
Homework 1 (optional)

(1) (Exercise 2.11, McDuff–Salamon) Let A ∈ GL(2n;R) be a nondegenerate
skew-symmetric matrix (i.e. detA 6= 0 and A = −AT ) and set ω(u, v) :=
uTAv. Prove that a symplectic basis for (R2n, ω) can be constructed in
terms of the real and imaginary parts of the eigenvectors of A. (Recall that
self-adjoint matrices can be diagonalized.)

(2) (Exercises 2.13 and 2.15, McDuff–Salamon)
• Show that if β is a skew-symmetric bilinear form on a real vector space
W , there exists a basis u1, . . . , un, v1, . . . , vn, w1, . . . , wp of W such that
β(ui, vj) = δij and all other pairings vanish. The integer 2n is called
the rank of β.
• Show that any hyperplane W in a symplectic vector space (V, ω) is
coisotropic. (Use the previous part to find a nonzero w ∈ W ∩ Wω.
What can you say about the span of w?)

(3) Recall that we gave two definitions of the canonical 1-form λcan on a cotan-
gent bundle T ∗L:
• The first definition was in local coordinates x1, . . . , xn on L. We defined
λcan :=

∑n
j=1 yjdxj , where yj is the fiber coordinate corresponding to

xj .
• The second definition was coordinate-independent. We denoted by π
the projection T ∗L→ L, which induces a map

π∗ : T ∗(T ∗L)→ T ∗L, π∗(p,ξ) : T
∗
(p,ξ)(T

∗L)→ T ∗
pL.

We defined λcan by

λcan,(p,ξ) := π∗(p,ξ)ξ.

That is, for V ∈ T(p,ξ)T ∗L,

λcan,(p,ξ)(V ) := ξp(π∗,(p,ξ)(V )).

Prove that the first definition of λcan is well-defined. You can do this in one
of two ways (or both ways, if you have energy to spare):
• Consider how the first definition of λcan behaves under coordinate trans-
formations.
• Show that the two definitions agree locally.
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