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Summary Sometimes a topological space X is endowed with a nice, continuous product X ×X −→ X
(think for example of a Lie group). If this happens, then one can deduce many interesting properties
about the topology of X: for example, the homology of X has a natural structure of graded ring, and
the fundamental group π1(X) is abelian. However, many spaces X are naturally endowed with several
natural operations, with two or more inputs and one output, and there is no canonical way to choose a
single operation on X. An operad helps us keeping track of all operations that we want to consider. This
notion naturally arose in the 1970s from the study of iterated loop spaces by Boardman, Vogt and May.

Similarly, in the context of linear algebra (over a commutative ring R), operads classify various
types of multilinear operations that one can put on an R-module, and the relations that we want to
impose among these operations (think of an R-algebra structure on an R-module, with associativity and
commutativity as properties).

This seminar aims to provide an introduction to operad theory, with a focus on its applications to
algebraic topology. We will in particular see how operads help us understanding the homology of spaces
and sequences of spaces, and detect properties of their homotopy type.

One of our main goals will be the recognition principle of May [May72], stating that if X has an action
of the operad Ed of little d-cubes (and assuming that X is grouplike), then X is homotopy equivalent to
a d-fold loop space. We will also consider the following situation: we have a space X which naturally
decomposes as a disjoint union of spaces Xn indexed by natural numbers n; an operad O acts on X, and
for all n there are natural maps Xn −→ Xn+1 coming from this action. In this case the operad O can
help us understand how the different spaces Xn are interrelated, and obtain some information of the
stable homology of X, i.e. the colimit of H∗(Xn) for n going to infinity. We will in particular discuss
the group completion theorem for the homology of certain algebras X =

∐
n≥0 Xn over the operad E1

[MS76, FM94].
Finally, we will consider the surface operadM introduced by Tillmann [Til00] and state the main

theorem of [BBP+16]: if X has an action of an operad with homological stability (for exampleM) and
X is grouplike, then X is homotopy equivalent to an infinite loop space.

Seminar concept The talks are supposed to be 90 minutes long. Be aware that some time will be
needed for questions. Please discuss your talk with one of us two weeks before you are going to give it.
If you have questions during the preparation of the talk, feel free to contact us!

Prerequisites Good understanding of elementary homotopy theory, basic category theory, homological
algebra and singular homology.

Organisational meeting Thursday, February 6th 2020, 11:00–12:00, SR 0.006

(1) H-spaces and d-fold loop spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Agata Sienicka, 22.04.2020
[tD08, §4.4+5], [MSS07, §II.2.1+2], [Whi78, §III.2], [May72, §4.1, §5.1]

Recall the notion of an H-space X and give the examples of Lie groups. If X is an H-space,
then π1(X) is abelian and acts trivially on higher homotopy groups. Distinguish between H- and
strict unitality, associativity and commutativity of an H-space. A topological monoid is a strictly
associative H-space with strict unit. A map of H-spaces is required to preserve the product only
up to homotopy: explain what this means. Describe the Pontryagin product in the homology of
an H-space, and say when it is associative or (graded) commutative.
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For a pointed topological space (Y, ∗), define the classical loop space ΩY = map((I, ∂I), (Y, ∗)). It
is always homotopy-associative, but normally not strictly associative; the unit (the constant loop
at ∗) is not strict in general. Explain how the Moore loop space ΩMooreY is a strictly associative
replacement of ΩY (with strict unit).
Introduce the d-fold loop spaces ΩdY = map((Id, ∂Id), (Y, ∗)) for d ≥ 2, and show that they
are H-associative and H-commutative H-spaces. Unfortunately, one cannot always replace an
Ωd-space by a strictly commutative H-space: we will argue why during the seminar.
Define the spaces Ed(n) for n ≥ 0, and prove that a point in Ed(n) gives a way to combine n
elements of ΩdY and obtain a new element of ΩdY . So there are not just single operations, but
entire spaces of n-fold products on ΩdY . In particular, the space of binary products is homotopy
equivalent to Sd−1.

(2) Symmetric monoidal categories . . . . . . . . . . . . . . . . . . . . . . . . . Janina Bernardy, Fri, 24.04.2020
[Bor94, §6.1+2+5,§7.1–2], [ML71, §VII.1+3,§XI.1+2], [May72, §10], [MSS07, §II.1.1]

To formalise the notion of operad and apply it also to other, non-topological contexts, it is useful
to work in the general setting of monoidal categories.
Introduce the notion of (symmetric) monoidal category (C ,⊗, 1). Be extremely brief in discussing
the coherence axioms for associators. Give examples: sets, abelian groups, (graded) R-modules,
chain complexes, topological spaces (be brief on the necessity to work with compactly generated,
weakly Hausdorff spaces); based spaces. These examples are all symmetric. A non-symmetric
example is, for an arbitrary category C, the functor category Fun(C,C), with monoidal product
given by composition of endofunctors.
Define (commutative) monoid objects in C . If C is symmetric, then monoid objects in C form
again a symmetric monoidal category Mon(C ). In the previous list of examples we obtain: usual
monoids; (graded) R-algebras, differential graded R-algebras; topological monoids.
Introduce (symmetric) lax and strong monoidal functor between symmetric monoidal categories.
Examples: π0 : Top −→ Set is strong monoidal; H∗(−;R) : Top −→ R-ModN is lax monoidal, and
strong monoidal if R is a field. More tricky examples: C∗ : Top −→ Ch and C∗ : Top −→ DGA are
lax monoidal, but not symmetric.
Observe that a lax monoidal functor C −→ D maps monoid objects of C to monoid objects in D .
Recover the Pontryagin product in the homology of a topological monoid, or more generally of a
homotopy associative H-space (which is the same as a monoid object in ho(Top)).

(3) Operads and little cubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jakub Löwit, 29.04.2020
[MSS07, §II.1.2+4, §II.2.2], [May, §1], [May72, §1, §3.2+3, §4.1],

Give intuition for operads: O consists of a sequence of objects O(n); the object O(n) parametrises
all possible ways to compose n inputs and obtain one output. Draw trees and give the formal
definition of operad in a symmetric monoidal category C , describing briefly structure maps and
which coherences are required. Define morphisms of operads.
Give examples: Ass and Comm are operads in every cocomplete symmetric monoidal category.
Describe them explicitly in the case of Top and R-Mod, for R a commutative ring. Introduce
algebras over an operad and their morphisms. Algebras in C over Ass are exactly monoid objects
in C , whereas algebras over Comm are commutative monoid objects. Recover (commutative)
topological monoids and (commutative) R-algebras as examples.
Now consider operads in Top. Show that for a topological operad O and an O-algebra X, each
choice of m ∈ O(2) endows the space X with a multiplication X × X −→ X. When is this
H-commutative, H-associative, H-unital or H-unique? Recall the definitions of the spaces Ed(n)
from the first talk, and say how they assemble into an operad Ed. Our aim is to use this operad
Ed to detect Ωd-spaces.1 Show how operads and their algebras can be pushed forward along
symmetric lax functors, e.g. π0 and Hsing

∗ . What is π0(Ed)? Using this, we obtain the following:
for an E1-algebra X, theset π0(X) is naturally a monoid and for an Ed-algebra X with d ≥ 2, the
set π0(X) is naturally a commutative monoid.
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Define grouplike Ed-algebras. For example, ΩdY is a grouplike Ed-algebra for all d ≥ 1 (we are
essentially saying that πd(Y ) is a group and not just a monoid). Discuss the example of the
unordered configuration space Conf(Id) =

∐
n≥0 Confn(Id) as an Ed-algebra and draw pictures.

This algebra is not grouplike. State the recognition principle: if X is a grouplike Ed-algebra, then
X can be replaced, up to homotopy equivalence, by ΩdB for some space B.

1 These spaces live naturally in the category Top∗ of pointed topological spaces; we will see in the next talk
how to formally switch from the category Top to the category Top∗.

(4) Monads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nicholas Schwab, 06.05.2020
[tD08, §4.4], [Bor94, §4.1+2], [ML71, §VI.1+2,§VII.9], [BBP+16, Def. 2.5/Ex. 2.6], [May, §2.1+4+9+10,§9.4]

Define monads T on a category C (we do not need any monoidal structure on C). Give an alter-
native description as monoids in the endomorphism category. Show how monads can arise from
monoid objects and from adjunctions. Examples: an R-algebra A gives a monad (A⊗R −) in the
category R-Mod; the adjunction Σd : Top∗ ←→ Top∗ : Ωd gives a monad ΩdΣd in Top∗.
Define algebras over a monad T , and morphisms of T -algebras. Note that T can be enhanced to
a functor from C to the category AlgT (C) of algebras over T : this functor is left adjoint to the
forgetful functor AlgT (C) −→ C and hence is called the free algebra functor. Examples: algebras
over (A⊗R −) are precisely A-modules; algebras over ΩΣ are more tricky. Maybe one can at least
see that for all spaces B, ΩdB is an algebra over the monad ΩdΣd (a similar property holds for
any adjunction).
Show how an operad O in a symmetric monoidal category C gives a monad TO in C , and that
the notions of “algebra” over O and over TO coincide. Describe the free O-algebra O[X] over a
C -object X. Discuss explicitly what Ed[X] for a space X is. What is Ed[∗]? Argue how operads
in Top give monads in Top∗ by adding extra relations which identify 0-aries with the basepoint.
Give the explicit example of the free algebra Ed[X, ∗] for a based space X and compare it to
Ed[X]. Is Ed[X, ∗] connected if X is?
Define morphisms of monads. Examples: a morphism of R-algebras A −→ A′ gives morphism of
monads (A⊗R −) −→ (A′ ⊗R −) defined on R-Mod. If T −→ T ′ is a morphism of monads, each
T ′-algebra becomes a T -algebra. Define for a monad T in a category C , what a right T -module
functor S is. Example in R-Mod: if A is an associative R-algebra and S is a right A-module, then
S ⊗R − : R-Mod −→ R-Mod is a right (A⊗R −)-module functor.

(5) Simplicial objects and bar constructions . . . . . . . . . . . . . . . . . . Andrea Lachmann, 13.05.2020
[Bau95, pp. 8–10], [May72, §9], [Pen19, §4], [Ebe19, §1–2]

Recall the notion of simplicial object in a category C, and in the case of C = Top, define the
geometric realisation of a simplicial space.
For a topological monoid M , define the (topologically enriched) nerve, which is a simplicial space
NM ; the geometric realisation is called BM and is a connected topological space, called the
bar construction. The assignment M 7−→ BM gives a functor from the category Mon(Top) of
topological monoids to the category Top. This functor is strong monoidal, i.e. there are natural
homeomorphisms B(M ×M ′) ∼= BM ×BM ′ for all topological monoids M and M ′.
More generally, if X is a right M -space and Y is a left M -space, then we can define the simplicial
space N(X,M, Y ) and its geometric realisation B(X,M, Y ), which is just a topological space.
Examples: We recover the space BM = B(∗,M, ∗) whereas EM := B(∗,M,M) is contractible.
For topological groups G, the canonical map EG −→ BG is a universal principal G-bundle, and
BG is a classifying space for principal G-bundles.1

We will need the following generalisation of the previous construction: For a category C, define the
nerve NC, which is a simplicial set; the geometric realisation of NC is called BC and is a topological
space, in general disconnected. If C and D are two categories, argue that B(C× D) ∼= BC×BD.
If C is a strict monoidal category, then BC is a topological monoid.2
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Introduce the bar construction N(S, T,X) for a monad T in a category C, a T -algebra X and a
right T -module functor S: it is a simplicial object in C, and if C = Top then we have a geometric
realisation B(S, T,X). Give some concrete example.

1 In general, EM −→ BM is only a continuous map with fibres homeomorphic to M .
2 If C is only monoidal, then BC is a homotopy associative H-space.

(6) Two applications of quasifibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . Raphael Floris, 20.05.2020
[Pen19, §5+7], [Hat01, §4K], [Hat14, Appendix D], [May72, §6–7]

Introduce the notion of quasifibration of topological spaces: a quasifibration does not have the
strict homotopy lifting property with respect to all pairs of CW complexes, but satisfies a milder,
yet useful condition expressed in terms of homotopy groups.
Recall the bar construction BM and the map EM −→ BM from the last talk. Show that if
M is grouplike, then the natural map M −→ ΩBM is a homotopy equivalence. Argue that
EM −→ BM is a quasifibration with fibre M , by filtering BM appropriately.
Note that for a based space X, there is always a canonical map Ed[X] −→ ΩdΣdX. State the
approximation principle: For a connected1 space X, this map is a homotopy equivalence. Sketch
the proof of the approximation theorem by arguing that there is a quasifibration Ed[X] ↪−→
Pd[X] −→ Ed−1[ΣX], where the space Pd[X] is contractible (we do not describe explicitly how
this space looks like).

1 If X were not connected, this would not be a quasifibration (you do not need to show it, but it is important
which step fails when an hypothesis is dropped); indeed it is easy to see that if X is not connected, then
Ed[X] is not grouplike, and therefore ca not be homotopy equivalent to ΩdΣdX.

(7) Two applications of the bar construction . . . . Ben Steffan, Jonathan Pampel, 03.06.2020
[MSS07, §II.2.2], [BBP+16, §3], [May72, §4, §13.5]

In this talk we sketch the proof of the recognition principle; we will first discuss the case of a
connected Ed-algebra X, proving that it is homotopy equivalent to a Ωd-space. Show that Σd

is a right Ed-module functor, and also a right ΩdΣd-module functor. Recall the approximation
principle and sketch the proof of the recognition principle for a connected Ed-algebra.
There is a map E1 −→ Ass of topological operads which is a levelwise homotopy equivalence. Even
more, Sn acts freely both on E1(n) and Ass(n), and the quotients are homotopy equivalent. We
expect that each E1-algebra is homotopy equivalent to some Ass-algebra in Top, i.e. a topological
monoid. Describe briefly how the Moore trick works in this case. In general, we call operad O
an A∞-operad if there is levelwise Sn-equivariant homotopy equivalence O −→ Ass . If O is an
A∞-operad, we consider the bar construction B(Ass ,O, X) for any O-algebra X: this is homotopy
equivalent to X, and is a topological monoid.
Introduce the operad E∞. For d ≥ 2, including d = ∞, there is a map Ed −→ Comm , but only
for d =∞, it is levelwise a homotopy equivalence. Still, the action of Sn is free on E∞(n), with
quotient an Eilenberg-MacLane space K(Sn, 1) (not contractible for n ≥ 2), and it is non-free on
Comm(n) = ∗, with quotient a point. Hence we do not expect that an Ed-algebra can be always
strictified to a commutative topological monoid, not even for d =∞.

(8) Algebraic operads. . . . . . . . . . . . . . . . . . . . . . . . . . .Daniel Mulcahy, Christian Kremer, 10.06.2020
[Sin06, §2], [MSS07, §II.1.5+9], [LV12, §5.1.1+3+4+8+9, §5.2.1+7+10+14, §5.4, §5.5.1+2+4], [May,
§4,Def. 5.1+5]

The aim of this talk is to use operads to classify certain algebraic structures (e.g. commutative
algebras, Lie algebras . . .) and to relate them to topological operads.
Firstly, we consider two alternative definitions of operads: given a symmetric monoidal category C ,
introduce the category of symmetric sequences in C and on this, the composition product, yielding
a monoidal category SymSeq(C ). Note that this is not symmetric in general. Now operads are
exactly monoid objects in SymSeq(C ).
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For the second alternative, define the tree monad on SymSeq(C ). Notice that operads in C
correspond to algebras over this monad. Define free operads over a symmetric sequence in C (here
we need again C cocomplete) and explain the analogy to free monoids.
Introduce operadic ideals (and what it means to give generators of an ideal) and show that each
operad (in Ab or more generally, in an abelian category) has a presentation.
Define the following notions in the context of (graded) R-modules: associative, commutative,
graded commutative algebras; Lie d-algebras, Poisson d-algebras for d ≥ 0. Give examples.
Define the AbN-operads Lied and Poisd by presentation. What are algebras over them?
We already noticed that the functor H∗ : Top −→ AbN is lax monoidal, so for each topological
operad O, its homology H∗(O) is an operad in AbN. State without proof that H∗(Ed), as an
operad in AbN, is isomorphic to Poisd. Give some intuition for this fact, e.g. describe homology
classes in H∗(Ed) in terms of the the Poisson bracket and the Pontryagin product and draw them.
How does this help us understanding the homology of Ed-algebras?

(9) Homological stability in many examples . . Constanze Schwarz, Jonah Epstein, 17.06.2020
[RWW17, §5], [van80, §4.11], [Wah13], [FH01], [RW13]

Define homological stability for sequences (Xn)n≥0 of spaces with maps Xn −→ Xn+1 and for
sequences of groups (Gn)n≥0. If needed, recall that the homology of a group G is H∗(BG).
Introduce families of spaces and groups that exhibit (or do not exhibit) homological stability:
firstly, introduce ordered and unordered configuration spaces of Rd, for d ≥ 2: for each n ≥ 0 we
have spaces PConfn(Rd) and Confn(Rd).1 For d = 2, the space Confn(R2) resp. PConfn(R2) is
a classifying space for the braid group βn resp. the pure braid group Pβn. Show how loops in
these spaces look like braids. For d =∞, the space PConfn(R∞) is contractible and Confn(R∞)
is a classifying space for the symmetric group Sn.
For symmetric groups we consider the canonical inclusions Sn ↪−→ Sn+1; for (pure) braid
groups we have inclusions βn ↪−→ βn+1 (resp. Pβn ↪−→ Pβn+1) given by adding a strand
on right; for configuration spaces in Rd, we can adjoin a new point on right with respect to
the first coordinate of Rd, obtaining maps Confn(Rd) ↪−→ Confn+1(Rd) and PConfn(Rd) ↪−→
PConfn+1(Rd). Homological stability holds for symmetric groups, braid groups and unordered
configuration spaces, but not for ordered configuration spaces and pure braid groups (it is enough
to state these results, with explicit stability ranges). Another example in which homological
stability does not hold is the sequence of groups Gn = Zn with canonical inclusions Zn −→ Zn+1

on the first n coordinates.2

Let R be a PID,3 and let GLn(R) be the group of invertible matrices with coefficients in R; then
GLn(R) ↪−→ GLn+1(R) by adding a 1 in the lower right corner, and homological stability holds
for the sequence of groups (GLn(R))n≥0 (state this result with explicit stability ranges).
For an orientable surface Σg,n of genus g ≥ 0 with n ≥ 1 boundary components, define the group
Γg,n, called the mapping class group.4 Give some of the following examples of mapping class
groups, without proof: Γ0,2 ∼= Z generated by the Dehn twist; Γ0,3 ∼= Z3 generated by the three
Dehn twists around the three boundary components; Γ1,1 ∼= β3. Note that in this case, we have
two indices, g and n, parametrising the groups.
By gluing a Σ1,2 along one boundary component, and extending diffeomorphisms by the identity on
the new piece, we obtain natural maps Γg,n −→ Γg+1,n. Homological stability holds for mapping
class groups, for g −→∞, and fixed n; (state this result with explicit stability ranges). Moreover
the stable homology is the same for all values of n: say what this means by introducing maps
Γg,n −→ Γg,n+1.
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Interpret the stable homology of a sequence of spaces (Xn)n≥0 as the homology of the mapping
telescope X∞ = hocolimn−→∞Xn, and the stable homology of a sequence of groups (Gn)n≥0 as
the homology of the colimit group G∞ = colimn−→∞Gn. Often these stable homology groups are
easier to compute than the unstable homology groups.

1 In the first talk we considered configuration spaces of the open cube Id; however since Id and Rd are
homeomorphic, also the corresponding ordered/unordered configuration spaces are homeomorphic (why?).

2 This shows that homological stability is very tricky, and that it is a priori difficult to guess which natural
sequences of groups and spaces satisfy it!

3 We consider only PIDs for simplicity, but there are theorems about more general rings.
4 There are several nice and geometric models for a classifying space of Γg,n, but introducing them properly
requires another seminar.

(10) The surface operad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Malte Kornemann, 24.06.2020
[Til00], [BBP+16]

We consider a surface Σg,n+1 with n + 1 parametrised boundary components. The extended
mapping class group Γg,(n),1 is the group of isotopy classes of orientation-preserving diffeomor-
phisms of Σg,n+1 that are allowed to permute the first n boundary components, respecting their
parametrisation, and fix the last boundary component pointwise. There is a short exact sequence
of groups 1 −→ Γg,n+1 −→ Γg,(n),1 −→ Sn −→ 1.
Recall the wreath product G oH = Hn oG, for a group G endowed with a map G −→ Sn and
any group H. Define maps of groups Γg,(n),1 o Γh,(k),1 −→ Γg+kh,(kn),1 and show how these define
a topological operadM withM(n) '

∐
g≥0 BΓg,n+1, called the surface operad.

Introduce the notion of an operad with homological stability. Note that M is an operad with
homological stability. Argue that E∞ and Comm are operads with homological stability, but Ed is
not for finite d, and hence, also Ass is not. We will see in the last talk a very interesting result
concerning operads with homological stability.

(11) The group completion theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Branko Juran, 01.07.2020
[MS76], [FM94, Appendix], [Ebe19, §6.2]

The goal of this talk is to properly state and prove the group completion theorem for a topological
monoid whose π0 is isomorphic to N and generated by a homology-central element m ∈M .
In order to do so, define the localisation of the homology H∗(M)[π0(M)−1] = H∗(M)[m−1],
introduce the notion of homology fibration. Some spectral sequence argument is needed.
Deduce that ΩBM ' M+

∞ × Z, where we use the Quillen plus construction and discuss the
examples of H∗(β∞) ∼= H∗(Ω2

0S
2) and H∗(Conf∞(Id)) ∼= H∗(Ωd

0S
d).

(12) Ω∞-spaces and operads with homological stability . . . Urs Flock, Robin Louis, 08.07.2020
[BBP+16, §2–3], [Hat14]

A spectrum Y is a sequence (Yi)i≥0 of spaces, together with maps Yi −→ ΩYi+1. As example,
introduce the suspension spectrum associated to a based space (X, ∗). Another example is the
spectrum MTSO(2), where MTSO(2)n is the one-point compactification of the space of oriented,
affine 2-planes in Rn (how is this a spectrum?).
Define the space Ω∞Y = hocolimn−→∞ΩnYn. A space obtained in this way is called an infinite
loop space (Ω∞-space). If we know that the maps Yi −→ ΩYi+1 are cofibrations (which can always
be achieved by a homotopy replacement), then instead of the homotopy colimit we can take the
increasing union

⋃
n≥0 ΩnYn. The latter has an action of the operad E∞ because for n ≥ d the

inclusion ΩnYn −→ Ωn+1Yn+1 is a map of Ed-algebras. The recognition principle extends to this
case: grouplike algebras over E∞ are homotopy equivalent to Ω∞-spaces.
State the main theorem of [BBP+16]: a grouplike algebra X over an operad O with homological
stability (e.g. the surface operadM) is homotopy equivalent to an Ω∞-space. If an algebra X is
not grouplike, the theorem ensures that its group completion ΩBX is an Ω∞-space.1
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Example 1: X =
∐

n≥0 Confn(I∞) is an algebra over E∞ which is not grouplike.2 However, we
can consider its group completion ΩBX, and this is the infinite loop space loop space3 Ω∞Σ∞S0.
We obtain the Barrat-Priddy-Quillen theorem stating that colimn−→∞H∗(Sn) ∼= H∗(Ω∞0 Σ∞S0).
Example 2: X =

∐
g≥0 BΓg,1 is an algebra overM which is not grouplike. First, note thatM

contains a copy of E2, which contains E1. Hence X is a E1-algebra and we can form its group
completion ΩBX. By the theorem, there is a spectrum Y with ΩBX ' Ω∞Y . The Madsen-Weiss
theorem identifies which infinite loop space it is: we get ΩBX ' Z×Ω∞MTSO(2) from which we
conclude that colimg−→∞H∗(Γg,1) ∼= H∗(Ω∞MTSO(2)).

1 As we saw in the previous talk, usually ΩBX contains interesting information about the stable homology of
X, especially if X is graded by N, i.e. X splits as a disjoint union

∐
n≥0 Xn.

2 Here I∞ denotes the infinite dimensional cube: how is this defined?
3 Note that the space Ω∞Σ∞S0 has the stable homotopy groups of spheres as homotopy groups, so it must be
a very interesting space!

References
[Bau95] Hans-Joachim Baues. Homotopy types. Handbook of Algebraic Toology, page 1–72, 1995.
[BBP+16] Maria Basterra, Irina Bobkova, Kate Ponto, Ulrike Tillmann, and Sarah Yeakel. Infinite loop spaces

from operads with homological stability. Advances in Mathematics, 321, 2016.
[Bor94] Francis Borceux. Handbook of categorical algebra, volume 2. Cambridge University Press, 1994.
[Ebe19] Johannes Ebert. Semisimplicial spaces. Algebraic and Geometric Topology, 19(4):2099–2150, 2019.
[FH01] Edward Fadell and Sufian Husseini. Geometry and Topology of Configuration Spaces. Springer

Monographs in Mathematics. Springer Verlag, 2001.
[FM94] Eric M. Friedlander and Barry Mazur. Filtrations on the homology of algebraic varieties, volume 529.

Memoirs of the American Mathematical Society, 1994. With an appendix by Daniel Quillen.
[Hat01] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2001.
[Hat14] Allen Hatcher. A short exposition of the Madsen-Weiss theorem. Preprint, 2014.
[LV12] Jean-Louis Loday and Bruno Vallete. Algebraic Operads. Springer, 2012.
[May] J. Peter May. Operads, algebras and modules. http://www.math.uchicago.edu/~may/PAPERS/mayi.

pdf.
[May72] J. Peter May. The Geometry of Iterated Loop Spaces. Springer, Lecture Notes in Mathematics 271,

1972.
[ML71] Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1971.
[MS76] Dusa McDuff and Graeme Segal. Homology fibrations and the “group-completion” theorem. Inventiones

mathematicae, 31:279–284, 1976.
[MSS07] Martin Markl, Steve Shnider, and Jim Stasheff. Operads in Algebra, Topology and Physics. American

Mathematical Society, 2007.
[Pen19] Mark Penney. The little d-cubes operad. Lecture summary, http://guests.mpim-bonn.mpg.de/

mpenney/operads/Running_summary/General_outline.pdf, 2019.
[RW13] Oscar Randal-Williams. Homological stability for unordered configuration spaces. Quarterly Journal

of Mathematics, 64(1):303–326, 2013.
[RWW17] Oscar Randal-Williams and Nathalie Wahl. Homological stability for automorphism groups. Advances

in Mathematics, 318:534–626, 2017.
[Sin06] Dev Sinha. The (non-equivariant) homology of the little disks operad. Preprint, 2006.
[tD08] Tammo tom Dieck. Algebraic Topology. European Mathematical Society, 2008.
[Til00] Ulrike Tillmann. Higher genus surface operad detects infinite loop spaces. Mathematische Annalen,

317:613–628, 2000.
[van80] Wilberd van der Kallen. Homology stability for linear groups. Inventiones Mathematicae, 60:269–295,

1980.
[Wah13] Nathalie Wahl. Homological stability for mapping class groups of surfaces. Handbook of Moduli,

26:III(26):547–583, 2013.
[Whi78] George William Whitehead. Elements of Homotopy Theory. Graduate Texts in Mathematics. Springer

Verlag, 1978.

7

http://www.math.uchicago.edu/~may/PAPERS/mayi.pdf
http://www.math.uchicago.edu/~may/PAPERS/mayi.pdf
http://guests.mpim-bonn.mpg.de/mpenney/operads/Running_summary/General_outline.pdf
http://guests.mpim-bonn.mpg.de/mpenney/operads/Running_summary/General_outline.pdf

