Exercises, Algebra I (Commutative Algebra) — Week 5

Exercise 22. (Annihilator, 2 pts)
Let mq,...,mi € M be a set of generators of M.

1. Let ¢ € Ann(S™'M). For any i we have 2™ = 0; thus there is a ¢; € S, such that
t;(am;) = 0. In particular t;a € Ann(m;). Thus for t, = Hi-“:lti, we get tam; = 0 for
any 7 i.e. (since (m;); generate M) ta € Ann(M). Thus & = ?ZT‘; € S~'Ann(M) i.e.
Ann(S—tM) c S~tAnn(M).

Conversely, if ¢ € S~'Ann(M), with a € Ann(M), then for any 7 € S™1M, ¢. 2t =
am — 9 = 0. Thus ¢ € Ann(S~' M), proving that Ann(S~'M) = S~'Ann(M).

st st

2. If S~'M = 0 then for each 1, T =0 € S~IM i.e. there is a s; € S such that
sim; =0 & M. Set s = Hlesl- € S. Then sm; = 0 for any i thus ((m;); generate M)
sm =0 ¢€ M for any m € M ie. s € Ann(M). So s € SN Ann(M).

Conversely, if s € SN Ann(M), since sm = 0 for any m € M and t € S (by definition)
m=0eS'Mie STIM =0.
Exercise 23. (Nakayama lemma, 3 points)
Let us denote Q = Coker(N — M). Since M is finitely generated and @ is a quotient of M,
@ is also finitely generated (for example by the image of a set of generators of M).
Tensoring the exact sequence N — M =5 Q — 0 by A/a we get the exact sequence N/aN —

T®id 4 /4
M/aM =" Q/aQ — 0. Thus Q/aQ is the cokernel of N/aN — M/aM, which is 0 by

assumption. So @) = aQ).

1. Since a C R, Nakayama lemma (iii) yields @ = 0 i.e. N — M is surjective.

2. In this case, Nakayama lemma (ii) provides a b = 1+ a € A, with a € a, such that
bQ = 0. In particular, bg = 0 for any ¢ € @. Since b is invertible in Ay, we get that
% =01in @Qp for any ¢ € @ and ¢ > 0 i.e. ), = 0. But tensoring the exact sequence
N = M — @Q — 0 by A, we get the exact sequence N, — My — Qp — 0ie. Qp =0 is

the cokernel of N, — Mj. Hence the claimed surjectivity.

3. Define a homomorphism of A-modules g : &7 ; Ae; - M by (extend linearly) e; — m;.
By assumption, g ® ids/, : ©j_;A/ae; — M/aM is surjective. Then by the previous
question, there is a b = 1 + a, with a € a, such that g ® ids, : ®J, Ape; — M, is

mi

surjective i.e. b, ..., "™ generate M; as Ay-module.

Exercise 24. (Non-zero divisors as multiplicative set, 3 points)

1. Let a € ker(A — S7'A); we have ¢ =0 in S™'A i.e. there is a s € S such that sa = 0
in A. So if a # 0, s is a zero-divisor. Contradiction. So a = 0. Hence the injectivity of
A— STA.

For a multiplicative set S C S’ containing S, consider the localization g : A — S’~1A.
Pick a s’ € S'\S. By definition of S, s’ € A is a zero-divisor. Thus there isa A > a # 0
a

such that s’a = 0 in A. So we get g(a) = § = 0. i.e. g is not injective.

Solutions to be handed in before Monday May 11, 4pm.



2. If £ € S_lA is not a zero-divisor then for any S~'A4 5 & £ 0, with b € A and

s’

s E S, S5 75 0. Since A — S~!A is injective (accordmg to the first question), for any
ABb#O # 0; in particular % ab £ i.e. for any s’ € S, s'ab # 0 in A. Asaresultwe
get that for any A3b+#0ab 7é 0 i.e. a is not a zero divisor. Thus @ € S and $2 =1
in S~LA.

3. Under the assumption of this question, we have S C A* and since a unit cannot be a
zero divisor (A # 0), we actually have A* = S. Using the first question, we only have
to check that f : A — S™'A is surjective: for 2 € S~LA, since s € S = A*, consider

la —a =0, we get f(s7ta) = sla_ gy g-lg,

_1 . . p—
a € A; since ss I s

Exercise 25. (Flat scalar extensions, 5 points)

1. Z — Fp: F—p is not flat over Z as shown by the inclusion f : Z < Z, k + pk. Tensoring
with Iy, we get that f ®idp, : F) — F), is k — pk which is the 0 map, in particular it
is not injective.

2. Z — Q: Q is a flat Z-module: notice first that Q ~ Z), the localization at the prime
ideal (0) C Z. Indeed for an injective homomorphism of Z-modules f : M — M’ let
> i mi ® B € ker(f @z idg); we have

n
1 1
> omie Z mi ® m Hk;ﬁsz = Z mipillyziqr @ Mg = O mipillziar) © ot
= 5

and f(>, mipillpziqr) ® ﬁ =0¢e M ®Q. Now since M' ® Q ~ M’ ® Zg) =~ M(lo)’

M(lo) 50 = (>, mipillpriqr) ® ﬁ = W means that there is a b € Z\{0}

such that f(b)>", mipillpriqr) = bf (O, mipillpriqr) = 0 € M'. As f is injective, we

get by . mipilly4iqr = 0 € M. In particular, %ﬁkﬂqk =0¢€ M. Thus f ®idgz is

injective.

3. A — Alz]: by definition, A[z] is a free A-module ((z');en being a basis) so it is in
particular flat.

4. Actually the question is trivial (as noticed by G.Andreychev) since Q[z,y]/(y? — ) is
a Q-vector space, as such it is a free Q-module. So it is flat over Q ans since Q is flat
over Z, we get, by Proposition 5.6, that Q[z,y]/(y? — x) is flat over Z.

The question is more interesting for Z — Z[z,y]/(y*—x): Let us prove that Z[z, y]/(y* —
x) is a flat Z-module. This ring homomorphism can be decomposed as

Z — Zl] - Zlally) ~ Zlz,y] > Zlz,y)/(y” - )

the last homomorphism being the quotient by the principal ideal of Z[x,y] generated
by y? — 2. We have just seen that Z[z] is a flat Z-module. Now, since Euclidean division
by monic polynomials works in A[y| for any ring A, we have:

Let A # 0 be aring and a € A, then o : A* — Aly]/(y* —a), (b,c) = bj+c
is an isomorphism of A—modules

()

(see the proof below) Applying this remark to A = Z[z] and a = z, we get that
Zlz,y]/(y*> — x) is a free (thus flat) Z[z]-module. As a conclusion (Proposition 5.6),
Zz,y]/(y? — ) is a flat Z-module.

Beweis. Notice that (even if A happened to have zero-divisors) for any non-zero poly-
nomial f = >"1 by’ € Aly], ith b, # 0 deg((y*> — a)f) = 2 + deg(f) since its leading
term is b,y" 2 # 0. So, let (b, c) € ker(p) we have by + ¢ € (y> — a) in Afy]; but any



non-zero polynomial in (y?> — a) has degree at least 2. Thus by +c¢ = 0 € Afy] i.e
(b,c) = (0,0), proving that ¢ is injective.

Now let us prove by induction that any polynomial f € A[y] can be written f =
(y®>—a)g+h where g, h € A[y] and deg(h) < 2. It is clear for polynomial of degree 0 and 1.
Now let & > 0 such that the property is true for polynomials of degree at most k. Given
f= ZkH biyt € Alx] of degree k+1 (ie. b—k +1#0), f' = f—bp 1y 1 (y?—a) € Ay]
has degree < 0 so by our induction hypothesis, there are g, h € Afy] with deg(h) < 2,
such that f' = (y? —a)g -+ h. So we get f = (y*> —a)(g +bpr1y* 1) + h and deg(h) < 2.
Thus by induction, the property is true.

So let f € Aly]/(y* —a) and f € A[y] in its preimage. By the above property, we
can write f = (y? — a)g + h for some g,h € Aly] with deg(h) < 2. In particular
f=hmod (y?> — a). Writing h = by + ¢, we get ©(b,c) = f proving the surjectivity of
©. O

Exercise 26. (Localization, 4 points)

1. We have 1 = 1+ 25-0 € S, and for fi(z1) + z2g91(x1), fa(z1) + z2g2(x1) € S, with
J1 #0, f2 # 0, we have

(f1(@1)+x2g1(21))(fo(21)+22g2(21)) = f1fotaa(frgatfagr)+a3(g192) = fifataa(figetfogr)

in A and f;f2 # 0 since they belongs to the integral domain k[z1] C A. So (fi(x1) +
zog1(21))(f2(x1) + x292(71)) € S i.e. S is a multiplicative set.

Since we have a ring isomorphism k[z;|[z2] ~ k[z1,x2], and and inclusion of rings
k[z1] C k(z1), we have an induced ring homomorpism « : A — k(x1)[z2]/(23). For
f+x2g9 €S, we have

f—33297f2—353927f72:1

12 - 12 - f?
thus a(S) is contained in the group of invertible elements of k(z1)[x2]/(22). Now let ¢ :
A — B be aring homomorphism such that g(S) C B*. Define @ : k(x1)[z2]/(z2) — B by
% = (e(h(z1))) " to(f(z1) + z29(22)). Tt is well-defined since k[z1]\{0} C S

so its image under ¢ is contained B*; moreover any other representative of a given

% is of the form h/(Il)fgl(gﬁfgf)m)g(m) for some A’ # 0 and using that ¢ is a

(f + z29)

ring homomorphism

(p(h' (z1)h(z1) " (W (21)(f (21) + 229(21))) = @(h(x1)) " (R (1))~ (R (21))p(f (1) + w29(21))

= (p(h(z1) " p(f(21) + 22g(2)).

One check that ¥ is a ring homomorphism the same way

_ f1+ 2201 f2+96292 _ha(fi +22g1) + ha(f2 + 2292)
o( I I ) =9( Il )
= @(h1h2) Yp(ha(fi + 2291) + h1(f2 + T292))
= p(h2)” 1<P( 1) (p(ha)p (fl+$291)+<P(h1)<ﬁ(f2+96292))
= <P(h1) o(f1 + m2g1) + @(ha) "o f2 + 22g2)
_ +$291)+(p(f225292)
and fitaag fot (f1 + w290)(f2 + 722)
_J1 T X291 J2 T X292, __ \J1 T T2g1)(J2 T X202
?( o e ) =3( i )
= w(hlhz)fl ((f1 + 2201)(f2 + 2292))
= p(h1) "l o(f1 + 2291)0(h2) " o(f2 + 22g2)
_fitaagr, _ fa+ w292
=7( ) - ( )

hi ha

w



finally (1) = @(3) = ¢(1)"'p(1) = 1. And a direct calculation shows that ¢ = o a.

Moreover if 3 : k(z1)[x2]/(23) — B is a ring homomorphism satisfying ¢ = 80 a. Then
for any h € k[z1]\{0} C S, B(a(h)) = B(h) = ¢(h) = B(h) from which we also see that
(

B(h) is invertible and since 1 = 5(1) (7) = B(3+)B(h) we have B(+) = B(h)~!. We
also have S(a(f + x29)) = B(f + x29) (f + 229) = @(f + x2g). Thus

[+ zag

ST — GGIS( + n2g) = BB 5 + 29) = olh) (] +29) = (720

Hence the uniqueness of such p. As a conclusion « satisfies the universal property of
the localization; so it is isomorphic to the localization of A with respect to S.

. Look at the first projection p; : A x B — A which is a ring homomorphism satisfying
p1(S) = {1} C A*. Let g : A x B — C be a ring homomorphism such that g(S) C C*.
Since (1,0) = (1,0), we get g((1,0)) = g((1,0)2) = g((1,0))? in C which, as g((1,0))
is invertible, yields ¢((1,0)) = 1.

Now, define a map f : A — C by a — g¢((a,0)). It is well-defined and it is a ring
homomorphism: f(1) = ¢g((1,0)) = 1 by the above discussion.

For any a,a’ € A, using that g is a ring homomorphism, we get:

flat+a)=g((a+d,0) = g((a,0) + (a’,0)) = g((a,0)) + g((a,0)) = f(a) + f(a')

and f(aa’) = g((ad’,0)) = g((a,0)(a’,0)) = g((a,0))g((a’,0)) = f(a)f(d)

To see that g = fop; it is sufficient to prove that ¢((0,b)) = 0 for any b € B (since
9((a,b)) = g((a,0)+(0,)) = g((a,0)) +g((0,b))); but for any b € B, (0,b)(1,0) = (0,0)
so that (g ring homomorphism) 0 = ¢((0,0)) = ¢((0,b))g ((1, 0)) = ¢((0,b)) - 1.

Let us prove the uniqueness of f: let h : A — C be a ring homomorphism satisfying
g ="hopy. For a € A, we have h(a) = h(p1((a,0))) = g((a,0)) = f(a); thus f = h. So

p1: A x B — A is the localization with respect to S.

. (=) Assume M — S~'M is bijective. Let s € S. If M % M is not injective, then there
is a m € M\{0} such that sm =0 € M. But this means that 7 =0 € S~'M i.c. that
M — S~1M is not injective. Contradiction. So for any s € S, M = M is injective.

Now, let us prove the surjectivity of the homomorphisms M = M. Take a s € S. Given
am € M, since M — S~'M is surjective, there is a n € M such that T="7in S—IMm
which means that there is a s € S, such that s'(sn —m) = 0 € M. But by the above

. . s’ .. . . s . . .
discussion M = M is injective; thus sn = m i.e. M = M is surjective.

(<) If m € ker(M — S™'M), then 2 = 0 € S™'M i.e. there is a s € S such that
sm =0 & M. But since M = M is injective, we get m = 0 i.e. M — S—1M.
Now, consider = € S—1M. By sujectivity of M = M, we can find a n € M such that
m = sn € M. We then have 7 = = € S—IM. thus M — S~'M is surjective.



