A combinatorial model for totally nonnegative partial flag varieties

Maitreyee Kulkarni
AMS Spring Central Virtual Sectional Meeting
jt. with Chris Fraser, Jacob Matherne

Overview

- Grassmannians and their totally nonnegative parts $\mathrm{Gr}_{k n}^{\mathrm{tnn}}$
- Combinatorial description of $\mathrm{Gr}_{k n}^{t n n}$ in terms of networks
- Flag varieties and their totally nonnegative parts $\mathrm{FI}^{\text {tnn }}$
- Momentum-twistor diagrams (the combinatorial model for $\mathrm{Fl}^{\mathrm{tnn}}$)

Grassmannians

The Grassmannian $\mathrm{Gr}_{k n}$ is the space of k-dimensional subspaces of \mathbb{C}^{n}.

$$
X=\operatorname{rowspan}\left[\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 n} \\
x_{21} & x_{22} & \ldots & x_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
x_{k 1} & x_{k 2} & \ldots & x_{k n}
\end{array}\right]
$$

Any full rank $k \times n$ matrix gives a point in $\mathrm{Gr}_{k n}$.
Two matrices M and M^{\prime} give the same point in $\mathrm{Gr}_{k n}$ if $M^{\prime}=g M$ for some $g \in \mathrm{GL}_{k}$. So, $\mathrm{Gr}_{k n}=\mathrm{GL}_{k} \backslash \mathrm{Mat}_{k n}$.
For $I \in\binom{[n]}{k}$, the Plücker coordinate is

$$
\Delta_{l}(X)=(k \times k) \text { minor of } X \text { using columns } I .
$$

Example: The Plücker coordinates of the 2-plane

$$
X=\operatorname{rowspan}\left[\begin{array}{llll}
1 & 0 & a & b \\
0 & 1 & c & d
\end{array}\right]
$$

are $\Delta_{12}=1, \Delta_{13}=c, \Delta_{14}=d, \Delta_{23}=-a, \Delta_{24}=-b$, and
$\Delta_{34}=a d-b c$.
They satisfy the Plücker relation $\Delta_{13} \Delta_{24}=\Delta_{12} \Delta_{34}+\Delta_{14} \Delta_{23}$.

Example: The Plücker coordinates of the 2-plane

$$
X=\text { rowspan }\left[\begin{array}{llll}
1 & 0 & a & b \\
0 & 1 & c & d
\end{array}\right]
$$

are $\Delta_{12}=1, \Delta_{13}=c, \Delta_{14}=d, \Delta_{23}=-a, \Delta_{24}=-b$, and $\Delta_{34}=a d-b c$.

They satisfy the Plücker relation $\Delta_{13} \Delta_{24}=\Delta_{12} \Delta_{34}+\Delta_{14} \Delta_{23}$.
In general, a collection of numbers $\left(\left(\Delta_{I}\right)_{I \in\binom{[n]}{k}}\right)$, not all zero, defines a point in $\mathrm{Gr}_{k n}$ if and only if the Plücker relation with $r=1$ index swapped is satisfied:

$$
\sum_{s=1}^{n}(-1)^{s} \Delta_{i_{1}, i_{2}, \ldots, i_{k-1}, j_{s}} \Delta_{j_{1}, \ldots, j_{s-1}, \hat{j}_{s}, j_{s+1}, \ldots, j_{k}}=0
$$

where \hat{j}_{s} denotes omission.

The totally nonnegative Grassmannian $\mathrm{Gr}_{k n}^{\mathrm{tnn}}$ is the set of elements in the Grassmannian $\mathrm{Gr}_{k n}$ with all nonnegative Plücker coordinates.

Combinatorial description of $\mathrm{Gr}_{k n}^{t n n}$ (by Postnikov)

A plabic graph G is a planar bipartite graph in a disk.

- vertices are either black or white, and every edge connects a black and a white vertex
- n boundary vertices on the boundary, labeled clockwise
- all boundary vertices have degree one, and there are no edges joining boundary vertices.

G with positive edge weights will be called a network.

There is a "boundary measurement" map BM : \{Networks $\} \rightarrow \mathrm{Gr}_{k n}^{\mathrm{tnn}}$
An almost perfect matching Π is a subset of edges of N such that
(1) each interior vertex is used exactly once,
(2) boundary vertices may or may not be used.

Almost perfect matchings Π_{1} and Π_{2}.

The boundary subset $I(\Pi) \subset\{1,2, \ldots, n\}$
$I(\Pi)=$ black vertices used by Π and white vertices not used by Π.

Almost perfect matchings Π_{1} and Π_{2} such that

$$
I\left(\Pi_{1}\right)=\{2,4\} \text { and } I\left(\Pi_{2}\right)=\{1,2\} .
$$

For $I \in\binom{[n]}{k}$, the boundary measurement is

$$
\Delta_{l}(N)=\sum_{l(\Pi)=l} w t(\Pi)
$$

$w t(\Pi)$ is the product of the weights of the edges in Π.
Example: $\operatorname{Gr}(2,4)$ and $I=\{2,4\}$

For $I \in\binom{[n]}{k}$, the boundary measurement is

$$
\Delta_{l}(N)=\sum_{l(\Pi)=l} w t(\Pi)
$$

$w t(\Pi)$ is the product of the weights of the edges in Π.
Example: $\operatorname{Gr}(2,4)$ and $I=\{2,4\}$

$$
\Delta_{24}(N)=w t\left(\Pi_{1}\right)+w t\left(\Pi_{2}\right)=a c+b d
$$

Boundary Measurements map BM

$$
\begin{aligned}
\{\text { Networks }\} & \xrightarrow{\mathrm{BM}} \mathrm{Gr}_{k n}^{\mathrm{tnn}} \\
N & \longmapsto\left(\Delta_{I}(N)\right)_{I \in\binom{[n]}{k}} .
\end{aligned}
$$

Theorem (Postnikov)

1) Well-definedness: given a network, its boundary measurements land in $\mathrm{Gr}_{k n}^{\text {tnn }}$ (i.e., they satisfy Plücker relations).
2) Surjectivity: every point in $\mathrm{Gr}_{k n}^{\mathrm{tnn}}$ comes from some network.

In fact, something stronger can be said here.

Stratification of $\mathrm{Gr}_{k n}^{\mathrm{tnn}}$

$\mathrm{Gr}_{k n}^{\mathrm{tnn}}$ can be stratified into positroid cells: given by which Δ_{l} 's are zero and which Δ_{l} 's are positive.

These positroid cells

- are disjoint.
- closure of one is union of smaller ones.
- make up all of $\mathrm{Gr}_{k n}^{\mathrm{tnn}}$.

Let $\operatorname{BM}(G)=\{\operatorname{BM}(N) \mid N$ is a choice of edge weights for $G\}$.

Theorem (Postnikov)

3) Characterizing the image: $\{B M(G)\} \stackrel{b i j}{\longleftrightarrow}\{$ positroid cells $\}$.

- stronger statement of surjectivity: "cell by cell" surjectivity.
$\operatorname{BM}(G)=\{\operatorname{BM}(N) \mid N$ is a choice of edge weights for $G\}$

Theorem (Postnikov)

4) Disjointness of images: for two graphs G and G^{\prime}, we have either $\mathrm{BM}(G)=\mathrm{BM}\left(G^{\prime}\right)$ or $\mathrm{BM}(G) \cap \mathrm{BM}\left(G^{\prime}\right)=\varnothing$.

The cell decomposition of $\mathrm{Gr}_{k n}^{\mathrm{tnn}}$ is "induced" by the graphs.

Poset of $\mathrm{Gr}_{13}^{\text {tnn }}$

Is there a combinatorial description for partial flag varieties?
Focus on two-step flag variety $\mathrm{FI}(k, k+2 ; n)$.

We consider matrices of the form

$$
X=\operatorname{rowspan}\left[\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 n} \\
x_{21} & x_{22} & \ldots & x_{2 n} \\
\hline x_{31} & x_{32} & \ldots & x_{3 n} \\
\ldots \ldots \ldots & \ldots & \ldots & \ldots \\
x_{(k+2) 1} & x_{(k+2) 2} & \ldots & x_{(k+2) n}
\end{array}\right]
$$

The $\operatorname{FI}(k, k+2 ; n)$. Two matrices $M, M^{\prime} \in M(k+2, n)$ give the same point in $\mathrm{Fl}(k, k+2 ; n)$ if $M^{\prime}=g . M$ for some $g \in G L(k ; 1)$, where $G L(k ; 1)$ is the group of all invertible $(k+2) \times(k+2)$ matrices of the form

$$
g=\left[\begin{array}{ll}
A_{2 \times 2} & \mu_{2 \times k} \\
0_{k \times 2} & B_{k \times k}
\end{array}\right]
$$

The nonnegative part of $\mathrm{Fl}(k, k+2 ; n)$.

$$
X=\operatorname{rowspan}\left[\begin{array}{ccccc}
x_{11} & x_{12} & \ldots & x_{1 n} \\
x_{21} & x_{22} & \ldots & x_{2 n} \\
x_{31} & x_{32} & \ldots & x_{3 n} \\
\ldots \ldots \ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right]
$$

We say that a matrix $M \in \operatorname{Fl}(k, k+2 ; n)^{t n n}$ if $M \in \operatorname{Gr}_{(k+2) n}^{t n n}$ and $M_{0} \in \mathrm{Gr}_{k n}^{\mathrm{tnn}}$, where M_{0} denotes the matrix M with the first two rows removed.

Both positivity conditions are invariant under $G L(k ; 1)$ transformations.

Momentum-twistor diagram

A plabic graph is a planar bipartite graph in a disk.

- vertices are either black or white, and every edge connects a black and a white vertex.
- n boundary vertices on the boundary, labeled clockwise.
- all boundary vertices have degree one, and there are no edges joining boundary vertices.

Momentum-twistor diagram

A plabic graph momentum-twistor diagram is a planar bipartite graph in a disk on an annulus.

- vertices are either black or white, and every edge connects a black and a white vertex.
- n boundary vertices on the boundary, labeled clockwise.
- all boundary vertices have degree one, and there are no edges joining boundary vertices.

Momentum-twistor diagram

A plabic graph momentum-twistor diagram is a planar bipartite graph in adisk on an annulus.

- vertices are either black or white, and every edge connects a black and a white vertex.
- n boundary vertices on the boundary, labeled clockwise.
- two puncture vertices on the inner boundary
- all boundary vertices have degree one, and there are no edges joining boundary vertices.

A momentum-twistor diagram M is a planar bipartite graph on an annulus.

- vertices are either black or white, and every edge connects a black and a white vertex.
- n boundary vertices on the boundary, labeled clockwise.
- two puncture vertices on the inner boundary
- all boundary vertices have degree one, and there are no edges joining boundary vertices.

An almost perfect matching Π is a subset of edges of M such that
(1) each interior vertex is used exactly once,
(2) boundary vertices may or may not be used,
(3) exactly one of the puncture vertex is used.

Almost perfect matchings Π_{1} and Π_{2} such that $I\left(\Pi_{1}\right)=\{1,3,5\}$ and $I\left(\Pi_{2}\right)=\{5\}$.

For $J \in\binom{[n]}{k}$, the boundary measurement is

$$
\Delta_{J}(M)=\sum_{I(\Pi)=J} w t(\Pi)
$$

$w t(\Pi)$ is the product of the weights of the edges in Π.

Theorem (Fraser-K-Matherne)

The boundary meas map $\left\{\right.$ MTD with non-neg edge wts\} $\rightarrow \mathrm{Fl}^{\text {tnn }}$ is well defined.
is surjective.
Surjectivity proved for $\operatorname{FI}(1,3 ; n)$ and $\mathrm{FI}(2,4 ; n)$. In progress for $\mathrm{FI}(k, k+2 ; n)$.

	$\mathrm{Gr}_{k n}^{\mathrm{tnn}}$	$\mathrm{F}_{(k, k+2 ; n)}^{\text {tnn }}$
1.	BM is well defined	BM is well defined
2.	BM is surjective	BM is surjective proved for $(1,3 ; n)$ and $(2,4 ; n)$
3.	"cell by cell" surjectivity $\{\mathrm{BM}(G)\} \stackrel{\mathrm{bij}}{\longleftrightarrow}$ \{positroid cells $\}$	in examples quadratic rel in plucker coords
4.	disjointness of images: $\mathrm{BM}(\mathrm{G})=\mathrm{BM}\left(\mathrm{G}^{\prime}\right)$ or $B M(G) \cap B M\left(G^{\prime}\right)=\emptyset$	$\begin{gathered} \text { not true here } \\ \mathrm{BM}(\mathrm{G}) \neq \mathrm{BM}\left(\mathrm{G}^{\prime}\right) \\ \text { and } \mathrm{BM}(\mathrm{G}) \cap \mathrm{BM}\left(\mathrm{G}^{\prime}\right) \neq \emptyset \\ \hline \end{gathered}$

	$\mathrm{Gr}_{k n}^{\mathrm{tnn}}$	$\mathrm{F}_{(k, k+2 ; n)}^{\text {tnn }}$
1.	BM is well defined	BM is well defined
2.	BM is surjective	BM is surjective proved for $(1,3 ; n)$ and $(2,4 ; n)$
3.	"cell by cell" surjectivity $\{\mathrm{BM}(G)\} \stackrel{\mathrm{bij}}{\longleftrightarrow}$ \{positroid cells $\}$	in examples quadratic rel in plucker coords
4.	disjointness of images: $\mathrm{BM}(\mathrm{G})=\mathrm{BM}\left(\mathrm{G}^{\prime}\right)$ or $B M(G) \cap B M\left(G^{\prime}\right)=\emptyset$	$\begin{gathered} \text { not true here } \\ \mathrm{BM}(\mathrm{G}) \neq \mathrm{BM}\left(\mathrm{G}^{\prime}\right) \\ \text { and } \mathrm{BM}(\mathrm{G}) \cap \mathrm{BM}\left(\mathrm{G}^{\prime}\right) \neq \emptyset \\ \hline \end{gathered}$

Thank you!

