- 1. Recall that a symplectic isotopy (ϕ_t) is Hamiltonian if the vector field $(X_t)_{\phi_t(p)} := \frac{d}{dt}|_{s=0}\phi_{t+s}(p)$ is Hamiltonian. If $H^1(M;\mathbb{R}) = 0$, prove that every symplectic isotopy is Hamiltonian.
- 2. Consider the polytope $P \subset \mathbb{R}^2$ with vertices (0,0), (2,0), (1,1), (0,1). Construct a symplectic toric variety $M = (M, \omega)$ with a moment map $\mu : M \to \mathbb{R}^2$ such that $im(\mu) = P$. Bonus: can you work out the diffeomorphism type of this manifold? (feel free to consult textbooks).
- 3. Write down examples of Delzant and non-Delzant rational polytopes.
- 4. Let M be a symplectic manifold. Verify that the diagonal

$$\Delta := \{ (x, x) \in M \times M^{-} \} \subset (M \times M^{-}, \omega \oplus -\omega)$$

is Lagrangian.