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Introduction

In many cases the eigenvalues of linear operators, are of interest, as they may help to
solve differential equations or give a more accessible representation of an operator.

To begin with consider the finite dimensional Hilbert space Cn. Then every normal
operator N can be written in the form:

N =
∑

k∈σ(N)

λkPk,

where σ(N) is the spectrum ofN and Pk is the orthogonal projection of the eigenspace
corresponding to λk. For ω ⊂ σ(N) consider the projection-valued set function
E(ω) :=

∑
σ(N) δλk(ω)Pk with δλk being the dirac measure at the point λk. Then

the equality above becomes

N =

∫
σ(N)

λ dE,

where the integral sign represents a finite sum.
The spectral theorem for unbounded, normal operators shows that this repre-

sentation can be extended to a possibly infinite-dimensional Hilbert space H and
bounded or unbounded operators on H.

On an infinte dimensional Hilbert space H the spectrum of a bounded operator
N is not necessarily finite and neither does the spectrum only contain eigenvalues.
However, the spectral theorem for bounded, normal operators shows that the expres-
sion above makes sense for an unique spectral measure E on the Borel sets of σ(N).
The theorem will be proved in chapter 3 and in particular, we will give sense to the
expression

∫
σ(N)

λ dE(λ), where E is a spectral measure.

The main tool to show the existence of E will be the Gelfand transform, especially
the Gelfand-Naimark theorem. Chapter one and two develop the necessary theory
to prove it, along with some important properties of spectra in Banach algebras.

As an application we obtain some results on the eigenvalues of normal operators
and the existence of square roots for positive operators.

An important class of linear operators are the differential ones, for example acting
on functions from Rn to C. The spectral theorem for bounded operators cannot be
applied to them, as they are neither defined, nor bounded on a Hilbert space, such
as L2(R). However, they are well-defined on sub spaces of L2(R).

The spectral theorem for unbounded, normal operators will be stated for such
operators defined on subspaces of H and it will give the same representation as
above.

Finally we apply the spectral theorem for unbounded, normal operators to the
Multiplication operator Mx2 and the Laplacian ∆ := − ∂2

∂x2
on L2(R).





1 Spectra and maximal Ideals in
Banach algebras

1.1 The spectrum in a Banach algebra

Definition 1.1.1. Let B be a complex vector space. Then we call B a complex
algebra, if there exists a multiplication on B, such that the follwoing are satisfied
for all x,y,z ∈ B and α ∈ C:

(1) x(yz) = (xy)z.
(2) x(y + z) = xy + xz, (y + z)x = yx+ zx.
(3) α(yz) = (αx)y = x(αy).

If B is additionally a Banach space such that

‖xy‖ ≤ ‖x‖‖y‖

for all x,y ∈ B and there exists e ∈ B with ex = x = xe and ‖e‖ = 1
for all x ∈ B, we call B a Banach algebra.
B is called commutative, if xy = yx holds for all x, y ∈ B.

An element x ∈ B is invertible, if there exists x−1 ∈ B, such that xx−1 = e = x−1x.

Remark 1.1.2. If ‖x‖ < 1, the series
∑∞

n=0 x
n converges in B and we see that e−x

is invertible, as (e− x)
∑∞

n=0 x
n = e =

(∑∞
n=0 x

n
)
(e− x).

Examples 1.1.3.
(1) Let K be compact and C(K) the complex vector space of all continuous func-

tions from K to C with the supremum norm. Then C(K) is a commutative
Banach algebra with addition and multiplication defined pointwise.

(2) Let H be a Banach space and B(H) the set of all linear and bounded operators
T : H → H. Define the addition on B(H) pointwise and the multiplication to
be the composition. Then B(H) is a Banach algebra with norm

‖T‖ = sup
‖x‖≤1

‖Tx‖.

Definition 1.1.4. Let B be a Banach algebra. For fix x ∈ B

r(x) = {λ ∈ C | (λe− x)−1 ∈ B}

is called the resolvent set of x. Its complement σ(x) is called the spectrum of x and
ρ(x) = sup{|λ| | λ ∈ σ(x)} is defined to be the spectral radius of x.
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2 1.1. The spectrum in a Banach algebra

In many cases the spectrum of an element in an Banach algebra is of interest.
For example, in the Banach algebra B(H) the spectrum of an operator contains its
eigenvalues. We observe the following important property of the spectrum:

Theorem 1.1.5. Suppose x ∈ B and B is a Banach algebra. Then

(1) σ(x) is non-empty and compact.

(2) ρ(x) = limn→∞ ‖xn‖
1
n .

Proof. (1) We begin with some general observations. If ‖x‖ < 1, the series−
∑∞

n=0 x
n

is the inverse of x−e by remark (1.1.2). For y,z ∈ B, y invertible and ‖z‖ < ‖y−1‖−1

this gives:

(z − y)−1 = (y(y−1z − e))−1 = (y−1z − e)−1

y−1 = −
∞∑
n=0

(y−1z)ny−1 (1.1)

For ‖z‖ < |λ| we obtain λ ∈ r(z), as

(z − λe)−1 = −λ−1

∞∑
n=0

λ−nzn. (1.2)

In particular

‖(z − λe)−1‖ ≤ 1

|λ|(1− ‖z‖|λ| )
=

1

|λ| − ‖z‖
(1.3)

holds. Therefore lim|λ|→∞ ‖(x− λe)−1‖ = 0 and ρ(x) ≤ ‖x‖.
To see that r(x) is open let µ ∈ r(x) and λ ∈ C with |λ − µ| < ‖(x − µe)−1‖−1.

For z = (λ− µ)e and y = x− µe (1.1) shows:

(x− λe)−1 = −((λ− µ)e− (x− µe))−1 =
∞∑
n=0

(λ− µ)n(x− µe)−n−1. (1.4)

Hence σ(x) is compact as a bounded and closed set.
The identity (1.4) shows that the map λ 7→ (x − λe)−1 is B-locally analytic on

r(x). This means for every µ ∈ r(x) exists a neighborhood, in which the mapping
can be written as a power series centered at µ and with coefficients in B.

Suppose σ(x) = ∅ and take an arbitrary continuous, linear functional Λ : B → C.
The function C → C, λ 7→ Λ((x − λe)−1) is then locally analytic on r(x) = C and
therefore entire. By Liouville’s Theorem ([5], Chapter 10, 10.23) and (1.3) we see
that Λ((x − λe)−1) = 0 for every Λ in the dual space B’ of B. The Hahn-Banach
theorem ([5], Chapter 5, 5.16) implies (x− λe)−1 = 0, which is a contradiction and
σ(x) 6= ∅ is therefore proved.

(2) Fix x ∈ B and let Λ be a continuous linear functional on B. Define the function

fΛ(ζ) = Λ((x− ζ−1e)−1) = −ζ
∞∑
n=0

ζnΛ(xn)
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for ζ ∈ C, 0 < |ζ| < ρ(x)−1. It is analytic by (1.4) and using (1.3) fΛ can be
analytically extended by setting fΛ(0) = 0. The extension is continuous and using
the Laurent-expansion ([1], Chapter 5, 5.2) at 0, we see that fΛ has a powerseries
representation around 0.

The second equality holds for all |ζ| < ‖x‖−1 by (1.1). However, the func-
tion is analytic on B(0, ρ(x)−1) and has a unique power series representation on
B(0, ρ(x)−1).Therefore the second equality holds for all |ζ| < ρ(x)−1 by uniqueness
of the power series representation.

Fix ζ with |ζ| < ρ(x)−1. Then the series −
∑∞

n=0 ζ
n+1Λ(xn) converges for every

Λ in the dual space B′ and the sequence (ζnΛ(x)n)n∈N is therefore bounded. For all
n ∈ N consider the functions

ζn(·)(xn) : B′ → C Λ→ ζnΛ(xn)

with operator norm |ζ|n‖xn‖. Applying the Banach-Steinhaus theorem ([4], Chapter
2, 2.6) to {ζn(·)(xn)}n∈N shows that there exists Mζ with |ζ|n‖xn‖ < Mζ for all
n ∈ N. Consequently

‖xn‖1/n ≤ ζ−1M
1/n
ζ and lim sup

n→∞
‖xn‖1/n ≤ ζ−1

for every |ζ| < ρ(x)−1 and therefore

lim sup
n→∞

‖xn‖1/n ≤ ρ(x) (1.5)

For λn ∈ r(xn) the inverse of x−λe is given by (xn−λne)−1(xn−1 +λxn−2 + · · ·+
λn−1e) and therefore λ ∈ r(x). Hence σ(x)n ⊆ σ(xn), ρ(x)n ≤ r(xn) ≤ ‖xn‖ and
therefore ρ(x) ≤ ‖xn‖1/n. Together with (1.5) this proves

ρ(x) = lim
n→∞

‖xn‖1/n.

Theorem 1.1.6. (Gelfand-Mazur) Suppose B is a Banach algebra with every
x ∈ B being invertible. Then B is isomorphic to C.

Proof. Since σ(x) is non-empty for x ∈ B by (1.1.5), there exists a λ ∈ C with
(λe− x) is not invertible. By assumption (λe− x) = 0, hence λe = x.

1.2 Homomorphisms and Maximal Ideals

We now introduce the Gelfand-space ∆ of a Banach algebra, which will be necessary
to define the Gelfand Transform and state the theorem of Gelfand-Naimark.

Definition 1.2.1. (Gelfand space) Consider a Banach algebra B and φ : B → C
a linear functional on B. Then φ is called a complex homomorphism, if

φ(xy) = φ(x)φ(y)

for all x,y ∈ B and φ 6= 0.
The set ∆ of all complex homomorphisms is called the Gelfand space of B.



4 1.2. Homomorphisms and Maximal Ideals

Proposition 1.2.2. Let B be a complex Banach algebra, x ∈ B and φ a complex
homomorphism on B. Then:

(1) If x is invertible, then φ(x) 6= 0. In particular φ(e) = 1.
(2) ‖φ‖ := sup‖x‖≤1 ‖φ(x)‖ = 1

Proof. (1) Let x ∈ B with φ(x) 6= 0. Then φ(x) = φ(xe) = φ(x)φ(e) and φ(e) = 1.
If x ∈ B is invertible, φ(x) 6= 0 as 1 = φ(e) = φ(x)φ(x−1) and (1) holds.
(2) Let ‖x‖ < 1 and |α| ≥ 1. Then (e− α−1x) is invertible by remark (1.1.2) and

1− α−1φ(x) = φ(1− α−1x) 6= 0

implies φ(x) 6= α and therefore |φ(x)| < 1. If ‖x‖ = 1 take t > 1 and observe that
|φ(x)| = t|φ(x

t
)| < t. Now ‖φ‖ = 1 as φ(x) < t holds for all t > 1 and φ(e) = 1.

The homomorphisms of a commutative Banach algebra B have a close and im-
portant connection to the maximal ideals, which will be obtained in proposition
(1.2.5).

Definition 1.2.3. Let B be a Banach algebra and I ⊆ B a Subspace. Then I is
called an Ideal, if a ∈ I, x ∈ B implies ax ∈ I and xa ∈ I. I is a proper Ideal, if
0 ( I ( B and it is maximal , if it is proper and not contained in another proper
Ideal.

Remark 1.2.4. In a commutative Banach algebra B every maximal ideal M is
closed and every proper ideal lies in a maximal ideal. ([4], Chapter 11, 11.3)

Proposition 1.2.5. Let B be a commutative Banach algebra and M ⊂ B a maximal
ideal in B. Then the following hold:

(1) Every M is the nullspace of some complex homomorphism φ on B.
(2) The nullspace of any φ is a maximal Ideal in B.
(3) φ(x) = 0 for some complex Homomorphism φ if and only if x is not invertible.
(4) λ ∈ σ(x)⇔ φ(x) = λ for some complex homomorphism φ.

Proof. (1) As M is closed, B/M is a Banach space ([4], Chapter 1, 1.41). The
mapping π(x) = [x] is a continuous homomorphism between the algebras B and
B/M and its nullspace is M . As M is a maximal ideal, the quotient algebra is a field,
particularly every non-zero element in B/M is invertible and B/M is isomorphic to
C by theorem (1.1.6). Composing the corresponding isomorphism ψ with π gives a
complex homomorphism ψ ◦ π : B → C with kerψ ◦ π = M .

For (2) we use the fact, that an ideal M is maximal in a ring R, if R/M is a field.
As φ : B → C is onto, B/ kerφ is isomorphic to C and kerφ is therefore maximal.

(3) In (1.2.2) it was already shown that x invertible implies φ(x) 6= 0 and therefore
x /∈ J for any maximal Ideal J. If x is not invertible, then {bx | b ∈ B} is a proper
ideal, hence contained in a maximal one.

(4) λ ∈ σ(x)⇔ (λe− x) not invertible⇔ φ(λe− x) = 0 for some φ by (c).



2 The Gelfand Transform and
Involution

2.1 The Gelfand Transform

In this chapter the Gelfand transform on a Banach algebra will be introduced. The
central statement is the Gelfand-Naimark theorem, which allows an identification of
a B∗-algebra with the continuous functions on its Gelfand space. It will be vital for
the proof of the spectral theorem for bounded, normal operators.

Definition 2.1.1. Any x in a Banach algebra B induces a mapping

x̂ : ∆→ C, x̂(h) = h(x),

which is called the Gelfand Transform of x .

To define a topology on ∆, we firstly consider the dual B′ of B with the so-called
weak*-topology. We will see that the restriction of the weak*-topology to the Gelfand
space space ∆ of B turns ∆ into a compact Hausdorff space.

Definition 2.1.2. Every x ∈ B defines a linear functional

fx : B′ → C, fx(Λ) = Λ(x)

The weak*-topology is the smallest topology on B′ that makes every fx continuous.
Hence it is the smallest topology that contains f−1

x (U) for every x ∈ B, U ⊆ C
open.

The Gelfand topology on ∆ is the restriction of the weak*-topology to ∆.

Remark 2.1.3. (a) The set {fx}x∈B separates points on B′, as fx(Λ) = fx(Λ
′) for

all x implies that Λ = Λ′. The weak*-topology is therefore a Hausdorff topology.
(b) The Gelfand topology is the smallest topology that makes every x̂ : ∆ → C

continuous:
If U ⊆ C is open, x̂−1(U) = f−1

x (U) ∩ ∆, hence open in ∆ and x̂ is continuous
with respect to the Gelfand topology. The weak*-topology is the smallest topology
containing {f−1

x (U)}x∈B for all U ∈ C, hence the Gelfand topology is the smallest
topology containing {f−1

x (U) ∩ ∆}x∈B, for all U ⊆ C . But f−1
x (U) ∩ ∆ = x̂−1(U)

and therefore the Gelfand topology is the smallest topology, that makes every x̂
continuous.

Theorem 2.1.4. (Alaoglu) Let B be a Banach Space and U the closed unit ball of
B′ centered at 0. Then U is compact in the weak*-topology of B′.
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6 2.2. Involutions

The proof is omitted, but can be found in ([2], Chapter IV, 1.4).

Proposition 2.1.5. ∆ is compact with respect to the Gelfand*-topology.

Proof. Every φ ∈ ∆ has norm 1 by proposition (1.2.2). Therefore ∆ lies U and by
theorem (2.1.4) and the definition of the Gelfand space it is enough to show that ∆
is weak*-closed.

For x ∈ B the mapping B′ → C, Λ 7→ Λ(x) is weak*-continuous. Hence

B′ → C× C× C, Λ 7→ (Λ(xy),Λ(x),Λ(y))

is weak*-continuous for all x, y ∈ B and so is

B′ → C, Λ 7→ Λ(xy)− Λ(x)Λ(y).

Therefore
Mx,y := {Λ ∈ B′ | Λ(xy)− Λ(x)− Λ(y) = 0}

is weak*-closed for all x,y ∈ B as the preimage of 0 under a weak*-continuous map.
Now ∆ ∪ {0} =

⋂
x,y∈BMx,y and M0 = {Λ | Λ(e) = 1} are weak*-closed, which

implies that ∆ = M0 ∩
(⋂

x,y∈BMx,y

)
is weak*-closed.

Definition 2.1.6. (Gelfand transform) On a commutative Banach algebra B
the mapping

·̂ : B → C(∆), x 7→ x̂

is called the Gelfand Transform.
It is a continuous algebra homomorphism, as φ ≤ 1 for every φ ∈ ∆.
Note that for every x, x̂(∆) = σ(x) and therefore ‖x̂‖∞ = r(x) ≤ ‖x‖.

2.2 Involutions

So far the Gelfand Transform is not necessarily injective, however under further con-
ditions it will become a surjective isometry. We therefore introduce the Involution:

Definition 2.2.1. (Involution) On a Banach space B a mapping ∗ : B → B is
called an involution, if it satisfies

(1) ·∗ is conjugate-linear.
(2) (xy)∗ = y∗x∗, for all x, y ∈ B.
(3) x∗∗ = x, for all x ∈ B.
x ∈ B is called normal, if xx∗ = x∗x and self-adjoint, if x = x∗. A Subalgebra of

B is called normal, if it is commutative and closed under involution.
A Banach algebra with an involution, that satisfies

‖xx∗‖ = ‖x‖2 (2.1)

for all x ∈ B is called a B∗-algebra.
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Remark 2.2.2. In a B∗-algebra ‖x‖2 = ‖xx∗‖ ≤ ‖x‖‖x∗‖ holds, hence ‖x‖ ≤ ‖x∗‖
and as x∗∗ = x we obtain

‖x‖ = ‖x∗‖.

for all x ∈ B. The involution is therefore an isometry on B∗-algebras. It also follows
that

‖xx∗‖ = ‖x‖‖x∗‖.

Examples 2.2.3.
(1) The Banach algebra C(K) is a B∗-algebra with complex conjugation being the

involution.
(2) If H is a Hilbert space, we will show in chapter 3 that B(H) is a B∗-algebra.

The involution ·∗ on B(H) maps every T ∈ B(H) on its Hilbert space adjoint.

Proposition 2.2.4. In any B∗-algebra B, the following hold:

(1) The unit e is self-adjoint.
(2) If x ∈ B is normal, then r(x) = ‖x‖.
(3) If x ∈ B is self-adjoint, then σ(x) ⊂ R.

Proof. (1) e∗ = ee∗ shows that e is self-adjoint, as xx∗ is self-adjoint for any x ∈ B.
For (2) observe, that for normal x in a B∗-algebra

‖x‖4 = ‖xx∗‖2 = ‖xx∗(xx∗)∗‖ = ‖xx∗x∗x‖ = ‖x2(x2)∗‖ = ‖x2‖2

holds, hence ‖x2‖ = ‖x‖2. As x is normal, so is xn for any n ∈ N. Hence by
induction

‖x2n+1‖ = ‖x2n‖2 = ‖x‖2n+1

is valid for any n ∈ N and the spectral radius formula (1.1.5) gives r(x) = ‖x‖.
(3) If x is self-adjoint and λ ∈ σ(x) \ R, x̃ := x − Re(λ)e is selfadjoint and

Im(λ)i ∈ σ(x̃). Now for t > 0, (Im(λ) + t)i ∈ σ(x̃+ ite) and

(Im(λ) + t)2 ≤ ‖x̃+ ite‖2 = ‖(x̃+ ite)(x̃− ite)‖ = ‖x̃2 + t2e‖ ≤, ‖x̃‖2 + t2

which is a contradiction for t > ‖ x̃2
2
‖.

We can now state the theorem of Gelfand-Naimark.

Theorem 2.2.5. (Gelfand-Naimark) Let B be a commutative B∗-algebra with
Gelfand space ∆. Then the Gelfand transform ·̂ : B → C(∆) is a surjective, isomet-
ric *-isomorphism meaning that for all x ∈ B

x̂∗(φ) = x̂(φ) (2.2)

In particular, x ∈ B is self-adjoint if and only if its Gelfand transform is real-valued.
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Proof. In definition (2.1.6) we saw that the Gelfand transform is a homomorphism
and ‖x̂‖∞ = r(x). In commutative B∗-algebras every element is normal, hence
‖x‖ = r(x) by theorem (2.2.4) and ·̂ : B → C is thereforean isometry.

To show that ·̂ is surjective we use the Stone-Weierstrass theorem ([2],Chapter III,

1.4). B̂ also contains ê, the constant 1-function in C(∆) and exactly as in remark

(2.1.3) we see that B̂ seperates points on ∆. To see that B̂ is closed under complex
conjugation, note first that x + x∗ and i(x − x∗) are self-adjoint for every x ∈ B.
Hence we can write

x̂ =

(
x+ x∗

2
+
x− x∗

2

)̂
=

(
x+ x∗

2

)̂
− i

(
i
x− x∗

2

)̂
, (2.3)

x̂∗ =

(
x∗ + x

2
+
x∗ − x

2

)̂
=

(
x+ x∗

2

)̂
+ i

(
i
x− x∗

2

)̂
. (2.4)

As x+x∗

2
and ix−x

∗

2
are self-adjoint, theorem (2.2.4) shows that their Gelfand trans-

forms are real-valued and so
¯̂x = x̂∗. (2.5)

Hence B̂ is closed under conjugation and therefore dense in C(∆).

The image B̂ of B is a closed sub-algebra of C(∆), as it is the isometric image of
a complete Banach algebra, hence B̂ = C(∆).

In theorem (2.2.4) it was proved, that a self-adjoint x has a real spectrum, hence
x̂ is real-valued. If x̂ is real-valued (2.5) shows that x̂ = x̂ = x̂∗ and so x = x∗, as
the Gelfand-Transforms is one-to-one.

The next lemma establishes a connection between the Gelfand space of certain
B∗-algebra and the spectrum of a specific element in those algebras, which will be
used in the spectral theorem.

Lemma 2.2.6. Let B be a B∗-algebra with an x ∈ B, such that the Polynomials
P (x, x∗) are dense in B. Then

x̂ : ∆→ σ(x)

is a homeomorphism.

Proof. x̂ is a continuous function from the compact space ∆ onto the Hausdorff-space
σ(x). It is therefore enough to show, that x̂ is one-to-one. Suppose x̂(h1) = x̂(h2) for
h1, h2 ∈ ∆. This means h1(x) = h2(x) and by theorem (2.2.5) h1(x∗) = h2(x∗). Now
for every polynomial P , h1(P (x, x∗)) = h2(P (x, x∗)) as h1, h2 are homomorphisms.
The polynomials P (x, x∗) are dense in B and therefore h1 = h2 by continuity. Hence
x∗ is one-to-one.

Remark 2.2.7. In the following chapter we will focus on the B∗-algebra B(H). To
be able to apply the above theorems, we will have to restrict ourselves to closed,
normal sub-algebras of B(H). The fact that the spectrum of T ∈ B(H) in such
sub-algebras is the same as in B(H) is not immediate. It will be omitted here and
can be found in ([4], Chapter 11, 11.29).



3 The spectral theorem for bounded,
normal operators

3.1 Properties of B(H)

After the general observations about Banach algebras this chapter will deal with the
algebra B(H) of bounded, linear operators on a Hilbert space. The spectral theorem
for bounded, normal operators will be stated for the normal elements in B(H).

Definition 3.1.1. Suppose H is a topological vector space. Then H is called a
Hilbert space, if there exists an inner product

(·, ·) : H ×H → C

and H is complete with respect to the norm ‖x‖ :=
√

(x, x).

The Banach algebra of all bounded linear functions on a Hilbert space will be
denoted by B(H).

The three following statements will be useful throughout the next chapters. The
proofs will be omitted, but can be found in ([4], Chapter 12, 12.6, 12.7, 12.8).

Proposition 3.1.2. Consider a sequence {xn}n∈N of pairwise orthogonal vectors in
a Hilbert space H. Then the following are equivalent:

(1)
∑∞

n=0 xn converges in H.
(2)

∑∞
n=0 ‖xn‖2 <∞.

(3)
∑∞

n=0 (xn, y) converges for every y ∈ H.

Proposition 3.1.3. Let T ∈ B(H) with (Tx, x) = 0 for every x ∈ H. Then T = 0.

Lemma 3.1.4. Let f : H ×H → C be a sesquilinear and bounded, meaning that

C = sup {|f(x, y)| | ‖x‖ = ‖y‖ = 1} <∞.

Then there exists an unique S ∈ B(H) with ‖S‖ = C and

f(x, y) = (x, Sy) for all x, y ∈ H. (3.1)

9



10 3.2. Adjoints and normal operators

3.2 Adjoints and normal operators

We wish to define an involution on B(H) and therefore observe the following: The
mapping

H ×H → C, (x, y) 7→ (Tx, y)

is sesquilinear and letting y = Tx
‖Tx‖ , we see that

‖T‖ = sup {|(Tx, y)| | ‖x‖ = ‖y‖ = 1}.

Now by Lemma (3.1.4) there exists an unique T ∗ ∈ B(H) such that for all x, y ∈ H

(Tx, y) = (x, T ∗y) (3.2)

and ‖T‖ = ‖T ∗‖.

Definition 3.2.1. The operator T ∗ ∈ B(H), such that

(Tx, y) = (x, T ∗y)

is called the adjoint of T . In fact, ·∗ : B → B is an involution and B is a Banach
algebra ([4], Chapter 12, 12.9).

For the normal operators in B(H) the following properties hold:

Proposition 3.2.2. Let T ∈ B(H). Then T is normal if and only if

‖Tx‖ = ‖T ∗x‖ (3.3)

for every x ∈ H. If T is normal, the following hold:

(1) N (T ) = N (T ∗)
(2) If Tx = λx for λ ∈ C, x ∈ H, then T ∗x = λx.
(3) The eigenspaces of distinct eigenvalues λ1, λ2 of T are orthogonal.

Proof. The first equivalence follows from the equalities

(Tx, Tx) = (T ∗Tx, x) and (T ∗x, T ∗x) = (TT ∗x, x).

and (1) is a direct consequence.
Applying (1) to T − λI shows (2) and the equality

λ1(x, y) = (Tx, y) = (x, T ∗y) = (x, λ2y) = λ2(x, y)

proves (3) as λ1 − λ2 6= 0.

Example 3.2.3. Consider Cn with the standard inner product and a normal map-
ping T : Cn → Cn. Then there exists an orthonormal basis of eigenvectors {x1, . . . , xn}
of T and orthogonal projections {Pk}k∈{1,...,n} from Cn onto the corresponding eigenspaces
of xk. Hence, we can write

T =
∑
k

λkPk,

where λk is the eigenvalue of xk. Every Pk is an orthogonal projection, hence self-
adjoint and the ranges R(Pk) are pairwise orthogonal by proposition (3.2.2)
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We conclude the section with a commutativity theorem for normal operators. The
proof can be found in ([4], Chapter 12, 12.16).

Theorem 3.2.4. (Fudglede) Let T,N ∈ B(H) and N be normal. If TN = NT ,
then

TN∗ = N∗T

3.3 Spectral measures

One important tool to state the spectral theorems will be spectral measures, which
are operator-valued set functions. It makes sense to call them spectral measures, as
they share many properties with ordinary measures.

Definition 3.3.1. We call an operator P ∈ B(H) a projection, if PP = P holds.

Remark 3.3.2. Let P,Q ∈ B(H) be self-adjoint projections. Then:

(1) R(P ) = N (P )⊥.
(2) PQ = 0 if and only if R(P ) ⊥ R(Q).

Both statements are shown in ([4], Chapter 12, 12.4).

Definition 3.3.3. (Spectral measure) Consider a set Ω with a locally compact
Hausdorff topology and A the corresponding σ-algebra. A map

E : A → B(H)

is called a spectral measure, if it satisfies the following properties:

(1) E(ω) is a self-adjoint projection for every ω ∈ A.
(2) E(ø) = 0 and E(Ω) = I.
(3) E(ω1 ∪ ω2) = E(ω1) + E(ω2) for ω1 ∩ ω2 = ø.
(4) E(ω1 ∩ ω2) = E(ω1)E(ω2).
(5) The set function Ex,y(ω) := (E(ω)x, y) is a complex, regular Borel measure on

Ω for every x, y ∈ H.
Note that the projections E(ω) commute with each other by (4) and remark (3.3.2).

Example 3.3.4. We continue example (3.2.3): Let Ω = σ(T ) and define:

ET (ω) =
∑
k

δλk(ω)Pk,

,where ω ⊂ σ(T ) and δλk(·) denotes the dirac measure at the point λk.
Then ET is a spectral measure: Remark (3.3.2) shows that ET (ω) is a self-adjoint

projection, as the Pk are self-adjoint projections with pairwise orthogonal ranges.
Finite additivity and multiplicativity follow from the properties of δλk and the fact
that the Pk have pairwise orthogonal ranges. Now fix x, y ∈ Cn and observe that

(ET (ω)x, y) =
∑
k

δλk(ω)(Pkx, y).

As every δλk is a measure, so is ET ;x,y. ET is therefore a spectral measure on σ(T ).
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Proposition 3.3.5. Let E be a spectral measure on (Ω,A) and take an arbitrary
x ∈ H . Then:

(1) The map ω 7→ E(ω)x is countably additive for every ω ∈ A.
(2) For x, y ∈ H, |E|x,y ≤ ‖x‖‖y‖.

Proof. (1) Let {ωn}n∈N be pairwise disjoint and ω =
⋃∞
n=0 ωn. Then E(ωn)E(ωm) =

0 for n 6= m by (4) of definition (3.3.3). Hence remark (3.3.2) shows that all E(ωn)
have pairwise orthogonal ranges. Now for all y ∈ H

∞∑
n=0

(E(ωn)x, y) = (E(ω)x, y)

as Ex,y is a measure and
∑∞

n=0E(ωn)x = E(ω)x follows from proposition (3.1.2).
(2) Consider a partition {ωn}n∈N of Ω and choose complex numbers αn such

that |Ex,y(ωn)| = αnEx,y(ωn) and |αn| = 1. The projections E(ωn) have pairwise
orthogonal ranges and therefore:

N∑
n=1

|Ex,y(ωn)| =
N∑
n=1

(αnE(ωn)x, y) =
N∑
n=1

(αnE(ωn)x,E(ωn)y)

=

( N∑
n=1

αnE(ωn)x,
N∑
n=1

E(ωn)y

)

≤
∥∥∥∥ N∑
n=1

αn(E(ωn)x

∥∥∥∥∥∥∥∥ N∑
n=1

(E(ωn)y

∥∥∥∥.
Since αnE(ωn)x ⊥ αmE(ωm)x for n 6= m, we have∥∥∥∥ N∑

n=1

αnE(ωn)x

∥∥∥∥2

=
N∑
n=1

‖αnE(ωn)x‖2 =
N∑
n=1

‖(E(ωn)x‖2

=

∥∥∥∥ N∑
n=1

(E(ωn)(x)

∥∥∥∥2

=

∥∥∥∥E( N⋃
n=1

ωn

)
x

∥∥∥∥2

≤ ‖E(Ω)x‖2.

The same argument holds for
∑N

n=1 (E(ωn)y and we obtain

∞∑
n=1

|Ex,y(ωn)| ≤ ‖x‖‖y‖.

Since the partition is arbitrary, |Ex,y| ≤ ‖x‖‖y‖ holds.
In particular Ex,x ≤ ‖x‖2 and (E(ω)x, x) = (E(ω)x,E(ω)x) = ‖(E(ω)x)‖2 shows

that Ex,x is a positive measure.

Proposition 3.3.6. Let E be a spectral measure on (Ω,A) and consider {ωn}n∈N ⊂
A . Then the following hold:
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(1) E(ωn) = 0 for all {ωn}n∈N implies E(
⋃∞
n=0 ωn) = 0.

(2) If E(ω2) = 0 and ω1 ⊆ ω2,then E(ω1) = 0.

Proof. (1) Using (1) and (5) of definition (3.3.3) shows that

‖E
( ∞⋃
n=0

ωn

)
x‖2 = (E

( ∞⋃
n=0

ωn

)
x, x) =

∞∑
n=0

(E(ωn)x, x) =
∞∑
n=0

‖E(ωn)x‖2

holds for any x ∈ H.
(2) follows from

E(ω1) = E(ω2 ∩ ω1) = E(ω1)E(ω2) = 0.

Proposition 3.3.7. Let E be a spectral measure on (Ω,A) and consider another
set Ω′ with a σ-algebra A′. Suppose h : Ω→ Ω′ is measurable. Then

E ′ : A′ → B(H), E ′(ω′) := E(h−1{ω′})

is a spectral measure and for a measurable f : Ω→ C, x, y ∈ H∫
f dE ′x,y =

∫
(f ◦ h) dEx,y,

holds, if one of the two integrals exists.

The proof can be found in ([4], Chapter 13, 13.28).

The Gelfand-Naimark theorem (2.2.5) shows the existence of an isometric ∗-isomorphism
between a normal, closed subalgebra of B(H) and the continuous functions on its
corresponding Gelfand space. To extend this isomorphism to bounded functions we
introduce the Banach algebra L∞(E).

Definition 3.3.8. Consider a spectral measure E on a set Ω and let f : Ω → C
be measurable. The topology of C is generated by countably many discs Bn and let
V :=

⋃
(Bn) be the union of those Bn with E(f−1(Bn) = 0. Then E(f−1(V )) = 0

by proposition (3.3.6).
The set Rf = V c is called the essential range of f and ‖f‖ess := sup {|λ| | λ ∈ Rf}

the essential supremum of f .
We say f is essentially bounded, if ‖f‖ess <∞.

Proposition 3.3.9. Consider the Banach algebra B of all bounded functions on Ω
with the supremum norm. Then

M := {f | ‖f‖ess = 0}

is a closed ideal in B and we define L∞(E) to be the Banach algebra B/M .
In L∞(E) the following hold:
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(1) ‖f‖ess = ‖[f ]‖ := inf {‖f − h‖ | h ∈M}.
(2) Rf = σ([f ]).

Proof. We proof first that M is closed: Let {fn}n∈N be a sequence in M , that
converges in B to some f ∈ B. We define Nf = {p ∈ Ω | f(p) = 0} and observe:

Nf ⊃
∞⋂
n=0

Nfn

Therefore E(Nf ) = I by proposition (3.3.6), which implies f ∈M . Proving that M
is a subspace, works the same way and B/M is a Banach algebra (See ([4], Chapter
1, 1.41)).

For (1) fix f ∈ B and define

g(p) =

{
f(p) if f(p) /∈ Rf

0 if f(p) ∈ Rf

Then g ∈ M , as f−1{Rf} ⊆ g1−{0}. Hence E({g = 0}) = I by proposition (3.3.6).
Now ‖f − g‖ = ‖f‖ess and therefore ‖[f ]‖ ≤ ‖f‖ess.

For the other direction take h ∈M and observe

‖f‖es ≤ ‖f − h‖es + ‖h‖ess = ‖f − h‖ess ≤ ‖f − h‖,

,where we use ‖f + g‖ess ≤ ‖f‖ess + ‖g‖ess for f, g ∈ L∞(E). Hence, ‖f‖ess ≤ ‖[f ]‖.
(2) For the first inclusion suppose λ ∈ Rf , but λ /∈ σ([f ]). Then there exists

g ∈ B, such that g(λ− f) = 1 E-almost surely. More precisley: There is an ω with
E(ω) = 0 and g(p)(λ − f(p)) = 1 on ωc. Pick ε > 0, such that ε‖g‖ess < 1/2 and
consider s ∈ Bε(λ). We will show that E(f−1Bε(λ)) = 0.

For all p ∈ ωc ∩ g−1{Rg}:

g(p)(s− f(p)) = g(p)(λ− f(p)) + g(p)(s− λ) = 1− g(p)(s− λ) 6= 0,

as |λ− s| < ε. Therefore

g(p)(s− f(p)) 6= 0 and f(p) 6= s.

We see that
f−1Bε(λ) ∩ {ωc ∩ g−1{Rg}} = ø.

Hence f−1Bε(λ) ⊆ ω ∪ g−1{Rg}c and by proposition (3.3.6) E(f−1Bε(λ)) = 0. Now
λ /∈ Rf , which is a contradiction.

For the other inclusion suppose λ ∈ σ([f ]) and λ /∈ Rf . Then there exists ε > 0
with E(f−1Bε(λ)) = 0. Define g : Ω→ C in the following way:

g(p) =

{ 1
λ−f(p)

if f(p) ∈ Rf

0 if f(p) /∈ Rf

Then g ∈ B, as |λ− f(p)| > ε on f−1{Rf} and

(λ− f)g = 1− χf−1{Rc
f},

where χω denotes the characteristic function of a set ω ⊆ Ω. E(f−1{Rc
f}) = 0

implies λ− f is invertible in B/M and we get a contradiction as λ /∈ σ([f ]).



Chapter 3. The spectral theorem for bounded, normal operators 15

3.4 The spectral theorem

The spectral theorem is proved in two steps: Firstly we will focus on the integra-
tion of essentially bounded functions with respect to an arbitrary spectral measure,
namely we will give sense to the expression

∫
fdE.

Secondly we will focus on a closed, normal sub algebra B of B(H). Using the
Gelfand Naimark theorem we will show that there is a specific spectral measure on
the Gelfand space of B, such that:

T =

∫
∆

T̂ dE

The spectral theorem will follow as a corollary.

Theorem 3.4.1. Let E be a spectral measure on a set Ω. Then there exists an
isometric ∗-isomorphism Φ from L∞(E) onto a closed, normal sub algebra A of
B(H), such that

(Φ(f)x, y) =

∫
fdEx,y, (3.4)

for all x,y ∈ H, f ∈ L∞(E) and

‖Φ(x)‖2 =

∫
|f |2dEx,x. (3.5)

For every f ∈ L∞(E) we define∫
Ω

fdE = Φ(f).

Additionally: S ∈ B(H) commutes with every Φ(f) if and only if S commutes with
every projection E(ω).

Proof. We firstly define Φ on simple functions and extend it to L∞(E) afterwards.
Let {ω1, . . . , ωn} be a partition of Ω and s =

∑n
i=0 αiχωi

. Then we define

Φ(s) :=
n∑
i=0

αiE(ωi). (3.6)

Note that Φ is well-defined by the properties of spectral measures.
Consider another simple function t, t =

∑m
j=0 βjχω′j and observe that

Φ(s)Φ(t) =
∑
i,j

αiβjE(ωi)E(ω′j) =
∑
i,j

αiβjE(ωi ∩ ω′j) = Φ(st),

as st =
∑

i,j αiβjχωi∩ω′j . Proving Φ(αs+ t) = αΦ(s) + Φ(t) works the same way.

As every E(ω) is self-adjoint

Φ(s)∗ =
n∑
i=0

αnE(ωi) = Φ(s) (3.7)
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and we see that Φ has the properties of a ∗-isomorphism on simple functions.
Equation (3.6) implies that for all x,y ∈ H

(Φ(s)x, y) =
n∑
i=0

αi(E(ωi)x, y) =
n∑
i=0

αi(Ex,y(ωi)) =

∫
Ω

sdEx,y. (3.8)

By (3.7) Φ(s)∗Φ(s) = Φ(|s|2) and therefore (3.8) implies

‖Φ(s)x‖2 = (Φ(s)∗Φ(s)x, x) = (Φ(|s|2)x, x) =

∫
Ω

|s|2dEx,x. (3.9)

Hence (3.4) and (3.5) hold for simple functions.
Now (3.9) implies ‖Φ(s)x‖2 =

∫
|s|2dEx,x ≤ ‖s‖2

ess‖x‖2 and therefore

‖Φ‖ ≤ ‖s‖ess.

However, for x ∈ R(E(ωi)) we observe that Φ(s)x = αix, as E(ωi)E(ωj) =
0,whenever i 6= j. For |αi| = ‖s‖ess this shows, that ‖Φ‖ ≥ ‖s‖ess. Φ is therefore an
isometry on simple functions.

Consider now f ∈ L∞(E). Then there exists a sequence {sn}n∈N of simple func-
tions that converges to f in L∞(E), particularly {sn}n∈N is a Cauchy sequence in
B(H). Hence, {Φ(sn)}n∈N is a Cauchy-sequence and we define

Φ(f) = lim
n→∞

Φ(sn). (3.10)

Note that f does not depend on {sn}n∈N.
We now proceed by extending the results on simple functions to any f ∈ L∞(E).

Observe firstl that Φ remains an isometry, namley

‖Φ(f)‖ = ‖f‖∞. (3.11)

Convergence in L∞(E) means uniform convergence E-almost surely and there-
fore Ex,y-almost surely for any x, y ∈ H. Let {sn}n∈N be simple functions and
limn→∞ sn = f in L∞(E). Using that every Ex,y has bounded total variation and
applying the dominated covergence theorem implies that, (3.4) follows from (3.8).
In the same way (3.9) implies (3.5).

Let f, g ∈L∞(E) and {sn}n∈N, {tn}n∈N be simple functions approximating f and
g in L∞(E). Then

Φ(fg) = lim
n→∞

Φ(sntn) = lim
n→∞

Φ(sn)Φ(tn) = Φ(f)Φ(g).

The equations Φ(αf + g) = αΦ(f) + Φ(g) and Φ(f)∗ = Φ(f) are proved in the same
way and Φ is therefore an isometric ∗-isomorphism. Since A is the isometric image
of a complete space, it is closed and normal, as L∞(E) is normal.

Suppose S ∈ B(H) commutes with every E(ω). Then S commutes with every∑n
i=0 αiE(ωi) and therefore with every Φ(f) ∈ A as Φ(f) can be approximated by

the image of simple functions.
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For the following proof the Riesz representation theorem will be vital. It can be
found in ([5], Chapter 6, 6.19).

Theorem 3.4.2. Consider a closed, normal sub algebra A ⊆ B(H), that contains
the identity I and has Gelfand space ∆. Then:

(1) There exists an unique spectral measure E on the Borel subset of ∆ such that

T =

∫
∆

T̂ dE (3.12)

for every T ∈ A, where T̂ denotes the Gelfand transform of T. In particular,
the isometric ∗-isomorphism Φ defined in theorem (3.4.1)

Φ : L∞(E)→ B, Φ(f) =

∫
∆

fdE (3.13)

is an extension of the inverse of the Gelfand transform.
(2) If ω ⊆ ∆ is open, then E(ω) 6= 0.
(3) S ∈ B(H) commutes with all T ∈ A if and only if S commutes with all E(ω).

Proof. Note first that A is a B∗-algebra as B(H) is a B∗-algebra. By the Gelfand-
Naimark theorem (2.2.5) ·̂ : A→ C(∆) is a surjective isometric ∗-isomorphism.

We begin with the proof of uniqueness: If (1) holds, then for all x, y ∈ H, T ∈ A

(Tx, y) =

∫
∆

T̂ dEx,y.

The mapping T̂ → T → (Tx, y) is a bounded linear functional on C(∆) and Ex,y
is unique by the Riesz representation theorem. The uniqueness of the projections
E(ω) follows from Ex,y(ω) = (E(ω)x, y).

(1) The map T̂ → (Tx, y) is a bounded linear functional with norm smaller than
‖x‖‖y‖. Again by the Riesz-representation theorem there exists an unique measure
µx,y satisfying

(Tx, y) =

∫
∆

T̂ dµx,y (3.14)

for all T ∈ B(H) and |µx,y| ≤ ‖x‖‖y‖. For fixed T ∈ B(H) the mapping

C× C→ C, (x, y)→ (Tx, y)

is a bounded, sesquilinear mapping. By equality (3.14) the same is true for

(x, y)→
∫

∆

T̂ dµx,y,

hence by the Gelfand-Naimark theorem for every f ∈ C(∆).
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The characteristic function χK of any compact set K ⊆ ∆ is the pointwise limit of
Urysohn functions {un}n∈N associated with K. As |µx,y| has bounded total variation∫

∆

χKdµx,y = lim
n→∞

∫
∆

undµx,y

holds and the left side is sesquilinear as every un lies in C(∆). By the regularity of
µx,y every simple function s on K is the L1-limit of finite linear combinations of such
χK . Hence

∫
∆
sdµx,y is sesquilinear for all simple functions and as every bounded f

is the uniform limit of simple functions, the same holds for f in place of s.
Since |µx,y| ≤ ‖x‖‖y‖, the sesquilinear map (x, y)→

∫
fdµx,y is bounded. Propo-

sition (3.1.4) shows that for all bounded f there exists a unique Φ(f) ∈ B(H) with

(Φ(f)x, y) =

∫
∆

fdµx,y (3.15)

for all x, y ∈ H. Now Φ is linear and particularly (3.15) and (3.14) show that

Φ(T̂ ) = T .
We proceed by showing that Φ is a ∗-isomorphism.
To see that Φ(f)∗ = Φ(f) holds, we use that by the Gelfand-Naimark theorem T

is selfadjoint if and only if T̂ is real-valued. For such T :∫
∆

T̂ dµx,y = (Tx, y) = (x, Ty) =

∫
∆

T̂ dµy,x

and therefore µx,y = µy,x as all Urysohn-functions on ∆ are real-valued. Hence

(Φ(f̄)x, y) =

∫
∆

f̄dµx,y =

∫
∆

fdµy,x = (x,Φ(f)y).

We will prove next that Φ(fg) = Φ(f)Φ(g) is valid for bounded f and g. Take

S, T ∈ A and observe that by the Gelfand-Naimark theorem ŜT = ŜT̂ . Hence,∫
∆

ŜT̂ dµx,y = (STx, y) =

∫
∆

Ŝ dµTx,y

holds for every continuous function Ŝ on ∆ and therefore we can replace Ŝ by any
bounded f . (Use the same approximations as before.) Now for any T̂ ∈ C(∆) and
any bounded f∫

∆

fT̂ dµx,y =

∫
∆

f dµTx,y = (Φ(f)Tx, y) =

∫
∆

T̂ dµx,Φ(f)∗y.

holds and again we can replace T̂ by an arbitrary bounded g. Hence,

(Φ(fg)x, y) =

∫
∆

fg dµx,y =

∫
∆

g dµx,Φ(f)∗y = (Φ(g)x,Φ(f)∗y) = (Φ(f)Φ(g)x, y).
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and therefore Φ(fg) = Φ(f)Φ(g).
We now use Φ to define the desired spectral measure on Ω. As E(ω) =

∫
∆
χωdE

should hold, we define:

E(ω) = Φ(χω) (3.16)

for any Borel set ω.
Additivity and multiplicativity of E is follow from the properties of Φ. As Φ

is an extension of the inverse of the Gelfand transform E(ø) = 0 and E(Ω) = I.
Since Φ(χω) is a real-valued, characteristic function E(ω) is a self-adjoint projection.
Finally

(E(ω)x, y) = (Φ(χω)x, y) =

∫
∆

χωdµx,y = µx,y(ω)

is a complex measure and E is a spectral measure.
Note that by the definition of E, Φ is exactly the ∗-isomorphism constructed in

theorem (3.4.1). Therefore it is an isometry and (1) is proved.

Let ω be open. Then there exists a non-zero Urysohn function T̂ with support in
ω. If E(ω) = 0, (Tx, y) =

∫
∆
T̂ dEx,y implies T = 0. Therefore T̂ = 0, which is a

contradiction. Hence E(ω) 6= 0.
(2) Consider a Borel set ω 6= ø. Then there exists a non-zero Urysohn-function u

with support in ω. By the Gelfand-Naimark theorem, there is a T in A, such that
T̂ = u. If E(ω) = 0, then T = 0, as (Tx, y) =

∫
T̂ dEx,y for all x, y in H. Hence

u = T̂ = 0, which is a contradiction.
(3) Take any T ∈ A and fix S ∈ B(H), a Borel set ω and x, y ∈ H. Consider the

pair of equations

(STx, y) =

∫
∆

T̂ dEx,S∗y, (TSx, y) =

∫
∆

T̂ dESx,y

and

(SE(ω)x, y) = Ex,S∗y, (E(ω)Sx, y) = ESx,y.

If S commutes with every T , the first equations are equal. Hence the measures Ex,S∗y
and ESx,y are equal and using the second pair of equations we see that S commutes
with every E(ω). The other direction follows by reversing the steps above.

Theorem 3.4.3. (Spectral theorem) Let T be a normal Operator in B(H). Then
there exists an unique spectral measure E on the Borel subsets of σ(T ), such that

T =

∫
σ(T )

λ dE(λ).

Furthermore S ∈ B(H) commutes with every projection E(ω) if and only if S com-
mutes with T .
E is called the spectral decomposition of T .
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Proof. Let BT be the smallest, closed sub-algebra of B(H), that contains I, T and
T ∗. As T is normal, so is BT and Theorem (3.4.2) shows that there exists an unique
spectral measure E ′ on the Gelfand space ∆ of BT , such that

T =

∫
∆

T̂ dE ′.

By Lemma (2.2.6) ∆ and σ(T ) are homeomorphic and the existence of E follows now
from proposition (3.3.7). To see uniqueness, observe that the polynomials P (λ, λ)
are dense in C(σ(T )) and by theorem (3.4.1)

P (T, T ∗) =

∫
∆

P (λ, λ̄) dE(λ).

Hence
∫
f dE is uniquely determined for every f ∈ C(σ(T )) and the riesz represen-

tation theorem shows that Ex,y is uniquely determined for all x, y ∈ H. It follows
that every projection E(ω) is unique.

If ST = TS, then ST ∗ = T ∗S by theorem (3.2.4). Hence S commutes with every
element of BT and the equivalence follows from theorem (3.4.2).

Example 3.4.4. The normal mapping T : Cn → Cn has the spectral decomposition
ET defined in example (3.3.4): We only have to show that

(Tx, y) =

∫
σ(T )

λ dEx,y

for all x, y ∈ Cn, which holds∫
σ(T )

λ dEx,y(λ) =
n∑
k=1

λkEx,y({λk}) =
n∑
k=1

λk(Pkx, y) = (Tx, y)

and we see that ET is the spectral decomposition of T .

3.5 The symbolic calculus and some applications

For a fixed, normal operator T ∈ B(H) and a bounded function f it will be conve-
nient to denote

∫
σ(T )

f dE by f(T ). In particular T = id(T ) and E(ω) = χω(T ).

In the following, we will see some applications of the symbolic calculus. We start
with a characterization of self-adjoint operators.

Theorem 3.5.1. A normal T ∈ B(H) is self-adjoint if and only if σ(T ) ⊂ R.

Proof. Proposition (2.2.4) shows that self-adjoint elements have real spectra.
For the converse suppose that σ(T ) ⊂ R and observe

T = id(T ) =

∫
σ(T )

λ dE(λ) =

∫
σ(T )

λ̄ dE(λ) = id(T ) = (id(T ))∗ = T ∗.
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Next, we will use the symbolic calculus to obtain information about the eigen-
values of normal operators. In particular we will see how the eigenvalues can be
characterized through the spectral decomposition.

Lemma 3.5.2. Suppose T ∈ B(H) is normal with spectral decomposition E and
take an arbitrary f ∈ C(σ(x)). If ω0 = f−1(0), then:

N (f(T )) = R(E(ω0)).

Proof. Consider the characteristic function χω0 of ω0. As fχ0 = 0, f(T )χω0(T ) = 0
holds. But χω0(T ) = E(ω0) and therefore

R(Eω0) ⊂ N (f(T )).

For the other inclusion define ωn := {λ ∈ σ(T )| 1/n ≤ |f(λ)| ≤ 1/(n − 1)} for
every n ∈ N . (For n = 1, take all λ ∈ σ(T ) with 1 ≤ |λ|.) and let ω̃ be the union
of all ωn. Then σ(T ) is the disjoint union of ω0 and ω̃.

On σ(T ) we define

fn(λ) = χωn

1

f(λ)
(3.17)

for every n ∈ N. Every fn is bounded and therefore fn(T )f(T ) = E(χωn).
Suppose x ∈ N (f(T )). Then E(ωn)x = 0 for all n and therefore E(ω̃)x = 0 as the

map ω → E(ω)x is countably additive. But E(ω0) + E(ω̃) = I. Hence E(ω0)x = x
and x ∈ R(E(ω0)).

Proposition 3.5.3. Let T ∈ B(H) be a normal operator with spectral decomposition
E and consider λ0 ∈ σ(T ). Then :

(1) λ0 is an eigenvalue of T if and only if E({λ0}) 6= 0.
(2) Every isolated λ0 ∈ σ(T ) is an eigenvalue of T .

Proof. (1) Consider the function f(λ) = λ− λ0 on σ(T ). Using the notation above
lemma (3.5.2) shows that

N (T − λ0I) = N (f(T )) = R(E({ω0}) = R(E({λ0})),

which proves the equivalence.
(2) If λ0 is isolated, it is open in σ(T ) and by theorem (3.4.2) E({λ0}) 6= 0.

As a last application of the symbolic calculus, we show the existence of square
roots for positive operators in B(H).

Definition 3.5.4. T ∈ B(H) is called positive, if (Tx, x) ≥ 0 for every x ∈ H.

Lemma 3.5.5. For T ∈ B(H) the following are equivalent:
(1) T is positive.
(2) T is self-adjoint and σ(T ) ⊂ [0,∞).
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Proof. We show first that (1) implies (2). As (Tx, x) is real-valued

(Tx, x) = (x, T ∗x) = (T ∗x, x) = (T ∗x, x)

holds for ever x ∈ H and Proposition (3.1.3) shows that T = T ∗. T is therefore
self-adjoint and particularly σ(T ) ⊆ R.

To show that σ(T ) is non-negative, we use the fact that a normal operator S ∈
B(H) is invertible if and only if there exists c > 0 such that ‖Tx‖ ≥ c‖x‖ for all
x ∈ H. The statement will not be proved here, but is proved in ([4], Chapter 12,
12.12).

Choose an arbitrary λ > 0 and observe that by (1)

λ‖x‖2 = (λx, x) ≤ ((T + λI)x, x) ≤ ‖T + λI‖‖x‖2.

That implies T + λI is invertible in B(H). Hence σ(T ) ⊆ [0,∞).
To see that (2) implies (1) let E be the spectral decomposition of T and observe

that for any x ∈ H
(Tx, x) =

∫
σ(T )

λ dEx,x(λ).

As Ex,x is a positive measure and σ(T ) ⊆ [0,∞) the integral is non-negative. Ther-
fore (Tx, x) ≥ 0.

Proposition 3.5.6. Let T ∈ B(H) be positive. Then there exists an unique, positive
S ∈ B(H), such that T = S2.

Proof. Let BT be the smallest closed, normal sub-algebra containing I and T . By
the Gelfand-Naimark theorem (2.2.5) B̂T = C(∆), where ∆ is the Gelfand space

of BT . T̂ maps ∆ onto σ(T ) and therefore T̂ ≥ 0 by lemma (3.5.5). Hence there

exists an unique continuous Ŝ0 ≥ 0 on ∆, such that T̂ = Ŝ0Ŝ0 holds. Now T = S0
2

follows from the fact that the Gelfand transform is an isomorphism. S0 is a positive
operator by lemma (3.5.5) and because Ŝ0 ≥ 0.

For the uniqueness suppose there exists another positive S, such that T = (S2).
Let BS be the smallest closed, normal sub-algebra containing I and S. Then T ∈ BS,
as T = (S2) and therefore BT ⊂ BS. Hence S0 ∈ BS and by the uniqueness of Ŝ0

we see that S = S0.



4 The spectral theorem for
unbounded, normal operators

An important class of linear operators are the differential ones. However, the spectral
theorem for bounded operators cannot be applied to them directly.

One problem is to choose a suitable domain for differential operators: Consider
the Hilbert space L2(R) and the dense subspace C∞c (R). Every differential operator
is well-defined on C∞c (R), but neither is C∞c (R) a Hilbert space, nor are differential
operators necessarily bounded on C∞c (R).

However, we will see that the spectral theorem for unbounded operators can be
applied to a large class of such differential operators, namely the normal ones.

4.1 Linear operators in H

Definition 4.1.1. Let H be a Hilbert space. Then T is called an operator in H, if
T is defined on a subspace D(T ) of H and T is linear from D(T ) to H.

An operator S in H is an extension of T , if D(T ) ⊆ D(S) and S ≡ T on D(T ).
We write T ⊂ S.

An operator T in H is densely defined, if D(T ) is dense in H.

Example 4.1.2. (1) Consider the Hilbert space L2(R) and the dense subspace
C∞c (R). Then the Laplacian

∆ : C∞c (R)→ L2(R), ∆(ϕ) := − ∂2

∂x2
(ϕ)

is a densely defined operator in L2(R).
A possible extension is ∆̃ defined as the Laplacian on C2

c (R).
(2) For f ∈ C(R) define the multiplication operator

Mf : C∞c (R)→ L2(R), ϕ 7→ (x 7→ fϕ(x)).

Then Mf is another example of a densely defined operator in L2(R) and an extension
is obtained by defining Mf on the domain D(Mf ) := {ϕ ∈ L2(R) | fϕ ∈ L2(R)}.

Remark 4.1.3. It is important to watch the domains when adding or composing
opertors in H:

Consider the operator ∂
∂x

: C1
c (R)→ L2(R) in L2(R). Then the composition ∂

∂x
◦ ∂
∂x

is not well-defined on C1
c (R). We have to restrict D( ∂

∂x
◦ ∂
∂x

) to those ϕ ∈ C1
c (R),

such that ∂
∂x

(ϕ) ∈ C1
c (R).

23
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For T, S in H, we therefore define T + S and T ◦ S on the following domains:

D(T + S) = D(T ) ∩ D(S)

D(T ◦ S) = {x ∈ D(S) | Sx ∈ D(T )}

With this the associative laws hold for addition and composition. The distributive
law holds for right-multiplication, but only in the form TR + TS ⊂ T (R + S) for
left-multiplication.

As in the bounded case, one can define an adjoint for densely defined operators.

Definition 4.1.4. Let T be a densely defined operator in H.
Define D(T ∗) to be the set of all y ∈ H, such that the map x → (Tx, y) is

continuous on D(T ).
D(T ∗) is a sub space of H and for y ∈ D(T ∗) the map x → (Tx, y) can be

extended continuously to H by the Hahn-Banach theorem ([5], Chapter 5, 5.16).
The extension is unique, as D(T ) is dense in H. Hence there exists an unique
T ∗y ∈ H, such that

(Tx, y) = (x, T ∗y)

for all x ∈ D(T ). T ∗ is a linear operator in H and it is called the adjoint of T in H.
Note that T ∗ is not necessarily densely defined, although T is.

Now that the adjoint of an operator in H is defined, we will turn to self-adjoint
operators in H. It will be important to watch the domains of D(T ) and D(T ∗).

Definition 4.1.5. Suppose T is a densely defined operator in H with adjoint T ∗.
Then T is called symmetric, if T ⊂ T ∗ or equivalently D(T ) ⊂ D(T ∗) and Ty = T ∗y
for every y ∈ D(T ).
T is called self-adjoint, if T = T ∗.

Example 4.1.6. We continue example (4.1.2):
(1) The Laplacian on C∞c (R) is symmetric, but not self-adjoint: For ϕ, ψ ∈ C∞c (R)

(∆ϕ, ψ)L2 = −
∫
R

∂2

∂x2
(ϕ)ψdλ = −

∫
R
ϕ
∂2

∂x2
(ψ)dλ = (ϕ,∆ψ)L2 ,

where the equality holds by applying integration by parts twice and the fact that
ϕ, ψ ∈ C∞c (R). ∆ is not self-adjoint, as the equation holds for every ϕ ∈ C2

c (R).
(2) The adjoint of the multiplication operator Mf on C∞c (R) is Mf on some

subspace including C∞c (R). This is directly obtained by the definition of the scalar
product in L2(R). Hence Mf is symmetric on C∞c (R), if f is real-valued.

(3) Mx2 on D(Mx2) := {ϕ ∈ L2(R) | fϕ ∈ L2(R)} is self-adjoint:
The function x 7→ x2 is real-valued on R and every φ ∈ D(Mx2) lies in D(M∗

x2).
Hence Mx2 is symmetric and it remains to show that D(M∗

x2) ⊂ D(Mx2):
Suppose ψ ∈ D(M∗

x2). Then the map

D(Mx2)→ C, ϕ 7→ (Mx2(ϕ), ψ)L2
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is continuous by definition of D(M∗
x2) and can therefore be continuously extended

to L2(R). Hence there exists C > 0, such that for every ϕ ∈ DMx2

|(Mx2(ϕ), ψ)L2|2 ≤ C‖ϕ‖2. (4.1)

Let ϕ(x) = x2ψ(x)χ[−n,n]. Then ϕ ∈ L2(R) and inequality (4.1) becomes(∫
R
x2|ψ(x)|2χ[−n,n] dx

)2

≤ C

∫
R
x2|ψ(x)|2χ[−n,n] dx.

Now for all n ∈ N ∫
R
x2|ψ(x)|2χ[−n,n] dx ≤ C

and by the monotone convergence theorem we see that ψ ∈ D(Mx2).

It will be of interest, if symmetric operators admit self-adjoint extensions. We
therefore define the following:

Definition 4.1.7. A symmetric operator T in H is maximally symmetric, if for
every symmetric S in H, T ⊂ S implies T = S .

Proposition 4.1.8. Every self-adjoint T in H is maximally symmetric.

Proof. Suppose T ⊂ S and S is symmetric. Then S ⊂ S∗ ⊂ T ∗ = T , where we use
that S∗ ⊂ T ∗, if T ⊂ S. Hence S = T .

The following observation for the adjoints of two operators in H. The proof is
omitted here, but can be found in ([4], Chapter 13, 13.2).

Proposition 4.1.9. Let S, T be densely defined operators in H. Then

T ∗S∗ ⊂ (ST )∗

and equality holds, if S ∈ B(H).

4.2 The graph of an operator in H

Let H be a Hilbert space with an inner product (·, ·). Then H × H is a Hilbert
space with the inner product:

〈·, ·〉 : H ×H → C, 〈{a, b}, {c, d}〉 = (a, c) + (b, d)

Consider the mapping V : H × H → H × H, V {a, b} = {−b, a}. Then V 2 = −I
and 〈V {a, b}, V {c, d}〉 = 〈{a, b}, {c, d}〉 hold. V is in particular an isometry.

Definition 4.2.1. Let T be a densely defined operator in H. Then

G(T ) := {{x, Tx} | x ∈ D(T )} ⊂ H ×H

is called the graph of T .
T is called closed, if G(T ) is closed in H ×H and an operator S in H is called the

closure of T , if G(T ) = G(S). Note that T ⊂ S is equivalent to G(T ) ⊆ G(S).
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The graphs of T and T ∗ are related through V in the following way:

Proposition 4.2.2. Let T be a densely defined operator in H. Then

G(T ∗) = (V G(T ))⊥,

where (V G(T ))⊥ is the orthogonal complement of V G(T ) in H ×H.

Proof. Let {y, z} ∈ G(T ∗). Then {Tx, y} = {x, z} and therefore 〈{−Tx, x}, {y, z}〉 =
0 for each x ∈ D(T ) by the definition of 〈·, ·〉. But this implies {y, z} ∈ (V G(T ))⊥,
hence G(T ∗) ⊂ (V G(T ))⊥.

The other inclusion follows directly from reversing the above steps.

Corollary 4.2.3. The adjoint T ∗ of a densely defined operator T in H is closed.

Proof. By proposition (4.2.2) we see that G(T ∗) is the orthogonal complement of a
sub space of H ×H. Hence G(T ∗) is closed.

Example 4.2.4. In example (4.1.6) we have seen, that Mx2 is self-adjoint on
D(Mx2), hence it is closed by corollary (4.2.3).

We will prove some properties of closed, densely defined operators. In particular
the adjoint of such operators will be densely defined.

Proposition 4.2.5. Let T be a closed, densely defined operator in H. Then

H ×H = V G(T )⊕ G(T ∗).

Proof. Since G(T ) is closed, so is V G(T ), as V is an isometry. Hence

H ×H = V G(T )⊕ (V G(T ))⊥

and now proposition (4.2.2) shows that (V G(T ))⊥ = G(T ∗).

Remark 4.2.6. As V 2 = −I and V contains angles, proposition (4.2.5) shows also:

H ×H = G(T )⊕ V G(T ∗).

Proposition 4.2.7. For a closed and densely defined operator T in H the adjoint
T ∗ is denseley defined and

T = T ∗∗.

Proof. By remark (4.2.6) H ×H = G(T )⊕ V G(T ∗).
Suppose x ⊥ D(T ∗) and let y ∈ D(T ∗) be arbitrary. Then

〈{0, x}, {−T ∗y, y}〉 = (0,−T ∗y) + (x, y) = 0.

Therefore {0, x} ∈ (V G(T ∗))⊥ and {0, x} ∈ G(T ). This implies x = T (0) = 0 and
D(T ∗) is dense in H. It now makes sense to define T ∗∗ and proposition (4.2) shows

H ×H = V G(T ∗)⊕ G(T ∗∗). (4.2)

Comparing equation (4.2) with remark (4.2.6) gives G(T ) = G(T ∗∗) and therefore
T = T ∗∗.
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The next proposition, especially (2), will be vital to prove the spectral theorem.

Proposition 4.2.8. Let T be a closed, densely defined operator in H. Consider the
operator Q = I+T ∗T with domain D(Q) = D(T ∗T ) in H. Then the follwoing hold:

(1) The operator Q : D(Q)→ H is bijective.
(2) There are operators B,C ∈ B(H) with ‖B‖ ≤ 1, ‖C‖ ≤ 1, such that

(a) C = TB
(b) BQ ⊂ QB = I

Furthermore the operator B is self-adjoint and σ(B) ⊂ [0, 1].
(3) If TT ∗ = T ∗T , then CB = BC and BT ⊂ C.

Proof. We proof (1) and (2) together: Note first, that for y ∈ D(Q)

‖y‖2 ≤ (y, y) + (Ty, Ty) = (y, y) + (y, T ∗Ty) = (y,Qy) ≤ ‖y‖‖Qy‖ (4.3)

as Ty ∈ D(T ∗). Hence ‖y‖ ≤ ‖Qy‖ and Q is one-to-one.
Proposition (4.2.5) gives the decomposition H×H = V G(T )⊕G(T ∗). This implies

that for every x ∈ H there exist unique Bx,Cx ∈ H , such that:{
0
x

}
=

{
−TBx
Bx

}
+

{
Cx
T ∗Cx

}
(4.4)

The vectors on the right-hand are orthogonal. B and C are therefore linear and

‖x‖2 ≥ ‖Bx‖2 + ‖Cx‖2

by the definition of the norm in H×H. Hence B,C ∈ B(H) and ‖B‖ ≤ 1, ‖C‖ ≤ 1.
The first component of equation (4.4) shows C = TB. Using this, the second

component gives
x = Bx+ T ∗Cx = Bx+ T ∗TBx = QBx

and therefore I = QB. Hence Q is onto and B is one-to-one from H onto D(Q).
Suppose y ∈ D(Q) and take x ∈ H such that y = Bx. Then

BQy = BQBx = Bx = y

and we see that BQ ⊂ I.
As Q is onto, we see that for every x ∈ H there exists an y ∈ D(Q) satisfying

Qy = x. Therefore
(Bx, x) = (BQy,Qy) = (y,Qy) ≥ 0

by equation (4.3) and B is a positive operator. Hence σ(B) ⊂ [0, 1], as ‖B‖ ≤ 1
and (1) and (2) are proved.

(3) In (2) we saw, that B(I + T ∗T ) ⊂ (I + T ∗T )B = I. If T ∗T = TT ∗, we obtain

BT = BT (I + T ∗T )B = B(I + T ∗T )TB ⊂ TB = C

and therefore BC = B(TB) = (BT )B ⊂ CB. As B,C ∈ B(H), it follows that
BC=CB and (3) is proved.



28 4.3. The spectral theorem for normal, unbounded operators

Remark 4.2.9. The domain of the operator Q defined in proposition (4.2.8) is
D(T ∗T ). It turns out that D(T ∗T ) is non-trivial. In fact, the following holds:

If T ′ is the restriction of T to D(T ∗T ), then G(T ′) is dense in G(T ) and T ∗T is
self-adjoint. For the proof see ([4], Chapter 13, 13.13).

Definition 4.2.10. A closed, densely defined operator N in H is called normal, if

N∗N = NN∗

holds. Particularly, D(N∗N) = D(NN∗).
Note that every self-adjoint operator in H is normal.

The spectral theorem for unbounded operators will be stated for normal operators.
They have the following properties, which are proved in ([4], chapter 13, 13.32).

Proposition 4.2.11. Assume N is a normal operator in H. Then:
(1) D(N) = D(N∗)
(2) ‖Nx‖ = ‖N∗x‖ for every x ∈ D(N).
(3) N is maximally normal.

4.3 The spectral theorem for normal, unbounded
operators

We begin with two lemmas, that will allow us to extend the results of theorem
(3.4.1) and the spectral theorem for bounded operators to operators in H.

Lemma 4.3.1. Let E be a spectral measure on (Ω,A) and f : Ω→ C be measurable.
Then

Df :=

{
x ∈ H

∣∣∣∣ ∫ |f |2 dEx,x <∞} (4.5)

is a dense subspace of H. For x, y ∈ H∫
|f | d|Ex,y| ≤ ‖y‖

(∫
|f |2 dEx,x

)1/2

(4.6)

holds, where |Ex,y| denotes the total variation of Ex,y.

Proof. Consider x, y ∈ Df , let z = x+ y and observe that

‖E(ω)z‖2 ≤ (‖E(ω)x‖+ ‖E(ω)y‖)2 ≤ 2‖E(ω)x‖2 + 2‖E(ω)y‖2.

Therefore Ez,z(ω) ≤ 2(Ex,x(ω) + Ey,y(ω)), which implies z ∈ Df . Scalar multiplica-
tion follows similarly and Df is a subspace.

To see that Df is dense in H, define

ωn = {p ∈ Ω | |f(p)| < n} (4.7)
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for all n ∈ N. If x ∈ R(E(ωn)),

E(ω)x = E(ω)E(ωn)x = E(ω ∩ ωn)x

holds and for every ω ∈ A, Ex,x(ω) = Ex,x(ω ∩ ωn). Hence x ∈ Df , as∫
Ω

|f |2 dEx,x =

∫
ωn

|f |2 dEx,x ≤ n2‖x‖2.

Since Ω =
⋃
ωn by (4.7), we obtain y = E(

⋃
ωn)y = limE(ωn)y for every y ∈ H

and Df is dense in H, since every E(ωn)y lies in Df .
For (4.6), let x, y ∈ H and assume first that f is bounded. As a consequence of

the Radon-Nikodym theorem ([5], Chapter 6, 6.9, 6.12) there exists a function u on
Ω, such that |u| = 1 and uf dEx,y = |f | d|Ex,y|.

Theorem (3.4.1) shows that for Φ(fu) =
∫
fu dE

‖Φ(fu)‖2 =

∫
|fu|2 dEx,x =

∫
|f |2 dEx,x

and therefore∫
|f | d|Ex,y| = (Φ(fu)x, y) ≤ ‖y‖‖Φ(fu)x‖ = ‖y‖

(∫
|f |2 dEx,x

)1/2

.

If f is unbounded, define the sequence {|f |χn}n ∈ N, where χn is the charateristic
function of {|f | < n‖}. Every |f |χn is bounded and the functions are monotonically
increasing: The monotone convergence theorem shows therefore that inequality (4.6)
holds for unbounded f .

Lemma 4.3.2. Let E be a spectral measure on (Ω,A) and f measurable and bounded
on Ω. Consider u, v ∈ H with v = Φ(f)u. Then

dEx,v = f̄ dEx,v,

where Φ(f) =
∫
f dE.

Proof. Let g be an arbitrary bounded function on Ω and Φ(g)=
∫
g dE. Then∫

ω

g dEx,v = (Φ(g)x, v) = (Φ(g)x,Φ(f)u) = (Φ(f̄)Φ(g)x, u) =

∫
ω

gf̄ dEx,u

and therefore dEx,v = f̄dEx,u.

We continue with an extension of theorem (3.4.1) for unbounded functions on the
one hand and operators in H on the other.

Theorem 4.3.3. Let E a spectral measure E on (Ω,A). Then:
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(1) For every measurable f : Ω→ C exists a densely defined, closed operator Φ(f)
in H with domain Df . For x ∈ Df , y ∈ H

(Φ(f)x, y) =

∫
fdEx,y (4.8)

and furthermore

‖Φ(f)x‖2 =

∫
|f |2dEx,x. (4.9)

(2) If f, g are measurable, then

Φ(f) + Φ(g) ⊂ Φ(f + g) and Φ(f)Φ(g) ⊂ Φ(fg)

hold. For the second equality, we obtain additionally D(Φ(f)Φ(g)) = Dg∩Dfg.
Hence, Φ(f)Φ(g) = Φ(fg) if and only if Dfg ⊂ Dg.

(3) For measurable f ,
Φ(f)∗ = Φ(f̄) (4.10)

and every Φ(f) is normal. More precisely: Φ(f)Φ(f)∗ = Φ(|f |2) = Φ(f)∗Φ(f).

Proof. (1) Pick x ∈ Df and define

Λ : H → C, Λ(y) =

∫
Ω

f dEx,y.

Λ is well-defined by lemma (4.3.1) and it is conjugate-linear, as Ex,y is conjugate-
linear in y. Lemma (4.3.1) also shows that ‖Λ‖ ≤ (

∫
|f |2 dEx,x)1/2. Hence, there

exists an unique Φ(f)x ∈ H satisfying (4.8), ([4], Chapter 12, 12.5). Additionally
Φ(f + g)x = Φ(f)x+ Φ(g)x as the integral is linear and

‖Φ(f)x‖2 ≤
∫
|f |2 dEx,x. (4.11)

Φ(f) is also linear, as (4.8) holds and Ex,y is linear in x.
For bounded f , the definition of Φ(f), coincides with the one in theorem (3.4.1).
Consider the sequence {fχn}n∈N, where χn := χ{|f |<n}. Every fχn is bounded and

therefore D(f − fχn) = D(f). By (4.11) and the dominated convergence theorem

lim
n→∞

‖Φ(f)x− Φ(fχn)x‖2 = lim
n→∞

‖Φ(f − fχn)x‖2

≤ lim
n→∞

∫
|f(1− χn)|2 dEx,x = 0. (4.12)

Since the fχn are bounded, they satisfy (4.9) by theorem (3.4.1) and (4.12) shows
that (4.9) holds for unbounded f .

Now (1) is proved, except for the fact that all Φ(f) are closed. This will follow
from (3), namely Φ(f)∗ = Φ(f̄).

(2) We will only prove the part concerning the multiplicative equality. The addi-
tive part follows similarly.
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Suppose first that g is measurable and f is bounded, hence Dg ⊂ Dfg. Consider
x ∈ D(g), u ∈ H, such that v = Φ(f̄)v. Then lemma (4.3.2) and theorem (3.4.1)
imply

(Φ(f)Φ(g)x, u) = (Φ(g)x,Φ(f̄)u) =

∫
g dEx,v =

∫
gf dEx,u = (Φ(fg)x, u).

Hence,

Φ(f)Φ(g)x = Φ(fg)x (4.13)

and for y = Φ(g)x, we obtain∫
Ω

|f |2dEy,y = ‖Φ(f)y‖2 = ‖Φ(f)Φ(g)x‖2 =

∫
Ω

|fg|2dEx,x.

If x ∈ Dg, the equality ∫
Ω

|f |2dEy,y =

∫
Ω

|fg|2dEx,x (4.14)

remains valid for unbounded f , as it is true for every |f |χn and we can apply the
monotone convergence theorem.

By definition D(Φ(f)Φ(g)) consists of all x ∈ Dg, such that y = Φ(g)x ∈ Df .
Now (4.14)implies y ∈ Df if and only if x ∈ Dfg. Hence

D(Φ(f)Φ(g)) = Dg ∩ Dfg.

Consider x ∈ Dg ∩ Dfg and let y = Φ(g)x. Then

fχn → f in L2(Ey,y) and fχng → fg in L2(Ex,x).

Therefore, by (4.9), Φ(fχn)y → Φ(f)y and Φ((fχn)g)x → Φ(fg)x. Now (4.13)
proves (2), as

Φ(f)Φ(g)x = Φ(f)y = lim
n→∞

Φ(fn)y = lim
n→∞

Φ(fn)Φ(g)x = lim
n→∞

Φ(fng)x = Φ(fg)x.

(3) Note that Df = Df̄ and let x, y ∈ Df . By (4.12) and theorem (3.4.1)

(Φ(f)x, y) = lim
n→∞

(Φ(fχn)x, y) = lim
n→∞

(x,Φ(fχn)y) = (x,Φ(f)y)

holds and therefore

Φ(f̄) ⊂ Φ(f)∗.

It remains to show that D(Φ(f)∗) ⊂ Df̄ . Let w ∈ D(Φ(f)∗) and v = Φ(f)∗u.
As χn is real-valued and bounded, Φ(χn) is self-adjoint and we obtain Φ(f)Φ(χn) =

Φ(fχn). Now by proposition (4.1.9)

Φ(χn)Φ(f)∗ = (Φ(f)Φ(χn))∗ = Φ(fχn)∗ = Φ(fχn).
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Hence, Φ(χn)v = Φ(fχn)u. Therefore∫
Ω

|f |2 dEu,u = lim
n→∞

‖Φ(fχn)u‖2 = lim
n→∞

‖Φ(χn)v‖2

= lim
n→∞

∫
Ω

χn dEv,v ≤ Ev,v(Ω) <∞.

for all n ∈ N and u ∈ Df by (4.9).
Every measure Ex, x is finite and therefore Dff̄⊂Df

. Hence (3) is proved, as

Φ(f)Φ(f)∗ = Φ(f)Φ(f̄) = Φ(|f |2).

Definition 4.3.4. Let T be an operator in H. Then the resolvent set r(T ) ⊂ C
consists of all λ ∈ C for which T −λI has an inverse in B(H). More precisely, there
an exists S ∈ B(H) with S(T − λI) ⊂ (T − λI)S = I. The spectrum σ(T ) of T is
the complement of r(T ) in C.

Proposition 4.3.5. Let E be a spectral measure on (Ω,A), f : Ω→ C measurable
and

ωλ = {p ∈ Ω | f(p) = λ}. (4.15)

The following hold:
(1) If E(ωλ) 6= 0, then Φ(f)− λI is not one-to-one.
(2) If λ is in the essential range of f and E(ωλ) = 0, then Φ(f)−λI is one-to-one

and maps Df onto a proper subspace of H.
(3) σ(Φ(f)) is the essential range of f .

Proof. We suppose λ = 0 without loss of generality.
(1) Let χ0 be the characteristic function of ω0. Then fχ0 = 0 and therefore

Φ(f)Φ(χ0) = Φ(f)E(ωλ) = 0.
As E(ωλ) 6= 0, there exists x0 ∈ R(E(ω0)) \ {0}. Now (1) follows from

Φ(f)x0 = Φ(f)E(ωλ)x0 = 0.

(2) We prove first that Φ(f) is one-to-one: Suppose Φ(f)x = 0 for x ∈ Df . Then∫
Ω

|f |2 dEx,x = ‖Φ(f)x‖2 = 0.

The complex measure Ex,x is positive and by assumption |f | > 0 Ex,x-a.e., as Φ(f)
is not 0. Therefore Ex,x(Ω) = ‖x‖2 = 0, hence x = 0.

For the second part consider the sets

ωn := {p ∈ Ω | |f(p)| < 1/n}



Chapter 4. The spectral theorem for unbounded, normal operators 33

for all n ∈ N. Since 0 lies in the essential range of f , E(ωn) 6= 0 for every n and
there are xn ∈ R(E(ωn)) with ‖xn‖ = 1. Let χn be the characteristic function of ωn
and observe that by theorem (3.4.1)

‖Φ(f)xn‖ = ‖Φ(f)E(ωn)xn‖ = ‖Φ(fχn)xn‖ ≤ ‖Φ(fχn)‖ = ‖fχn‖∞ < 1/n.

Assume R(Φ(f)) = H. Since T is closed, so is T−1 and the closed graph theorem
([4], Chapter 2, 2.14, 2.15) shows that T−1 is continuous. But this is a contradiction,
as ‖xn‖ = 1, although lim Φ(f)xn = 0.

(3) The essential range of f is contained in σ(Φ(f)) by (1) and (2). For the other
inclusion suppose that 0 is not in the essential range of f . Then g := 1/f ∈ L∞(E)
and in particular fg = 1. Therefore Φ(f)Φ(g) = I and R(Φ(f)) = H. E(ω0) = 0,
hence |f | > 0 E-a.e. and Φ(f) is one-to-one, as was shown in (2). It follows from
the closed graph theorem ([4], Chapter 2, 2.14, 2.15) that the inverse T−1 lies in
B(H), hence 0 /∈ σ(Φ(f)) and (3) is proved.

We are now capable of proving the spectral theorem for unbounded, normal op-
erators.

Theorem 4.3.6. For every normal operator N in H exists an unique spectral mea-
sure E such that

(Nx, y) =

∫
σ(N)

λ dEx,y(λ) (4.16)

for all x ∈ D(N), y ∈ H and E(σ(N)) = I.

Proof. We prove the existence of E in two steps:
Firstly, we will find self-adjoint projections Pi ∈ B(H) with pairwise orthogonal

ranges, such that:
(1) x =

∑∞
n=1 Pix for all x ∈ H.

(2) PiN ⊂ NPi ∈ B(H) and all NPi are normal.
Secondly, the spectral theorem for bounded operators will be applied to every

NPi and the corresponding spectral measures Ei := ENPi
will be used to define E.

(1) Recall that by proposition (4.2.8) there are B,C ∈ B(H) , such that

C = NB

and CB = BC, as N is normal.
The operator B is positive and ‖B‖ ≤ 1. Hence the spectral decomposition EB

of B is concentrated on σ(B) ⊂ [0, 1]. Proposition (4.2.8) shows also, that B is
one-to-one and therefore EB({0}) = 0 by proposition (4.3.5). Hence

EB((0, 1]) = I. (4.17)

Consider the sequence {1
i
}i∈N\{0} and let χi := χ( 1

i+1
, 1
i
]. Using the symbolic calculus,

we define
Pi = χi(B). (4.18)
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Every Pi is a self-adjoint projection, as χi(B) = E(( 1
i+1
, 1
i
]) and moreover

∞∑
i=1

Pix =
∞∑
i=1

E(( 1
i+1
, 1
i
])x = EB((0, 1])x = x (4.19)

by (4.17) and the fact that ω 7→ EB(ω)x is countably additive. Hence (1) is proved.
Define

fi(t) =
χi(t)

t

on (0, 1] and note that fi is bounded. Hence, Pi = Bfi(B) = fi(B)B. By proposition
(4.2.8) C ⊂ BN and C = NB. Therefore the following equalities hold:

PiN = fi(B)BN ⊂ fi(B)C. (4.20)

NPi = NBfi(B) = Cfi(B). (4.21)

Since C commutes with B, C commutes with every fi(B) and therefore

PiN ⊂ NPi. (4.22)

From the second equality it also follows, that NPi ∈ B(H). In particular, this
implies R(Pi) ⊂ D(N) and if x ∈ R(Pi), then Nx = NPix = PiNx holds by (4.22).
R(Pi) is therefore an invariant subspace of Nand this shows especially that

Pi(NPi) = (NPi)Pi. (4.23)

To see that NPi is normal, use proposition (4.1.9) to obtain (NPi)
∗ ⊂ (PiN)∗ =

N∗Pi. As (NPi)
∗ ∈ B(H), we obtain (NPi)

∗ = N∗Pi and by proposition (4.2.11)

‖(NPi)∗x‖ = ‖N∗Pix‖ = ‖NPix‖

holds. NPi is therefore normal by proposition (4.2.11) and the first part is proved.
(2) Let Ei be the spectral decomposition of each NPi. Pi commutes with NPi by

(4.23) and therefore with every projection Ei(ω). Hence

Ei(ω)Pix = PiE
i(ω)x ∈ R(Pi)

for all Borel sets ω ∈ C and i =∈ N \ {0}. Note that the ranges R(Pi) are pairwise
orthogonal. Since ‖P‖ ≤ 1 for every self-adjoint projection,

∞∑
i=1

‖Ei(ω)Pix‖2 ≤
∞∑
i=1

‖Pix‖2 = ‖x‖2 (4.24)

by (4.19) and proposition (3.1.2). Then

E(ω) =
∞∑
i=1

Ei(ω)Pi ∈ B(H) (4.25)
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for every Borel set ω by proposition (3.1.2) and equation (4.24).
In fact, E is a spectral measure. We show, that E(ω) it is a self-adjoint projection

for every Borel set ω and that ω → (E(ω)x, y) is a complex measure. The other
properties follow similarly. For x ∈ H

E(ω)2x =
∞∑
i=1

Ei(ω)Pi

( ∞∑
j=1

Ej(ω)Pjx

)
=
∞∑
i=1

( ∞∑
j=1

Ei(ω)PiE
j(ω)Pjx

)

=
∞∑
i=1

Ei(ω)Pix = E(ω)x,

as Ei(ω)Pi = PiE
i(ω) and PiPj = 0 for i 6= j. Hence, E is a projection.

E(ω) is self-adjoint, as
∑∞

i=1E
i(ω)Pix converges for every x ∈ H and the inner

product is continuous.
Suppose now, (ωn)n∈N are pairwise disjoint and let ω̃ =

⋃
n∈N ωn. For x, y ∈ H:

(E(ω̃)x, y) =
∞∑
i=1

(Ei(ω̃)Pix, y) =
∞∑
i=1

∞∑
n=1

(Ei(ωn)Pix, y).

The sum converges absolutely, as

∞∑
i=1

∞∑
n=1

|(Ei(ωn)Pix, y)| ≤ ‖y‖
∞∑
i=1

∞∑
n=1

‖(Ei(ωn)Pix‖ = ‖y‖‖E(ω̃)x‖ <∞

and we can change the order of summation. Therefore

(E(ω̃)x, y) =
∞∑
n=1

∞∑
i=1

(Ei(ωn)Pix, y) =
∞∑
n=1

(E(ω̃)x, y)

and E is a spectral measure.
Now by theorem (4.3.3) there exists a closed operator M in H, such that

(Mx, y) =

∫
λ dEx,y(λ) (4.26)

for x ∈ D(M) = Did, y ∈ H.
We show N ⊂M and then N = M follows from the maximality of N .
Consider x ∈ H and let xi = Pix. Then for any Borel set ω ⊂ C:

(E(ω)x, x) = ‖E(ω)x‖2 =
∞∑
i=1

‖Ei(ω)Pix‖2 =
∞∑
i=1

Ei
xi,xi

(ω). (4.27)

Now pick x ∈ D(N). Since NPix = PiNx, we obtain

∞∑
i=1

∫
C
|λ|2dEi

xi,xi
(λ) =

∞∑
i=1

‖NPixi‖2 =
∞∑
i=1

‖PiNxi‖2 = ‖Nx‖2. (4.28)
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and now it follows from (4.27), that

D(N) ⊂ D(M).

Finally suppose x ∈ R(Pi). Since x = Pix, we obtain E(ω)x = Ei(ω)x and the
measures Ex,y and Ei

x,y are therefore equal. This implies

(Nx, y) = (NPix, y) =

∫
C
λ dEi

x,y

∫
C
λ dEx,y = (Mx, y) (4.29)

for every y ∈ H. Observe that for x ∈ D(N)

PiNx = NPix = MPix.

Therefore
(∑k

i=1 Pi
)
Nx = M

(∑k
i=1 Pi

)
x for all k ∈ N and{( k∑

i=1

Pi

)
x,

( k∑
i=1

Pi

)
Nx

}
∈ G(M).

But G(M) is closed and (
∑∞

i=1 Pi)x = x. Therefore G(N) ⊂ G(M).
Proposition (4.3.5), shows that σ(N) is the essential range of the identity with

respect to E. Therefore E(σ(E)) = I and (2) is proved.
For the uniqueness we use the fact that for every positive operator A in H, there

exists an unique, positive operator
√
A in H, such that A =

√
A◦
√
A. (An operator

A in H is called positive, if (Ax, x) ≥ 0 for all x ∈ D(A).) As in the bounded case
positivity is equivalent to A being self-adjoint and σ(A) ⊂ [0,∞). For the proof see
([4], Chapter 13, 13.31).

For every x ∈ D(N∗N) ⊂ D(N) we obtain

(N∗Nx, x) = (Nx,N∗∗x) = (Nx,Nx) ≥ 0,

as N is closed and therefore N = N∗∗. The operator N∗N is positive and therefore
it makes sense to define

T = N(I +
√
N∗N)−1.

The inverse of I +
√
N∗N exists, as

√
N∗N is positive and by proposition (4.2.8).

Let EN be a spectral measure satisfying N =
∫
λ dEN(λ). Then

N∗N =

∫
[0,∞)

λλ dEN(λ) =

∫
[0,∞)

|λ| dEN(λ)

∫
[0,∞)

|λ| dEN(λ) (4.30)

by theorem (4.3.3), hence
√
N∗N =

∫
[0,∞)
|λ| dEN(λ).

Consider f(λ) = λ
1+|λ| and observe that theorem (4.3.3) implies

T =

∫
λ

(1 + |λ|)
dEN .

Note that equality holds, as λ 7→ (1 + |λ|)−1 is bounded.
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The function f is also bounded, hence D(T ) = Df = H. Theorem (4.3.3) shows
that T is closed and T is therefore continuous by the closed graph theorem ([4],
Chapter 2, 2.14, 2.15). As f is also one-to-one, we can apply proposition (3.3.7) to
define the spectral measure E(ω) = EN(f(ω)) and obtain

T =

∫
(f ◦ f−1) dE =

∫
λ dE(λ). (4.31)

Theorem (4.3.3) shows that E is and so is EN .

4.4 The Laplacian on R
The spectral theorem for unbounded, normal operators will be applied to the Lapla-
cian on R. The Fourier transform will be the main tool for this:

Definition 4.4.1. (Fourier transform) To begin with the Fourier transform is
defined as the linear, continuous map

F̃ : L1(R)→ L∞(R), f 7→
(
t→

∫
R
f(x)e−2πixt dx

)
. (4.32)

However, the Parseval formula ([5], Chapter 9, 9.13) shows that for ϕ ∈ C∞c (R)
‖ϕ‖L2 = ‖F̃(ϕ)‖L2 . Note that F̃(ϕ) does a priori not lie in L2(R).

As C∞c (R) lies dense in L2(R), the Fourier transform extends isometrically to a
linear operator on L2(R)

F : L2(R)→ L2(R), (4.33)

which is surjective ([5], Chapter 9, 9.13). F is therefore an isometric bijection and
([4], Chapter 12, 12.13) shows that, F∗ = F−1.

In general an operator T ∈ B(H) is called unitary, if T ∗ = T−1 holds.
The Fourier transform has the important property, that for every ϕ ∈ C∞c (R)

F
(
∂n

∂xn
ϕ

)
= (2πix)nF(ϕ) (4.34)

holds, see ([4], Chapter 7, 7.4).

Definition 4.4.2. Let T, S be operators in H. Then we say T is unitarily equivalent
to S, if there exists an unitary U ∈ B(H), such that S = U−1TU. Especially
D(S) = {x ∈ H | Ux ∈ D(T )}.

Remark 4.4.3. For unitarily equivalent operators S, T in H, the following hold:
(1) T self-adjoint implies S self-adjoint.
(2) T closed implies S closed.

Proposition 4.4.4. Consider the Laplacian ∆ = − ∂2

∂x2
on C∞c (R) and let F be the

Fourier transform on L2(R). Then the following hold:
(1) ∆ is unitarily equivalent to the multiplication operator M4π2x2 on F(D(C∞c (R))).



38 4.4. The Laplacian on R

(2) F−1M4π2x2F(ϕ) on F−1(D(Mx2)) is a self-adjoint extension of ∆.
(3) The extension in (2) is the only self-adjoint extension of ∆ on C∞c (R).

Proof. (1) Let ϕ ∈ C∞c (R). Equation (4.34) implies

F(∆ϕ) = M4π2x2F(ϕ),

which shows in particular, that M4π2x2 is well-defined on F(D(C∞c (R))). Applying
the inverse of the Fourier transform to both sides proves (1), as

∆ϕ = F−1M4π2x2F(ϕ). (4.35)

(2) In example (4.1.6) it was shown, that M4π2x2 is self-adjoint on D(M4π2x2).
We can therefore use remark (4.4.3) and obtain: F−1M4π2x2F on F−1(D(Mx2)) is a
self-adjoint extension of ∆.

(3) We that the closure ∆̄ of the laplacian is self-adjoint. Then

∆̄ ⊂ F−1M4π2x2F ,

because self-adjoint operators are closed and ∆̄ is the smallest closed extension of
the Laplacian. Since self-adjoint operators are maximally self-adjoint by proposition
(4.1.8), equality holds . The same arguments works for any self-adjoint extension of
∆ and uniqueness follows.

Note firstly that G(∆) is actually the graph of an operator in H, as it is a subset
of G(F−1M4π2x2F).

To show that ∆̄ is self-adjoint we use the following criterion from ([3], Chapter
VIII, Coro. of VIII.3): The closure T̄ of a symmetric operator T in H is self-adjoint,
if R(T + iI) and R(T − iI) are dense in H.

Suppose ϕ ∈ L2(R) is orthogonal to R(∆ + i). Then 0 = (ϕ, (∆ + iI)ψ) for all
ψ ∈ C∞c (R) and applying the Fourier transform gives

0 = (F (ϕ),F((∆ + i)ψ)) = (F(ϕ), (M4π2 + i)F(ψ)) = ((M4π2 + i)F(ϕ),F(ψ)).

Since C∞c (R) is dense in L2(R), so is F(C∞c (R)), as the Fourier transform is a
bijective isometry. Therefore

0 = (M4π2 + iI)F(ϕ)

and ϕ = 0, as F(ϕ) = 0. Hence, R(∆ + iI) is dense in H. The same arguments
hold for −i and we see that ∆̄ is self-adjoint.

We will now determine the spectral decomposition of the multiplication operator
Mx2 . Note first, that Mx2 − αI = Mx2−α has a bounded inverse M1/(x2−α) for every
α ∈ C \ [0,∞). The spectrum of Mx2 is therefore a subset of [0,∞).

Proposition 4.4.5. The spectral decomoposition Eof the Multiplication operator
Mx2 is defined on the Borel subsets of [0,∞) and for ω ∈ B([0,∞))

E(ω) = Mχω(·)2 , (4.36)

where χω is the characteristic function of ω.
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Proof. Showing that E is a spectral measure is straightforward. Fix ω ∈ B([0,∞))
and ϕ, ψ ∈ L2(R). Then E(ω) is a self-adjoint projection, as χω ◦χω = χω and χω is
real-valued. Finite additivity and multiplicativity follow directly from the properties
of characteristic functions. For ϕ, ψ ∈ L2(R), we obtain

Eϕ,ψ(ω) = (E(ω)ϕ, ψ)L2 =

∫
R
χω(x2)ϕ(x)ψ(x) dx

and Eϕ,ψ is therefore a complex measure.
We will now proceed by showing that Eϕ,ψ is the sum of two measures induced

by complex density functions. For ω ∈ B([0,∞)), we obtain:

Eϕ,ψ(ω) =

∫
R+

χω(x2)ϕ(x)ψ(x) dx+

∫
R−
χω(x2)ϕ(x)ψ(x) dx

We apply change of variables to both parts of the sum. For the first one we use
R+ → R+, x 7→

√
x, for the second one R− → R−, x 7→ −

√
−x. Here

√
· : R+ → R+

sends a positive x ∈ R on its unique positive square root
√
x. We obtain:

Eϕ,ψ(ω) =

∫
R+

χω(x)

2
√
x
ϕ(
√
x)ψ(
√
x) dx+

∫
R−

χω(−x)

2
√
−x

ϕ(−
√
−x)ψ(−

√
−x) dx.

Another change of variables to the second part, namely R+ → R−, x 7→ −x, gives

Eϕ,ψ(ω) =

∫
R+

χω(x)

2
√
x
ϕ(
√
x)ψ(
√
x) dx+

∫
R+

−χω(x)

2
√
x
ϕ(−
√
x)ψ(−

√
x) dx. (4.37)

This implies Ex,y = µ+ + µ−, where µ+ and µ− are the measures induced by the
integrals in equation (4.37).

Now let ϕ ∈ D(Mx2) and ψ ∈ L2(R). Then∫
[0,∞)

x dEϕ,ψ(x) =

∫
[0,∞)

x dµ+ +

∫
[0,∞)

x dµ−

and furthermore ∫
[0,∞)

x dµ+ =

∫
R+

x
1

2
√
x
ϕ(
√
x)ψ(
√
x) dx∫

[0,∞)

x dµ− =

∫
R+

−x 1

2
√
x
ϕ(−
√
x)ψ(−

√
x) dx.

Reversing the change of variables made above gives:∫
[0,∞)

x dµ+ =

∫
R+

x2ϕ(x)ψ(x) dx (4.38)∫
[0,∞)

x dµ− =

∫
R−
x2ϕ(x)ψ(x) dx. (4.39)
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From this and the uniqueness assertion of theorem (4.3.6) it follows that E is the
spectral decomposition of Mx2 , as

(Mx2ϕ, ψ)L2 =

∫
[0,∞)

x dEϕ,ψ(x).

Corollary 4.4.6. The spectral decomposition E∆̄ of ∆̄ on F(D(Mx2)) is defined on
the Borel subsets of [0,∞) and given by:

E∆̄(ω) = F−1E(ω)F ,

for all Borel sets ω, where E is the spectral decomposition of Mx2.

Proof. As F is unitary and E is a spectral measure, we see that E∆̄ is a spectral
measure. ∆̄ is unitarily equivalent to Mx2 and therefore σ(∆̄) ⊂ [0,∞).

It remains to show that

(∆̄ϕ, ψ)L2 =

∫
[0,∞)

x dE∆̄;ϕ,ψ (4.40)

for all ϕ ∈ F−1(D(Mx2)) and ψ ∈ L2(R). Note, that for such ϕ and ψ

E∆̄;ϕ,ψ(ω) = (F−1E(ω)F(ϕ), ψ)L2 = (E(ω)F(ϕ),F(ψ))L2 = EF(ϕ),F(ψ)(ω). (4.41)

and therefore by proposition (4.4.5)

(∆̄ϕ, ψ)L2 = (F−1Mx2F(ϕ), ψ)L2 = (Mx2F(ϕ),F(ψ))2
L

=

∫
[0,∞)

x dEF(ϕ),F(ψ) =

∫
[0,∞)

x dE∆̄;ϕ,ψ.

The uniqueness assertion of theorem (4.3.6) shows that E∆̄ is the spectral decom-
position of ∆.

Corollary 4.4.7. For ∆̄ the spectrum σ(∆̄) = [0,∞) and ∆̄ has no eigenvalues.

Proof: The essential range of the identity on [0,∞) regarding the spectral measure
E∆̄ is [0,∞): Fix t ∈ [0,∞) and consider an open ball B containing t. Then χB 6= 0
and therefore F−1E(B)F 6= 0. Now proposition (4.3.5) shows that σ(∆̄) = [0,∞)
and also that no t ≥ 0 is an eigenvalue, as E({t}) = 0 for all t ∈ [0,∞).
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Zusammenfassung

Das Thema der vorliegende Bachelorarbeit ist der Spektralsatz für unbeschränkte
Operatoren im Hilbertraum. Die wesentlichen Resultate sind der Spektralsatz für
beschränkte, normale Operatoren, sowie der Spektralsatz für unbeschränkte normale
Operatoren.

Im ersten Kapitel wird zunächst der Begriff der Banachalgebra eingeführt und
einige Eigenschaften des Spektrums in Banachalgebren werden bewiesen. Desweit-
eren wird der Gelfandraum einer Banachalgebra definiert und sein Zusammenhang
mit den maximalen Idealen der Banachalgebra erläutert.

Das zweite Kapitel behandelt die Gelfandtransformierte. Die Involution auf einer
Banachalgebra wird eingeführt und der Satz von Gelfand-Naimark bewiesen.

Die Hauptaussage des dritten Kapitels ist der Spektralsatz für beschränkte, nor-
male Operatoren auf einem Hilbertraum. Nachdem in Kapitel eins und zwei all-
gemeine Banachalgebren behandelt wurden, ist Kapitel drei auf die Banachalgebra
B(H) fokussiert. Die Hilbertraumadjungierte, sowie Spektralmaße werden eingeführt
und die Integration von Funktionen bezüglich einem Spektralmaß wird definiert. Die
zentrale Aussage des Spektralsatzes ist die Darstellung eines normalen, beschränkten
Operators N in der Form:

N =

∫
σ(N)

λ dE,

Als Anwedung werden die Eigenwerte eines normalen Operators bezüglich des kor-
respondierendem Spektralmaß bestimmt und die Existenz von Quadratwurzeln von
positiven Operatoren wird gezeigt.

Im vierten Kapitel wird der Spektralsatz für unbeschräkte Operatoren bewiesen.
Zunächst werden unbeschränkte Operatoren im Hilbertraum definiert, sowie die Ad-
jungierte und abgeschloßene Operatoren. Die in Kapitel drei bewiesenen Theoreme
werden auf den unbeschränkten Fall übertragen und der Beweis des Spektralsatz für
unbeschränkte, normale Operatoren folgt.

Als Anwendung wird die Spektralzerlegung des Multiplikationsoperatos Mx2 und
des Laplaceoperators ∆ = ∂2

∂x2
bestimmt.
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