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In this paper we study the moduli spaces Simpm
n of degree 

n + 1 morphisms A1
K → A1

K with “ramification length < m” 
over an algebraically closed field K , where we introduce the 
notion of the ramification length of a morphism to quantify 
the complexity in its ramification behavior. For each m, the 
moduli space Simpm

n is a Zariski open subset of the space 
of degree n + 1 polynomials over K up to Aut(A1

K ). It is, 
in a way, orthogonal to the many papers about polynomials 
with prescribed zeroes- here we are prescribing, instead, the 
ramification data. Exploiting the topological properties of the 
poset that encodes the ramification behavior, we use a sheaf-
theoretic argument to compute H∗(Simpm

n (C); Q) as well as 
the étale cohomology H∗

ét(Simpm
n /K ; Q�) for charK = 0 or 

charK > n + 1, when n and m are such that n ≥ 3m. As a 
by-product we obtain that H∗(Simpm

n (C); Q) is independent 
of n, thus implying rational cohomological stability. When 
charK > 0 our methods compute H∗

ét(Simpm
n ; Q�) provided 

charK > n +1 and show that the étale cohomology groups in 
positive characteristics do not stabilize.
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1. Introduction

We work throughout over an algebraically closed field K . Let

Mn := {f : A1 → A1 : f is a morphism of degree n + 1}/Aut(A1).

We identify Mn with the space of all degree n +1 monic polynomials over K that vanish 
at 0. There exists vast literature studying subvarieties of Mn, e.g. the space of square-free 
polynomials (i.e. configuration spaces of distinct points, see e.g. [1], [15] and the references 
therein), or the space of finite morphisms to A1 with a fixed a Galois group G (see e.g. [6], 
[17]) etc. In this paper we consider a natural but quite different problem by considering 
the subvarieties Simpm

n ⊂ Mn of morphisms with “total ramification < m”.
To be precise, let

N :=
⋃
r≥1

{[a1, . . . , ar] : ai ∈ N, ai > 1}

where [a1, . . . , ar]-denotes an unordered r-tuple of (not necessarily distinct) integers. For 
f ∈ Mn, let vf (a) denote the valuation of f at a (for a definition see Section 2 below). 
Let

Ram(f) := {a ∈ A1 : vf (a) ≥ 2}

be the set of ramification points of f . If a is a ramification point of f , define the ramifica-
tion index of f at a to be the positive integer vf (a). Let Branch(f) := f(Ram(f)) ⊂ A1

be the set of branch points. A branch point b ∈ A1 of f determines the ramification 
profile of f over b, denoted by Bb(f) ∈ N via

Bb(f) := [ramification indices of elements of f−1(b)].

Let

l(Bb(f)) :=
∑

e∈Bb(f)

(e− 1)

be the ramification length over b”. The total ramification length of f is

length(f) :=
∑

b∈Branch(f)

(
l(Bb(f)) − 1

)
. (1.1)

Let

Simpm
n := {f ∈ Mn : length(f) < m}.
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This is a Zariski open dense subset of Mn, and hence a smooth variety over K. In fact, 
as we shall soon see, Simpm

n is the complement of a locus defined by polynomials with 
coefficients in Z, and hence is a reduced separated scheme of finite type over Z. When 
m = 1, we get the locus of simply-branched polynomials, which we denote by Simpn. 
These are the degree n + 1 morphisms f : A1 → A1 with simple branch points (see 
Fig. 1).

Remark 1.1. Note that {f ∈ Mn : length(f) = m}, the locally closed stratum of 
polynomials with total ramification length m, has codimension m in Mn by the Riemann-
Hurwitz formula. In other words, (1.1) is the bridge that relates the codimension of 
a stratum with the total ramification length of polynomials in that stratum, via the 
Riemann-Hurwitz formula.

•2 •2
A1 A1

A1 A1

g

•3 •3

f

• •

•4
•2

•2

•4

•2

•

•2

•

•2

•

•3

Branch(f) Branch(g)

Fig. 1. A schematic of the ramification points (with indices specified) over the branch points of two morphisms 
f, g ∈ Simp7

n for a fixed n ≥ 13.

Let p(N) denote the number of partitions of a positive integer N . Let c : Z+ → Z+

be defined via

c(m) =
∑
k≥1

( ∑
n1+...+nk=m
n1≤...≤nk

p(n1 + 1) . . .p(nk + 1)
)
. (1.2)

By Hi (respectively Hi
ét) we will mean singular (respectively étale) cohomology. If V is 

a Q� vector space and if m ∈ Z then we let V (m) denote the mth Tate twist of V . Our 
main theorem computes the cohomology of Simpm

n .

Theorem A. Let m, n ≥ 1. Then the following hold.
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1. For all n ≥ 3m:

Hi(Simpm
n (C);Q) =

{Q for i = 0,
Q⊕c(m) for i = 2m− 1,
0 otherwise.

Furthermore, H2m−1(Simpm
n (C); Q) is pure of weight −2m and Hodge type

(−m, −m).
2. Let κ be a field satisfying char κ > n + 1 or char κ = 0. Then for all n ≥ 3m, we 

have the following isomorphism of Gal(κ/κ)-representations:

Hi
ét(Simpm

n /κ;Q�) =
{Q�(0) for i = 0,

Q�(−m)⊕c(m) for i = 2m− 1,
0 otherwise,

whenever � is prime to char κ.

An arithmetic application Theorem A paired with the Grothendieck-Lefschetz fixed 
point theorem gives us the following:

Corollary 1.2. Let m, n ≥ 1 and let q = pd, where p is a prime and d ≥ 1. Then

#Simpm
n (Fq) = qn − c(m)qn−m

for all n < p − 1 and m ≤ n
3 .

Remark 1.3. The case m = 1 itself is of special interest- it answers questions about the 
topology of the moduli space of simply-branched morphisms. If m = 1 then c(m) = 2. So 
when n ≥ 3, Theorem A provides answers for H∗(Simpn(C); Q) and H∗(Simpn/K ; Q�)
which were not previously known. In particular, for all n ≥ 3 Corollary 1.2 immediately 
implies the following:

#Simpn(Fq) = qn − 2qn−1

where q = pd, provided n + 1 < p. When n = 1, Theorem A is trivial because all degree 
2 morphisms are simply-branched i.e. Simp1

∼= A1. If n = 2, then Simp2 is isomorphic 
to the space of square-free quadratic polynomials by the map defined (2.3). Results for 
the latter space are well-known thanks to Arnol’d’s work (see e.g. [1]).

Further remarks

1. In characteristic p > 0, we could have also considered the moduli space of polynomials 
of degree n +1 which are unramified as self-maps of the affine line. However, we have 
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also seen that these spaces are nonempty if and only if n + 1 = pk for some k. So, 
our assumption of n + 1 < p rules out the unramified case.

2. Note that Item (2) in Theorem A does not imply étale cohomological stability when 
charK > 0. When n is large, morphisms with wild ramification will inevitably come 
into the picture. Via Artin-Schreier theory one can construct infinite families of 
degree n morphisms f : A1

Fp
→ A1

Fp
with a fixed ramification type. Furthermore, 

note that Simpm
n is not a proper scheme over Z. So even the customary base change 

and Grothendieck-Lefschetz theorems would not help with finding a formula for 
#Simpn(Fq) for large values of n.

Some context

1. Theorem A is orthogonal to the plethora of results concerning the (co)homology 
of the moduli space of polynomials with a prescribed order of zeroes (also known 
as configuration spaces on C) due to Arnol’d (see e.g. [1,2]), Napolitano ([15]) etc. 
While most results concentrate on spaces recording the zeroes of polynomials, Simpmn
records the ramification. This in turn prevents us quoting the Leray Serre spectral 
sequence for inclusion, unlike the papers on configuration spaces. In fact, our results 
should be viewed in the spirit of the long standing open problem of understanding the 
topology of the Hurwitz space. The irreducibility of the Hurwitz space is a classical 
result proved in [4], with a more modern account in [7], but the topology of its 
subvarieties corresponding specific ramification loci is almost completely unknown. 
Our result is that of stability of the cohomology of these Hurwitz spaces satisfying 
certain conditions.

2. A well-known method of looking at this the Hurwitz spaces, at least when K = C, is 
by considering topological finite covers of punctured smooth projective curves (see, 
e.g. [17], and the references therein). As an example, note that each element of Mn

corresponds to an (n + 1)-sheeted cover of (A1
C − {p1, . . . , pn}). One looks at finite 

quotients of the topological fundamental group πtop
1 (A1 − {p1, . . . , pn}) (which is 

finitely generated), or in turn, subgroups of πtop
1 (A1−{p1, . . . , pn}) of a fixed (finite) 

index, of which there are only finitely many.
In a beautiful paper on Cohen-Lenstra statistics, Ellenberg-Venkatesh-Westerland 
study Hurwitz schemes with fixed Galois group (see [6]) and prove a homological 
stability result. The resemblance of Simpm

n with the Hurwitz schemes in [6] is close 
enough to warrant digging a little deeper to see why the techniques in [6] seem 
unlikely to imply Theorem A. The key difference between this paper and theirs lies 
in the Galois groups of the finite covers of A1 − {p1, . . . , pn}. In [6], they consider 
G-covers of A1

C−{p1, . . . , pn}, where G is a fixed group (satisfying certain conditions), 
and the number of branch points grow, thereby increasing the genus of the projective 
completion of the cover but keeping the degree of the cover unchanged. In our case, 
the genus of the cover is always 0, whereas the monodromy group, which in some 
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cases would turn out to be Sn+1 (e.g. when all branch points are simple) grows with 
the degree of the cover.

3. In contrast to Theorem A, the étale cohomology groups Hi
ét(Simpm

n ; Q�) do not 
stabilize when charK > 0- a divergence from other comparable stability results (see 
e.g. [6], and Farb-Wolfson’s work on configuration spaces see [8]). Indeed, the moduli 
space of polynomials f ∈ Fp[x] of degree n that are unramified as self-maps of A1

Fp
is 

nonempty if and only if n is a prime power. To see this, note that when n is a prime 
power, there are the Artin-Scherier examples like xn − x, which is unramified since 
d
dx (xn−x) = −1 �= 0; the other direction follows from the work of Grothendieck (see 
[9]) which goes roughly in the following way. Let φ be a polynomial of degree n where 
n = pkm for some m and p � | m, and suppose the finite morphism φ : P 1

Fp
→ P 1

Fp
is 

ramified only at ∞. Its tame pullback kills the prime-to-p part of the inertia at ∞
and gives us an unramified morphism φ̂ : A1

Fp
→ A1

Fp
with tame ramification at ∞

and the inertia group cyclic of order m. Since gcd(m, p) = 1, the map φ̂ can be lifted 
to characteristic 0, which then forces m = 1.
The fact that Hi

ét(Simpm
n /Fp

; Q�) does not stabilize is a manifestation of Abhyankar’s 
philosophy: that prime-to-p situation mimics the characteristic 0 picture, else, every 
type of cover that can possibly occur, indeed occurs (see [12, Section 3]).

Outline of proof of Theorem A Fixing n ≥ 3, our approach to computing Hi(Simpm
n )

for each m ≥ 0 can be summarized as follows.

1. We first relate the ramification of a polynomial with its derivative. We relocate the 
whole problem to M ′

n, the space of derivatives of all elements in Mn. Noting that 
M ′

n
∼= Mn, we reduce the problem to computing the cohomology of the image of 

Simpm
n in M ′

n by studying the ordered zeroes of elements in M ′
n i.e. “the root cover 

of M ′
n”.

2. We construct posets that encode the ramification behavior of elements of Mn. More 
precisely, fixing the ramification data stratifies Mn, and in turn M ′

n, into a disjoint 
union of locally closed subsets whose closures give us a covering of the root cover 
of M ′

n by closed sets. Their pre-image in the root cover is combinatorially described 
by the posets Pm

n . Our first step is to prove that Pm
n is shellable (see Section 4.1). 

The key implication of being shellable, for us, is that the only nonzero reduced 
cohomology of an “open interval” in Pm

n resides in its top dimension.
3. We study the geometric properties of the strata in the above-mentioned stratification 

in Section 5, in particular Proposition 5.1.
4. We use shellability of Pm

n to construct the resolution (6.1) of j!QUm
n

(see Lemma 6.3) 
where Um

n denotes the space of “ordered ramification points”, defined in (2.6).
5. Finally, we compute H∗(Um

n , Q) by incorporating the geometric properties of the 
stratification from Item 2, and shellability of Pm

n from Item 1 in the resolution of 
j!QUm , as mentioned in Item 3. Taking Sn of the resulting spectral sequence now 
n
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finishes the proof of Theorem A since most terms on the E1 page turn out to be 0
thanks to Propositions 5.1 and 4.7 (see Section 6).

2. Ramification, derivatives and the “ramification cover”

In this section we elaborate on our first step discussed in the proof outline above. We 
assume that charK = 0 or charK > n + 1. We show that the ramification behavior of 
a polynomial is reflected, to a large extent, by its derivative. Switching to the “space of 
derivatives” is our first step to prove Theorem A.

For convenience, let us briefly recall (and expand on) the definitions from page 1 of 
the introduction. Let f : X → Y be a finite morphism of smooth curves defined over K . 
Let f# : OY,b → OX,a be the homomorphism induced by f on the stalks of the structure 
sheaves OY and OX at the closed points b = f(a) ∈ Y and a ∈ X respectively. Let y
be a generator for the maximal ideal in OY,b. The valuation of f at a, which we denote 
by vf (a), is defined as va(f#(y)) where va is the valuation associated to the discrete 
valuation ring OX,a. In this paper we assume X = Y = A1. Also, throughout the rest of 
the paper, for any set X and (not necessarily distinct) elements x1, . . . , xr, we denote by

[x1, . . . , xr]

the corresponding unordered r-tuple.

Definition 2.1 (Ramification data). Let n be a positive integer. For an element φ ∈ Mn
we define the ramification data of φ as three sets of data:

1. the ramification points of φ, given by Ram(φ) = {a ∈ A1 : vφ(a) ≥ 2},
2. the branch points of φ, given by φ(Ram(φ)),
3. associated to each point b ∈ Branch(φ) we define the ramification cycle of φ over b

as an unordered l(Bb(φ))-tuple Ramb(φ) ∈ Syml(Bb(φ))A1 via:

Ramb(φ) := {a ∈ A1 : a ∈ φ−1(b) ∩Ram(φ), counted (vφ(a) − 1) times} (2.1)

Definition 2.2. For a ∈ Ram(φ) we say that φ is simply-branched at a or a is a simply-
branched ramification point of φ if Bφ(a)(φ) = {2}. We that b ∈ Branch(φ) is a simple 
branch point of φ or φ is simply-branched at b if b is the image of a simply-branched 
ramification point of φ.

For a1, a2 ∈ Ram(φ) we say that a1 and a2 are sibling ramification points if φ(a1) =
φ(a2).

Remark 2.3. Note that if φ is simply-branched at a, it is clearly simply ramified at a, but 
the converse is not true. The above definition also implies that φ is non-simply-branched 
at a ∈ Ram(φ) if and only if l(Bφ(a)(φ)) ≥ 2.



8 O. Banerjee / Advances in Mathematics 359 (2020) 106881
•a1
1 •a1

2

...
...A1

A1

•ak1
1

φ

•bp

•ak2
2

...

•b1 . . . . . .

•akp
p

•b2

•a1
p

Branch(φ)

Fig. 2. The diagram above is a schematic of the morphism φ ∈ Mn with ramification data given by (2.2).

Let the ramification data of φ ∈ Mn be given by (see Fig. 2):

Branch(φ) = {b1, . . . , bp}
for each i, let Bbi(φ) = [e1

i , . . . , e
ki
i ],

and let Rambi(φ) =
(
a1
i , . . . , a

1
i︸ ︷︷ ︸

ei1−1

, . . . , aki
i , . . . , aki

i︸ ︷︷ ︸
eiki

−1

)
.

(2.2)

Therefore, we have

φ′(x) =
∏

1≤i≤k1

(x− ai1)e
i
1−1 . . .

∏
1≤i≤kp

(x− aip)e
i
p−1

i.e. the derivatives of the morphisms in Mn completely determine, and are determined 
by the ramification data. For a ∈ Ram(φ), we define the differential length of φ at a to 
be the order of vanishing of φ′ at a i.e. if vφ(a) = e, then the differential length of φ at 
a is e − 1.1 This leads us to introduce a new space defined by

M ′
n :=

{ 1
n + 1φ

′ : φ ∈ Mn

}
.

Note that M ′
n is the space of all monic degree n polynomials over K , and so M ′

n
∼= An. 

Define the function

I : M ′
n → Mn

f �→ (n× the antiderivative of f that vanishes at 0)

The Riemann-Hurwitz formula guarantees that the sum total of the differential lengths 
for any morphism φ ∈ Mn is n. This gives us the following isomorphism:

1 The differential length goes by other similar names, like, for example, length, different etc. Our definition 
holds only for tamely ramified morphisms. For a general definition, see, e.g. [11, Chapter 4, Proposition 
2.2].
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D : Mn
∼=−−→ M ′

n

φ �−→ φ′

n + 1
I(f) �−→f

(2.3)

Furthermore, let � denote a positive integer, φ ∈ Mn and f ∈ M ′
n. Then it follows from 

(2.3):

a ∈ Ram(φ), with differential length � � a ∈
{

Zeroes of φ′

n + 1

}
, with multiplicity �

a ∈ Ram(I(f)), with differential length � �a ∈
{
Zeroes of f

}
, with multiplicity �

(2.4)

In other words, the map D sending the ramification data of elements in Mn to the zeroes 
of their derivative in M ′

n (counted with multiplicity), is an isomorphism.
To study the topology of Simpm

n , we appeal to the isomorphism in (2.3) and define

Sm
n := DSimpm

n .

So, Sm
n is Zariski open dense of M ′

n for all m. As with Simpn, we omit m = 1 and write 
Sn instead of S1

n. We thus have the following commutative diagram:

Simpm
n Sm

n

Mn M ′
n

∼=

∼=

The ramification cover of Mn The ramification cover of Mn is the space of ordered 
ramification points of elements in Mn, with multiplicities equal to the differential lengths. 
In other words, the ramification cover of Mn is merely the root cover of M ′

n. Let this be 
denoted by Xn. Therefore, Xn = An since it is the space of ordered roots of degree n
monic polynomials over K . There is an obvious action of Sn, the symmetric group on n
letters, on Xn given by permuting the coordinates. This action is fixed-point free off the 
diagonals, resulting in a finite surjective morphism

π : Xn −→ Xn/Sn = M ′
n

(a1, . . . , an) �→ (x− a1) . . . (x− an) (2.5)

The branch locus of π is precisely the complement of the space of monic square-free 
degree n polynomials in M ′

n. In other words, Xn is what one calls the “root-cover” of 
M ′

n. Let

Um
n := π−1Sm

n .
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Thus, for example, the pre-image of Sn ⊂ M ′
n in Xn is given by

Un := π−1(Sn) ={
(a1, . . . , an) : ai �= aj and

(
I(π(a1, . . . , an))

)
(ai) �=

(
I(π(a1, . . . , an)

)
(aj) ∀i < j

}
,

(2.6)

where we write Un instead of U1
n. Thus we have:

Um
n π|Um

n

Sm
n Simpm

n∼=

Xn
π

M ′
n Mn∼=

3. Stratification of Xn: the combinatorics

We should, for clarity, recall the convention fixed at the beginning of the introduction: 
all varieties are defined over an algebraically closed K and n always denotes a positive 
integer that satisfies n +1 < charK whenever charK > 0. We have seen briefly seen how 
ramification data on polynomials give us a stratification of the moduli space Mn and in 
turn, a stratification of M ′

n. The goal of this section is to encode this stratification into 
concrete combinatorial terms to give a stratification of the ramification cover Xn (see 
Fig. 3).

Now,

Xn − Un =
⋃

1≤i<j≤n

Tij

⋃ ⋃
1≤i<j≤n

Dij

where

Tij =
{

(a1, . . . , an) : ai = aj

}
, and

Dij =
{

(a1, . . . , an) :

(
I(π(a1, . . . , an))

)
(ai) −

(
I(π(a1, . . . , an))

)
(aj)

(ai − aj)3
= 0

} (3.1)

Note that Dij , Tij as well as π(Dij) and π(Tij) are all Z-schemes; they are defined 
in Xn and M ′

n respectively, each isomorphic to An, by equations with coefficients in Z. 
So Um

n , its Sn-quotient Sm
n and in turn Simpm

n are defined over Z for all m and n. Also 
note that
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•3A1

A1

φ

••

. . .
•2 •2

• . . .

Branch(φ)

•2

•2

. . .

A1

A1

ψ

••

•2 •2

• . . .

Branch(ψ)

Fig. 3. The above diagram is a schematic of a generic point φ ∈ I◦π(Dij) ⊂ Mn. The one below is that of a 
generic point ψ ∈ I◦π(Tij).

π(Dij) =
{
f ∈ M ′

n : I(f) has exactly one branch point that satisfies Bb(I(f)) = {2, 2}
}

and,

π(Tij) =
{
f ∈ M ′

n : I(f) has exactly one branch point that satisfies Bb(I(f)) = {3}
}
,

as show in the diagram above (also, see Definition 2.1 and (2.3).) The closed subvarieties 
formed by the intersection of various combinations of the divisors Dij and Tij give us a 
stratification of Xn, the combinatorics of which we describe now.

3.1. A combinatorial description of stratification by locally closed subsets

In this section, we describe Xn as a disjoint union of locally closed subsets, are indexed 
by the elements of a certain poset. We first fix a convention: if ρ is a partition of the set 
{1, 2, . . . , n}, we denote by ρ(j) the subset of {1, 2, . . . , n} that contains j and we denote 
by Πn the poset of all partitions of the set {1, 2, . . . , n}. Also, we introduce a short-hand 
notation n := {1, 2, . . . , n}.

For each (a1, . . . , an) ∈ Xn, we define a pair of partitions, say ρ1(a1, . . . , an) and 
ρ2(a1, . . . , an), on the set n in the following way:

i ∈ ρ1(a1, . . . , an)(j) if ai = aj ,

i ∈ ρ2(a1, . . . , an)(j) if I(π(a1, . . . , an))(ai) = I(π(a1, . . . , an))(aj)
(3.2)

Remark 3.1. Note that ρ1(a1, . . . , an) partitions an ordered n-tuple (a1, . . . , an) ∈ Xn

of ramification points of I(π(a1, . . . , an)) according to the differential lengths, and 
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ρ2(a1, . . . , an) partitions (a1, . . . , an) according to whether these points are siblings under 
the morphism I(π(a1, . . . , an)).

We thus obtain a map:

ρ : Xn −→ Πn × Πn

(a1, . . . , an) �→ ρ1(a1, . . . , an), ρ2(a1, . . . , an)
(3.3)

where ρ1 and ρ2 are as defined in (3.2). Let Pn := ρ(Xn) ⊂ Πn × Πn.

Caution! Pn is only a subset of Πn × Πn, not a sub-poset. We will soon define a partial 
order on Pn, and that partial order will not be the same as the one Pn inherits by virtue 
of being a subset of the poset Πn × Πn.

For each α ∈ Pn, let S(α) := ρ−1(α). Then S(α) is a locally closed subset of Xn and

Xn = 

α∈Pn

S(α)

We write ρ1(α) := ρ1(a1, . . . , an) and ρ2(α) := ρ2(a1, . . . , an), and think of them as the 
“coordinates” of α in Πn.

Remark 3.2. For any two elements (a1, . . . , an) and (c1, . . . , cn) in S(α), the correspond-
ing morphisms I◦π(a1, . . . , an) and I◦π(c1, . . . , cn) have the same number of branch 
points, and the same ramification profile over each of the branch points; in other words, 
there is a set-theoretic bijection between the ramification data of I◦π(a1, . . . , an) and 
I◦π(c1, . . . , cn).

Now recall the notations and terminology set up in Definitions 2.2 and 2.1. To each 
α ∈ Pn we associate three sets as follows:

1. N(α), the “simple part of α” : The set N(α) ⊂ n is the index set of the simply-
branched ramification points (see Definition 2.2) of morphisms in I◦π(S(α)) ⊂ Mn. 
Equivalently,

N(α) := {i : both ρ1(α)(i) and ρ2(α)(i) are singletons}

2. R(α), the “non-simply-branched part of α”: We define R(α) as a partition of [n] −
N(α) whose cells R(α)i are defined by

R(α)i = {j ∈ {1, . . . , n} −N(α) : j ∈ ρ1(α)(i)}.

In other words for any φ ∈ I◦π(S(α)) ⊂ Mn, by Remark 3.1, we see in particular, 
that R(α) encodes the ramification indices at the non-simply-branched ramification 
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points of φ, and so does any reordering of R(α). By Remark 3.2, R(α) is independent 
of the choice of φ ∈ I◦π(S(α)).

3. F (α), the “partition of α into siblings”: We define F (α) as a partition of [n] −N(α)
whose cells F (α)j are defined via

F (α)j := {k : k ∈ ρ2(α)(j)}.

In particular, for any φ ∈ I◦π(S(α)) ⊂ Mn, the set F (α) encodes an ordered version 
of the ramification profile (consisting of sibling ramification points) over the non-
simple branch points of φ by Remark 3.1. By Remark 3.2, F (α) is independent of 
the choice of φ ∈ I◦π(S(α)).

Now, Definition 2.1 is equivalent to the “unordered version” of the sets N(α), R(α) and 
F (α), where α ∈ Pn is such that φ ∈ I◦π(S(α)). Indeed, F (α)j , for each j, up to 
re-ordering, is nothing but Ramb(φ) for some b ∈ Branch(φ) where the ramification 
points are counted as many times as their differential lengths. More precisely, (2.2) gives 
us the following:

F (α) = {F (α)1, . . . , F (α)r},
F (α)j = 


1≤i≤kj

R(α)ij ,

|R(α)ij | = eij − 1 and |F (α)j | = kj .

(3.4)

Moreover, by the Riemann-Hurwitz formula we have |N(α)| = n −
∑

i,j(eij − 1).
Finally, give a partial order to Pn by reverse inclusion i.e. by declaring

α ≤ β ⇐⇒ S(α) ⊇ S(β).

Put the notion of a length on Pn given by l : Pn → {0, 1, 2, . . .}, where

l(λ) := codim(Sλ) =
∑

(|R(λ)i| + 1) −
∑

|F (λ)j | − |F (λ)|. (3.5)

The second equality of formula (3.5) follows from Proposition 5.1.

Remark 3.3. If φ ∈ Mn is such that ρ
(
π−1(Ram(φ))

)
= α ∈ Pn, then, comparing the 

formulae (1.1) and (3.5), one obtains that length(φ) = l(α) i.e. codimension of the strata 
to which π−1(Ram(φ)

)
belongs, equals the length of the ramification of φ, as it should.

Pn has a greatest and a least element. Let 0̂ denote the element in Pn for which 
ρ−1(0̂) = Un. Then, N(0̂) = {1, 2, . . . , n} and R(1̂) = F (0̂) = ∅. We denote by 1̂ the 
element in Pn that is determined by polynomials with maximal branching, i.e.

1̂ = I ◦ π ◦ ρ−1{(a1, . . . , an) : ai = aj∀1 ≤ i < j ≤ n}.
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Then, N(1̂) = ∅ and R(1̂) = F (1̂) = {1, 2, . . . , n}. Under the partial order defined on 
Pn, it is clear that 0̂ and 1̂ are the least and the greatest elements respectively.

3.2. Pm
n as a quotient of Pn

Fix a positive integer m. We construct yet another poset Pm
n , as a quotient of Pn by 

imposing the following equivalence relation:

λ ∼ 0̂ ⇐⇒ l(λ) < m.

Let Pm
n := Pn/ ∼, and let

prm : Pn → Pm
n

denote the corresponding quotient map. The poset Pm
n inherits a notion of length from 

Pn, which can be defined as follows. Let λ ∈ Pm
n . Then we define the length of λ in Pm

n

via:

lm(λ) :=
{

0 if l(pr−1
m (λ)) < m

l(pr−1
m (λ)) −m if l(pr−1

m (λ)) ≥ m

Pm
n is equipped with a least and a greatest element, which we continue to denote as 0̂

and 1̂ by abusing notations, and where 0̂ := prm(0̂) and 1̂ := prm(1̂). In fact, the map 
ρ : Xn → Pn induces a map

ρ(m) : Xn → Pm
n

defined by ρ(m) := prm ◦ ρ

and ρ(m)−1(0̂) = Um
n . Finally, note that P1

n is nothing but Pn itself.

3.3. Action of Sn on Pn and stability of the resulting quotient

The natural action of Sn on {1, 2, . . . , n} by permutations induce an action on Pn. 
The goal of this section is to analyse this action, and to make a precise meaning of the 
statement:

“The posets Pn/Sn stabilize as n → ∞”

There is a canonical inclusion of partially ordered sets

ιn : Pn ↪→ Pn+1
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by noting that the partitions defined by (3.2) on {1, 2 . . . , n}, in Section 3.1, are com-
patible with those on {1, 2 . . . , n + 1}. As a result, for all λ ∈ Pn, we have

1. R(ιn(λ)) = R(λ),
2. F (ιn(λ)) = F (λ), and
3. N(ιn(λ)) = N(λ) ∪ {n + 1}

In particular, l(ιn(λ)) = l(λ).
There is an obvious action of the symmetric group Sn on Pn induced by permutations 

of {1, 2, . . . , n}. Note that Pn/Sn documents only the ramification types, i.e. the data 
consisting of the numbers eij , k′js and r for various i, j and r. It also inherits, in an 
obvious way, the notion of length from Pn. It follows that the following diagram of 
posets commutes:

Pn Pn+1

Pn/Sn Pn+1/Sn+1

ιn

σn σn+1

ι′n

(3.6)

where ι′n is an inclusion of partially ordered sets, and σn and σn+1 denote the quotient 
maps by the respective symmetric groups.

Clearly, ιn is not surjective, and neither is ι′n. However, if we define

[Pn]p := {λ : l(λ) = p}

then

ι′n

∣∣∣∣
[Pn]1/Sn

: [Pn]1/Sn −→ [Pn+1]1/Sn+1 (3.7)

is a bijection as long as n ≥ 3. From a geometric perspective, this is simply because 
π(Dij) and π(Tij) are irreducible closed subvarieties of codimension 1 in M ′

n, for all 
n ≥ 3.

This begs the question: for what values of m, depending on n, is

ι′n

∣∣∣∣
[Pn]m/Sn

: [Pn]m/Sn −→ [Pn+1]m/Sn+1 (3.8)

a bijection? Lemma 3.6 gives an answer to this question, but before that we need make 
a few more definitions.

Definition 3.4. Let P := limPn/Sn, the direct limit of the system 〈Pn/Sn, ι′n〉.
−→
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•e1
1 •e1

2

...
...A1

A1

•ek1
1

φ

• • . . . •

•ek2
2

...
•2 •2

• . . . . . .

. . . . . .

•ekr
r

•

•e1
r

Branch(φ)

N(α)

Fig. 4. This is a diagrammatic presentation of the sets N(α), R(α) and F (α), but only up to permutation 
by Sn. Let φ ∈ I◦π(S(α)). The colored points are the ramification points of φ, with ramification indices 
specified. The red points denote the non-simply-branched ramification points of φ. Counted as per the 
differential lengths (=ramification index −1), they constitute R(α) up to reordering the cells R(α)i and 
their elements. The green points, the simply-branched ramification points of φ, form N(α). Each “column” 
of red points (again, counted correctly) is an element in F (α). (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

By the discussion above, P itself inherits an obvious notion of length, which we denote 
by length : P → Z. Thus, each μ ∈ P comes with the following data:

positive integers k1, . . . , kr,

integers eij ≥ 2, for each 1 ≤ i ≤ kj , and 1 ≤ j ≤ r,

Fig. 4 is a schematic diagram of an element in P. Following the notation set up in (2.2), 
and the formula in (3.5), if μ ∈ P is such that μ ∈ Pn/Sn, then one has

length(μ) = l(σ−1
n (μ)) =

∑
1≤j≤r

( ∑
1≤i≤kj

(eij − 1) − 1
)
.

We say μ is a length m ramification if length(μ) = m. At this juncture, one should recall 
Definition 2.1. To consolidate the idea presented in Definition 2.1 with what we have 
discussed so far, note that if φ ∈ Mn is such that length(φ) = m, then

(σn ◦ ρ ◦ π−1 ◦ D)(φ) ∈ P

and length(σn ◦ ρ ◦ π−1 ◦ D(φ)) = m,

which is as it should be. We define the ramification type of φ to be (σn◦ρ ◦π−1◦D)(φ) ∈ P. 
Finally, we say μ̃ is a of μ if μ̂ ∈ Pn and σn(μ̃) = μ.

Definition 3.5 (Combinatorial n-admissibility). An element μ ∈ P is said to be combi-
natorially n-admissible if μ ∈ Pn/Sn.

The question posed in (3.8) is now answered in the following lemma.

Lemma 3.6. For a fixed non-negative integer m, all elements of P having length m ram-
ification is combinatorially n-admissible if n ≥ 2m + 1.
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Remark 3.7. Lemma 3.6, in other words, says that the map in (3.8) is a bijection for 
n ≥ 2m + 1.

Proof of Lemma 3.6. The general principle on which the proof is based, is as follows. 
Let φ ∈ Mn. Let b ∈ A1 be a branch point of φ and let {t1, . . . , tk} = Ram(φ) ∩ f−1(b)
with ramification indices m1, . . . , mk respectively. Noting that 

∑
mj ≤ n, our goal is to 

find, as φ ∈ Mn varies, the minimum value of n that would maximize 
∑

1≤j≤k

mj , keeping 

length(φ) = l(ρ(π−1(D(φ)))) = m fixed.
Now, for any μ ∈ P of length m, we have, following the equation of length in (3.5)

and notations in (2.2):

m =
∑

1≤i≤kj

1≤j≤r

(eij − 2) +
∑

1≤j≤r

(kj − 1)
(3.9)

Writing (3.9) as m =
∑r

j=1

(∑kj

i=1(eij − 1) − 1
)
, we first maximize 

∑kj

i=1 e
i
j for each j, 

by keeping 
∑kj

i=1(eij − 1) fixed. Clearly, 
∑kj

i=1 e
i
j achieves its maximum for each j when 

eij = 2 for all 1 ≤ i ≤ kj . Therefore, plugging eij = 2 in (3.9), we now we have

m =
∑

1≤j≤r

(kj − 1)

and our problem has been reduced to maximizing kj keeping p fixed, for some j, which 
we can assume to be k1 without any loss of generality. Clearly k1 = p + 1 and kj = 0 for 
2 ≤ j ≤ r is the desired solution. Since n + 1 ≥ 2k1 by (2.2), we have n + 1 ≥ 2(m + 1), 
and so n ≥ 2m + 1. �
4. Poset topology and shellability

In this section we aim to prove some purely combinatorial results regarding our poset 
Pn. Even though we define and explain the part of poset theory that we make use of in 
this manuscript, a general reference for all that follows is the excellent book by Wachs, 
[18]. We begin by recollecting some generalities on posets.

Definition 4.1. Let (P, <) be a poset. We say that P is bounded if it has a largest 
element 1̂ and a smallest element 0̂. An m-chain of P is a totally ordered subset c :=
x0 < x1 < · · · < xm. We say the length of c denoted by l(c) is m. The order complex
Δ(P ) associated to P is the simplicial complex whose m-simplices are the m-chains. 
A chain of P is maximal if it is inclusion-wise maximal. The elements of Δ(P ) are called
faces and the maximal faces are called facets. A poset is pure or graded if it is bounded 
and all maximal chains have the same length. For a pure poset P , associated to each 
element λ ∈ P is a length l(λ) := l(0̂, λ) where (0̂, λ) denotes a maximal chain between 
0̂ and λ.
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Note that because we consider a pure poset, the definition of length l(λ) is independent 
of the choice of a maximal chain between 0̂ and λ.

4.1. Cohomology of posets

Let u, v ∈ P such that u ≤ v. When u < v, let C̃k(u, v) denote the free abelian group 
generated by all length k+1 chains starting from x0 = u and ending at xk+1 = v. There 
are differentials

δj : C̃k(u, v) → C̃k+1(u, v)

defined by

δj(u < x1 < . . . < xk < v) =
∑

1≤i≤k+1

(−1)i(u < x1 < . . . < x̂i < . . . < xk+1 < v).

We define H∗(u, v) := H∗(C̃•(u, v)), the cohomology of this cochain complex. When 
u = v, we define C̃•(u, v) to consist of only Z, placed at degree −2. For u < v, the 
cohomology H•(u, v) is that of the corresponding order complex, as defined above. If 
u, v ∈ P are such that there does not exist t ∈ P for which u < t < v, then H∗(u, v) ∼= Z, 
placed in degree −1.

Definition 4.2. Let P be a pure finite poset. For α, β ∈ P we say that α covers β if 
α > β and there is no λ such that α > λ > β. We say P is semimodular if whenever 
two distinct elements α, β ∈ P both cover μ ∈ P there is a λ ∈ P which covers each of 
α and β. P is locally semimodular if [α, β] is semimodular for all α < β in P . We say P
is shellable if the facets of Δ(P ) can be arranged in linear order F1, F2, ..., Ft in such a 
way that the subcomplex (

∪1≤i≤k−1 {G ⊂ Fi}
)
∩ {G ⊂ Fk}

is pure and (dimFk − 1)-dimensional for all k = 2, . . . , t.

Lemma 4.3 (Theorem 6.1 of [3]). Suppose that a finite poset P is bounded and locally 
semimodular. Then P is shellable.

Lemma 4.4. If P is shellable, then for all λ ∈ P , we have H̃i(0̂, λ) = 0 whenever i <
l(λ) − 2.

Proof. For a proof, see Section 4.1 of [18]. �
The next proposition is the key takeaway from this section, and forms the second 

crucial step in our proof of Theorem A (see the proof outline on page 4). Recall the 
posets Pm

n defined in Section 3.2.
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Proposition 4.5. Let m and n be positive integers. Then Pm
n is locally semimodular for 

all m and n that satisfy m ≤ n.

Proof. For simplicity, we prove the statement for m = 1 i.e. for Pn. The exact argument 
works for m ≥ 2 since every interval in Pm

n is actually an interval in Pn.
So now, our goal is to show that Pn is locally semimodular. The statement is trivial 

for n < 2. So, we assume n ≥ 2. Let [x, y] be an interval in Pn. To prove the proposition 
we can safely assume l([x, y]) ≥ 2, since otherwise, the statement is vacuously true. It 
suffices to show that if u and v cover x then there exists t ∈ Pn such that t ≤ y and t
covers both u and v.

If u and v cover x then

S(x) ⊃ S(u) ∪ S(v)

Also, let l(x) = m, so l(u) = l(v) = m + 1 since Pn is a graded pure poset. Consider a 
maximal chain in [0̂, x]. Suppose

S(x) ⊂ Z1 ∩ · · · ∩ Zm

i.e. S(x) is an irreducible component of Z1∩· · ·∩Zm, where, for each k, we have Zk = Dij

or Zk = Tij for some i, j. Since u �= v there exist two distinct divisors, let’s call them 
Zm+1 and Z ′

m+1 such that

S(x) ∩ Zm+1 ⊃ S(u), S(x) ∩ Z ′
m+1 ⊃ S(v),

S(v) � S(x) ∩ Zm+1 and S(u) � S(x) ∩ Z ′
m+1.

This forces 
⋂

1≤k≤p

Zk∩Zm+1∩Z ′
m+1 to have codimension m +2, and to have a component 

whose generic point gives rise to an element Pn, say t, such that t covers u and v and 
such that S(t) ⊇ S(y). �
Remark 4.6. The intersections of Dij and Tij for various values of i and j are not always 
irreducible. In combinatorial language, one says “Pn doesn’t admit meets, and joins.”

Corollary 4.7. Let n and m be positive integers that satisfy m < n. Then for all λ ∈ Pm
n

we have H̃i(0̂, λ) = 0 whenever i < lm(λ) − 2.

Proof. Use Proposition 4.5, Lemma 4.4 and Proposition 4.5, in that order. �
5. Geometry of the (Zariski) closure of the locally closed strata

The components of Xn − Um
n , for m < n, are quite far from “nice”: they are singu-

lar, they don’t intersect transversally, etc. For example, when n > 3 the homogeneous 
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•

•er

Branch(φ)

Fig. 5. The above diagram is an example of a morphism in I◦π(S(λ)) satisfying R(λ) = F (λ) or equivalently, 
Bb(φ) is a singleton for all b ∈ Branch(φ).

equations cutting out the divisors Dij are of degree n − 2, and thus have no linear part. 
Therefore, the divisors Dij are not smooth at the origin. But that is not too much of a 
problem– the closed strata in Xn, given by ramification types, have quotient singulari-
ties when their codimension � n, which make them quite tractable. The purpose of this 
section is twofold: given m ≥ 1 and n ≥ 3m; and λ ∈ Pn such that l(λ) = m,

1. check that S(λ) is non-empty, and
2. prove that the quotient X(λ)/S|N(λ)| is isomorphic to an affine space, where X(λ) :=

S(λ).

We address the second problem first.

Proposition 5.1. For λ ∈ Pn, let X(λ) := S(λ) and let N0 := n −
∑

i|R(λ)i| + |F (λ)|. 
Then

X(λ)/S|N(λ)| ∼= A|R(λ)|+N0

whenever N0 ≥ 0.

Proof. To prove the statement, we construct a map

X(λ)/S|N(λ)| −→ A|R(λ)|

and show that it is an affine space bundle with fibres isomorphic to AN0. Once we prove 
this, the statement of the proposition is then a direct consequence of the Quillen-Suslin 
theorem (a.k.a Serre’s conjecture, see e.g., [13, Theorem 3.7, Chapter XXI]) which states 
that finite projective modules over polynomial rings over a field are free. For the sake of 
simplicity, we consider three cases; the first two will just turn out to be special cases of 
the third one.

Case 1: We prove the proposition for those λ ∈ Pn for which the polynomials in S(λ)
have no more than one ramification point in each fibre i.e. R(λ) = F (λ). We continue 
with the notation from (2.2), except, for convenience, we write ej := eij since i = 1 for 
each 1 ≤ j ≤ r.
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Define

Z(λ) :=
{

((a1, . . . , ar), f) : f ∈ M ′
n, f(x) = (x− a1)e1−1 . . . (x− ar)er−1g(x),

g(x) monic of degree n−
r∑

i=1
(ej − 1)

} (5.1)

First, note that there is a natural surjective morphism

X(λ) � X(λ)/S|N(λ)|

is given by keeping the coordinates indexed by {1, . . . , n} −N(λ) fixed, while the coordi-
nates indexed by N(λ) map to the corresponding elementary symmetric polynomials in 
|N(λ)| variables. The coordinates indexed by {1, . . . , n} −N(λ) has repetitions, indexed 
precisely by R(λ). Forgetting the repetitions show that

Φ : X(λ)/S|N(λ)|
∼=−→ Z(λ) (5.2)

Now, let N := |N(λ)| = n −
∑r

i=1(ej − 1), and define a morphism

Ψ : Ar ×AN −→ Z(λ)(
(a1, . . . , ar), (s1, . . . , sN )

)
�→
(

(a1, . . . , ar),
(
(x− a1)e1−1 . . . (x− ar)er−1(xN + s1x

N−1 + . . . + sN )
))

,

(5.3)

which is clearly an isomorphism. In conclusion,

Ψ−1 ◦ Φ : X(λ)/S|N(λ)| → Ar ×AN

is an isomorphism, and if

ϕ : Z(λ) −→ Ar

denotes the projection to the first r coordinates, then Z(λ) is a trivial AN -bundle over 
Ar, thus completing the proof of Proposition 5.1 for Case 1.

Case 2: Let λ be such that F (λ) is a singleton. So, following the notation from (2.2), we 
have r = 1. Letting k := k1, and ei = eij since j can only be 1, we have F (λ) = 


1≤i≤k
R(λ)i

(see Fig. 6).
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Branch(φ)

Fig. 6. The above diagram characterizes λ ∈ Pn such that for any morphism φ ∈ I◦π(S(λ)), we have that 
Bb(φ) = {2} for all branch points b ∈ Branch(φ) but one.

Define

Z(λ) :=
{(

(a1, . . . , ak, f
)

: f ∈ M ′
n, f(x) = (x− a1)e

1−1 . . . (x− ak)e
k−1g(x),

I(f)(a1) = I(f)(aj), j = 2, . . . , k

g(x) monic of degree n−
∑

1≤i≤k

(ei − 1)
} (5.4)

and let

ϕ : Z(λ) → Ak

denote the projection to the first k coordinates.
The proof of (5.2) from Case 1 carries over verbatim to Case 2, and we have an 

isomorphism:

Φ : X(λ)/S|N(λ)|
∼=−→ Z(λ)

We have only to show that ϕ : Z(λ) → Ak, is a fibre bundle with fibres isomorphic to 
An−

∑
i(e

i−1)−(k−1). This fact was obvious in Case 1, but requires some extra work for 
Case 2, which we explain now. As in the proof of Case 1, we have an affine space bundle 
over Ak defined by

E(λ) :=
{(

a1, . . . , ak, f
)

: f ∈ M ′
n, f(x) = (x− a1)e

1−1 . . . (x− ak)e
k−1g(x),

g(x) monic of degree n−
∑

1≤i≤k

(ei − 1)
}
.

Let

ϕ̃ : E(λ) → Ak
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denote the projection to the first k coordinates. Clearly, the fibres of ϕ̃ are spanned by 
the coefficients of g(x), and we have

ϕ̃−1
(
(a1, . . . , ak)

)
∼= A

n−
∑

1≤i≤k

(ei−1)

Similar to (5.3), if N := n −
∑

1≤i≤k

(ei − 1) we have an isomorphism

Ψ̃ : Ak ×AN −→ E(λ)(
(a1, . . . , ak), (s1, . . . , sN )

)
�→
(

(a1, . . . , ak),
(
(x− a1)e

1−1 . . . (x− ak)e
k−1(xN + s1x

N−1 + . . . + sN )
)) (5.5)

and the following diagram commutes

Z(λ) E(λ)

Ak

ϕ
ϕ̃

Since for any (a1, . . . , ak) ∈ Ak, the affine space ϕ−1(a1, . . . , ak) is a linear subspace of 
ϕ̃−1(a1, . . . , ak), to prove Proposition 5.1 for Case 2, it suffices to show that the fibres 
of ϕ have constant dimension.

To this end, write

I(f)(x) − c = (x− a1)e
1
. . . (x− ak)e

k

h(x)

for some c ∈ A1 and some monic polynomial h(x) of degree n + 1 −
∑

ei. Then, taking 
derivatives, we obtain:

f(x) = (x− a1)e
1−1 . . . (x− ak)e

k−1
(
(x− a1) . . . (x− ak)h′(x)+

e1(x̂− a1)(x− a2) . . . (x− ak)h(x)+

e2(x− a1)(x̂− a2) . . . (x− ak)h(x)+

ek(x− a1) . . . (x− ak−1)(x̂− ak)
)

where (x̂− aj) signifies that factor is removed. Comparing with the expression for f(x)
in (5.4) we obtain:

g(x) = (x− a1) . . . (x− ak)h′(x) + e1(x̂− a1)(x− a2) . . . (x− ak)h(x)+

e2(x− a1)(x̂− a2) . . . (x− ak)h(x)+
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ek(x− a1) . . . (x− ak−1)(x̂− ak)

and we see that the coefficients of h(x) span a linear subspace, of dimension n + 1 −
∑

ei, 
of the affine space generated by the coefficients of g(x). Therefore, for any (a1, . . . , ak) ∈
Ak we have that

ϕ−1
(
(a1, . . . , ak)

)
∼= An+1−

∑
ei .

This completes the proof of Proposition 5.1 for Case 2.
Case 3: Finally, the general case, as depicted in Fig. 4. The proof resembles that of 

Case 2 very closely, but we nevertheless try to be as explicit possible for the sake of 
clarity. As before, let λ ∈ Pn. We follow the notations set in (2.2), Section 3.3, which we 
recollect here for convenience. Let

1. F (λ) = {F (λ)1, . . . , F (λ)r}, so |F (λ)| = r

2. F (λ)j = 

1≤i≤kj

R(λ)ij

3. |R(λ)ij | = eij − 1 and |F (λ)j | = kj

In other words, if (a1, . . . , an) ∈ ρ−1(λ) ⊂ Xn, then by Definition 2.1, I(π(a1, . . . , an)) is 
a polynomial satisfying the following: for all branch points b ∈ I(π(a1, . . . , an)) that are 
not simple, Ramb(I(π(a1, . . . , an))) ∈ Syml(Bb(I(π(a1,...,an))))A1 is given by (see (2.2)):

Ramb(I(π(a1, . . . , an))) =
(
a1, . . . , a1︸ ︷︷ ︸

e1−1

, . . . , ai, . . . , ai︸ ︷︷ ︸
ei−1

)
.

where {a1, . . . , ai} ∈ Ram(I(π(a1, . . . , an))) and Bb(I(π(a1, . . . , an))) = {e1, . . . , ek}. 
Define Z(λ) the same way as in Case 2, namely

Z(λ) :=
{(

(a1
1, . . . , a

k1
1 ), . . . , (a1

j , . . . , a
kj

j ), . . . , (a1
r, . . . , a

kr
r ), f

)
: f ∈ M ′

n,

f(x) =
∏

1≤i≤k1

(x− ai1)e
i
1−1 . . .

∏
1≤i≤kr

(x− air)e
i
r−1g(x),

I(f)(aij) = I(f)(a1
j), 2 ≤ i ≤ kj , 1 ≤ j ≤ r,

g(x) monic of degree n−
∑

1≤i≤kj

1≤j≤r

(eij − 1)
}

(5.6)

and let

ϕ : Z(λ) → A
∑

kj

denote the projection to the first 
∑

kj coordinates. Similarly, define
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E(λ) :=
{(

(a1
1, . . . , a

k1
1 ), . . . , (a1

j , . . . , a
kj

j ), . . . , (a1
r, . . . , a

kr
r ), f

)
: f ∈ M ′

n,

f(x) =
∏

1≤i≤k1

(x− ai1)e
i
1−1 . . .

∏
1≤i≤kr

(x− air)e
i
r−1g(x),

g(x) monic of degree n−
∑

1≤i≤kj

1≤j≤r

(eij − 1)
} (5.7)

and let

ϕ̃ : E(λ) → A
∑

kj

denote the projection to the first 
∑

kj coordinates. Clearly, the fibres of ϕ̃ are generated 
by the coefficients of g(x), and we have

ϕ̃−1
(
(a1, . . . , ak)

)
∼= A

n−
∑

1≤i≤k

(ei−1)

In fact, the isomorphism in (5.5) carries over verbatim, just with k replaced by 
∑

kj . As 
in Case 2, we now have the following commutative diagram

Z(λ) E(λ)

A
∑

kj

ϕ
ϕ̃

and our goal is to show that the fibres of ϕ have constant dimension. For each j, we can 
write

I(f)(x) − cj = (x− a1
j )e

1
j . . . (x− a

kj

j )e
kj
j hj(x)

for some cj ∈ C and some monic polynomial hj(x) of degree n +1 −
∑

1≤i≤kj

eij . Therefore:

f(x) = (x− a1
j )e

1
j−1 . . . (x− a

kj

j )e
kj
j −1

(
(x− a1

j ) . . . (x− a
kj

j )h′
j(x)+

e1
j (x̂− a1

j)(x− a2
j ) . . . (x− a

kj

j )hj(x)+

e2
j (x− a1

j)(x̂− a2
j ) . . . (x− a

kj

j )hj(x)+

e
kj

j (x− a1
j) . . . (x− a

kj−1
j )( ̂

x− a
kj

j )
)

for each 1 ≤ j ≤ r

Comparing with original expression for f(x) in (5.7), we see that for each j:
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g(x) = (x− a1
j ) . . . (x− a

kj

j )h′
j(x) + e1(x̂− a1

j )(x− a2
j ) . . . (x− a

kj

j )hj(x)+

e2
j(x− a1

j )(x̂− a2
j ) . . . (x− a

kj

j )hj(x)+

ek(x− a1
j ) . . . (x− a

kj−1
j )( ̂

x− a
kj

j )

For any 
(
(a1

1, . . . , a
k1
1 ), . . . , (a1

j , . . . , a
kj

j ), . . . , (a1
r, . . . , a

kr
r )
)
∈ A

∑
kj , much like the proof 

of Case 2, we have

ϕ−1((a1
1, . . . , a

k1
1 ), . . . , (a1

j , . . . , a
kj

j ), . . . , (a1
r, . . . , a

kr
r )
)

=⋂
j

{
linear subspace of ϕ̃−1((a1

1, . . . , a
k1
1 ), . . . , (a1

j , . . . , a
kj

j ), . . . , (a1
r, . . . , a

kr
r )
)

spanned by the coefficients of hj

}
Let

Vj

(
(a1

1, . . . , a
k1
1 ), . . . , (a1

j , . . . , a
kj

j ), . . . , (a1
r, . . . , a

kr
r )
)

:={
linear subspace of ϕ̃−1((a1

1, . . . , a
k1
1 ), . . . , (a1

j , . . . , a
kj

j ), . . . , (a1
r, . . . , a

kr
r )
)

spanned by the coefficients of hj

}
Then, noting that the degree of hj is n + 1 −

∑
1≤i≤kj

eij , we have that the codimension of 

Vj in ϕ̃−1((a1
1, . . . , a

k1
1 ), . . . , (a1

j , . . . , a
kj

j ), . . . , (a1
r, . . . , a

kr
r )
)

is 
∑

1≤i≤kj

eij − 1. Therefore,

codimension of
(⋂

j

Vj

(
(a1

1, . . . , a
k1
1 ), . . . , (a1

j , . . . , a
kj

j ), . . . , (a1
r, . . . , a

kr
r )
))

≤
∑
i,j

eij − r
(5.8)

where equality holds if the intersection of these linear subspaces is (dimensionally) trans-
verse. What is left to show is that the inequality in (5.8) is actually an equality over all 
points in A

∑
kj .

To this end, note that when all the ramification points come together, i.e. when ai = aj
for all i, j, we are reduced to Case 1. In that situation, (5.8) reduces to an equality

dim
(
ϕ−1(a, . . . . . . . . . , a︸ ︷︷ ︸∑

i,j
eij−r

)
)

= n + r −
∑
i,j

eij .

Now, upper-semicontinuity of the dimension of the fibres (see e.g. [10, Corollaire 13.1.5]) 
implies that for all
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(
(a1

1, . . . , a
k1
1 ), . . . , (a1

j , . . . , a
kj

j )
)
∈ A

∑
kj

one has

codimension of
(⋂

j

Vj

(
(a1

1, . . . , a
k1
1 ), . . . , (a1

j , . . . , a
kj

j ), . . . , (a1
r, . . . , a

kr
r )
))

≥ codimension of
(
ϕ−1(a, . . . . . . . . . , a︸ ︷︷ ︸∑

i,j
eij−r

)
)

=
∑
i,j

eij − r.

(5.9)

Finally, note that (5.8) and (5.9) now imply:

dim

(
ϕ−1((a1

1, . . . , a
k1
1 ), . . . , (a1

j , . . . , a
kj

j ), . . . , (a1
r, . . . , a

kr
r )
))

= n + r −
∑
i,j

eij

= n + |F (λ)| −
∑
i

|R(λ)i|

which completes the proof. �
Remark 5.2 (Irreducibility of X(λ)). If λ ∈ Pn is such that n + r −

∑
eij ≥ 0, then 

Proposition 5.1 implies that if S(λ) is non-empty then it admits a finite, unramified 
morphism to S(λ)/S|N(λ)|, given by:

ϕ
∣∣∣
S(λ)

: S(λ) → S(λ)/S|N(λ)|.

The deck group S|N(λ)| acts transitively on the fibres of ϕ
∣∣∣
S(λ)

. So S(λ) is connected, 

and its closure X(λ) is irreducible.

Now we address the first question raised in the beginning of Section 5, namely, the 
question of non-emptiness of S(λ), for λ ∈ Pn.

Claim 5.3. Given e1, . . . , er such that ej ≥ 2 and 
∑

(ej − 1) = n, there exists φ ∈ Mn
such that Bb(φ) is a singleton for all b ∈ Branch(φ).

In other words, we are proving the non-emptiness of the strata corresponding to 
those elements of Pn that are handled in Case 1 of Proposition 5.1 (see Fig. 5). For the 
definitions of Bb(φ) and Branch(φ) see Definition 2.1 and (2.2).

Proof of Claim 5.3. We divide the proof into two cases: when charK = 0 and when 
charK > 0.
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First, we consider the case when charK = 0. Our strategy is to prove the statement 
for when K = C and then invoke a theorem by Grothendieck to prove the statement 
for a general field of characteristic 0. So now, assume K = C. Suppose we are given 
B := {b1, . . . , br} ⊂ A1, and r simple disjoint oriented paths γ1, . . . , γr starting at a 
given base point, say b0, and encircling b1, . . . , br respectively. In particular, γ1, . . . , γr
freely generates πtop

1 (A1 −B, b0), the topological fundamental group of A1 −B. On the 
other hand, let τ1, . . . , τr denote cycles in Sn+1 of length e1, . . . , er respectively, such 
that their product is an n + 1-cycle. For example, one can choose

τ1 = (1 . . . e1),

τ2 = (e1 . . . (e1 + e2 − 1)),

τ3 = ((e1 + e2 − 1) . . . (e1 + e2 + e3 − 2)),
...

τk =
(( k−1∑

i=1
ei − (k − 2)

)
. . .
( k∑
i=1

ei − (k − 1)
))

,

...

Clearly 
∏

τi = (1 . . . n + 1). Now consider the homomorphism

πtop
1 (A1 −B, b0) → Sn+1

γi �→ τi (5.10)

This induces an algebraic cover φ : A1 → A1 by Riemann’s existence theorem, and 
hence is given by a polynomial of degree n + 1. More explicitly, we can take the disjoint 
union of n + 1 copies of A1 − ∪j{interiors of γj} and ’join them locally’ over the disks 
bounded by γj by z �→ zej for 1 ≤ j ≤ r. A beautiful explanation along these lines can 
be found in [5]. Forgetting the choice of a base point entails defining the epimorphisms 
up to conjugacy, and in turn we have the following bijective correspondence:

Hom
(
π1(A1 −B, b0),Sn+1

)
/Inn(Sn+1)

←
→{

degree n + 1 monic polynomials branched at b1, . . . , br

with ramification indices e1, . . . , er respectively
}
.

Over a general algebraically closed field of characteristic 0, the étale fundamental group 
of the “A1 −B” is isomorphic to that over C, as proved by Grothendieck in [9, Proposi-
tion 4.6 (Formule de Künneth)]. So the above argument carries over verbatim with πtop

1
replaced by πét

1 .
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Next, consider the case when charK = p > 0. Recall that at the beginning of this 
paper, we fixed once and for all, that whenever charK > 0, we assume charK > n +1. As 
a result, p � (n +1)! and branched Sn+1 covers of P 1

K are in bijective correspondence with 
branched covers of P 1

C (see, e.g. [12]). More precisely, as explained in [12], one considers 
étale covers of degree n + 1 over A1 − {r points} as finite quotients of the prime-to-p
fundamental group πp′

1 . It is defined by taking the inverse system of étale covers, the 
order of whose Galois group is coprime to p. Note that πp′

1 is the maximal prime-to-p
quotient of πét

1 , which itself is defined by considering the inverse system of all finite étale 
covers of A1 − {r points}. By [9], Corollary 2.12,

πp′

1 (A1
K − {r K -points}) ∼= πp′

1 (A1
C − {r C-points}),

and the latter is the maximal prime-to-p quotient of the profinite completion of πtop
1 (A1−

B, b0). Finally, the upshot is that since p � #G for all subgroups G ⊂ Sn+1, the mod-p
reduction of the topological finite covers constructed in (5.10), gives us degree n + 1
self-maps of A1

K with ramification indices specified in the statement of the claim. �
The proof of the next lemma is similar to that of Case 3 in Proposition 5.1. For 

notation and definitions, recall (3.6) and (3.7) from Section 3.3.

Lemma 5.4. Let n be a positive integer and let λ ∈ Pn. Let σn(λ) ∈ P be given by the 
following data:

positive integers k1, . . . , kr,

integers eij ≥ 2, for each 1 ≤ i ≤ kj , and 1 ≤ j ≤ r,

Then S(λ) is non-empty for all λ ∈ Pn that satisfy the condition n −
∑

(ei − 1) ≥∑
(kj − 1).

Proof. Here, we continue using notation from (2.2). Our goal is to show that π(S(λ)) is 
non-empty, i.e. there exists φ ∈ Mn such that

(i) φ has at least r branch points, say {b1, . . . , br . . .},
(ii) φ−1(bj) = {a1

j , . . . , a
kj

j }, and
(iii) vφ(aij) = eij for all 1 ≤ i ≤ kj and 1 ≤ j ≤ r such that n −

∑
(eij − 1) ≥

∑
(kj − 1).

See Fig. 4 for a schematic of the morphism φ. Our proof hinges on induction on the set of 
branch points. The “base case” is the following: we prove the statement when I(π(S(λ)))
contains polynomials such that all but one branch point have exactly one ramification 
point in its preimage. To this end, we show that if φ ∈ Mn is such that

φ′ = (x− a1)e1−1 . . . (x− ar)er−1, and φ(ai) �= φ(aj) for i < j,
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•d1

•d2

...
•e1A1 A1

A1 A1

φ

•dl

φ̂

• . . . •

•e2 . . . •e2 . . .

. . .

•er •er

•• ••

Fig. 7. The two schematics above represent two ramification types (for the definition, see (3.4)). On the left 
is φ̂, a generic point in I(π(S(λ))), and on the right is φ, a point in the closure of I(π(S(λ))).

then there exists a polynomial φ̂ such that vφ̂(ai) = ei for all 2 ≤ i ≤ r and φ̂−1(φ(a1)) ⊃
{a1

1, . . . , a
l
1} such that vφ̂(al1) = dl and 

∑l
i=1 dl = e1. In other words, to prove that the 

locally closed subset I(π(S(λ))) of Mn is non-empty, we get hold of a generic point 
φ̂ ∈ I(π(S(λ))) by proving the existence of φ in the Zariski closure of I(π(S(λ))) (see 
Fig. 7).

Since morphisms of Mn are considered up to translation, we can, without loss of 
generality, prove this statement on the assumption that a1 = 0.

Now, fix r − 1 points a2, . . . , ar ∈ A1 such that no two are equal and ai �= 0 for all 
2 ≤ i ≤ r. Consider the variety

Xe :=
{
g ∈ Mn : vg(ai) = ei for some ai ∈ A1, 2 ≤ i ≤ r,

such that g(ai) �= g(aj) for i < j
}

where e is given by e − 1 := n −
∑

(ej − 1). Then Xe
∼= Ae−1 by Proposition 5.1.

Let X ′
e := D(Xe) ⊂ M ′

n, where M ′
n is as defined in (2.3). Let M ′

n = SpecK [s1, . . . , sn], 
where s1 . . . , sn denote the coefficients of monic degree n polynomials Then X ′

e is cut-out 
by hyperplanes given by equations Dif(aj) = 0 where 1 ≤ j ≤ r and 1 ≤ i ≤ ej−1. Note 
that X ′

e can be described by parametric equations in variables t1, . . . , te−1, determined 
by the relation

xn + s1x
n−1 + . . . sn−1x + sn

= (xe−1 + t1x
e−1 + . . . + te−1)(x− a2)e2−1 . . . (x− ar)er−1 (5.11)

In other words, we have a linear embedding of affine spaces

SpecK [t1, . . . , te−1] ∼= Ae−1 T−→ An

induced by equation (5.11) (by comparing the powers of x on both sides). Now, we show 
that given d1, . . . , dl one can find α2, . . . , αl such that there exists

f(x) = xd1−1(x− α2)d2−1 . . . (x− αl)dl−1(x− a2)e2−1 . . . (x− ar)er−1h(x),
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f ∈ M ′
n (in fact, f ∈ X ′

e), satisfying I(f)(αi) = I(f)(0) for all 2 ≤ i ≤ l, for some degree 
l− 1 polynomial h(x). If we consider all possible monic degree l− 1 polynomials in place 
of h(x), then f(x) is still in Xe, except that the condition I(f)(αi) = I(f)(0) may not 
be satisfied. The space of monic degree l − 1 polynomials is SpecK [u1, . . . , ul−1], where 
the coordinates are given by the coefficients. The relations I(f)(αi) = I(f)(0) give l− 1
linear conditions on SpecK [u1, . . . , ul−1]. It suffices to check that there exists α2, . . . , αl

such that intersection of the l − 1 hyperplanes whose equations are given by the linear 
conditions I(f)(αi) = I(f)(0), is non-empty. Indeed, it is easy to see that for a generic 
choice of α2, . . . , αl, the none of the equations of the hyperplanes is a scalar multiple of 
the other, so their intersection is forced to be non-empty, and this completes the proof 
of the base case. The inductive step now involves splitting the ramification point with 
index ej , where j ≥ 2 the same as above, and this completes the proof of the lemma. �

Recall the definitions of σn and P from (3.6) and Definition 3.4. Then, Proposition 5.1
and Lemma 5.4 imply the following.

Corollary 5.5. Let n be a positive integer and let λ ∈ Pn. Let σn(λ) ∈ P be given by the 
following data:

positive integers k1, . . . , kr,

integers eij ≥ 2, for each 1 ≤ i ≤ kj , and 1 ≤ j ≤ r,

Then S(λ) is non-empty for all λ ∈ Pn that satisfy the condition n −
∑

(ei − 1) ≥∑
(kj − 1).

As we have learnt in this section, the ramification data associated to λ ∈ Pn solely de-
termine whether X(λ), modulo a subgroup of Sn under its natural action, is isomorphic 
to an affine space.

Definition 5.6. Elements μ ∈ P are said to be affine n-admissible if for all λ ∈ σ−1
n (μ), 

one has X(λ)/S|N(λ)| ∼= Ad for some d > 0. Equivalently, following the notations set in 
(3.4), μ ∈ P is said to be affine n-admissible if

n−
∑

(eij − 1) ≥
∑

(kj − 1).

Lemma 5.7. Let m be a positive integer. All length m ramification μ ∈ P are affine 
n-admissible whenever n ≥ 3m.

Proof. We continue with the notation and definitions set in Definition 3.4, (2.2). As in 
Definition 3.4,

m = length(μ) =
∑

1≤j≤r

( ∑
1≤i≤kj

(eij − 1) − 1
)
. (5.12)
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Our goal is to keep m fixed and find the minimum n such that for all values of r, and 
k1, . . . , kr, and eij satisfying (5.12),

n−
∑

(eij − 1) ≥
∑

(kj − 1). (5.13)

Using (5.12) one can simplify (5.13) to n − m ≥
∑

kj . So, we first maximize 
∑

kj . 
Maximizing the number of ramification points while keeping the length m fixed, entails 
minimizing the ramification indices. So, eij = 2 for all 1 ≤ i ≤ kj and 1 ≤ j ≤ r. 
Therefore, (5.12) reduces to m =

∑
kj−r. It is easy to see that for a polynomial φ ∈ Mn

with ramification length m (see (1.1) and Definition 2.1), the maximum number of index 
2 ramification points a φ can have is 2m. So, (5.13) implies n ≥ 3m. �
Remark 5.8. Note that affine n-admissibility implies combinatorial n-admissibility. The 
converse is not, however, true. One can extend the proof of Lemma 5.4 to prove that 
elements of P which are combinatorially n-admissible correspond to non-empty strata, 
and which would then lift the restriction posed by the inequality n −

∑
(eij−1) ≥

∑
(kj−1)

in Lemma 5.4. However, that won’t be fruitful for our purpose since. In other words, if 
λ ∈ Pn does not satisfy (5.13), then, even if X(λ) is non-empty, its geometry remains 
unknown.

6. Spectral sequences and computation of Hi(U)

To work over algebraically closed fields of all characteristics at the same time, we first 
set up some notation and some conventions that we will use for the rest of the paper.

Notations 6.1. Let Q denote Q, the field of rational numbers, or Q�, the field of �-adic 
numbers. Throughout this section, for any Z-scheme V , we continue to denote its base 
change to any algebraically closed field K by V . In turn, we mean H∗(V ; Q) to stand 
for both H∗(V (C); Q) as well as H∗

ét(V/K ; Q�).
Furthermore, when V is Um

n , its Sn-quotient Sm
n or Simpm

n for some positive integer 
m, we will always assume that n + 1 < charK whenever charK > 0. We fix a positive 
integer m for the rest of the paper, and a positive integer n that satisfy n ≥ 3m.

Remark 6.2. The assumption n ≥ 3m is required because it is a sufficient condition 
for Lemma 5.7, which in turn is an important ingredient in the proof of Theorem A. 
However, in the case when m = 1, we have well-known answers for n < 3 (compare with 
Remark 1.3). When n = 2, we have

D : Simp2(C) → Conf2(C)

is an isomorphism (where Conf2(C) denotes the unordered configuration space of 
two points in C). Arnol’d’s work (see e.g. [1]) answers completely the cohomology of 
Conf2(C). When n = 1, the result is trivial because all morphisms are simply-branched.
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In this section, we construct a cohomology spectral sequence E•,•
• that converges to 

H∗(Um
n ; Q). To obtain H∗(Sm

n ; Q) ∼=
(
H∗(Um

n ; Q)
)Sn , we take the Sn invariants of 

E•,•
• and show that the resulting spectral sequence, which converges to H∗(Simpm

n ; Q), 
degenerates on the E1 page. First, we start with the following lemma.

Lemma 6.3. Let K be an algebraically closed field. Let m ≥ 1, and n ≥ 3, satisfy n +1 <
charK whenever charK > 0. The complex A• given by

QXn
→

⊕
lm(λ)=1,
λ∈Pm

n

(iλ)∗QX(λ) →
⊕

lm(λ)=2,
λ∈Pm

n

H̃0(0̂, λ) ⊗ (iλ)∗QX(λ) → . . .

→
⊕

lm(λ)=p,
λ∈Pm

n

H̃p−2(0̂, λ) ⊗ (iλ)∗QX(λ) → . . .
(6.1)

is quasi-isomorphic to j!QUm
n

, where j denotes the inclusion of the open stratum Um
n ↪→

Xn and for each λ ∈ Pm
n , the map iλ : X(λ) ↪→ Xn is an inclusion of closed strata.

Proof. Following [16, Section 3], let F• be the complex of sheaves on Xn defined by

Fp =
⊕

lm(λ)≥p,
λ∈Pm

n

C̃p−2(0̂, λ) ⊗ (iλ)∗QX(λ)

where C̃p−2(0̂, λ) is as defined in Section 4.1. That F• gives a resolution of j!QUm
n

follows 
from [16], or more simply, just by using the inclusion-exclusion principle. Finally, note 
that F• carries a filtration by the length of elements in Pm

n , which in turn gives a 
quasi-isomorphism to (6.1) once we incorporate Proposition 4.7. �

We now prove Theorem A and Corollary 1.2.

Proof. We fix a positive integer n ≥ 3. Let m be a positive integer that satisfy n ≥ 3m. 
The variety Simpm

n is a Zariski dense open subset of Mn ∼= An, and hence connected. 
So, H0(Simpm

n ; Q) ∼= Q. Now, continuing with the resolution in (6.1), we construct a 
second quadrant double complex K•,• by taking the global Verdier dual of the complex 
in (6.1). If QXn

↪→ I• is an injective resolution of QXn
-modules, then

K•,• = RHom(A•,QXn
)

where

K−p,q = Hom(Ap, Iq).

For each p, take the naive filtration τ≥q on K−p,• via
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(
τ≥q

(
K−p,•))i =

{
0 for i < q,

K−p,q for i ≥ q.

Thus, we obtain a spectral sequence which reads as

E−p,q
1 = Extq(Ap,QXn

) =⇒ Extq(j!QUm
n
,QXn

) ∼= Hq(Um
n ;Q)

The last isomorphism above is implied by the fact that (j!, j∗) is an adjoint pair. More-
over, all morphisms considered in this paper are algebraic, so this is a spectral sequence 
of mixed Hodge structures. Now we take the Sn invariants of each term on the E1 page 
(again, the transfer map being algebraic respects the mixed Hodge structures.)

(
Extq(Ap,QXn

)
)Sn

=
( ⊕

lm(λ)=p

H̃p−2(0̂, λ) ⊗Extq
(
(iλ)∗QX(λ),QXn

))Sn

(6.2)

∼=
( ⊕

lm(λ)=p

H̃p−2(0̂, λ) ⊗Hq(Xn,Xn −X(λ))
)Sn

(6.3)

The isomorphism between (6.2) and (6.3) follows from the fact

Extq
(
(iλ)∗QX(λ),QXn

)
∼= Hq(Xn,Xn −X(λ);Q)

because of the distinguished triangle:

Rj!j
∗

idXn
Ri∗λi

∗
λ

[1]

To study each term of the spectral sequence, we need to compute

(i) Hq(Xn, Xn −X(λ); Q), and

(ii)
(
H̃p−2(0̂, λ)

)Sn

.

For (ii), we first, we consider the case when m = 1, and study the action of Sn on 
H̃p−2(0̂, λ). This, in turn, is based on the action of Sn on Πn, the partition lattice on 
{1, 2 . . . , n} which is completely known and well-documented in [18]. We show that

(
H̃p−2(0̂, λ)

)Sn

= 0 for all λ ∈ Pn, l(λ) ≥ 2. (6.4)
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Suppose there exists 0 �= ω ∈
(
H̃p−2(0̂, λ)

)Sn

, i.e. ω is a Q-linear combination of 
(p + 1)-chains starting at 0̂ and ending at λ, that is invariant under the action of Sn. 
Recall that Pn ⊂ Πn×Πn. Let proji denote the projection of Pn to the ith copy of Πn, for 
i = 1, 2. A simple, but crucial observation is that, if lengthΠn

denotes the length function 
on Πn, then lengthΠn

(proj2(λ)) = l(λ). In fact, using the definitions and notation set up 
in (3.2) and (2.2), one has

lengthΠn
(proj1(λ)) =

∑
i,j

(eij − 2)

and

lengthΠn
(proj2(λ)) =

∑
1≤j≤r

( ∑
1≤i≤kj

(eij − 1) − 1
)

= l(λ) = p.

Therefore, proj2(ω) is a nonzero Sn-invariant element in H̃p−2(proj2(0̂), proj2(λ)), where 
proj2(0̂) is the 0̂Πn

of Πn, i.e. the minimal element of the geometric lattice Πn. But this 

contradicts the well-known fact that 
(
H̃p−2(0̂Πn

, λ′)
)Sn

= 0 for all λ′ ∈ Πn of length p, 
and in particular, for λ′ = proj2(λ). Following the proof of (6.4), one has, for m ≥ 2,

(
H̃p−2(0̂, λ)

)Sn

= 0 for all λ ∈ Pm
n , lm(λ) ≥ 2. (6.5)

The discussion on (ii) above implies that E−p,q
1 = 0 for all q whenever p ≥ 2. When 

p = 1, for each λ ∈ Pn of length m + 1, which is equivalent to saying λ ∈ Pm
n of length 

1, we have

E−1,q
1 =

⊕
lm(λ)=1,
λ∈Pm

n

Hq(Xn,Xn −X(λ);Q). (6.6)

For (i), note that for an arbitrary λ ∈ Pn we have already seen that X(λ), in general, 
has singularities. But when m is a positive integer and n ≥ 3m, for all λ ∈ Pn satisfying 
l(λ) = m, Proposition 5.1, Lemma 5.4 and Lemma 5.7 imply that X(λ) is non-empty 
and

X(λ)/SN(λ) ∼= An−m.

For the rest of the proof, we fix an integer n that satisfies n ≥ 3m and n < charK − 1
whenever charK > 0. So now, taking Sn invariants of (6.5), one obtains:
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(
E−1,q

)Sn

=
⊕

{μ∈P:
length(μ)=m,

μ̃ a choice of a lift of μ}

Hq
(
Xn/S|N(μ̃)|,Xn/S|N(μ̃)| −X(μ̃)/S|N(μ̃)|;Q

)
(6.7)

∼=
⊕

{μ∈P:
length(μ)=m,

μ̃ a choice of a lift of μ}

Hq−2m(X(μ̃)/S|N(μ̃)|;Q) (6.8)

∼=
{

0 if q �= 2m
Q(−m)⊕c(m) if q = 2m,

(6.9)

where c(m) = #{μ ∈ P : length(μ) = m}, a positive integer defined in (1.2). For the 
last three steps above, note the following:

1. Xn/S|N(μ̃)| ∼= An; this is because Xn
∼= An and S|N(μ̃)| is a subgroup of Sn that 

acts by permuting the coordinates.
2. We know from Proposition 5.1 that X(μ̃)/S|N(μ̃)| is a smooth codimension m

closed subvariety in Xn/S|N(μ̃)|, so by the Gysin homomorphism (see e.g. [14, The-
orem 16.1]) we obtain (6.8) from (6.7).

3. By Proposition 5.1, X(μ̃)/S|N(μ̃)| ∼= An−m, which gives us (6.9) from (6.8).

This completes of the proof of Theorem A. Finally, let charK = p and let q = pd for 
some positive integer d. The Grothendieck-Lefschetz trace formula now reads as

#Simpm
n (Fq) = qn

∑
i

(−1)iTrace(Frobq : Hi(Simpm
n ;Q�)). (6.10)

By equation (6.8), the right-hand-side of (6.10) equals qn − c(m)qn−m, thus proving 
Corollary 1.2. �
Acknowledgments

I am very grateful to my advisor, Benson Farb, for his patient guidance and uncondi-
tional support. His many invaluable comments on earlier versions of this paper have been 
instrumental in its improvement. I thank Patricia Hersh for pointing out some existing 
results about posets, Alexander Beilinson, a brief discussion with whom turned out to 
be crucial to my understanding of the final section of this paper, and Akhil Mathew for 
indicating the right source to support a proof in Section 5. I heartily thank Lei Chen 
and Ronno Das for being my sounding board during the final days of this project, and 
Jesse Wolfson, for his encouragement and an enriching discussion on this manuscript. 



O. Banerjee / Advances in Mathematics 359 (2020) 106881 37
I also thank Madhav Nori for posing a question during a discussion which eventually led 
to this problem.

References

[1] V.I. Arnol’d, The cohomology of the colored braid group, Mat. Zametki 5 (1969) 227–231.
[2] V.I. Arnol’d, On some topological invariants of algebraic functions, Tr. Mosc. Mat. Obsc. (1970) 

27–46.
[3] A. Björner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260 (1) 

(1980) 159–183.
[4] A. Clebsch, Zur theorie der riemann’schen flachen, Math. Ann. 6 (1872) 216–230.
[5] D. Eisenbud, N. Elkies, J. Harris, R. Speiser, On the Hurwitz scheme and its monodromy, Compos. 

Math. 77 (1) (1991) 95–117.
[6] J.S. Ellenberg, A. Venkatesh, C. Westerland, Homological stability for Hurwitz spaces and the 

Cohen-Lenstra conjecture over function fields, Ann. of Math. (2015), in press, arXiv :0912 .0325.
[7] W. Fulton, Hurwitz schemes and moduli of curves, Ann. of Math. 90 (1969) 542–575.
[8] B. Farb, J. Wolfson, Étale homological stability and arithmetic statistics, arXiv :1512 .00415, 2015.
[9] A. Grothendieck, M. Raynaud, Revêtements étales et groupe fondamental, in: Seminaire de Geome-

trie Algebrique du Bois Marie 1960–1961 (SGA 1), 1971.
[10] A. Grothendieck, Éléments de géométrie algébrique: Iv. Étude locale des schémas et des morphismes 

de schémas, troisième partie, Publ. Math. Inst. Hautes Études Sci. 28 (1966).
[11] R. Hartshorne, Algebraic Geometry, Springer, 1977.
[12] D. Harbater, A. Obus, R. Pries, K. Stevenson, Abhyankar’s conjectures in Galois theory: current 

status and future directions, Bull. Amer. Math. Soc. (2017), in press, arXiv :1408 .0859.
[13] S. Lang, Algebra, third edition, Springer-Verlag, 2002.
[14] J. Milne, Lectures on Étale Cohomology. Version 2.21, 2013.
[15] F. Napolitano, Topology of complements of strata of the discriminant of polynomials, C. R. Acad. 

Sci., Sér. 1 Math. 327 (7) (1998) 665–670.
[16] D. Petersen, A spectral sequence for stratified spaces and configuration spaces of points, Geom. 

Topol. 21 (4) (2017).
[17] M. Romagny, S. Wewers, Hurwitz spaces, Śeminaires Congrés 13 (2006) 313–341.
[18] M.L. Wachs, Poset topology: tools and applications, in: Geometric Combinatorics, 2006.

http://refhub.elsevier.com/S0001-8708(19)30497-9/bib41726E6F6C276431393639s1
http://refhub.elsevier.com/S0001-8708(19)30497-9/bib562E492E41726E6F6C6431393730s1
http://refhub.elsevier.com/S0001-8708(19)30497-9/bib562E492E41726E6F6C6431393730s1
http://refhub.elsevier.com/S0001-8708(19)30497-9/bib426A6F65726E65724A756C7931393830s1
http://refhub.elsevier.com/S0001-8708(19)30497-9/bib426A6F65726E65724A756C7931393830s1
http://refhub.elsevier.com/S0001-8708(19)30497-9/bib436C656273636831383732s1
http://refhub.elsevier.com/S0001-8708(19)30497-9/bib456973656E62756431393931s1
http://refhub.elsevier.com/S0001-8708(19)30497-9/bib456973656E62756431393931s1
http://refhub.elsevier.com/S0001-8708(19)30497-9/bib456C6C656E6265726732303135s1
http://refhub.elsevier.com/S0001-8708(19)30497-9/bib456C6C656E6265726732303135s1
http://refhub.elsevier.com/S0001-8708(19)30497-9/bib46756C746F6E31393639s1
http://refhub.elsevier.com/S0001-8708(19)30497-9/bib4661726232303135s1
http://refhub.elsevier.com/S0001-8708(19)30497-9/bib47726F7468656E646965636B31393731s1
http://refhub.elsevier.com/S0001-8708(19)30497-9/bib47726F7468656E646965636B31393731s1
http://refhub.elsevier.com/S0001-8708(19)30497-9/bib47726F7468656E646965636B31393636s1
http://refhub.elsevier.com/S0001-8708(19)30497-9/bib47726F7468656E646965636B31393636s1
http://refhub.elsevier.com/S0001-8708(19)30497-9/bib4861727473686F726E6531393737s1
http://refhub.elsevier.com/S0001-8708(19)30497-9/bib53746576656E736F6E32303137s1
http://refhub.elsevier.com/S0001-8708(19)30497-9/bib53746576656E736F6E32303137s1
http://refhub.elsevier.com/S0001-8708(19)30497-9/bib4C616E6732303032s1
http://refhub.elsevier.com/S0001-8708(19)30497-9/bib4D696C6E6556657273696F6E322E32314D61726368323232303133s1
http://refhub.elsevier.com/S0001-8708(19)30497-9/bib4E61706F6C6974616E6F31393938s1
http://refhub.elsevier.com/S0001-8708(19)30497-9/bib4E61706F6C6974616E6F31393938s1
http://refhub.elsevier.com/S0001-8708(19)30497-9/bib506574657273656E32303137s1
http://refhub.elsevier.com/S0001-8708(19)30497-9/bib506574657273656E32303137s1
http://refhub.elsevier.com/S0001-8708(19)30497-9/bib526F6D61676E7932303036s1
http://refhub.elsevier.com/S0001-8708(19)30497-9/bib576163687332303036s1

	Cohomology of the space of polynomial maps on A1 with prescribed ramiﬁcation
	1 Introduction
	2 Ramiﬁcation, derivatives and the "ramiﬁcation cover"
	3 Stratiﬁcation of Xn: the combinatorics
	3.1 A combinatorial description of stratiﬁcation by locally closed subsets
	3.2 Pmn as a quotient of P n
	3.3 Action of Sn on Pn and stability of the resulting quotient

	4 Poset topology and shellability
	4.1 Cohomology of posets

	5 Geometry of the (Zariski) closure of the locally closed strata
	6 Spectral sequences and computation of Hi(U)
	Acknowledgments
	References


