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ZusammenfassungDie vorliegende Diplomarbeit besh�aftigt sih mit zwei unver�o�entlihten Ar-tikeln von Professor Howard S. Beker von der University of South Carolina inColumbia. Ausgangspunkt ist folgende klassishe Charakterisierung von BorelMengen in polnishen R�aumen durh Topologieverfeinerungen:Eine Teilmenge eines polnishen Raumes ist genau dann eine Borel-Menge, wenn eine polnishe Topologie auf dieser Teilmenge existiert,die die Teilraumtopologie verfeinert.Professor Beker diskutiert in seinen Aufzeihnungen \Finer topologies on point-sets in Polish spaes" vom M�arz 1991 und \Playing around with �ner topolo-gies" vom Januar 1992 m�oglihe Verallgemeinerungen dieser Charakterisierungf�ur komplexere Teilmengen polnisher R�aume, insbesondere f�ur projektive Men-gen in polnishen R�aumen. In dieser Diplomarbeit werden seine Resultate mitausf�uhrlihen Beweisen und der Bereitstellung aller Grundlagen pr�asentiert.Die Diplomarbeit gliedert sih in zwei Teile. Im ersten Teil werden allef�ur diese Arbeit notwendigen De�nitionen und Resultate aus der deskriptivenMengenlehre eingef�uhrt. Der zweite Teil befa�t sih dann mit dem eigentlihenThema dieser Arbeit, der Charakterisierung projektiver Mengen durh Topolo-gieverfeinerungen.Die klassishe deskriptive Mengenlehre besh�aftigt sih mit \de�nierbarenTeilmengen" der reellen Zahlen und deren Eigenshaften. Die reellen Zahlensind ein topologisher Raum, dessen Topologie von einer vollst�andigen Metrikinduziert wird. Desweiteren liefert die abz�ahlbar dihte Teilmenge der ratio-nalen Zahlen eine abz�ahlbare Basis f�ur diese Topologie. Solhe topologishenR�aume nennt man polnishe R�aume. Man kann zeigen, dass die De�nierbar-keitshierarhien auf den reellen Zahlen topologishen Hierarhien entsprehen.Deswegen besh�aftigt sih die deskriptive Mengenlehre heutzutage oft allge-meiner mit de�nierbaren Teilmengen von polnishen R�aumen.Wir beginnen deshalb in Teil 1 dieser Arbeit mit einem kurzen Kapitel�uber polnishe R�aume. Es werden die grundlegenden De�nitionen wiederholtund es wird gezeigt, dass Summen und Produkte (in der Kategorie der topolo-gishen R�aume) von polnishen R�aumen wieder polnishe R�aume sind. Weitererw�ahnen wir, dass genau die GÆ-Mengen (d.h. abz�ahlbare Shnitte o�enerMengen) versehen mit der Teilraumtopologie wieder polnishe R�aume sind.1



Zusammenfassung 2Als wihtigstes Beispiel eines polnishen Raumes (neben R) f�uhren wir denBaire-Raum !! ein. Als topologisher Raum ist dies das topologishe Produktder Mengen ! versehen mit der diskreten Topologie. Mit Hilfe von B�aumenk�onnen wir eine Basis der Topologie des Baire-Raumes angeben. B�aume spie-len in dieser Arbeit eine herausragende Rolle und werden zusammen mit einigendamit verwandten Begri�en in Kapitel 2 eingef�uhrt. Ein Baum auf ! bestehtaus endlihen Folgen nat�urliher Zahlen, so dass jedes Anfangsst�uk solh einerFolge auh ein Element des Baumes ist. Besonders wihtig f�ur den Baire-Raumsind unendlihe �Aste durh einen solhen Baum auf !. Ein unendliher Astdurh einen Baum auf ! ist eine abz�ahlbare Folge von nat�urlihen Zahlen,also ein Element von !!, so dass alle endlihen Teilfolgen im Baum sind. Eineinfahes aber wihtiges Resultat in diesem Zusammenhang ist die Charak-terisierung einer abgshlossenen Teilmenge des Baire-Raumes als Menge derunendlihen �Aste durh einen Baum auf !. In einem Unterkapitel von Kapitel2 wird die Wihtigkeit des Baire-Raumes deutlih, da wir f�ur jeden polnishenRaum eine stetige Surjektion des Baire-Raumes in den polnishen Raum �nden.Von entsheidender Bedeutung f�ur die deskriptive Mengenlehre und ins-besonders f�ur unsere Arbeit hier ist eine weitere Darstellung von Teilmengendes Baire-Raumes durh B�aume. Wir de�nieren B�aume auf dem Produkt von !mit einer Ordinalzahl � und nennen die Mengen, welhe sih durh eine Projek-tion der Menge der unendlihen �Aste auf !! darstellen lassen �-Suslin-Mengen.Dies wird die entsheidende De�nition in Kapitel zwei sein und wir diskutierendie �-Suslin-Mengen entsprehend. Eng verkn�upft damit ist das Konzept einerSkala. Daf�ur betrahten wir eine Folge von Normen (dies sind Abbildungenvon Teilmengen des Baire-Raumes in die Ordinalzahlen) mit gewissen Eigen-shaften. Sind alle Normen einer Skala Abbildungen, deren Bilder beshr�anktsind durh eine Ordinalzahl �, so sprehen wir von �-Skalen und wir zeigen,dass Teilmengen des Baire-Raumes genau dann eine �-Skala besitzen, wenn dieMengen �-Suslin sind. Wir shlie�en Kapitel 2 mit der De�nition von Borel-,und in Verallgemeinerung �-Borel-Mengen. Auh hier wird der Zusammenhangmit �-Suslin-Mengen diskutiert werden.In Kapitel 3 f�uhren wir die Borel-Hierarhie und die projektive Hierarhieein. Die deskriptive Mengenlehre klassi�ziert Teilmengen polnisher R�aume inHierarhien in Bezug auf die Komplexit�at der Menge. Zum Beispiel bestehtdie unterste Ebene der Borel-Hierarhie aus den o�enen und abgeshlosse-nen Teilmengen. Die n�ahste Ebene enth�alt nun abz�ahlbare Vereinigungenabgeshlossener Mengen (F�-Mengen) und abz�ahlbare Shnitte o�ener Mengen(GÆ-Mengen). Um zur n�ahsten Ebene zu kommen betrahtet man wiederumabz�ahlbare Vereinigungen von GÆ-Mengen bzw. abz�ahlbare Shnitte von F�-Mengen und so weiter. Die Vereinigung aller Ebenen dieser Hierarhie liefertdie Klasse aller Borel-Mengen. Borel-Mengen sind abgeshlossen unter Komple-mentbildung und abz�ahlbaren Vereinigungen und Shnitten. Allerdings nihtunter Projektionen. Wir nutzen diese Tatsahe zur De�nition der projektivenHierarhie. Wir nennen Projektionen von Borel-Mengen analytishe oder �11-Mengen und zusammen mit ihren Komplementen (den �11-Mengen) bilden sie



Zusammenfassung 3die erste Stufe der projektiven Hierarhie. Projektionen von Komplementen vonanalytishen Mengen bilden dann (zusammen wieder mit deren Komplementen)die n�ahste Stufe der projektiven Hierarhie (die �12- bzw. �12-Mengen). Diesl�asst sih so abz�ahlbar oft fortsetzen, d.h. wir erhalten die Klassen �1n und �1nf�ur n 2 !. Die Mengen dieser Hierarhie nennt man projektive Mengen undf�ur diese Mengen geben wir in Teil zwei dieser Diplomarbeit eine topologisheCharakterisierung.Im Kapitel 4 kommen wir dann zu einem moderneren Gebiet der deskrip-tiven Mengenlehre, n�amlih zu Spielen und der Determiniertheit von Spie-len. Als Prototyp f�ur die Spiele, die wir betrahten, dient folgendes Spiel aufden nat�urlihen Zahlen. Es wird zun�ahst eine Teilmenge des Baire-Raumesals Gewinnmenge festgelegt. Zwei Spieler I und II w�ahlen nun abwehselndabz�ahlbar oft nat�urlihe Zahlen. Das Ergebnis dieses Spiels ist dann also eineabz�ahlbare Folge nat�urliher Zahlen und somit ein Element des Baire-Raumes.Wir sagen, dass Spieler I das Spiel gewinnt, falls die Folge in der Gewinnmengeliegt. Anderenfalls hat Spieler II gewonnen. Mit Hilfe von B�aumen de�nierenwir Strategien f�ur die einzelnen Spieler, die dem Spieler in jedem Zug mitteilen,mit welher nat�urlihen Zahl er auf eine bis dahin gespielte Folge antwortensoll. Eine solhe Strategie hei�t Gewinnstrategie, falls der entsprehende Spielerjeden Spielverlauf gewinnt, indem er der Strategie folgt. Es ist klar, dass dieExistenz einer Gewinnstrategie immer von der Gewinnmenge abh�angt und es istauh klar, dass es Gewinnmengen gibt, f�ur die man sehr einfah Gewinnstrate-gien f�ur einen der Spieler angeben kann. Eine Gewinnmenge nennt man de-terminiert, falls f�ur einen der Spieler eine Gewinnstrategie existiert. Es ist einshwieriges und interessantes Problem, welhe Klassen von Teilmengen deter-miniert sind; wir besh�aftigen uns hier allerdings niht damit, sondern f�uhrenneue Axiome ein, die die Determiniertheit von Mengen postulieren. Das Axiomder projektiven Determiniertheit PD garantiert die Determiniertheit aller pro-jektiven Mengen des Baire-Raumes. Das st�arkere Axiom der DeterminiertheitAD besagt, da� alle Teilmengen des Baire-Raumes determiniert sind. Sp�aterwerden wir dann sogar das Axiom ADR voraussetzen. Hierzu werden Spieleauf Elementen des Baire-Raumes betrahtet. Die Gewinnmenge ist dann eineTeilmenge von (!!)! und es werden abwehselnd Elemente von !! gespielt.Ansonsten werden die obigen De�nitionen in o�ensihtliher Weise auf dieseSpiele �ubertragen und ADR ist dann das Axiom, welhes besagt, dass f�ur alleGewinnmengen solher Spiele eine Gewinnstrategie f�ur einen der Spieler ex-istiert.Wir shlie�en in Kapitel 4 mit einer Charakterisierung der polnishen R�aumedurh starke Choquet-Spiele. Dies sind Spiele f�ur zwei Personen in obigemSinn, nur werden diesmal nihtleere o�ene Mengen eines polnishen Raumesgespielt, so dass eine absteigende Folge von ineinander enthaltenen o�enenMengen entsteht und Spieler II gewinnt dieses Choquet-Spiel, wenn der Shnittaller o�enen gespielten Mengen nihtleer ist. Im starken Choquet-Spiel wirdzus�atzlih von Spieler I jeweils ein Punkt in seiner o�enen Menge gespielt undSpieler zwei muss dann eine o�ene Umgebung um diesen Punkt spielen, welhe



Zusammenfassung 4in der o�enen Menge von I enthalten ist. Auh hier gewinnt II, wenn derShnitt aller o�enen Mengen niht leer ist. Ein topologisher Raum hei�t starkerChoquet-Raum, falls Spieler II eine Gewinnstrategie im starken Choquet-Spielhat. Beispiele f�ur solhe starken Choquet-R�aume sind unter anderem die pol-nishen R�aume. Insbesondere sind polnishe R�aume regul�are starke Choquet-R�aume mit abz�ahlbarer Basis und es gilt die Hausdor� Trennungseigenshaft.Diese Eigenshaften von polnishen R�aumen benutzen wir f�ur unsere Charak-terisierung der projektiven Mengen.Die ersten vier Kapitel benutzen als Voraussetzung nur die Theorie ZF+DCund an einigen wenigen Stellen zus�atzlih das volle Auswahlaxiom AC. DieseTheorien sind niht geeignet f�ur die vollst�andige topologishe Charakterisierungder projektiven Mengen. Aus diesem Grunde haben wir in Kapitel 4 die Ax-iome der Determiniertheit eingef�uhrt. In Kapitel 5 zeigen wir einige Resultateunter Annahme dieser Axiome. Entsheidend f�ur die Beweise der Theoreme�uber die Charakterisierung der projektiven Mengen ist, dass die projektivenMengen �-Suslin sind. Dies gilt unter PD und wird in Kapitel 5 bewiesen. DieOrdinalzahl � h�angt eng mit den L�angen von bestimmten Normen zusammen.Jeder Norm l�a�t sih n�amlih eine fundierte Relation zuordnen, deren L�angedurh das Bild einer zugeh�origen Norm (der Rangfunktion) de�niert ist. Wirde�nieren f�ur n 2 ! die projektiven Ordinalzahlen Æ1n als das Supremum allerL�angen von solh fundierten Relation, die zus�atzlih noh in �1n und�1n liegen.Die projektiven Ordinalzahlen untersuhen wir im Rahmen diese Kapitels unterder Annahme AD genauer. Damit ist dann der erste Teil dieser Diplomarbeitabgeshlossen.Der zweite Teil behandelt nun die eigentlihe Charakterisierung der projek-tiven Mengen durh feinere Topologien. In Kapitel 6 beweisen wir zuerst dasoben angegebene Resultat �uber die Borel-Mengen. Darauf folgt die Charkter-isierung der analytishen Mengen, die folgenderma�en lautet:Eine Teilmenge eines polnishen Raumes ist genau dann analytish,wenn es eine starke Choquet-Topologie mit abz�ahlbarer Basis aufder Teilmenge gibt, welhe die Teilraumtopologie verfeinert.Das letzte Kapitel, Kapitel 7, gibt eine Charakterisierung dieser Art dann f�urjede �1n-Menge.Eine Teilmenge eines polnishen Raumes ist genau dann in�1n, wennes eine starke Choquet-Topologie mit Basis der L�ange kleiner als Æ1nauf dieser Teilmenge gibt, welhe die Teilraumtopologie verfeinert.F�ur diese Charakterisierung arbeiten wir unter der Theorie ZF+DC+ADR.Damit haben wir, wenn auh unter der sehr starken Annahme von ADR, einevollst�andige Charakterisierung der projektiven Mengen durh Topologiever-feinerungen erreiht.



IntrodutionA haraterization of Borel sets by �ner topologies is the starting point for thiswork. The following is a fundamental fat about Borel sets in Polish spaes:For every Borel set in a Polish spae exists a �ner Polish topologyfor the spae, suh that the Borel set is open and losed with respetto this �ner topology.This fat implies very easily a remarkable result for one of the lassial, if notthe lassial, problem in early set theory, the Continuum Hypothesis (CH) byCantor. Cantors onjeture was that every subset of the reals (that he alled theontinuum) is either at most ountable or has the ardinality of the ontinuum(f. [Cant78℄).Of ourse, nowadays we know that this problem an not be deided inZermelo Fraenkel set theory. But Cantor tried very hard to �nd a proof forhis onjeture and one of the most promising attempts for him was the proofof the perfet set property for losed subsets of the reals (see [Cant84℄). Thisfat is known today under the name Cantor-Bendixson Theorem and assertsthat every unountable losed subset of the reals ontains a perfet subset,that is, a nonempty losed subset with no isolated points. Perfet subsetshave the ardinality of the ontinuum. So by the Cantor-Bendixson theoremthe Continuum Hypothesis is true for losed subsets of the reals. Cantor wasonvined that he an expand the result for all sets. Of ourse he ould notsueed, but about 30 years later Felix Hausdor�, who was Professor here at theUniversity of Bonn from 1910 until 1932, ould prove the Continuum Hypothesisfor Borel sets in [Haus16℄:\Jede Borelshe Menge ist entweder endlih oder abz�ahlbar odervon der M�ahtigkeit des Kontinuums"Hausdor�'s proof an be desribed as \going down the Borel hierarhy". Roughlyhis idea is the following. An unountable Borel set is in some �0� for an or-dinal �. Sine this is a ountable union of sets from lower stages of the Borelhierarhy one of these sets from the union is unountable. This set is again aountable union of sets from lower stages of the Borel hierarhy and so on. So�nally he arrives at losed sets there the result is known by Cantor's result.With the above fat about Borel sets in Polish spaes (and an immediategeneralization of the Cantor-Bendixson Theorem to Polish spaes) the proofthat unountable Borel sets are of ardinality of the ontinuum is trivial. Be-ause then unountable Borel sets are losed sets in a Polish spae and have5



Introdution 6therefore by the Cantor-Bendixson Theorem the ardinality of the ontinuum.Another nie appliation of the fat about Borel sets is that we an hara-terize analyti sets as ontinuous images of the Baire spae. We will prove thisin Proposition 6.1.6 in this thesis.So this result about Borel sets is really an interesting one. By a well-knownTheorem from Lusin that the image of a Borel set under an injetive ontinuousmapping is again Borel we an prove the onverse of this result by applying it tothe identity mapping from the Polish spae with the �ner topology to the Polishspae with its original Polish topology. So we get indeed a haraterization ofBorel sets by �ner topologies. We an state this haraterization as follows:A subset of a Polish spae is a Borel set i� there exists a Polish topol-ogy on this subset that is �ner than the restrition of the topologyof the Polish spae to the subset.One ould ask if we get suh haraterizations for other lasses of sets thanthe Borel sets. Or, seen from another point of view, one an ask what lass ofsubsets do we get by dropping some properties of the �ner topology. ProfessorHoward S. Beker from the University of South Carolina in Columbia disussedthis question in two unpublished notes. The goal of this thesis is to presentthe results from Professor Beker. In \Finer topologies of pointsets in Polishspaes" from Marh 1991 he found a haraterization for �11 sets in the theoryZF + DC and more general for all sets from the projetive hierarhy in hisnotes \Playing around with �ner topologies" from January 1992 under the ax-ioms ZF + DC + ADR.This thesis is divided now in two parts. In the �rst part we introdue allnotions and results neessary for the proofs of the main theorems. It starts witha short hapter about Polish spaes. In the seond hapter we disuss the basionepts of trees and �-Suslin sets that are fundamental for the haraterizationof the projetive sets. In this onnetion we examine the relation of the �-Suslinsets with �-sales and �-Borel sets. Chapter 3 realls the onepts of the Boreland the projetive hierarhy and its main properties. Sine the haraterizationfor pointsets of higher lasses of the projetive hierarhy requires the axiom ofdeterminay of the reals we introdue games and the onept of determinayin hapter four. This hapter also inludes a haraterization of Polish spaesas strong Choquet spaes.For this we need the notion of a strong Choquet game, that is, a two persongame in whih the players take turns in playing nonempty open sets of thetopologial spae, suh that eah set is ontained in the sets played before. Inaddition player I has to play a point in his open set and player II is obliged toplay an open set suh that it ontains also this point played by player I. PlayerII wins this game if the intersetion of all open sets is nonempty.A topologial spae is alled strong Choquet spae if player II has a winningstrategy in the strong Choquet spae. We prove that Polish spaes are seond



Introdution 7ountable, regular, strong Choquet spaes with the Hausdor� property and usethis properties in Part 2 for the haraterization of the projetive sets by �nertopologies. But before we ome to this part we lose Part 1 with a hapter aboutthe sale property and about projetive ordinals under the axioms PD andAD.In Part 2 we give proofs for all results about the haraterization of theprojetive sets. We start in Chapter 6 with the proof of the above harater-ization of the Borel sets. The theory ZF + DC is suÆient to prove then aorresponding result for the analyti sets:A subset of a Polish spae is analyti i� there exists a seond ount-able, strong Choquet topology on this subset that is �ner than therestrition of the topology of the Polish spae to the subset.A onstrution of suh a �ner topology for all �1n sets is immediate if we workunder the additional axiom PD. This is proved in the beginning of Chapter7. Cruial for this is that �1n sets are �-Suslin for a ardinal � less than theprojetive ordinal Æ1n as an ordinal. We thus onstrut �ner strong Choquettopolgies on suh sets with a basis of lenth less than the assoiated projetiveordinals. The prove of the onverse is a lot more diÆult. We have to introduesome new notions about reliable ordinals and honest subsets of reliable ordinalsbefore we �nish in Chapter 7 with the following theorem:A subset of a Polish spae is �1n i� there exists a strong Choquettopology with a basis of length less than Æ1n on this subset that is�ner than the restrition of the topology of the Polish spae to thesubset.The proof of this theorem requires the very strong axiom ADR. But assum-ing this we have in fat found a topologial haraterization of all projetive sets.Our notation is lose to the notation in [Keh95℄ and [Mos80℄. The basitheory for this paper is the Zermelo-Fraenkel set theory together with the axiomof dependent hoie DC.



Part IFats from desriptive settheory
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Introdution to Part I 9In this �rst part we will introdue all of the basi onepts that will beneessary for the haraterization of the projetive sets and the proofs for it.The topologial spaes we onsider are the Polish spaes. So in the �rst hapterwe de�ne the Polish spaes and will take a look at sums and produts as wellas ertain subsets of Polish spaes.By far the most important Polish spae for our approah is theBaire spae,i.e., the spae !! seen as the topologial produt of the disrete topologialspaes !. In the forthoming we will all elements of ! integers and elementsof the Baire spae reals. To examine the Baire spae, the onept of a tree is ofhelp. Trees are a fundamental tool for desriptive set theory and in partiularin our work here. In Chapter 2 we thus introdue the notion of trees and manyonepts related to it. A tree on ! onsists of �nite sequenes of integers suhthat eah initial segment of suh a �nite sequene is again in the tree. By anin�nite branh through suh a tree we understand an unountable sequeneof integers, an element of the Baire spae, suh that all �nite inital segmentsof this sequene are also in the tree. Closed subsets of the Baire spae areharaterised by the set of all in�nite branhes of a tree on !. This easy butimportant result is the starting point for the onsideration of representationsof subsets from the Baire spae by trees. This leads in partiular to the proofthat for eah Polish spae exists a ontinuous mapping from the Baire spaeonto the onsidered Polish spae. This explains the speial role the Baire spaeplays in the ategory of Polish spaes.Another tree representation is the main de�nition in Chapter 2. We onsidertrees on the produt of ! and an ordinal �. Subsets of the Baire spae that anbe haraterized as the projetion of the in�nite branhes of suh a tree to theBaire spae are alled �-Suslin sets. The existene of suh a representationwill turn out to be ruial for our topologial haraterisation of projetive sets.So in the rest of Chapter 2 we disuss these sets. In partiular we examine theonnetion between �-sales and �-Suslin sets. A �-sale on a subset of theBaire spae is a sequene of �-norms, i.e., a sequene of mappings from thesubset to �, with additional properties. We will prove that eah subset thatadmits a �-sale is �-Suslin. We �nish Chapter 2 by introduing Borel and �-Borel sets and disussing the relation between these sets and the �-Suslin sets.Chapter 3 gives a short overview about the Borel and the projetive hi-erarhy. We will de�ne these hierarhies and state the main properties. In theseond part of this hapter we introdue the e�etive analogs of these hierar-hies together with their main properties.In Chapter 4 we turn to the onept of games and determinay. Weonsider two person games for example on the integers. For a subset of theBaire spae, alled the payo� set, suh a game works as follows. The two play-ers I and II take turns in playing integers. After ! moves, the outome ofsuh a game is an unountable sequene of integers, therefore an element ofthe Baire spae. We say, player I has won the game if the outome of thisrun of the game is in the payo� set. Otherwise II has won. A strategy for



Introdution to Part I 10one of the players tells the player whih move to make in every round of thegame depending on the �nite sequene played so far. Suh a strategy is alleda winning strategy if the player wins all runs of the game by following hisstrategy. We all a subset of the Baire spae determined, if in the assoiatedgame with this subset as the payo� set one of the players has a winning strategy.It is an interesting problem whih pointsets of the Baire spae are deter-mined. We are here not interested in this problem but rather postulate thedeterminay of ertain pointsets. We introdue the axiom PD (whih assertsthat all projetive pointsets are determined) and the axiom AD (whih assertsthat all pointsets of the Baire spae are determined). Furthermore we will needthe axiom ADR that asserts that in a game on the reals (on the Baire spae)every pointset is determined. We will work under the assumption of these axiomto prove the haraterization of the projetive sets.As desribed in the introdution we will also onsider the strong Choquetgame and prove the haraterization of Polish spaes as strong Choquet spaesin the seond part of Chapter 4.In Chapter 5 we will show that the projetive sets admit ertain sales ifwe work under determinay axioms as desribed in Chapter 4. Therefore weonlude that the projetive sets are �-Suslin sets. The ordinal � will be loselyrelated to the projetive ordinals, whih are de�ned as the supremum of allthe lengths of norms on the Baire spae whih are in �1n. Chapter 5 ends withan analysis of these projetive ordinals under AD.The basi theory for this hapter is the Zermelo-Fraenkel set theory togetherwith the Priniple of dependent hoies (DC):(DC) For every binary relation R � X �X on a nonempty set Xthe following holds:8x 2 X 9y 2 X (x; y) 2 R ) 9f : ! �! X 8n((f(n); f(n+ 1)) 2 ROften we need just the weaker Axiom of Countable Choie (AC!):(AC!) Every ountable set onsisting of nonempty sets has a hoiefuntion.The axiom DC impliesAC!, for a proof see for example [Rohd01, Lemma 1.7℄.If one of our results needs additional assumptions it will be spei�ed.



Chapter 1Polish spaesWe want to start o� with the de�nition and some basi fats about Polish spaes.We assume familiarity with the basi onepts of topologial and metri spaesbut repeat �rst a few properties of it and introdue notation.De�nition 1.1. Let (X;T ) be a topologial spae.1. (X;T ) is separable if there exists a ountable dense subset of X, thatis, a subset that has a nonempty intersetion with every nonempty openset.2. A basis B for T is a olletion B � T suh that every nonempty set in Tan be written as a union of sets from B. The length of a basis B forT is the ardinality of B.3. (X;T ) is seond ountable if (X;T ) has a ountable basis.4. (X;T ) is alled a T1 spae if for every two distint points x; y 2 X thereexists an open set U of X suh that x 2 U and y 62 U .5. (X;T ) is alled a Hausdor� spae if for every two distint points x; y 2X there exist open neighborhoods U of x and V of y suh that U \V = ;.6. (X;T ) is alled regular if for every point x 2 X and every open neighbor-hood U of x there is an open neighborhood V of x suh that the losureof V is ontained in U . We denote the losure of a subsets V of X bylT (V ).Polish spaes are topologial spaes (X;T ) where the topology is indued bya metri d on X. That means the open balls B(x; ") = fy 2 X j d(x; y) < "g forall x 2 X and all radius " � 0 serve as a basis for the topology. A topologialspae (X;T ) is alledmetrizable if there exists a metri d on X suh that T isthe topology indued by the metri d. The spae (X;T ) is alled ompletelymetrizable if the topology T is indued by a omplete metri d. In generalthis metri d is not unique. We say a (omplete)metri d is ompatible for a(ompletely) metrizable topologial spae (X;T ) if this d indues the topology.11



Chapter 1. Polish spaes 12Lemma 1.2 (AC!). Every seond ountable topologial spae X is separa-ble. Every metrizable, separable topologial spae X is seond ountable. Inpartiular, for metrizable spaes separable is equivalent to seond ountable.Proof. Let X be a topologial spae with a ountable basis fBi j i 2 !g. ByAC! we an hoose a point in eah basi set. The set of all these points isountable and dense in X.Let X be a separable spae where the topology omes from a metri d. LetD be a ountable dense subset of X. We laim that a basis for this topologyis given by the open balls with enter the points of D and rational radius (andby AC! this basis is ountable). To see this, let U be an open set in X. Letx 2 U . Sine U is open there exists an open ball around x whih is ompletelyin U . Let B(x; ") be suh a ball. Sine D is dense in X there is a point y 2 Dand a rational Æ with d(x; y) < Æ < "2 . Then x 2 B(y; Æ) and B(y; Æ) � B(x; "),sine for z 2 B(y; Æ) we have d(x; z) � d(x; y) + d(y; z) < 2Æ < ". So we an�nd for eah point in U a neigborhood that has the form B(y; Æ) with y 2 Dand Æ rational and lies ompletely in U . So U is the union of all these balls,whih proves what we laimed.Lemma 1.3. Every metrizable spae is a regular Hausdor� spae. So in par-tiular a T1 spae.Proof. Let (X;T ) be a metrizable spae and d be a ompatible metri for(X;T ). First we want to prove the Hausdor� property. For this let x; y betwo distint points in X with d(x; y) = " > 0. Then B(x; "4) and B(y; "4) areopen sets that separate these two points, i.e., the intersetion of these two opensets is empty.To prove the regularity let U be an open neighborhood of a point x. Thenthere is an open ballB(x; ") ontained in U andB(x; "2) is an open neighborhoodof x with lT (B(x; "2 )) � B(x; ") � U .De�nition 1.4. A topologial spae (X;T ) is alled a Polish spae if (X;T )is a separable, ompletely metrizable spae.Example 1.5. (i) R with the usual metri is a Polish spaes.(ii) Any set X with the disrete topology is a ompletely metrizable spae. Aompatible metri is given for example by the disrete metri Æ, de�ned byÆ(x; y) = 1 if x 6= y and Æ(x; y) = 0 if x = yThe set X together with the disrete topology is a Polish spae i� X is ount-able.In the ategory of topologial spaes exists produts and sums (oproduts).It turns out that the produt in the ategory of topologial spaes of two Polishspaes is again Polish and also the sum of two Polish spaes is again Polish.We want to prove this next. It is neessary for the proof that the ompatiblemetri d of a Polish spae X is bounded by 1, i.e., d(x; y) � 1 for all x; y 2 X.We already noted that the ompatible metri is not unique and we show �rst,



Chapter 1. Polish spaes 13that there is indeed always a metri bounded by 1 that is ompatible for thePolish spae.Two metris d and d0 on a set X are alled equivalent if they indue thesame topology. Sine in a metri spae the losed sets are exatly those setsin whih the limit point of a onvergent sequene in the set is again in the set,it suÆes to show that two metris d and d0 on X indue the same notion ofonvergene in X, i.e., for every x 2 X and every sequene (xi)i2! in X theonditions limi!! d(x; xi) = 0 and limi!! d0(x; xi) = 0 are equivalent, to provethat d and d0 are equivalent. We use this fat to show that in a metrizablespae we an hoose the metri that indues the topology to be bounded by 1.Lemma 1.6. In every metri spae (X; d) the metri d0 = d1+d is equivalent tod.Proof. Let (X; d) be a metri spae. First we have to hek that d0 really isa metri. It is obvious that d0(x; y) = 0 i� x = y and that d0(x; y) = d0(y; x).To prove the triangle inequality onsider the following equivalene in whih Iomitted the easy alulations. Let x; y; z be in X.d0(x; z) � d0(x; y) + d0(y; z), d(xy) + d(y; z)� d(x; z) + 2d(x; y)d(y; z) + d(x; y)d(x; z)d(y; z) � 0But the seond line is true sine d(x; y) + d(y; z) � d(x; z) � 0 by the triangleinequality for d. So d0 is a metri and it is now trivial that d and d0 indue thesame notion of onvergene.Proposition 1.7. i) The produt of a ountable sequene of Polish spaes isPolish.ii) The sum of a sequene of Polish spaes is Polish.Proof. (i) Let (Xn)n2! be a sequene of metrizable spaes. For all n 2 ! let dnbe a ompatible metri for Xn with dn bounded by 1. A metri on Q!n=0Xn isgiven by d(x; y) = !Xn=0 12n+1dn(xn; yn)where x = (xn); y = (yn). This is obviously a metri.(1) The topology indued from d on Q!n=0Xn is the same as the produt topol-ogy.Proof: The produt topology is the smallest topology on Q!n=0Xn suhthat all projetions pi : Q!n=0Xn ! Xi are ontinuous. So if all projetions piare ontinuous with respet to the topology indued by the metri d we knowthat this topology is �ner than the produt topology. But pi : (Q!n=0Xn; d)!(Xi; di) is in fat ontinuous for all i: Let x = (xn) 2 Q!n=0Xn, let " > 0.Then d(x; y) < "2i+1 implies di(pi(x); pi(y)) = di(xi; yi) < ". Thus the pi's areontinuous.Let onversely B(x; ") be an open ball around x = (xn) 2Q!n=0Xn with respetto the metri d. Let i be a natural number suh that P1n=i 12n+1 = 12i < ".



Chapter 1. Polish spaes 14Consider for n < i the balls Bn = B(xn; "2) with respet to the metri dn. ThenTin=0 p�1n (Bn) is by de�nition of the produt topology open and ontains x. Lety = (yn) 2 Tin=0 p�1n (Bn). Thend(x; y) = i�1Xn=0 12n+1 dn(xn; yn) + !Xn=i 12n+1 dn(xn; yn)< "2 + "2 = "So y 2 B(x; "). Therefore Tin=0 p�1n (Bn) � B(x; ") and (1) is proved. q.e.d.(1)A basis for the produt topology is given by produtsQn Un where Un = Xnexept for �nitely many i for whih Ui is a basi set of Xi. So if all Xn's areseparable the produt spae Q!n=0Xn is separable.The last we have to hek is that if all dn are omplete metris then dis a omplete metri. For this let (xi) be a Cauhy sequene in X. Then(pn(xi))i = (xin)i is a Cauhy sequene in Xn for all n. Sine all the Xn's areomplete spaes the sequene (xin)i onverges against a xn 2 Xn for all n. Thusx = (xn) 2 Q!n=0Xn and it is easy to see that the sequene (xi) onverges tothe point x.(ii) Let (Xn)n2! be a sequene of metrizable spaes. For any n let dn be aompatible metri on Xn bounded by 1. We may assume that the sets Xn arepairwise disjoint. Now de�ne a metri on X =L1n=0Xn byd(x; y) = (di(x; y) if x; y 2 Xi for some i 2 !1 otherwiseThe only thing to hek that this is indeed a metri is the triangle inequality.Let x; y; z 2 X. If x; z 2 Xi for some i then if y is also in Xi we have d(x; z) =di(x; z) � di(x; y) + di(y; z) = d(x; y) + d(y; z) by the triangle inequality for di,otherwise d(x; z) = di(x; z) < 1 < 2 = d(x; y) + d(y; z). If x 2 Xi; z 2 Xj fori 6= j we have d(x; z) = 1. But if y 2 Xi we have d(x; z) = 1 � d(x; y) + 1,if y 2 Xj we have d(x; z) = 1 � 1 + d(y; z), and otherwise d(x; z) = 1 < 2 =d(x; y) + d(y; z).To show that the topology indued by d is the same as the sum topology,note that an open ball in Xi around an x 2 Xi with radius " < 1 with respetto di is equal to an open ball in X around x with radius " with respet to d.With this in mind everything that remains to show is obvious.If all the Xn are separable spaes the sum is separable sine the union of allthe bases of the Xn is a basis for X.If all dn are omplete then d is omplete sine a Cauhy sequene in X withrespet to d will �nally be in one Xi and we have the onvergene there.Example 1.8. (i) Rn ; n 2 ! and R! with the usual metri are Polish spaes.(ii) Let X be any set viewed as a topologial spae with the disrete topology.We already mentioned that this is a ompletely metrizable spae and it is aPolish spae i� X is ountable. By the above Theorem 1.7(i) the produt spaeX! of ountable many opies of the disrete topologial spae X is again a



Chapter 1. Polish spaes 15ompletely metrizable spae. In the next hapter, having the notion of a tree,we will de�ne a omplete ompatible metri for suh spaes. If X is ountable,X! is Polish. For example is !! a Polish spae and this spae is alled theBaire spae. It is of great importane for our work here and we will ome bakto this spae at various points.De�nition 1.9. The spae !! viewed as the produt spae of ountable manyopies of the disrete topologial spae ! is alled Baire spae and is denotedby N .Remark 1.10. It is ommon use in desriptive set theory to all the elementsof the Baire spae reals. This is justi�ed by the fat that the Baire spae ishomeomorphi to the set of irrationals with the relative topology (for a de�ni-tion of relative topology see below). Sine the set of the rationals is ountable,meager and from Lebesgue measure zero, the di�erene between the reals andthe irrational plays no important role for many results in desriptive set theory.We are now interested in subspaes of Polish spaes that are again Polish.We de�ne the topology on a subspae Y of a topologial spae (X;T ) by therelative topology T jY = fU \ Y j U 2 T g. It is easy to see that losedsubsets of Polish spaes are again Polish with respet to the relative topologyby taking the restrition of the omplete metri to the losed subset. It is alsopossible to prove that open subsets of Polish spaes are again Polish but morediÆult to �nd the orret metri. We do not want to prove this here but stateinstead a more general Theorem that tells us that the subsets of a Polish spaewith the relativized topology that are also Polish are exatly the GÆ sets.De�nition 1.11. Let (X;T ) be a topologial spae.G � X is alled an GÆ set if G is an intersetion of ountable many open subsetsof X. F � X is alled an F� set if F is a union of ountable many losed setsof X.Example 1.12. The open sets of a topologial spae are GÆ sets, the losedsets of a topologial spae are F� sets.In Polish spaes the losed sets are GÆ sets.To prove that a losed set in a Polish spae is a GÆ set we have to introduethe distane of a point from a subset in a metri spae (X; d). We de�nefor a point x 2 X and a subset A � X the distane of x from A byd(x;A) = inffd(x; y) j y 2 AgLemma 1.13. Let X be a metrizable spae. Then every losed subset of X isGÆ.Proof. Let d be a ompatible metri for X. Let A be a losed set in X. Weshow that for " > 0 the "-ball around A, B(A; ") = fx 2 X j d(x;A) < "g,is open. To see this let y 2 B(A; "). Then d(y;A) < ", say d(y;A) = " < ".The ball B(y; " � ") is ontained in B(A; "), sine for z 2 B(y; � � �) we haved(z;A) � d(z; y) + d(y;A) < ("� ") + " = ".But now we an write A = TnB(A; 1n+1) and thus A is a GÆ set.



Chapter 1. Polish spaes 16We state now the Theorem about the subsets whih are Polish with respetto the relative topology we mentioned above. For a proof see [Keh95, Ch.1 x3,Theorem 3.11℄.Theorem 1.14. A subspae of a Polish spae with its relativized topology isPolish i� it is GÆ.So in partiular the open subsets of a Polish spae and by Lemma 1.13 thelosed subsets of a Polish spae are again Polish.



Chapter 2TreesA basi tool in desriptive set theory and for a better understanding of theBaire spae is the notion of a tree. We begin with some notations.Let X be a set. Xn is the set of all �nite sequenes s = (s0; : : : ; sn�1) inXof length n. For n = 0 let X0 = f;g, where ; denotes the empty sequene. Fors = (s0; : : : ; sm�1) 2 Xm and t = (t0; : : : ; tn�1) 2 Xn we de�ne the onate-nation of s and t to be the �nite sequene s_t = (s0; : : : sm�1; t0; : : : ; tn�1) 2Xn+m. In abuse of notation we write for t = (x), a sequene of length 1, s_xinstead of s_(x). A �nite sequene s is an initial segment of the sequenet, s � t, if m = length(s) � length(t) = n and s = tjm = (t0; : : : ; tm�1). Twosuh �nite sequenes are alled ompatible if one is an initial segment of theother. Otherwise we will all them inompatible and denote this by s ? t. Ifx = (xn)n2! 2 X! is an in�nite sequene, we say a �nite sequene s is aninitial segment of x if there is an m 2 ! suh that s = xjm = (x0; : : : ; xm�1).We denote this also by s � x. Finally X<! = Sn2!Xn is the set of all �nitesequenes.De�nition 2.1. A tree T on X is a set of �nite sequenes in X losed underinitial segments, i.e., T � X�! and if t 2 T and s � t then s 2 T .An in�nite branh of T is an in�nite sequene x 2 X! suh that for alln 2 ! the sequene xjn = (x0; : : : xn�1) 2 T . The set of all in�nite branhes ofT is denoted by [T ℄, so [T ℄ = fx 2 X! j 8n xjn 2 Tg.2.1 The topology of the Baire spaeWe will now de�ne a metri that indues the topology of the Baire spae andalso leads to a de�nition of a ountable basis. Instead of just working with theBaire spae we onsider the more general ontext of metrizable spaes of theformX! seen as the produt of ountable many opies of the disrete topologialspae X.Lemma 2.1.1. Let X be a set. X! viewed as the produt spae of ountablemany opies of the disrete topologial spae X is metrizable with the omplete17



Chapter 2. The topology of the Baire spae 18metri d(x; y) = (2�(minfn2! j xjn6=yjng+1) if x 6= y0 otherwiseA basis for the topology of X! is then given by the setsNs = fx 2 X! j s � xg ; s 2 X<!Proof. It is easy to see that d is a metri.A basi for the produt topology of X! is given by sets of the form Qi2! Uiwhere Ui = X exept for �nitely many i for whih Ui = fxig for an xi 2 X. Thetopology on X! indued by the metri d has by de�nition a basis onsisting ofsets Ns; s 2 X<!. Note that for s � t we have Ns \ Nt = Nt, and if s ? t wehave Ns \Nt = ;. It suÆes to show, that these two topologies are the same.For this it is enough that eah set of the basis of the one topology is open withrespet to the other topology.Let U =Qi2! Ui with Ui0 = fx0g; : : : ; Uin�1 = fxn�1g; i0 < : : : in�1 and allother Ui = X. Then U = SfNs j length(s) = in�1 and si0 = x0; : : : ; sin = xng.Conversely, is s = (s0; : : : ; sn�1), then Ns = Qi2! Ui with Ui = fsig fori � n� 1, Ui = X otherwise.To see, that d is omplete onsider �rst the following equivalene:(1) Let (xn)n2! be a sequene in X!. Then xn ! x i� 8i (xn(i)! x(i)).Proof: \)" Let i 2 !. Let " < 12i+1 . Sine xn ! x there exists a N 2 !suh that d(xn; x) < " for all n > N . Butd(xn; x) = 12(minfk2! j xnjk 6=xjkg+1) < " < 12i+1implies xn(i) = x(i) for n > N . So xn(i)! x(i).\(" Let " > 0. Let i 2 ! suh that 12i+1 < ". For j � i exists anNj 2 ! suhthat xn(j) = x(j) for n > Nj by the assumption. Let N = maxfNj j j � ig.So for any n > N we have minfj 2 ! j xn(j) 6= x(j)g > i. Therefored(xn; x) = 12(minfk2! j xnjk 6=xjkg+1) � 12i+1 < "for every n > N . q.e.d (1)Let now (xn)n2! be a Cauhy sequene in X!. Let i 2 ! and �x " > 0 with" < 12i+1 . Then there exists an N 2 ! suh that d(xn; xm) < " for n;m > N .By the hoie of " we have xn(i) = xm(i) for all n;m > N . So in partiularÆ(xn(i); xm(i)) = 0 for n;m > N and therefore (xn)n2! is a Cauhy seqene.This sequene beomes eventually onstant and onverges against this onstantpoint. Sine i was arbitrary, we are done by (1).By Proposition 1.7 the produts (X!)n, n 2 !, and (X!)! are again metriz-able spaes. But the next lemma tells that these are not really new spaes sinethey are all homeomorphi to X!.



Chapter 2. The topology of the Baire spae 19Lemma 2.1.2. (i) For every n 2 ! the produt spae (X!)n is homeomorphito X!.(ii) (X!)! is homeomorphi to X!.Proof. (i) Let n 2 !. Letf : X! �! (X!)nx 7�! (x0; : : : ; nn�1) with xi(j) = x(nj + i) for i < nThis f is learly a bijetion. It is ontinuous, sine for Ns0 � : : : � Nsn�1 abasi open set in (X!)n we have f�1(Ns0 ; : : : � Nsn�1) = SfNs j s(nj + i) =si(j) if j � length(si)g. f is open, sine f(Ns) = SfNs0 � : : : ; Nsn�1 j si(j) =s(nj + i) if de�nedg.(ii) Fix a bijetion h ; i : !2 �! !. Letf : X! �! (X!)!x 7�! (xi)i with xi(j) = x(hi; ji)This is learly a bijetion. Let Qi Ui be a basi open set in (X!)!, sayUi0 = Ns0 ; : : : ; Uim = Nsm�1 and all other Ui = X!. Then f�1(Qi Ui) =SfNs j s(hik; ji) = sik(j) if j � length(sik) and k � m � 1g. Thus f is on-tinuous. On the other hand let s = (s0; : : : ; sm�1) and let ik; jk suh thathik; jki = k for k � m�1. Then f(Ns) =Qi Ui with all Ui = X! exept for Uikwith Uik = SfNsik j sik = sk if de�ned g for k � m� 1. Thus f is open.An example for the importane of the trees in desribing the metrizablespaes of the form X! is the following propositions that in�nite branhes of atree on X are exatly the losed sets.Proposition 2.1.3. A set C � X! is losed i� there is a tree on X suh thatC = [T ℄.Proof. Let C be a losed set in X!. Consider the tree TC = fxjm j x 2C ^m 2 !g. Clearly this is a tree and C � [TC ℄. If y 62 C, there exists an openneighborhood of y not in C. So by Lemma 2.1.1 there exists an m 2 ! suhthat Nyjm \C = ;. Therefore y 62 [TC ℄. Hene C = [TC ℄.Now let T be a tree on X and x 62 [T ℄. Then there exists an m 2 ! suhthat xjm 62 T . Therefore Nxjm \ [T ℄ = ; and X! n [T ℄ is open.There is also a onnetion between \nie" maps between trees on two setsand ontinuous funtions on the produt spaes of these sets.De�nition 2.1.4. Let S be a tree on a set A, T be a tree on a set B. A map' : S �! T is alled monotone if s � t in S implies '(s) � '(t).For suh ' let D(') = fx 2 [S℄ j limn2! length('(xjn)) = 1g. For x 2 D(')let f'(x) = Sn2! '(xjn). ' is alled proper, if D(') = [S℄.Proposition 2.1.5. Let ' : S �! T be a monotone map on trees S; T on setsA;B. The the set D(') is GÆ and f' : D(') �! [T ℄ is ontinuous.



Chapter 2. Polish spaes as surjetive images of N 20Proof. (1) D(') is GÆ:We have x 2 D(') , 8n9m (length('(xjm)) � n). So D(') = Tn2! Unwith Un = fx 2 [S℄ j 9m length('(xjm)) � ng. But these sets are open, sine,if y 2 Un, there is an m 2 ! with length('(yjm)) � n. Therefore Nyjm � Un.(2) f is ontinuous:Let Vt = Nt \ [T ℄ be a set from the basis of the topology of [T ℄. Thenf�1' (Vt) = fx 2 D(') j f'(x) 2 Nt \ [T ℄g= fx 2 D(') j f'(x) � tg= fx 2 D(' j [n2!'(xjn) � tg= fx 2 D(') j 9s 2 S; s � x; '(s) � tg= [fNs \D(') j s 2 S; '(s) � tgDe�nition 2.1.6. Let (X; �) be a topologial spae. A losed set F � X is aretrat of X if there is a ontinuous surjetion f : X �! F suh that f(x) = xfor x 2 F .Proposition 2.1.7. Let A be a ountable set. Let F � H be two losed subsetsof A!. Then F is a retrat of H.Proof. Sine F;H are losed in A! there are trees S; T on A suh that F =[S℄;H = [T ℄. Without loss of generality we an assume that these trees arepruned, that is, every sequene s in eah tree has a proper extension t � s.(Cutting o� all �nite branhes without proper extension in S; T leads to thesame [S℄; [T ℄.) We will de�ne a monotone proper ' : T �! S with '(s) = sfor s 2 S. Then the ontinuous map f' is a witness for F being a retrat ofH. We de�ne '(t) by indution on length(t). Let '(;) = ;. Now let t 2 T and'(t) be given. Let a 2 A suh that t_a 2 T . If t_a 2 S, let '(t_a) = t_a.If t_a 62 S, let '(t_a) be some '(t)_b 2 S, and this exists sine S is pruned.[Under the assumption of the Axiom of Choie this result holds for any set A,not only for ountable ones.℄2.2 Polish spaes as surjetive images of the BairespaeThe Baire spae N plays a speial role in the ategory of Polish spaes, sinefor every Polish spae there exists always a ontinuous surjetion of the Bairespae in the Polish spae. For a proof we �rst de�ne the onept of a Lusinsheme.De�nition 2.2.1. A Lusin sheme on a set X is a family (As)s2!<! of subsetsof X suh that(i) As_i \As_j = ; for s 2 !<!; i 6= j 2 !



Chapter 2. Polish spaes as surjetive images of N 21(ii) As_i � As for s 2 !<!; i 2 !.By (ii) in the de�ntion of a Lusin sheme the subsets As get smaller thanthe length of the sequene gets longer. In appliations of the Lusin sheme weoften onstrut subsets that get arbitrarily small. For this we use the notion ofthe diameter of a subset. In a metri spae (X; d) we de�ne the diameter ofa subset A of X by diam(A) = supfd(x; y) j x; y 2 AgProposition 2.2.2. Let (As)s2!<! be a Lusin sheme on a metri spae (X; d)with limn!! diam(Axjn) = 0 for all x 2 N . Let D = fx 2 N j Tn2! Axjn 6= ;gand de�ne f : D �! X by ff(x)g = Tn2! Axjn. Then f is injetive andontinuous. If (X; d) is omplete and eah As is losed, then D is losed.Proof. Note �rst that f is wellde�ned: Let x 2 D. Sine Tn2! Axjn 6= ;, thereis a z 2 Tn2! Axjn. Let z0 6= z. Sine X is a metri spae, d(z; z0) > 0,say d(z; z0) = ". But limn2! diam(Axjn) = 0, so there is an m 2 ! suh thatz 2 Axjm and diam(Axjm) < ". Therefore z0 62 Axjm � Tn2! Axjn.(1) f is injetive:Let x 6= y 2 D, Then there is an initial segment s (possibly the empty se-quene) of x and y and i 6= j 2 !, suh that s_i � x; s_i * y; s_j � y; s_j *x. Then As_i \As_j = ;, thus Tn2! Axjn \Tn2! Ayjn = ;. So f(x) 6= f(y).(2) f is ontinuous:Let dN be the metri from Lemma 2.1.1. Let x 2 D. We have to show thatfor all " > 0 exists an Æ > 0 suh that dN (x; y) < Æ implies d(f(x); f(y)) < ".Let " > 0 be given. We have to �nd a proper Æ. Sine limn!! diam(Axjn) = 0,there is an N 2 ! suh that diam(Axjm) < " for all m � N . Take nowÆ = 12N+2 . Now let y 2 D suh that dN (x; y) < Æ. Then xjN = yjN . Thereforef(x); f(y) 2 AxjN . Thus d(f(x); f(y)) � diam(AxjN ) < ".(3) Now let d be a ompatible omplete metri on X and let eah As be losed.Let (xn)n2! be a sequene in D with xn ! x. We want to show �rst that(f(xn))n2! is a Cauhy sequene. Let for this " > 0. Then there is a N 2 ! withdiam(AxjN ) < ". Sine xn ! x, there is an M 2 ! suh that xmjN = xjN forall m > M . So f(xm); f(xn) 2 AxjN for n;m > M , hene d(f(xm); f(xn)) < "for n;m > M . So (f(xn))n2! onverges against an z 2 X. We have alreadyseen that the sequene (f(xn))n2! is eventually in every AxjN for N 2 !. Sinethese sets are losed, z 2 AxjN for all N 2 !. Thus z 2 TN2! AxjN , so we havex 2 D. Thus D is losed.Theorem 2.2.3. Let (X;T ) be a Polish spae. Then there is a losed setF � N and a ontinuous bijetion f : F �! X. If X is nonempty, f an beextended to a ontinuous surjetion g : N �! X.Proof. If we have suh an f , the seond assumption follows from Proposition2.1.7.



Chapter 2. Polish spaes as surjetive images of N 22Fix a ompatible omplete metri d � 1 on X. We will onstrut a Lusinsheme (Fs)s2!<! on X suh that(i) F; = X(ii) Fs is an F� set, i.e., a ountable union of losed sets(iii) Fs = Si Fs_i = Si lT (Fs_i(iv) diam(Fs) � 2�length(s).If we have de�ned suh a sheme, onsider the assoiated ontinuous mapf : D �! X as in the above Proposition 2.2.2.(1) f(D) = XProof: Let z 2 X. We use indution to �nd a unique x 2 N suh thatf(x) = z. Sine X is the disjoint union of the F(i)'s, there is exatly one j 2 !with z 2 F(j). Let x(0) = x0 = j.If s = (x0; : : : ; xn�1) is the only sequene of length n suh that z 2 Fs, andFs is the disjoint union of the Fs_i, then there is exatly one k 2 ! suh thatz 2 Fs_k; z 62 Fs_i for i 6= k. Let x(n) = k. This onstrution obviously leadsto an x 2 N suh that f(x) = z. q.e.d. (1)(2) D is losedProof: Let (xn)n2! be a sequene inD, xn ! x. We show that (f(xn))n2! isa Cauhy sequene and thus onverges in X, say limn2! f(xn) = y. To see this,let " > 0. Let N 2 ! suh that diam(FxjN ) < ". Sine xn ! x there is anM 2 !suh that xmjN = xjN for all m > M . Therefore f(xm); f(xn) 2 FxjN form;n > M and d(f(xm); f(xn)) < " for n;m > M . In partiular, the sequene(f(xn))n2! is eventually in FxjN , thus y 2 lT (FxjN ). N was hosen arbitrarily,thus y 2 TN2! lT (FxjN ). But sine FxjN = Si2! FxjN_i = Si lT (FxjN_i) andthere is an j 2 ! suh that xjN +1 = xjN_j, we also have y 2 SN2! FxjN . Sox 2 D and f(x) = y. q.e.d. (2)To onstrut now the Lusin sheme (Fs) it is enough to show that for everyF� set F � X and every " > 0 we an write F = Si2! Fi, where the Fi arepairwise disjoint F� sets of diameter < ", suh that lT (Fi) � F . For notationalsimpliity we denote the omplement of a subset D in X by � D. Note �rst,that if C;D are losed sets, then C nD is F� sineC nD = C\ � D= C\ � \n2!B(D; 1n)= C \ [n2! � B(D; 1n)= [n2!C\ � B(D; 1n)with B(D; 1n) the open balls around D (f. the proof of Proposition 1.13). Nowlet F = Si2! Ci; Ci losed, be an F� set. We an assume that Ci � Ci+1 for



Chapter 2. �-Suslin sets and �-sales 23every i 2 !, sine we an write F = Si2! C�i with C�i = Sin=0Cn the losed sets.Then F an be written as a disjoint union of F� sets, F = Si2! CinCi�1; C�1 =;. Now let fUi j i 2 !g be a basis for the topology of X. It is lear that wean assume that all Ui have diameter < ". Then X = Si2! Ui and also X =Si2! lT (Ui). Let U�0 = lT (U0); U�i+1 = lT (Ui+1)nSij=0 lT (Uj). These are allpairwise disjoint F� sets of diameter< " andSi2! U�i = X. So we an write F asa union of pairwise disjoint F� sets of diameter < ", F = Si;j2!(Ci nCi�1)\U�j ,and lT ((Ci n Ci�1) \ U�j ) � lT (Ci n Ci�1) � Ci � F .2.3 �-Suslin sets and �-salesWe are often interested in trees on produts of two (or more) sets A and B.Let T be a tree on A�B. The elements of [T ℄ are then elements of (A�B)!.But by using the anonial bijetion(A�B)! �! A! �B!((a0; b0); (a1; b1); : : :) 7�! ((a0; a1; : : :); (b0; b1; : : :))we an view elements of [T ℄ as elements of A! � B!. We sometimes alsowrite �nite sequene of T as ((a0; a1; : : : ; an�1); (b0; b1; : : : ; bn�1)) instead of((a0; b0); (a1; b1); : : : ; (an�1; bn�1)). It makes now sense to apply the projetionon A! to the set of the in�nite sequenes. We de�nep[T ℄ = fx 2 A! j 9y 2 B! (x; y) 2 [T ℄gFor example the projetion of a losed set C � N � N , that is given by thein�nite sequenes [T ℄ of a tree T on ! � !, to its �rst omponent is given byprojN [C℄ = fx 2 N j 9y 2 N (x; y) 2 Cg = p[T ℄ = fx 2 N j 9y 2 N (x; y) 2 [T ℄gWe all projetions of losed sets of N �N analyti sets of the Baire spaeand they are exatly the sets that have the form p[T ℄ for some tree T on !�!following Proposition 2.1.3. We will ome bak to the analyti sets in the nextsetion.It will turn out that having sets as a projetion of (the in�nite branhesof) a tree is fundamental for proving our main theorem and also in many otherareas of desriptive set theory. In partiular trees on wellfounded sets will be ofspeial interest. The important de�nition in this ontext is thus the following.De�nition 2.3.1. Let � be an in�nite ordinal. A � N k is alled a �-Suslinset if there is a tree T on !k � � suh that A = p[T ℄.In this notation the analyti sets are exatly the !-Suslin sets. So far theseare the only examples we have for �-Suslin sets. We will show below that allsets that admit �-sales are �-Suslin sets. Before we introdue the sales wewill show that �-Suslin sets are losed under projetions in the following sense.



Chapter 2. �-Suslin sets and �-sales 24Proposition 2.3.2. Let A � N k+1 for k � 1 be a �-Suslin set. Then p[A℄ =f(x1; : : : ; xk) j 9xk+1 (x1; : : : ; xk) 2 Ag is also �-Suslin.Proof. Let A � N k+1 be �-Suslin witnessed by a tree T on !k+1 � �, i.e.,A = p[T ℄. Fix a bijetion f : ! � � �! �This leads to a bijetion f� : (! � �)<! �! �<!We de�ne a tree T 0 on !k � � by(s1; : : : ; sk; �) 2 T 0 :, (s1; : : : ; sk; f��1(�)) 2 TClaim p[T 0℄ = p[A℄Proof:(x1; : : : ; xk) 2 p[T 0℄ , 9u 2 �! (x1; : : : ; xk; u) 2 [T 0℄, 9u 2 �! 8n(x1jn; ; : : : ; xkjn; ujn) 2 T 0, 9u 2 �! 8n(x1jn; : : : ; xyjn; f��1(ujn)) 2 T, 9u 2 �!9xk+1 2 N 8n(x1jn; : : : ; xk+1jn; ujn) 2 T, 9u 2 �!9xk+1 2 N (x1; : : : ; xk+1; u) 2 T, 9xk+1 2 N (x1; : : : ; xk+1) 2 p[T ℄ = A, (x1; : : : ; xk) 2 p[A℄Proposition 2.3.2 will be important later.Given a �-Suslin set A � N k note that using a bijetion between the ordinal� and its ardinality � = � we get a tree T 0 on !k � � suh that A = p[T 0℄and thus A is �-Suslin. So, often one onsiders just �-Suslin sets where � is aardinal. It seems more natural for the upoming de�nition to introdue herethe more general notion.Before we start de�ning �-sales and prove that there is a lose relation be-tween sets that admit �-sales and sets that are �-Suslin we have to introduethe notion of norms and prewellorderings.We �rst reall the onept of wellfounded relations. Let � be a binaryrelation on a set X. The strit part � of the relation � is de�ned byx � y , x � y ^ : (y � x):We all the relation � a wellfounded relation if eah nonempty subset A ofX has a �-minimal element, that is, there exists an element x 2 A suh that:y � x for all other y 2 A. Under DC this is equivalent to the fat that noin�nite desending hain with respet to � exists, i.e., there exists no in�nitesequene x0 � x1 � x2 : : :



Chapter 2. �-Suslin sets and �-sales 25One an apply the onepts of indution and reursion to wellfounded relations(see for example [BuKo96, Ch.5.5℄). In partiular one an de�ne the length ofa wellfounded relation by de�ning a anonial rank funtion on X. A rankfuntion on X with respet to the wellfounded relation � is a funtion � :X �! Ord suh that if x � y for x; y 2 X then f(x) < f(y). A anonialrank funtion �� for X with respet to a wellfounded relation � is de�ned byreursion in the following way:�� : X �! Ordx 7�! supf�(y) + 1 j y � xgOne an prove that suh a anonial rank funtion exists (see for example[Jeh97, Part I, Ch.2, Theorem 5℄). The range of this anonial rank funtion�� is an ordinal and this ordinal is alled the length of the wellfoundedrelation � and is denoted by j�j.A prewellordering is now just a wellfounded relation with additional prop-erties. The onept of a norm is losely related to prewellorderings, sine it willbe pretty obvious how to get a prewellordering out of a norm.De�nition 2.3.3. Let X be a set. A norm on X is a map ' : X �! Ord.A norm is alled regular if '[X℄ is an ordinal, that is, ' maps X onto someordinal �.A prewellordering on a set X is a wellfounded relation � on X whih isreexive, transitive and onneted, whih means for every x; y 2 X we havex � y or y � x.It is very easy to see that for eah norm ' on a set X the relation �' de�nedby x �' y , '(x) � '(y)is a prewellordering. Conversely, one an de�ne the anonial rank funtionon eah prewellordering and gets a norm. So the onepts of a norm and of aprewellordering oinide. The following proposition states this fat.Proposition 2.3.4. Let X be a set. If ' : X �! Ord is a norm, then �'de�ned by x �' y :, '(x) � '(y) is a prewellordering on X. If � is aprewellordering of X, then there exists a unique regular norm ' on X with�=�'.Proof. If ' is a norm onX one proves easily that the relation�' is a prewellorder-ing on X.If a prewellordering � of X is given one de�nes by reursion on the well-founded relation � the anonial rank funtion � by �(x) = sup(f��(y)+1 j y �xg. The rank funtion is a surjetion on some ordinal and it is easy to see thatwe get bak our prewellordering � as ��. So it remains to show that this norm� is unique. Assume there is a distint surjetion � from X onto some ordinalsuh that �=�� . Let x be minimal with respet to � suh that �(x) 6= �(x)and without loss of generality let � = �(x) < �(x). Sine � is surjetive there



Chapter 2. �-Suslin sets and �-sales 26exists an y 2 X suh that �(y) = � < �(x). Therefore we have y � x. Butthen we have �(y) = �(y) = � and thus x �� y, so x � y. This ontraditsy � x.We all two norms '; on a set X equivalent if �'=� . Clearly everynorm is equivalent to a unique regular norm (onsider the assoiated prewellorder-ing and the anonial rank funtion of this prewellordering). The length of aprewellordering � is the range of the assoiated regular norm, denoted byj�j.Of ourse there exist a lot of trivial norms for a set. The onept beomesinteresting if we put de�nability onditions on a norm. We will ome bak tothis in Chapter 5.A (semi-)sale is now a sequene of norms in the following in sense:De�nition 2.3.5. (a) A semi-sale on a subset A of a Polish spae X is asequene of norms ('n)n2! on A, suh that for every sequene (xi)i2! in A forwhih the following holds1. limi!! xi = x2. for all n there is a �n 2 Ord suh that 'n(xi) = �n for all i large enoughwe have x 2 A.It is a sale if in addition 'n(x) � �n for all n.(b) A (semi-)sale ('n)n2! is a �-(semi-)sale if for all n 2 ! the length of 'nis less or equal �.Similar to the norms the onept of sales beomes more interesting thenwe put de�nablity onditions on it. This will play a ruial role in proving ourmain theorem and we will also ome bak to it in Chapter 5. But subsets ofthe Baire spae that admit �-semi-sales are of interest in there own sense sinethey are �-Suslin sets. The next theorem assures that the onverse is also true,i.e., �-Suslin sets admit �-semi-sales. We introdue one more notion for theproof of it.De�nition 2.3.6. Let T be a tree on a set A. For a �nite sequene s 2 A<!we de�neTs = ft 2 T j t is ompatible with sg = ft 2 T j t � s _ s � tgTheorem 2.3.7. A subset A of the Baire spae N is �-Suslin i� A admits a�-semi-sale.Proof. Let �rst A � N be �-Suslin. Fix a tree T on !� � suh that A = p[T ℄.For x 2 A we want to pik now one branh (x; f) 2 T without using anyhoie. For this we need the notion of a leftmost branh of a tree. We de�nethe leftmost branh (x; fx) of [T ℄ by reursion as follows:First let � be a wellordering on ! � � de�ned by(k; �) � (`; �), � < � _ (� = � ^ k < `)



Chapter 2. Wellfounded trees 27If ((x(0); : : : ; x(n�1)); (fx(0); : : : ; fx(n�1)) is already de�ned (possibly theempty sequene), let (x(n); fx(n)) be the �-least element (k; �) of ! � � suhthat [Txjn_k;fxjn_�℄ 6= ;.Now let for x 2 A the leftmost branh of T be given by (x; fx). Let 'n(x) =fx(n) for n 2 !. So 'n is a �-norm on A. To prove it is a semi-sale let (xi)i2!be a sequene in A suh that xi ! x and 'n(xi) = �n for i large enough andfor all n. We have therefore(xi; fxi) = (xi; ('n(xi))n2!) 2 [T ℄and (xi; ('n(xi))n2!)! (x; (�n)n2!)Sine [T ℄ is losed (x; (�n)n2!) 2 [T ℄, thus x 2 p[T ℄ = A. This proves that thenorms 'n form indeed a semi-sale.Let now onversely ('n)n2! be a �-semi-sale on A � N . The tree T on! � � assoiated to this semi-sale is given by:((k0; : : : ; kn); (�0; : : : ; �n)) 2 T :,9x 2 A suh that x(i) = ki and 'i(x) = �i for all i � n(1) A = p[T ℄Proof: \�" Let x be in A. Then obviously (x; ('i(x))i) 2 [T ℄.\�" Let x 2 p[T ℄. Thenx 2 p[T ℄ , 9u 2 �! (x; u) 2 [T ℄, 9u 2 �! 8i 2 ! (xji; uji) 2 T, 9u 2 �! 8i 2 ! 9yi 2 A suh that for all n � iyi(n) = x(n) ^ 'n(yi) = u(n)So (xji; uji) = (yiji; ('0(yi); : : : ; 'i�1(yi)) for all i < !. Thus the sequene ofthe yi onverges against x and 'n(yi) = u(n) for all i > n. Sine ('n) is a�-semi-sale we have x 2 A.2.4 Wellfounded treesWe all a tree T on some set X wellfounded if [T ℄ = ;. This omes from thefat that for suh a tree the relation � of proper extension of �nite sequenesis wellfounded. A rank funtion for a tree T on X is any mapping� : X<! �! Ordsuh that � is�-< orderpreserving, i.e., if s; t are in T and t � s then �(t) < �(s).So if we have a wellfounded tree T we an thus de�ne a anonial rankfuntion as on any wellfounded relation by:�T : X<! �! Ords 7�! supf�(s_x) + 1 j s_x 2 Tg



Chapter 2. �-Borel sets 28there we adopt the usefull onvention that sup(;) = 0. If X is of ardinality �one an show that �T (s) < �+ for all s 2 X<!.On the other hand it is lear that if we have some rank funtion � on T ,the tree is wellfounded. This is beause sine under DC being wellfounded isequivalent to the nonexistene of in�nite desending hains. So if an in�nitebranh f = (x0; x1; x2; : : :) would exist in T we would get an in�nite desendinghain of ordinals �(x0) > �(x0; x1) > �(x0; x1; x2) : : :Sine these results are so very helpful in its appliation we put them down as atheorem. See [Mos80, 2D.1℄.Theorem 2.4.1. A tree T on a set X is wellfounded if and only if it admits arank funtion. If ard(X) = � and T is wellfounded then �T is a rank funtionwith range in �+.We introdue one more notation. For a tree T on ! � � and x 2 !! de�ne:T (x) = f(�0; �1; : : : ; �n�1) j (xjn; (�0; �1; : : : ; �n�1)) 2 TgWith this the following lemma is trivial:Lemma 2.4.2. Let A � N be �-Suslin as witnessed by a tree T . Then x 2 Ai� T (x) is not wellfounded.2.5 �-Borel setsIn the next hapter we will introdue the Borel hierarhy. But we de�ne theBorel sets and in generalization the �-Borel sets here sine we will see that�-Suslin sets, where � is a ardinal, are �++-Borel sets of the Baire spae.De�nition 2.5.1. Let (X;T ) be a topologial spae. A subsets A of X isalled a Borel set if A is an element of the smallest lass of subsets of X whihontains all open sets and is losed under omplements and ountable unions.We denote the lass of Borel sets of X by B(X;T ) or just B(X) if it is learwhih topology of the spae we onsider.A subset A of X is alled a �-Borel set if A is an element of the smallest lassof subsets of X whih ontain all open sets and is losed under omplements and(wellordered) unions of length less than �. We denote the lass of the �-Borelsets of X by B�(X).Remark 2.5.2. With the above notion the Borel sets of a topologial spaeX are exatly the !1-Borel sets of X. Obviously the open, losed, GÆ and F�subsets of X are Borel sets.Before we prove the result about the �-Suslin sets we state a generalizationof the famous Lusin Separation Theorem. In modern literature the LusinSeparation Theorem is stated in the following form:



Chapter 2. �-Borel sets 29Theorem 2.5.3. Let (X;T ) be a Polish spae and A;A0 be two disjoint analytisets. Then there exists a Borel set B that separates A from A0, i.e., A � B andA0 \B = ;.A proof an for example be found in [Keh95, Theorem 14.7℄. We have seenin the disussion of De�nition 2.3.1 that the analyti sets of the Baire spae areexatly the !-Suslin sets and Borel sets are by de�nition !1-Borel sets. So wean read the Lusin Separation Theorem for the Baire spae as follows:Two disjoint !-Suslin sets an be separated by an !1-Borel set.We state now a generalization of this. A proof by ontradition as well as aonstrutive one for this Strong Separation Theorem an be found in [Mos80,2.E.1℄.Theorem 2.5.4. Let � be an in�nite ardinal. Let A;B � N be �-Suslin andA\B = ;. Then there exists a �+-Borel set C whih separates A from B, i.e.,A � C and B \C = ;.The following orollary is now trivial.Corollary 2.5.5. If A � N and N n A are �-Suslin, then A 2 B�+(N ).Proof. Sine A is the only set that separates A from N n A we are done withthe above Theorem 2.5.4In general this result is not true if just the subset A is �-Suslin but not itsomplement. But we an then prove that A is �++-Borel.Theorem 2.5.6. If A � N is �-Suslin, then A 2 B�++(N ).Proof. Let T be a tree on !�� suh that A = p[T ℄. For eah � < �+ and eahs 2 �<! de�ne now A�s = fx 2 !! j �T (x)(s) � �gWe prove by indution over � that eah of these sets are �+-Borel.� = 0 : A0s = T�<�fx j (xjn+ 1; s^�) 62 Tg = T�<�S(xjn+1;s^�)62T Nxjn+1if s is of length n. Then A0s is the intersetion of less than �+ many �nite unionsof open sets, therefore �+-Borel.Proof: x 2 A0s , �T (x)(s) = 0, 8� < � s^� 62 T (x), 8� < � (xjn+ 1; s^�) 62 T� > 0 : A�s = T�<�S�<�A�s^�Proof: x 2 A�s , supf�T (x)(s) + 1 j s^� 2 T (x)g � �, 8� < �9� < � [s^� 2 T (x) ( �T (x)(s^�) � �℄, 8� < �9� < � [�T (x)(s^�) � �℄, 8� < �9� < � (x 2 A�s^�), x 2 \�<�[�<�A�s^�



Chapter 2. �-Borel sets 30Claim: N n A = S�<�+ A�;Proof: x 62 A , T (x) is wellfounded, �T (x)(;) is de�ned, �T (x)(;) < �+, 9� < �+�T (x) � �, 9� < �+x 2 A�;, x 2 [�<�+A�;So A is as a omplement of an �++-Borel set in B�++We an strengthen the statement from the above Theorem if � is a ardinalof o�nality greater than !. First we repeat the notion of o�nality and notionsrelated to it.De�nition 2.5.7. Let � be a limit ordinal. A subset S � � is unbounded oro�nal in � if for every � < � exists an � 2 S suh that � < �. We de�ne theo�nality of � by f(�) = minfS j S is o�nal in �gA funtion f : � �! � for � � � is alled a o�nal funtion if the set f [�℄ iso�nal in �.A ardinal � is regular if f(�) = �.Theorem 2.5.8. If A � N is �-Suslin with � a ardinal of o�nality greater!, then A 2 B�+.Proof. Let T be a tree on ! � � suh that A = p[T ℄. For � < � and x 2 N letT �(x) = fs 2 T (x) j 8� 2 s � < �g(1) T (x) is not wellfounded , 9� < � (T �(x) is not wellfounded)Proof: \)" Sine T (x) is not wellfounded there exists f 2 �! suh that for alln 2 ! f jn 2 T (x). Assume now that for all � < � the tree T �(x) is wellfounded.In partiullar for all � < � the in�nite branh f is not in [T �(x)℄. That meansthat for all � < � there exists n < ! suh that f(n) � �. But then f [!℄ is ao�nal set of length ! in � and that ontradits the assumption f(�) > !.\ (" If there is a f 2 [T �(x)℄ then f 2 [T (x)℄ q.e.d. (1)Now let for � < � A� = p[T �℄. Sine � < � we know that all A� are ��-Suslin with �� < �. Therefore ��++ � �+ and from Theorem 2.5.6 we get thatA� 2 B��++ � B�+ .By the above we havex 2 A, T (x) not wellfounded, 9� < � (T �(x) not wellfounded)and therefore A = S�<�A� 2 B�+ .



Chapter 3The Borel and the projetivehierarhyIn this hapter we will reall very briey some of the basi de�nitions andproperties of the Borel and the projetive hierarhy together with its e�etiveanalogs. Proofs and more details an be found in an introtuary book onderiptive set theory, for example in [Mos80℄ or [Keh95℄.3.1 The Borel and the projetive hierarhyWe will �rst introdue the notions of pointlasses.De�nition 3.1.1. We all � a pointlass if � is a olletion of subsets ofPolish spaes. A pointset is then just a set of this lass. For a pointset A of apointlass � we write A 2 � or say A is a � set. If X is a Polish spae and � apointlass we denote by �(X) the pointsets of � whih are subsets of X.The dual pointlass �� for a pointlass � is de�ned by �� = fA j X n A 2�(X) for some Polish spae Xg.For eah pointlass � the ambiguous part of � is the lass � = � \ ��.We denote for example the lass of Borel sets in Polish spaes (as introduedit in 2.5.1) by B and this stands for the lassB = fA j A � X for some Polish spae X and A is a Borel set in Xg:For some Polish spae X the set B(X) onsists of the Borel sets of X (forexample B(N ) is the olletion of all Borel sets of the Baire spae N ). So thepointlass B is the union of all B(X) for X a Polish spae. We ould de�nepointlasses for other ategories too, for example for the ategory of metrizablespaes, but we are here just interested in Polish spaes.We de�ne now the pointlasses of the Borel hierarhy by reursion on theordinals.
31



Chapter 3. The Borel and the projetive hierarhy 32De�nition 3.1.2. Let A be a subset of some Polish spae X. The Borelhierarhy of X is de�ned as follows.A 2 �01(X) , A is open in XA 2 �01(X) , A is losed in XA 2 �0�(X) , A = [n2!An where An 2�0�n(X) for some �n < �A 2 �0�(X) , A is the omplement of an �0�(X) set in XA 2�0�(X) , A 2 �0�(X) \�0�(X)For a Polish spae X this forms indeed a hierarhy, that means, �0�(X) ��0�+1(X) and similar for �0�(X) for � 2 On. We state this and other mainproperties in the next theorem. For proofs see for example [Keh95, II.11.B℄ or[Mos80, 1.B; 1.F℄.Theorem 3.1.3. Let X be a Polish spae. Then we have we following pitureof inlusions:�01(X) �02(X)� � � � ��01(X) �02(X) �03(X) : : :� � � � ��01(X) �02(X)The union of all �0�(X) is the olletion of all Borel sets of X, so B(X) =S�2Ord�0�(X). If X is an unountable Polish spae �0�(X) 6� �0�(X) for all� < !1, so we have proper inlusions in the above piture.Furthermore, using AC implies �0!1(X) = S�<!1 �0�(X) and for � > !1we have �0�(X) = �0!1(X). From this it follows immediately that under ACwe get B(X) = �0!1(X).This last theorem thus justi�es the name Borel hierarhy. We write boldfaeletters for this pointlasses to distinguish them from the arithmetial hierarhywe de�ne in the next setion. Sometimes, pointlasses losed under ontinouspreimages are alled boldfae pointlasses (f. for example [Andr??℄). Thejust de�ned �0� pointlasses are indeed losed under ontinuous preimages. Thefollowing theorem states the most interesting losure properties, see [Mos80,1C.2℄.Theorem 3.1.4. For a Polish spae X the lass �0�(X) is losed under ount-able unions and �nite intersetions for all �. The pointlass �0� is losed underontinuous preimages for all �, i.e., the ontinuous preimage of an �0� set isagain an �0� set.The lass �0�(X) is losed under �nite intersetions and ountable unions forall �. The pointlass �0� is losed under ontinuous preimages.The ambiguous pointlass �0� is losed under �nite unions and intersetions,under ontinuous preimages and under omplements.Before we de�ne now the projetive hierarhy we will take a loser look atthe analyti sets sine they form the �rst level of the projetive hierarhy. We



Chapter 3. The Borel and the projetive hierarhy 33introdued analyti sets of the Baire spae as projetions of losed sets of N�Nand were able to haraterize them as the !-Suslin sets in the last setion.Historially these sets were disovered by Suslin who found a mistake in apaper of Lebesgue [Lebe05℄. Lebesgue laimed that a projetion of a Boreelset is again a Borel set. Suslin found out that the lass of projetions of Borelsets is stritly larger than the lass of Borel sets. The following theorem givesa haraterization of the analyti sets.Proposition 3.1.5. Let (X;T ) be a Polish spae, A � X. Then the followingare equivalent:(1) A is the ontinuous image of a funtion f : N �! X.(2) A = projX [C℄ where C � X �N ; C losed.(3) A = projX [B℄ where B � X � Y is a Borel set, Y is a Polish spae.(4) A is the ontinuous image of a Borel set of a Polish spae .Proof. (1) ) (2): Let A = f [N ℄ where f : N �! X is ontinuous. Thengraph(f) := f(f(x); x) j x 2 Ng is losed in X �N and A = projX [graph(f)℄.(2) ) (3): trivial.(3) ) (4): projX is a ontinuous mapping.(4) ) (1): see 6.1.6.We postpone the last part of the proof until we have the haraterization ofBorel sets by a �ner topology sine we an then prove the missing part of thistheorem very easily. Finally we write down the de�nition of the analyti setsin Polish spaes.De�nition 3.1.6. A set A in a Polish spae X is alled an analyti set if Ais the projetion of a Borel set in a Polish spae X � Y , where Y is a Polishspae.We already mentioned that the analyti subsets of the Baire spae are ex-atly the !-Suslin sets. This follows immediately from the above Proposition3.1.5 and Proposition 2.1.3. Sine this is so important we put this down as atheorem.Theorem 3.1.7. A subset A of the Baire spae N is analyti i� A is !-Suslin.Following Suslin, the analyti sets form a larger lass of sets then the Borelsets. We will give a proof later (see 3.1.11 and 3.1.14). From the above har-aterization one an easily prove that the projetion of an analyti set is againan analyti set. But if we take the dual lass of the lass of the analyti setsand apply projetion we get a larger lass than the lass of the analyti sets.Iterating this proess we get the projetive hierarhy.



Chapter 3. The Borel and the projetive hierarhy 34De�nition 3.1.8. Let A be a subset of some Polish spae X. We de�ne theprojetive hierarhy of X by reursion on !:A 2 �10(X) , A 2 �01(X)A 2 �10(X) , A 2�01(X)A 2 �1n+1(X) , A = projX [B℄ where B 2 �1n(X �N )A 2 �1n+1(X) , X nA 2 �1n+1(X)A 2�1n(X) , A 2 �1n(X) \�1n(X)We all a subset P of some Polish spae a projetive set if P 2 �1n for somen 2 !.So with this notation the analyti sets are the �11 sets. In analogy to theTheorems 3.1.3 and 3.1.4 we state now theorems about the hierarhy that formthe projetive sets and the main losure properties of the projetive sets.Theorem 3.1.9. Let X be a Polish spae. Then the following piture of inlu-sions hold: �11(X) �12(X)� � � � ��11(X) �12(X) �13(X) : : :� � � � ��11(X) �12(X)Note that we de�ned the projetive sets just for integers and that by de�ni-tion the union of all�1n sets is alled the lass of projetive sets. For unountablePolish spaes we have as with the sets of the Borel hierarhy proper inlusionsin the above piture. To prove this, one uses the onept of universal sets. Weome bak to this after we state the losure properties.Theorem 3.1.10. For all n 2 ! the lass �1n is losed under ountable inter-setions and unions, under ontinuous preimages and ontinuous images. Thelass �1n is losed under ountable unions and intersetions and under ontinu-ous preimages. The lass�1n is losed under ountable unions and intersetions,under ontinuous preimages and under omplents.It remains now to prove that for unountable Polish spaes we have indeed aproper hierarhy and that the lass of analyti sets is really larger than the lassof Borel sets. For the latter we �rst prove that for a Polish spae X we haveB(X) =�11(X). We are done if we show afterwards that �1n(X) 6� �1n(X) forn 2 ! if X is unountable. Beause then we have in partiular that �11(X) isa proper extension of �11(X) = B(X). And we also proved the fat about theproper hierarhy with this.Theorem 3.1.11. Let X be a Polish spae. Then B(X) =�11(X).Proof. Let �rst A � X be a Borel set. Taking the identity mapping between Xwe ould see A as the ontinuous image of a Borel set. Therefore A 2 �11(X).Sine Borel sets are losed under omplements X n A is also a Borel set andtherefore also in �11(X). This implies A 2�11(X) and therefore A 2�11(X).



Chapter 3. The e�etive hierarhies 35For the onverse we use again the Lusin Separation Theorem 2.5.3. Let Abe in �11(X). Then both A and its omplement X nA are analyti sets. So byTheorem 2.5.3 A and X nA are separated by a Borel set and the only possibleset that an separate A and X nA is the set A. Therefore A is a Borel set.We now introdue the notion of universal sets to prove that the projetivehierarhy for unountable Polish spaes is proper.De�nition 3.1.12. Let � be a pointlass of Polish spaes and let X be a Polishspae. For Y another Polish spae we all U � Y �X a Y -universal set for�(X) if� U 2 �(Y �X)� fUy j y 2 Y g = �(X), where Uy = fx j (y; x) 2 UgUniversal sets exist for the lasses of the projetive hierarhy and also forthe lasses of the Borel hierarhy. For a proof see [Mos80, 1D.2, 1E.3℄. Westate the result here only for the projetive lasses.Theorem 3.1.13. For every Polish spae X and every unountable Polish spaeY exists an Y -universal set for �1n(X) and similar for �1n(X) for all n 2 !.With this theorem it is now easy to prove that the projetive hierarhy isa proper hierarhy. The same proof applies for the lasses �0� of the Borelhierarhy for � < !1.Proposition 3.1.14. Let X be an unountable Polish spae. Then �1n(X) 6=�1n(X) for all n 2 !. In partiular this implies that �1n(X) � �1n(X) for alln 2 !.Proof. Assume towards a ontradition that �1n(X) = �1n(X). Let U be anX-universal set for �1n(X). Therefore U 2 �1n(X �X). The funtionf : X �! X �Xx 7�! (x; x)is obviously ontinuous. Sine the lass�1n is losed under ontinuous preimagesthe set fx j (x; x) 2 Ug = f�1[U ℄is in �1n(X). By our assumption this set is also in �1n(X). So its omplementfx j (x; x) 62 Ug is in �1n(X). But sine U is an X-universal set there exists anxo 2 X suh that fx j (x; x) 62 Ug = fx j (x; x0) 2 UgConsidering x = x0 leads now to a ontradition.



Chapter 3. The e�etive hierarhies 363.2 The e�etive hierarhiesConsidering the Borel and the projetive hierarhy it seems reasonable thatif we ompare two levels of a hierarhy we say that the sets from the higherlevel of the hierarhy have greater omplexity than the sets of the lower levelsine we had to apply operations like taking unions or intersetions or evenprojetions. In the language of set theory taking intersetions is nothing elsethan applying the 8-quanti�er. So a natural way for a di�erent approah todeide the omplexity of a subset (for example of the Baire spae or also fromthe disrete topologial spae !) is to onsider the omplexity of the formulain the language of set theory that de�nes the set (and we want to deide theomplexity of a formula by the number of quanti�ers). We do this now byde�ning the arithmetial and analytial hierarhy. The study of the lassesfrom these hierarhies is alled the e�etive desriptive set theory. Classiallythis e�etive theory has its origins in reursion theory. We do not want to goin this area here, see for example [Mos80, Ch 3℄ or [MaKe80, Ch 6℄.It is not obvious that these new to de�ne hierarhies have something todo with the Borel or the projetive hierarhy but there is indeed a very loserelation. So an the lasses of the analytial hierarhy together with its rela-tivized versions (we will introdue this in the upoming setion) be seen as arami�ation of the orresponding lasses of the projetive hierarhy. A similarresult applies for the arithmetial hierarhy and the pointlasses from the Borelhierarhy of �nite order.For the e�etive theory we restrit ourselves to produt spaes of the form!r�(!!)k and follow here the outline in [Kana97, se. 12℄. A di�erent approah(by reursion theory) and in a more general ontext an be found in [Mos80,Ch3℄.Let A = (!; !!; ap;+; �; exp; <; 0; 1) be the struture with two domains !and !!. ap is the funtionap : !! � ! �! !(x;m) 7�! x(m)+; � are the usual arithmeti operations on !, exp stands for the exponentationon !. To distinguish the variables for the two domains our language ontainsvariables v00 ; v01 ; v02 ; : : : whih stand for elements of ! and variables v10 ; v11 ; v12 ; : : :whih stand for elements of !!. In addition we have the number quanti�ers90;80 for the v0i and the funtion quanti�ers 91;81 for the variables v1i . Termsand formulas of our language are de�ned in the obvious way. By terms for num-bers we understand the smallest lass of words whih ontains 0; 1; v00 ; v01 ; v02 ; : : :and is losed under +; �; exp and ap. For any suh term � and any formula ' wewrite (90v0i < �)' for 90v0i (v0i < � ^') and (80v0i < �)' for 80v0i (v0i < � ! ').These are the bounded quanti�ers.We onsider now subsets A of !r � (!!)k and will also see this A as arelation, that means we write interhangebly (m0; : : : ;mr�1; x0; : : : ; xk�1) 2 Aor A(m0; : : : ;mr�1; x0; : : : ; xk�1).



Chapter 3. The e�etive hierarhies 37A set A � !r � (!!)k is de�nable in A by a formula ' i�(m0; : : : ;mr�1; x0; : : : ; xk�1) 2 A, A j= '[m0; : : : ;mr�1; x0; : : : ; xk�1℄.A is �00 in A i� A is de�nable by a formula whose only quanti�ers are bounded.We an now de�ne the arithmetial hierarhy.De�nition 3.2.1. Let A be a subset from some !r � (!!)k. For n 2 ! setA 2 �0n , 8w(w 2 A$ 90m180m2 : : : QmnR(m1; : : : ;mn;w))A 2 �0n , 8w(w 2 A$ 80m190m2 : : : QmnR(m1; : : : ;mn;w))where R � !r+n� (!!)k is �00 and Q is 90 if n is odd and 80 if n is even for the�0n ase and vie versa for the �0n ase. A is alled arithmetial if A 2 Sn�0n.The ambiguous pointlasses are de�ned as before by �0n = �0n \ �0n. A set Ain �01 is alled reursive.It an be shown that A is arithmetial i� A is de�nable by a formula withoutfuntion quanti�ers. A proof for this and proofs for the following are arriedout in full detail in [Stei98℄.Proposition 3.2.2. (a)For all n 2 ! the following holds:The omplement of a �0n set is a �0n set. The lasses �0n and �0n are losedunder �nite unions and intersetions. For a set of the form !r � (!!)k thereexist only ountable many subsets in �0n and only ountable many in �0n.(b) The �1n and �1n sets form a hierarhy, we get the following piture of inlu-sions: �01 �02� � � � ��01 �02 �03 : : :� � � � ��01 �02Example 3.2.3. The basi sets of the Baire spae are �01 sets sine for a �nitesequene s = (s0; s1; : : : ; sn�1) of integers the set Ns is de�ned by the followingformula:x 2 Ns , ap(x; 0) = s0 ^ ap(x; 1) = s1 ^ : : : ap(x; n� 1) = sn�1We all the olletion of all the sets de�nable in A the lass of analytialsets. By shifting quanti�ers and using various oding maps we an lassify theanalytial sets in the analytial hierarhy:De�nition 3.2.4. Let �10 = �01 and �10 = �01. For n > 0 de�neA 2 �1n , 8w(w 2 A$ 91x181x2 : : : QxnR(w; x1; : : : ; xn))A 2 �1n , 8w(w 2 A$ 81x191x2 : : : QxnR(w; x1; : : : ; xn))for some arithmetial R � !r � (!!)k+n and Q is 91 if n is odd and 81 if n iseven in the �1n ase and vie versa in the �1n ase.De�ne also �1n = �1n \�1n.



Chapter 3. The e�etive hierarhies 38We ollet some main properties in the next proposition.Proposition 3.2.5. (a)For all n 2 ! the following holds:The omplement of a �1n set is a �1n set. The lasses �1n and �1n are losedunder �nite unions and intersetions. For a set of the form !r � (!!)k thereexist only ountable many subsets in �1n and only ountable many in �1n.(b) The �1n and �1n sets form a hierarhy, we get the following piture of inlu-sions: �11 �12� � � � ��11 �12 �13 : : :� � � � ��11 �12() A set A is analytial i� A is in some �1n.We already mentioned that there is a deep onnetion between the justde�ned \lightfae" hierarhies and the \boldfae" hierarhies before. For thiswe have to onsider the lightfae lasses relativized to some parameter a of !!.For a 2 !! onsider the strutureA(a) = (!; !!; ap;+; �; exp; <; 0; 1; a)A set A � !r � (!!)k is �00(a) if it an be de�ned by a formula in A(a).Starting with this de�nition we an obtain in the same way as before the lasses�0n(a);�0n(a);�0n(a);�1n(a);�1n(a);�1n(a). For A 2 �01(a) \ �01(a) we say A isreursive in a and so on. Most results, as for example the above fats aboutthe hierarhies hold for the relativized version by relativizing everything to itsparameter.It is lear that �0n � �0n(a);�0n � �0n(a);�1n � �1n(a) and �1n � �1n(a) for alla 2 !! and all n 2 ! sine a set de�nable in the struture A by a formula ' isalso de�nable in the struture A(a) by the same formula ' where the parametera just does not our. Furthermore it is lear that for a set !r � (!!)k onlyountable many subsets are in �1n(a) sine our language for the struture A(a)is �nite, thus there are only ountable many formulas. Analogous results holdfor the lasses �0n(a);�0n(a) and �1n(a).We have seen that the boldfae hierarhies were proper hierarhies. This isalso true for the lightfae hierarhies de�ned here and the relativized versionsof it. Proofs an be obtained easily if we have the existene of universal sets.It is quite similar to the proof of Proposition 3.1.14 but note that the lightfaelasses are not losed under ontinuous preimages. But they are still losedunder preimages of reursive funtions and this is enough to �nish the proofas before. For the notion of reursive funtions and the proof of the followingproposition see [Mos80, 3.F℄.Proposition 3.2.6. For eah set X of the form !r� (!!)k and for eah n 2 !exists a Y universal set for �1n(X) with Y a produt of multiples of ! and !!.The same holds for �0n;�0n and �1n and the relativized lasses.This implies that the arithmetial and analytial hierarhies (and its rela-tivized versions) are hierarhies of proper inlusions.



Chapter 3. The e�etive hierarhies 39The onnetion between the arithmetial hierarhy and the Borel hierarhyof �nite order as well as between the projetive hierarhy and the analytialhierqarhy is now the following:Proposition 3.2.7. Let A � (!!)k and 0 < n 2 !. Then(a) A 2 �0n i� A 2 �0n(a) for some a 2 !!(b) A 2 �1n i� A 2 �1n(a) for some a 2 !!Analogous results for �0n and �1n.By this Proposition 3.2.7 the analyti sets are the union of the lasses �11(a).The analyti sets of the Baire spae were exatly the !-Suslin sets. One ouldask if we an distinguish whih trees lead to a representation of an �11(a) set,a 2 !!, of the Baire spae. The answer is yes but for this we an not avoidto introdue some of the oding funtions neessary for a \normal form" of the�1n sets. To ode �nite sequenes of natural numbers onsider the followingfuntion h i : !<! �! !s = (s(0); : : : ; s(n� 1)) 7�! hsi = ps(0)+10 : : : ps(n�1)+1n�1where pi is the ith prime number.If we are interested in just an initial segment of an x 2 !! this an also beoded by a natural number using the above funtion:�: !! � ! �! !(x;m) 7�! x(m) = hxjmi = hx(0); : : : ; x(m� 1)iThis funtion is �00. For w = (m0; : : : ;mr�1; x0; : : : ; xk�1) 2 !r � (!!)k andn 2 ! set w(n) = (m0 : : : ;mr�1; x0(n); : : : ; xk�1(n)).Proposition 3.2.8. Let A � !r � (!!)k be a �1n(a) set for a 2 !!. Let0 < n 2 !.For n even there exists an �00(a) set R � !r+k+n+1, suh thatw 2 A, 91x1 : : : 81xn90mR(m;w(m); x1(m); : : : ; xn(m)):For n odd there exists an �00(a) set R � !r+k+n+1 suh thatw 2 A, 91x1 : : : 91xn80mR(m;w(m); x1(m); : : : ; xn(m)):Similar results an be obtained for �1n(a) sets by negation.It turns out that A � !! is a �1n(a) set for a 2 !! if an only if A is !-Suslinwith trees T reursive in a. By this we understand that the set of the odes ofthe sequenes of T is reursive in a. To be exat we de�ne:De�nition 3.2.9. A tree T on ! � ! is alled reursive in a if the sethT i = f(hsi; hti) j (s; t) 2 Tg is reursive in a.



Chapter 3. The e�etive hierarhies 40So the result for the tree representation of �11(a) sets is the following.Proposition 3.2.10. Let A � !!; a 2 !!. A is �11(a) i� there is a tree T on! � ! reursive in a suh that A = p[T ℄.Proof. Assume we have suh a tree representation of A. Thenx 2 A , x 2 p[T ℄, 91y(x; y) 2 [T ℄, 91y80n(xjn; yjn) 2 T, 91y80nhT i(hxjni; hyjni)So A is �11(a).Let now A be a �11(a) set. By Proposition 3.2.8 there exists an �00(a) set R � !3suh that x 2 A, 91y80mR(m;x(m); y(m))We de�ne now a tree reursive in a by(s; t) 2 T , 80p < length(s)R(p; hs(0); : : : ; s(p)i; ht(o); : : : ; t(p)i), 90n(n = length(s))80p < nR(p; hs(0); : : : ; s(p)i; ht(o); : : : ; t(p)i), 80n(n = length(s))80p < nR(p; hs(0); : : : ; s(p)i; ht(o); : : : ; t(p)i)The projetion of the in�nite sequenes of this tree is indeed the set A:x 2 p[T ℄ , 91y(x; y) 2 [T ℄, 91y80n(xjn; yjn) 2 T, 91y80n80p < nR(p; x(p); y(p)), 91y80pR(p; x(p); y(p))



Chapter 4Games and (Axioms of)DeterminayFor the haraterization of the �1n sets for n > 1 by �ner topologies the theoryZF + DC is not strong enough. Even taking the full axiom of hoie willnot be of help. So we will onsider other additional axioms, namely the axiomof projetive determinay (PD) where we onsider games on integers and themuh stronger axiom of determinay of games on reals (ADR). The axiom ofdeterminay (AD) will also be of importane. Even thoughAD ontradits theaxiom of hoie it is quite ommon in desriptive set theory sine it implies a lotof nie properties of the reals and one an draw interesting onlusions out ofit sometimes even for a model of set theory in whih AC holds. Philipp Rohdegives in his Diplomarbeit an overview also about other determinay axioms, see[Rohd01℄.The foundation for these axioms is the notion of a two person game thatwe will introdue in the �rst setion. The prototype of suh a game is a gameon integers. But we will also onsider games on reals and ordinals. Also Polishspaes an be haraterized by games. We will introdue this in the seondsetion here. The game will then be a game on open subsets of some Polishspae.4.1 Games and determinayWe inrodue �rst games on integers and the notion of a strategy.De�nition 4.1.1. (a) For a subset A � N , alled the payo� set, the twoperson game GA is de�ned in the following way: The two players take turnsin playing integers I n0 n2 : : :II n1 n3 : : :After ! moves the game is over and player I wins if the sequene x = (ni)i2!is in A. Otherwise II wins.(b) A strategy for player I is a tree � on ! whih tells player I whih move to41



Chapter 4. Games and determinay 42make in every round of the game. That is, � is a subtree of the full tree on !with the following properties:(i) � is nonempty(ii) if (n0; n1; : : : ; n2k) 2 �; k 2 !, then (n0; n1; : : : ; n2k;m) 2 � for all m 2 !(iii) if (n0; n1; : : : ; n2k�1) 2 �; k 2 ! (for k = 0 this is the empty sequene),there exists a unique m 2 ! suh that (n0; n1; : : : ; n2k�1;m) 2 �.Player I follows the strategy � if he plays in his 2k-th move the uniqueinteger suh that the �nite sequene played so far is a member of the tree �.We denote this unique integer by � � s if s 2 !2k�1 is the sequene of all theintegers played before.The strategy � is alled a winning strategy for player I if he wins everyrun of the game by following �. Similarly, one de�nes the notion of a strategyand winning strategy for player II.() The game GA is determined if one of the players has a winning strategy.Closely related to the subjet of strategies is the onept of quasi-strategies.A quasi-strategy for player I is a tree as it is for a strategy but instead of givingplayer I a unique element to play following the strategy it gives him a set ofpossible answers in every stage of the game. So the de�nition is the following:De�nition 4.1.2. Let A be a subset of N and GA be a game as in the de�-nition above. A quasi-strategy for player I is a tree on ! with the followingproperties:(i) � is nonempty(ii) if (n0; n1; : : : ; n2k) 2 �; k 2 !, then (n0; n1; : : : ; n2k;m) 2 � for all m 2 !(iii) if (n0; n1; : : : ; n2k�1) 2 �; k 2 ! (for k = 0 this is the empty sequene),there exist integers m 2 ! suh that (n0; n1; : : : ; n2k�1;m) 2 �.Player I follows the quasi-strategy � if he plays in his 2k-th move an integersuh that the �nite sequene played so far is a member of the tree �.A quasi-strategy � is a winning quasi-strategy for player I if player Iwins every run of the game by following �. Similarly, one de�nes the notion ofa quasi-strategy or a winning quasi-strategy for player II.The game GA is is quasi-determined if one of the players has a winningquasi-strategy.Obviously it depends on the subset A of N if a game is (quasi-)determinedor not. So one says that a subset A � N is (quasi-)determined if one meansthat the assoiated game GA determined. Furthermore, it is also obvious thatdetermined games exist.For example taking A as the whole set N or just taking away �nitely manypoints will lead easily to a winning strategy for player I. The question is nowwhether pointsets from ertain pointlasses are determined. David Gale and



Chapter 4. Polish spaes as strong Choquet spaes 43Frank Stewart proved in [GaSt53℄ that all open and all losed sets are deter-mined. The proof uses DC but one an show in ZF that all open and losedsets of the Baire spae are quasi-determined. It is pretty obvious that underDC we an always redue a quasi-strategy for games of length ! to a strategy.So under ZF + DC the open and losed sets are determined. It was provenshortly after the Gale-Stewart Theorem that also �02 and �02 sets are deter-mined (f. [Wolf55℄). Using ZF+ AC Donald Martin even proved in [Mart75℄that all sets of the Borel hierarhy are determined.But not all pointsets are determined. Already in their 1953 paper, Galeand Stewart mentioned that under AC nondetermined subsets of the Bairespae exist. Despite this fat (and knowing it will ontradit AC) the Polishmathematiians Jan Myielski and Hugo Steinhaus suggested in [MySt62℄ theAxiom of determinay that asserts that all subsets of the Baire spae aredetermined.De�nition 4.1.3. [Axiom of determinay (AD)℄ For all A � N the gameGA is determined.In the next hapter we will introdue the sale property and the projetiveordinals. We will prove some results about it under the Axiom AD. Sine weare mainly interested in pointlasses of the projetive hierarhy it suÆes forsome of these results to work under the weaker assumption that just sets of theprojetive hierarhy of the Baire spae are determined. The axiom that assertsthis property is the Axiom of projetive determinay:De�nition 4.1.4. [Axiom of projetive determinay (PD)℄ For all A 2�1n(N ); n 2 !; the game GA is determined.It is straightforward how to desribe two person games of length ! on arbi-trary sets X. For a subset A of X! we de�ne games GXA as above but instead ofplaying elements from ! the two players pik elements from X. The strategieswill then be trees on X and winning strategies as well as determined sets of X!are desribed as above. Important for us will be games on reals. In suh a gameeah player has to play elements of the Baire spae and the payo� sets will thenbe subsets of N!. The axiom that all payo�s sets of N! are determined forgames of reals is muh stronger than AD and it is denoted by ADR:De�nition 4.1.5. [ADR℄ For all A � N! the game GRA is determined.The axiom ADR implies the axiom AD. This is an easy result, see [Rohd01,3.1℄.A slightly di�erent game on open subsets of a topologial spae will beintrodued in the next hapter when we haraterize Polish spaes by strongChoquet games.4.2 Polish spaes as strong Choquet spaesWe start by de�ning the Choquet game.



Chapter 4. Polish spaes as strong Choquet spaes 44De�nition 4.2.1. Let X be a nonempty topologial spae. The Choquetgame GCh(X;T ) on X is de�ned as follows: Players I and II take turns inplaying nonempty open subsets of XI U0 U1 : : :II V0 V1 : : : ,suh that U0 � V0 � U1 � V1 � : : :We say II wins this run of the game if Tn Vn = Tn Un 6= ;. Otherwise Iwins.Strategies and winning strategies for Choquet games are de�ned now astrees on open subsets of the Polish spae as before. For our purpose, the strongChoquet game is more important. It is similar to the Choquet game but inaddition to the Choquet game player I is required to play a point xn 2 Unon every turn and then player II must play Vn � Un with xn 2 Vn. So thede�nition is the following.De�nition 4.2.2. Let X be a nonempty topologial spae. The strong Cho-quet game GsCh(X;T ) on X is de�ned as follows: Players I and II take turnsin playing nonempty open subsets of X and player I in addition a point in hisopen subset I U0; x0 U1; x1 : : :II V0 V1 : : : ,suh that U0 � V0 � : : : ; xn 2 Un; xn 2 Vn for n 2 !. We say II wins this runof the game if Tn Vn = Tn Un 6= ;. Otherwise I wins.An appropriate tree on the produt set of open subsets of the Polish spaeX and points in X an be viewed as a strategy where the information of theextra point for player II is of no interest.The Choquet game on a topologial spae X is determined if one of theplayers has a winning strategy. If player II has a winning strategy we will allthe topologial spae a Choquet spae:De�nition 4.2.3. A topologial spae X is alled a (strong) Choquet spaeif player II has a winning strategy for the assoiated (strong) Choquet gameGCh(X;T ); (GsCh(X;T )).An example for strong Choquet spaes are the ompletely metrizable spaes.Proposition 4.2.4. A nonempty, ompletely metrizable spae is a strong Cho-quet spae.Proof. Let (X;T ) be a nonempty ompletely metrizable spae, d a ompatibleomplete metri on X. We de�ne a winning strategy � for player II by indu-tion. If (U0; x0; V0; : : : ; Un; xn) is a legal round in the game GsCh(X;T ), thenhoose an open ball Vn from fB 1n+i+1 (xn) j i 2 !g suh that lT (Vn) � Un (forexample the least i suh that this holds). Then Tn Un = T lT (Vn). For every



Chapter 4. Polish spaes as strong Choquet spaes 45n the sequene (xn; xn+1; : : :) lies ompletely in lT (Vn) and, sine the diame-ter of the Vn gets arbitrarily small, is a Cauhy sequene. Thus this sequeneonverges in X and the limit point is in lT (Vn) sine this is a losed set. Sinelimk2! xk = limk2! xn+k for every n, we have this limit point in every lT (Vn).Thus limk2! xk 2 Tn lT (Vn).Putting together this result with Lemma 1.3, a Polish spae has the followingproperties.Proposition 4.2.5. Every Polish spae is a seond ountable, regular, strongChoquet spae whih is Hausdor�.We will prove now that, if we assume in addition AC, the onverse is alsotrue. For this we show �rst the onverse of Proposition 4.2.4 under AC thatevery separable, metrizable, strong Choquet spae is omplete. This will leadto a haraterization of Polish spaes as strong Choquet spaes.First we give two general lemmas, the �rst one about trees, the seond apurely topologial one.De�nition 4.2.6. Let T be a tree on a set A. T is alled �nite splitting iffor every s 2 T there are at most �nitely many a 2 A with s_a 2 T .Lemma 4.2.7 (K�onig's Lemma). Let T be a �nite splitting tree on a set A.Then [T ℄ 6= ; i� T is in�nite.Proof. If [T ℄ 6= ; the tree annot be �nite.Now let onversely T be in�nite. We will indutively pik xi at every levelof the tree, suh that the in�nite sequene (xi) is in [T ℄. Pik �rst an xo 2 Asuh that the tree Tx0 = fs 2 T j s � x0g is in�nite. This is possible sinewe have only �nitely many sequenes of length 1, but the full tree is in�nite.With the same argument we pik x1 suh that (x0; x1) 2 Tx0 and T(x0;x1) =fs 2 Tx0 j s � (x0; x1)g is in�nite. By iterating these proess, we get an in�nitebranh in T .Lemma 4.2.8. Let (Y; d) be a separable metri spae. Let U be a family ofnonempty open sets in Y . Then U has a point-�nite re�nement V, i.e., Vis a family of nonempty open sets with SU = SV;8V 2 V9U 2 U (V � U)and 8y 2 Y (fV 2 V j y 2 V g is �nite). More over, given " > 0 we an alsoassume that diam(V ) < " for all V 2 V.Proof. Denote the indued topology of Y by T . Sine Y is seond ountable,let (Un) be a sequene of open sets suh that Sn Un = SU and forall n existsan U 2 U(Un � U). Furthermore, given " > 0 we an always assume thatdiam(Un) < ". For example, �x a ountable dense subset D of Y and take theUn's to be the open balls around the points of SU \D whih lie in some U ofU and have rational radius smaller ". (f. the proof of Lemma 1.2).Let next Un = Sp2!U (p)n with U (p)n open, U (p)n � U (p+1)n and lT (U (p)n ) � Unfor every p 2 !. PutVm = Um n [n<m lT (U (m)n ) = Um\ � [n<m lT (U (m)n ) = Um \ \n<m � lT (U (m)n )



Chapter 4. Polish spaes as strong Choquet spaes 46open, where � A denotes the omplement of a set A in Y .(1) Sn Vn = Sn Un:Cleary for every m we have Vm � Um. Let x 2 Sn2! Un and m the leastinteger with x 2 Um. Then x 2 Um nSn<m lT U (m)n = Vm by the hoie of m.(2) For all y 2 Y there are only �nitely many Vm whih ontain y:Let x 2 U = SU . Then x 2 Un for an n and then x 2 U (p)n for some p. Sox 62 Vm if m > p; n.Let V = fVn j Vn 6= ;g.Theorem 4.2.9 (AC). Let X be a nonempty separable metrizable strong Cho-quet spae, X̂ a Polish spae and X a subspae of X̂. Then X is GÆ in X̂.Proof. Fix a ompatible omplete metri d for X̂ and a winning strategy � forplayer II in the strong Choquet game GsCh(X).Claim: There exists a tree S on X � P(X) � P(X̂) with the followingproperties: If ((xo; V0; V̂0); : : : ; (xn; Vn; V̂n)) 2 S, then for 0 � i � n we have Vi isopen inX, V̂i is open in X̂ , xi 2 V̂i�1 (V̂�1 = X̂) ,xi 2 Vi, V̂i\X � Vi, V̂i � V̂i�1and (X;x0); V0; (V̂0 \X;x1); V1; : : : (V̂n�1; xn); Vn; V̂n is a legal run of the gamewhere II follows �. Additionallay, if s = ((x0; V0; V̂0); : : : ; (xn�1; Vn�1; V̂n�1)) 2S, V̂s = fV̂n j s_(xn; Vn; V̂n) 2 Sg, then X \ V̂n�1 � S V̂s,diamV̂n < 2�n for allV̂n 2 V̂s and for every x̂ 2 X̂ there are at most �nitely many (xn; Vn; V̂n) withs_(xn; VnV̂n) 2 S suh that x̂ 2 V̂n.Proof: We onstrut a tree by indution on the length of the sequenes.Let s = ((x0; V0; V̂0); : : : ; (xn�1; Vn�1; V̂n�1)) be in S suh that all propertieshold (s may be the empty sequene). Let V̂s = fV̂ j V̂ is open in X̂ and V̂ �V̂n�1 and 9xn 2 V̂n�1\X suh that V̂ \X � ��(x0;X; V0; : : : ; x�n; V̂n�1\X)g.Let V̂�s be a point-�nite re�nement suh that diam(V̂ �) < 2�n for every V̂ � 2 V̂�s .By the axiom of hoie hoose now for every V̂ � an xn(V̂ �) 2 V̂n�1 \ X suhthat V̂ � \ X � � � (x0;X; : : : ; xn(V̂ �); V̂n�1 \ X). Then put s_(xn(V̂ �); � �(xo;X; : : : ; xn(V̂ �); V̂n�1 \X); V̂ �)) in S for all V̂ � 2 V̂�s . One an easily provethat the so onstruted tree has all the properties. For example to see thatX\V̂n�1 � S V̂�s , note that we put in neighborhoods for every point ofX\V̂n�1.q.e.d. ClaimFix a tree with all these onditions and letWn =[fV̂n j ((x0; V0; V̂0); : : : ; (xn; Vn; V̂n)) 2 Sg:Then Wn is open and, using X \ V̂n�1 � S V̂s, one an prove by an easyindution that X �Wn. It remains to show that TnWn � X.Let x̂ 2 TnWn. Consider the subtree Sx̂ of S onsisting of all sequenes((x0; V0; V̂0); : : : ; (xn; Vn; V̂n)) 2 S for whih x̂ 2 V̂n. This is a tree sine x̂ 2V̂n � V̂i for all i < n. Sine x̂ 2 TnWn, Sx̂ is in�nite. By the preedingonditions on S it is also �nite splitting. So, by K�onig's Lemma, [Sx̂℄ 6= ;.Say ((x0; V0; V̂0); (x1; V1; V̂1); (x2; V2; V̂2); : : :) 2 [Sx̂℄. Then (X;x0); V0; x1; (V̂0 \



Chapter 4. Polish spaes as strong Choquet spaes 47X;x1); V1; (V̂1; x2); V2; : : :is a run of GsX ompatible with �, so Tn V̂n \X 6= ;.In partiular there is a point of X in Tn V̂n and by onstrution x̂ 2 Tn V̂n. Butthese two points must oinide with eah other sine diam(V̂n) < 2�n. Thusx̂ 2 X.Given a seond ountable metrizable spae X we an onsider the omple-tion X̂, that is, a seond ountable omplete metrizable spae X̂ suh that Xis a subspae of X̂ and X is dense in X̂ . Suh a ompletion exists for everymetrizable spae.Theorem 4.2.10. Let (X; d) be a metri spae. Then there exists a unique,up to isometry, ompletion (X̂; d̂) of (X; d). If X is separable, the ompletionX̂ is also separable. In partiular, a ompletion of a separable metri spae isa Polish spae.A proof for this theorem an be found in [Kura66, Ch. III, x 33, VII℄ wherethis theorem is alled Hausdor� Theorem sine Hausdor� proved it in [Haus65,p. 135℄. We have already seen in Theorem 1.14 that GÆ subsets of Polish spaesare again Polish. So X in the above Theorem 4.2.9 is a Polish spae. Togetherwith the Hausdor� Theorem 4.2.10 we thus know that a separable metrizablestrong Choquet spae is a Polish spae.Furthermore by Lemma 1.3 a metrizable spae is a regular T1 spae. Toget the di�erent haraterization of a Polish spae we will state now Urysohn'sMetrization Theorem that asserts the onverse for seond ountable topologialspaes.Theorem 4.2.11 (Urysohn Metrization Theorem). Let X be a seondountable topologial spae. Then X is metrizable i� X is T1 and regular.A proof for this theorem an, for example, be found in the books of the Pol-ish topologists R. Engelking [Enge68, Ch.4 x2, Theorem 4℄ or K. Kuratowski[Kura66, Ch.2, x22, II, Theorem 1℄.If we put now together all these results, we get, by using AC, the followingharaterisation of a Polish spae. Note, that we did not use AC to prove thata Polish spae is strong Choquet, T1 and regular. This is only required for theonverse.Theorem 4.2.12 (AC). [Choquet℄ A nonempty, seond ountable topologialspae is Polish i� it is T1, regular and strong Choquet.This is the haraterization of Polish spaes we will mainly use for ourharaterization of the projetive sets.



Chapter 5The sale property andprojetive ordinalsIn Setion 2.3 we introdued norms and sales and mentioned that these on-epts get more interesting if we examine norms (and sales) of a ertain om-plexity, that is, roughly speaking, the assoiated prewellorderings should be inertain pointlasses (for the exat de�ntion see De�nitions 5.1.1 and 5.1.10).The pointlasses we onsider will be the pointlasses that our in the proje-tive hierarhy. So we will de�ne �-norms and �-sales for pointlasses � fromthe projetive hierarhy and state properties of these notions mainly under theaxiom PD. The reason for onsidering PD here is that one of the great assetsof PD is that one an show that a lot of pointsets in the projetive hierarhyadmit �-sales. We also introdue a bound for the length of suh a �-norm.This will be the projetive ordinals Æ1n.We proved in Theorem 2.3.7 that the pointsets of the Baire spae that admit�-sales are �-Suslin sets. So the results under PD lead to a lot of examples of�-Suslin sets where � is an ordinal related to the projetive ordinals. The goalof the �rst setion is to prove that �1n sets are suh �-Suslin sets.In the seond setion we will take a loser look at the projetive ordinals.It will turn out that these ordinals are under the axiom AD in fat regularsuessor ardinals.5.1 The prewellordering and sale properties underPDDe�nition 5.1.1. Let � be a pointlass. Let X be a Polish spae and A � X.A norm ' : A �! Ord is alled a �-norm if there are relations ��';���'� X�Xin �; �� respetively suh that for every y we havey 2 A) 8x[x 2 A ^ '(x) � '(y), x ��' y , x ���' y℄A pointlass � has the prewellordering property (or is normed) if eyerypointset in � admits a �-norm. 48



Chapter 5. The sale-property 49Sine we are here only interested in projetive sets we will only onsiderpointlasses � that our in the projetive hierarhy. For this reason we de-noted in the above de�nition and will denote in the following all pointlasseswith boldfae letters. Of ourse in general this de�nition applies not only forboldfae pointlasses if we understand by this pointlasses losed under ontin-uous preimages.Notie that for a set A 2 � (where � is �1n or �1n) the de�ning prop-erty for a norm ' being a �-norm is stronger than requiring that the assoi-ated prewellordering �' is in � but weaker than insisting that �' is in �.On the other hand the de�nition implies that a �-norm ' on A 2 � is al-ready a �-norm, sine interseting the two relations ��';���' with A gives theprewellordering �' and this is therefore in� and an serve as ��';���'. Despitethe simpliity of this argument we put this down as a Proposition sine we willuse this fat more often.Proposition 5.1.2. Let � be �1n or �1n. Every �-norm on a pointset A 2 �is a �-norm.Proof. Let ' be a �-norm on a� set A � X and let ��';���' be two relations in�; �� respetively with the de�ning properties for ' being a �-norm. We wantto show that �'=��' \A�A =���' \A�A and has also the de�ning property.We �rst prove that ��' \A�A =�'=���' \A�A:\�" Let (x; y) 2��' \A � A. Then (x; y) 2 A � A and '(x) � '(y). Thus(x; y) 2�'.\ �"Let (x; y) 2�'. Then x 2 A; y 2 A and '(x) � '(y). Therefore (x; y) 2��'\A�A.The proof for ���' is exatly the same. So �'2�.Next we show that �' has indeed the de�ning property. For this let y 2A; x 2 X. We have to showx 2 A ^ '(x) � '(y) , (x; y) 2��' \A�A\)" x 2 A ^ '(x) � '(y) ) (x; y)n 2��' ^(x; y) 2 A�A) (x; y) 2��' \A�A\(" (x; y) 2��' \A�A ) x 2 A ^ '(x) � '(y)Analogous for ���'.So �'2� and has the de�ning property for ' being a �-norm.Even if in general it is not true that a �-norm on a pointset A 2 � is in �,this holds for initial segments of the assoiated prewellordering:Lemma 5.1.3. Let � be �1n or �1n and let ' : A �! j�'j be a regular �-normon some pointset A 2 �. Then for � < j�'j the sets A� = fx j '(x) � �g andA<� = fx j '(x) < �g, initial segments of the prewellordering �', are in �.In partiular, A = S�<j�'jA� with eah A� in �.



Chapter 5. The sale-property 50Proof. The norm ' on A is a surjetive mapping. Choose for � < j�'j some yin A suh that '(y) = �. Thenx 2 A� , x ��' y, x ���' ySimilar for A<�: x 2 A<� , x ��' y ^ :y ���' x, x ���' y ^ :y ��' xThere are two other relations assoiated to a norm ' on a subset A of somePolish spae X that will be of speial interest. We extend the prewellordering�' to a relation to all of X by putting all points from X nA above all the pointsfrom A. This gives us the relations ��'; <�' de�ned by:x ��' y , x 2 A ^ [y 62 A _ '(x) � '(y)℄x <�' y , x 2 A ^ [y 62 A _ '(x) < '(y)℄Proposition 5.1.4. Let � be �1n or �1n and let ' be a norm on some A in �.Then ' is a �-norm i� the relations ��'; <�' are both in �.Proof. Let ' be a �-norm on A. Let ��';���' be two relations with the de�ningonditions for ' being a �-norm.(1) x ��' y , x 2 A ^ [x ��' y _ : y ���' x℄Proof: \) \ Let x ��' y. Then x 2 A. If y 2 A then '(x) � '(y), sox ��' y. If y 62 A we want to show that : y ���' x. But y ���' x implies y 2 A.So this would lead to a ontradition.\(" Let x 2 A and x ��' y _ : y ���' x.Case 1: y 2 A. If x ��' y then '(x) � '(y) and we are done. If : y ���' y ,: y 2 A _ :'(y) � '(x). Sine we have y 2 A we must have :'(y) � '(x).Sine ' is a norm on A it must be that '(y) > '(x), thus x ��' y.Case 2: y 62 A implies by de�nition of ��' that x ��' y. q.e.d.(1)(1) proves that ��' is indeed a relation in �. The upoming (2) proves it forthe relation <�'.(2) x <�' y , x 2 A ^ : y ���' xProof: \ )" Let x <�' y. Then x 2 A. If y 62 A and would have y ���' xthis would lead to a ontradition sine y ���' x implies y 2 A. If y 2 A and'(x) < '(y) we have x <��', so 6= y ���' x.\(" Same as in the proof of (1). q.e.d.(2)Let for the onverse ��'; <�' be in �. De�ne the relations ��';���' byx ��' y , x ��' yx ���' y , : y <�' x



Chapter 5. The sale-property 51By this de�nition ��' is in � and ���' is in ��. Let y 2 A. Thenx ��' y , x ��' y , x 2 A ^ '(x) � '(y)Thus ��' has the wanted property.Now for ���'. Let y 2 A. If x 2 A and '(x) � '(y), then x ��' y, so: y <�' x. Suppose for the onverse that we have : y <�' x. Assume x 62 A,then y <�' x sine y 2 A. A ontradition. So x 2 A. Therfore x ��' y andthis implies '(x) � '(y). This proves that ���' has the de�ning property for 'being a �-norm.Of ourse we are now interested in pointlasses of the projetive hierarhywhih are normed. It is known that �11 and �12 are normed lasses (f.[Mos80,4B.2, 4B.3℄). One of the great assets of PD is that under PD for eah of theprojetive lasses, the lass has or does not have the prewellordering property.This result is due to Moshovakis and proved by his \First Periodiity Theorem"[Mos80, 6B.1℄.Theorem 5.1.5 (PD). For all n � 0 the following holds: �12n+1 and �12n+2have the prewellordering property and �12n+1 and �12n+2 do not have the pre-wellordering property.Next we will de�ne the projetive ordinals. They serve as an upper boundfor the length of a �-norm on a set in �. It will turn out later that they willbe the length of the basis for the topology we de�ne on the �1n sets.De�nition 5.1.6. For all n � 1 the projetive ordinals Æ1n are de�ned as:Æ1n = supf� j � is the length of a �1n prewellordering of NgWe will give �rst some basi fats about the projetive ordinals.Proposition 5.1.7. Let � be �1n or �1n for n � 1.(a) Æ1n is a limit ordinal that is not attained by a �1n prewellordering of N .(b) Every �1n-norm on a �1n set has length less than Æ1n.() Every �-norm on a � set has length less or equal Æ1n.(d) For every � < Æ1n there exists a �1n prewellordering of N of length �.(e) f(Æ1n) > !Proof. (a) Assume Æ1n is a suessor ordinal. This implies in partiular thatthere is a prewellordering � of N of length Æ1n. Let ' be the assoiated rankfuntion. Sine Æ1n � ! (for example x � y , x(0) � y(0) is a�11 prewellorder-ing of length !) we have the following bijetionf : Æ1n �! Æ1n + 1� 7�! 8><>:Æ1n if � = 0�� 1 if 0 < � < !� if � � !



Chapter 5. The sale-property 52Now f Æ' : N �! Æ1n+1 is a regular norm. Pik an a 2 N suh that '(a) = 0.Then the prewellordrering �fÆ' is given byx �fÆ' y , (x � y ^ y � x)_ (y � a ^ a � y)_ :(x � a ^ a � x ^ y � a ^ a � y) ! x � ySo we just de�ned a �1n prewellordering of N of length Æ1n + 1. This ontra-dits our assumption and tells us furthermore that Æ1n is not attained by a �1nprewellordering of N .(b) We show �rst that by Theorem 2.2.3 it is enough to onsider a �1nsubset of N . Let X be a Polish spae and A � X be a �1n subset of X togetherwith a �1n norm '. There exists by 2.2.3 a ontinuous bijetion b between alosed subset of N and the Polish X and we an use this bijetion to pull bakthe �1n prewellordering �' of A to a �1n prewellordering of the same lenght ofthe �1n subset b�1[A℄ of N sine the pointlass �1n is losed under ontinuouspreimages.So let ' : A �! � be a �1n-norm on A � N . If A = N we are donewith (a). Otherwise onsider the �1n prewellordering �' of A. De�ne then aprewellordering � of N byx � y , x �' y _ y 62 AThis prewellordering is �1n and has length �+ 1. Thus � < Æ1n by (a).() Let A be a � set and ' be a regular �-norm. By Lemma 5.1.3 the setsA� for � < j'j are in�1n. Interseting �' with A� gives us a �1n-norm on A�.Thus by (b), � has to be less than Æ1n. Sine j'j = sup�<j'j � we have j'j � Æ1n.(d)Let � < Æ1n. Then there exists an ordinal � > � and a�1n prewellorderingon N of length � (by the de�nition of the projetive ordinals). De�ne now aprewellordering �� on N byx �� y , (x; y) 2� \N<� �N<� _ :x 2 N<�there N<� = fx j '(x) < �g.From Lemma 5.1.3 we know thatN<� is in�1n. Thus�� is a�1n prewellorder-ing with regular assoiated norm'� : N �! �x 7�! (0 if x 62 N<�'(x) otherwiseThus the length of �� equals �.(e) Let (�i)i2! be a sequene of ordinals< Æ1n. Let �i be a�1n prewellorder-ing of N with j�ij = �i. Consider the following two homeomorphisms�i : N �! N(i)x 7�! (i)_x



Chapter 5. The sale-property 53and � : N �! Xi2! N(i)x 7�! xwhere we understand byPi2! N(i) the topologial sum of the Polish spaes N(i)whih are disjoint by de�nition. The mapping �i arries the prewellordering �ito the prewellordering ��ii of N(i). Putting together these prewellorderings ofall the N(i) we get a prewellordering of PiN(i) byx � y , x 2 N(i) ^ y 2 N(i) ^ x ��ii y_ (x 2 N(i) ^ y 2 N(j) ^ i < j)This is a prewellordering of length Pi2! �i. Also � is in �1n sine�= [i2! ��ii [[i<jN(i) �N(j)Pulling bak this prewellordering � to N with the homeomorphism � gives usthen a �1n prewellordering of N of length Pi2! �i. Thus sup�i � Pi2! �i <Æ1n. The results from this last Proposition 5.1.7 are pretty muh all we knowabout the projetive ordinals under the axioms ZF + DC. And even if wework in addition under the assumption of PD we are not able to prove a lotmore. This looks di�erent if we assume the theory ZF + DC + AD and wewill ome bak to this in the next setion.Under lassial set theory the only result of interest left to prove is thealulation of Æ11. For this we state now the Kunen-Martin Theorem, whih isfundamental for all of the rest of this hapter. A detailed proof using the notionof a good semisale an be found in [Mos80, 2G.2℄.Theorem 5.1.8. Let � � N �N be a wellfounded relation. If � is �-Suslin,then j�j < �+.With this Theorem 5.1.8 it is now easy to prove that Æ11 = !1.Proposition 5.1.9. Æ11 = !1Proof. Let � be a �11 prewellordering of N . Then the relation � is in par-tiular in �11 and therefore !-Suslin by Theorem 3.1.7. So the length of theprewellordering is less than !1 by the Kunen-Martin Theorem 5.1.8. ThereforeÆ11 � !1. We proved on the other hand in Proposition 5.1.7(e) that Æ11 haso�nality greater than !. Sine this is not possible for ordinals below !1 weonlude that Æ11 = !1.Similar to �-norms we de�ne now �-sales.



Chapter 5. The sale-property 54De�nition 5.1.10. For a pointlass � we all a sale ('n)n2! a �-sale if thefollowing two relations are in �:S(n; x; y) , x ��'n yT (n; x; y) , x <�'n yA pointlass � has the sale property or is saled if every pointset in �admits a �-sale.In partiular this de�nition implies that all norms in a �-sale are �-norms.So if for example a �1n-sale on a �1n set A � N exists, we thus know thatthis sale is a Æ1n-sale and by Theorem 2.3.7 the set A is Æ1n-Suslin. Similarresults hold for the pointlasses �1n and �1n. We give a result below. So we willget a whole lass of examples for Æ1n-Suslin sets if we know whih pointlassesare saled. The answer under PD gives us Moshovakis \Seond PeriodiityTheorem", see [Mos80, 6C℄.Theorem 5.1.11 (PD). The pointlasses �12n+1 and �12n+2 are saled for alln � 0.Using now Theorem 2.3.7 and Proposition 2.3.2 we an view �1n sets as�-Suslin sets:Theorem 5.1.12 (PD). For all n � 0 the following holds:(i) Every �12n+2 set is Æ12n+1-Suslin.(ii) Every �12n+1 set A is �2n+1(A)-Suslin for a ardinal �2n+1(A) < Æ12n+1.Proof. (i) By Proposition 2.3.2 it is enough to prove that eah �12n+1 set isÆ12n+1-Suslin sine the �12n+2 sets are by de�nition projetions of �12n+1 sets.But by the \Seond Perioditiy Theorem" 5.1.11 we know that eah �12n+1set has a �12n+1-sale. All the norms in this sale are �12n+1-norms and thushave length less or equal than Æ1n by Proposition 5.1.7(). So all �12n+1 setsadmit Æ12n+1-sales and thus Theorem 2.3.7 implies that all �12n+1 sets areÆ12n+1-Suslin.(ii) Let A be a�12n+1 set andB 2 �12n suh that A = p[B℄. SineB 2�12n+1there exists by Theorem 5.1.11 a�12n+1-sale ('i)i2! on B. Eah 'i is a�12n+1-norm on B, so by Proposition 5.1.7(b) has length less than Æ12n+1. The lengthof the sale is supi2! j�'i j and sine f(Æ12n+1) > ! by Proposition 5.1.7(e)the sequene (j�'i j)i2! is bounded below Æ12n+1. Hene there is a ardinal�2n+1(A) < Æ12n+1 suh that j�'i j � �2n+1(A) for all i 2 !. Thus ('i)i2! is a�2n+1(A)-sale on B. By Theorem 2.3.7 we thus know that B is �2n+1(A)-Suslinand therefore also A by Proposition 2.3.2.We lose this setion by stating a result about the length of a �1n normunder the assumption PD. In Proposition 5.1.7 we proved that the length ofsuh a norm on a set in �1n is less or equal to Æ1n. In fat there are �1n setswith �1n-norms with length equal to Æ1n. These are the �1n-omplete sets andwe de�ne this notion next.For the upoming the pointlasses � should always stand for �1n(N ) or�1n(N ) for n � 1.



Chapter 5. Projetive ordinals under AD 55De�nition 5.1.13. Let A;B � N . A is alled (Wadge-)reduible to B,A �W B, if there exists a ontinuous funtion f : N �! N suh that f�1[B℄ =A.We say A is �-omplete if A 2 � and all B 2 � are reduible to A.The following theorem will turn out to be very helpful to us at various stagesin the rest of this paper. A proof an be found in [Mos70, Theorem 8.1℄, usingfats from reursion theory.Theorem 5.1.14 (PD). If ' is a �1n-norm on a �1n-omplete set, then theprewellordering �' has length Æ1n.Of ourse it arises now the question if �-omplete sets exist? Sine we willapply Theorem 5.1.14 mainly under the assumption of AD in the next setion,the following theorem implies a result of interest in the ontext of ompletesets.Theorem 5.1.15 (AD, Wadge's Lemma). Let A;B � N . Then eitherA �W B or B �W N nA.Proof. Consider the Wadge game WG(A;B)I x(0) x(1) : : :II y(0) y(1) : : :where I and II play integers and II wins if (x 2 A $ y 2 B). Sine we areworking under AD this game is determined.Assume II has a winning strategy � . If I plays x we denote the element playedby II following his strategy � by x � � . So we have x 2 A $ x � � 2 B. Wean obviously view � as a monotone mapping between the full trees on !. ByProposition 2.1.5 the funtionf� : N �! Nx 7�! x � �is ontinuous and by the property of � we have f�1� [B℄ = A. So A �W B.If I has a winning strategy � one an show with the same argument that B �WN n A.Corollary 5.1.16 (AD). Every set in � n� is �-omplete.Proof. Let A 2 � n� and B 2 �. From Wadge's Lemma we have B �W Aor A �W N n B. But A �W N n B leads to a ontradition sine then A isthe preimage of some ��-set and therefore also in �� (sine both �1n and �1n arelosed under ontinuous preimages).We onlude from this Corollary 5.1.16 and Theorem 5.1.14 that under theassumption of AD all �1n-norms on a set in �1n n�1n has length Æ1n. One ouldexpet that a similar result is true for the omplete �1n sets, but we will showin Theorem 5.2.8 that this does not hold.



Chapter 5. Projetive ordinals under AD 565.2 Projetive ordinals under ADThe projetive ordinals turned out to be very important for the results of thelast setion. But even working under PD does not give us a lot of informationabout the projetive ordinals. The piture looks ompletely di�erent if weassume AD. We will prove here that under AD the projetive ordinals areregular suessor ardinals. Cruial for a proof of this is the very powerful\Coding Lemma" by Moshovakis that holds under AD and whih we willstate �rst.We mentioned before that AD ontradits AC. The Coding Lemma allowsus now to use some sort of hoie for (a subset of) the powerset of any set Yif we have a funtion from an ordinal �, that an be oded by a wellfoundedrelation (or more exat by the assoiated rank funtion), to the powerset ofY . Furthermore the Coding Lemma assures that if � is oded by an �1n well-founded relation the hoie set (or rather the odes for the hoie set, see theexat de�nition below) is also in �1n. The de�nition of suh a hoie set is thefollowing:We an restrit ourselves for our purpose to spaes of the form !k � (!!)`.Let X be suh a spae and < be a strit wellfounded relation on some subsetS of X. Let � : S � � be the assoiated rank funtion. So the elementsof S an be seen as odes for ordinals below �. Let Y be another spae andf : �n �! P(Y ) be any funtion. A hoie set for f is a subset C of Xm�Ysuh that the following holds(i) (x0; : : : ; xm�1; y) 2 C ) x0; : : : ; xm�1 2 S ^ y 2 f(�(x0); : : : ; �(xm�1))(ii) f(�0; : : : ; �m�1) 6= ; ) 9x0 : : : 9xm�19y[�(x0) = �0 ^ : : : �(xm�1) =xm�1 ^ y 2 f(x0; : : : ; xm�1) ^ (x0; : : : ; xm�1; y) 2 C℄Theorem 5.2.1 (Coding Lemma I). Assume AD. Let m;n 2 !. Let < �X � X be a strit wellfounded relation in �1n of length �. Then for everyf : �m �! P(Y ) there exists a hoie set in �1n.For a proof see [Mos80, 7D.5℄. Important to us will be the following Corol-lary, whih Moshovakis alls \Coding Lemma II" (see [Mos80, 7D.6℄). It tellsus that the set of odes of eah subset of an ordinal � whih is oded by an �1nprewellordering on the reals is also in �1n. So we onsider now more generallyprewellorderings �0; : : : ;�m�1 on subsets S0; : : : ; Sm�1 of spaes X0; : : : ;Xm�1respetively with assoiated regular norms �0 : S0 � �0; : : : ; �m�1 : Sm�1 ��m�1. For any A � �0 � : : : � �m�1 setCode(A;�0; : : : ;�m�1) = f(x0; : : : ; xm�1) j (�0(x0); : : : ; �n�1(xm�1)) 2 Ag:Corollary 5.2.2 (Coding Lemma II). Assume AD. Let m;n 2 !. Let �0; : : : ;�m�1 be prewellorderings with lengths �0; : : : ; �m�1 on S0 � X0; : : : ; Sn�1 �Xm�1 suh that �0; : : : ;�m�12 �1n. Then for every A � �0 � : : : � �m�1 theset Code(A;�0; : : : ;�m�1) is in �1n.



Chapter 5. Projetive ordinals under AD 57Proof. Let � be the lexiographi ordering on X = X0� : : :�Xm�1 indued bythe prewellorderings �0; : : : ;�m�1 and let < be its strit part. For simpliitywe write now xi �i x0i for xi �i x0i ^ x0i �i xi for 0 � i � m� 1. So we have(x0; : : : ; xm�1) < (x00; : : : ; x0m�1),x0 <i x00_ (x0 �0 x00 ^ x1 <1 x01)_ (x0 �0 x00 ^ : : : xm�2 �m�2 x0m�2 ^ xm�1 <m�1 x0m�1)and therefore < 2�1n.Consider also the lexiographial ordering on �0 � : : : � �m�1 and let h i :�0 � : : : � �m�1 �! � be the isomorphism of this ordering to its order-type. Then the assoiated regular norm � of < is given by �(x0; : : : ; xm�1) =h�1(x1); : : : ; �n(xm)i. Let nowf : � �! P(!)h�0; : : : ; �m�1i 7�! (f1g if (�0; : : : ; �m�1) 2 Af0g if (x0; : : : ; �m�1) 62 ALet C � X � ! be a hoie set for f in �1n. We laim(x0; : : : ; xm�1) 2 Code(A;�1; : : : ;�m�1), 9x00 : : : 9x0m�1[x0 �0 x00 ^ : : : ^ xm�1 �m�1 x0m�1 ^ (x00; : : : ; x0m�1; 1) 2 C℄Proof of laim:\)"(x0; : : : ; xm) 2 Code(A;�0; : : : ;�m�1),(�0(x0); : : : ; �m�1(xm�1)) 2 A,f(h�0(x0); : : : ; �m�1(xm�1)i) = f1g)9x00 : : : 9x0m�19yx0 �0 x00 ^ : : : ^ xm�1 �m�1 x0m�1^ y 2 f1g ^ (x0; : : : ; xm�1; y) 2 Csine h i is a bijetion and by (ii) of the de�nition of a hoie set)9x00 : : : 9x0m�1x0 �0 x00 ^ : : : ^ xm�1 �m�1 x0m�1 ^ (x00; : : : ; x0m�1; 1) 2 Csine 1 is the only element in f1g\("9x00 : : : 9x0m�1x0 �0 x00 ^ : : : ^ xm�1 �m�1 x0m�1 ^ (x00; : : : ; x0m�1; 1) 2 C)1 2 f(h�0(x00); : : : ; �m�1(x0m�1)i) by (i) of the de�nition of a hoie set)f(h�0(x00); : : : ; �m�1(x0m�1)i) = f(h�0(x0); : : : ; �m�1(xm�1)i) = f1g)(x0; : : : ; xm�1) 2 Code(A;�0; : : : ;�m�1)This proves that Code(A;�0; : : : ;�m�1) 2 �1n. Similary we prove that theomplement of Code(A;�0; : : : ;�m�1) is in �1n by showing(x0; : : : ; xm�1) 62 Code(A;�1; : : : ;�m�1), 9x00 : : : 9x0m�1[x0 �0 x00 ^ : : : ^ xm�1 �m�1 x0m�1 ^ (x00; : : : ; x0m�1; 0) 2 C℄This proves that Code(A;�0; : : : ;�m�1) is indeed in �1n.



Chapter 5. Projetive ordinals under AD 58Now we are able to prove that the projetive ordinals are ardinals.Theorem 5.2.3 (AD). For all n � 1 ; Æ1n is a ardinal.Proof. Assume this is not true. Then let � < Æ1n and � be a prewellordering ofN of length � and f : � �! Æ1n be a bijetion. Let � be the assoiated regularnorm for �. De�ne the following relation <� on � by� <� # , f(�) < f(#)Thus <� is a wellordering of � of ordertype Æ1n. From the above Corollary 5.2.2we have Code(<�;�;�) 2�1n.But Code(<�;�;�) = f(x1; x2) 2 N 2 j'(x1) <� '(x2)g= f(x1; x2) j f('(x1)) < f('(x2))gis a prewellordering of N of length Æ1n whih ontradits 5.1.7(b).To prove now that the projetive ordinals are suessor ardinals we haveto examine more losely the relations between pointsets from the projetivehierarhy and �-Suslin sets (f. Theorem 2.3.7 and Theorem 5.1.12) as well asbetween suh pointsets and the �-Borel sets (f. Setion 2.5) under the axiomAD. In partiular, we will prove a genaralization of Theorem 3.1.11 in whih weshow that �12n+1 = BÆ12n+1 . We proved in Theorem 3.1.11 that the �11 subsetsof N are exatly the Borel sets of the Baire spae. By de�nition we all Borelsets also !1-Borel sets and !1 = Æ11 by Proposition 5.1.9. So we an restateTheorem 3.1.11 as BÆ11 =�11:This statement remains true under AD if we replae the lower 1 by any oddinteger.Theorem 5.2.4 (AD). BÆ12n+1(N ) =�12n+1(N ) for n � 1.Proof. \�" Let A 2�12n+1. The N nA 2�12n+1 and by Theorem 5.1.12 thereis a ardinal � < Æ12n+1 suh that A and N nA are �-Suslin. By Corollary 2.5.5A 2 B�+ � BÆ12n+1 .\�" It suÆes to show that �12n+1 is losed under unions of length stritlysmaller than Æ12n+1. Assume towards a ontradition that there is a # < Æ12n+1minimal suh that a sequene (A�)�<# with A� 2 �12n+1 for � < # exists andA = S�<#A� 62�12n+1. Sine �12n+1 is losed under ountable unions # has tobe unountable and obviously be a limit ordinal. Without loss of generality wean assume that for all � < � < #, we have that A� � A� and A� = S�<�A� if� is a limit ordinal smaller than #.(1) A is in �12n+1.Proof: Let � be a �12n+1 prewellordering of N of length # and ' be theassoiated regular norm. Consider now the following mapping:f : # �! P(N )� 7�! fz j z is a �12n+1-ode for A�g



Chapter 5. Projetive ordinals under AD 59By a �12n+1-ode we mean the following: Let W be a N -universal set for�12n+1(N ), let V be a N -universal set for �12n+1(N ) and let h i be a homeo-morphism between N and N �N . If hzi = (z1; z2) and Wz1 = Vz2 we denotethis set by Dz and say z is a ode for this �12n+1 set.Let C now be a hoie set for f in �12n+1 (that exists by the Coding Lemma5.2.1). Then x 2 A , 9y9z[(y; z) 2 C ^ x 2 Dz℄\)" Let x 2 A. Then there is an � < # suh that x 2 A�. Sine W;V areuniversal sets there exists a ode z 2 N suh that A� = Dz. So f(�) 6= ;.Thus there exists an y 2 N and z 2 N suh that '(y) = � and z 2 f(�) and(y; z) 2 C by de�nition of the hoie set. But z 2 f(�) implies Dz = A�.\(" Now let y; z be suh that (y; z) 2 C ^ x 2 Dz. By de�nition of a hoieset z 2 f('(y)) where '(y) is some ordinal less than #. By de�nition of f , zodes then the set A'(y). So x 2 A'(y), in partiular, x 2 A.This proves that A is a �12n+1 set. q.e.d. (1)Sine A is not in �12n+1, we know by Corollary 5.1.16 that A is �12n+1-omplete. We get now a ontradition to the prewellordering Theorem 5.1.5 byde�ning a �12n+1-norm on A. Beause then we get a �12n+1 prewellordering forevery �12n+1 subset B of N by transfering the prewellordering of A to B witha ontinuous funtion witnessing B �W A.De�ne the norm  on A by : A �! #x 7�! the minimal � suh that x 2 A�+1 nA�(2)  indues a �12n+1 prewellordering on A.Proof: We use the haraterization of Proposition 5.1.4.x �� y , 9� < # [x 2 A�+1 nA� ^ y 62 A�℄x <� y , 9� < # [x 2 A�+1 nA� ^ y 62 A�+1℄Therefore �� and <� are unions of less than # many �12n+1 sets. With thesame argument as in (1) one shows that �� and <� are in �12n+1.We an now prove that the projetive ordinals are suessor ardinals. Wereollet before the results from setion 2.6 about the relation between �-Suslinsets and �++-Borel sets as well as �+-Borel sets. We proved there that a �-Suslin subset of the Baire spae is �++-Borel and if � is of o�nality greaterthan ! then the �-Suslin set is even a �+-Borel set. First we show that the Æ1n'sare suessor ardinals if n is odd.Theorem 5.2.5 (AD). For all n � 0, Æ12n+1 = �+2n+1 where �2n+1 is a ardinalof o�nality !.Proof. Let �2n+1 < Æ12n+1 be the smallest ardinal suh that all �12n+1-sets are�2n+1-Suslin. (Suh a �2n+1 exists, f. 5.1.12.)(1) �+2n+1 = Æ12n+1



Chapter 5. Projetive ordinals under AD 60Proof: Assume �++2n+1 � Æ12n+1. Sine every �12n+1-set is �12n+1-Suslin, usingTheorem 2.5.6 and Theorem 5.2.4 we get �12n+1 � B�++2n+1 � BÆ12n+1 = �12n+1,a ontradition. q.e.d.(1)(2) f(�2n+1) = !Proof: Assume f(�2n+1) > !. Using theorem 2.5.8 we get �12n+1 �B�+2n+1 = BÆ12n+1 =�12n+1, a ontradition. q.e.d.(2)An appliation of Theorem 5.1.14 and the Kunen-Martin Theorem 5.1.8 forthe onverse proves now that the Æ12n+2's are the suessors of the Æ12n+1's.Theorem 5.2.6 (AD). For all n � 0, (Æ12n+1)+ = Æ12n+2.Proof. \�" Let ' be a �12n+1-norm on a �12n+1-omplete set. By theorem5.1.14 the length of ' is Æ12n+1. Thus there exists a �12n+2 prewellordering ofN of length Æ12n+1(indued by the prewellordering on the �12n+1-omplete set).So we have Æ12n+1 < Æ12n+2 and sine the projetive ordinals are ardinals weget (Æ12n+1)+ � Æ12n+2\�" Let � be a prewellordering of R with � 2�12n+2 � �12n+2. It follows fromtheorem 5.1.12 that � is Æ12n+1-Suslin. By the Kunen-Martin theorem we havej�j < (Æ12n+1)+. Thus Æ12n+1 � (Æ12n+1)+.From this last Theorem 5.2.6 it is lear that for all odd integers n we haveÆ1n < Æ1n+1. For the even integers this follows from the fat that the projetiveordinals are of o�nality greater than ! and Theorem 5.2.5.Theorem 5.2.7 (AD). For all n � 1, Æ1n < Æ1n+1.Proof. For all odd integers this follows from Theorem 5.2.6. Let n = 2m beeven. Assume Æ12m = Æ12m+1. Using Theorem 5.2.5 and Theorem 5.2.6 we getÆ12m+1 = �+2m+1 = Æ12m = (Æ12m�1)+. Therefore we have Æ12m = �2m+1 but thisan not be true sine �2m+1 has o�nality ! and f(Æ12m) > ! by Proposition5.1.7.We already mentioned that we an not prove a result similar to Theorem5.1.14 for the pointlasses �1n. Under AD a simple appliation of the Kunen-Martin Theorem 5.1.8 even proves that all �1n prewellorderings or even �1nwellfounded relations have length less than Æ1n.Theorem 5.2.8. For all n � 1,Æ1n = f� j � is the length of a �1n wellfounded relation g:In partiular has any �1n wellfonded relation length less than Æ1n.Proof. Sine every �1n prewellordering is a �1n wellfounded relation there isnothing to prove for the \�"-diretion.So let � be a �1n wellfounded relation. For n even � is Æ1n�1-Suslin byTheorem 5.1.12 and therefore, by the Kunen-Martin Theorem, the length of �is less than (Æ1n�1)+ and this equals Æ1n by Theorem 5.2.6.For n odd � is �n-Suslin with �n < Æ1n (again by Theorem 5.1.12) and soj�j < �+n � Æ1n by Theorem 5.1.8



Chapter 5. Projetive ordinals under AD 61We �nish this hapter by showing that all projetive ordinals are regularardinals. For the proof we have again to rely on the Coding Lemma 5.2.1.Theorem 5.2.9 (AD). For all n � 1, Æ1n is regular.Proof. Assume towards a ontradition that there is a o�nal mapping g : � �!Æ1n for some � < Æ1n. Let � be a �1n prewellordering on N of length � withassoiated anonial norm '. Let U � N 3 be a universal set for �1n(N �N ).We will de�ne a �1n-wellfounded relation � on N 3 of length greater or equalÆ1n. But this ontradits our last Theorem 5.2.8.Consider �rst the following funtion:f : � �! P(N )� 7�! fx j Ux is a �1n-wellfounded relation of length g(�)gNote that f is de�ned sine there exists for all � < � a �1n-prewellordering oflength f(�). Let C � N �N be a hoie set (suh a hoie set exists Theorem5.2.1) for f in �1n and de�ne the relation � on N 3 by:(x; y; z) � (x0; y0; z0) , x = x0 ^ y = y0 ^ (x; y) 2 C ^ (z; z0) 2 UyObviously this relation is �1n. And � is also wellfounded, beause if we assumethat there is an in�nite desending hain (x0; y0; z0); (x1; y1; z1); : : : with respetto � we have x := x0 = x1 = : : : ; y := y0 = y1 = : : : and z0; z1; : : : is an in�nitedesending hain with respet to Uy, but sine (x; y) 2 C, i.e. y 2 f('(x)), weknow that Uy is a wellfounded relation and has therefore now in�nite desendinghains.For all � < � there exists now an embedding(N ; Uy) �! (N 3;�)z 7�! (x; y; z)with '(x) = � and (y; x) 2 C.Hene we have g(�) = jUyj � j � j for all � < �. Sine g was a o�nalmapping we have j � j � Æ1n and we arrived at the ontradition.
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Introdution to Part II 63In this seond part we ome now to the main objetive of this work, theharaterization of the projetive sets by �ner topologies.In Chapter 1 we will prove the lassial results about a haraterization ofBorel sets in Polish spaes.Theorem 1. Let (X;T ) be a Polish spae. A subset A of X is a Borel set i�there exists a �ner topology t on A (i.e., t � T jA) suh that (A; t) is a Polishspae.This is the prototype of results we will prove here. For the whole Chapter 6the theory ZF+DC will be suÆient. Reall that we proved under these axiomsin Proposition 4.2.5 that every Polish spae is a seond ountable, regular,strong Choquet spae with the separation property T1. We proeed in Chapter6 by a haraterization of the analyti sets:Theorem 2. Let (X;T ) be a Polish spae. A subset A of X is analyti i�there exists a �ner topology t on A suh that (A; t) is a seond ountable, strongChoquet spae.Trivially, a �ner topology t of a Polish topology T remains Hausdor�, so inpartiular T1. So the only property we have to drop is that the �ner topologyis not regular any more.For lasses of a higher level we have to drop additional properties. We startin hapter 2 by proving that we do not get anywhere by dropping the strongChoquet property. So the only property that remains to be onsidered is theseond ountable property.This will lead to the general haraterization of projetive sets. The idea isto imitate the proofs of Theorem 2.Cruial for a onstrution of the �ner topology in the analyti ase is that�1n sets are !-Suslin. If we would have Suslin representations of �1n sets forn > 1 we ould pretty muh imidiately onstrut a �ner topology for any �1nset by the same idea as in the ase of the analyti sets. By Theorem 5.1.12 theadditional axiom PD gives us the Suslin representation for eah �1n set. So the�rst main result in Chapter 7 will be under the theory ZF + DC + PD theonstrution of a �ner topology for eah �1n set suh that this �ner topologyhas a basis of length less than Æ1n and is strong Choquet.Theorem 3 (ZF+DC+PD). Let (X;T ) be a Polish spae. Then there existsfor every subset A of X a �ner topology t on A whih has a basis of length lessthan Æ1n and is strong Choquet.The onverse an not hold under ZF+DC+PD by a result from DonaldMartin and John Steel. They proved in [MaSt89℄ that in a ZFC model within�nitely many Woodin ardinals1 PD holds. By the usual methods of foring21For a de�nition of Woodin ardinals see for example [Kana97, p. 360℄. Woodin provedthat the Theory ZF + AD is equionsistent to the theory ZFC+ there are in�nitely manyWoodin ardinals. Sine we are working here under ZF + AD we may as well assume thatthere are models of ZFC with in�nitely many Woodin ardinals.2An introdution to foring is given in [Kune80℄.



Introdution to Part II 64we get a generi extension in whih the Continuum Hypothesis is true. JoelDavid Hamkins and Hugh Woodin showed in [HaWo00℄ that after small foringa ardinal � is Woodin i� it was Woodin in the ground model. So the generiextension of the Martin-Steel Model is a model of ZFC+CH+PD.In this model all projetive ordinals have the same ardinality !1. So if weonstrut for some n � 1 by the above result a �ner topology for a subset Ain �1n+1(N ) n�1n+1 (and suh a set exists by Proposition 3.1.14) the onverseof Theorem 3 in suh a Martin Steel Model would imply that A 2 �1n(N ) andtherefore in �1n+1(N ). But this ontradits the assumption that A was not in�1n+1(N ).So for the onverse of Theorem 3 we have to assume that the projetive or-dinals are all ordinals of di�erent ardinality. This holds under ZF+DC+AD,so we ould hope to prove the onverse under this axioms. Unfortunately weare not able to give suh a proof and have to assume the muh stronger axiomADR for the following haraterization of projetive sets by �ner topologies:Theorem 4 (ZF+DC+ADR). Let (X;T ) be a Polish spae. A subsets A ofX is a �1n set i� there exists a �ner topology t on A suh that t has a basis oflength less than Æ1n and t is strong Choquet.We atually need not really the determinay of games on reals but ratherthe result that every set of reals has a sale. But, by a result of Woodin, this is,under the assumption ZF + DC, equivalent to ADR. (This result is quotedin [Kana97, Theorem 32.23℄.)



Chapter 6Charaterization of Borel andanalyti sets by �nertopologies6.1 Borel setsWe start now by showing that a �ner Polish topology t on a Borel set in aPolish spae (X;T ) exists . In the �rst lemma we do this just for losed sets,so we enlarge for a losed set C of X the topology T to a Polish topology TCsuh that C is open (and losed) with respet to this topology. The relativetopology TC jC is then a �ner Polish topology on C.Lemma 6.1.1. Let (X;T ) be a Polish spae, let C � X be losed. Let TC bethe topology generated by T [ fCg, that is, T [ fU \ C j U 2 T g is a basis ofTC . Then TC is a Polish topology, C is open and losed with respet to TC andB(X;TC) = B(X;T ).Proof. Consider the following mapping:id : (X;TC) �! (C;T jC)� (X n C;T j(X n C))x 7�! xBy Theorem 1.14 and Proposition 1.13 the losed set C and the open set X nCare Polish spaes, and by Theorem 1.7 is the sum of this two spaes again aPolish spae. To prove that TC is a Polish topology it is therefore enough toshow that id is an homeomorphism. id is obviously a bijetion.(1) id is ontinuous.Proof: Let V be an open set in C� (X nC). By de�nition of the topologialsum V \ C is open in C with respet to T jC, i.e., there exists an open setU1 2 T suh that C \ V = C \ U1. Thenid�1(V \ C) = C \ V = C \ U1 2 TC :On the other hand there must be a U2 2 T suh that(X n C) \ V = (X n C) \ U2;65



Chapter 6. Charaterization of Borel sets 66and sine X n C is open with respet to T we haveid�1((X n C) \ V ) = (X n C) \ V = (X n C) \ U2 2 T � TC :Thus id�1(V ) = (C \ U1) [ ((X n C) \ U2) 2 TC : q.e.d. (1)(2) id is open.Proof: Let U be an open set with respet to TC . SoU =[i Ui [[j (Uj \ C)for open sets Ui; Uj 2 T . Thenid(U) \ C =[i (Ui \ C) [[j (Uj \ C) = [k=i;jUk \ Cis open in C and by the same argument id(U)\ (X nC) is open in X nC. Thusid(U) is open. q.e.d (2)So, TC is a Polish topology on X. Now C is open and losed with respetto the new topology by de�nition of TC .It is lear that B(X;T ) � B(X;TC). To prove the onverse it suÆes toshow that C \ U is in B(X;T ) for every U 2 T . But every open set U is inB(X;T ) and C is as a omplement of an open set in B(X;T ), therefore C \Uis in B(X;T ) for every open set U 2 T .The next lemma asserts that if we have a sequene of �ner Polish topologiesTn on a Polish spae (X;T ), then the topology generated by the union of allthe open sets from the Tn is again a Polish topology on X.Lemma 6.1.2. Let (X;T ) be a Polish spae, (Tn)n2! be a sequene of Polishtopologies on X with T � Tn for all n 2 !. Then T1 is Polish where T1 is thetopology generated by Sn2! Tn. If Tn � B(X;T ), then B(X;T1) = B(X;T ).Proof. Let Xn = (X;Tn) for n 2 !. Consider the map' : X �! Yn2!Xnx 7�! (x; x; x; : : : )where Qn2!Xn stands for the topologial produt of the spaes Xn.(1) '[X℄ is losed in Qn2!Xn.Proof: Let (xn)n2! 62 '[X℄. Then there exists an i < ! suh that xi 6= xi+1.Let U be an open neighborhood of xi in X and V be an open neighborhood ofxi+1 in X with U \ V = ; (note that X is a Hausdor� spae). By our assump-tion is U 2 Ti; V 2 Ti+1. Therefore we have (xn)n2! 2QnWn �QnXn n '[X℄with Wi = U;Wi+1 = V and Wj = Xj for j 6= i; i + 1. Thus '[X℄ is losed inQn2!Xn. q.e.d. (1)



Chapter 6. Charaterization of Borel sets 67(2) ' is an homeomorphism from (X;T1) to '[X℄.Proof: It is lear that ' is a bijetion.The mapping ' is ontinuous, sine for Uik 2 Tik , 1 � k � n, the preimage ofQn2! Vn with Vik = Uik for 1 � k � n, Vn = Xn otherwise is the intersetionof the Uik , so '�1 "Yn2! Vn# = n\j=1Uij 2 T1:' is open: Let fU (n)i j i 2 !g be a basis for Tn. Then fU (n)i j i 2 !; n 2 !g is asubbasis for T1. And so we get'24 k\j=1U (nj)ij 35 = Yn2! Vn \ '[X℄where Vn = U (nj)ij for n = nj, Vn = Xn otherwise. q.e.d. (2)By (1), (2) and Theorem 1.7 as well as Theorem 1.14 the spae (X;T1) isa Polish spae.The fat about the Borel sets is lear sine with Tn � B(X;T ) we haveT1 � B(X;T ) and therefore B(X;T1) � B(X;T ). The onverse inlusionholds trivially.We an now put together this two lemmas to prove the existene of a �nerPolish topology on every Borel set in a Polish spae.Theorem 6.1.3. Let (X;T ) be a Polish spae, A � X be a Borel set. Thenthere exists a Polish topology TA � T suh that A is open and losed with respetto TA and B(TA) = B(T ).Proof. Let S = fA � X j there exists a Polish topology TA � T suh that A isopen and losed and B(TA) = B(T )g. It suÆes to show that S is losed un-der omplements and ountable unions if we show that T � S (sine thenB(X;T ) � S). But by 6.1.1, all open and all losed sets are in S, so T � S.(1) S is losed under omplements, sine for A 2 S the topology TA witnessesthat X nA is in S as well.(2) S is also losed under ountable unions. Let for this (An)n2! be asequene in S and let TAn = Tn;T1 like in the above Lemma 6.1.2. ThenA = Sn2! An is open with respet to T1. By 6.1.1 there exists an TA � T1 � TPolish suh that A is open and losed and B(X;TA) = B(X;T1) = B(X;T ).Therefore Sn2! An 2 S.The following orollary states now the above Theorem 6.1.3 in the way weneed it for our harterization of the Borel sets.Corollary 6.1.4. Let (X;T ) be a Polish spae. For every Borel set A � Xexists a �ner Polish topology t on A.



Chapter 6. Charaterization of Borel sets 68Proof. Let A � X be a Borel set. By Theorem 6.1.3 there exists a �ner topologyTA on X suh that (X;TA) is a Polish spae and A is losed and open withrespet to TA. So the restrition of TA to A is a Polish topology on A byTheorem 1.14.The following theorem is a nie appliation of Theorem 6.1.3 that readilyimplies the proof of the missing part of Proposition 3.1.5 about the di�erentharaterizations of analyti sets. It asserts that Borel sets in a Polish spaean be seen as ontinuous images of the Baire spae.Theorem 6.1.5. Let (X;T ) be a Polish spae, A � X a Borel set. Then thereexists a losed subset F � N and a ontinuous bijetion f : F �! A. If A 6= ;there is a ontinuous surjetion G : N �! A extending f .Proof. Enlarge by Theorem 6.1.3 the topology T of X to a Polish topology TAin whih A is losed and open. Then there exists by Theorem 2.2.3 a losedF � N and a bijetion f : F �! A ontinuous for TAjA. Sine T � TA wehave f : F �! A is ontinuous for T as well. The seond assertion follows from2.1.7.In Proposition 3.1.5 we haraterized an analyti set as a ontinuous imageof the baire spae as well as a ontinous image of a Borel set. But we have notproved this yet. The proof is now easy. We �rst repeat the proposition.Proposition 6.1.6. Let (X;T ) be a Polish spae, A � X. Then the followingare equivalent:(1) A is the ontinuous image of a funtion f : N �! X.(2) A = projX [C℄ where C � X �N ; C losed.(3) A = projX [B℄ where B � X � Y is a Borel set, Y is a Polish spae.(4) A is the ontinuous image of a Borel set of a Polish spae.Proof. Comparison with the proof of Proposition 3.1.5 tells us that it remainsto show that (4) ) (1):Let h : Y �! X be a ontinuous mapping from a Polish spae Y to X and letB be a Borel set in Y suh that h[B℄ = A. By Theorem 6.1.5 there exists aontinuous surjetion g : N �! B. Then obviously the mapping g� : N �! Yde�ned by g�(x) = g(x) for x 2 N is a ontinuous mapping g�[N ℄ = B. Butnow the omposition h Æ g� is a ontinuos funtion from N to X suh thath Æ g�[N ℄ = A.We proved by Theorem 3.1.11 and Theorem 3.1.14 that the lass of analytisets in an unountable Polish spae is larger than the lass of the Borel sets insuh a spae. The above haraterization of analyti sets thus implies that theontinuous image of a Borel set is in general not a Borel set. But we will provenow that the image of a Borel set of a ontinuous injetion is again a Borelset. This implies the onverse of Theorem 6.1.3. Beause given a Polish spae(X;T ) and a �ner topology t on X suh that a set A is losed and open with



Chapter 6. Charaterization of Borel sets 69respet to t we an onsider the identity mapping between (X; t) and (X;T ).This mapping is ontinuous sine t is �ner than T and the image of the Borelset A in (X; t) equals A in (X;T ) and is therefore also Borel with respet to T .To prove that the image of a Borel set under a ontinuous injetion is againBorel we onstrut now a Lusin sheme (f. De�nition 2.2.1 and Proposition2.2.2). The onstrution makes again use of the lassial Lusin SeparationTheorem 2.5.3 for analyti sets.For the onstrution of the upoming Lusin sheme we need separation fora whole sequene of disjoint analyti sets. We get this by reursion out of theLusin Separation Theorem 2.5.3 and prove this in the following lemma.Lemma 6.1.7. Let (An)n2! be a sequene of pairwise disjoint analyti sets ina Polish spae. Then there are pairwise disjoint Borel sets Bn with Bn � Anfor all n 2 !.Proof. Let (An)n2! be a sequene of disjoint analyti sets. We de�ne now theBn by reursion.Let B0 be the Borel set that separates A0 from Sn>0An (suh a set existsby Theorem 2.5.3).If B0; : : : ; Bn are de�ned suh that Bi separates Ai from Sj<iBi [Sj>iAjfor all 0 � i � n, let Bn+1 be a Borel set that separates An+1 from the analytiset Si<nBi [Sj>n+1Aj .By this de�nition we get pairwise disjoint Borel sets Bn suh that Bn � Anfor all n 2 !.Now we an prove that the image of a ontinuous injetion of a Borel set isagain a Borel set.Theorem 6.1.8 (Lusin-Suslin). Let X;Y be Polish spaes and f : X �! Ybe ontinuous. If A � X is Borel and f jA is injetive, then f [A℄ is Borel.Proof. Without loss of generality we an assume X = N and A � N is losed.(By Theorem 2.2.3 there exists a losed F � N and a ontinuous bijetionb : F �! A that an be extended to a ontinuous surjetion g : N �! A. Butthen f Æ g : N �! Y is ontinuous, f Æ gjF is injetive and f Æ g[F ℄ = f [A℄.)Let T be the topology of Y . Let Bs = f [A \Ns℄ for s 2 !<!. Sine f jA isinjetive, (Bs)s2!<! is a Lusin sheme where B; = f [A℄; Bs = Sn2! Bs_n andBs is analyti. By Lemma 6.1.7 we �nd a Lusin sheme B0s where B0s is Borelsuh that B0; = Y;Bs � B0s. We �nally de�ne by reursion on length(s) Borelsets B�s suh that (B�s )s2!<! is also a Lusin sheme:B�; = YB�(n0) = B0(n0) \ lT (B(n0))B�(n0;:::;nk) = B0(n0;:::;nk) \B�(n0;:::;nk�1) \ lT (B(n0;:::;nk))(1) For all k 2 ! we have B(n0;:::;nk) � B�(n0;:::;nk) � lT (B(n0;:::;nk))Proof: By indution on k. The seond inlusion is lear by the de�nition ofthe B�s .



Chapter 6. Charaterization of analyti sets 70k = 0: B(n0) � B0(n0) and B(n0) � lT (B(n0)), so we are done.Let us assume the assumption is proved for k � 1; k � 1. ThenB(n0;:::;nk) � B0(n0;:::;nk) by the de�nition of B0B(n0;:::;nk) � lT (B(n0;:::;nk)) andB(n0;:::;nk) � B(n0;:::;nk�1) � B�(n0;:::;nk�1) by the assumption. q.e.d. (1)(2)f [A℄ = Tk2!Ss2!k B�sProof: Let x 2 f [A℄. Then there exists an a 2 A with f(a) = x, sox 2 Tk2! Bajk and thus x 2 Tk2! B�ajk � Tk2!Ss2!! B�s .For the onverse let x 2 Tk2!Ss2!! B�s . Then there is a unique a 2 N suhthat x 2 Tk2! B�ajk (note that the sets B�s form a Lusin sheme). Then alsox 2 Tk2! lT (Bajk). So in partiular Bajk 6= ; for all k and thus A \Najk 6= ;for all k, whih means a 2 A sine A is losed. So f(a) 2 Tk2! Bajk. We laimthat f(a) = x. Otherwise by the ontinuity of f there is an open neighborhoodNajk0 of a with f [Najk0 ℄ � U where U is open suh that x 62 lT (U). But thenx 62 lT (f [Najk0 ℄) � lT (Bajk0), a ontradition. q.e.d.(2)With this result we an easily �nish our haraterization of Borel sets. Theonverse of Corollary 6.1.4 is no more than a orollary to this last Theorem6.1.8Corollary 6.1.9. Let (X;T ) be a Polish spae and A a subset of X suh thatthere exists a �ner topology t on A suh that (A; t) is Polish. Then A is a Borelset in (X;T ).Proof. Consider the identity mapping from (A; t) into (X;T ). Sine t is �nerthan T jA this mapping is ontinuous and it is obviously an injetion. So byTheorem 6.1.8 A is in B(X;T ).We �nish this setion by stating the haraterization of Borel sets by �nertopologies as it is witnessed by Corollary 6.1.4 and Corollary 6.1.9.Theorem 6.1.10. Let (X;T ) be a Polish spae. A subset A of X is a Borelset in (X;T ) i� there exists a �ner toplogy t on A (,i.e., t � T jA) suh that(A; t) is a Polish spae.6.2 Analyti setsOur next task is to onstrut a �ner topology for eah analyti pointset of aPolish spae suh that the topology is seond ountable and strong Choquet.By �ner we understand again �ner as the restrition of the topology of thePolish spae to the analyti subset. It is suÆient to �nd suh �ner topologiesfor the analyti subsets of the Baire spae by the following general argument:Remark 6.2.1. To prove that for n 2 ! eah �1n subset A of a Polish spae(X;T ) has a topology t suh that



Chapter 6. Charaterization of analyti sets 711. t � T jA2. t has a basis of length a ardinal �3. t is strong Choquetit suÆes to prove that eah �1n subset of the Baire spae N has a topology withthese properties.Proof. Let A be a �1n subset of a Polish spae (X;T ). By Theorem 2.2.3 thereexists a losed set C in N and a ontinuous bijetion b : C �! X. Sine �1nsets are losed under ontinuous preimages (Theorem 3.1.10) the set b�1[A℄ is�1n in C and also in N . Now the �ner topology (or just a basis of it) of thisset an be transferred by the bijetion b into the set A. It is lear that allthe properties of the topology on b�1[A℄ are then properties of this transferredtopology sine this is a one-to-one transfer.We will proeed by onstruting a basis for suh a topology of an analytiset A in the Baire spae and hek then all the properties of the so onstrutedtopology. A basis B for a topology on a set A is haraterized by the proper-ties that the intersetion of two members of B an be written as the union ofmembers of B and that the union of all members of B equals the whole set A.Sine analyti sets are losed under �nite intersetions the set of all analytisubsets of A would be a andidate for suh a basis. This may lead to a desiredtopology but the length of this basis is very large. Under AC, this basis has forthe most analyti sets the length of the ontinuum. Therefore suh a topologywill never lead to a haraterization of the analyti sets by �ner topologies sinewe an easily de�ne topologies with this properties for any subset of the Bairespae. So we are interested in a basis with a length as short as possible. Sineour topology should be �ner than the topology of the Baire spae the basismust at least have length !.By Proposition 3.2.7 we know that eah �11 subset of the Baire spae is in�11(a) for a real a. Consider a 2 !! suh that A 2 �11(a). This set �11(a) isountable and ontains all basi open sets as well as A. Furthermore, �11(a) islosed under �nite intersetions by Proposition 3.2.5(a). So a natural andidatefor a basis of the �ner topology on A would be the set of all subsets of A whihare in �11(a). The only thing to hek for this topology is the strong Choquetproperty.We will prove below that this topology has indeed the strong Choquet prop-erty. This fat makes this topology also interesting for other works in desriptiveset theory, see for example [HKeL90℄. In the paper of Harrington, Kehris, andLouveau the topology where the �11 sets of N serve as a basis is alled Gandy-Harrington topology. We onsider here a relativized version of it. The proofthat the Gandy-Harrington topology is strong Choquet an also be found in[HKeL90℄.Cruial for the proof that the Gandy-Harrington topology is strong Choquetis the tree representation from Proposition 3.2.10. Before we start with the proofwe remind on a notation onneted with trees. In generalization of De�nition



Chapter 6. Charaterization of analyti sets 722.3.6 we de�ne for a tree T on !�! and (s; t) 2 T the subtree of the ompatiblesequenes of T byT(s;t) = f(s0; t0) 2 T j (s0; t0) � (s; t) _ (s0; t0) � (s; t)g:It is lear that if T is reursive in some a then T(s;t) is reursive in a.Theorem 6.2.2. Let (X;T ) be a Polish spae. Let A 2 �11(X). Then thereexists a �ner topology t on A suh that t is seond ountable and strong Choquet.Proof. By Remark 6.2.1 we an assume X = N .Let Bt = fB j B � A and B is �11(a)g. Sine the intersetion of two �11(a)sets is again �11(a) by Proposition 3.2.5 and sine SBt = A (A 2 Bt) the set Btserves as a basis for a topology. Let t be the topology on A generated by Bt. Itis lear that this topology re�nes the relative topology of the Baire spae on A,sine the basis open sets in N are �01 (f. Example 3.2.3 ). It is also lear thatBt is ountable sine �11(a) is ountable (f. the disussion below Proposition3.2.5).It remains to show that t is strong Choquet. We will desribe a winningstrategy for II in the strong Choquet game in (A; t):(i) Suppose I starts by playing (x0; U0). Then let A0 2 �11(a) suh thatx0 2 A0 � U0 and let T0 be a tree reursive in a suh that A0 = p[T0℄. Sinex0 2 A0 there is an y0 2 N suh that (x0; y0) 2 T0. (y0 is a witness for x0 beingin p[T0℄) Now let s0 = x0j1; t00 = y0j1. The tree (T0)(s0;t00) is reursive in a. Letplayer II play V0 = p[(T0)(s0;t0o)℄. This set is �11(a), x0 2 V0 and V0 � A0 � U0.(ii) Let I's next move be (x1; U1) with x1 2 U1 � V0� Sine x1 2 V0 there exists a witness y00 2 N suh that (x1; y00) 2 [(T0)(s0;t00)℄.Set s1 = x1j2; t01 = y00j2. Then s0 � s1; t00 � t01. (T0)(s1;t01) is again a treereursive in a and x1 2 p[(T0)(s1;t01)℄ � V0.� Let A1 2 �11(a) suh that x1 2 A1 � U1 and let T1 be a tree reursive ina suh that p[T1℄ = A1. Sine x1 2 A1 there is a witness y1 2 !! suhthat (x1; y1) 2 [T1℄. Set t10 = y1j1. Then x1 2 p[(T1)(s0;t10)℄ � U1.Player II answers this move from player I by playingV1 = p[(T0)(s1;t01)℄ \ p[(T1)(s0;t10)℄.Proeeding this way, when I plays (x0; U0); (x1; U1); : : : II produes V0; V1; : : :with U0 � V0 � U1 � V1 � : : : ; xn 2 Vn and moreover one de�nes for eah na reursive tree Tn with xn 2 An = p[Tn℄ � Un and sequenes s0 � s1 � s2 �: : : ; tn0 � tn1 � : : : with (sk; tnk) 2 Tn suh that for eah k the �nite sequenessk; tnk have length k+1 and Vk = p[(T0)sk;t0k)℄\p[(T1)(sk�1;t1k�1 ℄\: : :\p[(Tk)(s0;tko)℄.By this onstrution we get indeed a winning strategy for player II. Letx = Sk2! sk 2 !!. We laim that x 2 TAn = TVn. So player II wins thestrong Choquet game sine the intersetion of the open sets he played is notempty. To prove the laim onsider An = p[Tn℄. Let yn = Sk2! tnk . We have(sk; tnk) 2 Tn for all k. Therefore (x; yn) 2 [Tn℄, so x 2 p[Tn℄ = An.



Chapter 6. Charaterization of analyti sets 73Obviously our version of the Gandy-Harrington topology is Hausdor� sineit is a re�nement of a Hausdor� topology. We have seen in Proposition 4.2.5that every Polish spae is a seond ountable, regular, strong Choquet spaewith the Hausdor� property. So we only property we had to drop for our �nertopology is the property that the topology is regular. The following remarkasserts that the (relativized) Gandy-Harrington topology is indeed not regular(otherwise we would have made a mistake).Remark 6.2.3. The (relativized) Gandy-Harrington topology is not regular.Proof. Let t be the topology on N where all �11(a) sets serve as a basis for ana 2 !!. By Proposition 3.2.6 and Proposition 3.1.14 there exists a �11(a) set Pin N whih is not �11. With respet to the topology t this set P is losed.Assume towards a ontradition that t is regular. So for every point x 62 Pexists a open neighborhood V of x suh that the losure of V does not intersetP . Without loss of generality we an hoose basi open sets for these openneighborhoods. Sine the topology t is seond ountable this are only ountablemany sets. The ountable union of the losures of these sets is in�11 by Theorem3.1.10 and equals N nP . Therefore P as a omplement of an �11 set is �11, butthis ontradits our hoie of P .To get now a haraterisation of the analyti sets we will prove the onverseof Theorem 6.2.2. It will be neessary for the proof that player II has awinning strategy in the strong Choquet game in whih he plays just basi opensets and the diameter of his basi open set in his n-th move is less than 1n+1 .The following lemma asserts that player II has indeed suh a strategy for theonsidered strong Choquet spaes.Lemma 6.2.4. Let (X;T ) be a Polish spae and A � X. If there exists atopology t on A suh that t � T jA and (A; t) is a strong Choquet spae, thenplayer II has a winning strategy in the strong Choquet spae GsCh(A; t) by whihhe plays just basi open sets from t with diameter less than 1n+1 in his n-th movefor all n 2 !.Proof. Let � be a winning strategy for II in the strong Choquet game GsCh(A; t).We de�ne �rst a winning strategy �0 out of � in whih the diameter of the setshe has to play in the n-th move is less than 1n+1 . This strategy �0 is de�ned inthe following way:�0 � ((Uo; x0); V0; : : : ; (Un; xn)) = � � ((U0; x0); V0; : : : ; (Un \B 1n+1 (xn); xn))This strategy has obviously the desired property and is a winning strategy.Given suh a winning strategy �0 we will now de�ne by reursion a strategy�00 suh that player II always plays t basi open sets. For this we will alwaysonsider two runs of the strong Choquet game GsCh(A; t). One run R0 in whihII follows �0 and another run R00 in whih we de�ne the new strategy �00. As-sume player I starts in the game GsCh(A; t) by playing (U0; x0) and II answersfollowing �0 by an open set V0. Choose now an t basi open set B0 suh that



Chapter 6. Charaterization of analyti sets 74x0 2 B0 and B0 � V0. De�ne �00 � ((U0; x0)) = B0. Let (U1; x1) be the an-swer by player I to the t basi open set played by player II. To de�ne �00 forthis sequene onsider in the run R0 the following �rst two moves by eah playerI (U0; x0) (U1; x1)II V0 V1where player II followed �0. Choose for strategy �00 an t basi open set B1 suhthat x1 2 B1 and B1 � V1. So in the run R00 the game until now looks as follows:I (U0; x0) (U1; x1)II B0 B1Proeeding this way we onsider now the answer by player I in run R00 as hisnext move in the run R0 and hoose an t basi open set in the open set playerII plays following his winning strategy �0 in R0. So the strategy �00 is de�nedby reursion as follows. If ((U0; xo); B0; (U1; x1); B1; : : : ; (Un; xn)) is a sequeneplayed in R00 then hoose an t basi open set Bn suh that xn 2 Bn andBn � �0� ((U0; x0); �0 � ((U0; x0)); (U1; x1);�0 � ((U0; x0); �0 � ((U0; x0); (U1; x1))); : : : ; (Un; xn)):Let �00 � ((U0; xo); B0; (U1; x1); B1; : : : ; (Un; xn)) = Bn.It is now easy to see that �00 is indeed a winning strategy for player II.Beause player II wins the run R0 sine he followed his winning strategy �0.Therefore Tn2! Un 6= ;. But then player II has also won the run R00 sine theoutome is also Tn2! Un.By onstrution the winning strategy �00 has now both of the required prop-erties of the lemma.We an now prove the onverse of Theorem 6.2.2 and �nish our harateri-zation of analyti sets by �ner topologies.Theorem 6.2.5. Let (X;T ) be a Polish spae, A � X and there is a topologyt on A suh that� t � T jA� t is seond ountable� t is strong Choquet.Then A is a �11 set in X with respet to T .Proof. Let B = fBi j i 2 !g be a basis for (X;T ), d be a omplete ompatiblemetri for this spae. Let C = fCi j i 2 !g be a basis for (A; t). Fix furthera winning strategy for player II in the strong Choquet game GsCh(A; t) whihhooses in the n-th move a set Ci 2 C with diam(Ci) < 1n+1 .



Chapter 6. Charaterization of analyti sets 75We start by de�ning a tree T on ! � (! �A� !) in the following way:((i0; j0; x0; k0); : : : ; (in�1; jn�1; xn�1; kn�1)) 2 T ,(i) diam(Bim) < 1m+1 for all m < n(ii) lT (Bim+1) � Bim for all m < n(iii) ((Cj0 ; x0); Ck0 ; (Cj1 ; x1); Ck1 ; : : : ; (Cjn�1 ; xn�1); Ckn�1) is an initial segmentof a run in the strong Choquet game in whih II follows his strategy �(iv) Bim \ Ckm 6= ; for all m < nFor a ountable subset Q � A the tree TQ = T \ (w � (! � Q � !))<! is aountable tree. By using bijetions between ! and Q and between !3 and ! wean view this tree as a tree on ! � !.Then p[TQ℄ = fu 2 !! j 9v 2 (! �Q� !)! (u; v) 2 [TQ℄gis a �11 set by Theorem 3.1.7 andPTQ = fx 2 X j 9u 2 p[TQ℄ ^ x 2\m Bu(m)gis a �11 set in X sinex 2 PTQ , 9u(u 2 p[TQ℄ ^ 8mx 2 Bu(m)):We will �nish the proof now by onstruting a ountable Q suh thatPTQ = A. That PTQ is a subset of A is easy to see for any ountable Q.We start by proving this.(1) PTQ � A for all ountable Q � A.Proof: Let x 2 PTQ witnessed by x 2 TmBim and Cj0 ; x0; Ck0 ; : : :. Byonstrution of the tree and of � the set TmCkm has exatly one member inA, let us say Tm Ckm = fag. We laim that x = a. Assume x 6= a. Thend(x; a) > 0, say d(x; a) = ". Let m 2 ! be large enough suh that 1m < "2 . Byour de�nitions above diam(Bim) < "2 ;diam(Ckm) < "2 . Sine Bim \ Ckm 6= ;there exists an z 2 Bim \ Ckm . But now we haved(x; a) � d(x; z) + d(z; a) � diam(Bim) + diam(Ckm) < "2 + "2 = �This is a ontradition. q.e.d. (1)It remains now to �nd a ountable Q � A suh that A � PTQ . For a proofof A � PTQ we have to �nd for eah x 2 A an in�nite sequene through TQthat witnesses x 2 PTQ . It will turn out that an Q with the following propertywill be proper to onstrut suh in�nite sequenes.(2) There exists a ountable Q � A with the following property:For every s 2 TQ and every i; j; k 2 ! the following holds. If there is an



Chapter 6. Charaterization of analyti sets 76a 2 A suh that s_(i; j; a; k) 2 T , then there exists an a 2 Q suh thats_(i; j; a; k) 2 T .Proof: De�ne by reursion on ! some Qn.Q0 = ;. Assume now for n > 0 a ountable Qn is de�ned suh that forevery s 2 TQn�1(Q�1 = ;) and for every i; j; k 2 ! we have that if thereexists an a 2 A suh that s_(i; j; a; k) 2 T then there is an a 2 Qn suhthat S_(i; j; a; k) 2 TQn . Sine Qn is ountable the tree TQn is ountable.Consider now for every s 2 TQn and every i; j; k 2 ! the set Mns;i;j;k = fa 2A j s_(i; j; a; k) 2 Tg. There are only ountable many sets of these form. UsingAC! we an hoose one point in any of these sets Mns;i;j;k and all the set ofthe hosen points Q0n+1. Set Qn+1 = Qn [ Q0n+1. This set is a ountable byonstrution. Finally set Q = SnQn. Q is ountable (here we use again AC!).Q has now the requested property. A �nite sequene s 2 TQ must allreadybe in some Qn, so s 2 TQn. If there are i; j; k 2 ! and a 2 A suh thats_(i; j; a; k) 2 T then a 2 Mns;i;j;k. So there is an a 2 Qn+1 � Q suh thats_(i; j; a; k) 2 TQ. q.e.d. (2)Fix suh an Q. The property of (2) suÆes now to prove that for suh anQ our set A equals the �11 set PTQ .(3) A � PTQProof: Let x 2 A. We onstrut by reursion on the length of a se-quene an in�nite sequene s = (�; �; ~y; �) in the tree TQ suh that for sn =(�n; �n; ~yn; �n) 2 TQ we have x 2 B�n(n�1) \ C�n(n�1).Let s0 be the empty sequene. Assume sn = (�n; �n; ~yn; �n) is given with theabove property. The sequene (�n; ~yn; �n) desribes the �rst n� 1 moves in thestrong Choquet game. Let player I's next move be x. By our assumption onsn the point x is in C�n(n�1). Assume also player I plays an basi open set Cpwith x 2 Cp � C�n(n�1) and player II answers by playing an Cq following hisstrategy �. Furthermore let Br be a T -neighborhood of x with diameter lessthan 1n+1 . Now s�n = (�_n r; �_n p; ~yn_x; �_n q) is a sequene in T . By our hoieof Q there exists an z 2 Q suh that sn+1 = (�_n r; �_n p; ~yn_z; �_n q) 2 TQ andx 2 B�_n r(n) \ C�_n q(n) = Br \ Cq. This �nishes our onstrution of s.By onstrution of s we have 8n x 2 B�n(n�1) \ C�n(n�1). So in partiularx 2 TmB�(m). So s is a witness for x being in PTQ . q.e.d. (3)So by (1) and (3) we have A = PTQ . And sine PTQ is �11 we proved thatA 2 �11.



Chapter 7Charaterization of projetivesets by �ner topologiesWe are now interested in results similar to that of Chapter 6 for higher lassesof the projetive hierarhy. So we have to onsider additional ways of weakeningthe topologial onditions in our spae. We mentioned that a �ner topologyof a Hausdor� spae will always remain Hausdor� and we already droppedthe regularity. One ould ask what happens if the weaken the strong Choquetproperty to the Choquet property. The next proposition shows that this leadsnowhere.Proposition 7.1. Let (X;T ) be a Polish spae and A an arbitrary subset ofX. Then there exists a topology t on A suh that t is �ner than T and t isregular, seond ountable and Choquet.Proof. Let B be a basis for (A;T jA). Let C be the losure of B under omple-ments and �nite intersetions. Pik a point xC in eah nonempty C 2 C.Now let D = C [ ffxCg j C 2 Cg be the ountable basis for the topology t.Sine the basis onsists of lopen sets t is regular. The isolated points are densein t, so player II wins the Choquet game in his �rst move by playing one of thexC 's.By this Proposition 7.1 the only topologial ondition that remains to beonsidered is the seond ountable ondition. As desribed in the introdutionto Part 2 we will now haraterize �1n sets by �ner topologies with bases oflength less than the projetive ordinals Æ1n. In setion 7.1 we will under thetheory ZF+DC+PD onstrut suh a �ner strong Choquet topology for eah�1n subset of a Polish spae. We mentioned that the haraterization an nothold in this theory and therefore we will work for the onverse under the axiomsZF+DC+ADR. The proof of the onverse has some tehnial diÆulties. Inpartiular will the length of the basis be oded by ertain sales. In setion 2 ofthis hapter we will introdue the notion of a sale oding and notions relatedto it that will be neessary for the proof. In setion 3 we will �naly �nish ourharaterization of the projetive sets by �ner topologies.77



Chapter 7. Finer topologies on �1n sets 787.1 Finer topologies on �1n setsIn this short setion we will see that for eah�1n set exists a �ner strong Choquettopology with a basis of length less than the projetive ordinal Æ1n. This is apretty straightforward generalisation of the onstrution for the �ner topologyfor �11 sets as we introdued it in the proof of Theorem 6.2.2.Assume ZF+DC+PD for this setion. We already onstruted a topologyfor �11 sets in Theorem 6.2.2. Cruial was the !-Suslin property of the �11subsets of N . Under PD we proved in Theorem 5.1.12 that eah �1n subset ofthe Baire spae is �-Suslin for a ardinal � whih is as an ordinal less than Æ1n.Comparison with the proof of Theorem 6.2.2 gives us diretly an idea how tode�ne now a �ner topology for an �11 set.Theorem 7.1.1 (PD). Let (X;T ) be a Polish spae. For n � 1 let A 2 �1n(X).Then there exists a �ner topology t on A suh that t is strong Choquet and hasa basis of length a ardinal less than Æ1n (less as an ordinal, not neessarily lessin ardinality).Proof. Let n � 1. By Remark 6.2.1 we an assume that A is a �1n subset ofthe Baire spae N . By Theorem 5.1.12 there exists a ardinal � suh that � isless than Æ1n as an ordinal and a tree T on ! � � suh that A = p[T ℄. Fix suhan � and a tree T .As in Theorem 6.2.2 we will de�ne a basis for our �ner topology t. InDe�nition 2.3.6 we de�ned for s 2 T the subtree Ts onsisting of all sequenesompatible with s asTs = ft 2 T j t is ompatible with sg = ft 2 T j t � s _ s � tg:Let A = fp[Ts℄ j s 2 Tg. Then A is a set of ardinality �. Let B be thelosure of A and all the T -basi open sets of A under �nite intersetions, i.e.,the intersetion of all sets that ontain A and all T jA basi open sets and arelosed under �nite intersetions. The ardinality of B is also �. Let B serve asa basis for our topology t.This so de�ned topology t has now by de�nition a basis of length less thanÆ1n and is �ner than T jA sine it ontains all basi open sets from T jA. So itremains to show that this topology t is strong Choquet. We do this as beforein the �11 ase by desribing a winning strategy for II.Assume player I starts by playing (x0; U0). Then hoose a basi open set ofthe form p[Tr00 ℄ \ p[Tr10 ℄ \ : : : \ p[Trm00 ℄ \Nu0 ; u0 2 !<!, suh that this set is asubset of U0 and ontains the point x0. We want to make sure our set is notjust a T -basi open set, so interset the basi set with p[T ℄ if neessary. Sinex0 2 p[Tri0 ℄; 0 � i � m0, there exists an �i0 2 �! suh that (x0; �i0) 2 Tri0 . Sets0 = x0j1; t0;i0 = �i0j1. Then (x0; �i0) 2 (Tri0)(s0;t0;i0 ) (Of ourse this operationreally only applies here if ri0 is the empty sequene). Let II playV0 = p[(Tr00 )(s0;t0;00 )℄ \ : : : \ p[(Trm00 )(s0;t0;m00 )℄ \Nu0Let player I's answer be (x1; U1) with x1 2 U1 � V0.Sine x1 2 V0 there exists for 0 � i � m0 an �i0 2 �! suh that (x1; �i0) 2



Chapter 7. Finer topologies on �1n sets 79(Tri0)(s0;t0;i0 ). Set s1 = x1j2; t0;i1 = �i0j2. Then s0 � s1; t0;i0 � t0;i1 and x1 2p[(Tri0)(s1;t0;i0 )℄.Choose now again a basi set p[Tr01 ℄ \ p[Tr11 ℄ \ : : : \ p[Trm11 ℄ \Nu1 suh thatthis is a subset of U1 and ontains x1. Let �i1 be in �! for 0 � i � m1 suhthat (x1; �i1) 2 Tri1 . Set t1;i0 = �i1j1. Then x1 2 p[(Tri1)(s0;t1;m10 )℄. In partiularx1 2 p[(Tr01 )(s0;t1;00 )℄ \ : : : \ p[(Trm11 )(s0;t1;m10 )℄ \Nu1 . NowV1 = p[(Tr00 )(s1;t0;11 )℄ \ : : : \ p[(Trm00 )(s0;t0;m00 )℄ \Nu0 \ p[(Tr01 )(s0;t1;00 )℄ \ : : :\p[(Trm11 )(s0;t1;m10 )℄ \Nu1is a legal move for player II.Proeeding this way, when I plays (x0; U0); (x1; U1); : : : II produes V0; V1; : : :with U0 � V0 � U1 � V1 � : : : ; xn 2 Vn and moreover one de�nes for eah nbasi sets An with xn 2 An = p[Tr0n ℄ \ : : : \ p[Trmnn ℄ \Nun � Un and sequeness0 � s1 � s2 : : : ; tn;0o � tn;01 � tn;02 : : : ; : : : ; tn;mn0 � tn;mn1 � tn;mn2 � : : : with(sk; tn;ik ) 2 Trin ; 0 � i � mn, suh that for eah k the �nite sequenes sk; tn;ikhave length k + 1 andVk = p[(Tr00 )(sk ;t0;0k )℄ \ : : : \ p[(Trm00 )℄ \Nu0\ p[(Tr01 )(sk�1;t1;0k�1)℄ \ : : : \ p[(Trm11 )(sk�1;t1;m1k�1 )℄ \Nu1\ : : :\ p[(Tr0k)(s0;tk;00 )℄ \ : : : \ p[(Trmkk )(s0;tk;mk0 )℄ \NukTo prove now that this so de�ned strategy is indeed a winning strategy wehave to prove that Tn Vn 6= ;. But this intersetion ontains a point, namelythe point x = Sk sk.Claim: x 2 TnAn = Tn VnProof: Consider An = p[Tr0n ℄ \ : : : \ p[Trmnn ℄ \ Nun . Let 0 � i � mn. Let�in = Sk tn;ik . We have (sk; tn;ik ) 2 Trin for all k. Therefore (x; �in) 2 [Trin ℄ andthus x 2 p[Trin ℄. It remains to show that x 2 Nun . For this let S be thefull tree on !!. For a sequene s 2 !<! we have [Ss℄ = Ns our basi set inthe Baire spae. It suÆes to show now that sk 2 Sun for every k. Note thatsn = xnjn+1. Sine xn 2 Nun we have sn and un ompatible, therefore sk 2 Sunfor k � n. Assume towards a ontradition that for k > n the sequene sk isnot in Sun . This implies xk 62 Nun . In partiular, xk 62 Vn, but xk 2 Vk � Vn, aontradition. q.e.d. ClaimObviously this proof applies for �11 sets without assuming PD. We intro-dued the Gandy-Harrington topology for �11 sets in Theorem 6.2.2 sine thistopology is somewhat more natural. The rest of this paper is devoted to theproof of the onverse of Theorem 7.1.1.



Chapter 7. Reliable ordinals 807.2 Reliable ordinalsIt will be neessary for the proof of the onverse of Theorem 7.1.1 that we anode the length of our basis for the �ner topology not only by some norm, butby a sale. We will de�ne the notion of suh a sale-oding next. An ordinalthat admits a sale-oding on some subset of the Baire spae will be alledreliable.De�nition 7.2.1. (i) A sale ('i)i2! on some subset W � N is alled a sale-oding for some ordinal � if '0 is a surjetion on � and the length of the othernorms 'n are less or equal to � for all n � 1.(ii) An ordinal � is alled reliable if � admits a sale-oding. For some point-lass � we all � �-reliable if it admits a sale-oding by some � sale on aset in �.We already mentioned in the Introdution to Part 2 that the harateri-zation of the projetive sets by topologies of length less than the projetiveordinals an only hold, if the projetive ordinals have distinguished ardinality.This is true under AD as we proved in Theorem 5.2.5 and Theorem 5.2.6 to-gether with Theorem 5.2.7. In partiular these results assert that the projetiveordinals are suessor ardinals. In view of Theorem 7.1.1 and Theorem 4 wehave to onsider the predeessors of the projetive ordinals sine this will bethe lengths of the bases. So there should be reliable ordinals with ardinalityof these ardinals. Our proof of Theorem 4 requires that suh ordinals have tobe even �1n-reliable. We will prove now that suh ordinals indeed exist.Proposition 7.2.2 (PD). Æ12n+1 is �12n+2-reliable for all n � 0.Proof. Let W � N be a omplete �12n+1 set and ('i)i2! a regular �12n+1 saleon W (this exists by the seond periodiity Theorem). By Theorem 5.1.14 eah'i has length Æ12n+1. Therefore '0 is a surjetion on Æ12n+1. Sine W 2 �12n+2and ('i)i2! is obviously a �12n+2-sale we are done.So the odd projetive ordinals are reliable in the needed sense. We annot prove that the predeessor of any odd projetive ordinal Æ12n+1 is �12n+1reliable. But under the assumption of AD the set of all�12n+1-reliable ordinalsless than Æ12n+1 is unbounded. So there exists an ordinal with the ardinalityof the predeessor of Æ12n+1 that is �12n+1-reliable and this will be suÆient forour purpose.Proposition 7.2.3 (AD). The set of �12n+1-reliable ordinals less than Æ12n+1is unbounded in Æ12n+1 for all n � 0.Proof. Let �0 < Æ12n+1. Let ('i)i2! be a regular �12n+1-sale on a omplete�12n+1-set P � N .Set P�0 = fx 2 N j 8i 'i(x) � �0g = Ti P �0i 2�12n+1,where P �0i = fx 2 N j 'i(x) � �0g and this set is in �12n+1 by Lemma 5.1.3.(1) ('ijP�0)i2! is a �12n+1-sale on P�0 .Proof: Let (xk)k2! be a sequene in P�0 onverging against some point x 2 N



Chapter 7. Reliable ordinals 81and 'i(xk) onverges against some �i < �0 for all i 2 !. Then x 2 W and'i(x) � �i < �0 for all i 2 !. Therefore x 2 P �0i for all i, thus x 2 P�0 . SineP�0 2 �12n+1 we know from Theorem 5.1.2 that ('ijP�0)i2! is a �12n+1-sale.q.e.d.(1)De�ne now by reursion an inreasing sequene of �i in the following way:Let �i < Æ12n+1 be given. For � < �i suh that � 62 ran('0jP�i) let ��i beminimal with the property that there exists an x 2 P��i with '0(x) = �. Let�i+1 = supf��i j � < �i ^ � 62 ran('0jP�i)g. Sine Æ12n+1 is regular we have�i+1 < Æ12n+1.Let �! = supf�i j i 2 !g. Then �! < Æ12n+1 beause of the regularity of Æ12n+1.As in (1) we have that ('ijP�! )i2! is a �12n+1-sale on P�! . Furthermoreran('0jP�! ) = �!, sine for � < �! there exists an i 2 ! suh that � < �i.If there is an x 2 P�i � P�! suh that '0(x) = � we are done. Otherwise thereexists by onstrution of the �i some x 2 P�i+1 � P�! with '0(x) = �.Corollary 7.2.4. There exists a �12n+1-reliable ordinal less than Æ12n+1 of ar-dinality the predeessor of Æ12n+1.The following notions and results in onnetion with reliable ordinals willalso be neessary for the proof of Theorem 4.We �x now for a reliable ordinal � a sale-oding ('i)i2! on W � N .De�nition 7.2.5. Let S be a ountable subset of �.Let � be in S. The set S is alled �-honest if there exists an w 2W suh that'0(w) = � and 'n(w) 2 S for all n 2 !.S is alled honest if S is �-honest for all � in S.The following Theorem we will be ruial in the proof of our main Theorem4. We remind here on the bijetion between !! and (!!)! we used in the proofof Lemma 2.1.2:Let h ; i : !�! �! ! be a bijetion suh that hi; 0i � i and hi; ki < hi; li for alli and k < l. Then de�ne ( ) : !! �! (!!)!x 7�! ((x)i)i2!where (x)i(m) = x(hi;mi).One last notion is neessary. A funtion F : X! �! Y ! is alled a Lip-shitz funtion if it is already de�ned on the initial segments of eah elementof X!, i.e., the funtion F is also de�ned on X<! and forall x 2 X and foralln 2 ! we have F (xjn) = F (x)jn.Theorem 7.2.6. Let ('i)i be a sale-oding on W � N for �.(i) There exists a Lipshitz funtion F : �! �! N suh that range(F ) � Wand for f 2 �! the following holds:ff(0); f(1); : : :g is f(0)� honest ) '0(F (f)) = f(0)(ii) There exists a Lipshitz funtion F : �! �! N suh that range(F ) �fx j8n(x)n 2Wg and for f 2 �! the following holds:ff(0); f(1); : : :g is honest ) 8n '0((F (f))n) = f(n)



Chapter 7. Reliable ordinals 82Proof. (i) Let T be the tree on ! � � assoiated to the sale ('i)i on W , i.e.((ko; : : : ; kn); (�0; : : : ; �n)) 2 T, 9x 2W suh that x(i) = ki and 'i(x) = �i for i � nConsider now the following game on �I f(0) f(1) : : :II w(0); h(0) w(1); h(1) : : :where f(i); h(i) 2 � and w(i) 2 ! for all i 2 !.II wins the game if(w; h) 2 [Tf(0)℄ ^ 8v[v 2 p[Tf(0)jff(0); f(1); : : :g℄) '0(v) � '0(w)℄where Tf(0) is the subtree of T where eah branh s starts with (n0; f(0)) forsome n0 2 ! and Tf(0)jff(0); f(1); : : :g is the subtree of Tf(0) where for a se-quene s = (r; t) of length n we have t(i) 2 ff(0); f(1); : : :g for all i < n.Claim: II has a winning strategy for this gameProof: Let I start by playing f(0). Then II hooses an w 2 W suh that'0(w) = f(0) and plays on his n-th move w(n); h(n) = 'n(w).Then we have obviously (w; h) 2 [Tf(0)℄. If v 2 p[Tf(0)jff(0); f(1); : : :g℄ thenthere exists by onstrution of the tree a sequene (yi) onverging against vsuh that '0(yi) = f(0) for all i. (f the proof of Theorem 2.3.7, \�") Sine('i)i is a sale we have '0(v) � f(0) = '0(w). q.e.d. ClaimLet � be a winning strategy for II. De�ne now the funtion F byF (f) = w , f;w; h is a run in the game where II follows his strategy �This funtion has the required properties. Let F (f) = w. Sine II played w fol-lowing his strategy � this means w 2 p[Tf(0)℄ � p[T ℄ =W , thus range(F ) �W .Let now ff(0); f(1); : : :g be f(0)-honest. We have to show '0(F (f)) = f(0).Sine the set ff(0); f(1); : : :g is f(0)-honest there exists an x 2 W suh that'0(x) = f(0) and 'i(x) = f(k) for an k 2 !. This x is in p[Tf(0)jff(0); f(1); : : :g℄.Sine � is a winning strategy we have f(0) = '0(x) � '0(w) = '0(F (f)). Onthe other hand one shows as in (1) that '0(w) � f(0). This proves everything.(ii) The idea is to transfer the tree from (i) by the funtion ( ) to annother treeand then imitate the proof of (i). So we de�ne a tree T on ! � � by((k0; : : : ; kn); (�0; : : : ; �n)) 2 T, 9x 2 N suh that 8i(x)i 2Wand if hi; ji =m then km = (x)i(j) and �m = 'j((x)i)For f 2 �! letTf = f(t; r) 2 T j for li = hi; 0i < length(t; r) : r(li) = f(i)g



Chapter 7. Proof of Theorem 4 83and T if = f(t; r) 2 Tf j r(hi; ki) 2 ff(0); f(1); : : :g8k 2 !g:Consider now the the following game on �I f(0) f(1) : : :II w(0); h(0) w(1); h(1) : : :where f(i); h(i) 2 � and w(i) 2 ! for all i 2 !.II wins , (x; h) 2 [Tf ℄^8v8i[v 2 p[T if ℄) '0((v)i) � '0((x)i)℄Now we an do the same as in part (i).Claim: II has a winning strategyProof: We de�ne again a winning strategy for player II. For every f(i)player I plays II hooses an wi 2 W suh that '0(wi) = f(i) (sine '0 is asurjetion onto � suh a wi exists). Player II wins by playing x(hi; ji) = wi(j)and h(hi; ji) = 'j(wi). Sine hi; ji > i player II has at any time allready theneessary information.Now (x; h) 2 [Tf ℄ sine (x)i = wi 2 W and for hi; ji = m we have x(m) =(x)i(j) = wi(j) and h(m) = 'j((x)i). Furthermore h(hi; 0i) = '0(wi) = f(i).Let now v 2 N ; i 2 ! and v 2 p[T if ℄. That means9u 2 �!(v; u) 2 [T if ℄, 9u 2 �!8l 2 !(vjl; ujl) 2 T if, 9u 2 �!8l 2 !9yl 2 N suh that 8n(yl)n 2Wand if hn; ji = m then v(m) = (yl)n(j) and u(m) = 'j((yl)n)Thus in partiular the sequene (yl)i onverges (in l) against (v)i and '0((yl)i) =f(i) for all l. Sine ('i)i is a sale we have (v)i 2 W and '0((v)i) � f(i) ='0(w). q.e.d. ClaimFix now a winning strategy � for player II and de�ne as above F (f) = x ifplayer II answers to I's play f by x; h. Note that we used in (1) to show that(v)i 2 W and '0((v)i) � f(i) just the fat that v 2 p[Tf ℄. So we an prove asin (1) that (F (f))i = (x)i is in W for all i and '0((F (f))i) � f(i) sine � beinga winning strategy for II implies x 2 p[Tf ℄.Let now S = ff(0); f(1); : : :g be honest. Let i 2 !. Sine S is f(k)-honestfor k 2 ! there exists an wk with '0(wk) = f(k) and 'l(wk) = f(m) for somem 2 ! and all l 2 !. Let v 2 N be de�ned by v(hk; ni) = wk(n). This v 2 p[T if ℄.Sine � is a winning strategy we have f(i) = '0((v)i) � '0((x)i) = '0((F (f))i).Thus '0((F (f))i) = f(i).Now we an �nally start with the proof of Theorem 4.



Chapter 7. Proof of Theorem 4 847.3 Proof of Theorem 4To prove Theorem 4 and get the haraterization of projetive sets by �nertopologies we have to prove the following theorem:Theorem 7.3.1 (ADR). Let (X;T ) be a Polish spae and let A � X. If thereexists a �ner topology t on A suh that t is strong Choquet and has a basis oflength less than Æ1n, then A 2 �1n.Proof. We work now under ZF+DC+ ADR.Fix the following objets:� Let X;T ; A; t; n be given.� Let B = fBi j i 2 !g be a basis for (X;T ).� Let d be a omplete metri on X whih indues the topology on (X;T ).� Let � be a �1n-reliable ordinal with ardinality the predeessor of Æ1n.1� Let C = fC� j � < �g be a basis for (A; t).� Let � be a winning strategy for player II in the strong Choquet gameGsCh(A; t) whih hooses basi sets from C of diameter less or equal 1i inthe i-th move.� Let W � N be a �1n set and 'i : W �! � be a �1n-sale on W withran('0) = �.� Let F : �! �! !! be a Lipshitz funtion with the properties fromTheorem 7.2.6.We start the proof by de�ning a game G.A game GWe de�ne G in the following way:I �0; �0; x0 �1; �1; x1 : : :II �0; �0 �1; �1 : : :where �i; �i; �i; �i 2 � and xi 2 A for i 2 !.The players must obey the following rule R:The players must play suh that the �nite initial segments ofI (C�0 ; x0) (C�1 ; x1) : : :II C�0 C�1 : : : (�)1Note that we just proved for n even that � is a ardinal. We do not know this for n odd.Nevertheless we denote ontrary to our usual notation this ordinal by �.



Chapter 7. Proof of Theorem 4 85are legal moves in the strong Choquet game for (A; t) with diam(C�i) < 1i . The�rst player to fail loses.The payo� set is the following:Let us assume no player violates the rule. Let f = (�0; �0; �0; �0; �1; �1; �1; �1; : : :) 2�!. Set �̂i(f) = '0((F (f))4i+3). Let �nallyP = ff 2 �! j 9x 2 A8m 2 !x 2 C�̂m(f)g:II wins the run of the game , f 2 P .The following remark turns out to be very important.Remark 7.3.2. The de�nition of F (see Theorem 7.2.6(ii) for the propertiesof F ) implies that if f is honest, then�̂i(f) = '0((F (f))4i+3 = f(4i+ 3) = �i:Hene if f is honest, then f 2 P , II wins the round of the strong Choquetgame (�).We proeed now with the key lemma of this proof. We will show that playerII has a winning quasi-strategy in this game G independent of the points fromA played by player I. This lemma is the only part of the proof that requires theaxiom ADR.Lemma 7.3.3. Player II has a winning quasi-strategy � independent of thepoints xi played by I in the following sense:Let s = ((�0; �0; x0); (�0; �0); : : : ; (�m�1; �m�1; xm�1)) ands0 = ((�0; �0; x00); (�0; �0); : : : ; (�m�1; �m�1; x0m�1))be two positions in G whih are legal and onsistent with � . Let (�m�1; �m�1) 2� � �. If xm�1; x0m�1 2 C�m�1 and s_(�m�1; �m�1) is onsistent with � , thens0_(�m�1; �m�1) is also onsistent with � .Proof. We will prove this lemma in several steps. Our �rst aim is to see thatour payo� set P � �! is �-Suslin2 for some ordinal �. Sine we are workingunder ADR (and this is equivalent to the fat that every subset of the realsadmits sales) we will prove �rst that P an be seen as the preimage of a subsetR of the reals under the funtion F . The subset R is then �-Suslin for someordinal � by ADR and we an apply the Lipshitz funtion F to transfer a treeon ! � � that witnesses the Suslin representation for R to a tree on �� � thatwitnesses that P is �-Suslin.(1)There exists a subset R � N suh that F�1[R℄ = P2Note that we de�ned being �-Suslin just for subsets of !! but the generalization forarbitrary sets of the form X! for any set X is straightforward.



Chapter 7. Proof of Theorem 4 86Proof: Obviously the only andidate for suh an R is F [P ℄. So we have toshow that F�1[F [P ℄℄ = P .\�" lear\�" Let g 2 F�1[F [P ℄℄. Then there is an f 2 P suh that F (f) = F (g). Thisimplies that for all i 2 ! we have �̂i(f) = '0((F (f))4i+3) = '0((F (g))4i+3) =�̂i(g). Sine f 2 P there exists an x 2 A suh that x 2 Ti2! C�̂i(f). ButTi2! C�̂i(f) = Ti2! C�̂i(g). Therefore g 2 P by de�nition of P . q.e.d.(1)ADR implies that every set of reals admits a sale. So in partiular there isa sale for R and by Theorem 2.3.7 R is Suslin. Let TR be a tree on ! � � forsome ordinal � suh that R = p[TR℄.Using the fat that F is a Lipshitz funtion we get a tree representationfor P in the following way. Let a tree T � on �� � be given by((�0; : : : ; �n�1); (�0; : : : ; �n�1)) 2 T �, (F (�0; : : : ; �n�1); (�0; : : : ; �n�1)) 2 TR(2) p[T �℄ = PProof: � 2 p[T �℄, 9� 2 �! (�; �) 2 [T �℄, 9� 2 �!8k((�0; : : : ; �k); (�0; : : : ; �k)) 2 T �, 9�8k(F (�0; : : : ; �k); �0; : : : ; �k)) 2 TR, 9� 2 �!(F (�); �) 2 [TR℄, F (�) 2 p[TR℄ = R, � 2 F�1[R℄, � 2 P q.e.d. (2)The Suslin representation of the payo� set P does not suÆe to prove thedeterminay of the game G, but there is a tehnique of homogenizing a treeT � on � � � with the help of a strong partition ardinal3 � > maxf�; �g thatwill imply the needed result4. This tehnique is due to Kehris, Kleinberg,Moshovakis, Woodin ([KKMW81℄) and is desribed in detail in PhilippRohde'sthesis [Rohd01℄. Therefore we shall only sketh the following argument andpoint to the orresponding proofs in Rohde's thesis.First of all we have to quote an important theorem from the paper of Kehris,Kleinberg, Moshovakis and Woodin:3A strong partition ardinal is a ardinal � suh that for all funtions f : [�℄� ! 2 thereis a subset H � � with ardinality � suh that f � [H℄� is onstant. For more on strongpartition ardinals, f. [Kana97℄ p. 432.4A de�nition of homogeneous trees and the general idea how to apply this for determinayresults an be found in [MaSt89℄, in partiular see their Theorem 2.3. The following aproahhere is slightly di�erent.



Chapter 7. Proof of Theorem 4 87Theorem 7.3.4 (AD). For eah � < � there is a � suh that � < � < � and� is a strong partition ardinal5.For a proof see [KKMW81, Theorem 1.1℄. We look at the tree T � on �� �and �nd a strong partition ardinal � > maxf�; �g aording to Theorem 7.3.46.Following the outline in [Rohd01℄ we an assign an ordinal �(s) to eah s 2�<! and attah a �-omplete ultra�lter Us on [�℄�(s) to s in a way suh thatthe system (Us)s2�<! beomes a homogeneous system of ultra�lters.7. Thehomogenization of T � is done in Satz (5.15) of [Rohd01℄.With the homogenized tree (T �; (Us)s2�<!) in mind, we an de�ne an aux-iliary game G0:In the game G0 player I and player II play as in the game G, so in partiularthey have to follow the rule R, but in addition, player II plays an objet fn inround n suh that the following holds:8If in round n of the game, before player II plays, the players have produeda sequene tn := ((�0; �0; x0); (�0; �0; f0); : : : ; (�n; �n; xn)),and we let t̂n := ((�0; �0); (�0; �0); : : : ; (�n; �n)),then fn 2 [�℄�(t̂n) and fn�1 � fn.The payo� of this game G0 is the same as in G, the additional objet fi onlyadds to the rules.It an be seen that the game G0 is an open game, hene quasi-determined(the proof is Behauptung 1 of Satz (5.16) in [Rohd01℄), so either player I orplayer II has a winning quasi-strategy in this game. In fat, if player II has awinning quasi-strategy, then the maximal quasistrategy �max (moving to non-losing positions) is winning and this winning quasi-strategy is independent ofthe points in A played by player I in the sense of this key lemma:(3) The maximal winning quasi-strategy �max has the following property:Let t = ((�0; �0; x0); (�0; �0; f0); : : : ; (�m�1; �m�1; xm�1)) andt0 = ((�0; �0; x00); (�0; �0; f0); : : : ; (�m�1; �m�1; x0m�1))be two positions in G0 whih are legal and onsistent with �max. Let (�m�1;�m�1; fm�1) be suh that if xm�1; x0m�1 2 C�m�1 and t_(�m�1; �m�1; fm�1) isonsistent with �max, then t0_(�m�1; �m�1; fm�1) is also onsistent with �max.5� is the supremum of all the lengths of prewellorderings of the Baire spae.6� < � sine it is the length of �1n prewellordering, � < � sine � ame from a sale of asubset of N7The de�nition of �(s) is De�nition (5.11) in [Rohd01℄8For the de�nition of the fn's and for the following, f. the proof of Theorem 5.16 inRohdes thesis.



Chapter 7. Proof of Theorem 4 88Proof:Let t and t0 be as in the statement of (3) and (�m�1; �m�1; fm�1) be ananswer for II following �max. Then t_(�m�1; �m�1; fm�1) is a winning positionfor II by de�nition of �max, i.e., a position suh that player I has no winningstrategy from this position. (That suh a quasi-strategy �max is a winning quasi-strategy for II in a open game see the proof of the Gale-Stewart Theorem forexample in [Kana97, Proposition 27.1℄.)Assume towards a ontradition that t0_(�m�1; �m�1; fm�1) is no winningposition for II. Then player I has a winning strategy from this position on.Player II does not lose by violating any rule if he plays (�m�1; �m�1; fm�1) inround m, so player I really has to play following a winning strategy to winthe run of the game that starts with t0_(�m�1; �m�1; fm�1). So the outomeof this run is an element not in P . If player I would use this strategy fromthe position t_(�m�1; �m�1; fm�1) on he would also produe an outome notin P . And he has not violated any rule sine the elements from A played inthe beginning initial segment t play no role in his upoming moves (this is soby de�nition of the strong Choquet game). So player I would have a winningstrategy for the run starting with t_(�m�1; �m�1; fm�1). But this ontraditsthe assumption that player II followed his winning quasi-strategy �max. q.e.d.(3)Beause of the homogeneity of the ultra�lter system, being a winning quasi-strategy for G0 transfers now to the game G as follows:1. Suppose that player II has a winning quasi-strategy in G0. Then we ansee every quasi-strategy as a quasi-strategy in the game G by forgettingthe fi-moves. Clearly, this quasi-strategy is still winning.2. Suppose that player I has a winning quasi-strategy in G0. Then we anonstrut a winning quasi-strategy for player I in the game G. This laimuses the homogeneity of the ultra�lter system and is the proof of Behaup-tung 2 in Satz (5.16) in [Rohd01℄.9So we have proved that the game G is quasi-determined and, even more,that if player II has a quasi-winning strategy he has a winning quasi-strategywith the demanded property (by (3) and the way player II gets his winningquasi-strategy for G out of the winning quasi-strategy for G0 ). In order to�nish the proof of this key lemma now we have to show that player I annothave a winning quasi-strategy in G.Assume towards a ontradition that he does have a winning quasi-strategyin G and let �̂ be suh a winning quasi-strategy for player I in G. Note that ifwe use a surjetion from !! onto X (f. Theorem 2.2.3) for a oding of the Pol-ish spae X by the reals, '0 as a oding of the ordinals less than � by W � Nand if we identify the t-basi open sets C� with � we an view both G and thestrong Choquet game for (A; t) as being games on the reals. With this in mind9Note that Rohde's game G�(A) does not have real moves, but the real moves do notmatter for the onstrution of the quasi-strategy for player I. All we have to worry about isthe simulation of the moves fi for player II that do not our in the game G but are neessaryto apply the given quasi-strategy.



Chapter 7. Proof of Theorem 4 89the following laim makes sense.(4) There exists a ountable subset Z of !! suh that(a) The set of ordinals less than � with odes in Z is honest(b.1) Every position in G onsistent with �̂ with all moves from Z has anextension onsistent with �̂ and all moves from Z.(b.2) Every position in GsCh(A; t) is onsistent with � and all moves from Zhas an extension onsistent with � and all moves from Z.Proof: We an view the winning quasi-strategy �̂ and the winning strategy� as trees on �� ��A� �� � and ��A� � respetively. We want to de�neZ by reursion.Let Z0 be the emptyset and let Zi ountable be de�ned. To get Zi+1 onsiderthe tree �̂ jZi. That of ourse should be �̂ restrited to the elements oded byZi. Let S be the set of all �nite branhes in the ountable tree �̂ jZi. For s 2 Slet s_ = f(�; �; x; �; �) 2 �� ��A� �� � j s_(�; �; x; �; �) 2 �̂gBy AC!, we an hoose for eah s 2 S one element from s_ and let S� be theset of all hosen elements.We do the same with the tree �jZi and get a ountable set R�.The third set we onsider is T � = Sz2Zi\W f'i(z) j i 2 !g.Applying AC!, we get three ountable subsets R�; S�; T � of reals odingR�; S�; T �. Let now Zi+1 = Zi [R� [ S� [ T �.Set Z = Si2! Zi.It is now easy to see that this Z has the demanded properties. For (a) let� be an ordinal oded by some w 2 Z \ W . Then w 2 Zi for some i. Bythe de�nition of Z 'k(w) is oded for all k in Zi+1 � Z. For (b)(1) let s bea position in G onsistent with �̂ with all elements in s from Z. Sine s is a�nite branh there are only �nitely many elements in s. So there is a Zi forsome i suh that s 2 �̂ jZi. Now s has a proper extension with elements in Zonsistent with �̂ sine we added exatly suh extensions in Zi+1. The sameargument holds for (b)(ii). q.e.d.(4)Fix an Z as in (4).Then it is lear that there exists a run of G suh that(i) all moves are in Z (again, i.e. all moves are oded in Z)(ii) this round is onsistent with I's winning quasi-strategy �̂ for G(iii) The �i's, xi's and �i's are onsistent with II's winning strategy � for thestrong Choquet game G(A;t).(iv) �0; �1; �2; : : : is an enumeration of the ordinals with odes in Z.



Chapter 7. Proof of Theorem 4 90By (ii) I wins this run of G. II does not lose this run by violating rule Rsine he follows � by (iii). So the outome of this run is an f that is not inP . f is honest, sine f onsists of all ordinals oded by Z (by (iv), puttingin the �0; �1; : : :) and this set is honest by onstrution of Z. Hene Remark7.3.2 implies that I wins the strong Choquet game G(A;t). But this ontradits(iii).The tree T0Let � be a winning quasi-strategy for II as in the above Lemma 7.3.3. � isessentially a tree on (����A����). Let us all this tree T0 and we assumeall positions in T0 legal, that is, if I loses by violating the rule R we remove thisbranh from the tree.By the key lemma the points of A in this tree play no role for our purpose,so we remove this points and get a tree T1 on �4:The tree T1De�ne a tree T1 on �4 by((�0; �0; �0; �0); : : : ; (�m�1; �m�1; �m�1; �m�1)) 2 T1, 9x0; : : : xm�1 2 A suh that((�0; �0; x0; �0; �0); : : : ; (�m�1; �m�1; xm�1; �m�1; �m�1)) 2 T0The important Remark 7.3.2 implies the following property of T1.Lemma 7.3.5. Let f = (�0; �0; �0; �0; �1; �1; �1; �1; : : :) be an in�nite branh inT1. If f is honest, then TiC�i ontains a point xf 2 A.Proof. Let f be given. We want �rst �nd some x0; x1; : : : in A suh thatg = (�0; �0; x0; �0; �0; �1; �1; x1; �1; �1; : : :) is an in�nite branh through T0. Wede�ne the xi by indution.Let x0; x1; : : : ; xn�1 be de�ned suh that(�0; �0; x0; �0; �0; : : : ; �n�1; �n�1; xn�1; �n�1; �n�1) 2 T0:Sine f is an in�nite branh in T1 there exists x00; : : : ; x0n suh that(�0; �0; x00; �0; �0; : : : ; �n�1; �n�1; x0n�1; �n�1; �n�1; �n; �n; x0n; �n; �n) 2 T0:Now s = (�0; �0; x0; �0; �0; : : : ; �n�1; �n�1; xn�1; �n�1; �n�1; �n; �n; x0n)is a legal move in G onsistent with � ands0^(�n; �n) = (�0; �0; x00; �0; �0; : : : ;: : : ; �n�1; �n�1; x0n�1; �n�1; �n�1; �n; �n; x0n; �n; �n)is a legal move in G onsistent with � sine it is a sequene in T0. By theproperty of � we have s^(�n; �n) is a legal move in G onsistent with � . So



Chapter 7. Proof of Theorem 4 91de�ne xn to be x0n.This de�nition assures that g = (�0; �0; x0; �0; �0; �1; �1; x1; �1; �1; : : :) is an in-�nite branh through T0. Sine � is a winning strategy for II g is the outomeof a round in G in whih II wins. So f 2 P . By the remark to the de�nition ofthe game G II wins the strong Choquet game, so TiC�i 6= ;.Finally we will de�ne with the help of T1 a tree T on ! � �4 that will leadto a de�nition of a �1n set A0. We will see that A0 equals A and �nish in thisway the proof of Theorem 4.The tree TLet T be the following tree on ! � �4:((i0; �0; �0; �0; �0); : : : ; (im�1; �m�1; �m�1; �m�1; �m�1)) 2 T ,(i) For all k; diam(Bik) < 1k(ii) For all k; Bik+1 � Bik(iii) ((�0; �0; �0; �0); : : : ; (�m�1; �m�1; �m�1; �m�1)) 2 T1(iv) For all k; Bik \ C�k 6= ;The de�nition of the set A0 is now the following:The set A0De�ne A0 � X byx 2 A0 , 9y 2 !!9�; �; �; � 2 �![(y; �; �; �; �) 2 T and x 2\m By(m)and f�(m); �(m); �(m); �(m) j m 2 !g is honest ℄We laim that A0 is a �1n set. To see this we want to use the Coding Lemma5.2.2.Lemma 7.3.6. A0 is in �1n.Proof. We prove �rst that the tree T is �1n-in-the-odes10.De�ne Code(Tm;�'0) the following way:(y(0); : : : ; y(m� 1); (x0)0; : : : ; (x0)m�1; : : : ; (x3)0; : : : ; (x3)m�1)2 Code(Tm;�'0),[(y(0); '0((x0)0); '0((x1)0); '0((x2)0); '0((x3)0));: : : ;((y(m� 1); '0((x0)m�1); '0((x1)m�1); '0((x2)m�1); '0((x3)m�1))℄2 T \ (! � �4)m:10The notion of a tree being �-in-the-odes is by no means a standard de�nition. Thede�nition here seems to us the most natural to apply the oding Lemma to it.



Chapter 7. Proof of Theorem 4 92By Corollary 5.2.2 this set is �1n. So if we de�ne that T is �1n-in-the-odesshould stand for the fat that the union of all the Code(Tm;�'0) is in �1n wehave just shown that T is �1n-in-the-odes.Now we an rewrite the de�ning formula for A0:x 2 A0 , 9y 2 !! 9x0; x1; x2; x3 2 !!^ 8k[(x0)k 2W ^ (x1)k 2W ^ (x2)k 2W ^ (x3)k 2W ℄^ 8m(y(0); : : : ; y(m� 1); (x0)0; : : : ; (x0)m�1; : : : ;(x3)0; : : : ; (x3)m�1) 2 Code(Tm �'0)^ 8mx 2 By(m)^ 8k9w 2W8i8j(w 2 A'0((x0)j)�'i ^ (x0)j 2 A'0(w)�'i )^ 8k9w 2W8i8j(w 2 A'0((x1)j)�'i ^ (x1)j 2 A'0(w)�'i )^ 8k9w 2W8i8j(w 2 A'0((x2)j)�'i ^ (x2)j 2 A'0(w)�'i )^ 8k9w 2W8i8j(w 2 A'0((x3)j)�'i ^ (x3)j 2 A'0(w)�'i )where A'0(w)�'i and A'0((x`)j)�'i for ` = 0; 1; 2; 3 are initial segments of the prewell-ordering �'i whih are in �1n following Lemma 5.1.3.From this formula we see that A0 is indeed in �1n.So we an �nish the proof if we show that A = A0.A0 � ALet x 2 A0. Let y; �; �; �; � 2 !! � (�!)4 witness that x 2 A0. Letf = (�0; �0; �0; �0; �1; �1; �0; �0; : : :):Then (y; f) 2 [T ℄ and f is honest. By de�nition of T we have f 2 [T1℄. So byLemma 7.3.5 there exists an xf 2 A suh that xf 2 Tm C�m . Sine x is theonly point in TmBy(m) (by (i) of the de�nition of T ) it suÆes to show thatxf 2 TmBy(m) beause then x = xf 2 A.Claim: xf 2 TmBy(m)Proof: Assume not. So there is an m 2 ! with xf 62 By(m). There-fore d(xf ; By(m)) > 0, let us say d(xf ; By(m)) = " > 0. But now there ex-ists an k > m with diam(C�k) < "4 (beause of rule R in the de�nition ofG) and xf 2 C�k . Also diam(By(k)) < "4 by (i) of the de�nition of T andBy(k) � By(m). By (iv) of the de�nition there is an z 2 By(k) \ C�k . Sinez; xf 2 C�k we have d(z; xf ) < "4 . But also z 2 By(k) � By(m) and hened(xf ; By(m)) = inffd(z0; xf ) j z0 2 By(m)g � d(z; xf ) < "4 . This ontraditsd(By(m); xf ) > ". q.e.d. ClaimThis proves that A0 � A.



Chapter 7. Proof of Theorem 4 93A � A0Let x 2 A. Let h : !! � A be a oding of A by the reals. 11Let Z be a ountable subset of !! suh that1. there is an x 2 Z with h(x) = x2. the set of ordinals less than � with odes in Z is honest3. 9� < � suh that x 2 C� and � has a ode in Z4. every position in G onsistent with � with all moves from elements odedfrom Z has an extension onsistent with � and with all moves from ele-ments oded from ZTo prove the existene of suh a set we de�ne by reursion ountable sets Zifor i 2 ! (using AC! in every other step of the onstrution) and the take Zto be the union of all Zi. To make an easy thing not look to ompliated (byjumping bak and forth between the \oded game" and G) note that if there isa ountable set of ordinals less than � one an get by AC! a ountable subsetof W oding these ordinals. Simultaneously one an get for a ountable subsetof A a ountable set of reals oding the elements of the subset throug h.Let x 2 !! suh that h(x) = x 2 A and let y 2W suh that '0(y) = � andx 2 C� . Set Z0 = fx; yg.Let now Zi ountable be given for an i 2 !. We want to de�ne Zi+1.Let T0 � Zi be the tree on � � � � A � � � � restrited to elements oded byZi. Consider in T0 � Zi the ountable set of all �nite sequenes s 2 T0 � Ziwhih have no proper extension. Let s be suh a �nite sequene and let s^ =f(�; �; x; �; �) 2 � � � � A � � � � j s^(�; �; x; �; �) 2 T0g. By AC! we �nda ountable set ~Zi+1 suh that for all suh s there is a proper extension of sfrom s^ in ~Zi+1. Again by AC! and the above remark there is a ountableset Z 0i+1 of reals oding these elements. Choose further odes for the ordinals'k(z) for z 2 Zi \W;k 2 ! and let Mi be the set of these odes. Then letZi+1 = Zi [Mi [ Z 0i+1. Zi+1 is ountable. Set Z = Si2! Zi.By de�nition of Z0 1. and 3. are satis�ed. If w 2 Zi for some i 2 ! thenfor 'k(w) there is a ode in Mi � Zi+1 for all k 2 !. Hene the set of ordinalsless than � with odes in Z is honest. If s is a position in G onsistent with �and all moves are in Z then there is an i 2 ! suh that s 2 T0 �Zi and there isan extension so s 2 T0 �Zi+1 � T0 �Z. So this extension is also onsistent with � .Using suh an Z there is a run of the game G suh that(i) all moves are in Z (that is, oded by Z)(ii) the run is onsistent with II's winning quasi-strategy � for G(iii) xm = x for all m (so player I always plays the same element x 2 A)11suh a oding exists by Theorem 2.2.3



Chapter 7. Proof of Theorem 4 94(iv) �0 = �; �m+1 = �m+1(v) �0; �1; : : : is an enumeration of the ordinals less than � with odes in ZSine suh a run g = (�0; �0; x; �0; �0; �1; �1; x; �1; �1; : : :) of G is onsistent with� , we know that g is an in�nite branh in T0. By de�nition of T1 the sequenef = (�0; �0; �0; �0; �1; �1; �1; �1; : : :) is an in�nite branh through T1.Using this f we want to get an in�nite branh in T . Property (iii) in thede�nition of T is already satis�ed. Now let i0; i1; : : : be suh that x 2 TmBimand (i) and (ii) of the de�nition of T holds. Sine II wins the run g of G allC�m are legal moves of II and therefore are moves in the strong Choquet game.So x 2 C�m for all m. This implies Bim \ C�m 6= ; for all m and therefore (iv)in the de�nition of T holds. So (i0; �0; �0; �0; �0; i1; �1; �1; �1; �1; : : :) 2 [T ℄.To show now that x 2 A0 it remains (by the de�nition of A0) to show thatf�m; xm; �m; �m j m 2 !g is honest. But all this elements were hosen in Zand the �m are all ordinals less than � oded by Z and this set is honest bythe onstrution of Z.Together with Theorem 7.1.1 we have now proved the main Theorem 4 underthe assumption of ZF+DC+ADR. The assumption that every set of reals hasa sale is essential for the proof of the key lemma, Lemma 7.3.3, in our proofof Theorem 7.3.1. So it seems, unfortunately, not possible to proof the mainTheorem 4 under the weaker assumption of ZF+DC+AD in this fashion. But,as a ompensation, Beker suggests that this proof of the Theorem generalizesto pointlasses beyond the projetive hierarhy whih are saled and projetive-like. For further remarks and results we ould not over here we refer to thenotes of Howard Beker, [Bek91℄ and [Bek92℄.
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