properties in the case where DC holds and in the case where DC does
not hold separately. Moreover, we later introduce univariate ∗-continuity as a slight
generalization of DC, preserving most of the tameness results.8

For locally o-minimal dense linear orders, the following easy, but important, observation
holds:

Lemma 3.7. Let M be locally o-minimal. Then, the finite union of definable sets
Xi ⊆M without interior has no interior.

Proof. Towards a contradiction, suppose X =
⋃n
i=1Xi has interior and all Xi do not

have interior. Let x ∈ X be a point in the interior. Since all the Xi do not have
interior, by local o-minimality, these are locally finite. Thus, we can find a (non-empty,
open) interval I around x in the interior of X, such that for all Xi: (I ∩Xi) \ {x} = ∅.
This contradicts

⋃n
i=1Xi ∩ I = X ∩ I = I.

We use this basic fact numerous times throughout this thesis, without explicitly men-
tioning it every time.

Remark 3.8. For subsets of Mn, the statement, that X =
⋃n
i=1Xi does not have interior

if all Xi do not have interior, is a lot harder to show and not generally true. In this
thesis, we only present a proof for locally o-minimal structures admitting local cell
decomposition and ∗-locally weakly o-minimal structures enjoying the univariate ∗-
continuity property.9 In [15, Theorem 3.9], this statement is additionally proven for
all uniformly locally weakly o-minimal structures of the second kind. For other locally
o-minimal structures it is not known if the statement holds.

Proposition 3.9. O-minimality implies almost o-minimality, almost o-minimality
implies strong local o-minimality, strong local o-minimality implies uniform local o-
minimality of the first kind, uniform local o-minimality of the first kind implies uniform
local o-minimality of the second kind and uniform local o-minimality of the second kind
implies local o-minimality.

8see Definition 4.20 and Section 6
9see Lemma 6.29 and Corollary 6.23
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Proof. All implications follow from the definitions. Here, we mention the least obvious
ones:

almost local o-minimality ⇒ strong local minimality For some x and
X, pick any bounded interval I around x. Then, X ∩ I is bounded and, thus, a finite
union of intervals and points.

strong local o-minimality ⇒ uniform local minimality of the first kind
Note that the definition of strong local o-minimality can be reformulated as: For a ∈
M, there is an open interval I 3 a such that for every definable X ⊆Mn+1 and every
b ∈Mn, the set I ∩Xb is a finite union of intervals and points.

uniform local o-minimality of the second kind ⇒ local minimality Note
that the definition of local o-minimality can be reformulated as: For every definable
X ⊆Mn+1, every a ∈M and b ∈Mn, there is an open interval I 3 a such that I ∩Xb

is a finite union of intervals and points.

Remark 3.10. None of the implications from the previous remark are equivalences as
shown later in Section 5.

If we do not consider arbitrary expansions of dense linear orders without endpoints but
special restricted cases instead, then equivalences for some of these notions can occur.
In the following, we present some examples of such cases.

Proposition 3.11 ([16, Proposition 2.1]). If an ordered field M = (M,<,+, ·, . . . ) is
uniformly locally o-minimal of the second kind, then M is o-minimal.

Proof. Let M = (M,<,+, ·, . . . ) be a uniformly locally o-minimal ordered field of the
second kind. Let X be a definable subset of M . We show that X is a finite union of
intervals and points. We first consider the case in which X is bounded. Consider the
set Y = {(x, r) ∈ M2 : r > 0, x

r
∈ X}. There is some interval I 3 0 and some r1 > 0

such that for all r1 > r > 0 and all fibers Yr = {x ∈ M : x
r
∈ X}, the set I ∩ Yr

is a finite union of intervals and points. Since X is bounded, there is some r′ with
r1 > r′ > 0 such that I ∩ Yr′ = Yr′ . This implies that Yr′ is a finite union of intervals
and points. Thus, the set X is also a finite union of intervals and points.

Let X be unbounded, let X1 := X ∩ [−1, 1] and X2 = X \ X1. By the previous
reasoning, the set X1 is a finite union of intervals and points because X1 is bounded.
Consider the set Z = {x ∈ M : 1

x
∈ X2}. It is bounded and, hence, a finite union of

intervals and points. Therefore, X2 is also a finite union of intervals and points.

While in the following reference the statement only considered strong o-minimal struc-
tures, the proof presented in [40, Corollary 3.4] already implies equivalence to almost
o-minimality:

9



LOM

SL
U1

U2

OM

A

DC

A almost o-minimality SL strong local o-minimality
DC definable completeness U1 uniform local o-minimality of the 1. kind
LOM local o-minimality U2 uniform local o-minimality of the 2. kind
OM o-minimality

Figure 1: Schematic visualization of the relations between the notions discussed in
Section 3. All the labels refer to the smallest bounded convex set they are contained
in. A few of the labels and associated polygons are additionally colored for clarity. Note
that the sizes of the areas have no meaning but only differ due to technical reasons.
All of the inclusions have been shown in this thesis. However, not for every cut an
example is presented that the cut is indeed not empty. It might be that some of the
cuts are empty, but we suspect them all to indeed be non-empty.

Proposition 3.12 ([40, Corollary 3.4]). If M = (R, <) expands the real line and is
locally o-minimal, it is almost o-minimal.

Proof. Take any a ∈ R and [b, c] ∈ R with a ∈ [b, c]. Note that any [b, c] is compact
for b, c ∈ R. Let X ⊆M be definable. By local o-minimality, for every x ∈ [b, c], there
is an interval Ix around x such that X ∩ Ix is a finite union of intervals and points.
By compactness, there is a finite subcover

⋂
i∈J Ii ⊇ [b, c] with J ⊂ [b, c] being finite.

10



Then, X ∩
⋂
i∈J Ii =

⋂
i∈J X ∩ Ii is a finite union of intervals and points. It is easy to

check, that the same holds for the subset X ∩ [b, c].

Remark 3.13. The necessary condition to prove the equivalence of strong local o-
minimality and local o-minimality is actually just that for any a ∈ M , there is a
b, c ∈M such that b < a < c and [b, c] is compact.

Now, we combine the previous two statements:

Corollary 3.14 ([6, 2.13 (3)]). If M = (R, <,+, ·, . . . ) expands the real field and is
locally o-minimal, then it is o-minimal.

Proof. Let M = (R, <,+, ·, . . . ) expand the real field and be locally o-minimal. By
Proposition 3.12, M is almost o-minimal and, thus, uniformly locally o-minimal of the
second kind. By Proposition 3.11, o-minimality follows.
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4 Familiar Tameness Notions
There are some other tameness notions closely related to o-minimality and local o-
minimality. Here, we introduce some of these notions and how they relate to our
notions of local o-minimality. First, we recall well known notions which are of general
interest due to their properties. Secondly, some of our tameness results are shown in
the most general setting they are known for.10 This is not always one of our local
o-minimality notions but instead one of the notions introduced here.

Most of the notions introduced here imply local o-minimality. Only the univariate
∗-continuity property, d-minimality and local l-viscerality do not. The last two of
these notions are indeed generalizations of local o-minimality. D-minimality generalizes
the notion of local o-minimality slightly in the DC setting, while local l-viscerality
generalizes local o-minimality slightly including more structures which are not DC.
The univariate ∗-continuity property is a slight generalization of the DC property,
essentially specifying the actual necessary condition for the tameness results implied by
DC. Thus, it is a rather unrelated property to local o-minimality which plays a crucial
role as an additional property for structures to have in order to ensure tameness.

Note that some of these notions are quite closely related to local o-minimality and
could even be considered as a definition of some kind of local o-minimality.

At the end of the subsections, Figures 2 to 5 visualize the relations between the different
tameness notions, discussed in the corresponding subsection.

4.1 TC and DCTC
In this subsection, we discuss TC which is a slightly stronger version of local o-
minimality also requiring a similar condition for intervals with ±∞ as a boundary.
TC was extensively studied in [37] by Schoutens, who actually considered it to be the
canonical definition of local o-minimality: “(TC) is stronger than local o-minimality,
since we also have this condition at ±∞, which seems to [Schoutens] an omission in
the original definition” [37, p. 8].11

Definition 4.1 (Type Complete (TC)). M is called type complete (TC) if for any
definable Y ⊆ M , there exist y1, y2 ∈ M such that ]−∞, y1[ ⊆ Y or ]−∞, y1[ ∩ Y = ∅
and ]y2,∞[ ⊆ Y or ]y2,∞[ ∩ Y = ∅. Additionally, for every x ∈ M , there exist
z1, z2 with z1 < x < z2 such that ]x, z2[ ⊆ Y or ]x, z2[ ∩ Y = ∅ and ]z1, x[ ⊆ Y or
]z1, x[ ∩ Y = ∅.

Schoutens showed many properties of structures which are type complete and definably
complete, and thus, also dedicated an extra name to these structures, called DCTC
structures:

10There are exceptions where we do not present the most general setting, but a reasonable one.
This is always remarked in these cases.

11However, the results presented in this thesis should convince the reader, that it is also reasonable
to consider local o-minimality without the TC condition.
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Definition 4.2 (DCTC). A structure is called DCTC if it is both, DC and TC.

Note that for a particular definable set the properties DC and TC can be expressed as
a LM-sentence. Thus, the following structures are DCTC:

Definition 4.3 (O-Minimalistic, [37]). A structure is called o-minimalistic if it models
all sentences of To−min, the theory of o-minimal structures, which contains all sentences
that hold in all o-minimal structures.

Schoutens suggested that there probably are DCTC structures which are not o-minimalistic.
However, he did not provide an example of such a structure and, thus, this is still an
unsolved question. In the following, we only consider DCTC as a tameness criterion,
but the reader interested in this possibly tamer subclass of o-minimalistic structures
may refer to [37] for an intensive evaluation of these structures.

As the definitions of almost o-minimality and TC restrict complementary sets to be
o-minimal, we would naturally assume the following, indeed true, theorem:

Proposition 4.4 ([10, Proposition 4.8]). M is o-minimal if and only if M is almost
o-minimal and TC.

Proof. By definition, every o-minimal structure is almost o-minimal and TC. For the
other implication, let M be almost o-minimal and TC. Let X be some definable subset.
By TC, there are a, b ∈ M such that ]−∞, a[ ∩X and ]b,∞[ ∩X are finite unions of
intervals and points. By almost o-minimality, [a, b] ∩ X is a finite union of intervals
and points. Hence, X =

(
]−∞, a[ ∩X

)
∪
(
[a, b] ∩X

)
∪
(
]b,∞[ ∩X

)
is a finite union

of intervals and points.
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4.2 Weak Notions
In the setting of structures which are not DC, convex sets are not necessarily points
and intervals anymore. Therefore, it is only reasonable to wonder what happens if we
not only consider finite unions of intervals and points but finite unions of convex sets
instead. Replacing this in the definition of o-minimality results in the well known and
extensively studied class of weakly o-minimal structures which turns out to be a subset
of locally o-minimal structures and hence, of particular interest to us. Moreover, we
could also apply the same changes to the different notions of local o-minimality. This
results in a particularly interesting new definition in the case of uniform local weak
o-minimality of the second kind.

Weak o-minimality was first introduced in [3] and its properties were further studied
in several publications, e. g. [28].

Definition 4.5 (Weak O-Minimality). We call a structure M weakly o-minimal if
every definable subset X ⊆M is a finite union of convex definable subsets.

Recall, a set Y ⊆M is convex if for any a, b ∈ Y and c ∈M with a < c < b, c ∈ Y .

Proposition 4.6. M is weakly o-minimal and has DC if and only if M is o-minimal.

Proof. Note that convex sets with definable infimum and supremum are equivalent to
the union of the interval between the infimum and supremum (if existent) and possibly
the infimum or the supremum, i. e. one or two points.

Proposition 4.7 ([40, Proposition 2.2]). Every weakly o-minimal structure M is lo-
cally o-minimal.

Proof. Let M be weakly o-minimal, X ⊆M definable and x ∈M . Then, X is a finite
union of convex subsets. First, assume x ∈ X:

We consider two cases:

1. There is some ε < x in M such that ]ε, x] ∩X = {x}.

2. For every ε < x in M , there is some c ∈ M such that ε < c < x and c ∈ X.
Then, by weak o-minimality, there is some ε < x in M such that ]ε, x] ⊆ X.

Similarly, for each of these two cases we can again do a case distinction:

(a) There is some δ > x in X, such that [x, δ[ ∩X = {x}.

(b) There is some δ > x in M , such that [x, δ[ ⊆ X.

Define I := ]ε, δ[. By the case distinction, X ∩ I equals one of these four sets: {x},
]ε, x], [x, δ[, I, each of which are obviously a finite union of intervals and points. For
x 6∈ X, a similar construction for M \X results in X ∩ I equaling one of the four sets
∅, ]ε, x[, ]x, δ[, I \ {x}.

Proposition 4.8. Every weakly o-minimal structure is TC.

14
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SL
U1

U2
TC

OM

DTA

DC

A almost o-minimality SL strong local o-minimality
DC definable completeness TC type completeness
DT DCTC U1 uniform local o-minimality of the 1. kind
LOM local o-minimality U2 uniform local o-minimality of the 2. kind
OM o-minimality

Figure 2: Expanded version of Figure 1, also including the notions discussed in sub-
section 4.1. Again, all the labels refer to the smallest bounded convex set they are
contained in. A few of the labels and associated polygons are additionally colored for
clarity. All of the inclusions have been shown in this thesis. However, not for every
cut an example is presented that the cut is indeed not empty. It might be that some
of the cuts are empty, but we suspect them all to indeed be non-empty.
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Proof. Let M be a weakly o-minimal structure and Y ⊆ M be definable. Since M is
locally o-minimal, it remains to show, that there exist y1, y2 ∈M such that ]−∞, y1[ ⊆
Y or ]−∞, y1[ ∩ Y = ∅ and ]y2,∞[ ⊆ Y or ]y2,∞[ ∩ Y = ∅. By weak o-minimality, Y
is a finite union of convex sets {Yi}ni=1. Without loss of generality, we can assume the
convex sets Yi to be pairwise disjoint. By finiteness, we can choose the convex set Yimax

containing elements which are larger than all elements contained in Yi for all i 6= imax.
Similarly, we define Yimin

containing the smallest elements of Y . Pick z1 ∈ Yimin
and

z2 ∈ Yimax . Then, M \ (Yimin
) either contains y1 < z1 implying ]−∞, y1[ ∩ Y = ∅ or

there is no such element implying ]−∞, z1[ ⊆ Y . Moreover, M \ (Yimax) either contains
y2 > z2 implying ]−∞, y2[∩ Y = ∅ or there is no such element implying ]−∞, z2[ ⊆ Y .

Moreover, we can introduce weak versions of our previously discussed notions of local
o-minimality, requiring a finite union of convex sets instead of intervals and points.
One example would be local weak o-minimality defined as follows:

Definition 4.9 (Local Weak O-Minimality, [15, Definition 2.3]). We call a structure
M locally weakly o-minimal if for every m ∈ M and every definable X ⊆ M , there is
an interval I around m such that X ∩ I is a finite union of convex definable subsets.

However, this definition is rather uninteresting as the following proposition shows:

Proposition 4.10 ([15, Proposition 2.4]). Every locally weakly o-minimal structure is
locally o-minimal.

Proof. Let M be locally weakly o-minimal, X ⊆ M definable and x ∈ M . By local
weak o-minimality, there is an interval I 3 x such that I ∩X is a finite union of convex
sets. We can apply the proof of Proposition 4.7 to x and I ∩X. Thus, there is some
interval J 3 x such that J ∩ I ∩X is a finite union of intervals and points. Hence, J ∩ I
is an interval satisfying the condition for local o-minimality.

A more interesting example is uniform local weak o-minimality:

Definition 4.11 (Uniform Local Weak O-Minimality, [15, Definition 2.3]). M is called
uniformly locally weakly o-minimal of the second kind if for every definable set X ⊆
Mn+1, every a ∈M and every b ∈Mn, there exist an open interval I 3 a and an open
box B 3 b such that Xx ∩ I is a finite union of convex definable subsets for all x ∈ B.

If the statement holds for B = Mn, the structure is called a uniformly locally weakly
o-minimal structure of the first kind.

Remark 4.12. By the definitions, weak o-minimality implies uniform local weak o-
minimality of the first kind. Uniform local weak o-minimality of the first kind im-
plies uniform local weak o-minimality of the second kind and uniform local weak o-
minimality of the second kind implies local weak o-minimality, which is equivalent to
local o-minimality. Moreover, uniform local o-minimality of the second kind clearly
implies uniform local weak o-minimality of the second kind.
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DTA
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A almost o-minimality TC type completeness
DC definable completeness U1 uniform local o-minimality of the 1. kind
DT DCTC U2 uniform local o-minimality of the 2. kind
LOM local o-minimality UW uniform local weak o-minimality of the 2. kind
OM o-minimality W weak o-minimality
SL strong local o-minimality

Figure 3: Expanded version of Figure 1, also including the notions discussed in subsec-
tions 4.1 and 4.2. Again, all the labels refer to the smallest bounded convex set they
are contained in. A few of the labels and associated polygons are additionally colored
for clarity. All of the inclusions have been shown in this thesis. However, not for every
cut an example is presented that the cut is indeed not empty. It might be that some
of the cuts are empty, but we suspect them all to indeed be non-empty.
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4.3 ∗-Local Notions
As already hinted previously, the absence of DC imposes significant challenges in prov-
ing tameness results, since not all convex sets are intervals in this case. Thus, it is
a intuitive idea to consider the definable Dedekind completion of our structure as a
familiar structure which has DC, and imposing conditions also onto the Dedekind com-
pletion instead of just on our structure.12 This actually gives rise to a classification
for structures which inherit some tameness from their Dedekind completion. Here, we
only introduce notions for which significant tameness results have been proven, but
obviously one could introduce other familiar notions.13

Definition 4.13 (Definable Dedekind Completion, [15, Definition 2.9, Definition 2.10]).
Let M = (M,<, . . . ) be an expansion of a dense linear order without endpoints. If
there is a non-empty, open and closed, convex, definable set A ⊊M with inf(A) = −∞,
we call the pair (A,M \ A) a definable gap.

Set M =M ∪{definable gaps in M}. We can naturally extend the order < on M to an
order on M , which is denoted by the same symbol <. The linearly ordered set (M,<)
is called the definable Dedekind completion of (M,<). For any arbitrary open interval
I = (a1, b1) in M , where a1, b1 ∈M ∪ {±∞}, we set I = {x ∈M : a1 < x < b1}.

Moreover, f : X → M with X ⊆ Mn is called a definable function if there exists a
definable set Y ⊆Mn+1 such that π≤n(Y ) = X and sup(Yx) = f(x) for all x ∈ X.

Remark 4.14. Note, that we can easily check that this definition of definable gaps
actually coincides with [15, Definition 2.9].

If we have a definable gap (A,M \ A) as defined here, then clearly A ∪M \ A = M .
Moreover, A 6= M implies that M \ A is non-empty. For every a ∈ A, b ∈ M \ A, we
have a < b since inf(A) = −∞ and A is convex. Additionally, A is open and it has no
largest element. Because A is closed and convex, M \ A is open and has no smallest
element.

For the converse: If (A,B) is a definable gap according to [15, Definition 2.9], then
B = M \ A, since A ∪ B = M . Moreover, B non-empty implies A 6= M . The
sets A, M \ A are convex and inf(A) = −∞, sup(M \ A) = ∞ since a < b for all
a ∈ A, b ∈ B = M \ A. With this and A not having a largest element and M \ A not
having a smallest element, A and M \ A are open sets.

Fact 4.15. Let M be definably complete. Then, M =M .

Proof. We need to show that a definably complete structure has no definable gaps.
Suppose there was a definable gap (A,M \ A). By definable completeness, there is
some sup(A) ∈M ∪ {±∞}. The sets A, M \A are non-empty, inf(A) = −∞ and A is

12Note that the Dedekind completion, as defined here, is also a common definition in the literature
used for tameness results for weak o-minimal structures.

13Interested readers should consider [15].
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convex. Hence, sup(A) ∈ M and since A is open, we have sup(A) ∈ M \ A. It is easy
to check, that sup(A) = inf(M \ A), but inf(M \ A) ∈ M \ A contradicts that M \ A
is open.

Naturally, a first idea for a reasonable new tameness notion would be to impose the
local o-minimality condition for all points of M , as follows:

Definition 4.16 (∗-Local O-Minimality, [15, Definition 2.11]). M is ∗-locally o-minimal
if for every definable subset X ⊆ M and for every point a ∈ M , there exists an open
interval I such that a ∈ I and X ∩ I is a finite union of intervals and points.

However, this definition describes actually just the set of definably complete locally
o-minimal structures, as implied by Fact 4.15 and the next proposition:

Proposition 4.17 ([15, Proposition 2.13]). A ∗-locally o-minimal structure is definably
complete.

Proof. Let M be ∗-locally o-minimal and let X ⊆ M be definable and bounded. We
need to show that sup(X) ∈ M and inf(X) ∈ M . Suppose not. The set Xl := {m ∈
M : ∃ x ∈ X m ≤ x} is definable and (Xl,M \ Xl) is a definable gap. Therefore,
xl := (Xl,M \ Xl) ∈ M and there is some interval Il with xl ∈ Il such that Il ∩ X
is a finite union of intervals and points. In particular, sup(Il ∩ X) ∈ M since it is
equal to the maximal point or boundary point of an interval and X is bounded. By the
definition of Xl, there is some x ∈ X∩Il. We conclude that sup(X) = sup(Il∩X) ∈M
by construction. Similarly, Xr := {m ∈ M : ∃ x ∈ X m ≥ x} is definable and
(Xr,M \ Xr) is a definable gap. Again, we can find some interval Ir around the
definable gap such that X ∩ Ir is a finite union of intervals and points and non-empty.
This results in inf(X) = inf(X ∩ I) ∈M which is a contradiction.

However, there is also a different definition, which has several significant results:

Definition 4.18 (∗-Local Weak O-Minimality, [15, Definition 2.11]). M is ∗-locally
o-minimal if for every definable subset X ⊆M and for every point a ∈M , there exists
an open interval I such that a ∈ I and X ∩ I is a finite union of convex definable
subsets.

Remark 4.19. By definition, any weak o-minimal structure is also ∗-locally weakly o-
minimal. Moreover, any ∗-locally o-minimal structure (i. e. any definably complete,
locally o-minimal structure by Proposition 4.17) is ∗-locally weakly o-minimal.

Moreover, the ∗-notation allows to denote a slight generalisation of DC14 that already
suffices as a condition instead of DC for most of the tameness results that are known
for definably complete, locally o-minimal structures.

14It is a generalization in the case of locally o-minimal structures, as we prove in Proposition 4.21.
In the general setting of arbitrary structures, these notions are unrelated.
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Definition 4.20 (Univariate ∗-Continuity Property, [15, Definition 3.11]). Let M be
an expansion of a dense linear order without endpoints. We say that M has the
univariate ∗-continuity property if, for every definable function f : I → M from a
nonempty, open interval I, there exists a nonempty open subinterval J of I such that
the restriction of f to J is continuous.

Proposition 4.21 ([21, Lemma 2.1, Theorem 2.3]). Let M be a definably complete,
locally o-minimal structure. Then, M has the univariate ∗-continuity property.

Proof. Let I be a nonempty, open interval and let f : I → M be definable. Since M
is definably complete, we have M =M and thus, f : I →M . It remains to show, that
there is some J ⊆ I such that f is continuous on J .

Step 1. There is some interval I1 ⊆ I such that f is strictly monotone.

Consider the following formulas:

ϕco = ∃ x1 (x1 > x) ∧ (∀ t(x < t < x1) → (f(x) = f(t)))

ϕ+ = ∃ x1 (x1 > x) ∧ (∀ t(x < t < x1) → (f(x) < f(t)))

ϕ− = ∃ x1 (x1 > x) ∧ (∀ t(x < t < x1) → (f(x) > f(t)))

ψco = ∃ x0 (x0 < x) ∧ (∀ t(x0 < t < x) → (f(x) = f(t)))

ψ− = ∃ x0 (x0 < x) ∧ (∀ t(x0 < t < x) → (f(x) < f(t)))

ψ+ = ∃ x0 (x0 < x) ∧ (∀ t(x0 < t < x) → (f(x) > f(t)))

And the definable sets:

Aϕi := {x ∈ I : M |= ϕi(x)}
Aψj

:= {x ∈ I : M |= ψj(x)}
Aϕiψj

:= Aϕi ∩ Aψi
= {x ∈ I : M |= (ϕi ∧ ψj)(x)}

with i, j ∈ {+,−, co}.

Note that, for any x and t one of the formulas (f(x) = f(t)), (f(x) > f(t)) and
(f(x) < f(t)) has to hold. The sets of t’s such that each of these formulas hold are
definable. By local o-minimality, there is an interval around x where each of these
sets are a finite union of intervals and points. Thus, at least one of these sets has
some interior of the form (x0, x) and at least one has interior of the form (x, x1) with
x0 < x < x1. Hence, for every x, at least one ϕi and at least one ψj holds true. Again,
for any x, due to local o-minimality, one Aϕi has interior of the form (y1, x) and at
least one of the Aψi

has interior of the form (y2, x) with y1 < x and y2 < x. Therefore,
there is some y3 < x and some i, j such that ]y3, x[ ⊆ Aϕiψj

.

Obviously, the sets Aϕ+ψco , Aϕ−ψco , Aϕcoψ+ and Aϕcoψ− cannot have interior.
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Towards a contradiction, suppose Aϕ+ψ− has interior. Let IA be an interval in the
interior. Let x1 < x2 be in IA such that f(x1) < f(x2). It is easy to check, that such
points have to exist. Define the set

Lx2 = {y ∈M : (y < x2) ∧ (∀ z ∈ ]y, x2[ f(z) > f(x2))},

which has interior since x2 ∈ Aϕ+ψ− . By definable completeness, the infimum xL ∈ IA of
the set exists, and clearly xL ≥ x1. This leads to a contradiction, since xL ∈ Aϕ+ψ− but
for all z ∈ ]xL, x2[, we have f(z) > f(x2) ≥ f(xL) by the definition of Lx2 . Similarly,
we can argue that Aϕ−ψ+ has empty interior.

Thus, either Aϕcoψco , Aϕ+ψ+ or Aϕ−ψ− has to contain interior.

Step 2. There is some interval J ⊆ I1 such that f is continuous.

If f is constant on I1, we are done. Suppose f is strictly increasing. First, if f(I1)
contains interior, then let I2 ⊆ f(I1) be an interval in this interior. It is easy to check
that f−1(I2) ⊆ I1 is an interval on which f is continuous. Therefore, it remains to
consider the case of f(I1) not having interior. By local o-minimality, f(I1) is discrete
and closed in this case.15. Let a, b ∈ I1 with a < b. Then, f(]a, b[) ⊆ ]f(a), f(b)[. Thus,
f(]a, b[) is discrete, closed and bounded. Since the set is bounded and the structure
is DC, there is a supremum s = sup(f(]a, b[)) ∈ M . Because the set is discrete and
closed, this supremum is attained and s ∈ f(]a, b[). Let x ∈ (]a, b[ such that s = f(x).
Then, for y ∈ ]x, b[, we have f(x) < f(y) contradicting the maximality of s. Thus,
f(I1) cannot have no interior.

The proof is similar if f is strictly decreasing.

15For a proof, confer Proposition 4.28.
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Figure 4: New schematic visualization of the relation between tameness notions. Here,
we include only a selection of the most relevant notions with regard to their implications
presented in the next sections. Note that while the colors and the labels still refer to
the same properties as in the previous figures, the shapes of the associated areas have
changed for some properties, in order to allow for a reasonable visualization including
the new definitions. Again, all the labels refer to the smallest bounded convex set they
are contained in. A few of the labels and associated polygons are additionally colored
for clarity.
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4.4 Viscerality
Viscerality is a tameness criterion which is not only studied in the context of dense
linear orders without endpoints. For an extensive discussion of the general viscerality
property, one may consider [5] and [25]. In the case of dense linear orders without
endpoints viscerality has the following equivalent definition which was introduced in
[15]:

Definition 4.22 (Viscerality). The expansion of a dense linear order without endpoints
M = (M,<, . . . ) is visceral if for every structure N = (N,<, . . . ) elementary equivalent
to M, every definable subset X ⊆ N is the union of an open set and a finite set.

Moreover, [15] also introduced a weakened version of viscerality:

Definition 4.23 (L-Viscerality, [15, Definition 2.2]). A structure M = (M,<, . . . ) is
called l-visceral (or lesser-visceral) if every definable subset of M is the union of an
open set and a finite set.

Moreover, t-minimality as discussed in [30] is another familiar tameness notion that
coincides with l-viscerality in the case of dense linear orders.

We can again localize the definition:

Definition 4.24 (Local L-Viscerality, [15]). A structure M = (M,<, . . . ) is called
locally l-visceral if for every definable subset of M and every x ∈ M , there is an
interval I around x such that I ∩X is a union of a finite set and an open set.

This has the following equivalent definition:

Proposition 4.25 ([15, Proposition 2.7]). An expansion of a dense linear order without
endpoints is locally l-visceral if and only if any definable X ⊆M is a union of an open
set and a discrete closed set.

By [13, Lemma 2.3], in the DC setting, local o-minimality and local l-viscerality coin-
cide:

Lemma 4.26. Consider a definably complete structure M = (M,<, . . . ). Then, M is
a locally o-minimal structure if and only if it is locally l-visceral.

Thus, local l-viscerality is a more general notion than local o-minimality in the general
setting, that coincides with local o-minimality in the DC setting. For local l-viscerality,
however, only a few tameness results have been shown. Note that even for the general
locally o-minimal setting there are not many significant tameness results and thus, the
results for local l-viscerality are even more sparse.

4.5 D-Minimality
In the case of expansions of the real ordered field, as considered by Miller in his program,
the slightest generalization of o-minimality is d-minimality. Therefore, it might be an
intuitive thought to also try to consider some general definition of d-minimality as a
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more general tameness condition. However, such a notation only makes sense if any
tameness properties can be shown for it. For d-minimality in a general setting no such
results have been shown so far. The most general setting, for which d-minimality has
been defined, is the following already requiring the dense linear order to be definably
complete:

Definition 4.27 (D-Minimality, [31]). A structure M = (M,<, . . . ) is called d-
minimal if every elementary equivalent structure M′ is DC and every definable set
X ⊆M ′ in every M′ either has interior or is a finite union of discrete sets.

By the next two propositions, we have that if we assume definable completeness, every
locally o-minimal structure is d-minimal:

Proposition 4.28 ([15, Lemma 3.1]). Let M be a locally o-minimal structure. A
definable subset of M is discrete and closed if it has empty interior.

Proof. Let X have empty interior. Let x ∈ M be arbitrary. By local o-minimality,
there is an interval I around x such that X ∩ I is finite. Thus, X is discrete and
closed.

Proposition 4.29 ([40, Corollary 2.5]). Local o-minimality is preserved under elemen-
tary equivalence.

Proof. Let M be locally o-minimal, x ∈ M and X ⊆ M definable. Then, there is
some Ix 3 x such that X ∩ Ix is a finite union of intervals and points. This implies
that bd(Ix ∩ X) is finite. Choosing a = max {y ∈ bd(Ix ∩X) ∪ bd(Ix) : y < x} and
b = min {y ∈ bd(Ix ∩X) ∪ bd(Ix) : y > x} implies x ∈ ]a, b[ and ]a, b[ ∩ X equals one
of the following sets: ∅, {x}, ]a, x[, ]a, x], ]x, b[, [x, b[, ]a, b[ \ {x} or ]a, b[.

For every formula φ(x, z1, . . . , zn) and every c ∈ Mn, we can write down a sentence
saying that for all x there is some a, b with a < x < b and such that ]a, b[ ∩ φ(x, c) is
equal to one of the sets ∅, {x}, ]a, x[, ]a, x], ]x, b[, [x, b[, ]a, b[ \ {x} or ]a, b[.

Thus, every elementary equivalent structure N models these sentences and has the
property that for every unary definable16 set X = φ(x, c) and every n ∈ N there are
a, b ∈ N such that ]a, b[ ∩ φ(x, c) is equal to one of the sets ∅, {x}, ]a, x[, ]a, x], ]x, b[,
[x, b[, ]a, b[ \ {x} or ]a, b[. Thus, N is locally o-minimal.

The converse is not true and there are several examples of structures which are d-
minimal but not locally o-minimal. In particular, by Corollary 3.14, every expansion
of the real ordered field which is d-minimal but not o-minimal is an example. There
are several such examples presented in [33], e. g. (R, <,+, ·, 2Z).

Thus, in the DC setting, d-minimality is a generalization where we could hope for
geometric tameness in an even more general setting than local o-minimality. However,
no geometric tameness results have been shown for this setting so far, leaving local

16Recall, that we always consider definable sets with parameters.
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o-minimality as the most general setting where significant geometric tameness results
for arbitrary definably complete dense linear orders have been shown.

Remark 4.30. Note, that we could also choose to work with a generalization of the
stronger definition for d-minimality, which is discussed in [23] and first introduced in
[33]. In this definition it is additionally required that the number of discrete sets is
bounded in a uniform way. More precisely, for every definable A ⊆ Mn+1, there is
some N ∈ N such that for every x ∈ Mn, the fiber Ax has interior or is the union
of N discrete sets. With the same reasoning as before local o-minimality still implies
d-minimality for this definition. However, the additional value of using this stricter
definition for d-minimality is questionable since it is unknown, whether it is equivalent
to the previously given definition or not. Moreover, there are also no interesting results
shown for this definition in the case of arbitrary dense linear orders without endpoints.
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DC

LLV

LOM

DM

DC definable completeness
DM d-minimality
LLV local l-viscerality
LOM local o-minimality

Figure 5: New schematic visualization of the relations between local o-minimality, d-
minimality, definable completeness, and local l-viscerality. Again, all the labels refer
to the smallest bounded convex set they are contained in. A few of the labels and
associated polygons are additionally colored for clarity. Note that in this figure the
area associated with local o-minimality is not a circle unlike in the other figures due
to technical reasons in the construction of the image.
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5 Examples
In this section, several different concrete examples of locally o-minimal structures possi-
bly fulfilling some of the previously discussed notions are summarized. In particular, the
examples showcase which of the definitions are not implied or equivalent to some oth-
ers. For all examples, we discuss the following properties: univariate ∗-continuity, DC,
weak o-minimality, ∗-local weak o-minimality, uniform local weak o-minimality of the
second kind, uniform local o-minimality of the second kind, uniform local o-minimality
of the first kind, strong local o-minimality, almost o-minimality, o-minimality, DCTC,
TC and local o-minimality. To this end, we proceed as follows: First, we present the
examples stating key properties which do or do not hold for the structure. For these
properties, we either provide a reference or a short proof.17 These key properties then
imply which of the other properties do or do not hold, simply because of the relations
between the notions shown in the previous sections. Afterwards, we summarize which
properties hold for each example in Table 1.18

Throughout this section, note that every definable set in a reduct is also definable in
the expansion. Thus, all the tameness properties shown for some example here, also
hold for every reduct (which is still a dense linear order). Moreover, if a tameness
property does not hold for a reduct, it certainly does not hold in every expansion as
well.19

Example 1 ([8]). The expansion of the real field (R, <,+, ·, exp) by the exponential
function exp : R → R, x 7→ exp(x), is o-minimal.

In particular, as mentioned before, all reducts of (R, <,+, ·, exp) are also o-minimal. In
particular, the real ordered field, the real additive group and the real line are o-minimal.

Example 2 ([37, Example 2.3]). The structure (Q, <) is o-minimal.

Example 3 (Marker-Steinhorn, [40, Theorem 2.7]). The ordered additive real group
expanded by the usual sin-function (R, <,+, sin) is almost o-minimal but not o-minimal.

Proof. (R, <,+, sin) is locally o-minimal by [40, Theorem 2.7]. By Proposition 3.12,
almost o-minimality follows. However, (R, <,+, sin) is not o-minimal since {x : sinx =
0} is an infinite set without interior.

Remark 5.1. Since Z = {x : sin(πx) = 0} is definable in (R, <,+, sin), we have that
(R, <,+,Z) is also almost o-minimal. Clearly, (R, <,+,Z) is also not o-minimal.

17As we are not so much interested in the proofs but only in the results, we choose to only present
proofs for the properties which are not proven in a reference.

18There are some properties for a few examples, where we are uncertain if these hold. We suspect
them all to be true, so far none of them are proven. These are marked with a question mark in the
table.

19In both cases, the converse is clearly false.
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Example 4 ([16, Example 2.4]). Let U to be a ultrafilter on N containing the sets
{n ∈ N : n > k} for all k ∈ N, F to be the family of all maps from N to Q+, and Sn to
be the structure Sn = (R, <, (P Sn

f )f∈F) for all n ∈ N with P Sn
f = {a ∈ R : f(n)·a in Z}.

The ultraproduct M = Πn∈ωSn/U = (M,<, (Pf )f∈F) is a definably complete uniformly
locally o-minimal structure of the first kind which is not strongly locally o-minimal and
not TC.

Proof. In the reference, the reader can find a proof that the structure is a definably
complete uniformly locally o-minimal structure of the first kind which is not strongly
locally o-minimal. It remains to show, that the structure is not TC. To show this,
consider the identity map Id : N → Q+, x 7→ x and the corresponding predicate
PId. Suppose there is b = [(b(i))i∈N] ∈ M such that either PId ∩ ]b,∞[ = ]b,∞[ or
PId ∩ ]b,∞[ = ∅. In the first case, note that for every i ∈ N, we can find b1(i) ∈ R \Q
with b1(i) > b(i). Thus, b1(i) 6∈ P Si

Id for all i ∈ N, implying b1 = [(b1(i))i∈N] 6∈ PId. If
b1(i) > b(i) holds for all i ∈ N, this implies b < b1. In the second case, let b2(i) ∈ Z
with b2(i) > b(i) in R. Then, b2(i) 6∈ P Si

Id for all i ∈ N, implying b2 = [(b2(i))i∈N] 6∈ PId.
But b2(i) > b(i) for all i ∈ N implies b < b2. So neither of the cases hold. This is a
contradiction.

Example 5 ([16, Example 2.2], [26, Example 6]). The structure M = (Q, <, (Sq)q∈Q+)
with Sq = {(a, b) ∈ Q2 : a+ q ·

√
2 ≤ b in R} is not uniformly locally o-minimal of the

first kind, but uniformly locally o-minimal of the second kind. Moreover, the structure
is weakly o-minimal and has the univariate ∗-property but is not definably complete.

Proof. [16, Example 2.2] shows that M is uniformly locally o-minimal of the second
kind. By [26, Example 6], M is not uniformly locally o-minimal of the first kind
and Th(M) admits quantifier elimination. It is easy to check, that by the quantifier
elimination, M is weakly o-minimal and has the univariate ∗-continuity property. The
set

{
a ∈ Q : 0 ≤ a <

√
2
}

is definable and bounded but has no supremum. Thus, M
is not definably complete.

Example 6 ([16, Example 2.3]). The structure M = (Q, <, Pπ2) with Pπ2 = {(a, b) ∈
Q2 : a < π · b in R} is not uniformly locally o-minimal of the second kind, but weakly
o-minimal. Moreover, M has the ∗-continuity property.

Proof. By [16, Example 2.3], M is not uniformly locally o-minimal of the second kind,
but weakly o-minimal and all definable sets are a finite union of finite intersections of
definable sets each of which is equal to one of the following for some k ∈ N, q ∈ Q and
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i, j ∈ {1, . . . , n}:

{(x1, . . . , xn) ∈ Qn : xi = xj}
{(x1, . . . , xn) ∈ Qn : xi = q}

{(x1, . . . , xn) ∈ Qn : xi > πk · xj}
{(x1, . . . , xn) ∈ Qn : xi > πk · q}
{(x1, . . . , xn) ∈ Qn : xi < πk · xj}
{(x1, . . . , xn) ∈ Qn : xi < πk · q}

Thus, for every definable unary function, the domain can be divided into finitely many
convex sets on each of which the function is either the identity or continuous. In
particular, M has the univariate ∗-continuity property.

The set Pπ = {a ∈ Q : a < π} = {a ∈ Q : (a, b) ∈ Pπ2} is definable in (Q, <, Pπ2) and
therefore, the structure M = (Q, <, Pπ) discussed in the next example is a reduct of
M = (Q, <, Pπ2).

Example 7 ([4, Proposition 2.5]). The structure M = (Q, <, Pπ) with Pπ = {a ∈ Q :
a < π} is weakly o-minimal. Moreover, M is strongly locally o-minimal and has the
∗-continuity property but is not definably complete.

Proof. By [4, Proposition 2.5], (Q, <, Pπ) is weakly o-minimal and Th((Q, <, Pπ)) has
quantifier elimination. This implies that all definable sets are a finite union of finite in-
tersections of sets defined by atomic formulas. Thus, for every definable unary function,
the domain can be divided into finitely many convex sets on each of which the function
is either the identity or continuous. In particular, M has the univariate ∗-continuity
property.

For every x ∈ Q, there is some interval Ix 3 x such that π 6∈ Ix. By quantifier
elimination, every definable subset of Ix is a finite union of intervals and points. Thus,
(Q, <, Pπ) is strongly o-minimal.

The set {a ∈ Q : 0 ≤ a < π} is definable and bounded but has no supremum.
Therefore, (Q, <, Pπ) is not definably complete.

Example 8 ([38, Example 3.2]). The structure M = (Q2, <lex, f) with f : Q2 →
Q2, (a, b) 7→ (b, 0) is strongly locally o-minimal. Moreover, (Q2, <lex, f) is ∗-locally
weakly o-minimal but is not TC and does not have the univariate ∗-continuity property.

Proof. By [38, Example 3.2], the expansion (Q2, <lex, f, E) by the binary relation sym-
bol E = {((a1, b1), (a2, b2)) ∈ (Q2)2 : a1 = a2 in Q} is strongly locally o-minimal and
Th((Q2, <lex, f, E)) has quantifier elimination. It is easy to check that the intersec-
tion of some set defined by atomic formulas in (Q2, <lex, f, E) and {q} × Q is a finite
union of convex sets for any q ∈ Q. Moreover, for every x in the Dedekind closure
of (Q2, <lex, f, E), we can find an interval around x which is contained in the union
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of at most two sets of the form {q} × Q. Thus, (Q2, <lex, f, E) is ∗-locally weakly
o-minimal. Therefore, the reduct (Q2, <lex, f) is also strongly locally o-minimal and
∗-locally weakly o-minimal.

Since the set f(Q2) = Q× {0} is definable, (Q2, <lex, f) is not type complete.

Since f is nowhere continuous, (Q2, <lex, f) does not have the univariate ∗-continuity
property.

Remark 5.2. A more general version of examples similar to Example 8 is discussed in
[26, Example 12] and [16, Example 5.2]. For any o-minimal structure M and a ∈ M ,
the structure N = (M2, <lex, f) with f : {a} ×M → M2, (a, b) 7→ (b, a) is strongly
locally o-minimal but does not have the univariate ∗-continuity property.

Example 9 ([26, Example 6]). The structure M = (Q, <, (Sbn)n∈N) with Sbn =
{a ∈ Q : a < 2−n

√
2 in R} is not strongly locally o-minimal, but uniformly locally

o-minimal of the first kind. Moreover, it is not DC since Sb0 = {a ∈ Q : a <
√
2} has

no supremum.

Example 10 ([40, Proposition 2.13, Proposition 3.6]). The structure N = (N,<lex, f)
with the universe N := {(a, 0) : a ∈ Q+} ∪ {(a, b) : a ∈ Q− \ Z−, b ∈ Q} ∪ {(a, 0) : a ∈
Z−

0 } and the unary function f : N− → N, (a, b) 7→ (−a, 0)20 is locally o-minimal but
not uniformly locally o-minimal of the second kind and not definably complete.

Proof. By [40, Proposition 2.13], N is locally o-minimal.

With the same reasoning as in [40, Proposition 3.6], we show that N is not uniformly
locally o-minimal of the second kind: X = {(a, b) ∈ N2 : f(a) = f(b)} is a definable
set. Let I, J be intervals around 0. Let x ∈ I and x < 0. Pick some y ∈ J ∩ ]x, 0[.
Then, Xy ∩ I is a non-empty convex set, but neither an interval nor a point. Thus, N
is not uniformly locally o-minimal of the second kind.

The set f−1((1, 0)) = {(a, b) ∈ N : a = −1} is definable and bounded but has no
supremum. Thus, N is not definably complete.

Example 11 ([40, Example 2.3]). Every expansion of (R, <,Q) is not locally o-
minimal, as Q intersected with any interval is a dense and co-dense subset of the
interval.

Remark 5.3. Obviously (R, <,Q) is DC. But note, that Q is not the finite union of
finitely many discrete sets and thus, (R, <,Q) is not even d-minimal.

20Here, N− refers to the interval consisting of all elements of N less than (0, 0) with respect to <lex.
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Table 1: Summary of the tameness properties which hold for the examples presented
in this section. The blue highlighted cells are the key properties that are proven in this
section. All other properties are deduced by the relations proven in previous sections.
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6 Properties of Locally O-Minimal Structures
In this section, we present the fundamental tameness results for arbitrary dense linear
orders that fulfill one of the different notions of local o-minimality. Note that the
notions of local o-minimality imply no model theoretic tameness (besides elementary
equivalence) but only geometric tameness. The geometric tameness properties are
usually some localized version of tame properties that o-minimal structures have, like
monotonicity, definable cell decomposition and dimensional tameness.

For the fundamental geometrical results in this section, we present the proofs given in
the literature in versions adapted to our purposes. In this thesis, we present compre-
hensive versions of the proofs keeping the use of auxiliary lemmata and references to
results of the literature to a minimum. Moreover, in [15] several results are presented
in the most general setting possible. These settings tend to be quite technical. Here,
we only consider the most general setting with regards to the commonly considered
notions of local o-minimality for which the statements are true. This sometimes allows
for simplified versions of the proofs. Additionally, a few proofs where changed due to
personal preference of the author.

6.1 Model-Theoretic Properties
One very desirable characteristic of tameness notions for the study of model theoretic
tameness is preservation under elementary equivalence.21 If a property is preserved
under elementary equivalence, the theory of any structure having the property has
only models with the property. This warrants the consideration of the theories and
their properties.

Recall, local o-minimality is preserved under elementary equivalence as proven in
Proposition 4.29. The same holds for o-minimality (confer e. g. [27, Theorem 0.2]).
Moreover, ∗-local weak o-minimality is preserved under elementary equivalence by [15,
Proposition 2.16] and the ∗-continuity property is preserved under elementary equiva-
lence by [15, Proposition 3.12].22

However, not all the notions of local o-minimality preserve under elementary equiva-
lence. Strong local o-minimality is not preserved under elementary equivalence by [40,
Corollary 3.9]. Also, almost o-minimality does not preserve under elementary equiva-
lence by [10, Proposition 4.14]. Moreover, every ω-saturated elementary extension of
some almost o-minimal but not o-minimal structure is not almost o-minimal.

21Note, that elementary equivalence is not a condition which is artificially added to the definitions
of notions of local o-minimality, as is the case for d-minimality. Adding this criterion to the definitions
of the notions of local o-minimality, while technically also possible, would possibly restrict the set of
structures which fulfill these definitions and further complicate the proof that structures fulfill these
definitions. Thus, this has not been considered so far.

22The proofs for ∗-local weak o-minimality and ∗-continuity property are also straightforward: Note
that there is a first order formula expressing that a pair of sets is a definable gap and a first order
formula expressing that a function is continuous. The rest of the proofs is analogous to the proof of
Proposition 4.29
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Besides elementary equivalence, there are no notable results showing model theoretic
tameness for locally o-minimal structures. O-minimal theories are dp-minimal, NIP,
distal and NTP2 (see e. g. [2]). For locally o-minimal theories (i. e. theories which only
have locally o-minimal models), however, this is not the case: In [14], the reader can
find a proof that on the one hand there are distal, NIP and NTP2 locally o-minimal
theories, but on the other hand there are also locally o-minimal theories which are not
distal, not NIP and not NTP2. Another example of a locally o-minimal structure which
has the Independence Property (i. e. is not NIP) can be found in [9, Example 5.17].
Therefore, local o-minimality is rather uninteresting from a model theoretic point of
view and there are no model theoretic tools available for our work with locally o-
minimal structures.

6.2 Geometric Properties
Now, we turn our attention to the main motivation for the discussion of local o-
minimality, namely the geometric properties that are implied by these notions.

6.2.1 Monotonicity

One of the foundational and groundbreaking geometric tameness results regarding o-
minimality is the fact that every definable unary function is strictly monotone or con-
stant everywhere except for a finite set:

Proposition 6.1 (Monotonicity Theorem, [7, p. 3]). Let M be o-minimal and f :M →
M a definable function. Then, M can be divided into a finite union of points and open
intervals such that f is either constant, strictly increasing or strictly decreasing on each
of these intervals. Moreover, there is a partition of M into a finite union of points and
open intervals such that f is additionally continuous on each of the intervals.

For the purpose of any geometric tameness study – in our case the study of locally
o-minimal structures – it is advisable to seek some similar kind of monotonicity and
continuity result for unary functions, as it is the basis for many other tameness prop-
erties.

Therefore, we define a weakened version of monotonicity, we call local monotonicity,
and what we call the local continuity property.

Definition 6.2 (Local Monotonicity). A locally o-minimal structure M has local
monotonicity if for every definable unary function f :M →M and every point a ∈M ,
there exists an interval I around a such that I ∩ dom (f) can be partitioned into a
finite union of points and open intervals, on each of which f is locally constant, locally
strictly increasing or locally strictly decreasing.

Definition 6.3 (Local Continuity Property). We say M has the local continuity prop-
erty if for every definable unary function f : M → M and every point a ∈ M , there
exists an interval I around a such that I ∩ dom (f) can be partitioned into a finite
union of points and open intervals such that f is continuous on the intervals.
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Remark 6.4. Note, that continuity is a local property and it is enough for a function to
be everywhere locally continuous to be continuous. In particular, there is not neces-
sarily a continuous function f : I →M with f |M = g for every continuous g : I →M .

Recall the univariate ∗-continuity property as defined in Definition 4.20. One of the
most general monotonicity results for locally o-minimal structures is that every locally
o-minimal structure with the univariate ∗-continuity property has local monotonicity
and the local continuity property.

Theorem 6.5 ([15, Corollary 3.18]). Let M = (M,<, . . . ) be a locally o-minimal
structure with the univariate ∗-continuity property and f : I → M be a definable map
defined on an open interval I. Then, the interval I ⊆ M can be decomposed into
definable sets X+, X−, Xconst, Xdis satisfying the following conditions:

• Xdis is discrete and closed,

• Xconst is open and the restriction of f to Xconst is locally constant,

• X− is open and the restriction of f to X− is locally strictly decreasing and con-
tinuous,

• X+ is open and the restriction of f to X+ is locally strictly increasing and con-
tinuous.

Proof. Similar as in Step 1 of the proof of Proposition 4.21, consider the following
formulas:

ϕco = ∃ x1 (x1 > x) ∧ (∀ t ((x < t < x1) → (f(x) = f(t))))

ϕ+ = ∃ x1 (x1 > x) ∧ (∀ t ((x < t < x1) → (f(x) < f(t))))

ϕ− = ∃ x1 (x1 > x) ∧ (∀ t ((x < t < x1) → (f(x) > f(t))))

ψco = ∃ x0 (x0 < x) ∧ (∀ t ((x0 < t < x) → (f(x) = f(t))))

ψ− = ∃ x0 (x0 < x) ∧ (∀ t ((x0 < t < x) → (f(x) < f(t))))

ψ+ = ∃ x0 (x0 < x) ∧ (∀ t ((x0 < t < x) → (f(x) > f(t))))

And the definable sets:

Aϕi := {x ∈ I : M |= ϕi(x)}
Aψj

:= {x ∈ I : M |= ψj(x)}
Aϕiψj

:= Aϕi ∩ Aψi
= {x ∈ I : M |= (ϕi ∧ ψj)(x)}

with i, j ∈ {+,−, co}.

Note that, for any x and t one of the formulas (f(x) = f(t)), (f(x) > f(t)) and
(f(x) < f(t)) has to hold. The sets of t’s such that each of these formulas hold are
definable. By local o-minimality, there is an interval around x where each of these sets
are a finite union of intervals and points. By Lemma 3.7, at least one of these sets has
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some interior of the form ]x0, x[ and at least one has interior of the form ]x, x1[ with
x0 < x < x1. Thus, for every x at least one ϕi and at least one ψj holds true.

Define Xconst := Aϕcoψco . This is an open set and f |Xconst is constant, as desired.

It is obvious that the sets Aϕ+ψco , Aϕ−ψco , Aϕcoψ+ and Aϕcoψ− cannot have interior.

Next, we show that Aϕ+ψ− has empty interior: Towards a contradiction, assume that

Aϕ+ψ− = {x ∈ I : ∃ x0, x1 (x0 < x < x1)

∧ ∀ t, s ((x0 < s < x < t < x1) → (f(s) < f(x) ∧ f(t) < f(x)))}

has interior and let I1 be a bounded interval in this interior. Then, the following
function is definable

g : I1 → I1, x 7→ inf {r ∈ I1 : ∀ s ∈M ((r < s < x) → (f(s) < f(x)))}

Let a ∈ I1 be arbitrary. Then, by the definition of Aϕ+ψ− , there exist x0 < a < x1
such that for all s, t with (x0 < s < x < t < x1), we have (f(s) < f(x) ∧ f(t) < f(x)).
Thus, g(a) ≤ x0 < a. But for all t with a < t < x1, we have g(t) ≥ a. Thus, g is
discontinuous at a and since a was arbitrarily chosen, it is discontinuous everywhere.
This contradicts the univariate ∗-continuity property. Thus, Aϕ+ψ− has empty interior.

Similarly, one can show that Aϕ−ψ+ has empty interior. Moreover, note that this proves
that any definable function h : J → M cannot have local minima or local maxima
throughout the interval J . This is applied in the next step of the proof.

Now, we want to consider Aϕ+ψ+ and show that f is locally strictly increasing every-
where except for a set without interior. Let Y++ ⊂ Aϕ+ψ+ be the definable subset of
points where f is not locally strictly increasing. Consider the two formulas

χ0(x) := ∀ x0 ((x0 < x) → (∃ s, t ((x0 < s < t < x) ∧ (f(s) ≥ f(t)))))

χ1(x) := ∀ x1 ∈ ((x < x1) → (∃ s, t ((x < s < t < x1) ∧ (f(s) ≥ f(t))))).

Note that for every x ∈ Y++ at least one of these has to hold. By Lemma 3.7, Y++ has
empty interior if χ0(I) and χ1(I) have empty interior. The proofs for both of these
facts are similar, so we only present the proof for χ0(I) here.

Suppose, towards a contradiction, that χ0(I) has interior. Let J be a bounded interval
in this interior. Define h to be the definable function

h : J →M,x 7→ inf({x} ∪ {y ∈ J : ∀ t ∈ [y, x[ (f(t) < f(x))}).

Since J ⊆ Aϕ+ψ+ , we have h(x) < x for all x ∈ J . Let a ∈ J be arbitrary. By local o-
minimality, we can find a0 such that either h(a) < h(t) for all t ∈ [a0, a[ or h(a) ≥ h(t)
for all t ∈ [a0, a[. Without loss of generality, we can assume h(a) ≤ a0.

Suppose h(a) ≥ h(t) for all t ∈ [a0, a[. Since χ0(a) holds true, we can find s, t ∈ ]a0, a[
with s < t and f(s) ≥ f(t). By definition, h(t) ≥ s, which implies h(t) ≥ s >
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a0 ≥ h(a). Thus, h(a) < h(t) for all t ∈ [a0, a[. Similarly, we can find a1 such that
h(a) < h(t) for all t ∈ ]a, a1] or h(a) ≥ h(t) for all t ∈ ]a, a1]. Again, since a1 ∈ Aϕ+ψ+ ,
we can find s, t ∈ ]a, a1[ such that h(t) ≥ s > a ≥ h(a). Hence, h(a) < h(t) for all
t ∈ ]a, a1]. Therefore, a is a local minimum. But since a was chosen arbitrarily, h has
local minima throughout J , which is a contradiction to our previous conclusion. Thus,
χ0(x) has empty interior and we can show the same for χ1(x). Therefore, Y++ has
empty interior. Similarly, one can proof that the set Y−− ⊆ Aϕ−ψ− of points of Aϕ−ψ−

where f is not locally strictly decreasing, has empty interior as well.

By the univariate ∗-continuity property, the set Ydis of points where f is discontinuous
cannot have interior. If it had, there would be a subinterval in the interior where f is
continuous, which is a contradiction.

In conclusion, the definable set Xdis = Ydis∪Yϕ+ψ+ ∪Yϕ−ψ− ∪Aϕ−ψ+ ∪Aϕ+ψ− ∪Aϕ+ψco ∪
Aϕ−ψco ∪ Aϕcoψ+ ∪ Aϕcoψ− is a finite union of definable sets without interior and by
Lemma 3.7, also has no interior. Thus, by local o-minimality, it is discrete and closed.

It is easy to check that the sets of points X+ = Aϕ+ψ+ \(Yϕ+ψ+∪Ydis), where f is locally
strictly increasing and locally continuous and X− = Aϕ−ψ− \ (Yϕ−ψ− ∪ Ydis), where f
is locally strictly decreasing and locally continuous, are definable and open. Moreover,
by construction, I = Xdis ∪Xconst ∪X+ ∪X−.

Remark 6.6. By local o-minimality, there is some interval I 3 a such that the definable
sets Xconst ∩ I,X+ ∩ I and X− ∩ I are finite unions of intervals and Xdis ∩ I is a finite
set. Thus, the shown statement implies local monotonicity and the local continuity
property.

Theorem 6.5 has the following immediate corollary since every definably complete
locally o-minimal structure already has the univariate ∗-continuity property by Propo-
sition 4.21.

Corollary 6.7 ([21, Theorem 2.3]). Let M = (M,<, . . . ) be a definably complete locally
o-minimal structure. Let I be an interval and f : I →M be a definable function. Then,
the interval I ⊆M can be decomposed into definable sets X+, X−, Xconst, Xdis satisfying
the following conditions:

• Xdis is discrete and closed,

• Xconst is open and f is locally constant on Xconst,

• X+ is open and f is locally strictly increasing and continuous on X+,

• X− is open and f is locally strictly decreasing and continuous on X−.

Moreover, in this definable complete setting, there is even a slightly stronger version
of local monotonicity that holds.
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Definition 6.8 (Strong Local Monotonicity23, [40, Definition 2.12]). A locally o-
minimal structure M has strong local monotonicity if, for every unary function f
definable in M and every point a ∈ M , there exists an interval I around a such that
I ∩dom (f) can be partitioned into a finite union of points and open intervals, on each
of which f is constant, strictly increasing, or strictly decreasing.

Proposition 6.9. Every definably complete locally o-minimal structure has strong local
monotonicity and local continuity.

Proof. It is sufficient to show that the definitions of strong local monotonicity and local
monotonicity coincide for definably complete locally o-minimal structures.

Let M be a definably complete locally o-minimal structure and x ∈ M . Let I = ]a, b[
be some interval around x on which f is locally strictly increasing. Then, the set

Lx := {y ∈ I : (y < x) ∧ ∀ z1, z2 ∈ [y, x] ((z1 < z2) → f(z1) < f(z2))}

is definable and non-empty, since f is locally strictly increasing. By definable com-
pleteness, Lx has an infimum xinf ∈ [a, x[.

Suppose xinf > a. This implies that f is locally strictly increasing at xinf .

If xinf 6∈ Lx, there is some z0 ∈ Lx such that f(xinf ) ≥ f(z0). But for all z ∈ ]xinf , z0[,
we have f(z) < f(z0) ≤ f(xinf ), contradicting that f is locally strictly increasing at
xinf .

If not, we have xinf ∈ Lx. Recall, f is locally strictly increasing at xinf . Thus, there is
some x′inf < xinf such that for all z1, z2 ∈

]
x′inf , xinf

]
, (z1 < z2) implies f(z1) < f(z2).

Using this and transitivity, z1 ∈ Lx follows. However, this is a contradiction to xinf
being the infimum of Lx.

Thus, we have a contradiction in both cases, which implies that xinf = a.

In the same manner, we define

Rx := {y ∈ I : (x < y) ∧ ∀ z1, z2 ∈ [x, y] ((z1 < z2) → f(z1) < f(z2))}

and one can prove that the supremum of this set is equal to b. Thus, f is strictly
increasing on I. The proof is similar for intervals on which f is locally constant or
locally strictly decreasing.

For almost o-minimal structures, we can show an even stronger result:

Proposition 6.10. Let M be almost o-minimal, f :M →M a definable function and
a, b ∈ M . Then, ]a, b[ can be divided into a finite union of points and open intervals
such that f is either constant, strictly increasing or strictly decreasing on each of these
intervals.

23In [40, Definition 2.12] this property is called local monotonicity, but we adapted the name to
distinguish it from the previous definition and to empathize its connection to strong local monotonicity.
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Proof. Every almost o-minimal structure is definably complete and locally o-minimal.
Thus, ]a, b[ = Xdis ∪ Xconst ∪ X+ ∪ X− as in Corollary 6.7. By almost o-minimality,
Xdis is finite and Xconst, X+ and X− are finite unions of intervals. By the proof of
Proposition 6.9, f is constant on an interval if it is locally constant on that interval,
decreasing on an interval if it is locally decreasing on that interval and increasing on
an interval if it is locally increasing on that interval.

The second very general result in this section states that every uniformly weakly locally
o-minimal structure of the second kind has local monotonicity.

Theorem 6.11 ([15, Lemma 3.2, Theorem 3.17]). Let M = (M,<, . . . ) be a uniformly
weakly locally o-minimal structure of the second kind and f : I → M be a definable
map defined on an open interval I. Then, the interval I ⊆ M can be decomposed into
definable sets X+, X−, Xconst, Xdis satisfying the following conditions:

• Xdis is discrete and closed,

• Xconst is open and the restriction of f to Xconst is locally constant,

• X− is open and the restriction of f to X− is locally strictly decreasing,

• X+ is open and the restriction of f to X+ is locally strictly increasing.

Proof. Note that in the first part of the proof of Theorem 6.5, the univariate ∗-continuity
property is only applied to show that any definable function h : J → M cannot have
local minima or maxima throughout the interval J . Thus, with the same proof, we
only need to show the following claim, to prove the statement.

Claim 1. Any definable function g : Ig → M on some interval Ig cannot
have a local minimum at every x ∈ Ig or a local maximum at every x ∈ Ig.

Proof of Claim 1. Towards a contradiction, suppose we have a function g which has a
local minimum at every x ∈ Ig. For all a ∈ Ig, define

U+
a =

{
x ∈ Ig : x > a ∧ ∀ y

(
(a < y ≤ x) → (g(y) > g(a))

)}
U−
a =

{
x ∈ Ig : x < a ∧ ∀ y

(
(x ≤ y < a) → (g(y) > g(a))

)}
Ua = U−

a ∪ {a} ∪ U+
a .

Throughout this proof, we define several different sets and successively show properties
for these sets to eventually get some contradiction.

First, we show that Ub ⊊ Ua is equivalent to a 6= b and b ∈ Ua. Note that for any
a ∈ Ig, we have a ∈ Ua. Thus, Ub ⊆ Ua implies b ∈ Ua. Moreover, Ub 6= Ua implies
a 6= b.

For every a, b ∈ Ig with a 6= b, b ∈ Ua implies g(b) > g(a) which then implies a 6∈ Ub.
Therefore, a 6= b implies Ua 6= Ub. If we have a, b ∈ Ig with a > b and b ∈ Ua, pick
any c ∈ Ub. Since a 6∈ Ub and b < a, we have c < a. By the definition of Ua, we have
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c ∈ Ua if a > c ≥ b. If c < b, we have for any b > d ≥ c that g(d) > g(b) > g(a) and
thus c ∈ Ua. We conclude that Ub ⊋ Ua. For a < b and b ∈ Ua, we can show Ub ⊊ Ua
with the same reasoning.

Secondly, if we have Ua ∩ Ub 6= ∅ and g(a) 6= g(b), then Ub ⊊ Ua or Ua ⊊ Ub. By the
previous statement, it is enough to show a ∈ Ub or b ∈ Ua. Let d ∈ Ua ∩ Ub be an
element in the cut. Without loss of generality, assume a < b. Clearly, d ≤ a implies
a ∈ Ub and b ≤ d implies b ∈ Ua. Thus, it only remains to consider the case a < d < b.
For any d′ ∈ ]a, d], we have g(a) < g(d′) and for any d′′ ∈ [d, b[, we have g(b) < g(d′′).
Hence, for any d′′′ ∈ ]a, b[, we have min{g(a), g(b)} < g(d′′′). In conclusion, g(a) < g(b)
implies b ∈ Ua and g(b) < g(a) implies a ∈ Ub.

Define the definable sets Ca = {x ∈ Ig : a ∈ Ux} and C = {(a, x) ∈ Ig × Ig : x ∈ Ca}.
Shrinking Ig if necessary, Ca is a finite set for all a ∈ Ig. To prove this, assume towards
a contradiction that Ca has interior for some a ∈ Ig. Let c < b < d be contained in
an interval J of this interior, such that c, d ∈ Ub. If g(c) = g(d), as g attains a local
minimum at c, there is a c1 such that for all c2 ∈ ]c, c1[, we have g(c) < g(c2). We can
use the denseness of M to pick c′ ∈ ]c, c1[∩ ]c, b[. Then, c′ < b < d, c′ ∈ J and c′ ∈ Ub.
Thus, we can assume g(c) 6= g(d). Note that c, d ∈ Ca implies a ∈ Uc ∩ Ud and thus
Ud ⊊ Uc or Uc ⊊ Ud. Since c, d ∈ Ub, we have b 6∈ Uc and b 6∈ Ud. By convexity of
Uc and Ud, c 6∈ Ud and d 6∈ Uc follows. However, this is a contradiction to Ud ⊊ Uc or
Uc ⊊ Ud. Therefore, Ca cannot have interior for any a ∈ Ig and by uniform local weak
o-minimality of the second kind, we can find a subinterval I ′g ⊆ Ig such that Ca is finite
for all a ∈ I ′g. By possibly shrinking Ig, we can assume that Ca is finite for all a ∈ Ig.

Define the definable sets Da = {x ∈ Ig : Ux ⊊ Ua ∧ (¬∃ y ∈ Ig (Ux ⊊ Uy ⊊ Ua))} for all
a ∈ Ig and K = {x ∈ Ig : ¬∃ y ∈ Ig \ {x} (x ∈ Uy)}. Shrinking Ig if necessary, these
sets are finite: By uniform local weak o-minimality of the second kind, we can shrink
Ig such that these sets are all a finite union of points and open convex sets. Suppose
Da has interior for some a ∈ Ig. Then, let J2 be an open interval in the interior and
let b ∈ J2. Clearly, J2 ∩ Ub 6= ∅ but for every d ∈ J2 ∩ Ub, we have Ud ⊊ Ub ⊊ Ua
contradicting d ∈ J2. Suppose K has interior. Then, choose J2 and b again in the same
way. For every d ∈ J2 ∩ Ub, we have Ud ⊊ Ub contradicting d ∈ K.

By definition, the sets Da are pairwise disjoint for all a ∈ Ig. Moreover, since K =
{x ∈ Ig : ¬∃ y ∈ Ig (Ux ⊊ Uy)}, Da and K are disjoint for all a ∈ Ig.

Recall, that Ca = {x ∈ Ig : Ua ⊊ Ux} is finite for all a ∈ Ig. Thus, for every x ∈ Ig,
if there is some y ∈ Ig such that Ux ⊊ Uy, then there is some ymin ∈ Ig such that
Ux ⊊ Uymin

and there is no y ∈ Ig such that Ux ⊊ Uy ⊊ Uymin
. With this fact, we can

conclude that
Ig = K ∪

⋃
a∈Ig

Da.

Since Ig clearly has interior but K and Da are finite, there must be infinitely many
non-empty Da. Recall, the sets Da are pairwise disjoint for all a ∈ Ig. Thus, we can
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define a definable infinite set Y as follows:

Y := {x ∈ Ig : ∃ a ∈ Ig ((x ∈ Da) ∧ (¬∃ y ∈ Da (y > x)))}

Possibly shrinking Ig, we can assume that Y is a finite union of points and open convex
sets. Since Y is infinite, it must contain interior. Define Z ⊆ Y to be a inclusion-wise
maximal convex set such that for z ∈ Z, Y \

(
Z ∪ ]−∞, z[

)
= ∅ (i. e. Z is the rightmost

convex set or point of Y ). Clearly, Z is definable.

Let a ∈ Z. Note that a ∈ Ig implies that g attains a local minimum at a and thus,
a ∈

◦
Ua. Pick b1, b2 ∈ Ua such that b1 < a < b2. The sets Cb1 and Cb2 are finite and

hence, there are b′1 ∈ Cb1 and b′2 ∈ Cb2 such that b′1, b′2 ∈ Da. Therefore, Ub1 ⊆ Ub′1 ⊊ Ua
and Ub2 ⊆ Ub′2 ⊊ Ua. If we had b′1 > a, then b1 ∈ Ub′1 and the convexity of Ub′1 would
imply a ∈ Ub′1 contradicting Ub′1 ⊊ Ua. Hence, b′1 < a and similarly b′2 > a. Since the
Di are disjoint, there is no i 6= a such that b′2 ∈ Di. Thus, b′2 6∈ Y .

Let c ∈ Ub′2 be some element with b′2 < c. The set Uc is non-empty. Pick some
c′ ∈ Uc and note that Cc′ is finite. In particular, there is some c′′ ∈ Cc′ such that
c′′ ∈ Dc. Hence, Dc is non-empty. Since Dc is finite, max(Dc) exists and max(Dc) ∈ Y .
Clearly, a < b′2 < c ≤ max(Dc) and a ∈ Z, max(Dc) ∈ Y . By the definition of Z
as the rightmost convex subset of Y , this would imply ]a,max(Dc)[ ⊆ Z. This is a
contradiction to b′2 6∈ Y .

Note that one can show with a similar proof that g cannot have maxima throughout
the intervals.

Thus, defining the sets Aϕiψj
, Yϕ+ψ+ , Yϕ−ψ− , Xconst as in the proof of Theorem 6.5 and

repeating the same proof except for the part about the continuity of f and replacing the
part that there are no minima or maxima throughout an interval by the claim, shows
that Xdis = Yϕ+ψ+ ∪ Yϕ−ψ− ∪ Aϕ−ψ+ ∪ Aϕ+ψ− ∪ Aϕ+ψco ∪ Aϕ−ψco ∪ Aϕcoψ+ ∪ Aϕcoψ− is a
finite union of definable sets without interior. By Lemma 3.7, Xdis also has no interior.
Hence, by local o-minimality, it is discrete and closed. Moreover, the sets Xconst where
f is constant, X+ = Aϕ+ψ+ \ Yϕ+ψ+ , where f is locally strictly increasing and locally
continuous and X− = Aϕ−ψ− \ Yϕ−ψ− , where f is locally stricly decreasing and locally
continuous, are definable and open. By construction, I = Xdis ∪Xconst ∪X+ ∪X−.

For strongly locally o-minimal structures, we can again show strong monotonicity:

Corollary 6.12 ([40, Theorem 4.1]). Let M be strongly locally o-minimal. Then, for
every unary function f : J → M definable in M and every point a ∈ M , there exists
an interval I around a such that I ∩ dom (f) can be partitioned into a finite union of
points and open intervals, on each of which f is constant, strictly increasing, or strictly
decreasing.
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Proof. 24 First, we recall the statement and proof of [26, Theorem 9]: Every strongly
locally o-minimal structure can be related to an o-minimal structure in the sense of
the following two equivalent statements:

1. M is strongly locally o-minimal.

2. For every finite set of points a0, . . . , an ∈ M , there are b0, . . . , bn, c0, . . . cn ∈
M ∪ {±∞} with bi < ci and ai ∈ ]bi, ci[ such that for N = ]b0, c0[ ∪

⋃n
i=1[bi, ci[,

the structure N = (N, {PNn∩X}n∈N,X∈DefnM) is o-minimal. Here, PY is a relation
symbol denoting Y andDefnM is the set of definable subsets ofMn in the structure
M.

To show the equivalence, we show both implications:

1. ⇒ 2. Let a0, . . . , an ∈M . By strong local o-minimality, there are b0, . . . , bn ∈M ,
c0, . . . cn ∈ M such that ai ∈ ]bi, ci[ and for every definable set X ⊆ M , X ∩ ]bi, ci[
is a finite union of points and intervals. Let N = ]b0, c0[ ∪

⋃n
i=1[bi, ci[ and N =

(N, {PNn∩X}n∈ω,X∈DefnM). Let Y ⊆ N be definable in N . As N is a definable subset of
M in M, it is easy to see that Y is indeed also a definable set in M and Y = Y ∩N =
(Y ∩ ]b0, c0[ ∪

⋃n
i=1(Y ∩ [bi, ci[ )). By strong local o-minimality, Y ∩ ]bi, ci[ is a finite

union of intervals and points in M. Thus, Y is also a finite union of intervals and
points.

2. ⇒ 1. Let a ∈ M . Let b, c ∈ M be such that a ∈ ]b, c[, N = ]b, c[ and N
be o-minimal. We show that the strong local o-minimality criterion holds for ]b, c[ :
Let X ⊆ M be definable in M. By construction, ]b, c[ ∩ X is definable in N . By
o-minimality, ]b, c[∩X is a finite union of intervals and points in N . Since the intervals
are also intervals in M, the same holds for ]b, c[ ∩X in M.

Now, we apply this equivalence to show the corollary. Let M be strongly locally o-
minimal. By the equivalence, for any a ∈ M , we can find b, c ∈ M with b < a < c
such that the second condition holds for N = ]b, c[. In particular, this implies that
every definable proper subset of ]b, c[ has an infimum and a supremum. Recall that
by Theorem 6.11, M has local monotonicity. By the proof of Proposition 6.9, the
corollary follows.

Moreover, for uniformly locally weakly o-minimal structures, we can additionally show
a different version of the monotonicity theorem: If the image is bounded by a sufficiently
small interval, the function has local monotonicity and the local continuity property in
a local uniform parameterized way.

Theorem 6.13 (Parameterized Local Monotonicity Theorem, [15, Corollary 3.8]). Let
M = (M,<, . . . ) be uniformly locally weakly o-minimal of the second kind. Let A ⊆M
be open and definable and let P ⊆ Mn be a definable subset. Let f : A × P → M be

24Here, we choose to do a different proof than the one given in the reference since the result already
follows from two of our previously proven statements.
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a definable function. For every (a, b, p) ∈ M ×M ×Mn, every sufficiently small open
intervals I and J with a ∈ I and b ∈ J and every sufficiently small open box B with
p ∈ B, the following assertion holds true:

There exists a partition of f−1(J) ∩ (I ×B) into pairwise disjoint definable sets Xfin,
X−, X+, Xconst satisfying the following conditions for every c ∈ B:

1. π1(Xfin ∩ (f−1(J) ∩ (I × {c}))) is a finite set,

2. π1(Xconst∩ (f−1(J)∩ (I×{c}))) is a finite union of open convex sets and f(−, c)
is locally constant on the set,

3. π1(X− ∩ (f−1(J) ∩ (I × {c}))) is a finite union of open convex sets and f(−, c)
is locally strictly decreasing and continuous on the set,

4. π1(X+ ∩ (f−1(J) ∩ (I × {c}))) is a finite union of open convex sets and f(−, c)
is locally strictly increasing and continuous on the set.

Proof. Let P ⊆ Mn be a definable subset and A ⊆ M be open and definable. Let
f : A × P → M be a definable function and let (a, b, p) ∈ M ×M ×Mn. Note that
for every c ∈ B \ P , f−1(J) ∩ (I × {c}) = ∅ and the same assertions trivially hold
for arbitrary Xfin, X−, X+, Xconst. Thus, it is sufficient to show the conditions for
c ∈ B ∩ P .

Step 1. There exist I ′, J ′ ⊆ M,B′ ⊆ Mn such that for every I, J with
a ∈ I ⊆ I ′, b ∈ J ⊆ J ′, every box B ⊆ B′ and every c ∈ B, the set π1(f

−1(J) ∩
(I × {c})) is a finite union of points and open convex sets.

Let X ⊆ Mn+3 be the definable set X := {(x, y1, y2, z) ∈ A ×M ×M × P : (y1 <
f(x, z) < y2). By uniform local weak o-minimality of the second kind, there exist an
interval I ′ ⊆ A with a ∈ I ′, intervals J1, J2 with b ∈ J1 ∩ J2 and an open box B′ with
p ∈ B′ such that the definable set I ∩ X(b1,b2,c) is a finite union of points and open
convex sets for all b1 ∈ J1, b2 ∈ J2 and c ∈ B′. Pick b1 ∈ J1 and b2 ∈ J2 such that
b1 < b < b2. Let J ′ = ]b1, b2[. Then, we have

π1(f
−1(J ′) ∩ (I ′ × {c})) = {x ∈ I ′ : b1 < f(x, c) < b2} = X(b1,b2,c) ∩ I ′

for all c ∈ B. Thus, π1(f−1(J ′)∩ (I ′×{c})) is a finite union of points and open convex
sets for all b1 ∈ J1, b2 ∈ J2 and c ∈ B′. It is easy to see that the claim also holds for
all subintervals I ⊆ I ′, J ⊆ J ′ and subsets B ⊆ B′.

Step 2. There exist intervals I1 ⊆ I ′, J1 ⊆ J ′ and a box B1 ⊆ B′ such that
there exists a partition f−1(J1) ∩ (I1 ×B1) = X ′

f ∪Xconst ∪Xnn into pairwise
disjoint definable sets and for every c ∈ B1,

1. π1(X ′
f ∩ (f−1(J) ∩ (I × {c}))) is a finite set,

2. π1(Xconst ∩ (f−1(J) ∩ (I × {c}))) is a finite union of open convex sets
and f(−, c) is locally constant on the set,
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3. π1(Xnn ∩ (f−1(J)∩ (I ×{c}))) is a finite union of open convex sets and
f(−, c) is locally injective25 on the set.

Begin with I = I ′, J = J ′ and B = B′. In the following, we shrink I, J,B several times
instead of introducing new subintervals for the ease of notation. It is easily checked
that all the statements shown throughout this part still remain true for the shrunken
sets I, J,B, as these statements always also hold for subintervals and boxes which are
a subset of B.

X ′
const :=

{
(x, z) ∈ I × B : (x, z) ∈ f−1(J) ∧

(
∃ x1, x2

(
x1 < x < x2

∧ ∀ x′
(
x1 < x′ < x2 →

(
(x′, z) ∈ f−1(J) → (f(x, z) = f(x′, z))

))))}
,

Xconst :=
{
(x, z) ∈ X ′

const : x ∈
◦

((X ′
const)z)

}
and π1(Xconst ∩ (f−1(J) ∩ (I × {c}))) are definable sets.26 By uniform local weak o-
minimality of the second kind, we can shrink J, I, B such that π1(Xconst ∩ (f−1(J) ∩
(I × {c}))) is a finite union of points and open convex sets for all c ∈ B. By the
definition of Xconst, it even has to be a finite union of open convex sets and f(−, c) is
locally constant on π1(Xconst ∩ (f−1(J) ∩ (I × {c}))).

Note that, by construction, any isolated points of ((I × {c}) ∩ f−1(J)) are contained
in X ′

const: By denseness, we can find x1, x2 ∈ I with x1 < x < x2 such that ]x1, x2[ ∩
(f−1(J))c = {x}.

Define the definable sets

EX = {(x, z) ∈ I × B : x ∈ bd((Xconst)z)},

Y ′ = (f−1(J) ∩ (I × B)) \ (EX ∪Xconst).

Possibly shrinking I and B , π1(EX ∩ (I ×{c}))) is finite for all c ∈ B. Thus, π1(EX ∩
(f−1(J) ∩ (I × {c}))) is finite. Moreover, by definition, π1(Y ′ ∩ (I × {c})) is a finite
union of (not necessarily open) convex sets for all c ∈ B, again possibly shrinking I
and B. Define the definable sets

EY = {(x, z) ∈ I × B : x ∈ bd(Y ′
z )},

Y = Y ′ \ EY .

Possibly shrinking I and B, π1(EY ∩ (I×{c})) is finite and π1(Y ∩ (I×{c})) is a finite
union of open convex sets for all c ∈ B.

25A function g : I → M is called locally injective if, for every x ∈ I, there exists an open interval I ′
such that x ∈ I ′ ⊆ I and the restriction of g to I ′ is injective.

26As a clarification, since the notation is not very clear here: In the definition of Xconst, x is
contained in the interior of the fiber, and not only in the fiber of the interior.
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The set of sets of pairs of points where f(−, z) maps to the same value defined by

F = {(x, x′, z) ∈ I × I × P : f(x, z) = f(x′, z) ∧ (x, z) ∈ Y }

is also definable and we can shrink I and B such that the fiber F(b,c) = {x ∈ I :
(x, b, c) ∈ F} is a finite union of points and open convex sets for all b ∈ I, c ∈ B.
Assuming this, F(b,c) must be finite: F(b,c) cannot have interior since this would imply
that f(−, z) would be constant there but F(b,c) ∩ (X ′

const)c = ∅. Thus, (f−1(a))c ∩ Yc is
finite for every c ∈ B and a ∈ J .

We define

Xnn =
{
(x, z) ∈ Y : ∃ x1, x2 ∈ I

(
(x1 < x < x2) ∧ f(−, z) is injective on ]x1, x2[

)}
.

We show that (Xnn)z is dense in Yz for any z ∈ B. Let c ∈ B and a1 ∈ Yc be arbitrary.
Since Yc is a finite union of open convex sets, there is a2 ∈ Yc with a1 < a2 such that
the interval Ic = ]a1, a2[ ⊆ Yc. We define the map

gc : f(Ic, c) → Ic, y 7→

{
min (f−1(y))c ∩ Ic if (f−1(y))c ∩ Ic 6= ∅
a1 else.

By finiteness of (f−1(a))c∩Yc, this map is well defined and definable. By uniform local
weak o-minimality of the second kind, there is a3 such that either ]a1, a3[∩gc(f(Ic, c)) =
∅ or ]a1, a3[ ⊆ gc(f(Ic, c)). The first case is impossible: Let u ∈ ]a1, a3[ and v = f(u, c).
Then, gc(v) ∈ ]a1, u] ⊆ ]a1, a3[. Thus, for any a1 ∈ Yc there is a a3 ∈ Yc, a1 < a3 such
that f(−, c) is injective on ]a1, a3[, implying ]a1, a3[ ⊆ (Xnn)c. We conclude that (Xnn)c
is dense in Yc.

By uniform local weak o-minimality of the second kind, there exist a subinterval of I
and a box contained in B such that (Xnn)c and (Y \Xnn)c are finite unions of points
and open convex sets on the subinterval for any c in the box. We shrink I and B such
that this condition holds true for I, B. Then, (Y \Xnn)c is finite and (Xnn)c is a finite
union of open convex sets, as (Xnn)c is dense in Yc. Defining X ′

f = (Y \Xnn)∪EX∪EY ,
the claim holds for the current J, I, B.

Step 3. Any definable function g : Ig → M on some interval Ig cannot
have a local minimum at every x ∈ Ig or a local maximum at every x ∈ Ig.

This is proven as Claim 1 in the proof of Theorem 6.11.

Step 4. There exist intervals I2 ⊆ I1, J2 ⊆ J1 and a box B2 ⊆ B1 such
that there exists a partition Xnn = X ′′

f ∪ X ′
+ ∪ X ′

− into pairwise disjoint
definable sets and for every c ∈ B,

1. π1(X ′′
f ∩ (f−1(J) ∩ (I × {c}))) is a finite set,

2. π1(X ′
− ∩ (f−1(J) ∩ (I × {c}))) is a finite union of open convex sets and

f(−, c) is locally strictly decreasing on the set,
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3. π1(X ′
+ ∩ (f−1(J) ∩ (I × {c}))) is a finite union of open convex sets and

f(−, c) is locally strictly increasing on the set.

Let a ∈ Xnn and c ∈ B. As f(−, c) is locally injective on π1(Xnn ∩ (I × {c})), we can
find an interval Ia around a on which f(−, c) is injective. Thus, for any a′ ∈ Ia, we
have f(a′, c) > f(a, c) or f(a′, c) < f(a, c). By uniform local weak o-minimality of the
second kind, we can find x1 < x < x2 such that one of the two possibilities holds for all
a1 ∈ ]x1, x[ and one of the two possibilities holds for all a2 ∈ ]x, x2[. Therefore, one can
partition Xnn = X ′′′

− ∪X ′′′
+ ∪Xmax ∪Xmin into the following pairwise disjoint definable

sets:

X ′′′
− =

{
(x, z) ∈ Xnn : ∃ x1, x2

(
x1 < x < x2

∧ ∀ x′
((

(x1 < x′ < x) → (f(x′, z) > f(x, z) ∧ (x′, z) ∈ Xnn)
)

∧
(
(x < x′ < x2) → (f(x′, z) < f(x, z) ∧ (x′, z) ∈ Xnn)

)))}

X ′′′
+ =

{
(x, z) ∈ Xnn : ∃ x1, x2

(
x1 < x < x2

∧ ∀ x′
((

(x1 < x′ < x) → (f(x′, z) < f(x, z) ∧ (x′, z) ∈ Xnn)
)

∧
(
(x < x′ < x2) → (f(x′, z) > f(x, z) ∧ (x′, z) ∈ Xnn)

)))}

Xmax =
{
(x, z) ∈ Xnn : ∃ x1, x2

(
x1 < x < x2

∧ ∀ x′
((

(x1 < x′ < x) → (f(x′, z) > f(x, z) ∧ (x′, z) ∈ Xnn)
)

∧
(
(x < x′ < x2) → (f(x′, z) > f(x, z) ∧ (x′, z) ∈ Xnn)

)))}

Xmin =
{
(x, z) ∈ Xnn : ∃ x1, x2

(
x1 < x < x2

∧ ∀ x′
((

(x1 < x′ < x) → (f(x′, z) < f(x, z) ∧ (x′, z) ∈ Xnn)
)

∧
(
(x < x′ < x2) → (f(x′, z) < f(x, z) ∧ (x′, z) ∈ Xnn)

)))}
By the previous step, π1(Xmax ∩ I × {c}) and π1(Xmin ∩ I × {c}) are finite for every
c ∈ B, if we eventually shrink I, J and B.

Now, we can again remove the boundary of X ′′′
− and X ′′′

+ in each fiber since it is clearly
a finite set if we shrink I, B accordingly. Define

E = {(x, z) ∈ X ′′′
− : x ∈ bd((X ′′′

− )z)} ∪ {(x, z) ∈ X ′′′
+ : x ∈ bd((X ′′′

+ )z)},
X ′′

+ = X ′′′
+ \ E,

X ′′
− = X ′′′

− \ E.
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Now, define the definable sets

X ′
+ = {(x, z) ∈ X ′′

+ : f(−, z) is locally strictly increasing at (x, z)},
X ′

− = {(x, z) ∈ X ′′
− : f(−, z) is locally strictly decreasing at (x, z)}.

Consider the set E+ := X ′′
+ \X ′

+: Let c ∈ B. Note that every x ∈ π1(E+ ∩ I × {c}) is
contained in at least one of the following two sets:

χ0 := {x ∈ X ′′
+ : ∀ x0 ((x0 < x) → (∃ s, t ((x0 < s < t < x) ∧ (f(s) ≥ f(t)))))}

χ1 := {x ∈ X ′′
+ : ∀ x1 ((x < x1) → (∃ s, t ((x < s < t < x1) ∧ (f(s) ≥ f(t)))))}.

In the next part, we show that χ0 has empty interior.27 Towards a contradiction,
assume χ0 has interior and let Iχ be some interval in this interior. Define g to be the
definable function

g : Iχ →M,x 7→ inf({x} ∪ {y ∈ Iχ : ∀ t ∈ [y, x[ (f(t) < f(x))}).

Let a ∈ Iχ be arbitrary. By local o-minimality, there are b1, b2 with b1 < a < b2 such
that either g(y1) > g(a) for all y1 ∈ ]b1, a[ or g(y1) ≤ g(a) for all y1 ∈ ]b1, a[ and either
g(y2) > g(a) for all y2 ∈ ]a, b2[ or g(y2) ≤ g(a) for all y2 ∈ ]a, b2[. Since Iχ ⊆ X ′′

+, we
have g(x) < x for all x ∈ Iχ. Without loss of generality, we can assume g(a) ≤ b1.

Suppose g(a) ≥ g(t) for all t ∈ [b1, a[. Since a ∈ χ0, we can find s, t ∈ ]b1, a[ with s < t
and f(s) ≥ f(t). Thus, by definition, g(t) ≥ s but then g(t) ≥ s > a0 ≥ g(a). Hence,
g(a) < g(t) for all t ∈ [b1, a[. Similarly, since b2 ∈ χ0, we can assume that g(a) < g(t)
for all t ∈ ]a, b2]. Therefore, a is a local minimum. But since a was chosen arbitrarily,
g has local minima throughout Iχ, which is a contradiction to Step 3. Thus, χ0 has
empty interior. With a similar proof, one can show the same for χ1.

By Lemma 3.7, π1(E+∩I×{c}) has empty interior. This implies that π1(E+∩I×{c})
is finite for every c ∈ B if we choose I and B to be sufficiently small. By a similar
proof, the same holds for π1(E− ∩ I × {c}). We can conclude that if we define X ′′

f :=
E+ ∪ E− ∪ E ∪Xmax ∪Xmin, the claim holds for X ′′

f , X
′
− and X ′

+.

Step 5. There exist intervals I3 ⊆ I2, J3 ⊆ J2, a box B3 ⊆ B2 and partitions
X ′

+ = X+ ∪ F+ and X ′
− = X− ∪ F− into disjoint definable sets such that,

for every c ∈ B,

1. π1(X− ∩ (f−1(J) ∩ (I × {c}))) is a finite union of open convex sets and
f(−, c) is locally strictly decreasing and continuous on the set,

2. π1(X+ ∩ (f−1(J) ∩ (I × {c}))) is a finite union of open convex sets and
f(−, c) is locally strictly increasing and continuous on the set,

3. π1(F+ ∩ (I × {c})) and π1(F− ∩ (I × {c})) are finite sets.
27This part is similar to the proof of Theorem 6.5.
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First, we define the following definable sets:

F+ = {(x, z) ∈ X ′
+ : f(−, z) is not continuous at x}

F− = {(x, z) ∈ X ′
− : f(−, z) is not continuous at x}

Moreover, define X+ = X ′
+ \ F+ and X− = X ′

− \ F−. It is sufficient to show the
finiteness of (F+)c and (F−)c for all c ∈ B, for the rest of the claim to be immediate.

Towards a contradiction, assume (F+)c has interior for some c ∈ B. Since f(−, c) is
locally strictly increasing on (F+)c ⊆ (X ′

+)c, there is an interval IF in the interior of
(F+)c such that f is strictly increasing on IF . Note that f(IF , c) is a definable set.
Possibly shrinking IF , we can assume f(IF , c) to be a finite union of open convex sets
and points. Since f(−, c) is strictly increasing, f(IF , c) cannot be finite. Thus, it
contains an open convex set. Pick a < b in the open convex set and notice that f is an
order preserving bijection on the interval between the points f−1(a) and f−1(b) and,
hence, continuous. This is a contradiction to f(−, z) not being continuous at x for
every (x, z) ∈ F+. Thus, (F+)c does not have interior. The proof for (F−)c is similar.

Combining all the statements from Steps 1 to 5, the statement of the theorem is
immediate.

Remark 6.14. As shown in [15, Theorem 3.6] with a similar proof, if we drop the
continuity in the previous theorem the following two similar statements are true:

1. The same parameterized monotonicity result as in the previous theorem holds
for all functions f : A× P →M .

2. If M is uniformly locally weakly o-minimal of the first kind, the same parame-
terized monotonicity result as in the previous theorem with J =M and B =Mn

holds for all functions f : A× P →M .

Finally, we show that some of the tameness properties discussed in this section indeed
do not generally hold in the broader setting of arbitrary locally o-minimal structures.
To this end, we explicitly discuss two examples.

First, we consider strong local monotonicity.

Proposition 6.15 ([40, Proposition 2.13, Proposition 3.6]). There exist locally o-
minimal structures without strong local monotonicity.

Proof. Recall the structure from Example 10:

N = (N,<lex, f),

N := {(a, 0) : a ∈ Q+} ∪ {(a, b) : a ∈ Q− \ Z−, b ∈ Q} ∪ {(a, 0) : a ∈ Z−
0 },

f : N− → N, (a, b) 7→ (−a, 0).

Then, f is a definable function not having strong local monotonicity, since it is locally
constant but attains infinitely many different values on every interval around a negative
integer as a domain.
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Secondly, in the next proposition, we discuss an example without the local continuity
property. Recall that in the Parameterized Monotonicity Theorem, we only consider
functions which map to a bounded image. The example in the proof of the next propo-
sition nicely visualizes that this is necessary for the continuity part of the statements.

Proposition 6.16 ([38, Example 3.2]). There exist strongly locally o-minimal struc-
tures with definable functions that are nowhere continuous.

Proof. Recall the structure (Q2, <lex, f) from Example 8. The structure is strongly
locally o-minimal, but f : Q2 → Q2, (a, b) 7→ (b, 0) is nowhere continuous.

local monotonicity local o-minimality & univariate ∗-continuity property;
uniform local weak o-minimality of the 2. kind

local continuity property local o-minimality & univariate ∗-continuity property

strong local monotonicity local o-minimality & definable completeness; strong local
o-minimality

parameterized local
monotonicity and conti-
nuity

uniform local weak o-minimality of the 2. kind

Table 2: Summary of the presented tameness results in this section. Confer with
Figures 3 and 4 to check for which other notions this implies the same results trivially
since they are implied by one of the notions mentioned here.

6.2.2 Cell Decomposition and Decomposition into Submanifolds

Now, that we have established some local monotonicity results, we consider another,
even stronger, geometric tameness property, called definable cell decomposition. Again,
this property holds for o-minimal structures and in this section we evaluate if there are
similar results for the notions of local o-minimality.

Definition 6.17 (Definable Cell Decomposition, [10, Definition 1.5]). Let n ∈ N>0

and i1, . . . , in ∈ {0, 1}. Then, (i1, . . . , in)-cells are definable subsets of Mn defined
inductively as follows:

• A (0)-cell is a point in M and a (1)-cell is an open interval in M .

• An (i1, . . . , in, 0)-cell is the graph of a definable continuous function defined on
an (i1, . . . , in)-cell. An (i1, . . . , in, 1)-cell is a definable set of the form {(x, y) ∈
C × M : f(x) < y < g(x)}, where C is an (i1, . . . , in)-cell and f and g are
definable continuous functions defined on C with f < g.28

28Here, f < g means that for every x ∈ C, we have f(x) < g(x).
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The sequence (i1, . . . , in) of ones and zeroes is called the type of an (i1, . . . , in)-cell.
A definable set Ci is called a cell if there is some type (i1, . . . , in) such that Ci is an
(i1, . . . , in)-cell. An open cell is a (1, 1, . . . , 1)-cell. The dimension dimcell(C) of an
(i1, . . . , in)-cell C is defined by dimcell(C) =

∑n
j=1 ij.

A definable cell decomposition of an open box is defined inductively as follows:

• A definable cell decomposition of B ⊆M is a partition B =
⋃m
i=1Ci into finitely

many cells Ci ⊆M (i. e. points and intervals).

• A definable cell decomposition of B ⊆ Mn+1 is a partition B =
⋃m
i=1Ci into

finitely many cells Ci ⊆ Mn+1 such that π≤n(B) =
⋃m
i=1 π≤n(Ci) is a definable

cell decomposition of π≤n(B) ⊆Mn.

Consider a finite family {Aλ}λ∈Λ of definable subsets of B. A definable cell decompo-
sition of B partitioning {Aλ}λ∈Λ is a definable cell decomposition of B such that the
definable sets Aλ are unions of cells for all λ ∈ Λ.29

For o-minimal structures, there exists the following well known decomposition theorem:

Theorem 6.18 (Definable Cell Decomposition Theorem, [7, Theorem 2.11 of Chapter
3]). Let M be o-minimal. Let n be an arbitrary positive integer. Let {Aλ}λ∈Λ be a
finite family of definable subsets of Mn. There exists a definable cell decomposition of
Mn partitioning the finite family {Aλ}λ∈Λ.

Note, this theorem clearly also implies a local version of it. If we have a definable box
B ⊆ Mn with

⋃
λ∈ΛAλ ⊆ B, we can apply the theorem to get a cell decomposition C

and take C ′ = {C ∩B : C ∈ C} as a cell decomposition partitioning B. Thus, we have
the following corollary:

Corollary 6.19. Let M be o-minimal. Let n be an arbitrary positive integer and
B ⊆ Mn a box. Let {Aλ}λ∈Λ be a finite family of definable subsets of B. There exists
a definable cell decomposition of B partitioning the finite family {Aλ}λ∈Λ.

It is immediate that, for any structure, definable cell decomposition, as presented in
Theorem 6.18, implies o-minimality. Thus, we cannot hope to prove the same result
for locally o-minimal structures which are not o-minimal. Instead, we hope for a local
version similar to Corollary 6.19. Indeed, such a result can be shown, as in the following
main theorem regarding local cell decomposition:

Theorem 6.20 (Local Definable Cell Decomposition Theorem, [26, Proposition 13],
[16, Theorem 4.2]). Let M be a strongly locally o-minimal structure or a definably
complete uniformly locally o-minimal structure of the second kind. Let n be an arbitrary
positive integer. Let {Aλ}λ∈Λ be a finite family of definable subsets of Mn. For every
point a ∈ Mn, there exist an open box B 3 a and a definable cell decomposition of B
partitioning the finite family {B ∩ Aλ : λ ∈ Λ and B ∩ Aλ 6= ∅}.

29In other literature this is sometimes also called a cell decomposition adapted to or compatible
with {Aλ}λ∈Λ.
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Proof for strongly locally o-minimal structures. Recall from the proof of Corollary 6.12
that the following are equivalent:

1. M is strongly locally o-minimal.

2. For every a0, . . . , an ∈M finite set of points in M , there are b0, . . . , bn, c0, . . . cn ∈
M ∪ {±∞} with bi < ci and ai ∈ ]bi, ci[ such that for N = ]b0, c0[ ∪

⋃n
i=1[bi, ci[,

the structure N = (N, {PNn∩X}n∈N,X∈DefnM) is o-minimal.

Let {Aλ}λ∈Λ be a finite family of definable subsets of Mn and let a = (a0, . . . , an) ∈
Mn+1. Let bi, ci ∈M with bi < ci and ai ∈ ]bi, ci[ such that for N = ]b0, c0[∪

⋃n
i=1[bi, ci[,

the structure N = (N, {PNn∩X}n∈N,X∈DefnM) is o-minimal. Let BM ⊆ Mn be the box
]b1, c1[×· · ·× ]bn, cn[ in the structure M and BN ⊆ Nn be the box ]b1, c1[×· · ·× ]bn, cn[
in the structure N . Let A′

λ be the preimage of Aλ under the canonical embedding
Id : N → M,x 7→ x. Note that the sets A′′

λ = BN ∩ A′
λ are definable in N . By

Corollary 6.19, there is a definable cell decomposition of BN partitioning {A′′
λ}λ∈Λ. It

is easy to check, that mapping these sets to M via the canonical embedding results in
a cell decomposition of BM partitioning {BM ∩ Aλ}.

Proof for definably complete, uniformly locally o-minimal structures of the second kind.
30 To prove the statement, we simultaneously show the following three assertions with
an induction:

(CD)n Let {Aλ}λ∈Λ be a finite family of definable subsets ofMn and a ∈Mn. There exist
an open box B with a ∈ B and a definable cell decomposition of B partitioning
the finite family {B ∩ Aλ : λ ∈ Λ and B ∩ Aλ 6= ∅}.

(PC)n Let A ⊆ Mn be a definable subset, f : A → M be a definable function and
a ∈ Mn, b ∈ M be arbitrary. There is some open interval J1 with b ∈ J1 such
that for every interval J ⊆ J1 with b ∈ J , there exist an open box B with a ∈ B
and a definable cell decomposition of B partitioning f−1(J) ∩ B such that the
function f is continuous on every cell contained in f−1(J) ∩ B.

(UF)n Let X ⊆ Mn+1 be a definable and a ∈ M, b ∈ Mn be arbitrary. There exist
an open interval I around a, an open box B with b ∈ B and a positive integer
N such that, for every y ∈ B, the definable set Xy ∩ I contains an interval or
|Xy ∩ I| ≤ N .

Induction Start. We have that (CD)1 follows directly from local o-minimality and
(PC)1 follows from the Parameterized Local Monotonicity Theorem (Theorem 6.13),
as any convex set in a definably complete structure is an interval.

Part 1 of the Induction Step. We show that the assertions (UF)n hold true for
all positive integers n assuming the assertions (PC)n, (CD)n and (UF)m for all m < n.
Fix a ∈M and b ∈Mn.

First, we show that the condition (UF)n is equivalent to
30Here, parts of the proof are similar to the reference, but we also modified larger segments in order

not to need the statements from Corollaries 6.23 and 6.24 for the proof.
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(UF′)n Let X be a definable subset of Mn+1 such that the fiber Xy is empty or a discrete
set for every y ∈Mn. For every a ∈M and b ∈Mn, there exist an open interval
I containing the point a, an open box B with b ∈ B and a positive integer N
such that |Xy ∩ I| ≤ N for every y ∈ B.

It is immediate from the definition that (UF)n implies (UF′)n. To show the other
direction, let X be a definable subset of Mn+1, let a ∈ M and b ∈ Mn. By uniform
local o-minimality of the second kind, there is an open box b ∈ B ⊆ Mn and an open
interval a ∈ I ⊆ M such that Xy ∩ I is a finite union of open intervals and points for
every y ∈ B. Define Y to be the set of the isolated points and the endpoints of the
maximal intervals in all these fibers, i. e. the following set:

Y = {(x, y) ∈ I × B : x ∈ bd(Xy)}

Since Yy is finite for all y ∈ B, we can apply (UF′)n and shrink I and B such that
for all y ∈ B, we have |Yy ∩ I| ≤ N for some positive integer N . It follows from the
definition of Y that Xy either contains an interval or |Xy ∩ I| ≤ N . Thus, (UF)n holds
true.

Thus, it is sufficient to show (UF′)n. Let X be a definable subset of Mn+1 such that
for every y ∈Mn, the fiber Xy is empty or a discrete set. Let a ∈M, b ∈Mn.

For this proof, we call a point (y, x) ∈ I×B normal if there exists an open subinterval
I ′ of I and an open box B′ such that y ∈ I ′, x ∈ B′ and (I ′ × B′) ∩ X = ∅ or
(I ′ × B′) ∩X = Γ′(f) for some definable continuous function f : B′ → I ′.31

We consider the definable sets

A+
I = {x ∈Mn : (y, x) is not normal for some y ∈ I with y > a},

A−
I = {x ∈Mn : (y, x) is not normal for some y ∈ I with y ≤ a} and

NI =Mn \ (A+
I ∪ A−

I ).

Claim 1. For any definably connected subset C of NI , there exists a finite family {fi :
C → I}ki=1 of definable continuous functions such that fi < fi+1 for all 1 ≤ i ≤ k − 1
and X ∩ (I × C) =

⋃k
i=1 Γ

′(fi).

Proof of Claim 1. Let c ∈ C be arbitrary. Define k := |Xc ∩ I| and let y1, . . . , yk ∈ M
be such that Xc ∩ I = {y1, . . . , yk} and yi < yi+1 for all 1 ≤ i ≤ k − 1. Let fi
be a continuous definable function with maximal definably connected domain Di 3 c
attaining fi(c) = yi. As c ∈ C ⊆ NI , there is a continuous definable function attaining
fi(c) = yi. Suppose there was some x ∈ C ∩ fr(Di) not in the domain of fi. Let y ∈M
such that (y, x) ∈ Γ′(fi)∩ (I×{x}). As x ∈ NI , (y, x) is normal. But (I ′×B′)∩X 6= ∅
for all I ′ 3 y and B′ 3 x as (y, x) ∈ Γ′(fi). Thus, there is a continuous function
g : B′ → J ′ such that X ∩ (J ′ × B′) = Γ′(g) for some open interval J ′ 3 y and some

31The notation Γ′(f) refers to the set {(y′, x′) ∈ I ′ ×B′ : y′ = f(x′)}.
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open box B′ 3 x. In particular, g = f on B′ ∩Di. Therefore, we can extend fi to be a
continuous function on the definably connected set Di ∪ {x} by

f ′
i(z) :=

{
fi(z) if z ∈ Di

g(z) else.

This is a contradiction to the maximality of Di. Thus, the domain of fi contains C.

Moreover, we have fi < fi+1 on all of C for these functions. Assume not. Then, there
exist some i with 1 ≤ i < k and a point q ∈ C such that fi(q) ≥ fi+1(q). The definable
sets {x ∈ C : fi(x) = fi+1(x)}, {x ∈ C : fi(x) < fi+1(x)} and {x ∈ C : fi(x) > fi+1(x)}
are open by the definition of NI . The definably connected set C is equal to the disjoint
union of the definable open sets {x ∈ C : fi(x) = fi+1(x)}, {x ∈ C : fi(x) < fi+1(x)}
and {x ∈ C : fi(x) > fi+1(x)}. But at least two of them are not empty, contradicting
that C is definably connected.

Claim 2. There is some interval I 3 a and some box B 3 b and a cell decomposition
of B partitioning A+

I ∩ B and A−
I ∩B such that all cells have empty interior.

Proof of Claim 2. First, suppose that for every I 3 a, A−
I ∩B has a cell with non-empty

interior for every box B 3 b. Define the definable function

βI : A−
I → I, x 7→ sup {y ∈ I : y ≤ a and (y, x) is not normal}.

By definable completeness, this function is well-defined.

Furthermore, define the definable sets B+
I ,B

−
I and the definable functions γ+I , γ

−
I by

B−
I = {x ∈ A−

I : ∃ y ∈ I (y < βI(x) ∧ (y, x) ∈ X)},
B+
I = {x ∈ A−

I : ∃ y ∈ I (y > βI(x) ∧ (y, x) ∈ X)},

γ−I : B−
I → I, x 7→ sup {y ∈ I : y < βI(x) ∧ (y, x) ∈ X},

γ+I : B+
I → I, x 7→ inf {y ∈ I : y > βI(x) ∧ (y, x) ∈ X}.

These functions are well-defined and nowhere equal to β asXx is discrete for all x ∈Mn.

Apply (PC)n. There is a box B 3 b and some interval J with a ∈ J ⊆ I and definable
cell decompositions Cβ, Cγ+ , Cγ− of B partitioning (β−1

I (J) ∩ B), ((γ+I )−1(J) ∩ B) and
((γ−I )

−1(J) ∩ B) respectively, such that βI is continuous on every cell of Cβ, γ+I is
continuous on every cell of Cγ+ and γ−I is continuous on every cell of Cγ− .

Note, D = {x ∈ A−
I : (βI(x), x) ∈ X} is a definable set.

By (CD)n, possibly shrinking B, there is a cell decomposition C of B partitioning D
and all cells of Cβ, Cγ+ and Cγ− .

Then, βI , γ+I and γ−I are continuous on every cell of C that they are defined on. Since
they are nowhere equal, this implies that for every C ∈ C and x ∈ C ∩ D, there
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is a box BC 3 x and an interval IC 3 β(x) such that Γ′(γ+J ′) ∩ IC × BC = ∅ and
Γ′(γ−J ′) ∩ IC × BC = ∅. Hence, Γ′(βI) ∩ (IC × BC) = X ∩ (IC × BC).

By our assumption, there is some open cell C ∈ C with C ⊆ A−
I . By definition, C is

either contained in or disjoint to the sets that C partitions.

Let C ⊆ D. Then, all (β(x), x) are normal for x ∈ C as (I ′ × B′) ∩ X = Γ′(β) for
sufficiently small I ′, B′. This contradicts the definition of β.

Let C ⊆ (A−
J ′) \D. Then, all (β(x), x) are normal for x ∈ C as (I ′ × B′) ∩X = ∅ for

sufficiently small I ′, B′. This also contradicts the definition of β.

Hence, both cases result in a contradiction.

An analogous proof for A+
I , using

βI : A+
I → I, x 7→ inf {y ∈ I : y ≤ a and (y, x) is not normal}

and replacing A−
I by A+

I everywhere, shows the second part of the claim.

Thus, we have shown both claims. To prove (UF′)n, first notice, that by (CD)n, there
is some cell decomposition D of some box B 3 b partitioning NI , A+

I , A−
I and π≥2(X).

We can apply (UF′)m for some m < n to X ∩ (M × D) for every cell D which has
no interior, potentially shrinking I and B. To be more precise, we take the pro-
jection π ̸=l forgetting a coordinate l where the index il of the cell equals 0. Then,
(π ̸=l(X ∩ (M ×D)))y is empty or a discrete set for every y ∈ B. Apply (UF′)n−1

to π ̸=l(X ∩ (M × D)). Potentially shrinking I and B, there is some ND such that
|(π ̸=l(X∩(M×D)))y∩I| ≤ ND for all y ∈ π ̸=l(B). This implies |(X∩(M×D))y∩I| ≤
ND for all y ∈ B. Equivalently, |Xy ∩ I| ≤ ND for all y ∈ D. By Claim 2, one can
choose D and B such that all cells C ∈ D with interior are not a subset of A+

I or A−
I .

Thus, they are contained in NI .

Let C ∈ D be some open cell. By definable completeness, cells are definably con-
nected.32 Hence, there is some kC such that X ∩ (I ×C) =

⋃k
i=1 Γ

′(fi) for some fi. By
Claim 1, |Xy ∩ I| ≤ kC for all y ∈ C.

As the cell decomposition is finite, we can set N = max {kC , ND : C,D ∈ D}. With
this definition, N fulfills (UF′)n and, therefore, (UF)n holds.

Part 2 of the Induction Step. In this step, we show that (PC)n holds, assuming
(CD)n and (PC)n−1 for all n > 1.

Let A ⊆ Mn be a definable subset and f : A → M be a definable function. If A ∩ B
has no interior for some box B 3 b, applying (CD)n to A∩B results in a cell decompo-
sition with no cell having interior. For all cells without interior, there is a coordinate
projection onto n−1 coordinates which restricted to the cell is a homeomorphism onto

32confer [7, Proposition 2.9 in Chapter 3]

53



its image.33 Thus, by (PC)n−1, we can assume that f is continuous the projections of
the cells. Mapping the resulting cells back gives the desired cell decomposition.

Thus, without loss of generality, we can assume A be an open set and by the same
reasoning, it is sufficient to show that there is a cell decomposition such that f is
continuous on every open cell.

Let a ∈ M, b = (b1, . . . , bn) ∈ Mn. For every i in {1, . . . , n}, by the Parameterized
Local Monotonicity Theorem (Theorem 6.13), there is a box Bi ⊆ Mn−1, an interval
Ii ⊆ M with (b1, . . . , bi−1, bi+1, . . . , bn, bi) ∈ Bi × Ii and some interval Ji 3 a such that
f(c1, . . . , ci−1,−, ci+1, . . . , cn) : I ∩ (f−1(Ji))(c1,...,ci−1,ci+1,...,cn) → Ji is continuous every-
where except for a finite set Fi,c for every c = (c1, . . . , ci−1, ci+1, . . . , cn) ∈ Bi. Here, we
slightly deviate from our definition of the fiber and by I ∩ (f−1(Ji))(c1,...,ci−1,ci+1,...,cn),
we denote {xi ∈ I : (c1, . . . , ci−1, xi, ci+1, . . . , cn) ∈ f−1(Ji)}.

Let
B′
i = {(c1, . . . , cn) ∈Mn : (c1, . . . , ci−1, ci+1, . . . , cn) ∈ Bi ∧ ci ∈ Ii},

B =
⋂n
i=1B

′
i, J =

⋂n
i=1 Ji and Si = {x ∈ Fi,c : c ∈ Bi} for 1 ≤ i ≤ n. Clearly, b ∈ B

and B is a non-empty box, a ∈ J and J is an interval. Applying (CD)n and possibly
shrinking B, there is a cell decomposition C of B ∩ f−1(J) partitioning {Si}i=1,...,n.
The fibers of Si are finite. Therefore, Si cannot have interior, as the fibers would have
interior as well. This implies, that any cell C ∈ C with C ⊆ Si cannot have interior.
By construction, f is continuous at every x ∈ (B ∩ f−1(J)) \ (

⋃n
i=1 Si). Thus, f is

continuous on every cell with interior.

Part 3 of the Induction Step. Finally, we show that (CD)n+1 holds, assuming
(CD)n, (UF)n and (PC)n for all n ≥ 1.

Let a = (a1, . . . , an+1) ∈ Mn+1 and let {Aλ}λ∈Λ be a finite family of definable subsets
of Mn+1. Let B ⊆Mn+1 be a sufficiently small box with a ∈ B.34

Define the definable set

Y =
⋃
λ∈Λ

{(x, y) ∈Mn ×M : (x, y) ∈ B, y ∈ bd((Aλ ∩ B)x)}.

The fiber ({(x, y) ∈ Mn ×M : (x, y) ∈ B, y ∈ bd((Aλ ∩ B)x)})z cannot have interior
for any z ∈ Mn, since the boundary of any set cannot have interior. By uniform local
o-minimality of the second kind, there is some box Bλ ⊆Mn and some interval Iλ ⊆M
with (a1, . . . , an) ∈ Bλ, an+1 ∈ Iλ such that Iλ∩{y ∈M : (c, y) ∈ B, y ∈ bd((Aλ∩B)c)}
is finite for all c ∈ Bλ. In particular, we can define the box B1 =

⋂
λ∈ΛBλ and the

interval I1 =
⋂
λ∈Λ Iλ. Then, (a1, . . . , an) ∈ B1, an+1 ∈ I1 and Yc ∩ I1 is finite for

all c ∈ B1. We apply (UF)n to Y ∩ B1 × I1. There are a positive integer N , some
interval I2 with an+1 ∈ I2 ⊆ I1 and some box B2 with (a1, . . . , an) ∈ B2 ⊆ B1 such
that |Yc ∩ I2| ≤ N for all c ∈ B2. Possibly shrinking B, we can assume B ⊆ B2 × I2.

33We do so, by essentially removing a coordinate where the index in the type of the cell is 0.
34Again, we specify what sufficiently small means throughout the proof.
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Define Ci = {x ∈ B : |Yx∩ I2| = i} and let fi,1, . . . , fi,i : Ci → I2 be definable functions
with fi,j < fi,j+1 and Yx∩ I = {fi,1(x), . . . , fi,i(x)} for all 1 ≤ i ≤ N and 1 ≤ j ≤ i− 1.

Applying (PC)n to each fi,j, there are cell decompositions Ci,j of Ci, possibly shrinking
I2, B2 and B further. Note, fi,j is continuous on each cell of Ci,j. Define the following
finite families of definable sets

Cλ,i,j = {x ∈ Ci : fi,j(x) ∈ (Aλ)x} and Dλ,i,j = {x ∈ Ci : ]fi,j(x), fi,j+1(x)[ ⊆ (Aλ)x}.

Applying (CD)n, possibly shrinking B2 and B again, there is a cell decomposition C
partitioning all cells of Ci,j and the sets Cλ,i,j and Dλ,i,j for all 1 ≤ i, j ≤ n and λ ∈ Λ.
Let b1, b2 ∈M be such that I2 = ]b1, b2[. Then, the set{

]b1|C , fi,1|C [ , . . . , ]fi,j|C , fi,j+1|C [ , . . . , ]fi,i|C , b2|C [ ,Γ(fi,1), . . . ,Γ(fi,i) : C ∈ C
}

is a definable cell decomposition of B partitioning {B ∩ Aλ : λ ∈ Λ, B ∩ Aλ 6= ∅}.

Here, ]f |C , g|C [ refers to the set {(x, y) ∈ C ×M : f(x) < y < g(x)}.

For almost o-minimal structures, we can deduce the following slightly stronger corollary
with the same proof as for the strongly o-minimal case:

Corollary 6.21. Let M be an almost locally o-minimal structure. Let n be an arbitrary
positive integer. Let {Aλ}λ∈Λ be a finite family of definable subsets of Mn. For every
bounded open box B ⊆Mn, there exists a definable cell decomposition of B partitioning
the finite family {B ∩ Aλ : λ ∈ Λ and B ∩ Aλ 6= ∅}.

Proof. Let {Aλ}λ∈Λ be a finite family of definable subsets of Mn and B = ]b1, c1[ ×
· · ·× ]bn, cn[ ⊆Mn be some bounded open box. Let N = ]b1, c1[∪

⋃n
i=2[bi, ci[ and recall

the structure N defined in the proof of Corollary 6.12. By the definition of almost
o-minimality, N = (N, {PNn∩X}n∈N,X∈DefnM) is o-minimal. Let BN ⊆ Nn be the box
]b1, c1[ × · · · × ]bn, cn[ in the structure N . Let A′

λ be the preimage of Aλ under the
canonical embedding Id : N → M,x 7→ x. Note that the sets A′′

λ = BN ∩ A′
λ are

definable in N .

By Corollary 6.19, there is a definable cell decomposition of BN partitioning {A′′
λ}λ∈Λ.

It is easy to check, that mapping these sets to M via the canonical embedding results
in a cell decomposition of BM partitioning {BM ∩ Aλ : λ ∈ Λ and BM ∩ Aλ 6= ∅}.

If we only consider definably complete structures this theorem cannot be generalized
any further:

Proposition 6.22 ([16, Corollary 4.1]). A definably complete locally o-minimal struc-
ture admits local definable cell decomposition if and only if it is a uniformly locally
o-minimal structure of the second kind.

Proof. One direction was shown in the previous theorem, the other direction follows
from the definitions: Let X ⊆ Mn+1 be definable and let a ∈ M, b ∈ Mn. There is an
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open box (a, b) ∈ B ⊆ Mn+1 and a definable cell decomposition C of B partitioning
X ∩ B. Note that, by definition, there is a finite set CX ⊆ C such that

⋃
C∈CX C =

X ∩ B. Define the interval I = Bb ⊆ M and the box B′ = Ba ⊆ Mn. We have
Xc ∩ I =

⋃
C∈CX Cc for all c ∈ B′. As Cc is a fiber of a cell, it is either empty, a point

or an interval. Uniform local o-minimality of the second kind follows.

The next two statements follow directly from (CD)n and (PC)n and are quite use-
ful tools for further investigations. In [16] these are shown for all uniformly locally
o-minimal structures of the second kind, not only definably complete ones, with a
technical proof not relying on cell decomposition.

Corollary 6.23 ([16, Theorem 3.3]). Let M be a strongly locally o-minimal structure
or a definably complete, uniformly locally o-minimal structure of the second kind. Let
X ⊆Mn be a definable set with interior. For every finite partition X = X1 ∪ · · · ∪Xm

into definable subsets Xi ⊆Mn, there is at least one set Xi with interior.

Proof. For cells, this statement can be easily checked. By (CD)n, there is some cell
decomposition of some box B in the interior of X partitioning X1, . . . , Xm that must
contain at least one cell that has interior. By definition, this cell is contained in some
Xi. Consequently, this Xi has interior.

Corollary 6.24 ([16, Theorem 3.4]). Let M be a strongly locally o-minimal structure
or a definably complete, uniformly locally o-minimal structure of the second kind. Let
B ⊆Mn be an open box, let a ∈M and let f : B →M be a definable function. There
exists an interval I with b ∈ I ⊆ M such that for every interval J with b ∈ J ⊆ I,
f−1(J) has empty interior or there is an open box B2 ⊆ f−1(J) such that f is continuous
on B2.

Proof. By (PC)n, we have some cell decomposition such that f is continuous on all
cells. If f−1(J) has interior, then some cell has interior as well. Every open cell contains
some box.

As discussed before, if we want a decomposition of X into only finitely many sets we
cannot hope for a decomposition into as well behaved sets as cells. But instead of
weakening the restriction of finiteness, if we use a relaxed definition of “good-shaped”
sets, we can get a decomposition for ∗-locally weakly o-minimal structures into finitely
many “good-shaped” sets in the following sense:

Definition 6.25 (Normal/Quasi-Special Submanifolds, [13, Definition 4.1], [15, Defini-
tion 4.25]). Let M be an arbitrary expansion of a dense linear order without endpoints.
Let {Xi}mi=1 be a finite family of definable subsets of Mn. Let X ⊆ Mn be definable
and π :Mn →Md be a coordinate projection.
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A point x ∈ X is called (X, π)-normal if there is an open box B ⊆ Mn with x ∈ B
such that B ∩X is the graph of a continuous map defined on π(B).35

A definable set X ⊆Mn is called a π-normal submanifold or simply a normal subman-
ifold if every point in X is (X, π)-normal.

A definable set X ⊆ Mn is a π-quasi-special submanifold or simply a quasi-special
submanifold if π(X) is a definable open set and, for every x ∈ π(X), there exists an
open box U ⊆ Md with x ∈ U such that: For every y ∈ X ∩ π−1(x), there exist an
open box V ⊆Mn with y ∈ V and a definable continuous map τ : U →Mn such that
π(V ) = U, τ(U) = X ∩ V and the composition π ◦ τ is the identity map on U .

A decomposition of Mn into normal submanifolds partitioning {Xi}mi=1 is a finite family
of normal submanifolds36 {Ci}Ni=1 such that

⋃N
i=1Ci =Mn, Ci∩Cj = ∅ when i 6= j and

either Ci has an empty intersection with Xj or is contained in Xj for every 1 ≤ i ≤ N
and 1 ≤ j ≤ m. A decomposition {Ci}Ni=1 into normal submanifolds satisfies the
frontier condition if the closure of every normal submanifold Ci is the union of a
subfamily of the decomposition.

A decomposition of Mn into quasi-special submanifolds partitioning {Xi}mi=1 is a finite
family of quasi-special submanifolds36 {Ci}Ni=1 such that

⋃N
i=1Ci = Mn, Ci ∩ Cj = ∅

when i 6= j and Ci has an empty intersection with Xj or is contained in Xj for every 1 ≤
i ≤ m and 1 ≤ j ≤ N . A decomposition {Ci}Ni=1 of Mn into quasi-special submanifolds
satisfies the frontier condition if the closure of every quasi-special manifold Ci is the
union of a subfamily of the decomposition.

For the next proposition, we need the definition of the local naive dimension:

Definition 6.26 (Local Naive Dimension, dimLN(X)). Let n be a positive integer
and X ⊆ Mn be a definable set. The local naive dimension of X, dimLN(X), is the
largest m ≤ n such that there exist a coordinate projection π :Mn →Mm and a point
a ∈ Mn such that the definable set π(B ∩ X) has a nonempty interior for any open
box B containing the point a. For the empty set, dimLN(∅) = −∞.

Every structure that has local cell decomposition also has a decomposition into normal
submanifolds:

Proposition 6.27. Let M be locally o-minimal and admit local definable cell decom-
position and {Xi}mi=1 be a finite family of definable subsets of Mn. Then, there exists
a decomposition {Sj}kj=1 of Mn into normal submanifolds partitioning {Xi}mi=1 satisfy-
ing the frontier condition. Furthermore, the number N of normal submanifolds is not
greater than a constant N determined only by m and n.

Proof. 37

35To be more precise, it is the graph of a continuous map after permuting the coordinates such that
π is the projection onto the first d coordinates.

36The different submanifolds can be submanifolds for different projections here.
37The main structure of this proof is inspired by the proof of [15, Theorem 4.26]. However, the

proof of Step 1 differs significantly from the proof given there.
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Step 1. Let X be a definable subset of Mn. There exists a family {Ci}Ni=1

of pairwise disjoint normal submanifolds with X =
⋃N
i=1Ci and N ≤ 2n.

For this proof, define the full dimension of a definable subsetX ofMn to be dimfull(X) =
(d, e) with d = dimLN(X) and e be the number of coordinate projections π :Mn →Md

such that there exists some x ∈ X such that for every box B 3 x, π(X ∩ B) has a
non-empty interior. Clearly, e is bounded for fixed n, d. Thus, we can prove the claim
by induction over the full dimension of X, where the pairs (d, e) are ordered by the
lexicographic order.

For d = dimLN(X) = 0, X itself is a normal submanifold. Let x = (x1, . . . , xn) ∈ X,
let i ∈ {1, . . . , n} be arbitrary and let B 3 x be some box such that πi(B ∩ X)
has empty interior. By local o-minimality, we can find some ai, bi ∈ M such that
]ai, bi[∩πi(X) = {xi}. Thus, if we choose ai, bi in that way for all i, we have B∩X = {x}
for B = ]a1, b1[× · · · × ]an, bn[. Therefore, x is (X, π) normal with π : Mn → M0 and
d = 0.

For the induction step, let X be arbitrary and let (d, e) = dimfull(X) with d =
dimN(X) > 0. Suppose the assertion holds for all (d′, e′) < (d, e). Let π :Mn →Md be
a coordinate projection such that the interior of π(X) is non-empty (i. e. a projection
witnessing dimLN(X) = d). Define G := {x ∈ X : x is (X, π)-normal} and W = X \G.
It is easy to check, that for each x ∈ G there is some open neighbourhood U of x such
that G∩U = X∩U . Thus, each x ∈ G is (G, π)-normal and G is a normal submanifold.

Suppose towards a contradiction that there exists some x ∈ W such that for every box
B 3 x, π(W ∩ B) has a non-empty interior.

By local definable cell decomposition, there is a box B 3 x and a cell decomposition
C of B partitioning W ∩ B and X ∩ B. Note that dimLN(X) implies that X cannot
contain any cell with a dimension larger than d. Since π(W ∩ B) has a non-empty
interior, W ∩ B contains a (1, . . . , 1︸ ︷︷ ︸

d times

, 0, . . . , 0︸ ︷︷ ︸
n−d times

)-cell CW .

Claim 1. Every x ∈ CW is also contained in frcell(CX)38 for some cell CX ∈ C with
CX ⊆ X and CX 6= CW .

Proof of Claim 1. Suppose there was some x ∈ CW such that x 6∈ frcell(CX) for all cells
CX ∈ C with CX ⊆ X and CX 6= CW . Then, we can find a box B′ ⊆ B with x ∈ B′

and B′ ∩ CX = ∅ for all cells CX ∈ C with CX ⊆ X and CX 6= CW . Let CX 6= CW
be an arbitrary cell with CX ⊆ X. By the definition of a cell decomposition, we have
CX ∩ CW = ∅, thus x 6∈ CX . Note that B1 = Mn \ CX is an open set with x ∈ B1

by the assumption. Moreover, B ∩ B1 is an open subset with x ∈ B ∩ B1 ⊆ B. Since
M is a dense linear order, the definition of open sets implies that we can find a box
B′ ⊆ B ∩ B1 ⊆ B with x ∈ B′. By construction, B′ ∩ CX = ∅. Since there are only
finitely many cells, we can recursively do the same construction for all cells CX 6= CW .

38By the frontier of a cell, frcell, we denote the preimage of the frontier of the cell projected onto
the maximal number of coordinates such that the projection image is open.
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Therefore, we can indeed find a box B′ with x ∈ B′ and X ∩B′ = CW ∩B′. Moreover,
π(CW ) ∩ π(B′) is an open set containing π(x), thus, also containing a box B′′ 3 π(x).
Define the boxB′′′ := B′′×π≥d+1(B

′). By construction, x ∈ B′′′ andX∩B′′′ = CW∩B′′′.
However, by the definition of cells CW ∩ B′′′ is the graph of a continuous function on
π(CW ∩ B′′′) = π(B′′′). This implies that x is (X, π)-normal, contradicting x ∈ W .
Thus, every x ∈ CW is contained in the frontier of some other cell of X.

However, it is clear from the definitions of cells, that the projection onto d coordinates
of the frontier of any d dimensional cell cannot have interior. By Corollary 6.23, we
can deduce that the finite union of the projections of the frontiers of cells contained in
X, namely

⋃
C∈C π(frcell(X ∩ C)), cannot have interior. This is a contradiction, since

CW is contained in this set by Claim 1. Thus, there exists no x ∈ W such that for
every box B 3 x, π(W ∩ B) has a non-empty interior.

Hence, we can apply the induction hypothesis to W .

By construction, in the resulting decomposition, there is at most one normal subman-
ifold for each possible projection. Thus, we have a decomposition into at most 2n

normal submanifolds.

Step 2. Let {Xi}mi=1 be a definable subset of Mn. There exists a par-
tition of Mn into normal submanifolds {Ci}Ni=1 partitioning {Xi}mi=1 and
satisfying the frontier condition. Furthermore, the number of normal
submanifolds is not greater than a constant N determined only by m
and n.

In the following, we construct a finite family of definable sets Zi ⊆ Mn which are
pairwise disjoint such that

⋃
i Zi = Mn and such that each set Xi and the boundary

of each set bd(Xi) is equal to the finite union of a combination of other sets. Applying
the statement of the first step to each of these sets finishes the proof. It is easy to
check, that the number of the sets Zi is uniquely determined by m and n.

Define Xm+j := bd(Xj) for each j ∈ {1, . . . ,m} and X2m+1 := Mn \
⋃2m
i=1Xi. De-

fine Z0 = X2m+1. For every l ∈ {1, . . . , 2m} and every combination of indices I =
{i1, . . . , il} ⊆ 1, . . . , 2m, define a set Zk =

⋂
i∈I Xi \ (

⋃
i ̸∈I Xi) for some index k if⋂

i∈I Xi \ (
⋃
i ̸∈I Xi) is not equal to the empty set. Note that by construction, all

these sets are disjoint and each set is either contained in Xi or disjoint to Xi for all
i ∈ {1, . . . , 2m}. By combinatorics, there are finitely many combinations to create such
sets and the number of such sets Nk is bounded by a constant uniquely determined by
n and m.

Moreover, there is a decomposition into normal submanifolds for all ∗-locally weakly
o-minimal structures enjoying the ∗-continuity property. To show this, we need some
preparation.

Lemma 6.28 ([15, Lemma 4.17]). Let M be a ∗-locally o-minimal structure with the
univariate ∗-continuity property. Let X ⊆ Mn be a definable set. If π≤(n−1)(X) has
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non-empty interior and Xx has non-empty interior for every x ∈ π≤(n−1)(X), then X
has interior.

Lemma 6.29 ([15, Lemma 4.18]). Let M be a ∗-locally o-minimal structure with the
univariate ∗-continuity property. Let X ⊆Mn be a definable set with interior. For any
finite partition X = X1 ∪ · · · ∪ Xm into definable subsets Xi ⊆ Mn, there is at least
one set Xi with interior.

Proof of Lemma 6.28 and Lemma 6.29. By induction on m, we only need to show
Lemma 6.29 for m = 2.

For the proof of Lemma 6.28 and Lemma 6.29, we do a simultaneous induction.

The induction start of Lemma 6.29 holds by Lemma 3.7.

Next, we prove that Lemma 6.28 holds for n if Lemma 6.29 holds for n − 1. Let
X ⊆ Mn be a definable subset such that π≤(n−1)(X) has interior and Xx has interior
for every x ∈ π≤(n−1)(X). The same holds for X ′ := {(x, y) ∈ Mn−1 × M : x ∈

π≤(n−1)(X) ∧ y ∈
◦

(Xx)}39. Note that X ′ = {(x, y) : x ∈ π≤(n−1)(X
′) ∧ y ∈ X ′

x}. Let
c ∈ M . By the induction hypothesis, either Z = {(x, y) ∈ X ′ : y < c} ⊆ Mn or
Z2 = {(x, y) ∈ X ′ : y > c} has interior. We present the proof for Z, the proof for Z2 is
similar and can be found in [15, Lemma 4.17].

The following two functions are definable:

f :π≤(n−1)(Z) →M,

x 7→ sup(Zx),

f ′ :π≤(n−1)(Z) →M ∪ {−∞},
x 7→ inf{y ∈M : ∀ t ∈M ((f ′(x) < t < f(x)) → (x, t) ∈ Z)}.

By ∗-local weak o-minimality and the construction of Z, we have f ′(x) < f(x) for all
x ∈ π≤(n−1)(Z). We define the following definable subset of X:

Y := {(x, y) ∈ π≤(n−1)(Z)×M : f ′(x) < y < f(x)}

If the set {x ∈ π≤(n−1)(Z) : f ′(x) = −∞} has interior, then clearly Y has interior.
Suppose not. By the induction hypothesis and since π≤(n−1)(Z) has interior, {x ∈
π≤(n−1)(Z) : f

′(x) 6= −∞} has some interior Zg ⊆ Mn−1. Finally, we show that this
set has interior Zconti such that f and f ′ are continuous on Zconti. This then implies
that Y ′ := {(x, y) ∈ Zconti ×M : f ′(x) < y < f(x)} is an open set and Y has interior.

Again, by the induction hypothesis, either the subset of Zg where f and f ′ are contin-
uous at every point or one of the sets where one of the functions is discontinuous at

39As a clarification, in this definition, y is an element of the interior of the fiber not only the fiber
of the interior.
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every point, has to have interior. Suppose towards a contradiction, that the definable
set of points where f is discontinuous has some interior Zd. The proof for f ′ is similar.

For each coordinate ij and each x = (x1, . . . , xn−1) ∈ Zd, we define a function fij ,x :

πij(Zd) →M, y 7→ f(x1, . . . , xij−1, y, xij+1, . . . , xn−1).

By [7, Lemma 2.16 in Chapter 3] and the induction hypothesis, this is equivalent to
one of the following sets having interior for some coordinate ij:

Dij := {x ∈ Zd : fij ,x is not continuous at πij(x)}
Gij := {x ∈ Zd : fij ,x is not strongly monotone for some interval around πij(x)}

Note that fij ,x = fij ,x2 if π ̸=ij(x) = π ̸=ij(x2). Thus, Dij or Gij having interior implies
that there is some function fij ,x which is discontinuous on an interval or nowhere locally
monotone on an interval. Both contradicts Theorem 6.5.

This concludes the first part of the induction step.

Finally, we prove that Lemma 6.29 holds for n, assuming Lemma 6.28 and Lemma 6.29
hold for all l < n. Suppose X ⊆Mn has non-empty interior. Define the sets

U = {x ∈ π≤(n−1)(X) : Xx has non-empty interior},
U1 = {x ∈ π≤(n−1)(X1) : X1x has non-empty interior},
U2 = {x ∈ π≤(n−1)(X2) : X2x has non-empty interior}.

For every y in the interior of X, π≤(n−1)(y) is in the interior of U . Thus, U has
non-empty interior.

Clearly, X1x ∪X2x = Xx for every x ∈ π(X). Thus, Xx has interior if and only if X1x

or X2x has interior by the induction start. Therefore, U = U1 ∪ U2.

By the induction hypothesis for Lemma 6.29, either U1 or U2 has non-empty interior.
Without loss of generality, we can assume that U1 has non-empty interior. By the
induction hypothesis for Lemma 6.28, this implies that X1 has non-empty interior.

Definition 6.30 (Naive Dimension, dimN(X), [22, Definition 5.1.1]). Let n be a pos-
itive integer and X ⊆Mn be a definable set. The naive dimension of X, dimN(X), is
the largest m ≤ n such that there is a coordinate projection π :Mn →Mm with π(X)
having nonempty interior. For the empty set, dimN(∅) = −∞.

Theorem 6.31 (Decomposition into Normal Submanifolds, [15, Theorem 4.26]). Let be
a ∗-locally weakly o-minimal structure M = (M,<, . . . ) with the univariate ∗-continuity
property. Let {Xi}mi=1 be a finite family of definable subsets of Mn. There exists a de-
composition {Ci}Ni=1 into normal submanifolds partitioning {Xi}mi=1 and satisfying the
frontier condition. Furthermore, the number of normal submanifolds is not greater than
a constant N uniquely determined only by m and n.
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Proof. 40

Step 1. For every definable X ⊆ Mn, there exists a family {Ci}Ni=1 of
pairwise disjoint normal submanifolds with X =

⋃N
i=1Ci and N = 2n.

For this proof, define the full dimension of a definable subsetX ⊆Mn to be dimfull(X) =
(d, e) with d = dimN(X) and e be the number of coordinate projections π :Mn →Md

such that π(X) has a nonempty interior. Clearly, e is bounded for fixed n, d. Thus, we
can prove the claim by induction over the full dimension of X, where the pairs (d, e)
are ordered by the lexicographic order.

For d = dimN(X) = 0, X itself is a normal submanifold. Let x = (x1, . . . , xn) ∈ X,
let i ∈ {1, . . . , n} be arbitrary. Since πi(X) has no interior, by local o-minimality
(which is implied by ∗-local weak o-minimality), we can find some ai, bi ∈ M such
that ]ai, bi[ ∩ πi(X) = {xi}. Thus, if we choose ai, bi in that way for all i, we have
B ∩ X = {x} for B = ]a1, b1[ × · · · × ]an, bn[. Therefore, x is (X, π) normal with
π :Mn →M0 and d = 0.

For the induction step, let X be arbitrary and let (d, e) = dimfull(X) with d = dimN >
0. Suppose the assertion holds for all (d′, e′) < (d, e). Let π :Mn →Md be a coordinate
projection such that the interior of π(X) is non-empty (i. e. a projection witnessing
dimN(X) = d). Define G := {x ∈ X : x is (X, π)-normal} and W = X \ G. It is
easy to check, that for each x ∈ G, there is some open neighborhood U of x such that
G ∩ U = X ∩ U . Thus, each x ∈ G is (G, π)-normal and G is a normal submanifold.

Suppose towards a contradiction that π(W ) has interior.

Moreover, suppose towards a contradiction, there is some interior W ′ ⊆ π(W ) such
that for each x ∈ W ′, there is some coordinate j that π is not projecting on such
that πj(X ∩ π−1(x)) has interior. In particular, since there are only finitely many
coordinates, applying Lemma 6.29, there is some coordinate j such that {x ∈ π(X) :
πj(X ∩ π−1(x)) has interior} has interior. By Lemma 6.28, the projection image of
X of the projection onto the coordinates that π is projecting on and additionally
the j coordinate has interior contradicting dimN(X) = d. Thus, there is no interior
W ′ ⊆ π(W ) such that for each x ∈ W ′ there is some coordinate j, that π is not
projecting on, such that πj(X ∩ π−1(x)) has interior.

By Lemma 6.29 and local o-minimality, there is some interior Wg ⊆ π(W ) such that
πj(X ∩ π−1(x)) is discrete for every j and every x ∈ Wg.

Let c ∈M . We define a map: g : Wg →
(
M

)n−d coordinate-wise. For j ∈ {1, . . . , n−d}
suppose (g(x))i is defined for all i < j. Let x ∈ Wg. Define

40Again, the main structure of this proof is inspired by the proof of [15, Theorem 4.26]. However,
the proof of Step 1 differs significantly from the proof given there.

62



G1,j := {y ∈M : (((g(x))1, . . . , (g(x))j−1, y) ∈ π≥d+1(π≤d+j(X ∩ π−1(x)))) ∧ (y < c)}
G2,j := {y ∈M : (((g(x))1, . . . , (g(x))j−1, y) ∈ π≥d+1(π≤d+j(X ∩ π−1(x)))) ∧ (y > c)}

(g(x))j =

{
sup (G1,j) if the set G1,j is non-empty,
inf (G2,j) else.

By ∗-local weak o-minimality, we have that either G1,j is non-empty and finite or G1,j

is empty and G2,j non-empty and finite on an interval around (g(x))j. Therefore,
(g(x))j ∈ M and g : Wg → Mn−d. Moreover, (x, g(x)) ∈ W for every x ∈ Wg by the
construction.

With Lemma 6.29, Theorem 6.5 and [7, Lemma 2.16 in Chapter 3], we can find some
interior Z ⊆ Wg on which the definable functions (g(x))1, . . . , (g(x))n−d are continuous.
In particular, g is continuous on Z.

For each j ∈ {1, . . . , n− d}, we can again define functions:

hj,1 :Z →M ∪ {−∞}, x 7→ sup {y ∈M : y ∈ πj(X ∩ π−1(x)) ∧ y < (g(x))j}}

hj,2 :Z →M ∪ {∞}, x 7→ inf {y ∈M : y ∈ πj(X ∩ π−1(x)) ∧ y > (g(x))j}}

Again, by discreteness and ∗-local weak o-minimality, hj,1(x) < (g(x))j < hj,2(x) fol-
lows. By Lemma 6.29, Theorem 6.5 and [7, Lemma 2.16 in Chapter 3] and possibly
shrinking Z, we can assume that hj,1 and hj,2 are continuous. We can define the
following non-empty open set:

B′ := Z × ]h1,1(x), h1,2(x)[× · · · × ]hn−d,1(x), hn−d,2(x)[ ⊆Mn.

By the construction of hj,i, we have B′ ∩X = {(x, g(x)) : x ∈ Z}. Pick some x ∈ Z.
Since B′ is open, there is some box B ⊆ B′ with (x, g(x)) ∈ B. This implies that
(x, g(x)) is (X, π)-normal. This is a contradiction to x ∈ Z ′ ⊆ W .

Thus, we have that π(W ) has empty interior and we can apply the induction hypothesis
to W .

By construction, we have that there is at most one normal submanifold for each possible
projection in the resulting decomposition. Thus, we have a decomposition into at most
2n normal submanifolds.

Step 2. Let {Xi}mi=1 be a definable subset of Mn. There exists a par-
tition of Mn into normal submanifolds {Ci}Ni=1 partitioning {Xi}mi=1 and
satisfying the frontier condition. Furthermore, the number N of nor-
mal submanifolds is not greater than a number uniquely determined
only by m and n.
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The proof is identical to Step 2 from Proposition 6.27.

In the case of definably complete, locally o-minimal structures, a decomposition into
normal submanifolds is already a quasi-special submanifold by [13, Theorem 4.2], re-
sulting in the following corollary:

Corollary 6.32 (Decomposition into Quasi-Special Submanifolds, [13, Theorem 4.5]).
Let M = (M,<, . . . ) be definably complete and locally o-minimal. Let {Xi}mi=1 be a
finite family of definable subsets of Mn. There exists a decomposition {Ci}Ni=1 of Mn

into quasi-special submanifolds partitioning {Xi}mi=1 satisfying the frontier condition.
Furthermore, the number N of quasi-special submanifolds is not greater than a number
uniquely determined only by m and n.

Proof. Note, that every π-normal submanifold X is a π-quasi-special submanifold if
for all y ∈ X, we can choose the open box By ⊆ Mn from the definition of a normal
point in such a way that for all y1, y2 ∈ X: π(y1) = π(y2) implies π(By1) = π(By2).

In the following, we show that we can choose the boxes By in such a way by induction
over the number k of coordinates that π projects on. Possibly permuting coordinates,
we can assume that π projects onto the first k coordinates.

Induction Hypothesis. For all y ∈ X, we can choose the open box By ⊆Mn from
the definition of a normal point in such a way that for all y1, y2 ∈ X, π≤k(y1) = π≤k(y2)
implies π≤l(By1) = π≤l(B

y2).

Induction Start. For l = 0 the statement is trivial.

Induction Step. Let 1 < l ≤ k and suppose the statement holds for l − 1.

Now, for every y ∈ X, let By be boxes such that the induction hypothesis holds. Let
y ∈ X and let a, b ∈ M be some bounds a < πl(y) < b. We consider the definable set
Xy = {y1 ∈ X : π ̸=l(y1) = π ̸=l(y)} and the definable maps

ϕ+ :Xy →M

y1 7→ inf({b} ∪ {x ∈ ]πl(y1),∞[ : ∃ y2 (πl(y2) = x ∧ π ̸=l(y2) ∈ π ̸=l(B
y1))},

ϕ− :Xy →M

y1 7→ sup({a} ∪ {x ∈ ]−∞, πl(y1)[ : ∃ y2 (πl(y2) = x ∧ π ̸=l(y2) ∈ π ̸=l(By1))}.

The maps are well defined by definable completeness. The set Xy is discrete and
ϕ−(y1) < πl(y1) < ϕ+(y1), since X is a π-normal submanifold. Hence, the set Xy has
no interior and is closed by local o-minimality. This implies that ϕ−(Xy) and ϕ+(Xy)
have no interior, by Theorem 6.5. By local o-minimality, these sets must then be
discrete and closed. In particular, sup(ϕ−(Xy)) < πl(y1) < inf(ϕ+(Xy)). Therefore,
the boxes

B′
y1

:=
{
z ∈Mn : π ̸=l(z) ∈ π ̸=l(By1) ∧ πl(z) ∈ ]sup(ϕ−(Xy)), inf(ϕ+(Xy))[

}
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have the desired property. We can do a similar construction for every y corresponding
to another set Xy.

Remark 6.33. Note that this implies that any definably complete locally o-minimal
structure which is not uniformly o-minimal of the second kind, would not have cell
decomposition but a decomposition into quasi-special submanifolds. We cannot provide
such an example so far and only suspect that such a structure exists.

local cell decomposition uniform local o-minimality of the 2. kind & definable
completeness; strong local o-minimality

no local cell decomposi-
tion

no uniform local o-minimality of the 2. kind & definable
completeness

normal submanifold de-
composition

uniform local o-minimality of the 2. kind & definable
completeness; strong local o-minimality; ∗-local weak o-
minimality & ∗-continuity

quasi special submanifold
decomposition

definable completeness & local o-minimality

Table 3: Summary of the presented tameness results in this section. Confer with
Figures 3 and 4 to check for which other notions this implies the same results trivially
since they are implied by one of the notions mentioned here.

6.2.3 Dimensions

The concept of dimension is a tool to describe the size of sets in some way. There are
several different reasonable definitions for dimension. Since there is not necessarily a
metric available in arbitrary dense linear orders, we only consider topological notions
of dimension here, considering the topology induced by the linear order of the structure
M. In this section, we introduce some notions of topological dimension and evaluate
in which settings these coincide with another. Moreover, some of the tame properties
that these notions have for some notions of local o-minimality, are presented.

Recall Definitions 6.26 and 6.30 from the previous section. The naive dimension of a
definable subset X ⊆Mn is defined by: dimN(X) is the largest m ≤ n such that there
is a coordinate projection π : Mn → Mm such that π(X) has nonempty interior. The
local naive dimension of a definable subset X ⊆ Mn is defined by: dimLN(X) is the
largest m ≤ n such that there exist a coordinate projection π :Mn →Mm and a point
a ∈ Mn such that the definable set π(B ∩X) has a nonempty interior for every open
box B containing the point a.

Fact 6.34. Let n be a positive integer and X ⊆ Mn be a definable set. Then,
dimN(X) ≥ dimLN(X).
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Proof. Suppose there is a coordinate projection, such that the definable set π(B ∩X)
has a nonempty interior for any open boxB containing the point a. We have π(B∩X) ⊆
π(X). Thus, π(X) has non-empty interior. It follows that dimN(X) ≥ dimLN(X).

These notions are not equivalent for every definable set of arbitrary locally o-minimal
structures:

Example 12. Let M = (Q2, <lex, f) with f : Q2 → Q2, (a, b) 7→ (b, 0) be the strongly
locally o-minimal structure from Example 8. Let X = {(x, y) ∈ (Q2)×(Q2) : y = f(x)}
be the graph of f . Then, dimN(X) = 1 but dimLN(X) = 0.

Proof. Clearly, π1(X) = Q2 and thus dimN(X) ≥ 1. Moreover, the graph of a function
cannot have interior, implying dimN(X) = 1.

For every ((a1, a2), (b1, b2)) ∈ (Q2) × (Q2), there are (c1, c2), (c3, c4), (d1, d2), (d3, d4) ∈
(Q2)× (Q2), with c1 = d1 = a1, c3 = d3 = b1, c2 < a2 < d2 and c4 < b2 < d4.

Define the box B := ](c1, c2), (d1, d2)[× ](c3, c4), (d3, d4)[. Then, by construction, either
B ∩ X = ∅ or B ∩ X = {((a1, b1), (b1, 0))}. Since the point ((a1, a2), (b1, b2)) was
chosen arbitrarily, dimLN(X) ≤ 0 follows. As X is clearly non-empty, this implies
dimLN(X) = 0.

However, in the setting of ∗-locally weakly o-minimal structures with the univariate
∗-continuity property, these notions are equivalent. Moreover, they are also equivalent
to the following definition of dimension:

Definition 6.35 (dim(X)). Let n be a positive integer and X ⊆ Mn be a definable
set. The dimension of X, dim(X), is the largest m such that there exists an open box
B ⊆Mm and a definable continuous injective map f : B → X which is homeomorphic
onto its image. For the empty set, dim(∅) = −∞.

Proposition 6.36 ([15, Proposition 4.14, Corollary 4.22]). The equality dimN(X) =
dimLN(X) = dim(X) holds true for every ∗-locally weakly o-minimal structure M with
the univariate ∗-continuity property and every definable X ⊆Mn.

Proof. 41 The case X = ∅ is immediate from the definitions. Let X 6= ∅:

dimN(X) = dimLN(X): Suppose towards a contradiction that there is some definable
set X ⊆ Mn with d = dimN(X) > dimLN(X). Let π be a projection witnessing
dimN(X) = d. Let Y equal the interior of π(X). Then, Y ⊆ Md is a non-empty open
set by the assumption.

The next part of the proof is similar to the proof of Theorem 6.31.

Suppose, towards a contradiction, there is some interior Y ′ ⊆ Y such that for each
x ∈ Y ′, there is some coordinate j, that π is not projecting on, such that πj(X ∩

41Some ideas in the proof are inspired by the proof of [15, Proposition 4.14, Corollary 4.22]. However,
the proof differs significantly from the proof given there.
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π−1(x)) has interior. In particular, since there are only finitely many coordinates,
applying Lemma 6.29, there is some coordinate j such that {x ∈ π(X) : πj(X ∩
π−1(x)) has interior} has interior. By Lemma 6.28, the projection image of X of the
projection onto the coordinates that π is projecting on and additionally the j coordinate
has interior contradicting dimN(X) = d.

By Lemma 6.29 and local o-minimality, there is some interior Yg ⊆ Y such that πj(X∩
π−1(x)) is discrete for every j and every x ∈ Yg.

Let c ∈M . We define a map: g : Yg →
(
M

)n−d coordinate-wise. For j ∈ {1, . . . , n−d},
suppose (g(x))i is defined for all i < j. Let x ∈ Yg. Define

G1,j := {y ∈M : (((g(x))1, . . . , (g(x))j−1, y) ∈ π≥d+1(π≤d+j(X ∩ π−1(x)))) ∧ (y < c)},
G2,j := {y ∈M : (((g(x))1, . . . , (g(x))j−1, y) ∈ π≥d+1(π≤d+j(X ∩ π−1(x)))) ∧ (y > c)},

(g(x))j =

{
sup (G1,j) if the set G1,j is non-empty,
inf (G2,j) else.

By ∗-local weak o-minimality, either one of the sets G1,j, G2,j, that is not empty, is
finite on an interval around (g(x))j. This implies (g(x))j ∈ M and g : Yg → Mn−d.
Moreover, by the construction, (x, g(x)) ∈ X for every x ∈ Yg.

With Lemma 6.29, Theorem 6.5 and [7, Lemma 2.16 in Chapter 3], we can find some
interior Z ⊆ Yg on which the definable functions (g(x))1, . . . , (g(x))n−d are continuous.
In particular, g is continuous on Z.

Let z ∈ Z and B ⊆ Mn be an arbitrary box with (z, g(z)) ∈ B. By continuity of g,
A := Z ∩ π({(x, g(x)) : x ∈ Yg} ∩ B) is an open set with z ∈ A. Since this is a subset
of XB := π(X ∩ B), XB has non-empty interior. Hence, dimLN(X) ≥ d. This is a
contradiction to the assumption d = dimN(X) > dimLN(X).

By Fact 6.34, we can deduce dimN(X) = dimLN(X).

dimN(X) = dim(X): Let n be a positive integer, X ⊆ Mn be a definable set,
B ⊆ Mm an open box and f : B → X a definable continuous injective map which is
homeomorphic onto its image. In particular, f is injective and continuous.

The statement dimN(X) ≥ dimN(B) is trivial for dimN(B) = 0.

By induction, we can assume dimN(f((y, π≥2(B)))) ≥ dimN(B)− 1 for all y ∈ π1(B).
By Lemma 3.7, possibly shrinking π1(B), we can assume the sets f((y, π≥2(B))) all
have interior for the same projection onto d := dimN(B)− 1 coordinates. Without loss
of generality, assume these are the first d coordinates.

Now, suppose towards a contradiction, that dimN(X) = d. Pick some interval ]y1, y2[ ⊆
π1(B), some y3 ∈ ]y1, y2[ and some y′ ∈ π≥2(B). By injectivity and continuity, there
must be some coordinate i such that πi(f(]y1, y2[, y′)) is an open convex set. In par-
ticular, π1(f(y3, y′)) is contained in this interior. If i ≤ d, this interior would have an
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non-empty, open cut with π1(f((y, π≥2(B)))), contradicting the injectivity. If i > d,
then by Lemma 6.28, the projection onto the first d and the i-th coordinate of X has
interior. This contradicts dimN(X) = d. Thus, dimN(X) ≥ dimN(B) = m.

For the other direction, suppose X is a definable set with dimN(X) = d. Thus, there is
some projection π projecting onto d coordinates such that π(X) has interior and some
open box B ⊆ π(X) ⊆Md. Define a map g : B →

(
M

)n−d similar to the construction
in the proof of dimN(X) = dimLN(X):

Possibly shrinking B, we can assume that πj(X ∩ π−1(x)) is discrete for every j and
every x ∈ B. Define g coordinate-wise as follows:

G1,j := {y ∈M : (((g(x))1, . . . , (g(x))j−1, y) ∈ π≥d+1(π≤d+j(X ∩ π−1(x)))) ∧ (y < c)}
G2,j := {y ∈M : (((g(x))1, . . . , (g(x))j−1, y) ∈ π≥d+1(π≤d+j(X ∩ π−1(x)))) ∧ (y > c)}

(g(x))j =

{
sup (G1,j) if the set G1,j is non-empty,
inf (G2,j) else.

By ∗-local weak o-minimality, either one of the sets G1,j, G2,j, that is not empty, is
finite on an interval around (g(x))j. This implies (g(x))j ∈ M and g : Yg → Mn−d.
Moreover, by the construction, (x, g(x)) ∈ X for every x ∈ B.

The map f : B → X, x 7→ (x, g(x)) is definable and injective. By Lemma 6.29,
Theorem 6.5 and [7, Lemma 2.16 in Chapter 3], possibly shrinking B, we can assume
that g is continuous. The inverse of f is the projection onto the first d and thus, well-
defined, definable and continuous. Therefore, f is a definable continuous injective map
which is homeomorphic onto its image and dim(X) ≥ d.

Remark 6.37. In [15], dimN(X) = dimLN(X) and dimN(X) = dim(X) are shown in
more general settings using some technical definitions.

There is one more commonly used definition for dimension specifically for structures
admitting local definable cell decomposition.

Definition 6.38 (dimC(X)). Let X ⊆Mn be a definable set. Let M admit local defin-
able cell decomposition. Then, dimC(X) is the largest m ≤ n such that for some local
cell decomposition, X contains an (i1, . . . , in)-cell D with dimcell(D) =

∑n
j=1 ij = m.

For the empty set, dimC(∅) = −∞.

Proposition 6.39 ([16, Corollary 5.3]). Let M be a locally o-minimal structure which
admits local definable cell decomposition. Let X ⊆Mn be a definable set. Then,

dim(X) = dimC(X) = dimLN(X).
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Proof. The case X = ∅ is immediate from the definitions. For X 6= ∅:

dimC(X) = dimLN(X): For any (i1, . . . , in)-cell C, any a ∈ C and any open box
B 3 a, let π be the projection onto the coordinates j with ij = 1. Then, π(B ∩X) is
an open neighborhood of π(a). Therefore, dimC(X) ≤ dimLN(X).

Let a and π be such that π(a) is in the interior of π(B∩X) for all boxes B with a ∈ B.
By local definable cell decomposition, there is a box B 3 a and a cell decomposition C
of B partitioning X. By Corollary 6.23, as π(B ∩X) has interior, there must be a cell
C such that π(C) has interior. Thus, dimC(X) ≥ dimLN(X).

dimC(X) = dim(X): Let m = dim(X). Let B ⊆ Mm be an open box and f :
B → X be a homeomorphic map onto its image. It is easy to check that f and
f−1 map cells onto cells of the same dimension. Since B is an open box, there must
be a local cell decomposition of some subset of B containing an open cell D. Thus,
dimC(X) ≥ dimcell(f(D)) = dimcell(D) = m.

Suppose towards a contradiction, that for some local cell decomposition, X contains
a (j1, . . . , jn)-cell D′ with dimcell(D

′) = l ≥ m + 1. Let π be the projection on all
coordinates i with ji = 1. Clearly, π(D) ⊆ M l is open and contains some box B′.
But then, (π|D′)−1|B′ : B′ → X is a definable continuous injective map which is
homeomorphic onto its image.

If we consider structures admitting local definable cell decomposition and in this setting
equivalent notions dim, dimC and dimLN of dimension, then we can prove the following
tame properties of dimension:

Proposition 6.40 ([16, Lemma 5.1, Corollary 5.4, Theorem 5.6]). Consider a lo-
cally o-minimal structure M which admits local definable cell decomposition. Let
X,Y ⊆ Mn, Z ⊆ Mm be definable non-empty sets. Let σ : Mn → Mn, (x1, . . . , xn) 7→
(xσ(1), . . . , xσ(n)) be a coordinate permutation. The following assertions hold true:

1. X ⊆ Y implies dim(X) ≤ dim(Y ),

2. dim(X) = dim(σ(X)),

3. dim(X ∪ Y ) = max {dim(X), dim(Y )},

4. dim(X × Z) = dim(X) + dim(Z),

5. dim(fr(X)) < dimX.

Proof. By Proposition 6.39, it is sufficient to show the properties for one of the defini-
tions of dimension dim(X), dimC(X), dimLN(X).

1. Follows from the definition of dim(X).

2. Follows from the definition of dimLN(X).
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3. Follows from the definition of dimC(X).

4. For every (i1, . . . , in)-cell C ⊆ X and (j1, . . . , jm)-cellD ⊆ Z, the set C×D ⊆ X×
Z is a (i1, . . . , in, j1, . . . , jm)-cell. Thus, dimLN(X)+dimLN(Z) ≤ dimLN(X×Z).
Similarly, for any (i1, . . . , in, j1, . . . , jm)-cell in X × Z, the coordinate projection
onto the first n coordinates results in a (i1, . . . , in)-cell in X and the coordinate
projection onto the last m coordinates results in a (j1, . . . , jm)-cell in Z. Thus,
dimLN(X) + dimLN(Z) ≥ dimLN(X × Z).

5. As X is non-empty, dim(X) ≥ 0. Thus, the statement is true for fr(X) = ∅. Since
dim(X) = dimC(X), if dim(fr(X)) ≥ dim(X), there is a local cell decomposition
of some box B and a cell C ⊆ (fr(X) ∩ B) with dimcell(C) = dim(fr(X)) ≥
dim(X) ≥ dim(X ∩ B). It is easy to check, that intersecting a cell with a
box results either in the empty-set or a cell of the same dimension. Thus, it is
sufficient to show that for every a ∈ Mn and every sufficiently small box B 3 a,
dim(fr(X) ∩B) < dim(X ∩ B) if fr(X) ∩ B 6= ∅.

Proof by induction on dim(X):

Induction Start. For dim(X) = 0, we have fr(X) = ∅. Thus, the statement
is immediate.

Induction Hypothesis. For all Y with 0 ≤ dim(Y ) < dim(X), every a ∈Mn

and every sufficiently small box B 3 a with fr(Y ) ∩B 6= ∅, we have dim(fr(Y ) ∩
B) < dim(Y ∩ B).

Induction Step. Let dim(X) > 0 and suppose that the induction hypothesis
holds. Let a ∈Mn and B 3 a be a sufficiently small box. Let σi be the coordinate
permutation

σi :M
n →Mn, (x1, . . . , xn) 7→ (xi, x1, . . . , xi−1, xi+1, . . . , xn).

Let I1, . . . , In be open intervals such that B = I1 × · · · × In and let Ji ⊆ Mn−1

be the open boxes Ji = I1 × · · · × Ii−1 × Ii+1 × · · · × In.

Consider the definable sets

Fi = {x ∈ Ii : (fr(σi(X)))x ∩ Ji 6= fr((σi(X))x) ∩ Ji}.

Step 1 of the Proof of the Induction Step. dim(Fi) ≤ 0 for all i ∈ {1, . . . , n} and
B sufficiently small.

By the second statement of this proposition, we only have to consider the case
i = 1.

Define the definable sets U(a,b) = ]a1, b1[× · · · × ]an−1, bn−1[ and

IU(a,b)
= {x ∈ I1 : ((fr(X))x \ fr((X)x)) ∩ U(a,b) 6= ∅ and Xx ∩ U(a,b) = ∅}
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for all a, b ∈ J1 with (a, b) ∈ J ′ := {(a, b) ∈ J1 × J1 :
∧n−1
i=1 ai < bi}. Moreover,

define
D =

⋃
(a,b)∈J2

(IU(a,b)
× {(a, b)}) ⊆M2n−1.

Since we choose B sufficiently small, we can assume that we have a definable cell
decomposition of I1 × J1 × J1 partitioning the definable set D.

First, we can show that dim(IU(a,b)
) ≤ 0 for all a, b ∈Mn−1 such that (a, b) ∈ J ′.

Towards a contradiction, suppose some IU(a,b)
contains interior. Pick some interval

Z1 ⊆ IU(a,b)
contained in this interior.

By the definition of IU(a,b)
, Xx ∩ U(a,b) = ∅ for all x ∈ Z1, and this implies

X ∩ (Z1 ×U(a,b)) = ∅. As (Z1 ×U(a,b)) is an open set, X ∩ (Z1 ×U(a,b)) = ∅. This
contradicts

(
(fr(X))x \ fr(Xx)

)
∩ U(a,b) 6= ∅ for x ∈ Z1.

Secondly, we show dim(D) ≤ 2(n− 1). Suppose not, then dim(D) = 2n− 1. In
particular, the cell decomposition partitioning D contains an open cell CD ⊆ D.
Let (y′, a′, b′) ∈ I1 × J1 × J1 be some point in the interior of the cell. As
(y′, a′, b′) ∈ D, we have ai < bi for 1 ≤ i < n. By the definition of cells,
we have dim(CD) = dim((CD)(a′,b′)) + dim(π≥2(CD)). By the first statement of
this proposition, we can deduce: dim(CD) = dim((CD)(a′,b′)) + dim(π≥2(CD)) ≤
dim(IU(a′,b′)

) + dim(π≥2(CD)) ≤ 0 + dim(π≥2(CD)) ≤ 2n− 2. This is a contradic-
tion, to CD being an open cell. Thus, dim(D) ≤ 2(n− 1).

Third, for every x ∈ F1, we show dim(Dx ∩ (J1 × J1)) ≥ 2(n− 1). Let x ∈ F1 be
arbitrary. By the definition of F1, there is some y ∈

(
(fr(X))x \ (fr(Xx))

)
∩ J1.

In particular, y ∈ (fr(X))x, which implies y 6∈ Xx, and y 6∈ fr(Xx). This implies
there is some open box around y which has an empty intersection with Xx.
Therefore, we can find (a, b) ∈ J ′ such that y ∈ U(a,b) ⊆ J1 and x ∈ IU(a,b)

. For
all a′, b′ ∈ J1 with ai < a′i < yi < b′i < bi, we have y ∈ U(a′,b′) ⊆ U(a,b) and,
thus, x ∈ IU(a′,b′)

. In conclusion, (a′, b′) ∈ Dx for all (a′, b′) with ai < a′i < yi and
yi < b′i < bi. Hence, Dx∩(J1×J1) contains an open box and dim(Dx∩(J1×J1)) ≥
2(n− 1).

Suppose F1 has interior. Then, there is some interval Z1 ⊆ I1 contained in
this interior. However, recall, we have some cell decomposition of I1 × J1 ×
J1 partitioning D and that the fiber of this cell decomposition is again a cell
decomposition of J1×J1 partitioning Dx. For every x ∈ Z1, dim(Dx∩(J1×J1)) ≥
2(n − 1). Therefore, there must be some cell C in the cell decomposition with
dim(Cx) ≥ 2(n − 1). As there are only finitely many cells, there has to be
some cell with dim(Cx) ≥ 2(n − 1) for infinitely many x ∈ Z1. Thus, π1(C) is
infinite. As it is a cell, it must be some interval and dim(π1(C)) = 1. Recall
that for a cell C with x ∈ π1(C), dim(C) = dim((C)x) + dim(π1(C)). Therefore,
dim(C) ≥ 2(n− 1) + 1.

By the first property of this proposition, 2(n − 1) ≥ dim(D ∩ (I1 × J1 × J1)) ≥
dim(D ∩ (F1 × J1 × J1)). This is a contradiction.
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Step 2 of the Proof of the Induction Step. For any sufficiently small box B 3 a
with fr(X) ∩ B 6= ∅, dim(fr(X) ∩ B) < dim(X ∩ B).

Again, choosing B sufficiently small, we can assume, that there is a definable cell
decomposition of B partitioning X ∩ B and (fr(X)) ∩ B.

Set Hi = M i−1 × Fi ×Mn−i and H =
⋂n
i=1Hi = F1 × · · · × Fn. By the forth

statement of this proposition, we have

dim(H) = dim(F1) + · · ·+ dim(Fn) ≤ 0 + · · ·+ 0 = 0.

Moreover, fr(X) ⊆ H ∪
⋃n
i=1((fr(X)) \Hi). By the third and fourth statement of

this proposition,

dim((fr(X)) ∩ B) ≤ dim(H) + max
1≤i≤n

dim(((fr(X)) \Hi) ∩ B).

Thus, it is sufficient to show

dim(((fr(X)) \Hi) ∩ B) < dim(X ∩ B)

for (fr(X))∩B 6= ∅ and i ∈ {1, . . . , n} to prove Step 2. By the second statement
of this proposition, we only need to consider the case i = 1.

Note, B = I1 × J1 and(
(fr(X)) \H1

)
∪ B =

⋃
x∈I1\F1

(
{x} ×

(
(fr(Xx)) ∩ J1

))
:= A

by the definition of H1.

By the induction hypothesis,

dim((fr(Xx)) ∩ J1) < dim(Xx ∩ J1) if (fr(Xx)) ∩ J1 6= ∅.

In the following, we show that this implies dim(A) < dim(X ∩B).

Let C be a cell contained in A with dim(C) = dim(A).

If dim(π1(C)) ≤ 0, then for all y ∈ π1(C), we have dim(C) ≤ dim(Ay) =
dim((fr(Xy))∩ J1). Moreover, dim((fr(Xy))∩ J1) < dim(Xy ∩ J1) ≤ dim(X ∩B)
since y ∈ π1(C) implies (fr(Xy)) ∩ J1) 6= ∅. In conclusion, dim(A) = dim(C) <
dim(X ∩ B).

For dim(π1(C)) = 1: Note that for every y ∈ π1(C), we have dim(Cy) <
dim(Xy). Let C = {C i}Ni=1 be the cell decomposition of B partitioning X∩B and
(fr(X))∩B. Then, the fibers of the cells are a cell decomposition of the fiber of B
partitioning the fibers of X ∩B. Thus, for every y ∈ π1(C), there must be some
cell C i ⊆ X ∩ B with dim((C i)y) = dim(Xy ∩ J1) > dim(Cy). Since there are
only finitely many cells and π1(C) has interior, there must be one cell Cj fulfilling
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this inequality for infinitely many y ∈ π1(C). Thus, π1(Cj) also has interior and
for some y ∈ π1(C) ∩ π1(C

j), we have dim(Cj) = dim(π1(C
j)) + dim((Cj)y) >

1+ dim((C)y) = dim(π1(C))+ dim((C)y) = dim(C). As Cj is a cell contained in
X ∩B, we can conclude dim(A) = dim(C) < dim(X ∩ B).

Thus, indeed dim(((fr(X))\Hi)∩B) = dim(A) < dim(X ∩B) which finishes the
proof of Step 2.

Therefore, the induction step holds and the statement is true for all definable
non-empty X ⊆Mn.

For the naive dimension the following statements are generally true for any dense
linear order without endpoints M = (M,<, . . . ). In particular, this implies that they
also equivalently hold for the dimension dim and the local naive dimension dimLN

(cf. Proposition 6.36) for definable subsets of ∗-locally weakly o-minimal structures
enjoying the univariate ∗-continuity property.

Proposition 6.41 ([15, Proposition 4.2]). Let M = (M,<, . . . ) be an expansion of
a dense linear order without endpoints. Let X ⊆ Y ⊆ Mn, Z ⊆ Mm be definable
non-empty sets. Let σ : Mn → Mn, (x1, . . . , xn) 7→ (xσ(1), . . . , xσ(n)) be a coordinate
permutation. The following assertions hold true.

1. dimN(X) ≤ dimN(Y ),

2. dimN(X) = dimN(σ(X)),

3. dimN(X × Z) = dimN(X) + dimN(Z).

Proof. The first two statements are immediate from the definition of dimN .

Let {i1, . . . , il} ⊆ {1, . . . , n}, {j1, . . . , jk} ⊆ {1, . . . ,m} be some sets of coordinates and
πi1,...,il,j1,...,jk : Mn+m → M l+k, πi1,...,il : Mn → M l and πj1,...,jk : Mm → Mk be the
corresponding coordinate projections on these coordinates.

The set πi1,...,il,j1,...,jk(X×Z) has interior if and only if both, πi1,...,il(X) and πj1,...,jk(Z),
have interior. By the definition of dimN , the statement follows.

Moreover, if we consider the naive dimension and equivalently the local naive dimension
for ∗-locally weakly o-minimal structures enjoying the univariate ∗-continuity property
(cf. Proposition 6.36), we can additionally show the following nice properties:

Proposition 6.42 ([15, Corollary 4.23]). Let M = (M,<, . . . ) be a ∗-locally weakly
o-minimal structure enjoying the univariate ∗-continuity property. Let X and Y be
nonempty definable subsets of Mn, Z ⊆Mm and let f : X →Mm be a definable map.
The following assertions hold true:
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1. dimN(X ∪ Y ) = max {dimN(X), dimN(Y )}.

2. The notation Disc(f) denotes the set of points at which the map f is discontin-
uous. The inequality dimN(Disc(f)) < dimN(X) holds true.

3. dimN(fr(X)) < dimN(X).

4. Let, d ∈ N and ϕ : X → Z be a definable surjective map with dimN(ϕ
−1(y)) = d

for all y ∈ Z. Then, dimN(X) = dimN(Z) + dimN(ϕ
−1(y)) for all y ∈ Z.

5. dimN(f(X)) ≤ dimN(X).

Proof. 1. dimN(X ∪ Y ) ≥ max {dimN(X), dimN(Y )} follows from the first state-
ment of Proposition 6.41. For the other direction, let π be a projection witnessing
dimN(X ∪Y ) = d. Thus, π(X ∪Y ) = π(X)∪π(Y ) has interior. By Lemma 6.29,
either π(X) or π(Y ) has interior.

2. By Theorem 6.31, there is a decomposition of X into normal submanifolds par-
titioning D(f). One can show that by the finiteness of the partition, for each
submanifold C of the highest dimension, there is some x ∈ C and some box B 3 x
such that X ∩B = C ∩B. Thus, f is continuous at π≤n(x). This implies that C
cannot be contained in Disc(f). Thus, dimN(X) = dimN(C) > dimN(Disc(f)).

3. This is an immediate consequence of the previous statement: Let c 6= d ∈ M .
Define

f : cl(X) →M,x 7→

{
c if x ∈ X

d else.

Then, fr(X) ⊆ Disc(f).

4. We choose not to present the extensive proof of this property here. For a proof
confer [15, Corollary 4.23].

5. This is a consequence of the first and the fourth statement. Note, we define an
injective f ′ with the same image and the domain being a subset of X with a
similar construction as in the proof of Theorem 6.31.

Remark 6.43. Originally, the properties of Proposition 6.42 are actually proven in a
slightly more general setting exactly stating which technical properties are needed in
order for the statements to hold. The interested reader may refer to the reference [15,
Corollary 4.23].

Moreover, by [15, Corollary 4.24], the fourth statement of Proposition 6.42 holds for a
∗-locally weakly o-minimal structure just in the here presented case of a structure with
univariate ∗-continuity property. For structures without the univariate ∗-continuity
property, the equality is false.
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Lastly, we mention two more definitions for dimension which coincide with the local
naive dimension in the case of ∗-locally weakly o-minimal structures with the univariate
∗-continuity property.

Definition 6.44 (Pillay’s Dimension Rank, [15, Definition 4.33]). Let M be a ∗-locally
weakly o-minimal structure with the univariate ∗-continuity property and X ⊆ Mn a
definable set. Define D(X) by:

• D(∅) = −∞ and for X 6= ∅, D(X) ≥ 0.

• If D(X) ≥ α for all ordinals δ > α, then D(X) ≥ δ.

• If there exists a definable closed Y ⊆ X such that Y has empty interior in X42

and D(Y ) ≥ α, then D(X) ≥ α + 1.

Set D(X) = α, if D(X) ≥ α but not D(X) ≥ α + 1. Set D(X) = ∞, if D(X) ≥ α for
all α.

Proposition 6.45 ([15, Proposition 4.34]). Let M be a ∗-locally weakly o-minimal
structure with the univariate ∗-continuity property and X ⊆Mn a definable set. Then,
D(X) = dimN(X).

Proof. For the empty set, the statement is immediate. We prove the statement by an
induction over d = dimN(X). For d = 0, X is discrete and closed and every non-empty
definable subset of X has non-empty interior in X.

Let d > 0.

Let Y be a definable subset of X with dimN(Y ) = dimN(X). Recall that dimN =
dimLN and thus there is some x ∈ Mn such that for every box B 3 y, we have
dimN(Y ∩B) = dimN(X∩B). Let π be a projection witnessing the dimension of Y ∩B.
Then, we can shrink B such that π(Y ∩B) = π(B). With a similar construction as in
the proof of Theorem 6.31 one can define functions h1, h2 with which we can find some
box B′ ⊆ B such that π(Y ∩ B′) = π(B′) = π(B′ ∩ X). Thus, Y has interior in X.
Therefore, every definable closed Y ⊆ X has dimension dimN(Y ) < dimN(X) and by
the induction hypothesis D(Y ) = dimN(Y ), implying D(X) ≤ dimN(X).

By Theorem 6.31, there is a decomposition of X into normal submanifolds. Let X1 be a
π-normal submanifold of dimension d. Define Z1 = X \X1 ∩X1. By Proposition 6.42,
dimN(Z1) ≤ dimN(fr(X)) < dimN(X). Since the concatenation of two projections is
again a projection, dimN(π(Z1)) < d. Thus, by Lemma 6.29, dimN(π(X1) \π(Z1)) = d
and π(X1) \ π(Z1) has interior. Pick a box B′ in this interior and a box B in π−1(B′).
By the definition of Z1, we have X ∩B = X1 ∩B.

Let y ∈ X1 ∩B. Since X1 is a normal submanifold, there is a box B2 ⊆ B with y ∈ B2

such that X1 is the graph of a continuous function defined on π(B2). Let C ′ ⊆ π(B2)
be a non-empty closed box with π(y) ∈ C. Let C = {x ∈ C ′ : π1(x) = π1(π(y))}.

42i. e. with regards to the subspace topology
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Then, C is closed, definable and dimN(C) = d − 1. By construction, C has empty
interior in X. Thus, D(X) ≥ dimN(X).

Definition 6.46 (Discrete Closure, Rank, [15, Definition 4.28, Definition 4.30]). Let
M = (M, . . . ) be a structure and let A ⊆M . The discrete closure of A, disclM(A), is
the set of all x ∈ M which are contained in a discrete and closed set that is definable
over A (without other parameters).

The rank of S ⊆Mn over A ⊆M is defined as

rkdiscl
M (S/A) = max{rkdiscl({a1, . . . , an}/A) : (a1, . . . , an) ∈ S}.

The rank of S over A with regard to some theory T , rkT discl(S/A) = rkdiscl
M (S/A) is

defined to be the rank in some monster model M.

Proposition 6.47 ([15, Theorem 3.2, Theorem 3.5]). Let M = (M, . . . ) be a ∗-locally
weakly o-minimal structure with the univariate ∗-continuity property. Let T = Th(M)
be the theory of the model. Let A ⊆ M and X be a subset of Mn definable over A
(without other parameters).

The pair (M, discl) is a pregeometry.

Moreover, dimN(X) = rkdisclT (X/A).

We choose not to present the proof here, but the reader can find a very detailed proof
in the Appendix of [15].

∗-local weak o-minimality &
∗-continuity

dim(X) = dimN(X) = dimLN(X) = D(X) =
rkdisclT (X/A) and all of these have the properties stated
in Propositions 6.41 and 6.42.

uniform local o-minimality
of the 2. kind & definable
completeness; strong local o-
minimality

dim(X) = dimC(X) = dimLN(X) and all of these
have the properties stated in Proposition 6.40.

Table 4: Summary of the presented results in this section. Confer with Figures 3 and 4
to check for which other notions this implies the same results trivially since they are
implied by one of the notions mentioned here.
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7 Locally O-Minimal Groups and Fields
In this section, we are not considering arbitrary dense linear orders but only expansions
of dense, linear ordered groups and fields. These restricted settings lead to additional
tameness results. Expansions of groups and fields have been the subject of intensive
study not only in the locally o-minimal setting but also with substantial results for less
restrictive notions like d-minimality. The review of tameness beyond o-minimality for
groups or for fields would by itself be an interesting topic for an extensive study but is
exceeding the scope of this thesis.

Therefore, we shortly review some of the specific results for locally o-minimal groups
and fields and put them into the context of this thesis, but leave out proofs and
details. This section is only intended as an outlook to familiar results of the ones
presented in previous sections and the interested reader is encouraged to consider the
given references for greater insight into this topic.

7.1 Groups
In this subsection, we focus solely on locally o-minimal groups and tameness results
specific to these.

First, consider locally o-minimal archimedian structures.

Definition 7.1 (Archimedean, [40]). Let M = (M,<,+, 0, . . . ) be an expansion of an
ordered group. M is called archimedean if for every a, b ∈ M with 0 < a < b there is
some positive integer n such that na > b. Here, na denotes a+ · · ·+ a︸ ︷︷ ︸

n times

.

Proposition 7.2 ([40, Theorem 6.3]). Let M be an archimedean locally o-minimal
ordered group. Then, M is abelian and divisible. In particular, M is o-minimal.

Thus, in the case of archimedean groups local o-minimality coincides with o-minimality.
As we want to investigate tameness beyond o-minimality, we are only interested in
results for non-archimedean locally o-minimal groups. For these, there are also some
stronger versions of the tameness results presented in the previous sections.

Regarding elementary equivalence, recall that almost o-minimality is not preserved
under elementary equivalence. Moreover, by [10, Corollary 4.30]), a structure elemen-
tarily equivalent to an almost o-minimal expansion of an ordered group is a uniformly
locally o-minimal structure of the first kind.

Regarding geometric tameness, first, we revisit local monotonicity and continuity.
While there are no notable better results for the definitions of local monotonicity and
continuity that we introduced so far, note that the definability of addition naturally
induces a definable metric on the structure. Thus, one can consider uniform continuity:

Proposition 7.3 ([12, Corollary 2.8]). Let M = (M,<,+, 0, . . . ) be a definably com-
plete expansion of an ordered group. Let C be a definable, closed and bounded set.
Then, every definable continuous function f : C →M is uniformly continuous.
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In particular, by Corollary 6.7, for every definably complete expansion of an ordered
group M = (M,<,+, 0, . . . ), the proposition implies that every definable function
f : I →M is locally uniformly continuous everywhere except for a discrete set.

Secondly, we consider cell decomposition. For almost o-minimal expansions of ordered
groups there is a slightly stronger version of Corollary 6.21 allowing for a uniform
choice of cell decompositions with the same types for arbitrary parameters from an
unbounded set of parameters.

Theorem 7.4 (Uniform local definable cell decomposition, [10, Theorem 1.7]). Let
M = (M,<, 0,+, . . . ) be an almost o-minimal expansion of an ordered group. Let
{Aλ}λ∈Λ be a finite family of definable subsets of Mm+n, let R ∈ M be an arbitrary
element and B = ]−R,R[n.

Then, there exists a finite partition into definable sets Mm × B =
⋃k
i=1Xi such that

B =
⋃k
i=1(Xi)b is a definable cell decomposition of B for every b ∈ Mm and either

Xi ∩ Aλ = ∅ or Xi ⊆ Aλ for every 1 ≤ i ≤ k and λ ∈ Λ.

Furthermore, the type of the cell (Xi)b is independent of the choice of b if (Xi)b 6= ∅.

Third, recall that we also discussed decompositions into normal and quasi-special sub-
manifolds. For definably complete expansions of ordered groups, there is even a de-
composition into special submanifolds, which is a stronger version of the decomposition
into quasi-special submanifolds also requiring that the boxes Vy can be chosen pairwise
disjoint.

Definition 7.5 (Special Submanifold, [11, Definition 3.1]). Let M be a dense linear
order without endpoints and let π = π≤d : Mn → Md. Let Y ⊆ Mn be a definable
subset. Y is called a π ◦ τ -special submanifold (or simply special submanifold) if there
is a coordinate permutation τ : Mn → Mn, (x1, . . . , xn) 7→ (xτ(1), . . . , xτ(n)) such that
the definable set X = τ(Y ) has the following properties:

For every x ∈ Md, there exist an open box U in Md containing the point x and a
family {Vy}y∈Xx of mutually disjoint open boxes in Mn such that

1. π(Vy) = U for all y ∈ Xx,

2. (X ∩ π−1(U)) ⊆ (
⋃
y∈Xx

Vy),

3. Vy ∩X is the graph of a continuous map defined on U for each y ∈ Xx.

Definition 7.6 (Decomposition into Special Submanifolds, [11, Definition 3.18]). Let
M be a dense linear order without endpoints and let {Xi}mi=1 be a finite family of
definable subsets of Mn. A decomposition of Mn into special submanifolds partitioning
{Xi}mi=1 is a finite family of pairwise disjoint special submanifolds {Ci}Ni=1 such that⋃N
i=1Ci = Mn and for every i, j: Either Ci has an empty intersection with Xj or it is

contained in Xj.

A decomposition {Ci}Ni=1 of Mn into special submanifolds satisfies the frontier con-
dition if the closure of any special manifold cl(Ci) is the union of a subfamily of the
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decomposition.

Theorem 7.7 ([11, Theorem 3.19]). Let M = (M,<, 0,+, . . . ) be a definably complete
locally o-minimal expansion of an ordered group. Let {Xi}mi=1 be a finite family of
definable subsets of Mn. There exists a decomposition {Ci}Ni=1 of Mn into special
submanifolds partitioning {Xi}mi=1 and satisfying the frontier condition. Furthermore,
the number of special submanifolds is bounded by a constant only depending on m and
n.

Remark 7.8. On a side note, there is an even stronger version of this theorem: [11,
Theorem 3.22] states that this decomposition can be chosen such that the special
submanifolds have tubular neighborhoods as defined in [11, Definition 3.21].

Moreover, the reader interested in another definition of “good-shaped” sets, can find
a different approach in [10, Definition 4.19, Theorem 4.22], where so called multi-cells
are discussed and a finite decomposition for almost o-minimal expansions of ordered
groups are shown. We omit the details here.

Finally, there are also some other results not relating to our results from the previous
chapters. In [12] the reader can find a comprehensive discussion of the tameness of
the topology of definably complete locally o-minimal expansions of ordered groups
and definable topological groups. The reader can find several interesting results there,
which are beyond the scope of this thesis.

7.2 Groups with Bounded Multiplication
Definition 7.9 (Definable Bounded Multiplication, [21, Definition 1.3]). An expansion
M = (M,<, 0,+, . . . ) of a linear ordered group has definable bounded multiplication
compatible to + if there exist an element 1 ∈M and a map · :M ×M →M such that

1. the tuple (M,<, 0, 1,+, ·) is an ordered field,

2. for any bounded open interval I, the restriction ·|I×I is definable in M .

We simply say that M has definable bounded multiplication if the addition in consid-
eration is clear from the context.

In Proposition 3.11, we proved that every uniformly locally o-minimal expansion of
the second kind of an ordered field is o-minimal. For the more general setting of
expansions of ordered abelian groups having definable bounded multiplication, there is
the following result:

Proposition 7.10 ([21, Proposition 3.2]). A uniformly locally o-minimal expansion of
the second kind of an ordered abelian group having definable bounded multiplication is
almost o-minimal. In particular, it is definably complete.

Regarding definable functions in expansions of dense linear ordered groups having defin-
able bounded multiplication, there are additional nice properties. In [21, Theorem 4.10,
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Proposition 4.5 and Proposition 4.6] the interested reader can find versions of the Lo-
jasiewicz’s Inequality and Michael’s Selection Theorem for definably complete locally
o-minimal expansions of an ordered group having definable bounded multiplication.
Moreover, the following result is also proven in the same publication:

Proposition 7.11 ([21, Weak Tietze Extension Theorem, Theorem 4.7]). Let M be
a definably complete locally o-minimal expansion of an ordered group having definable
bounded multiplication. Let S be a definable, closed and bounded subset of Mn. Then,
every definable continuous function f : S → M has a definable continuous extension
f :Mn →M .

Moreover, there are again also more results like e. g. [18, Theorem 1.4] which considers
definable topologies for definably complete uniformly locally o-minimal expansion of
ordered abelian groups.

7.3 Fields
Throughout this subsection, let K = (K,<,+, ·, 0, 1, . . . ) be an expansion of a locally
o-minimal field.

First, recall that by Proposition 3.11, any uniformly locally o-minimal ordered field
K is o-minimal. Thus, it is only interesting to consider locally o-minimal structures
which are not uniformly locally o-minimal of the second kind.

Secondly, every definably complete field K is type complete by the following proposi-
tion:

Proposition 7.12 ([19, Proposition 2.3.(8)]). Let K be a definably complete locally
o-minimal expansion of an ordered field. For any definable subset X of K, there exists
r1, r2 ∈ K such that either ]r1,∞[ ⊆ X or X ∩ ]r1,∞[ = ∅ and either ]−∞, r2[ ⊆ X or
X ∩ ]∞, r2[ = ∅.

Thus, a reader interested in definably complete locally o-minimal expansions of an
ordered field should also consider results for type complete structures like in [37].

By [9], one of the following two cases has to hold for definable functions in definably
complete locally o-minimal ordered fields:

Proposition 7.13 ([9, Theorem 5.18]). Let K be a definably complete locally o-minimal
ordered field. Then, K is either power-bounded, or it is exponential. Being exponential
means that K defines an exponential function. K is called power bounded, if for every
ultimately non-zero definable function f : K → K there exist c ∈ K \ {0} and r in the
field of exponents of K, such that f ∼ cxr.

Note that in fields, we can define differentiability. Thus, it is reasonable to consider
differentiability as an additional tameness property. For definably complete locally o-
minimal expansions of ordered fields, there is a decomposition into special submanifolds
which are additionally differentiable.
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Definition 7.14 (Cr-Submanifolds, [19, Definition 2.10]). Let Y ⊆Mn be a definable
subset. Y is called a π ◦ τ -special Cr-submanifold (or simply special Cr-submanifold) if
there is a coordinate permutation τ : Mn → Mn, (x1, . . . , xn) 7→ (xτ(1), . . . , xτ(n)) such
that the definable set X = τ(Y ) has the following properties:

For every x ∈ Md, there exist an open box U in Md containing the point x and a
family {Vy}y∈Xx of mutually disjoint open boxes in Mn such that

• π(Vy) = U for all y ∈ Xx,

• (X ∩ π−1(U)) ⊆ (
⋃
y∈Xx

Vy),

• Vy ∩ X is empty or the graph of a continuous Cr-map defined on U for each
y ∈ Xx.

A decomposition of Kn into special Cr-submanifolds partitioning {Xi}mi=1 is a finite
family of pairwise disjoint Cr-special submanifolds {Ci}Ni=1 such that

⋃N
i=1Ci = Mn

and for every i, j: either Ci has an empty intersection with Xj or it is contained in Xj.

Proposition 7.15 ([19, Proposition 2.11]). Let K be a definably complete locally o-
minimal expansion of an ordered field. Let r be a nonnegative integer. Let {Xi}mi=1 be
a finite family of definable subsets of Kn.

Then, there exists a decomposition of Kn into special Cr-submanifolds partitioning
{Xi}mi=1. In addition, the number of special Cr-submanifolds is bounded by a function
of m and n.

Remark 7.16. Again, on a side note, there are also versions with tubular neighborhoods
in [19, Theorem 2.14, Theorem 3.9].

Moreover, in [19, Theorem 3.10, Theorem 4.5, Theorem 4.12], the reader can also find
some explicit tameness results shown for the notion of Cr-submanifolds.

Another topic discussed in [9, Theorem 5.25] and [20] are definable groups in definably
complete locally o-minimal ordered fields. These also have several tame properties, but
we will not go into detail here.

On a last note, there is a version of the well-known Definable Positivstellensatz for
definably complete locally o-minimal expansions of ordered fields:

Proposition 7.17 (Definable Positivstellensatz, [19, Theorem 3.14]). Let K be a defin-
ably complete locally o-minimal expansion of an ordered field. Let f1, . . . , fk be definable
Cr functions on Kn such that the set S = {x ∈ Kn : ∧ki=1fi(x) ≥ 0} is not empty. Let
g be a definable Cr function on Kn. The following assertions hold true:

1. If g ≥ 0 on S, there exist definable Cr functions p, v0, . . . , vk on Kn such that
p−1(0) ⊆ g−1(0) and p2g = v20 +

∑k
i=1 v

2
i fi.

2. If g > 0 on S, there exist definable Cr functions v0, . . . , vk on Kn such that
g = v20 +

∑k
i=1 v

2
i fi.
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8 Conclusion and Outlook
While local o-minimality alone seems to be too weak a condition to imply any significant
tameness results, it is an overarching classification containing several slightly stronger
notions like ∗-local weak o-minimality, weak uniform local o-minimality of the second
kind and locally o-minimal structures with the univariate ∗-continuity property. For
these notions, the desired local versions of the geometric tameness properties from
o-minimality do indeed hold.

One inherent downside of the study of local o-minimal structures instead of o-minimal
ones, is that there are only local tameness results. While the local monotonicity and
cell decomposition results have some nice applications for dimension theory, they are
missing the global finiteness of o-minimality which is a powerful tool since it allows for
inductive arguments. However, the results presented here definitely justify to consider
many of the notions discussed as geometrically tame.

Due to historic developments in the field, various different notions of local o-minimality
and familiar notions have been introduced. Most notable, the ones for which the most
general versions of important tameness have been shown, being almost o-minimality,
strong local monotonicity, uniform local weak o-minimality of the second kind and
∗-local weak o-minimality.43 Moreover, while there are some examples proving that
some of the notions are not equivalent, there are still many cases without any example.
For example, it would be interesting to know if there is an example of a ∗-locally weak
o-minimal structure which is not uniformly weakly o-minimal of the second kind.

In conclusion, there are various interesting tameness results for local o-minimality,
in more restrictive settings like expansions of groups and fields and even for arbi-
trary dense linear orders. Thus, this is an important notion for tameness beyond
o-minimality.

43While DC, TC, weak o-minimality and the ∗-continuity property are all also fundamental notions
with important implications, these are rather tools and related study areas and not so central for local
o-minimality, thus, not included here.
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