Homework 1 (optional)

- (1) (Exercise 2.11, McDuff–Salamon) Let $A \in GL(2n; \mathbb{R})$ be a nondegenerate skew-symmetric matrix (i.e. det $A \neq 0$ and $A = -A^T$) and set $\omega(u, v) := u^T A v$. Prove that a symplectic basis for $(\mathbb{R}^{2n}, \omega)$ can be constructed in terms of the real and imaginary parts of the eigenvectors of A. (Recall that self-adjoint matrices can be diagonalized.)
- (2) (Exercises 2.13 and 2.15, McDuff–Salamon)
 - Show that if β is a skew-symmetric bilinear form on a real vector space W, there exists a basis $u_1, \ldots, u_n, v_1, \ldots, v_n, w_1, \ldots, w_p$ of W such that $\beta(u_i, v_j) = \delta_{ij}$ and all other pairings vanish. The integer 2n is called the rank of β .
 - Show that any hyperplane W in a symplectic vector space (V, ω) is coisotropic. (Use the previous part to find a nonzero $w \in W \cap W^{\omega}$. What can you say about the span of w?)
- (3) Recall that we gave two definitions of the canonical 1-form λ_{can} on a cotangent bundle T^*L :
 - The first definition was in local coordinates x_1, \ldots, x_n on L. We defined $\lambda_{can} \coloneqq \sum_{j=1}^n y_j dx_j$, where y_j is the fiber coordinate corresponding to x_j .
 - The second definition was coordinate-independent. We denoted by π the projection $T^*L \to L$, which induces a map

$$\pi^* : T^*(T^*L) \to T^*L, \qquad \pi^*_{(p,\xi)} : T^*_{(p,\xi)}(T^*L) \to T^*_pL.$$

We defined λ_{can} by

$$\lambda_{can,(p,\xi)} \coloneqq \pi^*_{(p,\xi)}\xi.$$

That is, for $V \in T_{(p,\xi)}T^*L$,

$$\lambda_{can,(p,\xi)}(V)\coloneqq\xi_p(\pi_{*,(p,\xi)}(V)).$$

Prove that the first definition of λ_{can} is well-defined. You can do this in one of two ways (or both ways, if you have energy to spare):

- Consider how the first definition of λ_{can} behaves under coordinate transformations.
- Show that the two definitions agree locally.