A combinatorial model for totally nonnegative partial flag varieties

Maitreyee Kulkarni AMS Spring Central Virtual Sectional Meeting

jt. with Chris Fraser, Jacob Matherne

- Grassmannians and their totally nonnegative parts Gr_{kn}^{tnn}
- Combinatorial description of Gr^{tnn} in terms of networks
- Flag varieties and their totally nonnegative parts Fl^{tnn}
- Momentum-twistor diagrams (the combinatorial model for FI^{tnn})

The Grassmannian Gr_{kn} is the space of k-dimensional subspaces of \mathbb{C}^n .

$$X = \text{rowspan} \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \dots & \dots & \dots & \dots \\ x_{k1} & x_{k2} & \dots & x_{kn} \end{bmatrix}$$

Any full rank $k \times n$ matrix gives a point in Gr_{kn} .

Two matrices M and M' give the same point in Gr_{kn} if M' = gM for some $g \in \operatorname{GL}_k$. So, $\operatorname{Gr}_{kn} = \operatorname{GL}_k \setminus \operatorname{Mat}_{kn}$.

For $I \in {\binom{[n]}{k}}$, the Plücker coordinate is

 $\Delta_I(X) = (k \times k)$ minor of X using columns I.

Example: The Plücker coordinates of the 2-plane

$$X = \text{rowspan} \begin{bmatrix} 1 & 0 & a & b \\ 0 & 1 & c & d \end{bmatrix}$$

are $\Delta_{12} = 1$, $\Delta_{13} = c$, $\Delta_{14} = d$, $\Delta_{23} = -a$, $\Delta_{24} = -b$, and $\Delta_{34} = ad - bc$.

They satisfy the Plücker relation $\Delta_{13}\Delta_{24} = \Delta_{12}\Delta_{34} + \Delta_{14}\Delta_{23}$.

Example: The Plücker coordinates of the 2-plane

$$X = \text{rowspan} \begin{bmatrix} 1 & 0 & a & b \\ 0 & 1 & c & d \end{bmatrix}$$

are $\Delta_{12} = 1$, $\Delta_{13} = c$, $\Delta_{14} = d$, $\Delta_{23} = -a$, $\Delta_{24} = -b$, and $\Delta_{34} = ad - bc$.

They satisfy the Plücker relation $\Delta_{13}\Delta_{24} = \Delta_{12}\Delta_{34} + \Delta_{14}\Delta_{23}$.

In general, a collection of numbers $((\Delta_I)_{I \in \binom{[n]}{k}})$, not all zero, defines a point in Gr_{kn} if and only if the Plücker relation with r = 1 index swapped is satisfied:

$$\sum_{s=1}^{n} (-1)^{s} \Delta_{i_{1}, i_{2}, \dots, i_{k-1}, j_{s}} \Delta_{j_{1}, \dots, j_{s-1}, \hat{j}_{s}, j_{s+1}, \dots, j_{k}} = 0$$

where \hat{j}_s denotes omission.

The totally nonnegative Grassmannian Gr_{kn}^{tnn} is the set of elements in the Grassmannian Gr_{kn} with all nonnegative Plücker coordinates.

Combinatorial description of Gr_{kn}^{tnn} (by Postnikov)

A plabic graph G is a planar bipartite graph in a disk.

- vertices are either black or white, and every edge connects a black and a white vertex
- *n boundary vertices* on the boundary, labeled clockwise
- all boundary vertices have degree one, and there are no edges joining boundary vertices.

G with positive edge weights will be called a network.

There is a "boundary measurement" map BM : {Networks} \rightarrow Gr^{tnn}_{kn} An almost perfect matching Π is a subset of edges of N such that (1) each interior vertex is used exactly once, (2) boundary vertices may or may not be used.

Almost perfect matchings Π_1 and Π_2 .

The boundary subset $I(\Pi) \subset \{1, 2, \ldots, n\}$

 $I(\Pi) =$ black vertices used by Π and white vertices not used by Π .

Almost perfect matchings Π_1 and Π_2 such that $I(\Pi_1) = \{2, 4\}$ and $I(\Pi_2) = \{1, 2\}$.

For $I \in {\binom{[n]}{k}}$, the boundary measurement is

$$\Delta_I(N) = \sum_{I(\Pi)=I} \operatorname{wt}(\Pi)$$

wt($\Pi)$ is the product of the weights of the edges in $\Pi.$

Example: Gr(2,4) and $I = \{2,4\}$

For $I \in {[n] \choose k}$, the boundary measurement is

$$\Delta_I(N) = \sum_{I(\Pi)=I} \operatorname{wt}(\Pi)$$

wt(Π) is the product of the weights of the edges in Π .

Example: Gr(2,4) and $I = \{2,4\}$

 $\Delta_{24}(N) = \operatorname{wt}(\Pi_1) + \operatorname{wt}(\Pi_2) = ac + bd$

Boundary Measurements map BM

$$\begin{array}{rcl} \{ \mathsf{Networks} \} & \stackrel{\mathsf{BM}}{\longrightarrow} & \mathsf{Gr}_{kn}^{tnn} \\ & N & \longmapsto & \left(\Delta_I(N) \right)_{I \in \binom{[n]}{k}}. \end{array}$$

Theorem (Postnikov)

 Well-definedness: given a network, its boundary measurements land in Gr^{tnn}_{kn} (i.e., they satisfy Plücker relations).
Surjectivity: every point in Gr^{tnn}_{kn} comes from some network.

In fact, something stronger can be said here.

 $\operatorname{Gr}_{kn}^{tnn}$ can be stratified into positroid cells: given by which Δ_I 's are zero and which Δ_I 's are positive.

These positroid cells

- are disjoint.
- closure of one is union of smaller ones.
- make up all of $\operatorname{Gr}_{kn}^{tnn}$.

Let $BM(G) = \{BM(N) \mid N \text{ is a choice of edge weights for } G\}$.

Theorem (Postnikov)

3) Characterizing the image: $\{BM(G)\} \stackrel{bij}{\longleftrightarrow} \{positroid cells\}.$

- stronger statement of surjectivity: "cell by cell" surjectivity.

 $BM(G) = \{BM(N) \mid N \text{ is a choice of edge weights for } G\}$

Theorem (Postnikov)

4) Disjointness of images: for two graphs G and G', we have either BM(G) = BM(G') or $BM(G) \cap BM(G') = \emptyset$.

The cell decomposition of $\operatorname{Gr}_{kn}^{tnn}$ is "induced" by the graphs.

Poset of Gr_{13}^{tnn}

Is there a combinatorial description for partial flag varieties? Focus on two-step flag variety Fl(k, k + 2; n). We consider matrices of the form

$$X = \text{rowspan} \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ x_{31} & x_{32} & \dots & x_{3n} \\ \dots & \dots & \dots & \dots \\ x_{(k+2)1} & x_{(k+2)2} & \dots & x_{(k+2)n} \end{bmatrix}$$

The Fl(k, k + 2; n). Two matrices $M, M' \in M(k + 2, n)$ give the same point in Fl(k, k + 2; n) if M' = g.M for some $g \in GL(k; 1)$, where GL(k; 1) is the group of all invertible $(k + 2) \times (k + 2)$ matrices of the form

$$g = \begin{bmatrix} A_{2\times 2} & \mu_{2\times k} \\ 0_{k\times 2} & B_{k\times k} \end{bmatrix}$$

The nonnegative part of Fl(k, k+2; n).

$$X = \text{rowspan} \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ x_{31} & x_{32} & \dots & x_{3n} \\ \dots & \dots & \dots & \dots \\ x_{(k+2)1} & x_{(k+2)2} & \dots & x_{(k+2)n} \end{bmatrix}$$

We say that a matrix $M \in Fl(k, k + 2; n)^{tnn}$ if $M \in Gr_{(k+2)n}^{tnn}$ and $M_0 \in Gr_{kn}^{tnn}$, where M_0 denotes the matrix M with the first two rows removed.

Both positivity conditions are invariant under GL(k;1) transformations.

A plabic graph is a planar bipartite graph in a disk.

- vertices are either black or white, and every edge connects a black and a white vertex.
- *n boundary vertices* on the boundary, labeled clockwise.
- all boundary vertices have degree one, and there are no edges joining boundary vertices.

A plabic graph momentum-twistor diagram is a planar bipartite graph in a disk on an annulus.

- vertices are either black or white, and every edge connects a black and a white vertex.
- *n boundary vertices* on the boundary, labeled clockwise.
- all boundary vertices have degree one, and there are no edges joining boundary vertices.

A plabic graph momentum-twistor diagram is a planar bipartite graph in a disk on an annulus.

- vertices are either black or white, and every edge connects a black and a white vertex.
- *n boundary vertices* on the boundary, labeled clockwise.
- two puncture vertices on the inner boundary
- all boundary vertices have degree one, and there are no edges joining boundary vertices.

A momentum-twistor diagram M is a planar bipartite graph on an annulus.

- vertices are either black or white, and every edge connects a black and a white vertex.
- *n boundary vertices* on the boundary, labeled clockwise.
- two *puncture vertices* on the inner boundary
- all boundary vertices have degree one, and there are no edges joining boundary vertices.

An almost perfect matching Π is a subset of edges of M such that

- (1) each interior vertex is used exactly once,
- (2) boundary vertices may or may not be used,
- (3) exactly one of the puncture vertex is used.

Almost perfect matchings Π_1 and Π_2 such that $I(\Pi_1) = \{1, 3, 5\}$ and $I(\Pi_2) = \{5\}.$

For $J \in {[n] \choose k}$, the boundary measurement is

$$\Delta_J(M) = \sum_{I(\Pi)=J} \operatorname{wt}(\Pi)$$

wt(Π) is the product of the weights of the edges in Π .

Theorem (Fraser-K-Matherne) The boundary meas map {MTD with non-neg edge wts} \rightarrow FI^{tnn} is well defined. is surjective.

Surjectivity proved for FI(1, 3; n) and FI(2, 4; n). In progress for FI(k, k + 2; n).

	$\operatorname{Gr}_{kn}^{tnn}$	$Fl^{tnn}_{(k,k+2;n)}$
1.	BM is well defined	BM is well defined
2.	BM is surjective	BM is surjective
		proved for $(1,3;n)$ and $(2,4;n)$
3.	"cell by cell" surjectivity	in examples
	$\{BM(G)\} \stackrel{bij}{\longleftrightarrow} \{positroid\ cells\}$	quadratic rel in plucker coords
4.	disjointness of images:	not true here
	BM(G) = BM(G') or	$BM(G) \neq BM(G')$
	$BM(G)\capBM(G')=\emptyset$	and $BM(G) \cap BM(G') \neq \emptyset$

	$\operatorname{Gr}_{kn}^{tnn}$	$Fl^{tnn}_{(k,k+2;n)}$
1.	BM is well defined	BM is well defined
2.	BM is surjective	BM is surjective
		proved for $(1,3;n)$ and $(2,4;n)$
3.	"cell by cell" surjectivity	in examples
	$\{BM(G)\} \stackrel{bij}{\longleftrightarrow} \{positroid cells\}$	quadratic rel in plucker coords
4.	disjointness of images:	not true here
	BM(G) = BM(G') or	$BM(G) \neq BM(G')$
	$BM(G)\capBM(G')=\emptyset$	and $BM(G)\capBM(G')\neq\emptyset$

Thank you!