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Abstract

This thesis is based on the following observation: while it is a classical result
that the collection äg Mg,1 of moduli spaces of surfaces with a single bound-
ary curve is an E2-algebra (more precisely: it admits an action of the little
2-cubes operad C2), we need a coloured version of C2 which understands a
cluster of squares as a single input with a certain multiplicity, if we want to
establish an action on the collection of moduli spaces Mg,n of surfaces with
multiple boundary curves in a similar way.

Moreover, Bödigheimer introduced a finite multisimplicial model Pg,n

for Mg,n, which is useful for explicit homological calculations. In order to
construct an operadic action on this specific model, we have to additionally
require a certain coupling behaviour among squares belonging to the same
input. This gives rise to a family of suboperads, called vertical operads.

We analyse these operads from several perspectives: on the one hand, their
operation spaces and free algebras are modelled by clustered and vertical
configuration spaces, whose homology, homological stability, and iterated
bar constructions we investigate in the first chapters. On the other hand, we
study the homotopy theory and the homology of their algebras and use the
arising operations to describe the unstable homology of moduli spaces.

Finally, it turns out that the developed methods are also useful to solve
a problem of a seemingly different flavour: for a space A, the collection of
parametrised moduli spaces äg Mg,1[A] is itself an E2-algebra, and its group
completion is an infinite loop space. We identify the underlying spectrum in
the spirit of Madsen and Weiss.

Keywords: coloured operad, configuration space, moduli space,
homological stability, bar construction, homology operation,
group completion, infinite loop space.
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Conventions

The following conventions will be used without any further explanation:

• We denote the natural numbers (including 0) by N := {0, 1, 2, . . . }, the
integers by Z, the rational numbers by Q, the real numbers by R, and
the complex numbers by C. The set of strictly positive integers will be
denoted by N := {1, 2, . . . }.

• For an integer n > 0, we denote the cyclic group with n elements by
Zn, and for a prime p we denote the field with p elements by Fp.

• Closed intervals are denoted by [a; b], while open intervals are denoted
by (a; b), and half-open intervals by [a; b) and (a; b], respectively.

• We denote the disc, the sphere, and the torus by

Dd := {(x1, . . . , xd) ∈ Rd; x2
1 + · · ·+ x2

d 6 1},
Sd−1 := {(x1, . . . , xd) ∈ Rd; x2

1 + · · ·+ x2
d = 1},

Td := (S1)d.

• We abbreviate rr := {1, . . . , r} for each r > 0, and we write Sr for the
rth symmetric group, which contains all bijections on the set rr.

• By a space, we mean a topological space which is compactly generated
and has the weak Hausdorff property. Let Top be the category of them.
Moreover, we let Top∗ be the category of (possibly degenerately) poin-
ted spaces, with pointed maps as morphisms. The space with a single
point is denoted by ∗.
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Overview

. . . nos esse quasi nanos
gigantum umeris insidentes.1

Bernard de Chartres

This thesis continues a classical approach which has proved very useful: it
exploits the interplay between configuration spaces, operads, and moduli
spaces of Riemann surfaces.

Configuration spaces of smooth manifolds have been playing a central
rôle in algebraic topology since the influential works of [FN62a; FN62b].
There are plenty of perspectives from which configurations can be considered;
let me mention only those which appear in this thesis: firstly, configuration
spaces give geometric models for classifying spaces of Artin’s braid groups
[Art25] and of the symmetric groups. Secondly, their homology has been
extensively studied in [Arn69; Fuc70; CLM76], and the sequence of unordered
configuration spaces which are related by adding a new particle ‘far away’
takes shape in many classical sequences for which homological stability has
been shown [Nak61; Arn69; Seg79; Ran13]. Thirdly, for a based space X, one
can consider configuration spaces of particles which come together with a
label, and a particle vanishes if its label reaches the basepoint. These labelled
configuration spaces have been compared to iterated loop spaces [Seg73;
MS76], or, more generally, to section and mapping spaces [Böd87; BCT89],
and they admit a stable splitting [Sna74; Böd87].

The concept of an operad has its origins in the study of iterated loop
spaces by Boardman, Vogt, and May [BV68; May72; BV73], and has become
an indispensable part of modern homotopy theory since then. The master-
example of a topological operad, the operad Cd of little d-cubes introduced
in [May72], models the homotopy theory of Ed-algebras. On the other hand,

1 . . . that we are like dwarves perched on the shoulders of giants.
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Overview

it is connected to the aforementioned configuration spaces: the operation
spaces of Cd are equivalent to configuration spaces of ordered points in Rd,
while their free algebras are equivalent to configuration spaces of unordered
and labelled points. Therefore, studying the homotopy theory of Ed-algebras
is closely related to studying the homotopy type of configuration spaces.
The groundbreaking work of [CLM76] classifies all homology operations for
Ed-algebras: they are known as the Pontrjagin product [Pon39], the Browder
bracket [Bro60], and, in the case of finite characteristic, a collection of divided
power operations called Araki–Kudo operations or Dyer–Lashof operations [AK56;
DL62]. These operations can be used in order to give a very concise descrip-
tion of the rational and the Fp-homology of unordered configuration spaces
[CLM76; Coh95].

There is a profound connection between Ed-algebras and iterated loop
spaces: each Ed-algebra M admits an iterated bar construction Bd M, intro-
duced in [May72], and comes together with a map M → ΩBM ' ΩdBd M
of H-spaces. It has been shown in [BP72; May74; MS76] that this map is a
group completion: in particular, if π0(M) ∼= N, then the stable space M∞ is
homology equivalent to Ωd

0Bd M, the path component of the constant loop.
Finally, I ought to mention that operads have also been considered in purely
algebraic contexts, starting with the works of Ginzburg and Kapranov [GK94].
However, their work is going to play a minor rôle in this thesis, since all
algebraic operads we consider are induced from topological ones.

Moduli spaces are much older: already Riemann noticed that for g > 2,
there are 3g− 3 complex parameters describing the possible complex struc-
tures that a Riemann surface of genus g can have [Rie57]. A rigorous way to
study these parameter spaces has been established in [Tei40]. In this thesis,
we consider moduli spaces Mm

g,n of surfaces of genus g > 0 with n > 1
parametrised boundary curves and m > 0 permutable punctures. Since we
have at least one boundary curve, the moduli space Mm

g,n is a classifying
space for the topological group of orientation-preserving diffeomorphisms
which, by a result of [ES70], is equivalent to the mapping class group Γm

g,n.
Hence, studying the (co-)homology of moduli spaces is the same as studying
characteristic classes for oriented surface bundles. Here, significant progress
has been achieved over the past fourty years: the stability theorem of Harer
[Har84; Iva90; Bol12; Ran16] states that the map Hh(Mg,1) → Hh(Mg+1,1),
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Overview

which is induced by forming the boundary-connected sum with a bounded
torus, is an isomorphism for h 6 2

3 · (g− 1). The rational stable cohomology
H•(M∞,1; Q) in turn contains a polynomial algebra Q[κ1, κ2, . . . ] generated
by the Mumford–Miller–Morita classes κi in degree 2i, see [Mum83; Mil86;
Mor87]. The famous Mumford conjecture states that this inclusion is even an
equality, see below.

Secondly, the collection äg>0 Mg,1 of moduli spaces with a single bound-
ary curve forms an E2-algebra [Mil86; Böd90b] by sewing of surfaces. Its
group completion ΩB äg Mg,1 is an infinite loop space [Til97], and the celeb-
rated Madsen–Weiss theorem [MW07] tells us which one: it is the infinite
loop space associated with the affine oriented Thom spectrum MTSO(2).
This shows that the stable moduli space M∞,1 is homology equivalent to
Ω∞

0 MTSO(2), which was the key ingredient for the proof of the aforemen-
tioned Mumford conjecture. The homotopical methods of Madsen and Weiss
have been refined in the study of topological cobordism categories [Gal+09]
and admit higher-dimensional analogues [GR14; GR17; GR18]. Finally, the
work of [Til97] has been generalised in [Til00; Bas+17], where infinite loop
spaces are recognised by operads which do not necessarily have an under-
lying E∞-operad, but instead enjoy certain homological stability properties
with respect to their operation spaces. One example of such an operad with
homological stability is the surface operad, whose initial algebra is äg Mg,1.

While the above results give a comprehensive description of the stable homo-
logy of moduli spaces, their unstable homology is notoriously complicated.
One approach for explicit low-genus calculations uses a finite multisimplicial
model Pm

g,n for Mm
g,n that is based on an old work of Hilbert [Hil09] and has

been established in the context of moduli spaces by Bödigheimer [Böd90a]. In
recent decades, many explicit unstable homology groups and their generators
have been identified in works of [Ehr98; Abh05; God07; ABE08; Vis11; Meh11;
Wan11; BH14; Boe18]. Here, the aforementioned homology operations from
[CLM76] for E2-algebras can be used to describe explicit generators.

This thesis starts with the following idea: for the above operadic description
of the collection of moduli spaces as an E2-algebra, it was crucial that we
considered surfaces with a single boundary curve. However, even though
the operation of ‘capping off’ additional boundary curves becomes stably
irrelevant, the unstable homology of moduli spaces with multiple boundary
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curves requires some further investigation. In order to apply operadic tech-
niques to this problem, we need a coloured version of the little 2-cubes operad
C2 which understands a cluster of little squares as a single input with a certain
multiplicity. Secondly, Bödigheimer’s model Pm

g,n of parallel slit domains
requires a certain coupling behaviour among squares which belong to the
same input. Several special cases of this approach have already been studied
in [Böd90b], and a unified operadic approach has been suggested in [Böd13].
This is the situation from which our journey starts.

Chapter 1. Vertical configuration spaces Following the classical path, we
start by looking at configuration spaces that model our desired operads:
we consider configuration spaces of points inside Rd as in [Seg73; CLM76],
together with the information that some of them form a cluster: for each tuple
K = (k1, . . . , kr) of integers ki > 1, we obtain an ordered and an unordered
clustered configuration space: C̃K(R

d) and CK(R
d). Both have been studied

for their own sake [TP14; Pal21] and in relation to Hurwitz spaces [Tie16].
The aforementioned coupling constraint, which we would like to use later

in order to establish an action on Pm
g,n, gives rise to a family of subspaces

of C̃K(R
d) and CK(R

d): given a decomposition d = p + q, we define the
vertical configuration spaces ṼK(R

p,q) and VK(R
p,q) as subspaces containing

configurations of clusters of points in Rd where points from the same cluster
share their first p coordinates. The adjective ‘vertical’ is motivated by the low-
dimensional example (p, q) = (1, 1), where the coupling asks all points from
the same cluster to lie on a common vertical line in the plane. These vertical
configuration spaces go back to a construction by Bödigheimer [Böd90b, § 5]
and have been studied in [Her14; Rös14; Lat17].

In joint work with Andrea Bianchi, I calculated the cohomology of the
ordered vertical configuration spaces, see Section 1.2. For K = (1, . . . , 1), this,
of course, recovers the classical result of [Arn69]. Moreover, we proved a
homological stability result for the unordered spaces Vk

r (R
p,q) = Vk,...,k(R

p,q),
which generalises the results of [TP14; Lat17; Pal21]:

Theorem 1.3.3 (Bianchi–K.). If (p, q) 6= (0, 1), then the stabilisation
map Vk

r (R
p,q)→ Vk

r+1(R
p,q) induces an isomorphism in homology in

degrees 6 r
2 .
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Apart from these homological results, a few more things can be said about
the topology of vertical configuration spaces: for the case (p, q) = (1, 1), we
establish a cellular decomposition inspired by [FN62b; Fuc70], which, by a
geometric version of Poincaré–Lefschetz duality similar to [Mun84], yields
the following complexity result:

Theorem 1.4.13. For each K = (k1, . . . , kr), the spaces ṼK(R
1,1) and

VK(R
1,1) are equivalent to (r− 1)-dimensional cell complexes.

In the last section, we study the relationship between π1(ṼK(R
1,1)) and the

classical pure braid groups [Art25], which we recall in Appendix A; here
we use methods from combinatorial group theory. Their higher homotopy
groups remain, except for a few special cases which have been studied in
[Lat17], unknown.

Chapter 2. Clustered configuration spaces as Ed-algebras In a second step,
we consider those spaces which are going to model free algebras over the
desired operads, viz. labelled clustered configuration spaces C(Rd; X) and
vertical configuration spaces V(Rp,q; X) for a sequence X = (Xk)k>1 of based
spaces, where each cluster of size k > 1 carries a label in Xk. These spaces
admit the structure of an Ep+q-algebra, and I showed that the p-fold bar
construction resolves the verticality constraint, similar to [Seg73]:

Theorem 2.2.2. There is an equivalence BpV(Rp,q; X) ' C(Rq; ΣpX)

of Eq-algebras, where (ΣX)k := ΣXk.

It remains to understand the iterated bar construction of clustered configura-
tion spaces C(Rd; X) without any verticality constraint. While this question
turns out to be hard in general, the case d = 1 is feasible: using an E1-cellular
decomposition in the sense of [GKR18; GKR19], we will see:

Theorem 2.3.4. There is a weak equivalence BC(R; X) ' Σ
∨

e X∧K(e),
where e ranges over a countable set and determines K(e) = (k1, . . . , kr),
which defines X∧K(e) := Xk1 ∧ · · · ∧ Xkr . In particular, if each Xk is
path connected, then C(R; X) is equivalent to a free E1-algebra.
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These results can be used to study the stable homology of the unordered
and unlabelled vertical configuration spaces: to this aim, we show a stable
splitting result similar to [Sna74; Böd87] and employ the Thom isomorphism
for vertical configuration spaces with labels in spheres, as in [BCT89].

Chapter 3. Coloured and dyed operads The main purpose of this chapter
is to set up the operadic language that we are going to use in the remainder
of the thesis: we recall the notion of a coloured operad from [BM07; Yau16]
and extend many classical constructions for monochromatic operads to the
coloured case.

Secondly, we explicate the idea of ‘clustering inputs’ by combining two
well-known concepts: the PROP associated to a monochromatic operad and
the N-coloured operad represented by a PROP. The result will be called the
dyeing construction N(C) of a monochromatic operad C. We study various
properties of the dyeing construction and make some first general observa-
tions regarding the structure of their algebras.

Finally, we consider a suboperad Nc(C) ⊆ N(C), called the connective
part, which, roughly speaking, contains only those operations which yield a
connected result when all its arguments are connected.

Chapter 4. Vertical operads and their algebras This chapter contains the
already announced central construction of the thesis: as suggested by [Böd13],
we introduce, for each decomposition d = p + q, the vertical operad Vp,q as
a suboperad of N(Cd). These operads are closely related to the extended
Swiss cheese operad [Vor99; Wil17].

The connection to the vertical configuration spaces from the first chapters
is immediate: the operation space Vp,q(K

n) is equivalent to ṼK(R
p,q × nn), and

the levels of the free Vp,q-algebra over X are equivalent to V(Rp,q × nn; X), as
we carry out in Proposition 4.1.3. Here Rp,q × nn = än Rp,q, i.e. we consider
configurations of vertical clusters that are distributed on n layers.

It is easy to see that we have a pairing of operads (Cp, N(Cq))→ Vp,q by
forming products of boxes, and, similar to [Dun86], we show by methods of
[Bri00] the following additivity result, where ‘�’ denotes the Boardman–Vogt
tensor product:
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Theorem 4.2.2. The induced map Cp �N(Cq)→ Vp,q is an equival-
ence of S-cofibrant operads.

This shows that the homotopy theory of Vp,q-algebras is equivalent to the
homotopy theory of N(Cq)-algebras, which come equipped with levelwise
and interchangeable Cp-actions.

In a second step, we restrict ourselves to the case (p, q) = (1, 1), the one for
which we want to consider the action on Bödigheimer’s model for moduli
spaces, and study the system of homology operations which a V1,1- or a
Vc

1,1-action on a sequence of spaces imposes on their respective homology
groups. Here is a rough summary of these investigations:

Section 4.4. If X = (Xn)n>1 is a Vc
1,1-algebra, then its homology

groups An,h := Hh(Xn) can be endowed with:

• homomorphisms f : Ak,h → An,h for each surjection f : kk → nn
that comes with total orders of its fibres f−1(l),

• a unit 1 ∈ A1,0,

• a vertical Pontrjagin product−·− : An,h⊗An′,h′ → An+n′−1,h+h′ ,

• a vertical Browder bracket [−,−] : An,h⊗An′,h′ → An+n′−1,h+h′+1.

If we work over F2 or if h is even, then we additionally have:

• a vertical Dyer–Lashof square Q : An,h → An,1+2h.

These operations satisfy various relations (e.g. a coloured Jacobi identity).

This result is very similar to Cohen’s work [CLM76, § iii] which treats the
case of the little d-cubes, but its proof is more geometrical: it uses the basic
concepts of discrete Morse theory [For98], which we recall in Appendix B, as
well as intersection theory.

Chapter 5. Homology operations on moduli spaces of surfaces At the
beginning of this chapter, we recall explicit models for moduli spaces Mm

g,n.
We then observe that the connective part of the dyed operad Nc(C2) acts
on the collection

(
äg,m Mm

g,n
)

n>1 of moduli spaces with multiple boundary
curves, the action given by sewing of surfaces as in [Mil86; Seg88; Böd90b].
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The vertical suboperad V1,1 ⊆N(C2) is tailor-made to act on Bödigheimer’s
simplicial model Pm

g,n of parallel slit domains [Böd90a] for Mm
g,n:

Construction 5.2.14. There is a model for Vc
1,1 acting on the collection(

äg,m Pm
g,n
)

n>1 of spaces of parallel slit domains, and this action is a
restriction of the Nc(C2)-action on

(
äg,m Mm

g,n
)

n>1.

This restriction, and its resulting homology operations, are useful for unstable
calculations as in [Ehr98; Abh05; God07; ABE08; Vis11; Meh11; Wan11; BH14;
Boe18], to which Section 5.3 contributes. Their work comprises, among many
other results, six toric classes a, b, c, d, e, and f in H•(Mm

g,1), as well as two
ad-hoc constructions: a so-called T-operation and an E-operation.

First of all, we introduce classes c2, d2, and e2 in the homology of moduli
spaces of surfaces with two boundary curves, which differ from the old ones
by gluing a pair of pants. Using these classes, we can describe the 3-torus f
as a composition s1[a, e2], see Remark 5.3.6, using the bracket which comes
from the Vc

1,1-action, as well as the codegeneracy s1 : 22→ 11.
Similarly, we lift the T-operation to a map T̂ : Hh(M

m
g,n)→ Hh+1(M

m−1
g,n+1),

and in Construction 5.3.10, we introduce a new generator g2 ∈ H2(M1,2)

which is supported on a 2-torus. Using these constructions, we can fully
describe the generators of H•(M1,2), here, for example, over F2:

Proposition 5.3.12. The F2-homology of M1,2 is generated as follows:

0 1 2 3 4

M1,2 c2c c2d, d2c d2d, g2 T̂e, Qd2 T̂Eb

Chapter 6. Parametrised moduli spaces of surfaces as infinite loop spaces
This last chapter contains a side project which, even though it starts with a
different question, relies on the coloured operadic approach to moduli spaces
of surfaces with multiple boundary curves that has been established in the
previous chapters of this thesis.

Recall that the Madsen–Weiss theorem [MW07] identifies the group com-
pletion ΩB äg Mg,1 of the E2-algebra äg Mg,1 with the infinite loop space
associated with the affine oriented Thom spectrum MTSO(2).
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In joint work with Andrea Bianchi and Jens Reinhold, we considered a
generalisation of the problem: for a space A, the moduli space äg Mg,1[A]

of orientable surface bundles over A is itself an E2-algebra, and we aim to
understand its group completion ΩB äg Mg,1[A]. This question can be seen
as a first step towards the homotopy type of parametrised cobordism categories
studied in [RS17]. Our main result is the following:

Theorem 6.4.1 (Bianchi–K.–Reinhold). There is a space C[A] with

ΩB äg Mg,1[A] ' Ω∞MTSO(2)×Ω∞Σ∞
+C[A].

More precisely, we prove that the space C[A] is a union of classifying spaces
of centralisers of certain ∂-irreducible mapping classes in mapping class groups
of surfaces with multiple boundary curves.

To this aim, we showed that äg Mg,1[A] is the first component of a relat-
ively free algebra FM

T (C[A]) over a coloured version of the surface operad M

[Til00], with base a sequence C[A] := (Ck[A])k>1 of spaces which carries an
action by the sequence T := (Tk oSk)k>1 of twisted tori.

The second ingredient generalises one of the main statements from [Bas+17]
on operads with homological stability to the coloured and relative case:

Theorem 6.3.11. Let O be an N-coloured operad with homological
stability and let I be a topological category with a map B� I → O.
Furthermore, let X := X• : I → Top∗ be an enriched functor, i.e. a
(B� I)-algebra. Then, under the mild point-set assumptions of 6.3.10,
we have, for each colour n ∈ N, an equivalence of loop spaces

ΩBF̃O
B�I(X)n ' ΩB O(n)×Ω∞Σ∞hocolimI(X•).

Here B� I is precisely the operad whose algebras are enriched functors
I→ Top∗ to based spaces, and F̃O

B�I is the derived free algebra.
For O= M and n = 1, the first factor can be identified with Ω∞MTSO(2),

and for I = T and the specific base X = C[A]+, the derived free algebra is
equivalent to the strict one. This finally tells us which infinite loop space the
group completion of äg Mg,1[A] is. We end by discussing similar results for
further well-known Ed-algebras.
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Parts of this thesis have been published in the following articles, as I will
additionally indicate at the beginning of the corresponding sections:

[BK21] A. Bianchi and F. Kranhold. ‘Vertical configuration spaces and their
homology’. To appear 2022 in Q. J. Math. 2021. doi: 10.1093/qmath/
haab061. arXiv: 2103.12137 [math.AT]

[Kra21] F. Kranhold. ‘Configuration spaces of clusters as Ed-algebras’. 2021.
arXiv: 2104.02729 [math.AT]

[BKR21] A. Bianchi, F. Kranhold, and J. Reinhold. ‘Parametrised moduli
spaces of surfaces as infinite loop spaces’. To appear in Forum Math.
Sigma. 2021. arXiv: 2105.05772 [math.AT]

In these sections, I will leave out those technicalities which have been spelled
out mainly by my coauthors.
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Chapter 1

Vertical configuration spaces

Ἀρχὰς εἶναι τῶν ὅλων ἀτόμους καὶ κενὸν,
τὰ δ’ ἂλλα πάντα νενομίσθαι.1

Democritus

The purpose of this chapter is to introduce families of clustered and vertical
configuration spaces and to study their algebraic invariants, such as homology,
homological stability, and homotopy groups.

Our interest in clustered configuration spaces comes from an operadic
perspective on moduli spaces of surfaces with multiple boundary curves;
however, they have also been considered for their own sake [TP14] and in
relation to Hurwitz spaces [Tie16], and they are special cases of spaces of
(disconnected) submanifolds, which have been studied in [Pal21].

The notion of vertical configuration spaces is based on work of Bödigheimer,
who used small examples of them in order to describe symplectic operations
on moduli spaces of surfaces [Böd90b], and who suggested a unified operadic
approach [Böd13], which we carry out in the later chapters.

Vertical configuration spaces are closely related to fibrewise configuration
spaces, which have been studied in [Cno19] in order to formulate an approx-
imation theorem for configurations with twisted labels and labels in partial
abelian monoids. From this viewpoint, vertical configuration spaces can be re-
garded as multi-fibrewise configuration spaces. Additionally, they describe
certain subcomplexes of the Fox–Neuwirth–Fuchs complex [FN62b; Fuc70]
for classical configuration spaces.

Several bachelors’ and masters’ theses studied vertical configuration spaces
[Her14; Rös14; Lat17], in particular their higher homotopy groups and their
homological stability.

1 The beginning of everything is atoms and void, everything else is perception.
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Chapter 1. Vertical configuration spaces

1.1. Preliminaries

Let us start with a short reminder on classical configuration spaces: if E is a
space (usually, a smooth manifold) and r > 0 is a non-negative integer, then
we define the ordered configuration space of r points in E as

C̃r(E) :=
{
(z1, . . . , zr) ∈ Er; zi 6= zj for i 6= j

}
,

topologised as a subspace of Er. The rth symmetric group Sr acts freely on
C̃r(E) by permuting coordinates, and we call the quotient Cr(E) := C̃r(E)/Sr

the unordered configuration space of r points in E. Intuitively, the space Cr(E)
parametrises subsets of E of cardinality r.

We would like to declare that some of the points within a configuration
‘belong together’. More precisely, given a tuple K = (k1, . . . , kr) of integers
ki > 1, we want to consider configurations of |K| := k1 + · · · + kr points,
clustered in r blocks, of sizes k1, . . . , kr. To this end, we start with a simple
reindexing: we let C̃K(E) := C̃|K|(E), but we denote its elements by tuples
z = (~z1, . . . ,~zr) where ~zi = (zi,1, . . . , zi,ki), and we call ~zi a cluster of size ki.

The idea of a vertical configuration space is to consider subspaces of C̃K(E)
where points from the same cluster behave similarly in a certain sense. This
is made precise by the following definition.

Definition 1.1.1. Fix a decomposition d = p + q and assume that E is the
total space of a manifold bundle pr : E→ B with dim(B) = p, i.e. the fibre F
has dimension q. Then a cluster ~z = (z1, . . . , zk) is called vertical if all of its k
points have the same projection to B, that is pr(z1) = · · · = pr(zk).

We introduce the (ordered) vertical configuration space ṼK(E) ⊆ C̃K(E) as the
subspace of all configurations (~z1, . . . ,~zr) where each cluster ~zi is vertical.

Note that we adopt the usual abuse of notation and denote the entire
bundle datum by the total space E.

Example 1.1.2. For p > 0 and q > 1, the map prp,q : Rp,q := Rp ×Rq → Rp

leads to vertical configuration spaces which have been considered in [Her14;
Rös14; Lat17]. For p = 1 and q = 1, we are requiring all points of a cluster to
lie on the same vertical line of R2, whence the terminology.

Slightly more generally, we will consider the trivial bundle Rp,q × nn→ Rp,
whose total space is given by n copies of Rp,q.

2



1.1. Preliminaries
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Figure 1.1. A configuration in the ordered configuration space Ṽ3,4,2,2(R
1,1) and

its image under the projection to the unordered vertical configura-
tion space V3,4,2,2(R

1,1).

There is an unordered counterpart of the above construction: we denote
by SK ⊆ S|K| the subgroup containing all permutations which preserve the
unordered partition of {1, . . . , |K|} into r blocks of sizes ki. If we denote by
r(k) > 0 the number of occurrences of k in K, then SK is isomorphic to

SK ∼= ∏
k>1

Sk oSr(k) = ∏
k>1

(Sk)
r(k) oSr(k).

Definition 1.1.3. The group SK acts freely on ṼK(E) by permuting the labels
1 6 i 6 r of clusters of the same size and permuting the labels 1 6 j6 ki of
the points of each cluster. We denote the quotient space by

VK(E) := ṼK(E)/SK.

Roughly speaking, and using the above notation, a point in VK(E) consists
of a collection of r clusters, of which r(k) have size k; clusters of the same
size are unordered, and points inside a cluster are also unordered.

Notation 1.1.4. We denote elements of ṼK(E) and VK(E) as follows:

• An element of ṼK(E) is an ordered collection z = (~z1, . . . ,~zr) of clusters
~zi = (zi,1, . . . , zi,ki) with zi,j ∈ E. We also write z = (z1,1, . . . , zr,kr).

• For the unordered version, we make use of the suggestive sum notation:
a generic element in VK(E) is an unordered collection [z] := ∑r

i=1[~zi] of
unordered (vertical) clusters [~zi] := [zi,1, . . . , zi,ki ] = {zi,1, . . . , zi,ki}.

3



Chapter 1. Vertical configuration spaces

Note that we use a calligraphic letter j for the index corresponding to points
inside a cluster. We stick to this distinction throughout the entire thesis: this
will be particularly useful in order to differentiate between inputs and layers.

Moreover, we will occasionally restrict to situations where all clusters have
the same size, i.e. K = (k, . . . , k) for some k > 1. If we let r be the length of
this tuple, we may simplify our notation and write Vk

r (E) := Vk,...,k(E).
Finally, if the base space B is just a point, then the verticality condition is

empty. While in this case the ordered configuration space ṼK(E) ∼= C̃|K|(E) is
well-known, its unordered version VK(E) is a covering of C|K|(E), since we keep
the information which of the points belong together: these spaces have been
studied in [TP14; Tie16; Pal21]. In this case, we also write2 CK(E) := VK(E),
and in the case where all clusters have size k, we write Ck

r (E).

Remark 1.1.5. The space ṼK(E) is locally an open subspace of Br × F|K| and
hence an orientable smooth manifold of dimension p · r + q · |K|. The action
of SK is free, so VK(E) is again a manifold of the same dimension.

For our main example E = Rp,q, the path components of VK(R
p,q) are

readily classified and the question of orientability can easily be answered:

Remark 1.1.6 (Path components). If we fix numbers p > 0 and q > 1, then
the following holds for the ordered vertical configuration spaces ṼK(R

p,q):

• For q > 2, the space ṼK(R
p,q) is path connected.

• For q = 1 and p > 1, the space ṼK(R
p,1) has one component ṼK(R

p,1)σ

for each tuple σ = (σ1, . . . , σr) ∈ ∏i Ski of permutations. This compon-
ent contains all configurations (z1,1, . . . , zr,kr) with

zp+1
i,σi(1)

< · · · < zp+1
i,σi(ki)

for all 1 6 i 6 r, where z = (z1, . . . , zp+1) ∈ Rp+1.

• For q = 1 and p = 0, we recall that ṼK(R
0,1) = C̃|K|(R), whence each

permutation σ ∈ S|K| corresponds to a connected component which
contains all configurations (z1,1, . . . , zr,kr) = (z1, . . . , z|K|) with zi < zσ(i).

2 Of course, as clustered configuration spaces are special cases of vertical configuration spaces,
it is enough to state the upcoming results for V; however, it feels more natural to call
clustered configuration spaces, where no verticality constraint is involved, C instead of V.
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1.1. Preliminaries

We have inclusions ∏i Ski ⊆ SK ⊆ S|K| and the group SK = ∏k Sk oSr(k)
acts on π0

(
ṼK(R

p,q)
)

with quotient equal to π0(VK(R
p,q)). Since the action

is transitive in the first two cases, the space VK(R
p,q) is path connected for

(p, q) 6= (0, 1), whereas for (p, q) = (0, 1) we have π0(VK(R
0,1)) ∼= S|K|/SK.

The latter set can also be identified with the set of unordered partitions of
{1, . . . , |K|} into subsets of sizes k1, . . . , kr.

Remark 1.1.7 (Orientability). The manifold ṼK(R
p,q) is clearly orientable as

an open subset of (Rp)r × (Rq)|K|. However, VK(R
p,q) is non-orientable if

and only if at least one of the following holds:

• q > 3 is odd and there is at least one cluster of some size k > 2: then a
path in VK(R

p,q) interchanging two points of this cluster, while fixing
all other points, reverses the local orientation.

• p+ q > 2 and there is some k > 1 such that p+ q · k is odd and r(k) > 2:
then interchanging two clusters of size k while preserving their internal
ordering and fixing all other points reverses the local orientation.

In the upcoming parts of this chapter, we study the spaces Ṽ and V from
different topological perspectives. Here is a short overview:

§ 1.2 The cohomology in the ordered case

We give a a complete description of H•(ṼK(R
p,q)) for all p, q, and K.

This section also appeared as part of [BK21].

§ 1.3 Homological stability for the unordered case

Using methods from [Pal18], we show that for a fixed k, the spaces
(Vk

r (R
p,q))r>0 satisfy homological stability if (p, q) 6= (0, 1). This gener-

alises results from [TP14; Lat17; Pal21] and appeared as part of [BK21].

§ 1.4 Vertical configuration spaces as relative cell complexes

We give a cellular decomposition of ṼK(R
1,1) and VK(R

1,1) in the spirit
of [FN62b] and draw some first conclusions from this description. For
example, we show that both ṼK(R

1,1) and VK(R
1,1) are homotopy equi-

valent to finite cellular complexes of dimension r− 1 if K = (k1, . . . , kr).

5



Chapter 1. Vertical configuration spaces

§ 1.5 Homotopy groups

This section mainly deals with the fundamental groups of ṼK(R
p,q)

and their relation to Artin’s braid groups. We then close the section by
mentioning results from [Her14; Rös14; Lat17] on asphericity.

1.2. The cohomology in the ordered case

In this section we calculate the integral cohomology of the spaces ṼK(R
p,q) for

all dimensions p > 0 and q > 1. In the case p = 0 we recover the calculations
of [Arn69; CLM76] for the classical ordered configuration spaces C̃|K|(Rd).
This section appeared as a part of the article [BK21].

For simplicity, let us exclude the case (p, q) = (0, 1), where all components
are contractible anyway.

1.2.1. Ray partitions

We fix a partition K = (k1, . . . , kr) for the entire section. Before we can state
our main result, we need to introduce a few more combinatorial notions.

Definition 1.2.1. The tableau3 associated with the partition K is the set

YK := {(i,j); 1 6 i 6 r and 1 6 j6 ki}.

We order YK lexicographically, which means that we write (i,j) < (i′,j′) if
either i < i′, or i = i′ and j< j′ holds.

Notation 1.2.2. For each partition Q of YK into non-empty subsets Q1, . . . ,Ql
we consider two positive integers: firstly, the number l(Q) := l is called the
length of the partition, and in general we have 1 6 l(Q) 6 |K|.

Secondly, consider on {1, . . . , l} the equivalence relation spanned by β ∼ β′

if there are 1 6 i 6 r and 1 6 j,j′ 6 ki with (i,j) ∈ Qβ and (i,j′) ∈ Qβ′

(i.e. the ith cluster intersects both Qβ and Qβ′). The number of equivalence
classes s(Q) is called the agility of the partition, see Figure 1.2.

3 The letter Y should remind us a of Young tableau, although our notion is slightly more
general, as the sizes of the columns do not have to be non-increasing.
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1,1

1,2

1,3

2,1

2,2

3,1

3,2

3,3

Q1

Q2

Q3

Q4

Figure 1.2. A partition Q of Y3,2,3 into four components, i.e. l(Q) = 4. Note
that 2 ∼ 3 ∼ 4, whence the agility s(Q) is 2.

Definition 1.2.3. A ray partition Q of type K is a partition Q1, . . . ,Ql of YK,
with a total order ≺β on each Qβ (called ray), such that the following hold:

r1. the components are labelled from 1 to l according to their minimum
with respect to the global order <;

r2. for each β, the minima of Qβ with respect to < and ≺β coincide.

If q = 1, then p > 1, since we excluded (p, q) = (0, 1), and ṼK(R
p,1) is

disconnected, with components indexed by tuples σ ∈ ∏r
i=1 Ski . We would

like to calculate the homology of a single path component. In order to do so,
we assign to each ray partition Q of type K such a tuple σ as follows:

Definition 1.2.4. Given a ray partition Q, the stacked total order ≺ on

YK = (Ql ,≺l) t · · · t (Q1,≺1)

is determined by the property that it restricts on each Qβ to ≺β, and that all
elements from Qβ+1 are ≺-smaller than all elements from Qβ.

For each i, there is a unique σi ∈ Ski such that (i, σi(j)) ≺ (i, σi(j+ 1)) for
all 1 6 j< ki, and we define σ(Q) := (σ1, . . . , σr) ∈ ∏i Ski .

Theorem 1.2.5. Let K = (k1, . . . , kr) with ki > 1.

1. The integral cohomology H•
(
ṼK(R

p,q)
)

is freely generated by classes uQ for
each ray partition Q, and the cohomological degree of uQ is

|uQ| = p ·
(
r− s(Q)

)
+ (q− 1) ·

(
|K| − l(Q)

)
.

2. For q = 1, the class uQ is supported on the component ṼK(R
p,1)σ(Q).

7



Chapter 1. Vertical configuration spaces

1.2.2. The weight filtration and the proof of Theorem 1.2.5

Throughout this subsection, we fix K, p, and q as before, and we treat the
cases q > 2 and q = 1 simultaneously, putting in parentheses the differences
needed in the case q = 1. For q > 2 we abbreviate Ṽ := ṼK(R

p,q), while for
q = 1 we fix a path component σ ∈ ∏i Ski and abbreviate Ṽ := ṼK(R

p,q)σ .

Notation 1.2.6. We denote by pr : Rd ∼= Rp ×Rq → Rp the projection to the
first p coordinates. However, in some situations, we make use of the decom-
position Rd ∼= Rp+q−1 ×R and write (ζ, t) for a generic point in Rd.

Hence, we have two further projections, namely prζ : Rd → Rp+q−1 and
prt : Rd → R. Clearly, if q = 1, then prζ and pr coincide.

Definition 1.2.7. Let z = (z1,1, . . . , zr,kr) ∈ ṼK(R
p,q). Then we say that a ray

partition Q is witnessed by z if the following conditions hold:

w1. all zi,j with (i,j) ∈ Qβ project along prζ to the same point in Rd−1;

w2. if (i,j) ≺β (i′,j′) holds in Qβ, then prt(zi,j) < prt(zi′,j′) holds in R.

Condition w1 says that the points zi,j with (i,j) ∈ Qβ lie on a line in Rd

parallel to the t-axis; condition w2 ensures that the same points are assembled
on this line according to the order ≺β of their indices. In particular, the points
zi,j with (i,j) ∈ Qβ lie on a ray, namely the half-line starting at zmin(Qβ,≺β)

and running in the positive t-direction; see Figure 1.3 for an example.

Remark 1.2.8 (Poincaré–Lefschetz duality). For a space X, we denote by X∞

its one-point compactification and denote the point at infinity by ∞. Since
ṼK(R

p,q) is an open and orientable manifold of dimension p · r + q · |K|, we
can apply Poincaré–Lefschetz duality and obtain the isomorphism

H•
(
ṼK(R

p,q)
) ∼= Hp·r+q·|K|−•

(
ṼK(R

p,q)∞, ∞
)
.

Notation 1.2.9. For a positive integer Λ > 0, we denote by P(Λ) the set of all
ordered partitions of Λ, i.e. sequences λ = (λ1, . . . , λl) of integers λi > 1, for
some 1 6 l 6 Λ, with λ1 + · · ·+ λl = Λ. The number l is called the length of
the sequence. We have an injection P(Λ) ↪→ {0, . . . , Λ}Λ by adding a suitable
number of zeros at the end, and consider on P(Λ) the inherited lexicographic
order. We denote by P(K) the set P(|K|), and by N its cardinality.
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R3

•

•
• • •

•

•

•

•

•

1,2

3,3

1,3 3,2 3,1

1,1

2,1

2,2

2,3

2,4

Q2

Q1

Q7 Q6

Q4

Q5

Q3

Figure 1.3. A configuration inside the space Ṽ3,4,3(R
1,2) which witnesses the ray

partition (Q1, . . . ,Q7), where e.g. Q2 = {(1, 2) ≺ (3, 3) ≺ (1, 3)}.
The components Qβ are numbered according to their smallest label
(r1), and the point carrying the minimal label lies at the bottom
of each ray (r2). The verticality condition demands that all points
belonging to the same cluster have to lie in the same purple plane.

Definition 1.2.10. The weight of a ray partition Q is defined as

ω(Q) :=
(
#Q1, . . . , #Ql

)
∈ P(K).

Lemma 1.2.11. Let z ∈ Ṽ. There is a unique ray partition, called Qz, which is
witnessed by z and has maximal weight among all ray partitions witnessed by z. (If
q = 1, we have moreover that σ(Qz) agrees with the σ to start with.)

We prove Lemma 1.2.11 in [BK21, Lem. 3.10] by constructingQz inductively:
we let Qz

β contain the minimum (i,j) of YK r
⋃

β′<βQβ′ and all (i′,j′) such
that zi′,j′ lies on the ray starting at zi,j and running in the positive t-direction,
with ≺z

β determined by the condition w2, see Figure 1.4.

Definition 1.2.12. Given any ray partition Q, we denote by WQ ⊂ Ṽ the
subspace containing all points z with Qz = Q.

We define a filtration F• on Ṽ∞ indexed by the linearly ordered set P(K):
for each λ ∈ P(K), we define the filtration level Fλ := FλṼ∞ as the subspace
containing ∞ and all z ∈ Ṽ with ω(Qz) > λ. Note that for λ < λ′ in P(K)
we have an inclusion Fλ′ ⊂ Fλ. It is straightforward [BK21, Lem. 3.12] to
check that the inclusion Fλ ⊆ Ṽ∞ is a closed cofibration.
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Figure 1.4. This is how our algorithm proceeds to cover all points.

Notation 1.2.13. We switch our indexing set of the filtration F• from P(K) to
the natural numbers 1 6 ν 6 N as follows: let χ : {1, . . . , N} → P(K) be the
unique order-reversing bijection; then, for 1 6 ν 6 N, we define Fν := Fχ(ν).
Moreover, we set F0 := {∞} ⊂ Ṽ∞ and obtain an ascending filtration

{∞} = F0 ⊆ F1 ⊆ · · · ⊆ FN = Ṽ∞.

We also denote F−1 := ∅, and for 0 6 ν 6 N we denote by Fν the νth filtration
stratum of the filtration F•, i.e. the difference Fν := Fν r Fν−1.

Lemma 1.2.14. The strata satisfy the following properties:

1. For each ray partition Q (with σ(Q) = σ), the subspace WQ is a contract-
ible open manifold of dimension |K|+ p · s(Q) + (q− 1) · l(Q) and a path
component of the stratum Fν, where 1 6 ν 6 N satisfies χ(ν) = ω(Q).

2. All connected components of a stratum Fν with ν > 1 arise in this way.

3. The closure WQ of WQ inside Ṽ is also a smooth, orientable submanifold of Ṽ,
and of dimension |K|+ p · s(Q) + (q− 1) · l(Q) as well.

This lemma is proven in [BK21, Lem. 3.14]; let us here only emphasise
two instructive steps: firstly, in order to calculate the dimension of WQ, note
that the following parameters describe a point inside WQ: on the one hand,
we have, for each 1 6 β 6 l, a parameter ζβ = (ζ1

β, ζ2
β) ∈ Rp ×Rq−1 which

corresponds to the value attained by prζ(zi,j) for all (i,j) ∈ Qβ. However, if
two rays Qβ and Qβ′ share a cluster, then their further projections ζ1

β and ζ1
β′

coincide. Hence, we get for each equivalence class of rays a choice in Rp, and

10



1.2. The cohomology in the ordered case

R3
(0, 0)×R

•

•

•

•

•
•

•

•

•

•

•
•

•

• •

•

1,1

4,2

4,1

3,2

3,1

1,2

2,2

2,1

Q5

Q4

Q3

Q2

Q1

Figure 1.5. The linear interpolation from z to the configuration z̊

for each ray a choice in Rq−1, yielding p · s(Q) + (q− 1) · l(Q) parameters.
On the other hand, we have for each (i,j) ∈ YK a parameter prt(zi,j) ∈ R.

Secondly, in order to see that WQ is contractible, we choose distinct num-
bers t̊i,j ∈ R such that t̊i′,j′ < t̊i,j if and only if either β′ > β, or β′ = β and
(i′,j′) ≺β (i,j), and define z̊i,j := (0, t̊i,j) ∈ Rd. Then z̊ = (z̊1,1, . . . , z̊r,kr)

lies in WQ, and an explicit contraction can be given by linear interpolation
H(z, s) := s · z + (1− s) · z̊, see Figure 1.5.

Now we are ready to prove Theorem 1.2.5.

Proof of Theorem 1.2.5. We consider the Leray spectral sequence associated
with the filtered space Ṽ∞ and compute its homology: the E1-page reads

E1
ν,µ = Hν+µ(Fν, Fν−1) = H̃ν+µ(Fν/Fν−1).

By Lemma 1.2.14, each Fν is the disjoint union of the open manifolds WQ for
Q varying in the finite set of ray partitions with ω(Q) = χ(ν), and we have

Fν/Fν−1
∼= F∞

ν
∼=

∨
ω(Q)=χ(ν)

W∞
Q .

Even for ν = 0 we have that F0 = F0/F−1 = {∞} is formally homeomorphic
to the empty bouquet. By Lemma 1.2.14, WQ is an open manifold of dimension

11



Chapter 1. Vertical configuration spaces

d(Q) := |K|+ p · s(Q) + (q− 1) · l(Q) for all ray partitions; hence we can
apply Poincaré–Lefschetz duality and obtain for all ν, µ > 0 an isomorphism

E1
ν,µ
∼=

⊕
ω(Q)=χ(ν)

Hν+µ(W∞
Q , ∞) ∼=

⊕
ω(Q)=χ(ν)

Hd(Q)−ν−µ(WQ).

Again by Lemma 1.2.14, WQ is contractible for all ray partitions Q; hence
Hd(Q)−ν−µ(WQ) contributes to the first page of the spectral sequence only in
the case µ + ν = d(Q). We can rewrite, for each ν > 0 and by considering all
degrees µ at the same time,⊕

µ>0

E1
ν,µ
∼=

⊕
ω(Q)=χ(ν)

Hd(Q)(W
∞
Q , ∞).

Since F• is a closed filtration and WQ is a path component of Fν, we can now,
for all ray partitions Q, replace the relative homology of the pair (W∞

Q , ∞)

with the relative homology of the pair (Fν, Fν rWQ) or, using excision, with
the relative homology of the pair

(
W∞
Q , W∞

Q rWQ
)
, where we denote by W∞

Q
the one-point compactification of WQ (which coincides with the closure of
WQ in Ṽ∞ for ν > 1); then we obtain⊕

µ>0

E1
ν,µ
∼=

⊕
ω(Q)=χ(ν)

Hd(Q)
(
W∞
Q , W∞

Q rWQ
)
.

Each direct summand in the previous decomposition is isomorphic to Z,
generated by the fundamental class of the relative manifold

(
W∞
Q , W∞

Q rWQ
)
.

By Lemma 1.2.14,
(
W∞
Q , ∞

)
is also a relative manifold, and its fundamental

class projects to that of
(
W∞
Q , W∞

Q rWQ
)

under the natural map

Hd(Q)
(
W∞
Q , ∞

)
→ Hd(Q)

(
W∞
Q , W∞

Q rWQ
)
.

The previous analysis shows in particular that for all integers ν > 0 the
natural map H•(Fν, ∞) → H•(Fν, Fν−1) is surjective. This suffices to prove
that the spectral sequence collapses on its first page: any element on the
first page is represented by a genuine relative cycle of a pair (Fν, ∞), so it
must survive to the limit. This shows that H•(Ṽ∞, ∞) is freely generated
by the fundamental classes of the relative submanifolds (W∞

Q , ∞), so, via

12



1.3. Homological stability for the unordered case

Poincaré–Lefschetz duality, H•(Ṽ) is generated by their duals, which we call
uQ. For each ray partition Q, we finally see

|uQ| = p · r + q · |K| − d(Q)
= p · (r− s(Q)) + (q− 1) · (|K| − l(Q)).

For q = 1 and a fixed component σ ∈ ∏i Ski , the entire argument takes
place inside Ṽ = ṼK(R

p,q)σ ; more precisely: for each ray partition Q with
σ(Q) = σ, we have WQ ⊂ ṼK(R

p,q)σ .

1.3. Homological stability for the unordered case

In this section we prove homological stability for the family (Vk
r (R

p,q))r>0 of
unordered configuration spaces of vertical clusters of size k for all values of
p and q except for the one pair (p, q) where it is obviously false. By doing so,
we extend results by [TP14; Lat17; Pal21]. This section also appeared as part
of the article [BK21].

1.3.1. Setting and results

Throughout the section, we fix a cluster size k > 1 and we save one index
by abbreviating Vr(Rp,q) := Vk

r (R
p,q). If p and q are fixed and clear from the

context, we may also just write Vr.

Construction 1.3.1. For each number r > 0 of clusters and dimensions p > 0
and q > 1, we have stabilisation maps

stab : Vr(R
p,q)→ Vr+1(R

p,q)

by adding an extra cluster on the far right with respect to the first coordinate
of Rp+q, as depicted in Figure 1.6.

If the clusters were ordered, a natural candidate for a topological retraction
of stab would be given by just forgetting the last cluster. In our situation, the
clusters are unordered, but still, we can define a ‘multiretraction’ by summing
over all possibilities of forgetting clusters. Such a multiretraction lands in the
symmetric product, so it can, via the Dold–Thom theorem [DT58, Satz 6.10],
be used to construct a map in homology.
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Chapter 1. Vertical configuration spaces

•
•
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•

•

•

•
•

•

•
7→

•
•

•

•

•

•

•
•

•

• •

•

Figure 1.6. The stabilisation map stab : V5(R
1,1)→ V6(R

1,1), which adds a new
cluster (blue) on the far right; here k = 2.

Proposition 1.3.2. The induced maps in homology

stab∗ : Hh(Vr(R
p,q))→ Hh(Vr+1(R

p,q)).

are split injective for each h, r, p > 0 and q > 1.

Proof. We generalise the method of proof from [Pal21, Lem. 5.1], which is
based on the following lemma from [Dol62]:

Lemma 2. Suppose we are given a sequence (0 = A0
s0−→ A1

s1−→ · · · )
of abelian groups, and assume that there are τj,r : Ar → Aj for 1 6 j 6 r
such that τr,r = id and τj,r − τj,r+1 ◦ sr : Ar → Aj lies in the image of
sj−1. Then every sr is split monic.

To do so, we firstly note that V0 = ∗, whence all spaces Vr = Vr(Rp,q) are
canonically based by stabr(∗) ∈ Vr, and the stabilisation maps are basepoint-
preserving by definition. For a fixed h > 0, let Ar := H̃h(Vr); then we have
maps sr : Ar → Ar+1 induced by the stabilisation.

Now recall for l > 0 the l-fold symmetric product SPlVr := (Vr)l/Sl where
Sl acts by coordinate permutation. We denote elements of SPlVr as formal
sums of elements of Vr, but we use the symbol ⊕ in order to avoid confusion
with Notation 1.1.4. Using this convention, we consider the maps

γj,r : Vr → SP(r
j)Vj,

r

∑
i=1

[~zi] 7→
⊕

S⊆{1,...,r}
#S=j

∑
i∈S

[~zi].
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1.3. Homological stability for the unordered case

A priori, γj,r is not based, but it can be homotoped to a based map since Vr

is well-based. Then γr,r = id and we have a homotopy

γj,r+1 ◦ stabr ' γj,r ⊕ SP( r
j−1)
(
stabj−1

)
◦ γj−1,r.

of maps Vr → SP(r+1
j )Vj. Applying the functor πh ◦ SP∞ and using the ‘flatten-

ing’ map ϕl : SP∞SPlVr → SP∞Vr, we obtain the desired system (τj,r)16j6r of
morphisms for Dold’s lemma by the dashed arrow in the following diagram,
where the vertical identifications are due to the Dold–Thom theorem:

Ar Aj

πh(SP∞Vr) πh
(
SP∞SP(r

j)Vj
)

πh
(
SP∞Vj

)
.

τj,r

πh(SP∞γj,r) πh(ϕ(rj)
)

In contrast to this, surjectivity of stab∗ : Hh(Vr(Rp,q)) → Hh(Vr+1(R
p,q))

holds only in a certain range. The rest of this section is devoted to the proof
of the following stability theorem:

Theorem 1.3.3. For all p > 0 and q > 1 with (p, q) 6= (0, 1), the induced maps

Hh(Vr(R
p,q))→ Hh(Vr+1(R

p,q))

are isomorphisms for h 6 r
2 .

Many cases of Theorem 1.3.3 have already been solved:

• We know that π0
(
Vr(R0,1)

) ∼= Sr·k/(Sk oSr), so there is no stability
result to be expected in the case p = 0 and q = 1.

• For p = 0, we are in the case without any vertical coupling condition.
This can alternatively be described by embeddings of (disconnected)
0-dimensional manifolds into Rq. For these cases, the theorem was
proven for q = 2 in [TP14] and for q > 3 in [Pal21].

• In [Lat17], the case p + q > 3 was considered and proven. To be precise,
Latifi writes down the proof only for p = 2 and q = 1, but her strategy
works whenever p + q > 3.

Hence we only have to prove the single remaining case (p, q) = (1, 1). How-
ever, since the method is the same, we will provide an argument for arbitrary
pairs (p, 1) with p > 1, which uses different techniques than Latifi’s proof.
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Chapter 1. Vertical configuration spaces

1.3.2. The dexterity filtration

In the remainder of the section, we assume q = 1, so if we use Notation 1.2.6,
then pr and prζ agree. Moreover, each vertical cluster [~z] = {z1, . . . , zk} is
canonically ordered by the last coordinate tj := prt(zj) ∈ R of each point, and
[~z] is determined by their common projection ζ := prζ(z) ∈ Rp and by the
real numbers t1, . . . , tk. Hence we can write {z1, . . . , zk} = (ζ; t1 < · · · < tk).

We introduce an invariant which measures, for a given configuration in
Vk

r (R
p,1), how ‘entangled’ the clusters are, and we want to use this invariant

in order to establish a filtration of Vk
r (R

p,1).

Definition 1.3.4. Let z := (~z1, . . . ,~zr) ∈ Ṽr be an ordered configuration, where
~zi = (zi,1, . . . , zi,k). We define an equivalence relation ∼z on the set {1, . . . , r}.
Firstly, we set i ∼z i′ whenever the two following conditions hold:

• the clusters ~zi and ~zi′ are aligned, i.e. they are contained in the same
t-line, or, equivalently, prζ(~zi) = prζ(~zi′) in Rp;

• the clusters ~zi and ~zi′ are entangled, i.e. their convex hulls (contained in
the vertical line) intersect each other, see Figure 1.7.

Let ∼z be the equivalence relation generated by the above relations. We define
the dexterity of z, denoted δ(z), to be the number of equivalence classes of ∼z.
Since the notion of dexterity is invariant under the permutation action of the
group Sk oSr, it descends to unordered configurations in Vr.

•
•

•
•

•

•

•

•

•
•

•

•

Figure 1.7. The leftmost two upper clusters are entangled and hence form an
equivalence class. Therefore, the dexterity is 5, while the number of
clusters is 6.
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1.3. Homological stability for the unordered case

Definition 1.3.5 (Dexterity filtration). For s > −1 we let FsVr ⊆ Vr be the
subspace of all configurations with dexterity at least r− s. Then we have a
chain of inclusions

∅ = F−1Vr ⊆ F0Vr ⊆ · · · ⊆ Fr−1Vr = Vr,

and we denote by FsVr := FsVr r Fs−1Vr the sth stratum of the filtration.

Note that each filtration level FsVr is an open subspace of Vr; in particular,
it is a manifold of the same dimension r · (p+ k). The stratum FsVr is a closed
subset of FsVr, and one easily checks [BK21, Lem. 4.7] that it is even a closed
submanifold of codimension p · s, i.e. of dimension p · (r− s) + r · k.

Additionally, the stabilisation map stab : Vr → Vr+1 is filtration-preserving,
i.e. it restricts to maps FsVr → FsVr+1 of filtration components, and even to
maps of strata FsVr → FsVr+1.

1.3.3. Coloured configuration spaces

We want to use the dexterity filtration in order to replace vertical configura-
tions by coloured configurations, starting with the following idea: we describe
each point inside the stratum FsVr by a configuration of r− s points in Rp+1,
one point for each equivalence class of entangled clusters, carrying as a
colour a combinatorial type which describes the entanglement. This leads
us to the notion of coloured configuration spaces, which we assign to a each
map α telling us how often which combinatorial type appears.

Notation 1.3.6. Let E be an index set. A distribution is a map α : E→N with
finite support. We write αe := α(e) and α = ∑e αe · e.

In particular, for a fixed e0 ∈ E, we denote by α + e0 the distribution which
coincides with α, except for the fact that αe0 is increased by 1.

Definition 1.3.7. Let E be a set and α : E → N be a distribution. Then we
define |α| := ∑e∈E αe and S(α) := ∏e∈E Sαe ⊆ S|α|. Moreover, for a family
X := (Xe)e∈E of spaces, we define the coloured configuration space

Cα(R
p+1; X) := C̃|α|(R

p+1)×S(α) ∏
e∈E

Xαe
e .

In the case Xe = ∗ for all e, we just write Cα(Rp+1) := C̃|α|(Rp+1)/S(α).
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Chapter 1. Vertical configuration spaces

Informally, Cα(Rp+1; X) is the space of unordered configurations of |α|
unordered points, each equipped with a colour e ∈ E and a parameter in Xe,
such that for all e ∈ E, there are precisely αe points with colour e.

For unordered labelled configurations as before, we use again the ‘sum
notation’: for distinct points y1, . . . , y|α| ∈ Rp+1, colours e1, . . . , e|α| ∈ E and
labels xl ∈ Xel , we denote by ∑l yl ⊗ (el , xl) the unordered labelled configu-
ration in which the point yl carries the colour el and the parameter xl .

Definition 1.3.8. For w > 1, a partition of {1, . . . , w · k} into subsets S1, . . . , Sw

of size k is called irreducible if there is no 1 6 i 6 w− 1 for which the subset
{1, . . . , i · k} is a union of some pieces Sb of the partition.

As usual, we consider a partition e = (S1, . . . , Sr) as unordered by demand-
ing that min(S1) < · · · < min(Sr) holds, and we denote by Ew the set of all
irreducible, unordered partitions of {1, . . . , w · k} into subsets of size k.

We let E := äw>1 Ew, and for e ∈ Ew ⊆ E, we write w(e) := w for the
weight of e. Note that there is precisely one partition e0 ∈ E with w(e0) = 1.

• • • • • • • • • • • •

Figure 1.8. We can depict partitions of {1, . . . , w · k} as in this figure. Here we
see a reducible and an irreducible partition, with k = 2 and w = 3.

Remark 1.3.9. The notion of irreducibility is related to the dexterity filtration:
given an irreducible partition e = (S1, . . . , Sw) with Sb = {mb,1 < · · · < mb,k}
and ζ1, . . . , ζw ∈ Rp, consider the configuration [z] = ∑b[zb,1, . . . , zb,k] ∈ Vw

with zb,j = (ζb, mb,j). Then [z] has dexterity 1 if and only if ζ1 = · · · = ζb
holds. This is used, in the following, for the special case ζ1 = 0, i.e. we vary
the w− 1 coordinates ζ2, . . . , ζw inside p-dimensional discs Dp ⊆ Rp.

Construction 1.3.10. For each e ∈ E we denote by De the product (Dp)w(e)−1,
and thus obtain a family of discs D := (De)e∈E. We denote by ξ2, . . . , ξw(e)

the w(e)− 1 parameters of De, each taking values in Dp; each parameter ξb
consists of p coordinates ξ1

b , . . . , ξ p
b ∈ R.

For each distribution α : E→N, we obtain a coloured configuration space
Cα(Rp+1; D). By allowing only coloured configurations with labels in the
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1.3. Homological stability for the unordered case

centres of the discs, we obtain an inclusion Cα(Rp+1) ⊆ Cα(Rp+1; D), which
is a closed embedding of a submanifold of codimension p · s(α). We denote
the complement by C∗α(Rp+1; D) := Cα(Rp+1; D)r Cα(Rp+1).

Definition 1.3.11. For a distribution α : E→N, we define the degree deg(α)
as the pair of non-negative numbers

deg(α) := (r(α), s(α)) :=
(

∑e αe · w(e) , ∑e αe · (w(e)− 1)
)

.

We let Cr,s := Cr,s(Rp+1; D) be the union of all spaces Cα(Rp+1; D), where α

ranges among distributions α : E → N with deg(α) = (r, s). Moreover, we
define C0

r,s ⊆ Cr,s to be the union of all Cα(Rp+1) which satisfy deg(α) = (r, s),
and define its complement C∗r,s := Cr,s r C0

r,s.
A generic point in Cr,s is of the form ∑r−s

l=1 yl ⊗ (el , ξ l), where the points
y1, . . . , yr−s ∈ Rp+1 are all distinct, el ∈ E, and the parameter ξ l ∈ Del is
expanded as ξ l = (ξl,2, . . . , ξl,w(el)) with ξl,b ∈ Dp.

There are stabilisation maps Cr,s → Cr+1,s given by placing a new point
with label in De0 = ∗ on the far right with respect to the first coordinate of
Rp+1. The stabilisation increases the parameter r by 1, but leaves s constant.
Along this map, C0

r,s gets sent to C0
r+1,s and C∗r,s gets sent to C∗r+1,s.

1.3.4. The insertion map

As we have already indicated earlier, we want to connect the filtration pairs
(FsVr, Fs−1Vr) to the pairs (Cr,s, C∗r,s) of coloured configurations via a so-called
insertion map.

Idea 1.3.12. For each 1 6 s 6 r, we construct a map of pairs

ϕr,s : (Cr,s, C∗r,s)→ (FsVr, Fs−1Vr),

which pictorially does the following, see Figure 1.9: given a coloured con-
figuration in Cr,s, we draw pairwise disjoint cylinders around each point in
Rp+1 and place inside each cylinder a small ‘standard configuration’ which
corresponds to the given indecomposable partition and is ‘perturbed’ by the
w(e)− 1 disc parameters from the label, where in each cylinder, one cluster
stays in the centre.
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Chapter 1. Vertical configuration spaces

By Remark 1.3.9, the dexterity of the resulting vertical configuration is
r− s if and only if all clusters inside each cylinder stay in the centre, i.e. if all
disc parameters are 0. Thus, if the labelled configuration to start with lies in
C∗r,s, then the dexterity is at least r− (s− 1), whence we land in the filtration
component Fs−1Vr.

Construction 1.3.13. The insertion map ϕr,s is formally constructed as follows:

• For each w > 1, for each subset S ⊆ {1, . . . , w · k} of cardinality k, and
for each ξ ∈ Dp, we define the unordered standard cluster

TS(ξ) :=
(
ξ,
(
−1 + 2

k·w+1 ·m
)

m∈S
)
.

Pictorially, TS(ξ) is the unordered vertical cluster of k points which
projects to ξ ∈ Dp and whose t-coordinate takes the values correspond-
ing to S, among all values arising from a uniform distribution of w · k
points in the interior of the interval [−1; 1].

• For a partition e ∈ E, we write S1, . . . , Sw(e) ⊆ {1, . . . , w · k} for the
partition components; recall that min(S1) < · · · < min(Sw(e)). For all
ξ2, . . . , ξw(e) ∈ Dp, we set ξ1 := 0 ∈ Dp and define

Te(ξ2, . . . , ξw(e)) :=
w(e)

∑
b=1

TSb(ξb) ∈ Vw(e).

Note that Sb and Sb′ are disjoint for b 6= b′; hence the clusters TSb(ξb)

and TSb′ (ξb′) are also disjoint, and the sum which defines Te(ξ2, . . . , ξw(e))

is admissible.

• Consider on Rp ×R the product distance

d((ζ, t), (ζ ′, t′)) := max(d(ζ, ζ ′), d(t, t′))

with respect to the Euclidean distances in Rp and R, respectively. This
means that for a radius ρ > 0, the closed ρ-ball around (ζ, t) is given
by the cylinder Bρ(ζ, t) = (ζ + ρ ·Dp)× [t− ρ; t + ρ].
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1.3. Homological stability for the unordered case

Now we have everything together to define the desired insertion map: given
an element Θ = ∑l yl ⊗ (el , ξ l) in Cr,s, we define4

ρ(Θ) :=

{
1
5 ·minl 6=l′ d(yl , yl′) for r− s > 2,

1 for r− s = 1.

and, accordingly, the map ϕr,s : Cr,s → FsVr by

ϕr,s

(
Θ =

r−s

∑
l=1

yl ⊗ (el , ξ l)

)
:=

r−s

∑
l=1

(yl + ρ(Θ) · Tel (ξ l)).

Note that the signs ‘+’ and ‘·’ in the expression ‘yl + ρ(Θ) · Tel (ξ l)’ denote a
translation and a dilation in Rp+1, while the sum sign always describes an
unordered collection (of points, or of vertical clusters). The second sum is
well-defined as the configurations yl + ρ(Θ) · Tel (ξ l) lie inside the cylinders
Bρ(yl) and are therefore disjoint. Finally, we have δ(ϕr,s(Θ)) > r− s, so the
image of ϕr,s is actually contained in the filtration level FsVr ⊆ Vr.

As indicated before, Remark 1.3.9 ensures that the point ϕr,s(Θ) lies in the
stratum FsVr if and only if ξ l = 0el for all 1 6 l 6 r− s. In particular, ϕr,s

restricts to maps C∗r,s → Fs−1Vr and C0
r,s → FsVr.

Remark 1.3.14. In more abstract language, and up to homotopy, the insertion
map can be described as follows: we define a map ϕ : äe De → är Vr which
restricts for all e ∈ E to a map De → Vw(e) similar to the map Te above. Then
we use that är Vr is an algebra over the little (p + 1)-cubes operad Cp+1, see
Example 3.1.7, and consider the adjoint map of Cp+1-algebras

ϕ̄ : C(Rp+1; D) ' FCp+1(äe De)→ är Vr.

The left hand side decomposes as a disjoint union of the spaces Cr,s as before,
while the right hand side decomposes into the spaces Vr, which are filtered
by FsVr, and the map ϕ is compatible with this decomposition and filtration.

4 In order to ensure that ϕr,s is well-defined, it would have been enough to choose ρ slightly
smaller than 1

2 ·minl 6=l′ d(yl , yl′ ). However, we want to ensure that ϕr,s : Cr,s → FsVr is
even an embedding, so we need that ϕr,s(Θ) still ‘knows’ which clusters come from the
same label: these have to be closer to each other than to foreign ones.
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Figure 1.9. An instance of the insertion map ϕ7,3 : (C7,3, C∗7,3) → (F3V7, F2V7).
The result even lies in the deeper filtration component F1V7.

Note that the insertion maps respect the stabilisation maps on both sides
up to homotopy: the stabilisation maps can easily be chosen such that the
diagram

(Cr,s, C∗r,s) (FsVr, Fs−1Vr)

(Cr+1,s, C∗r+1,s) (FsVr+1, Fs−1Vr+1)

ϕr,s

stab stab

ϕr+1,s

commutes on the nose. In order to compare the two stabilisation morphisms
on both sides, we need the following statement:

Proposition 1.3.15. For each 1 6 s 6 r, the map ϕr,s : (Cr,s, C∗r,s)→ (FsVr, Fs−1Vr)

induces an isomorphism in relative homology.

This Proposition is shown in [BK21, Prop. 4.19], and follows essentially
from the excision property of singular homology, since ϕr,s : Cr,s ↪→ FsVr is an
inclusion of a complement of a subspace W such that ϕr,s(C∗r,s) = Fs−1Vr rW,
and the closure of W is contained in the open subspace Fs−1Vr.

1.3.5. The stability proof

After having translated the filtration pairs (FsVr, Fs−1Vr) to the pairs (Cr,s, C∗r,s)

of coloured configuration spaces, and after having compared their respective
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1.3. Homological stability for the unordered case

stabilisations as well, we have to show homological stability for the sequence
of relative coloured configuration spaces with disc parameters. To do so, we
relate our situation to the case of coloured configuration spaces without disc
parameters from [Pal18, Ex. 4.6] via the Thom isomorphism. This leads us to
the following statement:

Lemma 1.3.16. The stabilisation map Cr,s → Cr+1,s induces isomorphisms

Hh(Cr,s, C∗r,s)→ Hh(Cr+1,s, C∗r+1,s)

in homology for h 6 r
2 and all s 6 r.

Proof. For each distribution α of degree (r, s), we have a (not always orient-
able) disc bundle Cα(Rp+1; D)→ Cα(Rp+1) of dimension p · s and structure
group S(α); this gives rise to a Thom isomorphism

Hh
(
Cα(R

p+1; D), C∗α(R
p+1; D)

) ∼= Hh−p·s
(
Cα(R

p+1); pr∗αOα

)
=: Mh,α,

where prα : π1(Cα(Rp+1))→ S(α) is the projection and Oα is of the form

Oα : S(α)→ {±1}, (σe)e∈E 7→∏
e

sg(σe)
p·(w(e)−1).

In particular, we have a natural isomorphism pr∗αOα
∼= stab∗pr∗α+e0

Oα+e0
for

the stabilisation Cα(Rp+1)→ Cα+e0(R
p+1), which gives us induced stabilisa-

tion morphisms Mh,α → Mh,α+e0 . We have a commutative square

Hh(Cr,s, C∗r,s)
⊕

deg(α)=(r,s)

Mh,α

Hh(Cr+1,s, C∗r+1,s)
⊕

deg(α)=(r,s)

Mh,α+e0 ⊕
⊕

deg(α)=(r+1,s)
αe0=0

Mh,α,

∼=

∼=

where the left vertical arrow is the desired stabilising map and the right side
is a sum of maps Mh,α → Mh,α+e0 . Therefore, we can prove the statement by
showing that, for h 6 r

2 , we firstly have Mh,α = 0 for each distribution α of de-
gree (r+ 1, s) with αe0 = 0, and, secondly, the stabilising map Mh,α → Mh,α+e0
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Chapter 1. Vertical configuration spaces

is an isomorphism for each distribution α of degree (r, s). For the first part,
we use that w(e) > 2 for all e ∈ E with αe 6= 0 to obtain

p · s > p ·∑
e

αe ·
(
w(e)− 1

2 · w(e)
)
= p · r+1

2 >
r+1

2 ,

so h− p · s < 0, whence Mh,α = 0. For the second part, we are left to check
that Hh−p·s(Cα(Rp+1); pr∗αOα)→ Hh−p·s(Cα+e0(R

p+1); pr∗α+e0
Oα+e0

) is an iso-
morphism for h 6 r

2 . To do so, we first observe that r
2 >

1
2 · αe0 + ∑e 6=e0

αe

since w(e) > 2 for e 6= e0, and, as p > 1, we obtain

h− p · s 6 r
2 − p ·∑

e
αe · (w(e)− 1) 6 − r

2 + ∑
e

αe 6 1
2 · αe0 . (?)

As already indicated, we want to use a technique from [Pal18], so we adapt
his notation by writing λ := (αe)e 6=e0 , i.e. |λ| = ∑e 6=e0

αe, as well as λ[n] for the
distribution with λ[n]e0 := n− |λ| and λ[n]e := αe for e 6= e0. Then we have
|λ[n]| = n, and in particular, λ[r− s] = α and λ[r− s + 1] = α + e0. We have
a stabilisation map Cλ[n](Rp+1) → Cλ[n+1](Rp+1) by placing an additional
point with label e0, which for n = r− s is our map from before.

Next, we construct a signed version of [Pal18, Ex. 4.6]: let PInj be the cate-
gory whose objects are non-negative integers and whose morphisms n→ n′

are partially defined injections η : {1, . . . , n} 99K {1, . . . , n′}. Now we define
a functor Pλ : PInj→ Ab to the category of abelian groups: we set

Pλ(n) := Z
〈
(Pe)e 6=e0 ; Pe ⊆ {1, . . . , n}, Pe ∩ Pe′ = ∅, and #Pe = λe

〉
,

and for each partially-defined injection η : n→ n′, we define the homomorph-
ism η∗ : Pλ(n)→ Pλ(n′) on additive generators P := (Pe)e 6=e0 by

η∗(P) :=

{
∏e 6=e0

sg(η|Pe)
p·(w(e)−1) · (η(Pe))e 6=e0 if η is defined on

⋃
e Pe,

0 else,

where in the first case, the restriction η|Pe : Pe → η(Pe) is canonically identified
with a permutation in Sαe by using that Pe and η(Pe) are totally ordered as
subsets of {1 < · · · < n} and {1 < · · · < n′}, respectively. By the inductive
argument from [Pal18, Lem. 4.7], we obtain that Pλ is a polynomial coefficient
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1.3. Homological stability for the unordered case

system of degree |λ| = r− s− αe0 and since Z[Sn]⊗S(λ[n]) Oλ[n] and Pλ(n)
are isomorphic as Sn-representations, we have natural identifications

H•
(
Cλ[n](R

p+1); pr∗λ[n]Oλ[n]

)
H•
(
Cλ[n+1](R

p+1); pr∗λ[n+1]Oλ[n+1]

)

H•
(
Cn(Rp+1); pr∗nPλ(n)

)
H•
(
Cn+1(R

p+1); pr∗n+1Pλ(n + 1)
)
,

where prn : π1
(
Cn(Rp+1)

)
→ Sn is the projection. As p + 1 > 2, the bottom

map is an isomorphism for • 6 1
2 · (n− r + s + αe0) by [Pal18, Thm. A]. For

us, n = r− s and • = h− p · s, so we are in the stable range by (?).

Now we have all tools to prove Theorem 1.3.3.

Proof of Theorem 1.3.3. Let E(r) denote the Leray spectral sequence associated
with the filtered space F•Vr. Then the filtration-preserving stabilisation map
Vr → Vr+1 induces a morphism f : E(r) → E(r + 1) of spectral sequences,
which on the first page is of the form

E(r)1
s,t E(r + 1)1

s,t

Hs+t(FsVr, Fs−1Vr) Hs+t(FsVr+1, Fs−1Vr+1)

f 1
s,t

stab∗

By Proposition 1.3.15 and Lemma 1.3.16, the bottom map is an isomorphism
for s + t 6 r

2 , so by a standard comparison argument [Zee57] for spectral
sequences, Hh(Vr)→ Hh(Vr+1) is an isomorphism for h 6 r

2 .

The strategy of proof of Theorem 1.3.3 generalises to the following case: let
K = (k1, . . . , kr), and for k > 1 let r(k) > 0 be the number of indices 1 6 i 6 r
with ki = k. If we construct a stabilisation map VK(R

p,1) → V(K,k)(R
p,1) by

placing a new vertical cluster of size k, then the induced map in homology

stab∗ : Hh(VK(R
p,1))→ Hh(V(K,k)(R

p,1))

is an isomorphism for h 6 r(k)
2 . We leave to the reader the details of the

straightforward generalisation of the proof.
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Chapter 1. Vertical configuration spaces

Outlook 1.3.17. We believe that the Leray spectral sequence for the filtration
F•Vr collapses on its first page and that the extension problem is trivial. This
would then imply that, using the notation from the proof of Lemma 1.3.16,

Hh(Vr(R
p,1)) ∼=

r−1⊕
s=0

Hh(Cr,s, C∗r,s)
∼=

r−1⊕
s=0

⊕
deg(α)=(r,s)

Mh,α.

Our motivation is the description of the stable homology as

Hh(V∞(R
p,1)) ∼=

⊕
α

M∞
h,α,

given in Application 2.4.1, where the last direct sum is extended over all
distributions α : E→N with αe0 = 0 and where M∞

h,α := lim−−−→t Mh,α+te0 .

1.4. Vertical configuration spaces as relative cell
complexes

In the spirit of [FN62b; Fuc70], we want to construct (relative, dual) cellular
decompositions of ṼK(R

p,q) and VK(R
p,q), where cells correspond to alloca-

tions of clusters into ‘columns’. For simplicity, we restrict ourselves to the
2-dimensional case, i.e. p + q = 2, although these methods easily generalise
to arbitrary p and q. The case (p, q) = (0, 2) coincides, up to some colouring,
with the classical situation, so we are left with (p, q) = (1, 1). The upshot of
this construction is not very surprising: we end up with a subcomplex of the
classical Fox–Neuwirth–Fuchs complex.

Although we have already fully understood the homology H•(ṼK(R
1,1))

additively in Section 1.2, the cellular decomposition will still be useful for
us in order to understand H•(ṼK(R

1,1)), or, more precisely, the collection
H•(ṼK(R

1,1 × nn))K,n, as an operad in Section 4.3. In the current chapter, we
will just draw some qualitative conclusions from the decomposition; most
importantly, the statement of Theorem 1.4.13: for K = (k1, . . . , kr), the spaces
ṼK(R

1,1) and VK(R
1,1) are equivalent to (r− 1)-dimensional cell complexes.

Before coming to the desired cellular description, we have to introduce a
bit of combinatorial notation.
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1.4. Vertical configuration spaces as relative cell complexes

Definition 1.4.1. Among tuples of positive integers, we have a pushforward
construction: if K = (k1, . . . , kr) is a tuple of positive integers and c : rr → ss is
surjective, then we obtain a tuple c∗K of length s by

c∗K :=
(

∑i∈c−1(1) ki, . . . , ∑i∈c−1(s) ki

)
.

Definition 1.4.2. Let K = (k1, . . . , kr) be a tuple and let 1 6 s 6 r. Recall
from Definition 1.2.1 the tableau YK = {(i,j); 1 6 i 6 r and 1 6 j6 ki}. An
allocation of K into s columns is encoded by the following datum:

1. another tuple M of length s;

2. a map π : YM → rr such that each preimage π−1(i) ⊆ YM is of cardinal-
ity ki and contained in a single column

{
(aπ(i), b); 1 6 b6 maπ(i)}.

We denote such an allocation by (M, π); however, we will sometimes suppress
M and just write π. Let ΠK,s be the set of all allocations of K into s columns.
Note that each such allocation gives rise to two maps:

• the surjection aπ : rr → ss that assigns to each index 1 6 i 6 r the column
inside YM where its preimage lies; note that M = (aπ)∗K;

• the bijection Yπ : YK → YM which identifies, for each 1 6 i 6 r, the ith

column {(i,j); 1 6 j6 ki} of YK with π−1(i) in a monotone way.

Notation 1.4.3. To save notation, we abbreviate allocations by the tuple

(π(1, 1) · · ·π(1, m1), . . . , π(s, 1) · · ·π(s, ms)),

where the entries are written as formal products of elements from rr. For
example, if K = (2, 1, 3, 2), then one possible allocation of K into two columns
is given by the tuple (1 4 1 4, 3 2 3 3): for each 1 6 i 6 4, there are precisely ki

many occurrences of i, and they are all contained in a single entry.

Using this notation, we can describe the cellular structure on the ordered
vertical configuration spaces: for simplicity, let us restrict to the path compon-
ent Ṽ<

K (R1,1) which contains all configurations (ζ1, . . . , ζr; t1,1, . . . , tr,kr) with
ti,j < ti,j+1, and call its one-point compactification Ṽ∞ := Ṽ<

K (R1,1) ∪ {∞}.
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Chapter 1. Vertical configuration spaces

Construction 1.4.4. We have a filtration

{∞} = Ṽ∞
0 = · · · = Ṽ∞

|K| ⊆ Ṽ∞
|K|+1 ⊆ · · · ⊆ Ṽ∞

|K|+r = Ṽ∞,

where Ṽ∞
|K|+s contains all configurations on at most s columns. More precisely,

it contains all configurations (ζ1, . . . , ζr; t1,1, . . . , tr,kr) with #{ζ1, . . . , ζr} 6 s.
Then Ṽ∞

|K|+s arises from Ṽ∞
|K|+(s−1) by attaching, for each allocation π ∈ ΠK,s

into s columns, a (|K|+ s)-cell. If we identify the standard n-simplex ∆n

with {−∞ 6 t1 6 · · · 6 tn 6 +∞}, then the characteristic map of the cell
corresponding to π is of the form Fπ : ∆s × ∆m1 × · · · × ∆ms → Ṽ∞

|K|+s with

Fπ(ζ, t) =


∞ if 1. ~ta ∈ ∂∆ma for some a, or

2. (ζa, ta,b) = (ζa+1, ta+1,b′) for some a, b, b′, or
3. ζ1 = −∞ or ζs = +∞,

(a∗πζ, Y∗πt) else,

where ζ = (ζ1, . . . , ζs) ∈ ∆s and t = (~t1, . . . ,~ts) with~ta = (ta,1, . . . , ta,ma).

Remark 1.4.5. The Short notation 1.4.3 already looks like a configuration of
points in ṼK(R

1,1), up to rotating each entry of the tuple anticlockwise by 90°.
However, we intend to save space by denoting the entries horizontally.

Pictorially, the differentials in the corresponding cellular chain complex
capture all possibilities of merging two consecutive columns. In order to
formalise this, we need to introduce the notion of a shuffle.

Definition 1.4.6. For two integers r, r′ > 0, a (r, r′)-shuffle is a monotone
injective map ı : rr ↪→ r + r′. Each shuffle has a counterpart ı′ : rr′ ↪→ r + r′

which is the unique monotone inclusion of the complement.
The standard shuffle is defined to be the map ı0 : rr ↪→ r + r′ with ı0(a) = a.

For each (r, r′)-shuffle, there is a unique permutation τı ∈ Sr+r′ such that
ı = τı ◦ ı0 and ı′ = τı ◦ ı′0, and we put sg(ı) := sg(τı).

We will occasionally write ı : (r, r′) to express that ı is an (r, r′)-shuffle.

Note that, in principle, an (r, r′)-shuffle contains the same information as
an allocation of (r, r′) on a single column, but we are going to use these two
notions in different contexts; roughly speaking, shuffles ‘act’ on the set of
allocations in the following way:
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1.4. Vertical configuration spaces as relative cell complexes

Definition 1.4.7. Let (M, π) be an allocation of K into s columns, pick an
index 1 6 α 6 s− 1, and let ı be an (mα, mα+1)-shuffle. Then we have a new
allocation dα,ı(M, π) := (M′, π′) with M′ := (m1, . . . , mα + mα+1, . . . , ms) and

π′(a, b) :=


π(a, b) for a < α,

π(a, b̄) for a = α and b = ı(b̄),

π(a + 1, b̄) for a = α and b = ı′(b̄),

π(a + 1, b) for a > α.

Construction 1.4.8. Consider the multisimplicial complex

ṼN :=
r

ä
s=1

ä
(M,π)∈ΠK,S

∆s × (∆m1 × · · · × ∆ms)

/
(π; dαζ, dα,ıt) ∼ (dα,ıπ; ζ, t)

with dα,ıt := (~t1, . . . ,~tα−1, ı∗~tα, ı′∗~tα,~tα+1, . . . ,~ts−1) for t = (~t1, . . . ,~ts−1). Then
we obtain a subcomplex ṼM ⊆ ṼN which consists of all points that can be
represented by (π; ζ, t) with ζa = ±∞ or~ta ∈ ∂∆ma for some 1 6 a 6 s, called
the degenerate subcomplex.

Note that Ṽ∞ = ṼN/ṼM and ṼK(R
1,1) = ṼNr ṼM. The differentials in the

relative cellular chain complex of (ṼN, ṼM) can now be calculated simplicially:
for each commutative ring R, the relative cellular chain complex of (ṼN, ṼM)
with coefficients in R is given by Ccell

|K|+s(Ṽ
N, ṼM; R) = R〈ΠK,s〉 for 1 6 s 6 r,

no further cells, and with differentials

∂π =
s−1

∑
α=1

(−1)α · ∑
ı : (mα,mα+1)

sg(ı) · dα,ıπ.

Remark 1.4.9. By Poincaré–Lefschetz duality, we get isomorphisms

H•(Ṽ<
K (R1,1)) ∼= H|K|+r−•(Ṽ∞, ∞) ∼= H|K|+r−•(ṼN, ṼM).

This has some immediate consequences:

1. The homology H•(ṼK(R
1,1)) is of finite type and ṼK(R

1,1) has no non-
trivial homology groups above degree r− 1. This coincides with The-
orem 1.2.5 for the case (p, q) = (1, 1).
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2. The Euler characteristic of ṼK(R
1,1) can be calculated by

χ(ṼK(R
1,1)) =

r

∑
s=1

(−1)r−s · #ΠK,s

=
r

∑
s=1

(−1)r−s · ∑
c : r→s

surjective

(c∗K)1! · · · (c∗K)s!
k1! · · · kr!

.

Since Theorem 1.2.5 already gives a full description for the homology of
ṼK(R

1,1), there is no need for a more explicit inspection of the cellular chain
complex at this point. However, the efficient ray filtration from Section 1.2
behaves poorly with respect to the operadic structure of Chapter 4, in par-
ticular with respect to a permutation of clusters. We will therefore come back
to this cellular chain complex later and simplify it by using methods from
discrete Morse theory.

A similar story can be told for the unordered vertical configuration spaces:
if r(k) > 0 denotes, for each k > 1, the number of occurrences of k in the
tuple K = (k1, . . . , kr), then the action of SK on ṼK(R

1,1) from Definition 1.1.3
restricts to an action of SK := ∏k>1 Sr(k) on Ṽ<

K (R1,1) and in both cases, the
quotient is given by the unordered vertical configuration space VK(R

1,1).

Remark 1.4.10. The action of SK on Ṽ< which exchanges clusters of the same
size extends to a cellular action on ṼN which preserves the subcomplex ṼM

of degenerates. On cells, the action is given by τ · (M, π) = (M, τ ◦ π). Thus,
we get a relative multisimplicial complex (VN, VM) with VNrVM = VK(R

1,1),
and the multisimplices are indexed in ΠK,s/SK. Likewise, we get for the
cellular chain complex Ccell

• (VN, VM) = Ccell
• (ṼN, ṼM)⊗SK R.

However, explicit homology calculations by means of this cellular complex
are complicated: firstly, recall that VK(R

1,1) is not always orientable, compare
Remark 1.1.7, and secondly, even if we work over F2, a parity trick similar
to the one in [Fuc70] is not quite to be expected, as the combinatorics of the
differentials are much more involved. However, the Euler characteristic is
readily calculated as

χ(VK(R
1,1)) =

(
∏
k>1

1
r(k)!

)
·

r

∑
s=1

(−1)r−s · ∑
c : r→s

surjective

(c∗K)1! · · · (c∗K)s!
k1! · · · kr!

.
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1.4. Vertical configuration spaces as relative cell complexes

Additionally, it follows immediately that Hh(VK(R
1,1); Z) vanishes for

h > r and is torsion-free for h = r− 1, and we can calculate the first stable
homology of Vk

r (R
1,1) for each k > 1 as follows:

Corollary 1.4.11. For each number r > 2 of clusters, each cluster size k > 1, and
each a commutative ring R, we have

H1(Vk
r (R

1,1); R) ∼= R
1
2 ·(

2k
k ).

Proof. By the Stability theorem 1.3.3, it is sufficient to show the statement
for r = 2. Here we note that the cell complex of (V∞, ∞) has only cells
in dimension 2k + 1 and 2k + 2. As there is only a single (2k + 2)-cell and
since H2k+2(V∞, ∞;O) ∼= H0(Vk

2 (R
1,1)) ∼= R holds for the orientation system

O, the twisted relative cellular cochain complex C•cell(V∞, ∞;O) has to be
formal. Hence H1(Vk

2 (R
1,1)) is freely generated by all cells of codimension 1,

and there are precisely #Π(k,k),1/S2 = 1
2 · (

2k
k ) many of them.

Example 1.4.12. We can entirely calculate the integral homology of Vk
r (R

1,1)

for arbitrary k > 1 and r ∈ {1, 2, 3}: in all three cases, it is free abelian, and
the Betti numbers are as in Table 1.1. The last entry in this table comes from
the fact that we know all other Betti numbers and the Euler characteristic.

0 1 2

Vk
1 1

Vk
2 1 1

2 · (
2k
k )

Vk
3 1 1

2 · (
2k
k )

1
2 · (

2k
k ) ·

(
1
3 · (

3k
k )− 1

)
Table 1.1. The integral/rational Betti numbers of Vk

r (R
1,1) for r ∈ {1, 2, 3}

Theorem 1.4.13. For K = (k1, . . . , kr), the spaces ṼK(R
1,1) and VK(R

1,1) are
homotopy equivalent to (r− 1)-dimensional cell complexes.

Proof. We want to use from [Mun84, Lem. 70.1] the following geometric
version of Poincaré–Lefschetz duality: let (XN, XM) be a finite relative sim-
plicial complex such that X := XNr XM is an open m-dimensional manifold;
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Chapter 1. Vertical configuration spaces

consider the barycentric subdivison of XN and let X# be the union of all
flags Φ = |σ0 < · · · < σκ| ⊆ XN satisfying Φ ∩ XM = ∅. Then the inclusion
X# ↪→ X is a deformation retract, and, on the other hand, X# itself carries
the structure of a finite cell complex: for each µ-dimensional cell σ which
does not belong to XM, we define the dual cell D(σ) to be the union of all
flags which start with σ. If we define X#

µ ⊆ X# to be the union of all dual
cells D(σ) for σ of dimension at least m− µ, then the chain of inclusions
∅ = X#

−1 ⊆ X#
0 ⊆ · · · ⊆ X#

m = X# is a cellular filtration, i.e. X#
µ arises from

X#
µ−1 by attaching (dual) cells of dimension µ, one for each simplex σ of

dimension m− µ which does not belong to XM.
Exactly the same can be done for the multisimplicial complex (ṼN, ṼM)

after we have subdivided the multisimplices into simplices: note that in ṼN,
the attaching maps for each multisimplex are injective on vertices, so after
cutting the multisimplices into simplices, we obtain an honest finite simplicial
complex. Even after the subdivision, there are no cells outside ṼM which are
of dimension smaller than |K|+ 1, and hence, there are no dual cells inside
Ṽ# of dimension larger than r− 1.

Finally, the SK-action on Ṽ<
K (R1,1) restricts to a cellular action on the

dual complex Ṽ#, which implies that the inclusion Ṽ# ⊆ Ṽ<
K (R1,1) is SK-

equivariant and we obtain an induced map Ṽ#/SK ↪→ VK(R
1,1). Since the

action is free on the component Ṽ<
K (R1,1), its restriction to Ṽ# is also free, so

the quotient actually calculates the homotopy quotient on both sides. Hence,
the induced map is still a homotopy equivalence. As the action on Ṽ# was
cellular, we get an induced cellular structure on Ṽ#/SK which lifts to the
previous one. This proves the claim.

1.5. Homotopy groups

In this last section, we study the homotopy groups of vertical configuration
spaces, extending the works of [Her14; Rös14; Lat17]. Since ṼK(R

p,q) is a
covering of VK(R

p,q), we have π•(VK(R
p,q)) ∼= π•

(
ṼK(R

p,q)
)

for • > 2.
We also would like to relate the fundamental groups of ṼK(R

p,q) to Artin’s
pure braid groups PBrr, see Appendix A for a short reminder on them. Clearly,
π1(VK(R

p,q)) is an extension of SK (or of the stabilising subgroup of the
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1.5. Homotopy groups

corresponding path component) by π1
(
ṼK(R

p,q)
)
, so we will focus on the

fundamental groups of ṼK(R
p,q). In all dimensions apart from (p, q) = (1, 1),

these are easy to understand, as the following statement shows:

Proposition 1.5.1. For a tuple K as before and (p, q) 6= (1, 1), the fundamental
groups of ṼK(R

p,q) are as follows:

π1
(
ṼK(R

p,q)
) ∼=


0 for q > 3 or (q = 1 and p > 2),

∏i PBrki for q = 2 and p > 1,

PBr|K| for q = 2 and p = 0.

Proof. Recall that ṼK(R
p,q) can be regarded as a subspace of Rp·r ×Rq·|K|

which is the complement of a polyhedral subcomplex, which we call the
collision subcomplex. Now we can use in the fact that if we remove from a
smooth manifold without boundary a subcomplex of codimension at least 3,
we do not change the fundamental group, compare [God71, Thm. 2.3].

Suppose first q > 3: in this case, the collision subcomplex is contained in
the product of Rp·r and the ‘fat diagonal’ of (Rq)|K|; hence it has codimension
at least q and we are done. If instead q = 1, then we can restrict to the open,
convex subspace of Rp·r ×R|K| containing all points (ζ1, . . . , ζr; t1,1, . . . , tr,kr)

with ti,j < ti,j+1, as this subspace contains one of the mutually homeo-
morphic path components of ṼK(R

p,q). This already excludes collisions of
points from the same cluster, and the subspace is of the form Rp·r × ∆, for an
open, convex subset ∆ of R|K|. We obtain a path component of ṼK(R

p,1) if we
additionally exclude collisions of points from different clusters. However, each
condition that two points from different clusters collide ties together p+ 1 > 3
coordinates, whence the collision subcomplex is again of codimension > 3.

For q = 2, we consider the subspace of Rp·r ×C|K| which contains points
(ζ1, . . . , ζr; w1,1, . . . , wr,kr) with wi,j 6= wi,j′ for all 1 6 i 6 r and j 6= j′. This
space is homeomorphic to Rp·r ×∏i C̃ki(C), so its fundamental group is
identified with ∏i PBrki . In order to describe ṼK(R

p,2), we additionally have
to exclude collisions of points from different clusters as before. Here we
again tie together p + 2 coordinates, so the collision subcomplex is again of
codimension > 3 for p > 1. If instead p = 0, then we have no verticality
condition and get ṼK(R

0,2) ∼= C̃|K|(R2).
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Chapter 1. Vertical configuration spaces

In contrast to this, the fundamental groups of ṼK(R
1,1) are more complic-

ated: first of all, let us restrict ourselves again to the path component Ṽ<
K (R1,1)

which consists of configurations (ζ1, . . . , ζr; t1,1, . . . , tr,kr) with ti,j < ti,j+1. We
fix a standard configuration in this path component as a basepoint and still
write π1

(
ṼK(R

1,1)
)

for the fundamental group (which only sees the compon-
ent Ṽ<

K (R1,1)). For the case K = (2, . . . , 2), these groups have been given the
name double braid groups in [Böd90b, § 5.5].

Consider the relaxation map η : Ṽ<
K (R1,1) ↪→ ṼK(R

0,2) = C̃|K|(R2) which
forgets the verticality constraint and induces a map among fundamental
groups η∗ : π1

(
ṼK(R

1,1)
)
→ PBr|K|. Our first aim is to understand the image

of this map. Intuitively, points from the same cluster cannot spin around
each other, so we hit only pure braids whose restrictions to a single block
become trivial. The next proposition claims that we hit all of them.

More precisely, recall the tableau YK := {(i,j); 1 6 i 6 r and 1 6 j6 ki}
from Definition 1.2.1 and consider the flattening bijection

Φ : YK → {1, . . . , |K|}, (i,j) 7→ k1 + · · ·+ ki−1 +j.

We denote its inverse as a pair of maps (iK,jK): in particular, the constituent
iK : {1, . . . , |K|} → {1, . . . , r} assigns to 1 6 u 6 |K| the unique 1 6 i 6 r
such that u = k1 + · · ·+ ki−1 +j holds for some 1 6 j6 ki.

Proposition 1.5.2. For each 1 6 i 6 r consider the projection pi : PBr|K| → PBrki

which remembers only the strands Φ(i, 1), . . . , Φ(i, ki). Then

η∗
(
π1
(
ṼK(R

1,1)
))

=
r⋂

i=1

ker(pi).

The proof of Proposition 1.5.2 relies on a structure result for pure braid
groups which, to the best of my knowledge, does not appear in the literature:
recall that the pure braid group PBr|K| is generated by pure braids αu,v as
shown in Figure 1.10, for each 1 6 u < v 6 |K|. An explicit presentation
with these braids αu,v as generators can be found in Appendix A. Note that
if iK(u) 6= iK(v), then its ith projection pi(αu,v) is trivial for each 1 6 i 6 r.

Proposition 1.5.3. The intersection of kernels
⋂r

i=1 ker(pi) ⊆ PBr|K| is generated
by all elementary pure braids αu,v with iK(u) 6= iK(v).
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1 u v |K|

1 u v |K|

• •· · · · · · · · ·• •

• •· · · · · · · · ·• •

Figure 1.10. The generator αu,v inside PBr|K|.

Before proving Proposition 1.5.3, let us prove Proposition 1.5.2 under the
assumption of Proposition 1.5.3:

Proof of Proposition 1.5.2. The inclusion ‘⊆’ is easy: the map pi of groups is
induced by the topological map prC

i : C̃|K|(R2)→ C̃ki(R
2) which forgets all

points apart from the ones which belong to the ith block. On the other hand,
we have a map prV

i : Ṽ<
K (R1,1)→ Ṽ<

ki
(R1,1) which forgets all clusters apart

from the ith one, and we obtain diagram

Ṽ<
K (R1,1) C̃|K|(R2)

Ṽ<
ki
(R1,1) C̃ki(R

2).

ηK

prV
i prC

i

ηki

However, the bottom left corner Ṽ<
ki
(R1,1) is contractible.

By using Proposition 1.5.3, the inclusion ‘⊇’ can be shown by constructing,
for each 1 6 u < v 6 |K| with iK(u) 6= iK(v), a loop [0; 1]→ Ṽ<

K (R1,1) which
gets sent to αu,v along η. Here is one possibility to do so: choose as basepoint
the tuple ∗ = (ζ1, . . . , ζr; t1,1, . . . , tr,kr) = (0, . . . , 0; 1, 2, . . . , k1 + · · ·+ kr), i.e.
all clusters have the same first coordinate, namely 0, and the ith cluster stays
completely below the (i + 1)st one. Then we take η(∗) ∈ C̃|K|(R2) to be the
basepoint on the right side, and the braids arise by looking ‘from the right’.

For 1 6 u < v 6 |K|, let (i,j) := (iK,jK)(u) and (i′,j′) := (iK,jK)(v).
Since iK(u) 6= iK(v), we have i < i′. Next, we construct a loop γ which
consists of seven paths γ1, . . . , γ7 and is depicted in Figure 1.11: intuitively,
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Chapter 1. Vertical configuration spaces

it moves the ith cluster to the background, then moves ‘upper part’ of the
ith cluster, starting with the jth point, upwards, lets the Φ(i,j)th strand spin
around the Φ(i′,j′)th strand, and goes back to the basepoint. More formally,
the seven paths can be described as follows:

1. γ1 moves ζi from 0 to −1;

2. γ2 moves (ti,l)j+16l6ki to (|K| −j+ l)j+16l6ki and ti,j to Φ(i′,j′) + 1
2 ;

3. γ3 moves ζi from −1 to 1;

4. γ4 moves ti,j from Φ(i′,j′) + 1
2 to Φ(i′,j′)− 1

2 ;

5. γ5 moves ζi from 1 to −1;

6. γ6 moves (ti,j)j6l6ki back to (Φ(i, l))j6l6ki ;

7. γ7 moves ζi from −1 to 0.

One can easily see that η∗[γ] is not quite αu,v if j 6= ki, but its conjugate by
another element in this image is: in a similar fashion we can construct a
loop δ : [0; 1]→ Ṽ<

K (R1,1) which is depicted in Figure 1.12: intuitively, it lets
the ‘remaining part’ of the ith cluster, starting with the (j+ 1)st point, spin
around everything which lies above it. More formally, it consists of five paths
which can be described as follows:

1. δ1 moves ζi from 0 to 1;

2. δ2 moves (ti,l)j+16l6ki to (|K| −j+ l)j+16l6ki ;

3. δ3 moves ζi from 1 to −1;

4. δ4 moves (ti,l)j+16l6ki back to (Φ(i, l))j+16l6ki ;

5. δ5 moves ζi from −1 to 0.

Then η∗
(
[δ] · [γ] · [δ]−1) = αu,v, as Figure 1.13 shows.

In order to prove Proposition 1.5.3, we need the following lemma:
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γ1 γ2 γ3 γ4 γ5 γ6 γ7

Figure 1.11. The different stages of the loop γ. Here we have K = (1, 4, 2, 2, 1)
and (i,j) = (2, 2) while (i′,j′) = (4, 2), so u = 3 and v = 9.
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Figure 1.12. The different stages of the loop δ for the same situation.

• • � • • • • • � •

• • � • • • • • � •

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

η∗[δ]

η∗[γ]

η∗[δ]−1



= α3,9

Figure 1.13. The conjugate η∗[δ]−1 · η∗[γ] · η∗[δ] is the desired generator αu,v,
here for u = 3 and v = 9.
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Lemma 1.5.4. Let G be a group, N ⊆ G be a normal subgroup, and let H ⊆ G be
another subgroup. Moreover, assume that:

1. the projection p : G → G/N admits a section s : G/N → G of groups;

2. there is a generating set X ⊆ G such that x · s(p(x))−1 ∈ H for all x ∈ X;

3. there is a subset Y ⊆ X such that:

• Y ⊆ s(G/N) is a generating set for s(G/N);

• for each y ∈ Y and each h ∈ H, we have yhy−1, y−1hy ∈ H.

Then the normal subgroup N is contained in H.

The main advantage of Lemma 1.5.4 is that for condition 2, we only have
to check x · s(p(x))−1 ∈ H for a generating set. As the proof of Lemma 1.5.4
requires some combinatorial group theory, let us first prove Proposition 1.5.3
and then develop the setting in which we can prove Lemma 1.5.4.

Proof of Proposition 1.5.3. The problem is already very close to the situation
of the lemma: if we define G := PBr|K| and let p := ∏i pi : PBr|K| → ∏i PBrki

as well as N := ker(p) and H := 〈αu,v; iK(u) 6= iK(v)〉 ⊆ G, then we know
already that H ⊆ N holds, and we want to show that N ⊆ H holds.

We have a section s : ∏i PBrki → PBr|K| by forming block sums of pure
braids. As generating set, we take X := {αu,v}16u<v6|K|, and, accordingly,

Y :=
{

αu,v; Φ(i, 1) 6 u < v 6 Φ(i, ki) for some i
}
⊆ X.

Then Y generates the image s
(
∏i PBrki

)
⊆ PBr|K| of the s; we only have to

show that, additionally, αu,v · s(p(αu,v))−1 ∈ H holds for all 1 6 u < v 6 |K|,
and that αu,v · h · α−1

u,v, α−1
u,v · h · αu,v ∈ H holds for all h ∈ H and iK(u) = iK(v).

The first subclaim is easy: if iK(u) = iK(v), then s(p(αu,v)) = αu,v, so we
obtain that αu,v · s(p(αu,v))−1 = 1. If, however, iK(u) 6= iK(v), then we have
p(αu,v) = 1 and obtain αu,v · s(p(αu,v))−1 = αu,v ∈ H.

For the second part, we have to show that the conjugate αu′,v′ · αu,v · α−1
u′,v′

lies in H for each iK(u) 6= iK(v) and i := iK(u′) = iK(v′): then the mirrored
statement for the second way of conjugating follows analogously, and for
the general case, recall that each h ∈ H is a product of elements of the form
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1.5. Homotopy groups

α±1
u,v. In order to understand the above conjugate, we first have to understand

which values u, v, u′, v′ can attain. Note that among these four indices, there
can be at most one equality: either u = u′ or v = v′ or u = v′ or u′ = v, but
as soon as two of them hold, the cluster condition is violated. This leaves us
with the following nine possible cases:

1. u < v < u′ < v′, 4. u = u′ < v′ < v, 7. u < v = u′ < v′,
2. u < u′ < v′ < v, 5. u < u′ < v′ = v, 8. u′ < u < v′ < v,
3. u′ < v′ < u < v, 6. u′ < v′ = u < v, 9. u < u′ < v < v′.

Now one verifies in all these cases the following elementary relations among
generators by using the presentation from Appendix A. Here ‘?’ abbreviates
the inverted first factor of the term, i.e. y−1 · h · (?) = y−1 · h · y:

αu′,v′ · αu,v · α−1
u′,v′ =



αu,v for 1, 2, and 3,

α−1
v′,v · αu,v · (?) for 4,

α−1
u,u′ · αu,v · (?) for 5,

α−1
u′,v · αu,v · (?) for 6,(

αu,v′ · αu,v
)−1 · αu,v · (?) for 7,(

α−1
v′,v · α−1

u′,v · αv′,v · αu′,v
)−1 · αu,v · (?) for 8,(

α−1
u,v′ · α−1

u,u′ · αu,v′ · αu,u′
)−1 · αu,v · (?) for 9.

The important point of these identities is that in each case, the right side
contains only products of αū,v̄ where iK(ū) 6= iK(v̄); for example 8: Since
u′ < u < v′, we have iK(u′) = iK(u) = iK(u′) < iK(u), and thus, all three
generators αu,v, αu′,v, αv′,v are contained in H. This concludes the proof.

To prove Lemma 1.5.4, we need the notion of a Schreier transversal:

Definition 1.5.5. Let F be a free group and M ⊆ F be a subgroup. A subset
T ⊆ F is called a Schreier transversal of M if the following conditions hold:

s1. for each t, t′ ∈ T with t 6= t′ we have Mt 6= Mt′,

s2. we have
⋃

t∈T Mt = F, and

s3. for each f , f ′ ∈ F with f · f ′ ∈ T, we have f ∈ T.
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Chapter 1. Vertical configuration spaces

Note that for a given Schreier transversal and for each f ∈ F, there is a unique
element f̄ ∈ F such that f̄ ∈ T and M f = M f̄ , and we have f · f̄−1 ∈ M.

Using the notation of a Schreier transversal, we can formulate a special case
of the Reidemeister–Schreier method, which is proven in [LS01, Prop. ii.4.1]
in much higher generality; we are only interested in free groups and only
care about generators:

Theorem 1.5.6 (Reidemeister–Schreier method, special case). Let F := F(X)

be the free group over a set X, let M ⊆ F be a subgroup, and T ⊆ F be a Schreier
transversal for M. Then M is generated by elements of the form (tx) · (tx)−1.

Now we can finally come to the proof of Lemma 1.5.4:

Proof of Lemma 1.5.4. We denote by F(X) the free group generated by X and,
correspondingly, by F(Y) ⊆ F(X) the free group generated by Y, and denote
the projections by qX : F(X)→ G and qY : F(Y)→ s(G/N), respectively.

Consider the Cayley graph for the subgroup s(G/N) with generating set
Y± := {y±1; y ∈ Y} and choose a spanning tree. Then we obtain a map of
sets a : s(G/N)→ F(Y) which assigns to each g ∈ s(G/N) the product along
the unique Y±-labelled path inside the spanning tree from 1 to g, and we
clearly have qY ◦ a = ids(G/N).

We let Ñ := q−1
X (N) ⊆ F(X) and claim that T := a(s(G/N)) ⊆ F(Y) is

a Schreier transversal for Ñ: clearly, s3 is satisfied by construction, as we
took products along a spanning tree. For s1, let t, t′ ∈ T be distinct and let
z := qY(t) as well as z′ := qY(t′). Then z 6= z′, and since N ∩ s(G/N) = {1},
we get Nz 6= Nz′. This shows that Ñt = q−1

X (Nz) 6= q−1
X (Nz′) = Ñt′. Finally,

we verify s2 by

⋃
t∈T Ñt =

⋃
z∈s(G/N) q−1

X (Nz) = q−1
X

(⋃
z∈s(G/N) Nz

)
= q−1

X (G) = F.

The Reidemeister–Schreier method tells us that Ñ is generated by elements
of the form (tx) · (tx)−1 with t ∈ T and x ∈ X, and thus, N is generated
by elements of the form qY(t) · x · qY(tx)−1. To understand qY(tx), note that
NqY(tx) = NqY(t)x holds by definition, so since qY(tx) ∈ s(G/N), we get
qY(tx) = qY(t) · s(p(x)). Hence, if we put z := qY(t), then N is generated by
products z · x · s(p(x))−1 · z−1 for z ∈ s(G/N) and x ∈ X.
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Now we can apply our assumptions to conclude that these generators lie
in H: each z ∈ s(G/N) is of the form y±1

1 · · · y±1
m for some minimal m, and

by induction on this m, we show that z · x · s(p(x))−1 · z−1 ∈ H: if m = 0,
then z = 1 and assumption 2 can directly be applied. For the induction step
‘m− 1 → m’, we can write z = y±1 · z0 where z0 can be built out of m− 1
generators from Y, and

z · x · s(p(x))−1 · z−1 = y±1 ·
(

z0 · x · s(p(x))−1 · z−1
0

)
· y∓1.

By the induction hypothesis, the inner term lies in H, and by assumption 3,
its conjugate by y enjoys this property as well.

To summarise, we understood the image of η∗ : π1
(
ṼK(R

1,1)
)
→ PBr|K|.

However, the kernel of η∗ can be quite large; here is an example which shows
non-triviality:

Example 1.5.7. Consider the loop γ : [0; 1]→ Ṽ2,2(R1,1) which is depicted at
the left side of Figure 1.14: it consists of four paths, which are painted in red,
green, blue, and yellow. Its image η ◦ γ, which is drawn at the right side of
Figure 1.14 from the perspective ‘bottom right’, is a trivial pure braid in PBr4.

•

•

•

•

1,2

1,1

2,2

2,1

• • • •

• • • •

1,1 2,1 1,2 2,2

1,1 2,1 1,2 2,2

Figure 1.14. The loop γ in Ṽ2,2(R
1,1) and its image η ◦ γ: it is trivial in PBr4.

However, [γ] is non-trivial in Ṽ2,2(R1,1): intuitively, each contraction of one
of the two curves would force the other one to touch a point from the second
cluster. A rigorous argument can be given by considering the first homology
of Ṽ2,2(R1,1): if we use the cellular decomposition of Ṽ∞ from the previous
section, then each intersection of γ with a cell of codimension 1 is transverse,
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and γ touches no cells of lower dimension (as there are none, apart from ∞).
Thus, under Poincaré–Lefschetz duality, the 5-dimensional cohomology class
dual to the 1-dimensional homology class [γ] is represented by a (signed)
sum of all cells which γ crosses, i.e. (1 2 1 2)− (2 1 1 2) + (2 1 2 1)− (1 2 2 1).
This cocycle is not a coboundary in the cellular chain complex C•cell(Ṽ∞, ∞)

as there are no cells of dimension 4, and so [γ] 6= 0.

Let us close this section with a short discussion on the higher homotopy
groups of ṼK(R

1,1), or, equivalently, of VK(R
1,1).

Remark 1.5.8. The ordered configuration spaces C̃r(R2) of the plane are
aspherical by an application of the Fadell–Neuwirth fibrations: we have a
fibre bundle R2 r {x1, . . . , xr−1} → C̃r(R2)→ C̃r−1(R

2) by forgetting the last
point, and now we use that C̃0(R2) is just a point and hence aspherical, and
the fibres are homotopy equivalent to a bouquet of circles, in order to prove
asphericity inductively.

However, the natural candidates for Fadell–Neuwirth maps for the vertical
configuration spaces of type R1,1, namely

Ṽk1,...,kr(R
1,1)→ Ṽk1,...,kr−1(R

1,1),

Ṽk1,...,kr(R
1,1)→ Ṽk1,...,kr−1(R

1,1),

which either forget the last cluster or forget a single point from the last cluster,
fail to be fibrations if kr > 2, as the bachelors’ theses by Rösner [Rös14] and
Herberz [Her14] show. Therefore, the problem of asphericity for the spaces
ṼK(R

1,1), which was claimed for clusters of size 2 in [Böd90b, Prop. 5.1.6],
remains an intricate question.

So far, we can only repeat what has already been observed in the master’s
thesis of Latifi [Lat17]: one can easily see that forgetting a cluster of size 1

is indeed a fibration, with fibre a perforated plane. In combination with the
fact that, according to Theorem 1.4.13, the space Vk,k′(R

1,1) is homotopy equi-
valent to a graph, we can conclude inductively that all vertical configuration
spaces of the form Vk,k′,1,...,1(R

1,1) are aspherical.
Therefore, the smallest example for which we do not yet know its higher

homotopy groups is the vertical configuration space V2,2,2(R1,1).
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I would like to close this chapter with a list of open questions which we
encountered, and which the motivated reader may see as a challenge:

1. Calculate the homology of the unordered vertical configuration spaces
VK(R

1,1) with coefficients in F2 and compare the result to the calcula-
tions of [Fuc70].

2. Show that the spectral sequence associated with the dexterity filtration
F•Vr from Subsection 1.3.2 collapses on the first page and that the
extension problems are trivial. Conclude that the homology of Vr(Rp,1)

splits into the modules Mh,α from Outlook 1.3.17.

3. Give a description of the kernel N of π1
(
ṼK(R

1,1)
)
→ PBr|K| as a group

and understand the extension problem

1→ N → π1
(
ṼK(R

1,1)
)
→ ⋂

i ker(pi)→ 1.

4. Prove or disprove that all spaces ṼK(R
1,1) are aspherical. As they are

finite-dimensional, this would imply that π1
(
ṼK(R

1,1)
)

is torsion-free.
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Chapter 2

Clustered configuration spaces
as Ed-algebras

Ubi materia, ibi geometria.1

Johannes Kepler

After having considered ordered and unordered vertical configuration spaces
in the previous chapter, we now want to turn our attention to labelled vertical
configuration spaces V(Rp,q; X) for some decomposition d = p + q. These
spaces naturally generalise the classical notation of labelled configuration
spaces [Seg73; McD75; Sna74] to the clustered and vertical case.

Our interest in labelled vertical configuration spaces has two reasons:
firstly, they model free algebras over the vertical operads which we study in
the later chapters, and secondly, the spaces V(Rp,q; X) are instances of Ed-
algebras which, roughly speaking, are ‘close enough’ to being free, whence
we can study their iterated bar construction [May72] by classical scanning
techniques [Seg73] and by recent Ed-cellular methods from [GKR18; GKR19].

These results, in turn, can be used to describe the stable homology of
unordered vertical configuration spaces, as we carry out in the last section.
This chapter appeared as the preprint [Kra21].

2.1. Labelled clusters and a stable splitting result

In this section, we introduce a labelled version V(E; X) of the vertical config-
uration spaces for each manifold bundle E→ B, and prove a stable splitting
result in the spirit of [Sna74; Böd87] for them.

1 Where there is matter, there is geometry.
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2.1.1. Labelled vertical configuration spaces

In a first step, we want to define the labelled vertical configuration spaces in
analogy to the configuration spaces C(M; X) of points in a manifold M with
labels in a based space X, as considered in [Seg73; McD75; Böd87].

One natural generalisation is to assign to each cluster a label and to balance
the internal ordering of each cluster with a given symmetric action on the
labelling space. Therefore, instead of a single based space, we start with a
sequence X = (Xn)n>1 of based spaces together with basepoint-preserving
left actions of Sn on Xn, called a based symmetric sequence.

To make the definition precise, we introduce an indexing category, which
is a special case of the Grothendieck construction, generalises the notion of a
wreath product G oSr = Gr oSr, and which helps us in several situations to
encode the bulk of equivariancies and balancing relations.

Since we will later use a version which involves topological groups as well,
let us give a definition entirely in a topologically enriched setting.

Notation 2.1.1. Let Inj be the category whose objects are non-negative in-
tegers r > 0 and whose morphisms are all injections rr ↪→ rr′, and let Σ ⊆ Inj
be the subgroupoid of all bijections.

Then Inj is generated2 by all maps from Σ, i.e. all permutations σ : rr → rr,
and cofaces di : r− 1r− 1→ rr for each 1 6 i 6 r, given by the unique monotone
injective map omitting the ith element from rr.

Definition 2.1.2. Let N be a indexing set and let G := (Gn)n∈N be a family
of topological groups. We define the wreath product G o Inj as the following
small and topologically enriched category:

1. the objects of G o Inj are tuples K = (k1, . . . , kr) with r > 0 and ki ∈ N;

2. for two tuples K and K′, we define (G o Inj)(K
K′) ⊆ GK × Inj(r

r′) as the
subspace of pairs w = (γ, u) consisting of a tuple γ ∈ GK, and of an
injective map u : rr ↪→ rr′ satisfying K = u∗K′ := (k′u(1), . . . , k′u(r));

3. we let (γ′, u′) ◦ (γ, u) := (u∗γ′ ·γ, u′ ◦u), where u∗γ′ = (γ′u(1), . . . , γ′u(r)),
and ‘·’ denotes component-wise multiplication.

2 It is enough to consider permutations and the top cofaces dr : r− 1→ r to generate Inj.
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2.1. Labelled clusters and a stable splitting result

For each tuple K, we define G[K] ⊆ G o Inj as the full subcategory spanned by
objects of the form τ∗K for τ ∈ Sr. Moreover we let G oΣ be the subgroupoid
with morphism spaces given by G(K)× Σ(K

K′).
If (Gn)n∈N is the trivial sequence Gn = 1 of groups, then we write N o Inj

for the wreath product, and we similarly write N o Σ and N[K].

Construction 2.1.3. If X = (Xn)n∈N is a family of spaces, then we obtain a
functor X− : N o Σ→ V with XK := Xk1 × · · · × Xkr . If each Xn is based, then
we get an extension N o Inj→ Top by u∗(x1, . . . , xr) := (xu−1(1), . . . , xu−1(r′)),
where we define x∅ to be the basepoint.

Finally, if G = (Gn)n∈N is a family of topological groups and if, in addi-
tion, each Xn carries a basepoint-preserving left action of Gn, then X can
be extended to a functor G o Inj → Top as follows: since GK acts on XK

component-wise, we can define (γ, u)∗(x) := u∗(γ · x).

Definition 2.1.4. Consider the sequence S := (Sn)n>1 of symmetric groups.
For each manifold bundle E → B, the family of spaces ṼK(E) constitutes a
functor (S o Inj)op → Top by declaring that for each 1 6 i 6 r the ith face
map di : ṼK(E)→ ṼdiK(E) forgets the ith cluster. If we are additionally given
a based symmetric sequence X = (Xn)n>1, we define V(E; X) to be the coend

V(E; X) :=
∫K∈S oInj

ṼK(E)× XK

= coeq
(

ä
K,K′

ṼK′(E)× (S o Inj)(K
K′)× XK ä

K
VK(E)× XKα

β

)
,

where α(z, w, x) = (w∗z, x) and β(z, w, x) = (z, w∗x).
We denote elements in ṼK(E) × XK as tuples Θ = (~z1, . . . ,~zr, x1, . . . , xr)

and use the sum notation to denote [Θ] = ∑i~zi⊗ xi, where~zi = (zi,1, . . . , zi,ki)

is a cluster, xi ∈ Xki , and (σ∗~zi)⊗ xi = ~zi ⊗ (σ · xi) for σ ∈ Ski .

Remark 2.1.5. For each indexing set N and each integer r > 0, we have a
right action of the symmetric group Sr on Nr by coordinate permutation,
and we denote the orbit of a tuple K ∈ Nr by [K].

For a tuple K = (k1, . . . , kr) of positive integers ki > 1 and a permutation
τ ∈ Sr, we have a canonical isomorphism VK(E) ∼= Vτ∗K(E), whence VK(E)
depends, up to canonical isomorphism, only on [K].
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Chapter 2. Clustered configuration spaces as Ed-algebras

Example 2.1.6. It is perhaps surprising how many different variations of
these spaces can be produced by a suitable choice of the labelling sequence:

1. If all Xk carry a trivial Sk-action, then V(E; X) contains unordered
collections of labelled and internally unordered clusters. If X = SS0, i.e.
Xk = S0, endowed with the trivial Sk-action for each k > 1, then

V(E; SS0) ∼= ä
[K]

VK(E).

2. More generally, if G := (Gk)k>1 is a sequence of subgroups Gk ⊆ Sk
and if X = (Xk)k>1 is a based G-sequence, then we can consider the
induction (S+ ∧G X)k := (Sk)+ ∧Gk Xk, where (Sk)+ := Sk t {∗}. For
X = SS0, endowed with trivial G-actions, we obtain

V
(
E;S∧G SS0) ∼= ä

[K]
ṼK(E)/AutG oInj(K).

In particular, the space V(E;S+ ∧ SS0) contains unordered collections
of unlabelled, but internally ordered vertical clusters.

3. For a family X = (Xk)k>1 of based spaces, we let (X∧)k = X∧k
k , with Sk

acting by coordinate permutation. Then V(E; X∧) contains configura-
tions of clusters where each point inside a k-cluster carries a label in Xk;
and if one of these labels reaches the basepoint, the cluster vanishes.

4. For k > 1 and a based space X with based Sk-action let X[k] := (Xl)l>1

be the sequence concentrated in degree k, i.e. Xk := X and Xl := ∗ else.
Then the space V(E; X[k]) contains only configurations where all clus-
ters have size k. In particular,

V(E; S0[k]) ∼= ä
r>0

Vk
r (E).

We will occasionally use the short notation Vk(E; X) := V(E; X[k]).

Notation 2.1.7. If the base space B is just a point, then the verticality condition
is again empty and V(E; X) is the space of labelled clusters in E.

In this case, we also write C(E; X), and for a based space X, we abbreviate
Ck(E; X) := C(E; X[k]) as we did for V. Note that C1(E; X) is the same as
C(E; X), the classical configuration spaces of points in E, with labels in X.
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Definition 2.1.8 (Well-basedness). We will sometimes assume that the la-
belling sequence X = (Xk)k>1 is equivariantly well-based, i.e. the basepoint
inclusion ∗ ↪→ Xk is a Sk-cofibration for each k > 1 as in [Die79, § 8].

2.1.2. The stable splitting

Having constructed the spaces V(E; X) for a manifold bundle E and a based
symmetric sequence X, we want to filter these spaces by the number of
clusters and prove a stable splitting result as in [Sna74; Böd87].

Definition 2.1.9. For two tuples K′ and K, we say that K′ 6 K holds if there
is an injective map u : r′r′ ↪→ rr such that K′ = u∗K. For a fixed tuple K, we
let VK(E; X) ⊆ V(E; X) be the subspace of all configurations of at most K
clusters. More precisely, we have a quotient map

ä
tuples K′

ṼK′(E)× XK′ → V(E; X),

and we let VK(E; X) be the union of all images of ṼK′(E)× XK′ with K′ 6 K.
For each K′ 6 K, we have inclusions VK′(E; X) ↪→ VK(E; X), which are
cofibrations if X is equivariantly well-based. We define the filtration quotient

DK(E; X) :=
VK(E; X)⋃

K′<K VK′(E; X)
=

VK(E; X)⋃r
i=1 VdiK(E; X)

.

Clearly, the filtration component VK(E; X) ⊆ V(E; X) depends only on the
unordered collection [K], and hence also DK(E; X) only depends on [K].

If Xki = ∗ for some 1 6 i 6 r, then VdiK(E; X) = VK(E; X) and DK(E; X) = ∗.
As in [BCT89, § 2.6], the homology of these filtration quotients can be related
to unlabelled vertical configuration spaces with fixed cluster sizes:

Proposition 2.1.10. Let K = (k1, . . . , kr) and, for each 1 6 i 6 r, let Xki be a
sphere Sdki for some dki > 0, endowed with the trivial Ski -action. Then we have

H̃•(DK(E; X)) ∼= H•−(dk1+···+dkr )
(VK(E);OK),

where OK is an orientation system of the following form

π1(VK(E)) SK {±1}.
∏k(σk,1, . . . , σk,r(k); τk) ∏k sg(τk)

dk .
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Chapter 2. Clustered configuration spaces as Ed-algebras

Proof. We have a vector bundle over VK(E) given by

R :=
(

ṼK(E)
/
Sk1 × · · · ×Skr

)
×∏k Sr(k) ∏

k>1
(Rdk)r(k),

and its Thom space Th(R) is isomorphic to the quotient DK(E; X) by the same
argument as in [Mil72, Thm. 1.3.2]. Moreover, R has rank ∑k r(k) · dk = ∑i dki

and the associated orientation bundle is exactly the bundle assigned to OK.
Hence the result is an instance of the (twisted) Thom isomorphism.

In two special cases, we know that the orientation system is trivial: if
all spheres are of even dimension, or if the monodromy π1(VK(E)) → SK

attains only even permutations τk. The latter is e.g. the case if E = R0,1, as
each component of VK(R

0,1) is contractible.
The method of proof shows that it is possible to additionally incorporate

orthogonal representations Sk → O(dk) ↪→ Aut(Sdk , ∗) which would then
yield a further factor ∏k ∏i det((σk,i)∗) for the orientation system.

As in [Sna74, Thm. 1.1] and [Böd87, § 3], we can show that the aforemen-
tioned filtration stably splits as a bouquet of filtration quotients:

Theorem 2.1.11 (Splitting theorem). Let X := (Xk)k>1 be a sequence of based
spaces with a left action of Sk on Xk, such that each basepoint is equivariantly
non-degenerate. Then there is a stable equivalence of suspension spectra

Σ∞V(E; X)→ Σ∞ ∨
[K] 6=∅ DK(E; X).

Proof. We start by fixing some notation: let us abbreviate DK := DK(E; X) and
W :=

∨
K DK. Recall moreover the classical spaces C(M; Y) of configurations

of points in a space M with labels in a based space Y; we use also here the
suggestive sum notation ∑i ζi ⊗ yi for ζi ∈ M and yi ∈ Y.

Now we adapt the strategy of [Böd87, § 3] and define a ‘power set map’
P : V(E; X)→ C(R∞; W): to do so, we note that all VK(E) are smooth mani-
folds and pick an embedding ı : äK VK(E) ↪→ R∞ by Whitney’s embedding
theorem. Next, we construct maps P̃K : ṼK(E)× XK → C(R∞; W) as follows:
for each tuple Θ = (~z1, . . . ,~zr, x1, . . . , xr) ∈ ṼK(E)× XK and each non-empty
indexing subset T ⊆ {1, . . . , r}, we define

[ΘT] := ∑
i∈T

[~zi] ∈ VK|T (E) and [ΘT] := ∑
i∈T

~zi ⊗ xi ∈ VK|T (E; X),
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2.1. Labelled clusters and a stable splitting result

where K|T arises from K by removing all entries indexed outside T. Recall
that [~zi] does not know its internal ordering any more, whereas in~zi ⊗ xi, the
ordering is balanced with the label. Secondly, since [ΘT] 6= [ΘT′ ] for T 6= T′,
the tuple of subconfigurations (ı[ΘT])T lives in C̃2r−1(R

∞). Now consider the
map  : VK|T (E; X)→ DK|T ⊆W and set

P̃K(Θ) := ∑
T 6=∅

ı[ΘT]⊗ [ΘT] ∈ C(R∞; W).

Finally, the maps P̃K are continuous and äK P̃K factors over V(E; X) since we
sum over all non-empty subsets T, and since [ΘT] is the basepoint if there is
an i ∈ T such that xi = ∗. Thus, we get the desired map P.

We have a map ω : C(R∞; W) → Ω∞Σ∞W from [Seg73], and by passing
to the homotopy adjoint, we obtain a stable map ω̄ : Σ∞C(R∞; W)→ Σ∞W.
By precomposing with the power set map P, we reach a stable morphism
ω̄ ◦ Σ∞P : Σ∞V(E; X) → Σ∞W, and we claim that it is a stable equivalence.
To this aim, note that the map P is filtered in the following coarse way: for
each r > 0, we let Vr(E; X) :=

⋃
#[K]6r VK(E; X) and Wr :=

∨
#[K]6r DK. Then

P sends Vr(E; X) to C(R∞; Wr), so we get ω̄ ◦ Σ∞Pr : Σ∞Vr(E; X)→ Σ∞Wr.
We show by induction on r that each ω̄ ◦ Σ∞Pr is a stable equivalence,

which yields the statement since stable homotopy groups commute with
filtered colimits. For r = 0, the statement is clear, and for the induction step
‘r − 1 → r’, we note that Vr−1 ↪→ Vr and Wr−1 ↪→ Wr are cofibrations, and
that we have a diagram of cofibre sequences

Σ∞Vr−1(E; X) Σ∞Vr(E; X) Σ∞ ∨
#[K]=r DK(E; X)

Σ∞Wr−1 Σ∞Wr Σ∞(Wr/Wr−1),

ω̄◦Σ∞Pr−1 ω̄◦Σ∞Pr

in the homotopy category of spectra. Thus, the induction step follows by the
five lemma applied to the long exact sequence of stable homotopy groups.

Example 2.1.12. In the case X = X[k], the splitting theorem has an easier
form: first of all, note that DK(E; X[k]) = ∗ whenever K 6= (k, . . . , k), so we
actually have only the filtration quotients Dk

r (E; X) := Dk,...,k(E; X[k]) and
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Chapter 2. Clustered configuration spaces as Ed-algebras

obtain the more common form, namely a stable equivalence

Σ∞Vk(E; X)→ Σ∞ ∨
r>1 Dk

r (E; X).

Remark 2.1.13. One can without any further effort consider a relative version
V(E, E′; X) where E′ := pr−1(B′) for a cofibration B′ ↪→ B. In the same
way, we can define filtration components VK(E, E′; X) and filtration quo-
tients DK(E, E′; X) to prove a corresponding splitting result which claims the
existence of a stable equivalence

Σ∞V(E, E′; X)→ Σ∞ ∨
[K] DK(E, E′; X).

However, since we are not going to use it in the remainder of this thesis, we
will not go into more detail.

2.2. Bar constructions of vertical configuration spaces

In this section, we study the spaces V(Rp,q; X) as algebras over the operad
Cd of little d-cubes for d = p + q, and we give a geometric model for its
p-fold bar construction.

Construction 2.2.1. If X = (Xk)k>1 is a sequence as before, then V(Rp,q; X)

admits the structure of a Cd-algebra: recall that elements in Cd(r) are tuples
(c1, . . . , cr) of rectilinear embeddings ci : [0; 1]d ↪→ [0; 1]d with pairwise dis-
joint image, see Example 3.1.7 for more details. If we additionally identify
R ∼= (0; 1), and hence Rd ∼= (0; 1)d, then we can construct the desired struc-
ture maps λr : Cd(r)×V(Rp,q; X)r → V(Rp,q; X) by

λr

(
(c1, . . . , cr),

( si

∑
a=1

~zi,a ⊗ xi,a

)
16i6r

)
:=

r

∑
i=1

si

∑
a=1

ci(~zi,a)⊗ xi,a,

where for a cluster ~z = (z1, . . . , zk) and a rectilinear embedding c : Rd ↪→ Rd,
we write c(~z) := (c(z1), . . . , c(zk)). Here we see that pr(c(zj)) = pr(c(zj′)) if
pr(zj) = pr(zj′) holds, since c is rectilinear and the identification Rd ∼= (0; 1)d

is defined coordinate-wise, whence the verticality constraint is preserved by
the structure maps.
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Figure 2.1. An instance of λ3 : C2(3)×V(R1,1; S0)3 → V(R1,1; S0).

The first p steps of the iterated bar construction can be calculated by the
following theorem, and they gradually ‘resolve’ the verticality constraint,
whence we are left with a clustered configuration space without any verticality
condition:

Theorem 2.2.2. If X is levelwise equivariantly well-based, then there is a homotopy
equivalence of Cq-algebras

BpV(Rp,q; X) ' C(Rq; ΣpX),

where we write (ΣpX)k := ΣpXk, endowed with the induced Sk-actions.

If X is levelwise path connected, then also V(Rp,q; X) is path connected
and the theorem implies that we have an equivalence of Cd-algebras,

V(Rp,q; X) ' ΩpC(Rq; ΣpX).

The rest of this subsection aims to prove Theorem 2.2.2. As we follow the
strategy of [Seg73], this proof is quite similarly organised: we emphasise the
passages where the usage of clusters makes a difference, but we are short on
those technicalities which go through without any modifications.

We proceed inductively: since there is nothing to show for p = 0, we can
assume that p > 1. Then V := V(Rp,q; X) is in particular a C1-algebra and
we will construct a weak equivalence

BV ' V(Rp−1,q; ΣX)

of Cp+q−1-algebras, which clearly implies the statement by induction on p.
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Definition 2.2.3. Let M be a partial topological monoid in the sense of [Seg73,
Def. 2.2]. Then M gives rise to a simplicial space NM, the nerve, with

(NM)n := {(m1, . . . , mn) ∈ Mn; m1 · · ·mn defined},

and face and degeneracy maps

dl(m1, . . . , mn) =


(m2, . . . , mn) for l = 0,

(m1, . . . , ml ·ml+1, . . . , mn) for 1 6 l 6 n− 1,

(m1, . . . , mn−1) for l = n,

sl(m1, . . . , mn) = (m1, . . . , ml , 1, ml+1, . . . , mn).

The bar construction BM := |NM| is the geometric realisation of NM.

The following is the analogue of [Seg73, Prop. 2.3]:

Lemma 2.2.4. Consider the (abelian) partial monoid M := V(Rp−1,q; X) where
two labelled vertical configurations are summable if the clusters are disjoint, and in
that case, their sum is the union. Then BM ∼= V(Rp−1,q; ΣX) as Cp+q−1-algebras.

Proof. We define maps ϕn : (NM)n × ∆n → V(Rp−1,q; ΣX) as follows: we use
the simplex coordinates ∆n = {0 6 t1 6 · · · 6 tn 6 1}, so a generic point in
(NM)n × ∆n is of the form (m1, . . . , mn, t1, . . . , tn) with ml = ∑rl

h=1~zl,h ⊗ xl,h,
each ~zl,h being a vertical cluster in Rp−1,q. Then we set, using ΣXk = S1 ∧ Xk
with the symmetric action σ · (t ∧ x) = t ∧ (σx),

ϕn(m1, . . . , mn, t1, . . . , tn) :=
n

∑
l=1

rl

∑
h=1

~zl,h ⊗ (tl ∧ xl,h).

Note that ϕn is well-defined since (m1, . . . , mn) is summable and the balancing
relation is preserved. Moreover, one readily checks the identities

ϕn−1(dl(m1, . . . , mn), t1, . . . , tn−1) = ϕn(m1, . . . , mn, dl(t1, . . . , tn−1)),

ϕn+1(sl(m1, . . . , mn), t1, . . . , tn+1) = ϕn(m1, . . . , mn, sl(t1, . . . , tn+1)),

so the maps (ϕn)n>0 can be glued together to a map ϕ : BM→ V(Rp−1,q; ΣX).
Then ϕ is a homeomorphism as it has a continuous inverse which can be
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constructed as

äK ṼK(R
p−1,q)× XK × [0; 1]r är(NM)r × [0; 1]r

V(Rp−1,q; ΣX) BM,

where on the right side, the cube [0; 1]r is subdivided into r! many simplices
∆r

τ = {0 6 tτ(1) 6 · · · 6 tτ(r) 6 1} for each τ ∈ Sr, and the top horizontal
map combines the map (~z1, . . . ,~zr, x1, . . . , xr) 7→ (~z1 ⊗ x1, . . . ,~zr ⊗ xr) with
the identity on [0; 1]r. Finally, it is a straightforward task to check that for
each µ = (c1, . . . , cr) ∈ Cp+q(r), (m1,i, . . . , mn,i) ∈ (NM)n for 1 6 i 6 r, and
0 6 t1 6 · · · 6 tn 6 1, we have

ϕn(λr(µ, m1,1, . . . , m1,r), . . . , λr(µ, mn,1, . . . , mn,r), t1, . . . , tn)

= λr(µ, ϕn(m1,1, . . . , mn,1, t1, . . . , tn), . . . , ϕn(m1,r, . . . , mn,r, t1, . . . , tn)),

so we indeed have an isomorphism of Cp+q+1-algebras.

Construction 2.2.5. An advantage of our inductive procedure is that we can
describe the bar construction elementary: we first ‘thicken’ V = V(Rp,q; X)

to a true topological monoid V , and then take its classical bar construction.
This true monoid V is constructed as follows: each ∑i~zi ⊗ xi ∈ V has a

support
⋃

i[zi] ⊆ Rp,q. Now consider the projection pr1 : Rp,q → R to the very
first coordinate and define

V :=
{(

t, ∑i~zi ⊗ xi
)
∈ R>0 ×V; pr1

(⋃
i[zi]

)
⊆ (0; t)

}
,

where (0; t) is the open interval. On V , we define the Moore concatenation(
t, ∑i~zi ⊗ xi

)
·
(

t′, ∑i~z ′i ⊗ x′i
)

:=
(

t + t′, ∑i~zi ⊗ xi + ∑i sht(~z ′i )⊗ x′i
)

,

where sht : Rp,q → Rp,q translates the first coordinate by t, here applied to an
entire cluster. This construction coincides with the thickening from [Dun86,
§ 1] for general C1-algebras, whence BV = |NV | serves as a model for BV.
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Figure 2.2. An instance of the map ψ : Vproj → M

Definition 2.2.6. We have a second projection pr2 : Rp,q → Rp−1,q and we call
[Θ] = ∑i~zi ⊗ xi ∈ V(Rp,q; X) projectable if the restriction

pr2|⋃i [~zi ] :
⋃

i[~zi]→ Rp−1,q

is injective. Let Vproj ⊆ V be the subspace of pairs (t, [Θ]) with projectable [Θ].
Then Vproj is a partial submonoid with respect to the concatenation, where
two configurations can be multiplied if their product is again projectable.

Moreover, we have a morphism ψ : Vproj → M of partial monoids which is
induced by the projection pr2, applied to entire clusters, see Figure 2.2,

ψ
(

t, ∑i~zi ⊗ xi

)
:= ∑i pr2(~zi)⊗ xi.

The projectability condition is exactly the one we need to ensure that all
clusters pr2(~zi) are pairwise disjoint, and hence ψ is well-defined. Moreover,
Vproj is also a Cp+q−1-subalgebra and ψ is a morphism of Cp+q−1-algebras.

As in [Seg73], the maps (Nψ)n : (NVproj)n → (NM)n between the spaces
of summable tuples are homotopy equivalences and, since X was assumed
to be equivariantly well-based, our simplicial spaces are proper, so we have a
homotopy equivalence among the classifying spaces Bψ : BVproj → BM.

The following is the analogue of [Seg73, Prop. 2.4]:

Lemma 2.2.7. The inclusion γ : Vproj ↪→ V induces a homotopy equivalence of
Cp+q−1-algebras Bγ : BVproj → BV among classifying spaces.
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2.2. Bar constructions of vertical configuration spaces

Remark 2.2.8. Everything we did so far made no particular use of the fact
that points from the same cluster project to the same value along pr1, and
we might as well define Cproj(Rq; X) and a projection morphism as above,
which now is of the form ψ : Cproj(Rq; X)→ C(Rq−1; X) and still induces a
homotopy equivalence of classifying spaces.

However, Lemma 2.2.7 fails to be true if we drop the condition ‘p > 1’: we
will highlight the stages of the proof where we need verticality, and we will
give a precise counterexample later in Example 2.4.3.

Before proving Lemma 2.2.7, let us combine all arguments and prove the
main result, Theorem 2.2.2, under the assumption of Lemma 2.2.7.

Proof of Theorem 2.2.2. We obtain a zig-zag of morphisms of Cp+q−1-algebras
whose underlying maps are homotopy equivalences, given by

BVproj

BV(Rp,q; X) = BV BM ∼= V(Rp−1,q; ΣX).
'

Bγ Bψ

'

Proof of Lemma 2.2.7. There is an equivalent description of BM for a (partial)
topological monoid M, see [Seg73, a1]: consider the category M# with object
space M, morphism space (NM)3, domain assignment d1(m1, m2, m3) = m2,
and codomain assignment d0(m1, m2, m3) = m1 ·m2 ·m3, i.e. arrows m→ m′

are pairs (mm, m) ∈ M×M with mm ·m ·m = m′; then BM ∼= |M#|.
We define the space N whose elements are triples ν = (a, b, [Θ]) in which

a 6 0 6 b and [Θ] = ∑i~zi ⊗ xi ∈ V(Rp,q; X) with pr1(
⋃

i[~zi]) ⊆ (a; b). In
order to give N a partial order, we introduce the following construction: for
L ⊆ R and [Θ] = ∑i~zi ⊗ xi with pr1[~zi] 6∈ ∂L for all 1 6 i 6 r, we define

[Θ] ∩
(

L×Rp−1,q) := ∑
pr1[~zi ]∈L

~zi ⊗ xi.

Then pr1[~zi] 6∈ ∂L ensures that the result projects to the interior of L. Here
we use that pr1[~zi] is a single value in R since all points in [~zi] project to the
same real number. Now we let (a, b, [Θ]) 6 (a′, b′, [Θ′]) in N whenever

• [a; b] ⊆ [a′; b′], and

• a, b 6∈ pr1(
⋃

i[~z′i]) and [Θ] = [Θ′] ∩
(
[a; b]×Rp−1,q),
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Chapter 2. Clustered configuration spaces as Ed-algebras

compare Figure 2.3. Then we can regard N as a topological category and
obtain a functor ρ : N → V# by ρ(a, b, [Θ]) = (b− a,−a + [Θ]), where the
term ‘−a + [Θ]’ denotes a translation by a to the left in the first coordinate.

We can copy [Seg73, Lem. 2.6] verbatim to show that |ρ| : |N | → |V#| is
shrinkable, i.e. it admits a section s such that s ◦ |ρ| ' id|N | by a homotopy
which respects |ρ|. Let M ⊆ N be the ordered subspace consisting of all
triples (a, b, [Θ]) with projectable [Θ]. Then ρ(M) = Vproj

# holds, whence it
is enough to show that |M| → |N | is a homotopy equivalence. In order to
do so, we use from [Seg73] the following tool:

Proposition 2.7. Let N be a good3 ordered space such that:

g1. for each ν1, ν2, ν ∈ N with ν1, ν2 6 ν there exists inf(ν1, ν2);
g2. wherever defined, (ν1, ν2) 7→ inf(ν1, ν2) is continuous.

Moreover, let N ′ ⊆ N be open such that:

g3. for ν′ ∈ N ′ and ν 6 ν′, we have ν ∈ N ′,
g4. there is a numerable cover (Wi)i∈I and maps wi : Wi → N ′ such

that wi(ν) 6 ν for all ν ∈ Wi.

Then the induced map |N ′| → |N | is a homotopy equivalence.

Since X is equivariantly well-based, there are contractible and Sk-invariant
neighbourhoods Uk ⊆ Xk around the respective basepoints ∗k and equivariant
homotopies hk

• : Xk → Xk which move Uk into ∗k. If we set U := (Uk)k>1, then
V(Rp,q; U) is a contractible neighbourhood around the empty configuration
[∅], which witnesses that the topological monoid is good. Moreover, N → V#

is shrinkable, whence N is good as well.
Additionally, the assumptions g1 and g2 involving the infimum are clearly

satisfied by the explicit construction of our order. Now we use U to thicken
M to an open subset N ′ ⊆ N containing all configurations which are
projectable if we ignore clusters labelled in U; we call these configurations
almost projectable. Then |M| → |N ′| is a homotopy equivalence, with inverse
induced by (hk

•)k>1 from above. Moreover, N ′ satisfies assumption g3 since

3 A good ordered space is a space N such that its nerve is a good simplicial space. A topological
monoid (M, 1) is good if 1 has a contractible neighbourhood, see [Seg73, a2].
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•
•

Figure 2.3. Inside N , the left configuration is smaller than the right one since it
is a restriction of the latter.

restrictions of projectables are still projectable. As a cover for g4, we define

Wδ :=
{
(a, b, [Θ]) ∈ N ; ±δ /∈pr1[Θ], and

[Θ]∩([−δ;δ]×Rp−1,q) is almost projectable

}
for each δ > 0. Then Wδ ⊆ N is open, the cover (Wδ)δ>0 is numerable,
and since each [Θ] has only finitely many clusters, each [Θ] admits a δ > 0
such that [Θ] ∩

(
[−δ; δ]×Rp−1,q) projects to a single point in (−δ; δ), hence

the restriction has to be projectable, and so (Wδ)δ>0 is exhaustive. Now we
define the maps wδ : Wδ → N ′ by

wδ(a, b, [Θ]) :=
(

max(a,−δ), min(b, δ), [Θ] ∩
(
[−δ; δ]×Rp−1,q)),

which is continuous since ±δ 6∈ pr1(
⋃

i[zi]) for each [Θ] = ∑i~zi ⊗ xi and a, b
with (a, b, [Θ]) ∈ Wδ. Hence, all four assumptions of [Seg73, Prop. 2.7] are
satisfied and |N ′| → |N | is a homotopy equivalence.

Let us close this subsection by emphasising stages of the proof which break
down if we drop the condition that a cluster projects along pr1 to a single
point: we needed that for each (a, b, [Θ]) ∈ N , there is an a 6 a′ 6 0 and a
0 6 b′ 6 b such that [Θ] ∩

(
[a′; b′]×Rp−1,q) is projectable. For example, in

V(R0,2; SS0), this is not always possible, as Figure 2.4a shows.
One may try to remedy this issue by allowing restrictions which exclude

parts of a cluster, and in that case, we remove the entire cluster. However,
the so-defined order on N clearly does not reflect the monoid structure of
V correctly, which formally means that the functor ρ : N → V# cannot be
defined on morphisms, as Figure 2.4b shows.
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Chapter 2. Clustered configuration spaces as Ed-algebras

0

••

(a) A non-projectable configuration of a
single 2-cluster in V(R0,2; SS0), where
each restriction which is projectable
would ‘break’ the cluster.

0

• •

‘6’

0

(b) If one also removes clusters which are
only partially excluded, ρ would have to
deal with the above ‘morphism’. How-
ever, the right side is not a concatenation
mm ·m ·m, where m is the left side.

Figure 2.4. Two examples in R0,2 where the proof strategy is not applicable.

2.3. An E1-cellular decomposition

We have already seen that BpV(Rp,q; X) ' C(Rq; ΣpX) holds for each based
symmetric sequence X. However, the right side is still a Cq-algebra which
we want to deloop further. In general, finding a geometric model for the bar
construction of C(Rd; X) appears to be quite complicated, but we can give
an answer to this question for the case d = 1: here we provide a (strictified)
E1-cellular decomposition in the sense of [GKR18; GKR19].

Let us start with a few combinatorial preliminaries, and then discuss the
easy and instructive example of C(R; SS0).

Notation 2.3.1. We extend Definition 1.3.8: for each Λ > 0, an unordered
partition of {1, . . . , Λ} is a tuple e = (S1, . . . , Sr) such that:

1. the collection {S1, . . . , Sr} is a partition of {1, . . . , Λ};

2. the entries are ordered by their minimum, i.e. min(Si) < min(Si+1).

We write |e| := Λ and K(e) = (#S1, . . . , #Sr), and we call #e = r the weight.
Moreover, let Ξ be the set of all unordered partitions for varying Λ > 0.

Construction 2.3.2. We have a product Ξ× Ξ→ Ξ by stacking partitions: for
two partitions e = (S1, . . . , Sr) and e′ = (S′1, . . . , S′r′), we let

e t e′ :=
(
S1, . . . , Sr, |e|+ S′1, . . . , |e|+ S′r′

)
,
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2.3. An E1-cellular decomposition

where the rear r′ components are shifted by |e|, as the notation indicates.
Thus, Ξ becomes a monoid with neutral element the empty partition ∅.

This monoid is freely generated: we call a partition e irreducible if it is
neither ∅ nor the product of two non-empty partitions, and we denote the
subset of them by E ⊆ Ξ. Then Ξ is, as a monoid, freely generated by E.

As a notational mnemonic, the letters Ξ and E were mainly chosen because
Ξ looks like a ‘decomposable’ version of E.

Example 2.3.3. We have a morphism χ : C(R; SS0)→ Ξ of C1-algebras given
by identifying, for each clustered configuration ∑i[~zi] inside C(R; SS0), the set⋃

i[~zi] ⊆ R with {1, . . . , ∑i ki} in a monotone way, see Figure 2.5.

R• • • • • • • • 7→ 1 2 3 4 5 6 7 8 =
(
{1, 5, 7}, {2, 4}, {3, 8}, {6}

)
Figure 2.5. An instance of χ : V(R0,1; S0)→ Ξ

This map admits a section s : Ξ → C(R; SS0) by including {1, . . . , ∑i ki} into
R, and the composition s ◦ χ is clearly homotopic to the identity by linear
interpolation. Thus, χ is an equivalence of C1-algebras.

Since Ξ is a freely generated by E, or, in other words, the (reduced) James
product of E+, we get BC(R; SS0) ' BΞ ∼= BJE+ ' ΣE+

∼=
∨

e∈E S1.

If we replace SS0 by a general sequence X of labelling spaces, then the bar
construction is calculated as follows:

Theorem 2.3.4. For a sequence X = (Xk)k>1 of well-based spaces (with arbitrary
based Sk-actions on Xk), we have a weak homotopy equivalence

BC(R; X) ' Σ
∨
e∈E

X∧K(e),

where we write X∧K := Xk1 ∧ · · · ∧ Xkr for K = (k1, . . . , kr).

Before proving Theorem 2.3.4, let us discuss some remarks and examples.

Remark 2.3.5. The reader should not be surprised by the fact that the sym-
metric actions on X do not occur on the right side: they are also irrelevant
for the left side since we have q = 1. Note that the action of Sk1 × · · · ×Skr
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Chapter 2. Clustered configuration spaces as Ed-algebras

on C̃K(R) induces a free action on π0, so we can alternatively restrict to the
subspace C̃<

K (R) containing configurations (~z1, . . . ,~zr) of clusters where each
cluster ~zi is of the form ~zi = (zi,1, . . . , zi,ki) with zi,j < zi,j+1 in R: then we
get the coend description, writing N := {1, 2, . . . },

C(R; X) ∼=
∫K∈N oInj

C̃<
K (R)× XK,

where X is considered only as a sequence of based spaces. This is also the
reason why we do not have to assume that X is equivariantly well-based.

Example 2.3.6. In some cases, Theorem 2.3.4 recovers old results: for X = SS0,
we see that (SS0)∧K(e) = S0 and we get precisely Example 2.3.3.

If X = X[1] for a well-based space X, i.e. we only see clusters of size 1, then
C(R; X[1]) is the classical labelled configuration space. On the other hand,
we have X[1]∧K(e) = ∗ whenever K(e) is not of the form (1, . . . , 1). However,
there is only one irreducible partition e = (S1, . . . , Sr) with #Si = 1 for all i,
namely e = ({1}), so we recover BC(R; X) ' ΣX from [Seg73].

The idea of the proof of Theorem 2.3.4 is the following: we construct a fil-
tration F•C(R; X) of C(R; X) by the maximal weight of irreducible partitions.
Then each FrC(R; X) is a sub-E1-algebra, and, up to homotopy, FrC(R; X)

arises from Fr−1C(R; X) by attaching a free E1-algebra: pictorially, we have
to add one letter for each irreducible partition e of weight r, and each such
letter comes with a parameter domain XK(e), corresponding to the labels of
the involved clusters. If at least one coordinate of the parameter attains the
basepoint, then the letter breaks apart and we land in Fr−1C(R; X). Finally,
we have to understand bar constructions of such attachments.

In order to make this idea precise, it is convenient to discard the contractible
information which tells us how far apart the particles are, and to switch from
the category of E1-algebras to the category of topological monoids. To do so,
we first consider again the thickened version C of C(R; X) as in Construction
2.2.5, which is now of the form

C :=
{
(t, ∑i~zi ⊗ xi) ∈ R>0 × C(R; X);

⋃
i[~zi] ⊆ (0; t)},

again endowed with the Moore concatenation as product. Then BC(R; X)

and BC are equivalent. Subsequently, we construct a cellular monoid M,
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2.3. An E1-cellular decomposition

which arises from the trivial monoid by attaching free topological monoids
(or, in other words, reduced James products), and give an explicit monoid ho-
momorphism ϕ : C → M whose underlying map is a homotopy equivalence.
Finally, we calculate BM cellularly.

Definition 2.3.7. Let X = (Xk)k>1 be a sequence of well-based spaces and let
K = (k1, . . . , kr) be a tuple of positive integers. We denote the basepoint of
Xk by ∗k and define the thick bouquet

XK
0 :=

{
(x1, . . . , xr) ∈ XK; xi = ∗ki for some 1 6 i 6 r

}
⊆ XK

as the subspace of degenerated tuples. For T ⊆ {1, . . . , r}, we let XK,T ⊆ XK be
the subspace of all tuples (x1, . . . , xr) with xi = ∗ki for i 6∈ T. Then we have

XK
0 = colim

T 6={1,...,r}
XK,T ' hocolim

T 6={1,...,r}
XK,T,

where the last equivalence comes from the fact that in the diagram XK,−, all
arrows are cofibrations since X is assumed to be levelwise well-based.

Given a topological monoid M, we write UM for its underlying based
space, and, conversely, given a based space Y, we write JY for the James
product, i.e. the free topological monoid over the based space Y.

Construction 2.3.8. We construct the topological monoid M inductively:

• we give a sequence (ır : Ar ↪→ Yr)r>1 of based cofibrations,

• we start with the trivial monoid M0 := 1,

• given Mr−1, we give a based map fr : Ar → UMr−1, consider its adjoint
f̄r : JAr → Mr−1, and define Mr to be the pushout of monoids

JAr Mr−1

JYr Mr.

f̄r

Jır
p

r

• finally, we let M := lim−−−→r Mr be the colimit of topological monoids.
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Chapter 2. Clustered configuration spaces as Ed-algebras

As cofibrations Ar ↪→ Yr, we choose
∨

#e=r XK(e)
0 ↪→ ∨

#e=r XK(e), and we write
points in Yr as e ∧ (x1, . . . , xr) where e ∈ E and xi ∈ Xki .

In order to construct fr, we provide maps f T
e : XK(e),T → UMr−1 for each

e = (S1, . . . , Sr) ∈ E and each T ( {1, . . . , r}: consider the partition eT where
we have removed all components Si for which i /∈ T. Then there are unique
irreducibles e1, . . . , es ∈ E such that eT = e1 t · · · t es, and by construction, we
have #el 6 r− 1 for each 1 6 l 6 s. If we write el = (Sl,1, . . . , Sl,rl ), then there
is a unique bijection Φ : Yr1,...,rs → T such that SΦ(l,h) inside e corresponds
to Sl,h inside el , where Yr1,...,rs denotes the tableau from Definition 1.2.1. We
write xl,h := xΦ(l,h) and define the map f T

e by

f T
e (x1, . . . , xr) :=

s

∏
l=1

el ∧ (xl,1, . . . , xl,rl ) ∈ UMr−1.

Then we have f T′
e |XK(e),T = f T

e for T ⊆ T′ by the already existing attaching
maps f1, . . . , fr−1, so we get an amalgamated map fe : XK(e)

0 → UMr−1.

Similar to the classical proof that the thickening of the free E1-algebra over
a well-based space X is equivalent to the reduced James product over X, we
show that the monoids C and M are equivalent.

Lemma 2.3.9. There is a homomorphism ϕ : C → M of topological monoids, whose
underlying map is a homotopy equivalence.

Proof. We construct for each tuple K a map ϕ̃K : C̃<
K (R)×XK → M as follows:

given a configuration (~z1, . . . ,~zr) ∈ C̃<
K (R), we define:

• the partition e = (S1, . . . , Sr) = χ(∑i[zi]) as in Example 2.3.3,

• a permutation τ ∈ Sr with zτ(1),1 < · · · < zτ(r),1, which means that the
clusters ~zτ(1), . . . ,~zτ(r) are ordered by their minimum.

The pair (e, τ) only depends on the path component of C̃<
K (R), so the assign-

ment is continuous. We proceed as above and decompose e = e1t · · · t es into
irreducibles. Again we write el := (Sl,1, . . . , Sl,rl ) and consider the bijection
Φ : Yr1,...,rs → rr from above. For (x1, . . . , xr) ∈ XK, we define

ϕ̃K(~z1, . . . ,~zr, x1, . . . , xr) :=
s

∏
l=1

el ∧ (x(τ◦Φ)(l,1), . . . , x(τ◦Φ)(l,rl)).
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2.3. An E1-cellular decomposition

Then one readily checks that äK ϕ̃K factors through ϕ̃ : C(R; X)→ M. Finally,
we define ϕ : C → M by ϕ(t, ∑i~zi ⊗ xi) := ϕ̃(∑i~zi ⊗ xi), which clearly is a
homomorphism of monoids.

In order to see that ϕ is a homotopy equivalence, we use that all Xk are well-
based, so they admit Urysohn functions uk : Xk → [0; 1] with u−1

k (0) = {∗k}.
Now for each e ∈ E, we write K := K(e) and define maps ᾱe : XK → UC as
follows: write e = (S1, . . . , Sr) and K = (k1, . . . , kr), which means ki = #Si and
|e| = ∑i ki. There are tuples ~zi = (zi,1, . . . , zi,ki) of positive integers which are
uniquely determined by the properties zi,j < zi,j+1 and {zi,1, . . . , zi,ki} = Si.

Moreover, the partition determines a map π : {1, . . . , |e|} → rr such that
Si = π−1(i), and for each tuple (x1, . . . , xr) ∈ XK, we stretch {1, . . . , |e|} ⊆ R

such that each j is the mid-point of a segment of length ukπ(j)(xπ(j)), see
Figure 2.6: formally, we define str : XK × {1, . . . , |e|} → R by

str(x1, . . . , xr,j) := 1
2 · ukπ(j)

(xπ(j)) +
j−1

∑
j′=1

ukπ(j′)
(xπ(j′)).

and, applying str to an entire cluster, we put

ᾱe(x1, . . . , xr) :=

(
r

∑
i=1

ki · uki(xi),
r

∑
i=1

str(x1, . . . , xr,~zi)⊗ xi

)
∈ C.

Let αr : JYr → C be the adjoint of
∨

#e=r ᾱe : Yr → UC. These maps can be
used to inductively define a system (ψr : Mr → C)r>0 of homomorphisms
satisfying ψr ◦ r = ψr−1 and αr+1 ◦ (Jır+1) = ψr ◦ f̄r+1 as follows: we define
ψ0 to be the trivial map, and for the induction step ‘r− 1→ r’, we define ψr

to be the pushout map of the diagram

JAr Mr−1

JYr Mr

C,

f̄r

Jır
p ψr−1

r

αr

ψr
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ᾱe(x1, x2) =

(
{1, 3}, {2, 4, 5}

)
u2(x1)= 1

3 u3(x2)= 1
5

(
2 · 1

3 + 3 · 1
5 ,

)
0 1

3
1
3 +

1
5

2
3 +

1
5

2
3 +

2
5

2
3 +

3
5

x1

x2

• • • • •

Figure 2.6. An instance of ᾱe : XK → C for e =
(
{1, 3}, {2, 4, 5}

)
.

using that we already know αr ◦ (Jır) = ψr−1 ◦ f̄r. To complete the induction
step, assume that #e = r + 1 and let K := K(e) and (x1, . . . , xr+1) ∈ XK. By
construction, if xi = ∗ for some 1 6 i 6 r + 1, its corresponding Urysohn
map attains 0 and the ki segments are entirely removed, which means that
the maps ᾱe ◦ ıe and Uψr ◦ fe coincide for each e, and so do their bouquets
(
∨

e ᾱe) ◦ ır+1 and Uψr ◦ fr+1, and their adjoints αr+1 ◦ (Jır+1) and ψr ◦ f̄r+1.
Finally, we let ψ := lim−−−→r ψr : M→ C. Then ϕ ◦ ψ is the identity on M, and

ψ ◦ ϕ is homotopic to the identity on C, again by linear interpolation.

Since both topological monoids, C and M, are well-based, the homomorph-
ism ϕ induces a weak equivalence Bϕ : BC → BM, so we can equivalently
study the homotopy type of BM.

To this aim, we use that the bar construction respects such attachments
and hence have to understand how for each tuple K, the suspension ΣXK can
be attached with respect to the subspace ΣXK

0 . Here we use that the cofibre
sequence associated with XK

0 ↪→ XK splits after a single suspension step in
order to reach the following statement:

Lemma 2.3.10. Let X be as before. For each tuple K, there are homotopy equivalences
µK,0 : ΣXK

0 →
∨

Q 6={1,...,r} ΣX∧K|Q and µK : ΣXK → ∨
Q ΣX∧K|Q , where Q ranges

over non-empty subsets of {1, . . . , r}, such that

ΣXK
0 ΣXK

∨
Q 6={1,...,r} ΣX∧K|Q ∨

Q ΣX∧K|Q .

µK,0 µK (�)

commutes up to homotopy.
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2.3. An E1-cellular decomposition

Proof. Since each Xk is well-based, the inclusion XK
0 ↪→ XK is a cofibration,

and we have a cofibre sequence XK
0 → XK → X∧K. Recall for each subset

T ⊆ {1, . . . , r} the subspaces XK,T ⊆ XK from Definition 2.3.7, and note that
we have an isomorphism XK,T ∼= XK|T . For each non-empty subset Q ⊆ T,
we have a map prT

Q : XK,T → X∧K|Q , and the coproduct of them,

µT
K :=

(∨
Q ΣprT

Q

)
◦ ∇2#T−1

T : ΣXK,T → ∨
∅ 6=Q⊆T ΣX∧K|Q ,

is a homotopy equivalence by an inspection of the corresponding cofibre
sequence. For each subset T ⊆ T′, the inclusion map ΣXK,T ↪→ ΣXK,T′ is a
morphism of co-H-spaces, so by counitality, the diagram

ΣXK,T ΣXK,T′

∨
∅ 6=Q⊆T ΣX∧K|Q ∨

∅ 6=Q⊆T′ ΣX∧K|Q .

µT
K µT′

K (��)

commutes up to homotopy. We obtain a map between homotopy colimits

µK,0 : hocolim
T 6={1,...,r}

ΣXK,T → hocolim
T 6={1,...,r}

∨
Q⊆T ΣX∧K|Q ,

which is an equivalence since the morphism of diagrams is a levelwise equiva-
lence. On the other hand, since X is well-based, both diagrams are cofibrant,
whence the two homotopy colimits are equivalent to the honest amalgama-
tions ΣXK

0 and
∨

Q 6={1,...,r} ΣX∧K|Q . If we finally define µK := µ{1,...,r}
K , then the

H-commutativity of (�) follows from the H-commutativity of (��).

Now we have everything together to prove Theorem 2.3.4.

Proof of Theorem 2.3.4. Recall that it is enough to see that BM has the weak
homotopy type of

∨
e ΣX∧K(e). First of all, since B commutes with filtered

colimits, we obtain BM ∼= lim−−−→r BMr. Moreover, we have BM0 = ∗ and, by a
variation of [KM18, Prop. 98], BMr arises from BMr−1 as the pushout

∨
#e=r ΣXK(e)

0 BMr−1

∨
#e=r ΣXK(e) BMr,

κMr−1◦(Σ fr)

p
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where κ : ΣU ⇒ B is the natural inclusion. We aim to show that the inclusion
BMr−1 ↪→ BMr is equivalent to BMr−1 ↪→ BMr−1 ∨

∨
#e=r ΣX∧K(e), which

implies the statement. To do so, we pick for each tuple K a homotopy inverse
νK,0 :

∨
Q 6={1,...,r} ΣX∧K|Q → ΣXK

0 and define

f ′r := κMr−1 ◦ (Σ fr) ◦
(∨

#e=r νK(e),0
)

:
∨

#e=r
∨

Q 6={1,...,r} ΣX∧K(e)|Q → BMr−1.

Then we obtain a morphism of spans

BMr−1
∨

#e=r ΣXK(e)
0

∨
#e=r ΣXK(e)

BMr−1
∨

#e=r
∨

Q 6={1,...,r} ΣX∧K(e)|Q ∨
#e=r

∨
Q ΣX∧K(e)|Q ,

∨
#e=r µK(e),0

κMr−1◦(Σ fr)

∨
#e=r µK(e)

f ′r

where the right square commutes by Lemma 2.3.10, while the left square
commutes by definition, using that νK,0 ◦ µK,0 is homotopic to the identity
on ΣXK

0 . Moreover, all three morphisms are homotopy equivalences, so we
obtain a homotopy equivalence between their induced homotopy pushouts.
Finally, the homotopy pushout of the bottom span is equal to the bouquet of
BMr−1 with those summands ΣX∧K(e)|Q where Q = {1, . . . , r}.

Corollary 2.3.11. Let X be a sequence of well-based spaces with based Sk-actions.

1. If X is equivariantly well-based, then we have a weak equivalence

Bp+1V(Rp,1; X) ' ∨e Σ1+p·#eX∧K(e).

2. If X is levelwise connected, then C(R; X) is equivalent to a classical labelled
configuration space

C(R; X) ' ΩΣ
∨

e X∧K(e) ' C
(
R;
∨

e X∧K(e)).
Outlook 2.3.12. The proof of Theorem 2.3.4 is obviously a peculiarity of
dimension 1: in order to switch from one combinatorial type to another one,
at least one label has to meet the basepoint.

The easiest case for which we do not have a geometric model of its (iterated)
bar construction is the E2-algebra C2(R2; S0) of unordered configurations of
unordered pairs in the plane.
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2.4. Applications and calculations

In this short section, we discuss a few applications of the results from the
previous sections, which mainly show how understanding the homotopy
theory of labelled vertical configuration spaces helps us to understand the
homology of the unlabelled ones.

Application 2.4.1 (Stable homology). For each p, q, k > 1, we see

Vk(Rp,q; S0) ∼= ä
r>0

Vk
r (R

p,q).

Since all spaces Vk
r (R

p,q) are connected, the monoid π0(Vk(Rp,q; S0)) with
the addition induced by the Cp+q-action is isomorphic to N.

Moreover, we saw in Theorem 1.3.3 that the sequence (Vk
r (R

p,q))r>0 is
homologically stable, so since Vk(Rp,q; S0) is at least a C2-algebra, we calcu-
late the stable homology by the group completion theorem [MS76, Prop. 1],

Hh
(
Vk

∞(R
p,q)
) ∼= Hh

(
Ωp

0 BpVk(Rp,q; S0)
) ∼= Hh

(
Ωp

0 Ck(Rq; Sp)
)
,

where Ω0 denotes the path component of the constant loop. In the case q = 1,
we obtain, summing over all irreducibles of the form K(e) = (k, . . . , k),

Hh
(
Vk

∞(R
p,1)
) ∼= Hh

(
Ωp+1

0 Σp+1 ∨
e Sp·(w(e)−1))

∼= Hh
(
C∞
(
Rp+1;

∨
e Sp·(w(e)−1))),

where w(e) denotes the weight as in Definition 1.3.8. For the last identific-
ation, we use that

∨
e Sp·(w(e)−1) =

∨
w(e)>2 Sp·(w(e)−1) t {e0} has exactly two

path components, and we stabilise by adding a point with label e0.
This is very similar to our method of proof of the Stability theorem 1.3.3,

and indeed, we can say a bit more: if we let Ct ⊆ C(Rp+1;
∨

e Sp·(w(e)−1)) be the
component which has exactly t points with label e0, then by [Sna74, Thm. 1.1],
we obtain a stable splitting Σ∞(Ct)+ ' Σ∞ ∨

α Dα, where α ranges over all
distributions α : E→N with αe0 = t, and Dα is the quotient of the subspace
of C(Rp+1;

∨
e Sp·(w(e)−1)) having for each e at most αe points with labels in

the sphere corresponding to e, quotiented by the subspace where at least one
of these labels is the basepoint. Note that if α = t · e0, then Dα = Ct(Rp+1)+.
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Chapter 2. Clustered configuration spaces as Ed-algebras

As in [BCT89, § 2.6] and Proposition 2.1.10, Dα is a Thom space, whence we
get H̃h(Dα) ∼= Hh−p·s(α)(Cα; pr∗αOα) =: Mh,α, where s(α) := ∑e αe · (w(e)− 1)
as in Definition 1.3.11, Cα := Cα(Rp+1) is the coloured configuration space
from Definition 1.3.7, and pr∗αOα is the sign system from Lemma 1.3.16. In
other words, we have Hh(Ct) ∼= H̃h((Ct)+) ∼=

⊕
α Mh,α, where α ranges over

all distributions with αe0 = t.
Under this identification, the stabilisation maps Hh(Ct)→ Hh(Ct+1) split

into maps Mh,α → Mh,α+e0 , which eventually become isomorphisms, as we
saw in the proof of Lemma 1.3.16. For a given distribution α : E→N, which
is normalised, i.e. αe0 = 0, we define the stable summand M∞

h,α := lim−−−→t Mh,α+te0 .
Then we finally can calculate the stable homology of Vk

r (R
p,1) by

Hh(Vk
∞(R

p,1)) ∼=
⊕

α normalised

M∞
h,α.

Application 2.4.2. Similarly, we can take as labelling space the 2-sphere S2,
whose main merit is to be connected and of even dimension. By the Splitting
theorem 2.1.11, we have a stable equivalence

Σ∞Vk(Rp,q; S2) ' Σ∞ ∨
r>1 Dk

r (R
p,q; S2).

In combination with the Thom isomorphism in the form of Proposition 2.1.10,
and by noticing that the orientation system is trivial as the labelling sphere is
even-dimensional, we get⊕

r>1

Hh−2r(Vk
r (R

p,q)) ∼=
⊕
r>1

H̃h(Dk
r (R

p,q; S2)) ∼= H̃h(Vk(Rp,q; S2)). (�)

Since S2 is connected, we have Vk(Rp,q; S2) ' ΩpCk(Rq; Sp+2). For q = 1, the
homology of Ck(R; Sp+2) is easy to understand: we can apply the splitting
theorem and the Thom isomorphism again (now the orientation system is
trivial since each component of Ck

r (R) is simply connected) to get

H̃h
(
Ck(R; Sp+2)

) ∼=⊕
r>1

Hh−(p+2)·r
(
Ck

r (R)
)
.

The space Ck
r (R) is homotopy discrete and the path components are indexed

by partitions e of type (k, . . . , k). If we let Ξk
r ⊆ Ξ be the set of them, then
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Hh
(
Ck

r (R)
) ∼= Z〈Ξk

r〉 if h = 0 and is trivial else. Therefore, we get, including
the empty partition in degree 0,

Hh
(
Ck(R; Sp+2)

) ∼= {Z〈Ξk
r〉 if h = (p + 2) · r for some r > 0,

0 else.

If also p = 1, we can say a bit more: firstly, we know from Theorem 1.4.13

that Vk
r (R

1,1) is equivalent to an (r − 1)-dimensional cell complex, which
means that in the decomposition (�), the direct summand Hh−2r(Vk

r (R
1,1)) is

non-trivial only if 2r 6 h 6 3r− 1. This is visualised in Table 2.1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Vk
1 Z

Vk
2 Z ?

Vk
3 Z ? ?

Vk
4 Z ? ? ?

Vk
5 Z ? ? ? ?

Table 2.1. The shifted homology groups H•−2r(Vk
r (R

1,1)), where ‘?’ denotes an
unknown summand. The columns sum up to H̃•(Vk(R1,1; S2)).

Moreover, we have a path space fibration Vk(R1,1; S2) → ∗ → Ck(R; S3),
and the homology of the base of this sequence is as easy as described above.
One could now invoke the Serre spectral sequence assigned to it, in order to
get information about the homology of the fibre, which decomposes into the
homology of the spaces Vk

r (R
1,1).

Finally, we provide the counterexample that we promised in Remark 2.2.8
and which shows that, in general, for p = 0, the inclusion Cproj ↪→ C from
Lemma 2.2.7 does not induce an equivalence among classifying spaces.

Example 2.4.3. Consider the space X := {−1, 0,+1} with basepoint 0 and
with S2 acting on X by sign. Then C2(R2; X) = är Yr with Yr = C̃2r(R2)/Sr,
where Sr ⊆ S2r permutes blocks of size 2. In other words, Yr is the space of
unordered configurations of ordered pairs in the plane.
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Chapter 2. Clustered configuration spaces as Ed-algebras

We want to show that the inclusion C2,proj(R2; X) ↪→ C2(R2; X) does not
induce an equivalence among classifying spaces, and we do so by showing
that the induced map in H1(Ω0B(−)) cannot be injective.

Exactly as in Section 1.3, one sees that the stabilisation Yr → Yr+1 induces
split monic maps in homology. Moreover, Yr is aspherical (as a covering of
the configuration space of 2r points in the plane) and if we put Gr := π1(Yr),
then we obtain a short exact sequence

1→ PBr2r → Gr → Sr → 1,

where PBr2r denotes the pure braid group on 2r strands. By a careful in-
spection of the Lyndon–Hochschild–Serre spectral sequence assigned to this
short exact sequence, we see that H1(Yr) ∼= H1(PBr2r)Sr

∼= Z4 for r > 2, the
four generators being orbits of elementary pure braids αu,v in PBr2r, compare
Appendix A. In particular, the stabilisation maps induce isomorphisms in H1

for r > 2, so we see by the group completion theorem [MS76, Thm. 1.1] that
H1(Ω0BC2(R2; X)) ∼= H1(Y∞) ∼= Z4 holds.

On the other hand, the projection C2,proj(R2; X) → C2(R; X) induces an
equivalence of classifying spaces BC2,proj(R2; X) ' BC2(R; X) ∼= C2(R; ΣX),
where C2(R; X) is treated as a partial monoid. Now ΣX = S1 ∨ S1, with S2

acting by permuting the two summands of the bouquets. Hence we get

BC2(R; ΣX) '
∨
r>1

#E2
r · Σ(S1 ∨ S1)∧r =

∨
r>1

(2r · #E2
r ) · Sr+1,

where we write a · Z :=
∨a

i=1 Z for each based space Z and each non-negative
integer a > 0. The right side contains 8 · S3 as a summand, since #E2

2 = 2; in
particular, π3 of the right hand side has Z8 as a direct summand. Since ΣX
is connected, we have C2(R; ΣX) ' ΩBC2(R; ΣX), and thus,

H1(Ω0BC2,proj(R2; X)) ∼= H1(Ω0ΩBC2(R; ΣX)).

Since π1
(
Ω0ΩBC2(R; ΣX)

)
is abelian, we have

H1(Ω0BC2,proj(R2; X)) ∼= π1(Ω0ΩBC2(R; ΣX)) ∼= π3(BC2(R; ΣX)),

and we saw that the right side has Z8 as a direct summand. We conclude
that the inclusion C2,proj(R2; X) ↪→ C2(R2; X) from Lemma 2.2.7 does not
induce a homotopy equivalence among classifying spaces.
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Again, we close this chapter with a short list of open problems:

1. Find a geometric model for the d-fold delooping of C(Rd; X) for d > 2.
Prove or disprove that C(Rd; X) is free if X is levelwise path connected.

2. Approximate C(Rd; X) by an Ed-cellular algebra, as we did for the case
d = 1. A possible higher-dimensional analogue of irreducibility might
have something to do with non-trivial intersections of the convex hulls
of the clusters.

3. Understand the Serre spectral sequence of Vk(R1,1; S2)→ ∗ → Ck(R; S3)

and how it can help us understanding the homology of Vk
r (R

1,1). The
cup product structure on the cohomology of the base can easily be
described and might be useful for these calculations.
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Chapter 3

Coloured and dyed operads

The inputs are numbered red, yellow, and green;
and their colours are three, two, and four!

Forschungsseminar Bonn

The purpose of this chapter is mostly foundational: it aims to establish the
operadic setting we want to use, and claims no ingenuity; however, I am not
aware of any textbook or treatise which presents these concepts in sufficient
generality and exhaustiveness. Wherever possible, references to the standard
literature are given.

Roughly speaking, an operad O contains operations µ, which have several
inputs and a single output. However, there are situations in which we need a
type distinction for the inputs and the output: one way to formalise this is
the concept of a coloured operad. From this viewpoint, a classical operad is
an operad with a single colour, and hence is called monochromatic.

Given a monochromatic operad C, we want to construct a coloured op-
erad N(C), in which several inputs of C are allowed to form a common
input of higher multiplicity: we call this the dyeing („Färbung“) of C. This
construction is straightforward, and it combines several ideas from [LV12].

3.1. The notion of a coloured operad

3.1.1. Prolegomena on monoidal categories

We have to fix some basic axioms and conventions for working with monoidal
and enriched categories. To do so, we assume that the reader is familiar with
the basic concepts of enriched category theory, as it is for example presented
in the standard textbook [Kel82].
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Chapter 3. Coloured and dyed operads

For us, the following closed symmetric monoidal categories are relevant:

1. the category (Set,×, ∗) of sets, together with the cartesian product and
the singleton as monoidal unit;

2. the category (Top,×, ∗) of compactly generated and weak Hausdorff
spaces, together with the k-fied product and the singleton space as
monoidal unit, the internal hom given by mapping spaces;

3. for a commutative ring R, the category (R-Mod,⊗, R) of R-modules,
together with the tensor product of R-modules, and R, regarded as a
module over itself, as monoidal unit;

4. Similarly, the category (ChR,⊗, R[0]) of chain complexes of R-modules,
together with the graded tensor product of chain complexes, and R,
concentrated in degree 0, as monoidal unit. This contains the mon-
oidal subcategory R-ModZ of Z-graded R-modules, regarded as chain
complexes with trivial differentials.

Setting 3.1.1. Let us collect various conventions for a general treatment:

• A nice monoidal category (V,⊗, 1) is a bicomplete closed symmetric mon-
oidal category, and we will only consider nice ones. The isomorphisms
X⊗Y → Y⊗ X coming from the symmetric structure are called twists.
We denote the isomorphism type of the initial object by ∅.

• For a V-enriched category I, we denote by I(k
n) the V-object of morph-

isms from k to n. A single morphism k→ n in I is a map 1→ I(k
n) and

the identity of an object n is denoted by 1n. As V is closed, V is enriched
over itself and we denote the evaluation by evX,Y : V(X

Y)⊗ X → Y.

• Since V is closed, the bifunctor ⊗ preserves colimits in both arguments,
and since V is cocomplete, we have a copowering [−] : Set → V by
[S] = äs∈S 1, which is strong monoidal: [∗] ∼= 1 and [S× T] ∼= [S]⊗ [T].
If I is a locally small category, then it can be enhanced to a V-enriched
category IV by IV(k

n) := [I(k
n)].

• For a V-enriched functor F : I→ J, we write F(k
n) : I(k

n)→ J(Fk
Fn) for the

induced V-morphism among morphism objects.
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3.1. The notion of a coloured operad

We continue with a minimalistic reminder on the enriched coend construc-
tion, which generalises the classical one from Definition 2.1.4.

Construction 3.1.2. Let (V,⊗, 1) be a nice monoidal category and let I be
V-enriched and small. Moreover, let H : Iop × I→ V be an enriched functor.
Then we define the enriched coend to be the coequaliser∫ k∈I

H(k, k) := coeq
(

ä
k,n

I(k
n)⊗ H(n, k) ä

k
H(k, k)

α

β

)
,

where the two parallel morphisms are given by

α := evH(n,k),H(k,k) ◦
(

H(k,k
n,k) ⊗ H(n, k)

)
◦
(

I(k
n) ⊗ 1k ⊗ H(n, k)

)
,

β := evH(n,k),H(n,n) ◦
(

H(n,k
n,n)⊗ H(n, k)

)
◦
(

1n ⊗ I(k
n)⊗ H(n, k)

)
.

3.1.2. Examples of classical operads

We assume that the reader is familiar with the basic notion of a (symmetric,
monochromatic) operad C in a nice monoidal category and the notion of an
algebra over C, as it is for example presented in [MSS02]. Before coming
to the formal definition of a coloured operad in full generality in the next
subsection, let us start with a few examples of well-known operads in sets.

If V is nice in the sense of Setting 3.1.1, then each operad C in sets gives
rise to an operad CV in V with CV(r) := [C(r)].

Example 3.1.3 (The trivial operad I). We define an operad Iwith operations

I(r) :=

{
{1} for r = 1,

∅ else,

which means that I has only a single operation, namely the identity 1. Then
IV-algebras are objects in V without any extra structure.

Example 3.1.4 (The operad of based sets B). We define an operad B by

B(r) :=


{v} for r = 0,

{1} for r = 1,

∅ else,
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Chapter 3. Coloured and dyed operads

where we additionally have a single nullary operation v. The fraktur letter
v stands for ‘void’ („Leere“) for reasons which will become apparent soon.
A BV-algebra is an object X which comes together with a map 1→ X. For
example, if V = Top, then B-algebras are the same as based spaces.

Example 3.1.5 (The commutative operad ). We define an operad
with operation sets

(r) := {pr} for all r > 0,

again with the only possible structure maps, and 1 := p1. The fraktur letter
p stands for ‘product’, and we often write p := p2 for the binary one. Then

V-algebras are the same as commutative monoid objects in V. Note that
the commutativity comes from the fact that S2 ∼= 〈τ | τ2〉 acts trivially on

(2), and hence p(x, x′) = (τ∗p)(x, x′) = p(x′, x).

Example 3.1.6 (The associative operad Ass). We define an operad Assby

Ass(r) := Sr for all r > 0,

with 1 := id1, input permutation τ∗σ := σ ◦ τ for σ ∈ Ass(r) and τ ∈ Sr, and
with composition given by cabling: let r > 0 and s1, . . . , sr > 0:

• for σ ∈ Sr we let σs1,...,sr ∈ Ss1+···+sr be the block permutation

(σs1,...,sr)(s1 + · · ·+ si−1 + j) := j + ∑
σ(i′)<σ(i)

si.

• for σi ∈ Ssi , we let σ1 t · · · t σr ∈ Ss1+···+sr be the block sum

(σ1 t · · · t σr)(s1 + · · ·+ si−1 + j) := s1 + · · ·+ si−1 + σi(j).

Then we put σ ◦ (σ1, . . . , σr) := σs1,...,sr ◦ (σ1 t · · · t σr) ∈ Ass(s1 + · · · + sr).
Then AssV-algebras are precisely monoid objects in V, with multiplication
given by x · x′ := id2(x⊗ x′).

We will now turn to the perhaps most important example of a topological
operad, which has already appeared in Construction 2.2.1, namely the little
d-cubes operad, which goes back to [BV68; May72].
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3.1. The notion of a coloured operad

Example 3.1.7. For 1 6 d < ∞ we consider the little d-cubes1 operad Cd: we
let Cd(r) be the space of tuples (c1, . . . , cr) of rectilinear embeddings

ci : [0; 1]d ↪→ [0; 1]d,
(

z1
...

zd

)
7→
(

a1
i +(b1

i −a1
i )·z1

...
ad

i +(bd
i −ad

i )·zd

)
,

such that the interiors of their images ci((0; 1)d) are disjoint. We topologise
Cd(r) as a subspace of [0; 1]2dr containing the parameters a1

1, . . . , ad
r , b1

1, . . . , bd
r .

The symmetric action is given by renumbering the boxes, and the composition
is given by placing boxes inside each other and shift the numbers of the
boxes accordingly, as in Figure 3.1, formally

(c1, . . . , cr) ◦ ((c1,1, . . . , c1,s1), . . . , (cr1, . . . , cr,sr))

:= (c1 ◦ c1,1, . . . , c1 ◦ c1,s1 , . . . , cr ◦ cr,1, . . . , cr ◦ cr,sr)

Note that Cd(0) contains exactly one configuration of boxes, namely the
empty one. This configuration deserves the name void v.

A variation of Cd, called the little d-discs operad Dd, uses discs instead of
cuboids: we define Dd(r) to be the space of tuples (c1, . . . , cr) of embeddings
ci : Dd ↪→ Dd, which are of the form ci(z) = ẑi + ε i · z, such that the interiors
of their images ci(D̊

d) are disjoint. Pictorially, ẑi ∈ Dd is the midpoint and
ε i > 0 is the radius of the ith small disc, and we topologise Dd(r) as a sub-
space of (Dd)r ×Rr

>0 containing these parameters. The operadic structure is
defined in exactly the same way as for Cd.

It is an expectable and classical result, see for example [MSS02, § i.4.1],
that Cd and Dd are equivalent as topological operads, i.e. there is a zig-zag
of operad morphisms which consist of weak equivalences among operation
spaces for each arity. Thus, we may freely swap between both models.

There are embeddings Cd ↪→ Cd+1 and we obtain a limit operad C∞. For
1 6 d 6 ∞, algebras over Cd (or, equivalently, Dd) are called Ed-algebras.
It is a classical result [May72] that d-fold loop spaces are Ed-algebras, and
conversely, each Ed-algebra X admits a d-fold bar construction BdX which
comes with a map ΣdX → BdX such that the adjoint X → ΩdBdX is a group
completion in the sense of [MS76].

1 The name ‘little d-cuboids operad’ would be more adequate, as all images im(ci) ⊆ [0; 1]d

are cuboids, rather than honest cubes.
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◦


 =

1

2

3

,,

2
1

32

1
1

Figure 3.1. The composition C2(3)× (C2(2)× C2(0)× C2(1))→ C2(3)

3.1.3. Coloured operads in symmetric monoidal categories

Here we give the formal definition of a coloured operad in a general symmet-
ric monoidal category (V,⊗, 1). We stick to the notation of [Yau16; BM07],
but we try to be less technical.

Notation 3.1.8. If Li = (li,1, . . . , li,si) ∈ Nsi is a tuple of elements in N for each
1 6 i 6 r, then define the concatenation

L1 · · · Lr := (l1,1, . . . , l1,s1 , . . . , lr,1, . . . , lr,sr) ∈ Ns1+···+sr .

Definition 3.1.9. Let (V,⊗, 1) be a nice monoidal category as in Setting 3.1.1
and let N be a set. Let N o Σ be as in Definition 2.1.2; then an N-coloured
operad O is a family

(
O(−n) : (N o Σ)op → V

)
n∈N of functors, equipped with:

1. identities 1n : 1→ O(n
n) for each n ∈ N;

2. composition maps for each n ∈ N and tuples K, L1, . . . , Lr in N, which
are of the form

κ : O(K
n)⊗

r⊗
i=1

O(Li
ki
)→ O(L1···Lr

n ),

such that the expectable axioms of unitality, associativity, and two-sided
equivariancy from [Yau16, § 11.2] are satisfied. When considering O(K

n), we
call K the input profile, n the output colour, and r the arity. The induced maps
τ∗ : O(K

n)→ O(τ∗K
n ) are called input permutations.

We call O monochromatic if N = ∗ is just a singleton. In this case, we also
write O(r) := O(∗,...,∗∗ ) for the object of r-ary operations. For an N-coloured
operad O and a subset N′ ⊆ N, we consider the restriction O|N′ to those
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operation spaces where all input colours and the output colour live in N′.
In particular, for n ∈ N, there is a monochromatic operad O|n := O|{n} with
operation spaces (O|n)(r) := O(n,...,n

n ).
For a fixed colour set N, a morphism of N-coloured operads ρ : O→ P

is a collection of natural transformations (ρ−n : O(−n) ⇒ P(−n))n∈N which
commutes with units and compositions in the obvious way. This gives rise to
a category OpN(V) of N-coloured operads in V.

In principle, as functors between categories do not have to fix the object sets,
there is a more general notion of morphisms between differently coloured
operads, which we will not use in this thesis.

Example 3.1.10. A small enriched category I is the same as an ob(I)-coloured
operad with I(k1,...,kr

n ) = ∅ for r 6= 1, where ∅ is the initial object. Conversely,
coloured operads can be seen as categories in which morphisms have multiple
inputs and hence are sometimes called (symmetric) multicategories.

Remark 3.1.11. An operation µ ∈ O(K
n) is a map µ : 1→ O(K

n), and we call µ a
nullary, unary, or binary operation if r is 0, 1, or 2, respectively. For a collection
of operations µi ∈ O(Li

ki
), we consider µ1 ⊗ · · · ⊗ µr ∈

⊗
i O(

Li
ki
) and denote the

composition by µ ◦ (µ1 ⊗ · · · ⊗ µr).
We also use a short notation for partial composition: for each µ ∈ O(K

n) and
µ′ ∈ O(L

ki
), we write µ ◦i µ′ := µ ◦ (1k1 ⊗ · · · ⊗ 1ki−1 ⊗ µ′ ⊗ 1ki+1 ⊗ · · · ⊗ 1kr).

In some sense, operads are ‘designed’ to act on other objects. This can be
formalised in the definition of an algebra over a given operad.

Definition 3.1.12. Let O be an N-coloured operad in (V,⊗, 1). An O-algebra
is an N-indexed family X := (Xn)n∈N of objects in V, together with maps

λ : O(k1,...,kr
n )⊗ (Xk1 ⊗ · · · ⊗ Xkr)→ Xn,

such that the expectable axioms of unitality, associativity, and equivariancy
from [Yau16, § 13] hold. We call Xn the nth level of X.

A map f : X → Y of O-algebras is a compatible family ( fn : Xn → Yn)n∈N

of maps: this gives rise to the category O-Alg of O-algebras.

Example 3.1.13. For each N-coloured operad O, the family (O(n))n∈N of
nullaries constitutes an O-algebra, which is initial in the category O-Alg by
construction, and hence is called the initial O-algebra.
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Construction 3.1.14. Each O-algebra has an underlying N-indexed family of
objects. If we denote by VN the category of them, then the forgetful functor
UO : O-Alg → VN admits a left adjoint FO, called the free O-algebra functor:
each family X = (Xn)n∈N in V gives rise to a functor X⊗− : N o Σ→ V as in
Construction 2.1.3, and we define FO(X) levelwise for each n ∈ N by

FO(X)n :=
∫K∈NoΣ

O(K
n)⊗ X⊗K.

The O-action is given by the top horizontal arrow in

O(K
n)⊗

(
FO(X)k1 ⊗ · · · ⊗ FO(X)kr

)
FO(X)n

O(K
n)⊗

⊗
i
∫Li O(Li

ki
)⊗ X⊗Li

∫L1,...,Lr O(K
n)⊗

⊗
i O(

Li
ki
)⊗ X⊗L1···Lr

∫L
O(L

n)⊗ X⊗L.

Construction 3.1.15. Each map ρ : P→ O of N-coloured operads gives rise
to a base-change adjunction ρ! : P-Alg� O-Alg : ρ∗ as follows: each O-algebra
is an P-algebra by restriction; conversely, note that each P-algebra X is the
reflexive coequaliser of FPUPFPUPX ⇒ FPUPX, so ρ!X is the reflexive
coequaliser of FOUPFPUPX ⇒ FOUPX: see [BM07, § 4] for details.

When ρ is clear from the context, we also write FO
P : P-Alg� O-Alg :UO

P

for the base-change adjunction.
Let me point out that the adjunction ρ! ` ρ∗ is monadic, i.e. it is equivalent

to the free–forgetful adjunction for algebras over the monad ρ∗ρ! on the
category P-Alg. To see this, note that ρ∗ reflects isomorphisms and preserves
reflexive coequalisers (since both monads UOFO and UPFP are sifted [GKR18,
Cor. 4.12]), and invoke the ‘crude’ monadicity theorem [BW85, § 3.5].

Construction 3.1.16. Let H : (V,⊗, 1)→ (V′,⊗′, 1′) be a lax monoidal functor
between nice monoidal categories.

If we are given an N-coloured operad O in V, then we obtain an induced
an N-coloured operad HO inside V′ by transferring the structure along H.
Similarly, for each O-algebra X = (Xn)n∈N , we get an HO-algebra HX.
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Example 3.1.17. The functor π0 : Top→ Set is even strong monoidal. Thus,
if C is a topological operad, then π0(C) is an operad in sets. For example, it
is an easy exercise to see that for the little d-cubes operad, we have

π0(Cd) =

{
Ass for d = 1,

for d > 2.

Example 3.1.18. The singular chain complex functor

Csing
• (−; R) : (Top,×, ∗)→ (ChR,⊗, R[0])

from the category of topological spaces to the category of chain complexes in
R-modules is lax monoidal by the Eilenberg–Zilber transformation. Thus, if
O is a topological operad, then Csing

• (O; R) is an operad in ChR, and if X is
an O-algebra, then Csing

• (O; R) acts on Csing
• (X; R). This action gives rise to a

collection of homology operations on O-algebras, see Subsection 3.3.1.
By the Künneth theorem, taking homology is a lax monoidal functor from

ChR to the category R-ModZ of graded modules. Thus, H•(O; R) becomes
an operad in R-ModZ acting on H•(X; R) for each O-algebra X.

3.2. Presentation of operads

In this section, we describe how to present a coloured operad O. By this, we
roughly mean a description of O via generators and relations, which helps us
to understand what extra structure an O-algebra carries.

Before coming to these notions, we give a short introduction to the lan-
guage of trees. For details we refer to [LV12, Apx. C] and [MSS02, § ii.1.5].

Definition 3.2.1. A graph is a pair Γ = (V, E) where V is a finite set and E is
a subset of the power set of V, such that each e ∈ E has exactly two elements.

We call each v ∈ V a vertex and each e ∈ E an edge, and we say that e is an
adjacent edge for v if v ∈ e. For each v ∈ V, we define the degree of v to be the
number of adjacent edges #v := #{e ∈ E; v ∈ e}.

Note that Γ can be regarded as a 1-dimensional simplicial complex and we
can consider its geometric realisation |Γ|. We call Γ a tree if |Γ| is contractible,
or, in other words, if the graph is connected and has no cycles.

83



Chapter 3. Coloured and dyed operads

Definition 3.2.2. An admissible tree is a tuple Y = (V, E, v̄, V◦), where:

1. (V, E) is a tree with at least one edge;

2. v̄ ∈ V is a distinguished vertex of degree 1, called the root;

3. V◦ is a subset of the vertex set whose elements all have to be of degree 1

and have to be different from the root. A vertex in V◦ is called a leaf.

All vertices which are neither the root nor a leaf are called internal vertices,
and we let V• be the set of them, i.e. V = V• ∪̇V◦ ∪̇ {v̄}.

Standing at a single vertex, an adjacent edge is called incoming if we
increase the distance towards the root when following it, and outgoing if we
come closer to the root when following it. By definition, the root vertex has
only one adjacent edge, which is incoming and which deserves the name eY,
and each other vertex v has a unique outgoing edge ev. While a leaf has no
incoming edges, an internal vertex may have several. For each internal vertex
v ∈ Vi, let rv := #v− 1 > 0 be the number of incoming edges, called the arity
of v. Moreover, we let Ev ⊆ E be the subset of incoming edges at v.

While admissibility only describes the shape of the trees we are interested
in, we want to systematically label parts of a tree in order to endow it with
all information we need in order to describe operadic structures. This is
captured by the following definition:

Definition 3.2.3. An N-tree is an admissible tree Y = (V, E, v̄, V◦), with:

1. for rY := #V◦, a bijection λ : {1, . . . , rY} → V◦, called the leaf numbering;

2. for each internal vertex v ∈ V•, a bijection λv : {1, . . . , rv} → Ev, called
the input ordering at v;

3. a labelling of the edges ε : E→ N, called the typification.

The input profile of Y is given by KY := (ε(eλ(1)), . . . , ε(eλ(r))) and the output
colour is given by nY := ε(eY). Likewise, for each internal vertex v, we define
its input profile Kv := (ελv(1), . . . , ελv(rv)) and its output colour nv := ε(ev).
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•
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• •
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5 1227
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Figure 3.2. An N-tree: the numbering λ of the outer leaves is written in red,
the labels ε of the edges are written in blue. Accordingly, we have
K = (18, 3, 1, 2, 41, 5) as well as n = 3. There are five internal vertices,
depicted by a bullet. If we call the green vertex v, then Kv = (1, 18, 3)
and nv = 12. Moreover, λv(1) is the yellow, λv(2) the violet, and
λv(3) the turquoise edge. Finally, the other end of the yellow edge
is 1-valent, but no outer leaf: it is an internal vertex of arity 0.

Remark 3.2.4. One typically replaces the input orderings at each internal
vertex by an isotopy class of an embedding |Y| ↪→ R2. These definitions can
be translated into each other: given an N-tree Y, we embed |Y| inductively:
at each internal vertex, we place the r(v) incoming edges on top, ordered as
it is prescribed by λv, from left to right. Then we continue with the branches
starting at λv(1), . . . , λv(r), see Figure 3.2 for an example.

Conversely, given an isotopy type of an embedding |Y| ↪→ R2, we can read
off the input ordering at each internal vertex v from the image of |Y|.

The final combinatorial ingredient we need before coming back to operads
is the notion of grafting. I ought to point out that this English word may
only be common among arborists and mathematicians (a German translation
would be „Pfropfung“): in horticulture, it desribes a technique to place parts
of a tree—or, more generally, a plant—onto another one, such that they
continue their growth together. This is precisely what we are going to do.

Definition 3.2.5 (Grafting). If Y, Y1, . . . , Yr are N-trees with KY = (nY1 , . . . , nYr),
then we can form a new N-tree Y ◦ (Y1, . . . , Yr) as follows: we remove for
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Figure 3.3. A grafting Y ◦ (Y1, Y2, Y3) of N-trees

each Yi the root and the edge adjacent to the root, and place the remaining
tree which starts at the first internal vertex of Yi at the ith outer leaf of Y,
as we see in Figure 3.3. Then the outer leaves of Y ◦ (Y1, . . . , Yr) are exactly
the joint outer leaves of Y1, . . . , Yr, and we number them by cabling the old
numberings: λ(rY1 + · · ·+ rYi−1 + j) = λYi(j).

The internal vertices of Y ◦ (Y1, . . . , Yr) are exactly the joint internal vertices
of Y, Y1, . . . , Yr, having the same input profile and output colour.

In order to present an operad, we need a reasonable notion of freeness, and
we choose our bases to be collections of operation spaces which, heuristically,
already carry the information how to permute inputs, but lack neutral ele-
ments and compositions. The following definition makes this precise:

Definition 3.2.6. Let N be a set and (V,⊗, 1) a symmetric monoidal category.
An N-coloured quiver A is a family of functors (A(−n) : (N o Σ)op → V)n∈N .
A morphism ϑ : A→ A′ of quivers is a family (ϑn : A(−n) ⇒ A′(−n))n∈N of
natural transformations; this gives rise to the category QuN(V) of quivers.

Each N-coloured operad O has an underlying quiver by forgetting compos-
itions and identities, and we get a forgetful functor U : OpN(V)→ QuN(V).

This forgetful functor admits a left adjoint Ψ : QuN(V)→ OpN(V), which
generalises the monochromatic construction from [MSS02, § 1.9]:

Construction 3.2.7. Let A be an N-coloured quiver in V. Then we define
an operad ΨA as follows: for each N-tree Y, we write A(Y) :=

⊗
v A(

Kv
nv
),

where v ranges over all internal vertices of Y. If τ is a family of permutations
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τv ∈ Srv , then we let τ∗Y be the N-tree which arises from Y by replacing the
input ordering λv at each internal vertex by λv ◦ τ−1

v . We define

(ΨA)(K
n) := coeq

(
äY äτ A(τ∗Y) äY A(Y)

)
,

where Y ranges over all N-trees with KY = K and nY = n, where τ ranges
over all families of permutations τv ∈ Srv , and where the summand A(τ∗Y)
indexed by (Y, τ) gets sent along the upper arrow via

⊗
v τ∗v to A(Y) and

along the lower arrow via the identity to A(τ∗Y). The operadic structure on
ΨA is declared as follows:

1. ΨA is again an N-coloured quiver: given an N-tree Y and a permutation
τ ∈ SrY , then we let τ∗Y be the N-tree which arises from Y by replacing
the global input ordering λ by λ ◦ τ. Since permuting the outer leaves
does not affect the internal vertices, there are canonical identifications
A(Y) ∼= A(τ∗Y) that assemble into a map τ∗ : (ΨA)(K

n)→ (ΨA)(τ∗K
n ).

2. For each colour n ∈ N, there is a distinguished N-tree In which has a
single outer leaf and no internal vertex, and the single edge between the
root and the outer leaf carries the label n. Then KIn = (n) and nIn = n;
the product A(In) is empty and hence equals the monoidal unit 1. We
put 1n : 1 ∼= A(In) ↪→ (ΨA)(n

n).

3. For the composition, we use that ⊗ commutes with colimits in each
argument, so it is enough to describe the composition consistently on
the union (äY A(Y))⊗⊗i

(
äYi

A(Yi)
) ∼= äY,Y1,...,Yr(A(Y)⊗

⊗
i A(Yi))

where Y ranges over all N-trees as before and Yi ranges over all N-trees
with KYi = Li and nYi = ki. This is the point where we graft trees: as
Y ◦ (Y1, . . . , Yr) has exactly the joint internal vertices of Y, Y1, . . . , Yr, we
have a map A(Y)⊗⊗i A(Yi) ∼= A(Y ◦ (Y1, . . . , Yr)) ↪→ (ΨA)(L1···Lr

n ).

Remark 3.2.8. We give some intuition what ΨA looks like for V = Top:
elements of (ΨA)(K

n) are N-trees Y, together with an element of A(K
n) for

each internal vertex v with Kv = K and nv = n, called an A-labelled N-tree.
Note that we have an inclusion of N-coloured quivers A ↪→ UΨA by

identifying each a ∈ A(k1,...,kr
n ) with the A-labelled N-tree having only a single

internal vertex labelled by a. Clearly, this is the unit of the adjunction.
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Y1 · · · Yr

τ∗a
∼

Yτ−1(1) · · · Yτ−1(r)

a

Figure 3.4. The balancing relation pictorially: here Y1, . . . , Yr are the incoming
branches at τ∗a.

The balancing relation which is coequalised can be described as follows:
if one internal vertex is labelled with τ∗a for some a ∈ A, then we might as
well change its label to a and instead alter the order in which the incoming
branches enter the vertex, see Figure 3.4.

In order to present an operad, we need the correct notion of an operadic
‘kernel’. Here it makes sense to give two separate definitions; one for the
category of topological spaces and one for algebraic categories:

Definition 3.2.9. Let O be an N-coloured topological operad. An operadic
relation I on O is a system of equivalence relations I(K

n) on each operation
space O(K

n), which we just denote by ‘∼’, such that:

1. if µ ∼ µ′ for µ, µ′ ∈ O(K
n), then τ∗µ ∼ τ∗µ′ for each τ ∈ Sr;

2. if µ ∼ µ′ and µi ∼ µ′i, then µ ◦ (µ1, . . . , µr) ∼ µ′ ◦ (µ′1, . . . , µ′r).

If ρ : O→ P is a morphism of operads, then the system of relations, which
declares µ to be related to µ′ if and only if ρ(µ) = ρ(µ′) holds, is an operadic
relation. Conversely, given an operadic relation I, we can form the quotient
O/I by (O/I)(K

n) := O(K
n)/I(K

n), together with the induced input permutations,
neutral elements, and composition maps. This quotient operad enjoys the
obvious universal property: each morphism ρ : O→ P of operads satisfying
ρ(µ) = ρ(µ′) for all µ ∼ µ′ extends uniquely to a map ρ̄ : O/I → P.

Clearly, the intersection of a family of operadic relations is again an op-
eradic relation; hence, given a system J of relations on O, there is a minimal
operadic relation 〈J〉 which contains J. One way of describing an operad is to
present it; that is: providing an N-coloured quiver A and a family of relations
J on ΨA. Then we define 〈A | J〉 := (ΨA)/〈J〉.

88



3.2. Presentation of operads

Example 3.2.10. The first four examples from Subsection 3.1 admit an easy
presentation: note that a monochromatic quiver is just a symmetric sequence
A: Σop → V, and we write its constituents as A(r).

1. The trivial operad I is freely generated by the empty quiver.

2. The operad B of based spaces is freely generated by A(0) = {v} and
A(r) = ∅ for r > 1.

3. The commutative operad is generated by the symmetric sequence
with A(0) = {v} and A(2) = {p}, and related by the identifications
p ◦1 p ∼ p ◦2 p and p ◦1 v ∼ 1 ∼ p ◦2 v, where we use the ◦i-notation
from Remark 3.1.11. The relations can be expressed in trees as follows:

2 3

1 p

p

∼

1 2

p 3

p

and

v 1

p ∼
1

∼
1 v

p

4. The associative operad Ass is generated by a quiver with A(0) = {v}
and A(2) = {p, p′}, where S2 permutes the two points in A(2). The
relations are the same as for ; it is enough to state them for p, then
we can conclude e.g. p′ ◦1 p

′ = (1 3)∗(p ◦2 p) ∼ (1 3)∗(p ◦1 p) = p′ ◦2 p
′.

We will see further advantages of presenting topological operads in Subsec-
tion 3.3.2. Let us now come to presentations of algebraic operads. We restrict
ourselves to the category of graded R-modules R-ModZ for a commutative
ring R and we follow [LV12, § 5.2], who discussed the monochromatic case.

Definition 3.2.11. Let O be an N-coloured operad in R-ModZ. An operadic
ideal I ⊆ O is a system of submodules I(K

n) ⊆ O(K
n), such that:

1. if µ ∈ I(K
n), then τ∗µ ∈ I(τ∗K

n ) for each τ ∈ Sr;

2. if out of µ, µ1, . . . , µr, at least one operation lies in I, then so does the
composition µ ◦ (µ1 ⊗ · · · ⊗ µr).
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If ρ : O→ P is a morphism of operads, then its kernel ker(ρ), given by the
family of submodules {µ ∈ O(K

n); ρ(µ) = 0}, is an operadic ideal. Conversely,
given an operadic ideal I ⊆ O, we can form the quotient operad O/I with
operation modules (O/I)(K

n) := O(K
n)/I(K

n), together with the induced input
permutations, neutral elements, and composition maps. This quotient has the
obvious universal property: each morphism ρ : O→ P of operads satisfying
I ⊆ ker(ρ) extends uniquely to an operad map ρ̄ : O/I → P.

Clearly, the intersection of a family of operadic ideals is again an operadic
ideal; hence, given a system J of submodules J(K

n) ⊆ O(K
n), there is a minimal

operadic ideal 〈J〉 ⊆ O which contains J. One way of describing an algebraic
operad is to present it, that is: providing an N-coloured quiver Aand a family
of submodules J of ΨA. Then we define 〈A | J〉 := (ΨA)/〈J〉.

Remark 3.2.12. The main purpose of presenting an algebraic operad is to gain
a better description of its algebras: if a presented operad O= 〈A | J〉 acts on
an algebra X = (Xn)n∈N , then the action can equivalently be given as follows:
each A(K

n) is a graded R-module, with the grading components A(K
n)s. If

we denote the grading components of Xn by (Xn,h)h∈Z, then each generator
a ∈ A(K

n)s can be regarded as a map a : Xk1,h1 ⊗ · · · ⊗ Xkr ,hr → Xn,s+h1+···+hr

and we have the relation

(τ∗a)(x1 ⊗ · · · ⊗ xr) = sgx1,...,xr(τ) · a(xτ−1(1) ⊗ · · · ⊗ xτ−1(r)),

where sgx1,...,xr(τ) is the sign weighted by the degrees of x1, . . . , xr. Moreover,
for each relation in J, we get relations among these multilinear maps, and
morphisms of O-algebras are equivariant with respect to them.

We close this section with an example which relates an interesting topolo-
gical operad to an interesting algebraic operad.

Example 3.2.13 (The Poisson d-operad). The Poisson d-operad R
d is a mono-

chromatic operad in R-ModZ whose algebras are Poisson d-algebras. A full
presentation starts with the following three generators:

1. a void v ∈ R
d (0)0 in arity 0 and degree 0,

2. a product p ∈ R
d (2)0 in arity 2 and degree 0, and

3. a bracket b ∈ R
d (2)d−1 in arity 2 and degree d− 1,
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where S2 =
〈
τ | τ2〉 acts on the two binary generators by τ∗p = p and

τ∗b = (−1)d · b. The Poisson d-operad is related as follows:

1. unitality of the product: p ◦1 v ∼ 1 ∼ p ◦2 v,

2. associativity of the product: p ◦1 p ∼ p ◦2 p,

3. annihilation of the bracket by the void: b ◦1 v ∼ 0,

4. the Jacobi identity: (1 + (1 2 3)∗ + (1 3 2)∗)(b ◦2 b) ∼ 0,

5. the Leibniz rule: b ◦2 p ∼ p ◦1 b+ (1 2)∗(p ◦2 b).

This fully explains what a Poisson d-algebra is: in order to align with the
literature, we put n := d− 1, and in order to save space, we put a′ := n + |a|
for a homogeneous element. For each R

d -algebra A, we write 1 := v(),
a · b := p(a⊗ b) and2 [a, b] := (−1)na · b(a⊗ b).

Then the symmetric action on the generators yields a · b = (−1)ab · (b · a),
i.e. the product is graded commutative, and [a, b] = −(−1)a′b′ · [b, a]. The five
relations look as follows (relation 5 is the usual Leibniz rule for [a,−]):

1. unitality of the product: a · 1 = a = 1 · a,

2. associativity of the product: a · (b · c) = (a · b) · c,

3. annihilation of the bracket by the unit: [a, 1] = 0,

4. the Jacobi identity:

(−1)a′c′ · [a, [b, c]] + (−1)b′a′ · [b, [c, a]] + (−1)c′b′ · [c, [a, b]] = 0,

5. the Leibniz rule: [a, b · c] = [a, b] · c + (−1)ba′ · b · [a, c].

It is well-known (by old work of [Arn69] and [CLM76, § iii.6], reformulated
in the language of operads in [Sin06, Thm. 6.3]) that the homology of the little
d-cubes operad H•(Cd; R) is isomorphic to the Poisson d-operad R

d : the
void is given by the ground class of Cd(0) ' ∗, and product and bracket are
given by the ground class and a choice of fundamental class of Cd(2) ' Sd−1,
respectively (for d = 1, the product is a choice of path component of C1(2)

2 This additional sign has only cosmetic reasons and aims to produce nicer formulæ. Our
convention coincides with the one in [Coh95] and differs from the one in [CLM76] by a
constant single (−1)-factor, which does not effect the relations.
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1 2

1

2

v ∈ H0(C2(0)) p ∈ H0(C2(2)) b ∈ H1(C2(2))

Figure 3.5. The three generators of H•(C2).

and the bracket is a choice of difference between the path components), see
Figure 3.5. Thus, if X is a Cd-algebra, then H•(X; R) is a Poisson d-algebra.
We call 1 the unit, the induced product Pontrjagin product after [Pon39], and
the induced bracket Browder bracket after [Bro60].

3.3. Coloured topological operads

In this section, we turn our attention to (coloured) topological operads and
the homotopy theory and homology of their algebras.

3.3.1. Homology operations

One important feature of topological operads is the fact that they endow the
homology of their algebras with a variety of extra structure: for example, the
homology of each C1-algebra carries the structure of a graded, unital algebra.

Sometimes, it even happens that this structure fully describes the homology
of free O-algebras; for example, if F is a field, then the homology of the free
C1-algebra FC1(X) ' är Xr with coefficients in F is the free graded, unital
algebra over H•(X; F) by the Künneth theorem.

Definition 3.3.1. Let O be an N-coloured topological operad and R a com-
mutative ring. Then we have, for each k ∈ N and each h > 0, a functor

Hk,h : O-Alg→ Set, (Xn)n∈N 7→ Hh(Xk; R).

An O-homology operation of degree s ∈ Z and of profile (k1,...,kr
n ) is just a natural

transformation of functors Hk1,h1 × · · · × Hkr ,hr ⇒ Hn,s+h1+···+hr .
Note that, as usual, we do not require (multi-)linearity, and we also require

no dependency among the colours k1, . . . , kr, n ∈ N.
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Example 3.3.2. One straightforward way to construct O-homology operations
has been described in Example 3.1.18: if an N-coloured operad acts on a se-
quence X = (Xn)n∈N , then for each commutative ring R, the algebraic operad
H•(O; R) acts on H•(X; R); this means that each class m ∈ Hs(O; R)(k1,...,kr

n )

can, for a given collection h1, . . . , hr > 0, be regarded as a map

m : Hh1(Xk1)⊗ · · · ⊗ Hhr(Xkr)→ Hs+h1+···+hr(Xn),

and this construction is clearly natural with respect to maps of O-algebras.
Note that all operations which arise in this way are by construction multi-
linear. We call these O-homology operations Künneth operations, as the lax
monoidality of H•(−; R) uses the Künneth map.

Recall from Example 3.2.13 that in the case of the little d-cubes operad Cd,
the operad H•(Cd; R) is, for each commutative ring R, generated by only
three classes, namely the void v ∈ H0(Cd; R)(0), the product p ∈ H0(Cd; R)(2)
and the bracket b ∈ Hd−1(Cd; R)(2); hence the Künneth operations on the
homology of a Cd-algebra X are entirely captured by the Poisson d-algebra
structure on H•(X; R).

For special coefficient rings, these are all operations in the following sense,
compare with [MK95, Thm. i.5.2] for the monochromatic case:

Proposition 3.3.3. Let F be a field of characteristic 0 and let X = (Xn)n∈N be a
family of spaces, as well as O an N-coloured topological operad. Then H•(FO(X); F)

is isomorphic to the free H•(O; F)-algebra over the graded family H•(X; F).

However, the story is more complicated over arbitrary coefficient rings:
just as cup powers give rise to interesting cohomology operations, we can
evaluate an operation m ∈ Hs(O; R)(k1,...,kr

n ) multiple times at the same class,
if the input colours coincide; for example, a class m ∈ Hs(O; R)(k,k

n ) gives rise
to m2 : Hh(Xk; R) → Hs+2h(Xn; R) with m2(x) = m(x⊗ x). Of course, each
H•(O; R)-algebra A contains these formal powers, but if A is the homology of
some (topological) O-algebra, then it happens that these powers are divisible;
for example, in the case of Cd-algebras, b(x ⊗ x) is divisible by 2 if x is a
class of even dimension.

To systematically construct their indivisible variant, called divided power op-
erations, we have to switch to the symmetric monoidal category (ChR,⊗, R[0])

of chain complexes of R-modules. Let us start with a sign correction.
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Definition 3.3.4. Let G ⊆ St be a subgroup and let h ∈ Z. Then, for each
left R[G]-chain complex A, we define A(h) to be the R[G]-chain complex
whose underlying R-chain complex is A itself, but on which we consider the
‘disturbed’ action that identifies τ∗α in A(h) with sg(τ)h · τ∗α in A for τ ∈ G.

Note that A(h) = A(h + 2). Moreover, if char(R) = 2, or if h is even, or if
G contains only even permutations, then A(h) ∼= A. In this case we call the
combination (R,G, h) admissible.

Definition 3.3.5. If P is a right R[G]-chain complex, we write PG := P⊗G R
for the R-chain complex of coinvariants. Moreover, we write µ̄ := µ⊗G 1 for
each µ ∈ P, and we write d for the differential in both P and PG. Note that if
P = Csing

• (Y; R) for some right G-space Y, then PG
∼= Csing

• (Y/G; R).

Reminder 3.3.6. In the classical, monochromatic case, the divided power
operations are concisely constructed by using from [May70] the following:

Lemma 1.1 (4). Let G ⊆ St and let P be a non-negative, right R[G]-
free chain complex and X a chain complex of R-modules. If µ ∈ P such
that dµ̄ = 0 and if ξ0, ξ1 ∈ Xh are homologous cycles, then µ⊗G ξ⊗t

0
and µ⊗G ξ⊗t

1 are two homologous cycles in P⊗G X⊗t(h).
Moreover, if µ′ ∈ P such that µ̄′ is homologous to µ̄, and ξ ∈ Xh is a

cycle, then µ′ ⊗G ξ⊗t is homologous to µ⊗G ξ⊗t.

If P is a non-negative, right R[G]-free chain complex and X is a chain complex
of R-modules, then each c = [µ̄] ∈ Hs(PG) gives rise to a map

Q̃c : Hh(X)→ Hs+th
(

P⊗G X⊗t(h)
)
, [ξ] 7→ [µ⊗G ξ⊗t].

If P = O(t) holds for some operad O and if X is an O-algebra, then the action
of O on X gives rise to a chain map λ : P⊗ X⊗t → X, and since this map is
St-equivariant, it factors through a chain map λ̄ : P⊗G X⊗t → X. Thus, if St

acts freely on O(t) and the triple (R,G, h) is admissible, then we obtain maps
in homology Qc : Hh(X)→ Hs+th(X), called divided power operations, which
are natural with respect to maps of O-algebras.

The first example of such divided power operations are the Dyer–Lashof
squares which are operations on the Fp-homology of Ed-algebras. The case
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1

2

Figure 3.6. A path µ : [0; 1]→ C2(2) with [µ̄] = c1 ∈ H1(C2(2)/S2)

p = 2 is due to Araki and Kudo [AK56], while the construction for odd primes
is due to Dyer and Lashof [DL62]. We will use the name ‘Dyer–Lashof’ in all
cases, and restrict for the moment to the case p = 2.

Example 3.3.7 (Dyer–Lashof squares). Let R = F2 and let O := Csing
• (Cd; F2)

be the singular chain complex of the little d-cubes operad with F2-coefficients.
Note that Cd(2)/S2 is equivalent to the real projective space RPd−1, so

Hs(O(2)S2) = F2〈cs〉 for each 0 6 s 6 d− 1. If Cd acts on a space X, then each
of these generators gives rise to an operation Qcs : Hh(X; F2)→ Hs+2h(X; F2).

If µ ∈ O(2)d−1 represents the top generator cd−1, then µ + τ∗µ ∈ O(2)d−1

is a cycle representing the fundamental class b of Cd(2) ' Sd−1. Pictorially,
µ parametrises how the first box moves in a single hemisphere around the
second one. For d = 2, the top generator c1 can be represented by a path
µ : [0; 1]→ C2(2) parametrising the two boxes spinning around each other,
performing a half-rotation and, thus, changing places, see Figure 3.6.

Usually, one defines Qs := Qcs−h : Hh(X)→ Hh+s(X) for h 6 s 6 h + d− 1,
which is an operation of degree s. In [CLM76, § iii.1], many formulæ among
these operations Qs have been proven, which are very similar to the ones
for Steenrod squares in F2-cohomology. If one defines a Wd-algebra to be
a Poisson d-algebra A over F2 together with operations Qs : Ah → Ah+s
for h 6 s 6 h + d− 1 satisfying all relations from [CLM76, § iii.1], then a
statement similar to Proposition 3.3.3 holds: the F2-homology H•(FCd(X); F2)

of the free Ed-algebra over a space X is isomorphic to the free Wd-algebra over
the graded F2-vector space H•(X; F2). This entirely describes the homology
of unordered configuration spaces over F2, see [CLM76, § iii.4].

One should point out that in some situations, these Dyer–Lashof squares
can equally well be defined over arbitrary commutative rings R: for even d,
we have Hd−1(Cd(2); R) ∼= R〈cd−1〉, and if also h is even, then (R,S2, h) is ad-
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missible and we consider the top operation Qcd−1 : Hh(X; R)→ Hd−1+2h(X; R).
Again, if cd−1 = [µ̄] for some µ ∈ Csing

d−1(Cd(2); R), then µ + τ∗µ represents
the bracket b ∈ Hd−1(Cd(2); R). Hence we see for x = [ξ] ∈ Hh(X; R)

[x, x] = (−1)(d−1)·h · [λ((µ + τ∗µ)⊗G (ξ ⊗ ξ))]

= 2 · (−1)(d−1)·h ·Qcd−1(x),

so the Browder bracket [x, x] is indeed divisible by 2.

Remark 3.3.8. In the case d = 2, one can give a bit more intuition what Qx
looks like geometrically: if x ∈ Hn(X) is supported on an h-dimensional
closed manifold M, then Qx is supported on the mapping torus S1 n M2 of
the twist tw: M2 → M2 with tw(p, p′) = (p′, p) as follows:

Consider the map γ : [0; 1]× X2 → X with γ(t, x, x′) = µ(t)(x, x′), where
µ is the path from Figure 3.6. Then we have γ(0, x, x′) = γ(1, x′, x), whence
γ factors over γ̄ : S1 n X2 → X, and for each map α : M→ X, we obtain the
description Q(α∗[M]) = γ̄∗(idS1 n α2)∗[S1 n M2], where [M] and [S1 n M2]

are the fundamental classes mod 2.
If we work integrally and M is oriented, then S1 n M2 is orientable if and

only if h = dim(M) is even: this explains our earlier restrictions.

We want to generalise this construction to the case of coloured operads.
Note that in the coloured setting we can only permute inputs of the same
type if we want to stay in a single operation complex. This forces us to work
with a slightly more complicated version of May’s lemma: let t1, . . . , tr > 0
and let Gi ⊆ Sti be subgroups. We write G := G1 × · · · ×Gr ⊆ St1+···+tr .

Lemma 3.3.9. Let P be a non-negative, right R[G]-free chain complex and let
X1, . . . , Xr be arbitrary chain complexes of R-modules. If µ ∈ P such that dµ̄ = 0
and if ξi,0 and ξi,1 are are homologous cycles in Xi,hi for each i, then µ⊗G

⊗
i ξ⊗ti

i,0
and µ⊗G

⊗
i ξ⊗ti

i,1 are homologous cycles in P⊗G
⊗

i X⊗ti
i (hi).

Moreover, if µ′ ∈ P such that µ̄′ is homologous to µ̄, and if ξi ∈ Xi,hi are cycles,
then µ′ ⊗G

⊗
i ξ⊗ti

i is homologous to µ⊗G
⊗

i ξ⊗ti
i .

The proof is a straightforward generalisation of [May70, Lem. 1.1] and left
to the reader. Now we can define homology operations for algebras over
coloured operads in the same way as for the monochromatic case.
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Construction 3.3.10. Again we fix numbers t1, . . . , tr > 0 and subgroups
Gi ⊆ Sti , and we write G := G1× · · · ×Gr. Given a set N and k1, . . . , kr ∈ N,
then we write (t1 × kr, . . . , tr × kr) ∈ Nt1+···+tr for the tuple where the entry
ki is repeated ti times.

If O is an N-coloured operad in R-chain complexes, then G acts R-linearly
on the operation complex O(t1×k1,...,tr×kr

n ), and if this action is R[G]-free, then
Lemma 3.3.9 enables us to construct for c = [µ̄] ∈ Hs(O(

t1×k1,...,tr×kr
n )G) a map

Q̃c :
r

∏
i=1

Hhi(Xki)→ Hs+t1h1+···+trhr

(
O(t1×k1,...,tr×kr

n )⊗G

r⊗
i=1

X⊗ti
ki

(hi)

)
.

by Q̃c([ξ1], . . . , [ξr]) := [µ⊗G (ξ⊗t1
1 ⊗ · · · ⊗ ξ⊗tr

r )]. The (equivariant) operadic
action gives rise to a chain map λ̄ : O(t1×k1,...,tr×kr

n )⊗G
⊗

i X⊗ti
ki
→ Xn, and if

each (R,Gi, hi) is admissible, then X⊗ti
ki

(hi) = X⊗ti
ki

and postcomposing Q̃c

with λ̄ defines the desired divided power operation

Qc :
r

∏
i=1

Hhi(Xki)→ Hs+t1h1+···+trhr(Xn).

Remark 3.3.11. If O is an N-coloured topological operad which is S-free,
i.e. for each tuple K and each n ∈ N, the action of SK := AutN oΣ(K) is free
on O(K

n), then the operad Csing
• (O; R) in the category R-chain complexes has

R[G]-free operation complexes for each choice of subgroup G.

Definition 3.3.12 (Transfer). Let G be a finite group and P be a right R[G]-free
chain complex. We write pr∗ : H•(P)→ H•(PG) for the map induced by the
projection to the coinvariants. There is also a map pr! : H•(PG)→ H•(P) in
the other direction, called the transfer, and it is induced by the chain map

PG → P, µ̄→ ∑
τ∈G

τ∗µ.

Note that, by construction, we have pr∗ ◦ pr! = #G · idH•(PG).

The following observations are not particularly deep; they follow directly
from the construction. However, I have not found them in the literature, and
they turn out to be quite useful for concrete calculations.
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Remark 3.3.13. For each N-coloured operad O in R-chain complexes with
sufficiently free operation complexes, and for each O-algebra X, the divided
power operations satisfy the following relations:

Qac+a′c′(x1, . . . , xr) = a ·Qc(x1, . . . , xr) + a′ ·Qc′(x1, . . . , xr),

#G ·Qc(x1, . . . , xr) = (pr!c)(x⊗t1
1 ⊗ · · · ⊗ x⊗tr

r ),

Qpr∗m(x1, . . . , xr) = m(x⊗t1
1 ⊗ · · · ⊗ x⊗tr

r ),

Qc(x1, . . . , a · xi, . . . , xr) = ati ·Qc(x1, . . . , xr).

Remark 3.3.14. Considering sums in one of the entries is a bit more intricate:
one easily sees that for c = [µ̄], xi = [ξi], and x′i = [ξ ′i ], if Gj = Stj for some j,
then Q̃c(x1, . . . , xj + x′j, . . . , xr) is represented by the cycle

tj

∑
l=1

∑
τ∈Stj /Sl×Stj−l

τ∗µ⊗G (ξ⊗t1
1 ⊗ · · · ⊗ ξ⊗l

j ⊗ ξ ′j
⊗tj−l ⊗ · · · ⊗ ξ⊗tr

r ).

In the easiest case r = 1 and t1 = 2, this expression boils down to

Qc(x + y) = Qc(x) + (pr!c)(x⊗ y) + Qc(y).

There is another class of ‘universal’ formulæ which hold for all sufficiently
free operads in chain complexes: let us restrict to the case where the groups
G are the entire respective symmetric group, so either char(R) = 2 or the de-
grees of all arguments are even. Then the coinvariants O(t1×l1,...,ts×ls

k )St1×···×Sts

assemble into a specific O-algebra on their own: if we endow the colour set
N with a total order and if we let RR := (R[0])n∈N , then

FO(RR)k
∼=
⊕
s>0

⊕
t1,...,ts>0

⊕
l1<···<ls

O(t1×l1,...,ts×ls
k )S,

where we abbreviate S := ∏j Stj . The following lemma explains how the
H•(O)-action on H•(FO(RR)) interacts with the divided power operations:

Lemma 3.3.15. Let l1 < · · · < ls be colours in N and let ti,j > 0 for 1 6 i 6 r and
1 6 j 6 s. Moreover, let m ∈ H•(O(k1,...,kr

n )) and ci ∈ H•(O(ti,1×l1,...,ti,s×ls
ki

)S). Note
that m(c1 ⊗ · · · ⊗ cr) ∈ H•(O(t1×l1,...,ts×ls

n )S) for tj := ∑i ti,j. Then, for each class
xj ∈ H•(Xlj), we have the equality

Qm(c1⊗···⊗cr)(x1, . . . , xs) = m
(
Qc1(x1, . . . , xs)⊗ · · · ⊗Qcr(x1, . . . , xs)

)
.
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Proof. We find µ ∈ O(k1,...,kr
n ) and νi ∈ O(ti,1×l1,...,ti,s×ls

ki
) such that m := [µ] and

ci := [ν̄i]. If we let τ ∈ St1+···+ts be the permutation that identifies äi äj ti,jti,j

with äj äi ti,jti,j, then τ∗(µ ◦⊗i νi) has input profile (t1 × l1, . . . , ts × ls), and if
xj is represented by the cycle ξ j ∈ Xlj , then we get

Qm(c1⊗···⊗cr)(x1, . . . , xs) =
[
τ∗(µ ◦⊗i νi)(

⊗
j ξ⊗tj

j )
]

=
[
(µ ◦⊗i νi)(

⊗
i
⊗

j ξ⊗ti,j
j )

]
=
[
µ(
⊗

i νi(
⊗

j ξ⊗ti,j
j ))

]
= m

(
Qc1(x1, . . . , xs)⊗ · · · ⊗Qcr(x1, . . . , xs)

)
.

Note that there is no Koszul sign appearing since we only exchange instances
of ξ j with something else, and either char(R) = 2 or

∣∣ξ j
∣∣ is even.

Let me point out that, although it looks as if c1, . . . , cr all have the same
input colours l1, . . . , ls, the multiplicities ti,j can be very different; in particular,
we allowed ti,j = 0 as well, whence the profiles can be entirely disjoint.

3.3.2. The Boardman–Vogt tensor product

In this subsection, we repeat the contruction of the Boardman–Vogt tensor
product of two topological operads, which has originally been introduced by
[BV73, § ii.3] in a different language.

As we need this notion in higher generality at several occasions, let us give
a short survey which mainly follows [Wei11, § 2.2].

Notation 3.3.16. We form exterior products of tuples and permutations:

• Let K = (k1, . . . , kr) be a tuple in N and K = (k′1, . . . , k′r′) a tuple in N′.
Then we define the tuple product K× K′ ∈ (N × N′)r·r′ by

K× K′ :=
(
(k1, k′1), . . . , (k1, k′r′), . . . , (kr, k′1), . . . , (kr, k′r′)

)
.

• Let τ ∈ Sr and τ′ ∈ Sr′ be two permutations. Then we put

τ × τ′ := τ ◦Ass (τ′, . . . , τ′) ∈ Sr·r′ .

If τ : τ∗K → K is a map in N o Σ and τ′ : τ′∗K′ → K′ is a map in N′ o Σ,
then we get a map τ × τ′ : (τ × τ′)∗(K× K′)→ K× K′ in (N × N′) o Σ.
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Definition 3.3.17. Let O be an N-coloured, O′ be an N′-coloured, and P be
an (N × N′)-coloured topological operad. A pairing (O,O′)→ P is declared
by a family of maps

ζ : O(K
n)× O′(K′

n′)→ P(K×K′
(n,n′)),

such that the following properties hold:

1. ζ(1O
n , 1O′

n′ ) = 1P
(n,n′),

2. ζ(τ∗µ, τ′∗µ′) = (τ × τ′)∗ζ(µ, µ′),

3. ζ(µ ◦ (µ1, . . . , µr), µ′ ◦ (µ′1, . . . , µ′r′)) = ζ(µ, µ′)(ζ(µ1, µ′1), . . . , ζ(µr, µ′r′)).

Remark 3.3.18. Let ζ be a pairing as above.

• For each n′ ∈ N′ we have a map ζ(−, 1n′) : O→ P|N×{n′}.
• For each n ∈ N we have a map ζ(1n,−) : O′ → P|{n}×N′ .

Thus, if X = (Xn,n′)n∈N,n′∈N′ is a P-algebra, then each X•,n′ := (Xn,n′)n∈N is
an O-algebra and each Xn,• := (Xn,n′)n′∈N′ is an O′-algebra.

Construction 3.3.19. If O is an N-coloured operad and O′ is an N′-coloured
operad, then we define its Boardman–Vogt tensor product O�O′ as an (N×N′)-
coloured operad that comes with a pairing χ : (O,O′) → O� O′ which is
initial in the following sense: for each pairing ζ : (O,O′) → P, there is a
unique morphism ζ� : O� O′ → P of (N × N′)-coloured operads such that
ζ�(χ(µ, µ′)) = ζ(µ, µ′) holds, i.e. for all K, K′, n, and n′, the triangle

O(K
n)× O′(K′

n′) P(K×K′
(n,n′))

(O� O′)(K×K′
(n,n′))

χ

ζ

ζ�

commutes: this clearly determines O�O′ uniquely up to unique isomorphism.
An explicit construction can be given in form of a presentation: we start with
the (N × N′)-coloured quiver O∗ O′ := (O× N′) t (N × O′), where

(O× N′)((k1,n′),...,(kr ,n′)
(n,n′) ) := O(k1,...,kr

n ),

(N × O′)(
(n,k′1),...,(n,k′r′ )

(n,n′) ) := O′(k′1,...,k′r′
n′ ),
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together with the induced structure maps. This means that elements in the
free operad Ψ(O∗ O′) are trees with two types of internal vertices: those
labelled in O and those labelled in O′. For those of the first type, all incoming
edges and the outgoing edge have the same second colour component, and
for those of the second type, all incoming edges and the outgoing edge have
the same first colour component. Now we divide out the following relations:

1. the already existing identities 1O
n and 1O′

n′ can be skipped:

Y

1O
n

(n,n′)

(n,n′)

∼

Y

(n,n′)
∼

Y

1O′
n′

(n,n′)

(n,n′)

2. two neighboured internal vertices of the same type can be composed:
if µ and ν both come from O or both come from O′, then

Y′1 · · · Y′s

Y1 · · · Yi−1 ν Yi+1 · · · Yr

µ

∼

Y1 · · · Yi−1 Y′1 · · · Y′s Yi+1 · · · Yr

µ ◦i ν

3. the interchange law: if µ comes from O and µ′ from O′, then we relate

Y1,1 · · · Y1,r′ Yr,1 · · · Yr,r′

µ′ · · · µ′

µ

(k1,k′1) (k1,k′r′ ) (kr,k′1) (kr,k′r′ )

(k1 ,n′) (kr ,n′)

(n,n′)

∼ τ∗



Y1,1 · · · Yr,1 Y1,r′ · · · Yr,r′

µ · · · µ

µ′

(k1,k′1) (kr,k′1) (k1,k′r′ ) (kr,k′r′ )

(n,k′1) (n,k′r′ )

(n,n′)


,

where τ ∈ S∑i,j rYi,j
is the (rY1,1 , . . . , rYr,r′ )-block version of τ0 ∈ Sr·r′ that

changes the reading direction from ‘row-wise’ to ‘column-wise’.
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Given a pairing ζ : (O,O′) → P, we obtain a map O� O′ → P of (N × N′)-
coloured operads in a canonical way: the pairing ζ induces morphisms of
quivers än′ ζ(−, 1O′

n′ ) : O× N′ → P and likewise än ζ(1O
n ,−) : N × O′ → P,

and their union O∗ O′ → P has an adjoint map ζ̄ : Ψ(O∗ O′)→ P. Now the
properties of a pairing ensure that ζ̄ factors over the operadic relation above.

This construction is bifunctorial: if ρ : O→ P and ρ′ : O′ → P′ are morph-
isms of operads, then we get a morphism ρ� ρ′ : O� O′ → P�P′. It is even
possible to use the Boardman–Vogt tensor product in order to construct a
monoidal structure on the category of coloured operads with varying colour
set, and the trivial operad I serves as a monoidal unit, see [Wei11, Thm. 2.22].

Remark 3.3.20 (Nullaries). Let ζ : (O,O′)→ P be a pairing. If v ∈ O(n) and
v′ ∈ O′(n′) are nullary operations, then

ζ(v, v′) = ζ(1n ◦ v, v′ ◦ ()) = ζ(1n, v′)() = ζ(1n, v′),

and for symmetry reasons, we get ζ(v, 1n′) = ζ(v, v′) = ζ(1n, v′). Employing
this equality multiple times, we can identify all nullaries of the form ζ(v, 1n′)

with all nullaries of the form ζ(1n, v′). In particular, if O(n) 6= ∅, then all
elements of the form ζ(1n, v′) with v′ ∈ O′(n′) coincide, and the same holds
mutatis mutandis if O′(n′) 6= ∅.

This behaviour is reflected by the explicit construction of the tensor product:
if O(n) and O′(n′) are both non-empty, then (O� O′)((n,n′)) is a singleton.

In many cases, this construction has an easier form: one situation which
is important for us is the case where one factor is monochromatic and the
second factor is a small, enriched category, i.e. it has only unaries:

Remark 3.3.21. Let C be a monochromatic operad and I be a topologically
enriched category with object set N. Then C� I has operation spaces

(C� I)(k1,...,kr
n ) = C(r)×

r

∏
i=1

I(ki
n),

together with the obvious input permutations, identities, and compositions.
For each n ∈ N, we also abbreviate µ� n := µ� (1n, . . . , 1n) ∈ (C� I)(n,...,n

n ).
Note that (C� I)-algebras are the same as enriched functors I→ C-Alg.
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3.3. Coloured topological operads

Example 3.3.22. If N is the discrete category with object set N, then we get

(C� N)(k1,...,kr
n ) =

{
C(r) for k1 = · · · = kr = n,

∅ else,

and (C� N)-algebras are just N-indexed families of C-algebras.

We close this subsection with a reminder on Dunn’s additivity theorem
which studies the Boardman–Vogt tensor product of two little cubes operads.

Example 3.3.23. There is a pairing ζ : (Cp, Cq) → Cp+q of monochromatic
operads given by forming products of cuboids

ζ
(
(c1, . . . , cr), (c

′
1, . . . , c′r′)

)
:= (c1 × c′1, . . . , c1 × c′r′ , . . . , cr × c′1, . . . , cr × c′r′)

as depicted in Figure 3.7. It was shown by [Dun86; Bri00] that the induced
map Cp � Cq → Cp+q is a weak equivalence.

2 1

1

2
3 1

24
ζ


,


=

Figure 3.7. An instance of ζ : C1(2)× C2(2)→ C3(4)

3.3.3. Base-change for topological operads

In this last subsection, I would like to discuss the base-change adjunction
from Construction 3.1.15 for a given operad morphism ρ : P → O in the
special case of topological operads.

Without spending too much time on model-categorical subtleties, let me
point out that one important property of the base-change adjunction is the
fact that it helps us comparing the homotopy theory of algebras over different
operads. This is made precise in the following way:
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Chapter 3. Coloured and dyed operads

Remark 3.3.24. As done in detail in [BM03; BM07], one can transfer the Quil-
len model structure on TopN along the adjunction FO : TopN � O-Alg :UO to
the category of O-algebras: then the equivalences are exactly the morphisms
of O-algebras whose underlying maps are (levelwise) weak equivalences.

An N-coloured operad O is called S-cofibrant if all operation spaces O(K
n)

are cofibrant as SK-spaces, where SK := AutN oΣ(K). This is for example the
case if SK acts freely on O(K

n), i.e. if O is S-free as in Remark 3.3.11, and if,
additionally, O(K

n)/S
K is a retract of a cell complex. Moreover, O is called

well-based if the inclusions {1n} ↪→ O(n
n) are cofibrations. We call a morphism

ρ : P→ O of N-coloured operads a weak equivalence if all ρ(K
n) : P(K

n)→ O(K
n)

are weak equivalences.
Then [BM07, Thm. 4.1] tells us that if ρ : P → O is a weak equivalence

between S-cofibrant and well-based operads, then the corresponding base-
change adjunction ρ! : P-Alg� O-Alg : ρ∗ is a Quillen equivalence. In other
words, the homotopy theory of O-algebras coincides with the homotopy
theory of P-algebras.

If the operad P is sufficiently small, then the base-change adjunction is
easy to understand, as we see in the following examples.

Example 3.3.25 (Free algebras over based spaces). Recall the monochromatic
operad B of based spaces. Then a map B→ O is the same as a monochro-
matic operad O together with a choice of void v ∈ O(0). Since B-algebras are
the same as based spaces, the adjunction is of the form

FO
B : Top∗ � O-Alg :UO

B,

and for a based space (X, ∗), the relatively free O-algebra FO
B(X) is given by

quotienting är>0 O(r)×Sr Xr by the usual basepoint relations.
In the case of the little d-cubes operad Cd, we have a unique void v ∈ Cd(0)

given by the empty configuration of boxes, and for a based space X, the free
Cd-algebra FCd

B (X) is equivalent to the space C(Rd; X) of labelled configura-
tions as considered in [Seg73; Sna74; McD75; Böd87].

A similar story can be told in the coloured setting: note that (B� N)-
algebras are the same as N-indexed families of based spaces; in particular,
each (B�N)-algebra X = (Xk)k∈N gives rise to a functor X− : N o Inj→ Top
with XK = Xk1 × · · · × Xkr as in Construction 2.1.3.
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3.4. Dyeing of monochromatic operads

On the other hand, a morphism B� N → O is the same as a choice of void
vn ∈ O(n) for each colour n. This can be used in order to ‘block’ inputs by
precomposing with them: thus, we obtain cofaces

di : O(K
n)→ O(diK

n ), µ 7→ µ ◦i vki ,

each O(−n) can be enhanced to a functor (N o Inj)op → Top, and we have

FO
B�N(X)n ∼=

∫K∈N oInj
O(K

n)× XK.

Example 3.3.26 (Free algebras over G-spaces). If G = (Gn)n∈N is a family of
topological groups, regarded as a topologically enriched groupoid, then a
G-algebra is the same as a family X = (Xn)n∈N of spaces, with an action of
Gn on Xn. As in Construction 2.1.3, we obtain a functor X− : G o Σ→ Top.

On the other hand, a morphism ρ : G → O gives rise to a right action of
GK on each operation space O(K

n) by precomposition: this defines a collection
of functors O(−n) : (G o Σ)op → Top, and the functor FO

G has the description

FO
G(X)n ∼=

∫K∈G oΣ
O(K

n)× XK ∼= ä
[K]

O(K
n)×GK XK.

In combination with Example 3.3.25, we note that (B�G)-algebras are the
same as families X = (Xn)n∈N of based spaces, together with a basepoint-
preserving action of Gn on Xn for each n ∈ N. As in Construction 2.1.3, we
obtain a functor X− : G o Inj → Top. Similarly, a morphism B� G → O

gives rise to O(−n) : (G o Inj)op → Top and the functor FO
B�G is of the form

FO
B�G(X)n ∼=

∫K∈G oInj
O(K

n)× XK.

3.4. Dyeing of monochromatic operads

In this section, we construct operads with colour set N = {1, 2, . . . } out of
monochromatic ones, in a way that, heuristically, allows us to ‘bunch’ several
inputs together to a single one, whose colour then agrees with the number of
inputs it comprises. Moreover, we give a description of their algebras.
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Chapter 3. Coloured and dyed operads

3.4.1. A motivating example

We still owe the reader a convincing example of an honest coloured operad.
This subsection aims to give at least some visual impression of which operads
we are going to need in Chapter 5 when dealing with moduli spaces of
Riemann surfaces. By doing so, we anticipate some notions, which will be
made precise later, for dramaturgical reasons. The reader who prefers a con-
cise and formal treatise may skip this subsection without compunction.

Our example starts with the following classical result [Mil86; Böd90b]: if
Mg,n denotes the moduli space of Riemann surfaces of genus g > 0 with
n > 1 parametrised boundary curves, then the collection äg>0 Mg,1 carries,
up to equivalence, the structure of an E2-algebra. We will encounter several
comparable ways of making this action precise; for the moment, the following
description shall suffice: let Mg,n·◦ be the moduli space of Riemann surfaces
with a parametrisation of a collared neighbourhood of each boundary curve;
it is easy to see that Mg,n·◦ 'Mg,n. Given collared surfaces Ci ∈Mgi ,1·◦ and
a configuration µ ∈ D2(r) of discs, we can form a new compound surface
µ(C1, . . . , Cr) ∈Mg1+···+gr ,1·◦ out of it by removing the r discs from the large
disc and by gluing in the given surfaces at the emerging holes, using the
parametrisations of the collars.

3

12


 =

, ,

Figure 3.8. An instance of D2(3)× (M2,1·◦ ×M0,1·◦ ×M1,1·◦)→M3,1·◦

It is conspicious that for this construction, we have to restrict to the case of
precisely one boundary curve. While it is not surprising that closed surfaces
have to be treated differently, we would like to incorporate surfaces with
multiple boundary curves into the picture. To do so, we need a version of
D2, which is coloured in N = {1, 2, . . . }, which we call N(D2), the dyeing
(„Färbung“) of D2, and whose operation spaces look as follows: the space
N(D2)(

k1,...,kr
n ) contains configurations of k1 + · · ·+ kr small discs on n large

discs: the first k1 discs form a common input, the next k2 discs form a common
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3.4. Dyeing of monochromatic operads

input, and so on. If we are given such an operation µ, we can, in the same
fashion, glue in Riemann surfaces Ci ∈Mgi ,ki ·◦ and obtain a Riemann surface
µ(C1, . . . , Cr) with n boundary curves. The result may be disconnected, but
in fact there is a suboperad Nc(D2), called the connective suboperad, which
enjoys the property that if the inputs are connected, the output is connected
as well. This gives us an action of Nc(D2) on the sequence of moduli spaces
M :=

(
äg>0 Mg,n·◦

)
n>1, which is depicted in Figure 3.9. The genus grading

is a bit more complicated: the genera do not add up, but for the Euler
characteristic, we have χ(µ(C1, . . . , Cr)) = ∑i(χ(Ci)− ki) + n.

Here we follow a different approach than [GK98], who encapsulated the
combinatorical difficulties arising from the genus grading in a concept called
a modular operad. Roughly speaking, we follow a more classical approach in
order to attack more classical questions with it.

3,1
1,1

2,2

1 2

2,3

2,11,2


 =

, ,3
1

2
11 2

1 2

Figure 3.9. An instance of Nc(D2)(
2,3,1

2 )× (M0,2·◦ ×M1,3·◦ ×M2,1·◦)→M4,2·◦.

The remainder of this section aims to formally construct N(C) out of a
monochromatic operad C and to understand its properties.

3.4.2. PROPs associated to operads

Before coming to the dyeing construction N(−), we recall a classical construc-
tion, which can be found in standard textbooks [Lei04; LV12], namely the
PROP (‘products and permutations category’) assigned to a monochromatic
operad. The notion of a PROP is comparably old and goes back to [Mac65].

Definition 3.4.1. Let (V,⊗, 1) be a nice monoidal category as in Setting 3.1.1.
A PROP is a strict symmetric monoidal V-enriched category (P,t, 0) with
object set N = {0, 1, . . . }, where the monoidal sum on objects is given by the
usual addition of natural numbers. For a morphism a : k→ n, we call k the
arity („Stelligkeit“) and n the valency („Wertigkeit“) of a.
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Chapter 3. Coloured and dyed operads

Morphisms of PROPs F : P→ Q are strict monoidal functors, i.e. functors
which satisfy ob(F) = idN and F(a t a′) = Fa t Fa′.

Remark 3.4.2 (Twists). Let (P,t, 0) be a PROP. The twist maps in P which
come from the symmetric structure can be expressed as a collection of right
Sk-actions and left Sn-actions on the morphism objects P(k

n), which are in-
terchangeable and satisfy the following compatibility properties, compare
[Mac65, § 24], for which we abbreviate τa := τ∗a and aτ := τ∗a, and denote
by (1 2)n,n′ ∈ Sn+n′ the block transposition assigned to n, n′ > 0:

b ◦ (aτ) = (bτ) ◦ a, (τa) t (τ′a′) = (τ t τ′)(a t a′),
(b ◦ a)τ = b ◦ (aτ), (aτ) t (a′τ′) = (a t a′)(τ t τ′),
τ(b ◦ a) = (τb) ◦ a, (1 2)n,n′(a t a′) = (a′ t a)(1 2)k,k′ .

Example 3.4.3. Many well-known categories with object set N carry the
structure of a PROP in the symmetric monoidal category of sets:

1. The discrete category N, which has as objects the natural numbers and
has no morphisms apart from the identities, carries a unique structure
of a PROP. Note that N is initial among PROPs in sets.

2. Consider the category Fin whose morphisms k→ n are all maps of the
form kk → nn, where we abbreviate nn := {1, . . . , n} as before. Then Fin
carries the structure of a PROP by forming the disjoint sum of maps.
The same applies to the subcategories Inj and Σ.

3. An example of a slightly different flavour is given by the 2-dimensional
(homotopy) cobordism category hCob2, where morphisms k→ n are
given by isomorphism classes of (possibly disconnected) orientable
surfaces with k incoming and n outgoing numbered boundary curves.
The composition is given by sewing surfaces and the monoidal sum is
given by the disjoint union of surfaces. There is a topological analogue,
which is called M and which we encounter in Construction 5.1.11.

4. The terminal PROP is given by the category EN, with morphism sets
(EN)(k

n) = ∗ for all natural numbers k and n. This category is some-
times called the chaotic category.
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3.4. Dyeing of monochromatic operads

Again we can use the canonical copowering [−] : Set→ V to construct, for
each of the above examples P, a V-enriched version PV by PV(k

n) = [P(k
n)]. If

it is clear which category we consider, then we skip the decoration (−)V.

The notion of a PROP is closely related to the notion of a monochromatic
operad, as the following construction from [LV12, Def. 5.3.11] shows:

Construction 3.4.4. Each PROP (P,t, 0) gives rise to a monochromatic operad
P(−1 ) = (P(r

1))r>0, with input permutations given by the twists in (P,t, 0),
identity given by the identity on the object 1, and compositions induced by
the monoidal sum and the composition in P as follows:

P(r
1)⊗

(
P(s1

1 )⊗ · · · ⊗ P(sr
1)
)

P(r
1)⊗ P(s1+···+sr

r ) P(s1+···+sr
1 ).t ◦

If V is cocomplete and ⊗ commutes with colimits in both arguments, then
the functor P 7→ P(−1 ) from the category of PROPs to the category of mono-
chromatic operads admits a left adjoint, which is called the associated PROP:
given an operad C, we construct the associated PROP cat(C) by setting

cat(C)(k
n) := ä

f : k→n
C(# f−1(1))⊗ · · · ⊗ C(# f−1(n)),

endowed with the following extra structure: the monoidal sum is given on
summands indexed by f : kk→ nn and f ′ : k′k′ → n′n′ via the identification

n⊗
l=1

C(# f−1(l))⊗
n′⊗

l′=1

C(# f ′−1(l′)) ∼=
n+n′⊗
l=1

C(#( f t f ′)−1(l)).

For the description of the twists, note that Sk right acts on cat(C)(k
n) by map-

ping the summand indexed by f to the (canonically isomorphic) summand
indexed by f ◦ τ for each τ ∈ Sk, and similarly, Sn left acts on cat(C)(k

n) by
mapping the summand indexed by f to the summand indexed by τ ◦ f for
each τ ∈ Sn.

The composition is defined on each summand: for g : nn → mm, we write
g−1(h) = {lh,1 < · · · < lh,vh} ⊆ {1 < · · · < n} for each 1 6 h 6 m; then,
given f : kk→ nn, we send the summand of cat(C)(n

m)⊗ cat(C)(k
n) indexed by
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the pair (g, f ) to the summand of cat(C)( k
m) indexed by g ◦ f via

m⊗
h=1

C(vh)⊗
n⊗

l=1

C(# f−1(l))→
m⊗

h=1

(
C(vh)⊗

vh⊗
i=1

C(# f−1(lh,i))

)

→
m⊗

h=1

C(#(g ◦ f )−1(h)),

where we use the operadic composition for the last step. By construction,
cat(C)(−1 ) is the same as C itself. The running index l is called the layer
parameter, and the upcoming examples will justify this name.

Remark 3.4.5. The morphism objects in cat(C) can also be written as

cat(C)(k
n)
∼= ä

u1+···+un=k
(C(u1)⊗ · · · ⊗ C(un))⊗Su1×···×Sun

ΣV( k
u1+···+un

),

and this description gives a little bit more intuition: for µl ∈ C(ul) and a
bijection ϕ : kk→ u1u1 t · · · t unun, we get an element (

⊗
lµl)⊗S ϕ ∈ cat(C)(k

n),
and we depict this element as a tuple (Y1, . . . , Yn) of admissible trees, each Yl

with a single internal vertex of arity ul, which is labelled by µl, together with
a bijection between the outer leaves of all trees and the set {1, . . . , k}. For
example, if we have µ1 ∈ C(3), µ2 ∈ C(4), and µ3 ∈ C(0), then we declare
an element of cat(C)(7

3) by 2 7 6

µ1
,

4 3 1 5

µ2
,

µ3

.

Example 3.4.6. It is an easy exercise to check the following identifications:

cat(I) ∼= Σ,

cat(B) ∼= Inj,

cat( ) ∼= Fin.

In particular, as I is the initial operad, each operad C gives rise to a map
Σ→ cat(C) of PROPs, and if C comes with a preferred void v ∈ C(0), i.e. an
operad morphism B→ C, then we obtain a preferred map Inj→ cat(C).
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3.4. Dyeing of monochromatic operads

Example 3.4.7 (Non-commutative finite sets). The PROP cat(Ass) has a similar
description: it is the PROP whose morphisms k→ n are maps f : kk→ nn that
come together with a total order ≺ on each fibre. The composition is given
as follows: for f : kk→ nn, g : nn→ mm, and h ∈ mm, we have an identification

(g ◦ f )−1(h) ∼= ä
l∈g−1(h)

{l} × f−1(l),

and we endow the right side with the lexicographic order with respect to
the existing orders on g−1(h) and f−1(l). This category was introduced in
[FL91] and is called the category of non-commutative finite sets ∆Σ, see [RP02].

The symbol ‘∆Σ’ comes from the fact that this category is the bicrossed
product of the simplex category3 ∆ with Σ, see [Kas95, § ix]. In particular,
∆Σ is generated by ∆ and Σ, i.e. by three classes of morphisms:

1. permutations σ : nn→ nn,

2. cofaces dl : n− 1n− 1→ nn for 1 6 l6 n, where dl is the unique monotone
injective map omitting the lth element, and

3. codegeneracies sl : nn → n− 1n− 1 with (sl)−1(l) = {l≺ l+1} for each
1 6 l6 n− 1,

Example 3.4.8. For 1 6 d 6 ∞, we let Find := cat(Cd) be the PROP associated
to the little d-cubes operad (or, equivalently, cat(Dd), the PROP associated to
the little d-discs operad).

Then Find(
k
n) contains configurations of k numbered, small boxes on n

large cubes [0; 1]d × nn, and the composition is given by placing boxes inside
each other. Formally, an arrow in Find(

k
n) is a map ~c : [0; 1]d × kk ↪→ [0; 1]d × nn

of the following form: if d < ∞ and if we write ~c = (c1, . . . , ck), each cj
being a map [0; 1]d ↪→ [0; 1]d × nn, then for each 1 6 j6 k, there is, as a layer
parameter, an integer 1 6 j̀ 6 n and there are coordinates 0 6 aω

j < bω
j 6 1

for each 1 6 ω 6 d, such that for each z = (z1, . . . , zd) ∈ [0; 1]d, we have

cj(z) =

((
a1
j+(b1

j−a1
j)·z1

...
ad
j+(bd

j−ad
j)·zd

)
, j̀

)
.

3 More precisely, the augmented and shifted simplex category.
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◦ =3
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Figure 3.10. An instance of the composition Fin2(
3
2)× Fin2(

5
3)→ Fin2(

5
2) if we

use the equivalent little 2-discs description. Intuitively, each large
disc is interpreted as a ‘layer’ on which content can be placed.

If d = ∞, then a similar description holds true: again we have for each index
1 6 j 6 k a layer parameter 1 6 j̀ 6 n, and for each ω > 1, we require
that there are 0 6 aω

j < bω
j 6 1, only finitely many aω

j different from 0 and
only finitely many bω

j different from 1, such that cj(z)ω = aω
j + (bω

j − aω
j ) · zω

holds for each coordinate ω.
The composition in Find is given by composing the rectilinear embeddings

~c as maps. Finally, the terminal map Cd → of operads induces a map
Find → Fin of PROPs, which is given by remembering only on which of the n
discs each of the k discs is placed.

3.4.3. Representable operads

In this subsection, we describe how each PROP P gives rise to an N-coloured
operad rep(P). This straightforward construction is well-known for general
symmetric monoidal categories.

Construction 3.4.9. Let (P,t, 0) be a PROP in V. Then we construct an N-
coloured operad rep(P), called the representable operad underlying P, with

rep(P)(k1,...,kr
n ) := P(k1+···+kr

n ),

with input permutation given by permuting blocks of sizes k1, . . . , kr, with
identities 1n : 1 → P(n

n) = rep(P)(n
n), and with composition induced by the

monoidal sum and the composition in P, where |K| := k1 + · · ·+ kr:

rep(P)(K
n)⊗

⊗
i rep(P)(Li

ki
) rep(P)(L1···Lr

n )

P(|K|n )⊗⊗i P(|Li |
ki
) P(|K|n )⊗ P(|L1|+···+|Lr |

|K| ) P(|L1···Lr |
n ).t ◦
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Remark 3.4.10. The term ‘representable operad’ is due to [Her00, § 1] and has
the following reason: note that the operad rep(P) contains a distinguished
class of morphisms

Uk1,...,kr := 1k1 t · · · t 1kr ∈ rep(P)( k1,...,kr
k1+···+kr

),

called universal morphisms, and every operation f ∈ rep(P)(k1,...,kr
n ) can be

written uniquely as f̂ ◦Uk1,...,kr where f̂ ∈ P(k1+···+kr
n ) is a unary. In this way,

as Hermida puts it, the multiary structure is ‘universally represented by
multi[ary] classifying tensors’.

Remark 3.4.11. It may be surprising that we decided to skip the monoidal
unit 0 as a colour. This has two reasons: firstly, we want to avoid redundancy,
and an extra colour 0 would cause many coinciding operation spaces, e.g.

rep(P)(k1,k1,k3
n ) = rep(P)(k1,0,k2,k3

n ) = rep(P)(k1,0,k2,0,0,k3
n ) = . . . ,

and secondly, we have as a desired application the collection (äg>0 Mg,n)n>1

of moduli spaces in mind, and we want to avoid closed Riemann surfaces.

Remark 3.4.12. Here are some immediate observations:

1. If we denote by P the full subcategory of P with object set N, regarded
as an operad with only unaries, then we obtain a morphism of N-
coloured operads P→ rep(P).

2. By construction, if we restrict rep(P) to the colour 1, then we obtain the
monochromatic operad P(−1 ).

3.4.4. Dyeing of operads

Now we have everything at hand to dye an operad, as we wanted to do in
Subsection 3.4.1. Even though this construction is just a composition of two
well-known ones, I am not aware of any appearance in the literature.

Definition 3.4.13 (Dyeing of operads). Let C be a monochromatic operad
inside V. Then we define its dyeing to be the N-coloured operad

N(C) := rep(cat(C)).
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Since both constructions, cat and rep, are functorial, this gives rise to a functor
N : Op(V) → OpN(V) from the category of monochromatic operads in V
to the category of N-coloured operads in V.

Before coming to the properties of the dyeing construction, let us convince
ourselves that for C= Dd this is exactly the construction we motivated in
Subsection 3.4.1.

Example 3.4.14 (Dyeing of Cd). Let 1 6 d 6 ∞. Then N(Cd) = rep(Find),
and we saw in Example 3.4.8 what operations in Find look like. Consequently,
operations in N(Cd)(

k1,...,kr
n ) are tuples (~c1, . . .~cr) of rectilinear embeddings

~ci : [0; 1]d × kiki ↪→ [0; 1]d × nn with mutually disjoint interiors, and the operadic
composition is given by

(~c1, . . . ,~cr) ◦
(
(~c1,1, . . . ,~c1,s1), . . . , (~cr,1, . . . ,~cr,sr)

)
= (~c1 ◦~c1,1, . . . ,~c1 ◦~c1,s1 , . . . ,~cr ◦~cr,1, . . . ,~cr ◦~cr,sr).

The same holds for Dd: we only have to replace rectilinear embeddings by
embeddings of discs, see Figure 3.11.

If C is a general monochromatic operad, then we can visualise operations
in N(C) in a similar way by using trees as in Remark 3.4.5; we only have to
refine our input assignment:

Remark 3.4.15. Operations in N(C)(k1,...,kr
n ) can be given by tuples (Y1, . . . , Yn)

of admissible trees, each Yl with a single internal vertex of arity ul which
is labelled in C(ul), together with a bijection between the outer leaves of all
trees and the tableau Yk1,...,kr from Definition 1.2.1.

For example, if µ1 ∈ C(3), µ2 ∈ C(4), and µ3 ∈ C(0), then we obtain an
operation in N(C)(2,1,3,1

3 ) by
3,3 1,2 1,1

µ1

,

3,1 2,1 4,1 3,2

µ2

,
µ3

.
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2,1

2,2

2,3

3,1
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1,1

1,2

2,3
2,2

2,4

3,1

2,1

Figure 3.11. N(D2)(
2,3,2

3 ) ×
(
N(D2)(

2
2) × O(4,1

3 ) ×N(D2)(2)
)
→ N(D2)(

2,4,1
3 ).

Note that, in contrast to Figure 3.9 and Figure 3.10, we draw the
multiple large discs of a given operation from bottom to top.

Remark 3.4.16. Note that Σ is the same as the sequence of symmetric groups
S = (Sn)n>1, and hence, we will use the abbreviation S instead.

For each monochromatic operad C, we get a pairing ζ : (C,S) → N(C)

as follows: if µ ∈ C(r) and σ ∈ Sn, then we put

ζ(µ, σ) :=

 1, σ−1(1) · · · r, σ−1(1)

µ

, . . . ,

1, σ−1(n) · · · r, σ−1(n)

µ

 ∈N(C)(n,...,n
n ).

This gives rise to a map of N-coloured operads ı : C�S→N(C), whence
each N(C)-algebra has an underlying functor S→ C-Alg. In other words,
if X = (Xn)n>1 is a N(C)-algebra, then each Xn is a C-algebra, together with
a left Sn-action by C-automorphisms.

If C has a preferred nullary operation v ∈ C(0), then we can extend the
above pairing ζ to (C, Inj)→N(C) by filling, for each f : kk ↪→ nn, the lth

entry of the tuple ζ(µ, f ) ∈N(C)(k,...,k
n ) with v whenever f−1(l) = ∅.
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Chapter 3. Coloured and dyed operads

The following paragraph shows how the dyeing construction in different
symmetric monoidal categories can be compared via lax monoidal functors.

Construction 3.4.17. Let H : (V,⊗, 1)→ (V′,⊗′, 1′) be a lax monoidal functor
and let Cbe a monochromatic operad in V. Then there is a natural morphism
ηC : N(HC)→ HN(C) of N-coloured operads in V′, which is comprised of
maps of the form

ä
f : k→n

n⊗
l=1

′HC(# f−1(l))→ H

(
ä

f : k→n

n⊗
l=1

C(# f−1(l))

)

Clearly, if H commutes with finite coproducts and if, for all u1, . . . , un > 0,
the transformation

⊗′
l HC(ul)→ H(

⊗
l C(ul)) is an isomorphism, then ηC

is an isomorphism of N-coloured operads. Note that the second condition is
a fortiori satisfied if H is strong monoidal.

Example 3.4.18. The functor π0 : Top → Set is strong monoidal and pre-
serves coproducts. Thus, π0(N(C)) ∼= N(π0(C)); for example, we get

π0(N(Cd)) =

{
N(Ass) for d = 1,

N( ) for d > 2.

For a principal ideal domain R, the functor H•(−; R) : Top → R-ModZ is
lax monoidal and also preserves coproducts. If F is a field, then H•(−; F)

is even strong monoidal, whence we get H•(N(C); F) ∼= N(H•(C; F)) for
each monochromatic operad C.

For a general principal ideal domain R, this is not the case, but if H•(C; R)
is degreewise and aritywise free, then the torsion terms in the Künneth
theorem vanish and we obtain again H•(N(C); R) ∼= N(H•(C; R)). This is
for example the case for C= Cd, as [Arn69] shows. Therefore, we obtain

H•(N(Cd); R) ∼= N(H•(Cd; R)) ∼= N( R
d ).

Let us close this subsection with a collection of examples for which we aim
to understand algebras over their dyed operads.
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3.4. Dyeing of monochromatic operads

Example 3.4.19 (Dyeing of ). Using that cat( ) = Fin, the operation
spaces of N( ) are readily identified as

N( )(k1,...,kr
n ) = Fin(k1+···+kr

n ) =
r

∏
i=1

Fin(ki
n),

and the composition is given entrywise by

(g1, . . . , gr) ◦
(
( f1,1, . . . , f1,s1), . . . , ( fr,1, . . . , fr,sr)

)
= (g1 ◦ f1,1, . . . , g1 ◦ f1,s1 , . . . , gr ◦ fr,1, . . . , gr ◦ fr,sr).

One readily checks that the pairing ζ : ( ,S) → N( ) from Remark
3.4.16 extends to an isomorphism � Fin→N( ) of operads, whence
N( )-algebras are the same as functors Fin→ -Alg into the category
of (topological) commutative monoids.

3.4.5. Connective operations

The last general construction, which we promised in Subsection 3.4.1, is the
one of the connective suboperad Nc(C): for C= D2, the suboperad Nc(D2)

should contain only those configurations of discs which yield connected
surfaces if we start with connected surfaces as arguments. Pictorially, an
operation in N(D2)(

K
n) is connective if we can reach each of the n large discs

by jumping along discs which belong to the same input. This is a purely
combinatorial property, which can be formalised as follows:

Construction 3.4.20. Recall from Example 3.4.19 that N( )(k1,...,kr
n ) consists

of tuples f = ( f1, . . . , fr) of maps fi : kiki → nn. We call such a tuple connective
(„verbindend“) if the equivalence relation on nn, which is spanned by l∼ l′

if there is a 1 6 i 6 r such that l, l′ ∈ im( fi), is full. This property is clearly
invariant under input permutation and we denote the N-coloured quiver of
these operations by Nc( ) ⊆N( ).

Moreover, 1n = (idn) ∈N( )(n
n) is clearly connective for each n, and it

is straightforward to check that the composition of two connective operations
is again connective. This shows that Nc( ) ⊆N( ) is a suboperad.
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2,3 1,2 1,1

µ1
,

3,1 2,1 2,2 3,2

µ2




2,3 2,2 2,1

µ1
,

3,1 1,1 1,2 3,2

µ2



Figure 3.12. Two operations in N(C)(2,3,2
2 ), with µ1 ∈ C(3) and µ2 ∈ C(4). The

left one is connective, while the right one is not.

Construction 3.4.21. For each monochromatic operad C there is a unique
(terminal) morphism of operads ρ : C→ V, and we define the connective
suboperad Nc(C) as the pullback of N-coloured operads (i.e. for each colour
profile, the pullback in V, together with the induced structure maps)

Nc(C) Nc( V)

N(C) N( V).

y

N(ρ)

If V = Top, then N( V) consists of discrete operation spaces, so Nc(C)

is, topologically, just a restriction to certain connected components.

Remark 3.4.22. We have Nc(K
1) = N(K

1), i.e. each operation with output
colour 1 is connective. On the other hand, note that Nc(n) = ∅ if n > 2, as
the equivalence relation imposed on nn is discrete.

Moreover, there is a replacement for Remark 3.4.16, where we skip the
nullaries of C: if we denote by Cc the monochromatic operad with operation
spaces Cc(r) = C(r) for r > 1 and C(r) = ∅, then the aforementioned
pairing corestricts to (Cc,S)→Nc(C) and we obtain a map of N-coloured
operads Cc �S→Nc(C).

Put differently, each Nc(C)-algebra has an underlying sequence (Xn)n>1

of Cc-algebras, and each Xn carries an Sn-action by Cc-automorphisms.
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Chapter 4

Vertical operads and their algebras

First recall what trees themselves are.

Tom Leinster

For d = p + q, we define the vertical operad Vp,q as a suboperad of N(Cd).
As mentioned earlier, this operad is related to the extended Swiss cheese
operad from [Wil17] and generalises ideas from [Böd90b; Böd13].

Using methods from [Dun86; Bri00], we show that Vp,q splits, up to equi-
valence of operads, as the Boardman–Vogt tensor product of Cp and N(Cq),
which implies that the homotopy theory of Vp,q-algebras is equivalent to the
one of N(Cq)-algebras with compatible Cp-structures on each level.

In a consequent section, we extend our cellular calculations of Section 1.4
and construct a Morse flow similar to the one in [Bia21] in order to calculate
the homology of V1,1 cellularly: on the one hand, this recovers Theorem
1.2.5 for the case (p, q) = (1, 1), but in addition, the cellular decomposition
behaves well with respect to the operadic structure. This allows us to give a
presentation of the algebraic operad H•(V1,1) in the spirit of [Sin06] and to
classify all (binary) divided power operations as in [CLM76, § iii].

4.1. Definition and first observations

Definition 4.1.1. Let 1 6 d < ∞ and recall that operations in N(Cd)(
k1,...,kr

n )

are tuples (c1,1, . . . , cr,kr) where ci,j : [0; 1]d ↪→ [0; 1]d × nn is a rectilinear em-
bedding for each 1 6 i 6 r and each 1 6 j6 ki, such that the interiors of
im(ci,j) are mutually disjoint.

Now fix a decomposition d = p + q with p > 0 and q > 1 and consider
for each n > 1 the projection prn

p : [0; 1]d × nn = [0; 1]p × [0; 1]q × nn → [0; 1]p
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Chapter 4. Vertical operads and their algebras

which forgets the rear q coordinates and layer parameter. The vertical operad
Vp,q is then defined to be the suboperad of N(Cd) where Vp,q(

k1,...,kr
n ) contains

only those configurations (c1,1, . . . , cr,kr) of boxes where prn
p ◦ ci,j = prn

p ◦ ci,j′

holds for all 1 6 i 6 r and each 1 6 j,j′ 6 ki.
Pictorially, this condition requires that boxes which belong to the same

input share their first p coordinates. Clearly, this condition is invariant under
input permutation, Vp,q contains the identities 1n, and it is an easy task to
check that Vp,q is closed under composition in N(Cd), see Figure 4.1. Hence
Vp,q is a suboperad of N(Cd).

This operad Vp,q will play a central rôle throughout the rest of this chapter
and the next one. Let us start by highlighting the connection to a variation of
the so-called ‘Swiss cheese operad’.

Remark 4.1.2 (Extended Swiss cheese operad). The operad Vp,q is related to
a version of the Swiss cheese operad [Vor99], namely the extended Swiss cheese
operad Swq,d which is due to [Wil17] and can be described as follows:

The operad Swq,d has two colours: a (for ‘arbitrary’) and m (for ‘middle’),
and we define, using the notation from Construction 3.3.10, Swq,d(

r×a,s×m
a )

to be Dd(r) for s = 0, and empty for s > 1, while we let Swq,d(
r×a,s×m

m ) be
the subspace of Dd(r + s) containing configurations (c1, . . . , cr, c′1, . . . , c′s) of
discs such that all discs c′i : Dd ↪→ Dd are centred inside Dq, i.e. if we write
c′i(z) = ẑ + ε · z, then we require that ẑ ∈ {0}p ×Dq. Composition is given by
placing discs inside each other as usual, and one easily sees that the colour
distinction ensures that the new centring constraint is preserved. There are
several variations of these operads, see [PT21, § 4] for an overview.

Now we see that, up to equivalence, these operation spaces are special
cases of our vertical operad Vp,q. More precisely, we construct an equivalence

Swq,d(
r×a,s×m

m ) ' Vp,q(
r×1,s

1 )

as follows: there is a deformation retract Sw′q,d(
r×a,s×m

m ) ↪→ Swq,d(
r×a,s×m

m )

containing those configurations where all discs c′i have the same radius. For
each embedded disc c : Dd ↪→ Dd, there is a maximal rectilinear embedding
c̃ : [0; 1]d ↪→ [0; 1]d such that im(c̃) ⊆ im(c), and for each (c, c′) ∈ Sw′q,d, the
corresponding tuple (c̃, c̃ ′) can be regarded as an element in N(Cd)(

r×1,s
1 ).
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Moreover, all boxes c̃ ′1, . . . , c̃ ′s project to the same first p coordinates, as they
are maximal inside equally sized discs centred at {0}p ×Dq ⊆ Dd. This
gives rise to a map Sw′q,d(

r×a,s×m
m ) ↪→ Vp,q(

r×1,s
1 ), which is again a deformation

retract, the retraction given by shrinking boxes to cubes which are contained
in mutually disjoint discs, and by recentring the configuration such that the
last cluster projects down to a mid-centred cube in [0; 1]p.

It is worth pointing out that, although some operation spaces of Vp,q coin-
cide with the ones from Swq,d, a crucial difference between the two operads
lies in the combinatorics of their respective compositions: roughly speaking,
in Vp,q, clusters from different inputs can never be merged, while in Swq,d,
different inputs can contribute central discs.

We continue by establishing a connection between vertical operads and
vertical configuration spaces from the previous chapters. To do so, note that
the pairing ζ : (Cd,S)→N(Cd) from Remark 3.4.16 is of the following form:
if µ = (c1, . . . , cr) ∈ Cd(r) and σ ∈ Sn, then we have

ζ(µ, σ) = (c1 × σ, . . . , cr × σ).

In particular, ζ(µ, σ) is contained in the suboperad Vp,q for all p + q = d, so if
X = (Xn)n>1 is an Vp,q-algebra, then each Xn is a Cd-algebra, together with a
left Sn-action on Xn by Cd-automorphisms.

We want to focus on the suboperad B�S ↪→ Cd �S. A fortiori, each
Vp,q-algebra is a (B�S)-algebra by restriction; that is, it has an underlying
based symmetric sequence.

Proposition 4.1.3. If we denote by Rp,q × nn := Rp × (Rq × nn)→ Rp the trivial
fibre bundle, then there are two sorts of homotopy equivalences:

1. For each colour profile K = (k1, . . . , kr) and each n > 1, we have a homotopy
equivalence

Vp,q(
K
n)→ ṼK(R

p,q × nn).

2. For an equivariantly well-based symmetric sequence X = (Xn)n>1 and each
colour n > 1, we have a based homotopy equivalence

FVp,q
B�S(X)n → V(Rp,q × nn; X).
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Chapter 4. Vertical operads and their algebras

Proof. A choice of homeomorphism R ∼= (0; 1) gives rise to an isomorphism
of bundles Rp,q × nn ∼= (0; 1)p,q × nn, so we can equally well work with the
interior of a cube instead.

Similar to the classical monochromatic case [May72, Thm. 4.8], we have a
map Φ := ΦK

n : Vp,q(
K
n)→ ṼK((0; 1)p,q × nn) by taking mid-points, i.e.

Φ(c1,1, . . . , cr,kr) :=
(
c1,1
(

1
2 , . . . , 1

2

)
, . . . , cr,kr

(
1
2 , . . . , 1

2

))
.

It admits a homotopy inverse Ψ : ṼK((0; 1)p,q × nn)→ Vp,q(
K
n) that determines,

for each vertical configuration (z1,1, . . . , zr,kr) on (0; 1)p,q × nn, the largest box
diameter such that boxes which are centered in z1,1, . . . , zr,kr are still contained
in [0; 1]d × nn and have disjoint interior. Then Φ ◦Ψ = idṼ and a homotopy
Ψ ◦Φ⇒ idV is given by rescaling boxes.

The second equivalence uses the same maps ΦK
n : if we invoke the coend

description for FVp,q
B�S from Example 3.3.26, then we obtain an induced map

FVp,q
B�S(X)n V(Rp,q × nn; X)

∫K∈S oInj
Vp,q(

K
n)× XK ∫K∈S oInj ṼK(R

p,q × nn)× XK.∫K ΦK
n×idXK

Since each AutS oInj(K) acts freely on both Vp,q(
K
n) and ṼK(R

p,q × nn) and each
coface di : XdiK → XK is a cofibration, the bottom horizontal map agrees, up
to equivalence with the map induced among the respective homotopy coends,
which is an equivalence as each constituent ΦK

n × idXK is.

In light of the previous Proposition, the results from Chapter 2 can be
interpreted as an attempt to study the Ed-algebra structure which underlies
the free Vp,q-algebra FVp,q

B�S(X) levelwise: the statement of Theorem 2.2.2
can without any difficulties be pushed a bit further, stating that the p-fold
bar construction BpV(Rp,q × nn; X) is Eq-equivalent to C(Rq × nn; ΣX), one
just has to additionally entrain the projection nn → 11 throughout the entire
proof. While this completely describes the Cp-algebra structure in the case
where X is levelwise path connected, the next delooping steps are still hard
to understand. Our second delooping result Theorem 2.3.4 gives a partial
answer, by describing the first level of the Cp+1-algebra FVp,1

B�S(X)1 entirely.
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Figure 4.1. V1,1(
2,3,2

3 )×
(
V1,1(

2,1
2 )× V1,1(

2,2
3 )× V1,1(2)

)
→ V1,1(

2,1,2,2
3 )

4.2. Dunn additivity for vertical operads

In this section, we show that Vp,q splits, up to equivalence, into easier operads:
the pairing among the little cubes operad which gave rise to Dunn’s additivity
theorem, see Example 3.3.23, has a coloured analogue as follows:

Construction 4.2.1. If we denote elements in Cp(r) as tuples (c1, . . . , cr) with
ci : [0; 1]p ↪→ [0; 1]p a rectilinear embedding, and elements of N(Cq)(

k1,...,ks
n )

by (~c1, . . . ,~cs) with ~ci : [0; 1]q × kiki ↪→ [0; 1]q × nn a rectilinear embedding, then
we have a pairing ζ : (Cp, N(Cq))→ Vp,q with

ζ
(
(c1, . . . , cr), (~c1, . . . ,~cs)

)
= (c1×~c1, . . . , c1×~cs, . . . , cr×~c1, . . . , cr×~cs).

Theorem 4.2.2. The induced map of N-coloured operads

Cp �N(Cq)→ Vp,q

is an equivalence of S-cofibrant operads.

The proof of Theorem 4.2.2 is inspired by the method from [Bri00] and will
occupy the rest of this section.
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1,3
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2,1

Figure 4.2. An instance of ζ : C1(2)×N(C1)(
3,2
2 )→ V1,1(

3,2,3,2
2 )

Notation 4.2.3. During the proof of Theorem 4.2.2, we will occasionally argue
for a general pairing ζ : (C,O)→ P of operads, where C is monochromatic
and both O and P are N-coloured. In all these cases, we assume that these
operads are reduced, i.e. C(0) = O(n) = P(n) = ∗.

4.2.1. Decomposable operations

In order to prove Theorem 4.2.2, we show two substatements: firstly, the
induced map ζ� : Cp �N(Cq)→ Vp,q is an isomorphism onto its image, and
secondly, the inclusion of the image into Vp,q is an equivalence of operads.

While the first statement needs some further preparation, we prove the
second statement in this subsection.

Notation 4.2.4. Let ζ : (C,O)→ P be a pairing. For each pair of suboperads
C′ ⊆ C and O′ ⊆ O, we denote by C′ ~ O′ ⊆ P := ζ�(C′ � O′) the image of
C′ � O′ under the induced operad map ζ�; it is a suboperad of P.

Using this notation, the precise statement we want to prove in this subsec-
tion is the following:

Proposition 4.2.5. The inclusion Cp ~N(Cq) ↪→ Vp,q is an equivalence.

The proof of Proposition 4.2.5 is rather similar to the proof of [Dun86,
Prop. 2.3]; however, we need a slightly more involved notion of decomposab-
ility, with respect to a system of binary operations.
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Definition 4.2.6. Let O be an N-coloured topological operad. A family of
subspaces A(k1,k2

n ) ⊆ O(k1,k2
n ) of binary operations is called a decomposer if, for

each unary µ ∈ O( n
n′) and α ∈ A(k1,k2

n ), there is an operation α′ ∈ A(k′1,k′2
n′ ) and

unaries µi ∈ O(ki
k′i
) such that µ ◦ α = α′ ◦ (µ1, µ2) holds.

Let A⊆ O be a decomposer. We define what it means for an operation µ

to be decomposable by induction on the arity r := r(µ): if r 6 1, µ is called
decomposable without any requirement; and if r > 2, we call µ decomposable
if there is a permutation τ ∈ Sr, a binary operation α ∈ Aand decomposable
operations µi with r(µi) < r, such that µ = τ∗(α ◦ (µ1, µ2)) holds. We denote
by dO(K

n) ⊆ O(K
n) the subspace of all decomposable operations.

Lemma 4.2.7. The collection dO of operation spaces forms a suboperad of O, and if
ρ : O→ O′ is an operad morphism and A⊆ O and A′ ⊆ O′ are decomposers with
ρ(A) ⊆ A′, then ρ(dO) ⊆ dO′ and we obtain an induced map dρ : dO→ dO′.

The proof of Lemma 4.2.7 is straightforward and left to the reader.

Example 4.2.8. For the little p-cubes operad Cp, we let the decomposer be
the system of all binary operations. Then dCp ⊆ Cp is exactly the suboperad
of decomposables which was considered in [Dun86, Def. 2.1].

For the dyeing N(Cq), we again let the decomposer be the system of all bin-
ary operations. Then we get dN(Cq) = N(Cq), since each ν ∈N(Cq)(

k1,...,kr
n )

can be written as ν′ ◦Uk1,...,kr , where ν′ is a unary and Uk1,...,kr are the universal
morphisms from Remark 3.4.10; these universal morphisms, in turn, decom-
pose into a binary tree, as Uk1,...,kr = Uk1,k2+···+kr ◦ (1k1 , Uk2,...,kr).

Example 4.2.9. For the vertical operad, the pairing ζ : (Cp, N(Cq)) → Vp,q

gives rise to operad maps ζ(1,−) : N(Cq)→ Vp,q and ζ(−, 1n) : Cp → Vp,q|n
for each n > 1. We define A(k1,k2

n ) to be{
{ζ(µ, 1n); µ ∈ Cp(2)} ∪ {ζ(1, ν); ν ∈N(Cq)(

n,n
n )} for k1 = k2 = n,

{ζ(1, ν); ν ∈N(Cq)(
k1,k2

n )} else.

One easily checks that A indeed forms a decomposer.

The pairing ζ : (Cp, N(Cq)) → Vp,q behaves nicely with respect to the
suboperads of decomposable operations, as the following Lemma shows.

125



Chapter 4. Vertical operads and their algebras

Lemma 4.2.10. We have dCp ~N(Cq) = dVp,q.

Proof. In order to show ‘⊆’, it is sufficient to show that ζ sends pairs of de-
composable operations to decomposable ones: recall that dN(Cq) = N(Cq).
By construction, the operad morphism ζ(1,−) : N(Cq) → Vp,q maps the
decomposer of N(Cq) into the decomposer of Vp,q; and thus, by Lemma 4.2.7,
it corestricts to an operad map N(Cq)→ dVp,q. Likewise, for each n > 1, the
operad map ζ(−, 1n) : Cp → Vp,q|n corestricts to dCp → (dVp,q)|n.

Now let µ ∈ dCp and ν ∈ N(Cq) be two operations. Then the previous
paragraph shows that ζ(µ, 1n) ∈ dVp,q and ζ(1, ν) ∈ dVp,q, and we obtain the
equality ζ(µ, ν) = ζ(µ, 1n) ◦ (ζ(1, ν), . . . , ζ(1, ν)) ∈ dVp,q.

The inclusion ‘⊇’ is shown by induction on the arity r: clearly, the map
ζ�(n) : (Cp �N(Cq))(n)→ Vp,q(n) = ∗ is surjective, and for each ξ ∈ Vp,q(

k
n),

there is a µ ∈ Cp(1) = (dCp)(1) and a ν ∈N(Cq)(
k
n) such that ξ = ζ(µ, ν). If

r > 2 and ξ ∈ dVp,q(
k1,...,kr

n ) is an r-ary operation, then, by construction, there
is a decomposition ξ = τ∗(α ◦ (ξ1, ξ2)) with α inside the decomposer and ξi

of smaller arity and decomposable. By the induction hypothesis, ξ1 and ξ2

lie in the suboperad dCp ~N(Cq), and α is either of the form ζ(µ, 1n) with
µ ∈ Cp(2) = (dCp)(2) or ζ(1, ν) with ν ∈N(Cq)(

l1,l2
n ), and in both cases, α

lies in dCp ~N(Cq). Since Cp ~N(Cq) forms a suboperad, the composition
ξ = τ∗(α ◦ (ξ1, ξ2)) lies in the image as well.

In [Dun86, Prop. 2.3], it is shown that the inclusion map dCp ↪→ Cp is an
equivalence of operads. We can adjust Dunn’s proof to show the analogue
for the case of the vertical operad.

Lemma 4.2.11. The inclusion dVp,q ↪→ Vp,q is an equivalence of operads.

Proof. For each 0 6 t 6 1, we let ud,t : [0; 1]d ↪→ [0; 1]d be the map which
shrinks the square by the factor t ‘towards the mid-point’: formally, we let

ud,t

(
1
2 + z1, . . . , 1

2 + zd
)

:=
(

1
2 + t · z1, . . . , 1

2 + t · zd
)

.

Now consider, for each input profile K = (k1, . . . , kr) and each output colour
n > 1, the deformation H : Vp,q(

K
n)× (0; 1]→ Vp,q(

K
n) given by

H(c1,1, . . . , cr,sr ; t) := (c1,1 ◦ ud,t, . . . , cr,sr ◦ ud,t),
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Figure 4.3. An operation in V1,1(
2,2,3,2,1

2 ), as well as a possible decomposition as
(2 4 3)∗(ζ(µ1, 12)◦(ζ(1, ν1)◦(ζ(µ2, 12)◦(ξ1, ξ4), ξ2), ζ(1, ν2)◦(ξ3, ξ5)))
with µ1, µ2 ∈ C1(2) and ν1 ∈ N(C1)(

2,2
2 ) and ν2 ∈ N(C1)(

2,1
2 ), and

ξ1, . . . , ξ5 ∈ V1,1 are unaries.

which leaves all boxes at their place, but makes them smaller for t < 1.
The following argument shows that for each ξ ∈ Vp,q(

K
n), there is an ε > 0

such that H(ξ, ε) ∈ dVp,q(
K
n): we write ξ = (~c1, . . . ,~cr) with~ci = (ci,1, . . . , ci,ki).

Let prn
p : [0; 1]d × nn→ [0; 1]p be again the projection to the first p coordinates

and let ηp : [0; 1]p ∼= [0; 1]p × {0}q ↪→ [0; 1]d be the obvious inclusion. For each
i, we define the p-cube ci := prp

n ◦ ci,1 ◦ ηp : [0; 1]p → [0; 1]p and we denote its
mid-point by zi := ci( 1

2 , . . . , 1
2 ) ∈ [0; 1]p. We say that two indices 1 6 i, i′ 6 r

are equivalent if zi = zi′ , and we write S1, . . . , Sh for the equivalence classes,
ordered by their minimum. For each 1 6 l 6 h we write sl := #Sl , and we
let c̄l : [0; 1]p ↪→ [0; 1]p be the smallest little p-cube which contains all boxes
ci with i ∈ Sl . Then there clearly is an ε′ > 0 such that (c̄1 ◦ uε′ , . . . , c̄h ◦ uε′)

is a tuple of little p-cubes with mutually disjoint interior, i.e. an element of
Cp(h), and by the argument in [Dun86, Lem. 2.2], there is an 0 < ε < ε′ such
that µ := (c̄1 ◦ uε, . . . , c̄h ◦ uε) is even a decomposable operation in Cp(h).

On the other hand, let prq : [0; 1]d → [0; 1]q be the projection to the last q co-
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1

2

2,1

1,1

1,2

4,1

3,1

3,2

Figure 4.4. An indecomposable configuration in V1,1(
2,1,2,1

2 ): clearly, a decompos-
ition cannot start with a vertical cut, and the only possible horizontal
cut would separate the first input from the third one; however, they
are ‘entangled’ on the second layer.

ordinates and let ηq : [0; 1]q ∼= {0}p × [0; 1]q ↪→ [0; 1]d be the obvious inclusion.
For each 1 6 l 6 h, we write Sl =

{
il,1 < · · · < il,sl

}
, and for each 1 6 m 6 sl ,

we let ~cl,m := (prq × nn) ◦~cil,m ◦ (ηq × kil,mkil,m). Since these boxes share their mid-
point with respect to the first p coordinates, ν′l := (~cl,1, . . . ,~cl,sl ) is a tuple of
clusters of little q-cubes in [0; 1]q × nn with disjoint interior, i.e. an element of
N(Cq), and the same applies to νl := (~cl,1 ◦ uq,ε, . . . ,~cl,sl ◦ uq,ε). Finally, for
each 1 6 l 6 h and each 1 6 m 6 sl , there is a unary µl,m = (cl,m) ∈ Cp(1)
with cl,m : [0; 1]p ↪→ [0; 1]p measuring the difference between the maximal box
c̄l and the individual one cil,m . Now it is an easy task to see that

H(ξ, ε) = τ∗
(
ζ(µ, 1) ◦ (ζ(1, ν1), . . . , ζ(1, νh)) ◦ (ζ(µ1,1, 1), . . . , ζ(µh,sh , 1))

)
,

where τ ∈ Sr compares the total order on rr with the lexicographic one on
äl{l} × Sl , and all operations in the above expression are decomposable.

For each ξ ∈ Vp,q(
K
n), we define εξ := sup(ε; H(ξ, ε) ∈ dVp,q). The previ-

ous paragraphs ensure that εξ > 0. Moreover, dVp,q(
K
n) ⊆ Vp,q(

K
n) is closed,

whence we have H(ξ, εξ) ∈ dVp,q(
K
n). Finally, it is a tedious, but straightfor-

ward exercise to check that the assignment ξ 7→ εξ is continuous. Since εξ = 1
for all ξ ∈ dVp,q(

K
n), this gives rise to a retraction of ı : dVp,q(K

n) ↪→ Vp,q(K
n) by

ρ : Vp,q(
K
n)→ dVp,q(

K
n), ξ 7→ H(ξ, εξ).

and we have a homotopy Ĥ : idV⇒ ı ◦ ρ by Ĥ(ξ, t) := H(ξ, 1− t + t · εξ).
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4.2. Dunn additivity for vertical operads

Corollary 4.2.12. The inclusion dCp ~N(Cq) ↪→ Cp ~N(Cq) inside the sur-
rounding operad Vp,q is an equivalence of operads.

Proof. Recall that we saw in Lemma 4.2.10 that dCp ~N(Cq) = dVp,q. Now
for each 0 < t 6 1, the map H(−, t) : Vp,q(

K
n) → Vp,q(

K
n) is given by precom-

posing with the unaries ud,t × kiki, and Cp ~N(Cq) contains all unaries, so we
obtain that H(ξ, t) ∈ (Cp ~N(Cq))(

K
n) holds for all ξ ∈ (Cp ~N(Cq))(

K
n),

whence both the retraction ρ and the homotopy Ĥ restrict to (Cp~N(Cq))(K
n),

leaving the subspace dVp,q(
K
n) fixed.

Proof of Proposition 4.2.5. Lemma 4.2.10 identifies dCp ~N(Cq) and dVp,q as
suboperads of Vp,q. Altogether, we have a square of suboperad inclusions

dCp ~N(Cq) dVp,q

Cp ~N(Cq) Vp,q,

' '

where the two vertical maps are equivalences of operads by Lemma 4.2.11

and Corollary 4.2.12. By the 2-out-of-3 property, the bottom inclusion is an
equivalence as well.

4.2.2. A combinatorial interlude

In order to proceed with the proof of Theorem 4.2.2 in the way we indicated
before, we need a few combinatorial tools which apply to general operads.

Let us quickly recall from Construction 3.2.7 and Construction 3.3.19 how
the Boardman–Vogt tensor product of two operads is constructed, here in a
slightly simpler way, as we can assume one factor to be monochromatic:

Reminder 4.2.13. Let C be a monochromatic operad and O be an N-coloured
operad. We define the N-coloured quiver C∗ O := (C× N) t (∗ × O) and
consider the free operad Ψ(C∗ O) over C∗ O: as done in Construction 3.2.7,
we define (C∗ O)(Y) := ∏v(C∗ O)(Kv

nv), using the notation of Definition 3.2.3.
Then the operation space Ψ(C∗ O)(K

n) is given by quotienting äY(C∗ O)(Y)
by the relation which equalises the formal and the given input permutation
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Chapter 4. Vertical operads and their algebras

at each internal vertex, where Y ranges over all N-trees with input profile K
and output colour n.

In this section, it is convenient to use a more visual language: a two-parted
tree is an N-tree Y, together with a decomposition V• = V• ∪̇V• of the set of
internal vertices, such that for each v ∈ V•, we have Kv = (nv, . . . , nv); then
we can rewrite (C∗ O)(Y) = ∏v∈V• C(rv)×∏w∈V• O(

Kw
nw
). Accordingly, we

call an internal vertex red if it belongs to V•, and green if it belongs to V•, and
we call this distinction the domain of v. Moreover, we call the vertex which is
next to the root the crotch.

In a second step, we quotient the free operad Ψ(C∗ O) by the operadic
relation from Construction 3.3.19: we abridge internal vertices labelled by 1C

or 1O
n , we compose adjacent internal vertices of the same domain, and we

employ the interchange law.

For the remainder of the proof of Theorem 4.2.2, it is necessary to bring
these representatives into certain normal forms, and this subsection aims to
introduce them properly. Let us start with the notion of a reduced two-parted
tree, which is similar to [Bri00, Def. 5.2]:

Definition 4.2.14. We call a two-parted tree reduced if it is either the stump,
i.e. the tree with a single internal vertex of arity 0, or its arity is at least 1 and
the following holds:

r1. there are no adjacent internal vertices of the same domain;

r2. there is no vertex of arity 0;

r3. there are no two adjacent internal vertices of arity 1, which are both not
adjacent to an outer leaf.

The following elementary Lemma is proven in [Bri00, Lem. 5.3]:

Lemma 4.2.15. Let C and O be operads and let ϑ ∈ C� O be an operation.

1. For each domain (red or green), ϑ can be represented by a reduced two-parted
tree whose crotch has the chosen domain.

2. If the arity of ϑ is at least 2, then ϑ can be represented by a reduced two-parted
tree whose crotch has at least arity 2.

130



4.2. Dunn additivity for vertical operads

•
•2

3 1

•
•
•

1

2

•
•
•

2 1

Figure 4.5. Here are three two-parted trees: the ith example violates the condi-
tion ri (coloured in yellow) and none of the others.

In the special case where the underlying colour set is N, we are additionally
interested in a property which affects the labels of the edges.

Definition 4.2.16. We call a reduced two-parted N-tree bounded if the follow-
ing holds: let v be a red internal vertex which is neither adjacent to the root
nor to an outer leaf. By r1, all incoming edges start at a green internal vertex,
and we let w1, . . . , ws be the collection of them. In this case, we require that

|Kw1 |+ · · ·+ |Kws | > nv,

where for K = (k1, . . . , kr), we write |K| := k1 + · · ·+ kr as in Section 1.1.

The main merit of this property is captured by the following Lemma.

Lemma 4.2.17. For each input profile K and each output colour n > 1, there are
only finitely many bounded two-parted N-trees of type (K

n).

Proof. If we ignore the labels for a moment, then [Bri00, § 5] gives an element-
ary argument why there are only finitely many reduced trees.

We are left to label the edges by positive integers. Note that the output
colour n and the input profile K, together with the numbering of the outer
leaves, already determines the label of the edge ending at the root and the
labels of the edges which start at an outer leaf. Now we proceed ‘from top to
bottom’: it is sufficient to show that at each internal vertex, given all labels of
the incoming edges (there is at least one, as we do not have nullaries), we
have only finitely many possibilities to label the outgoing edge.

If the respective internal vertex is red, this statement is clear, as red internal
vertices come from the monochromatic factor. Else, if the respective internal
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vertex w is green, then the outgoing edge is either the root or it has to end
in a red internal vertex v. If v is adjacent to the root, then the global output
colour n determines the label nw = nv = n. If v has an adjacent outer leaf
with input number i, then we already know the label of their incoming
edges nw = nv = ki. If not, we make use of the bounding property: we let
w = w1, . . . , ws be the neighbours of w, i.e. the green internal vertices whose
outgoing edges land in v. Since we proceed from top to bottom, we have
already chosen the labels of all incoming edges of w1, . . . , ws; in particular,
we have already determined |Kw1 |, . . . , |Kws |. Now the bounding property
tells us that nw = nv can be at most |Kw1 |+ · · ·+ |Kws |.

Lemma 4.2.18. Let C and D be two monochromatic operads. Then each operation
ϑ ∈ C�N(D) can be represented by a bounded N-tree.

Proof. By Lemma 4.2.15, we can find a representative for ϑ which is a reduced
two-parted tree Y. We call a red vertex v of Y bad if it violates the bounding
condition, and let l be the sum of all distances from a bad red vertex to the
crotch. Clearly, Y is bounded if and only if l = 0 holds. We give an inductive
procedure how to make l smaller as long as l > 1, see Figure 4.6:

We pick a bad vertex v and let w1, . . . , ws be the green vertices above v,
with labels νi ∈ N(D)(Kwi

nv
). If we define ki := |Kwi |, then each νi encodes a

map fi : kiki → nvnv. Let k be the cardinality of
⋃

i im( fi). Then clearly k 6 ∑i ki.
Moreover, let f : kk ↪→ nvnv be the monotone inclusion of the image into nvnv,
which can be regarded as a unary operation in N(D)( k

nv
) by using the pairing

(D, Inj)→N(D) from Remark 3.4.16.
Then we can write νi = f ◦ ν′i with ν′i ∈ N(D)(Kwi

k ) for each 1 6 i 6 s.
Thus, we can split each green vertex wj into two green vertices, the lower one
w̄j being a unary labelled by f and the upper one labelled by νi. Applying
the interchange law, we can exchange w̄1, . . . , w̄s, which are all labelled by
f , and v, resulting in a single green vertex w̄ below v. Finally, since v was
not the root, w̄ is adjacent to a green vertex and we can compose them. The
modified tree has the same shape as the old one; in particular, it is again
reduced, and moreover, the vertex v does not violate the bounding property
any more. It may happen that we have caused a single new bad red vertex
below by moving f downwards, but this one is now strictly nearer to the
root; hence we succeeded in making l smaller.
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Figure 4.6. An inductive step in order to become bounded: here we are given
explicit operations ν1 ∈N(C2)(

2,1
6
) and ν2 ∈N(C2)(

2
6). This gives

rise to f ∈N(C2)(4
6) covering all layers attained by ν1 or ν2.

4.2.3. Brinkmeier’s compactification

In order to prove Theorem 4.2.2, we are left to show that the induced map
ζ� : Cp �N(Cq)→ Vp,q is a homeomorphism onto its image. Although we
in principle could show injectivity ‘by hand’, we have to deal with the fact
that the operation spaces are not compact.

To remedy that, we invoke a compactification C̄p of Cp, which is due to
[Bri00, § 4]: the subtlety which prevents Cp(r) from being compact is the fact
that all boxes must have positive size. A possible compactification would
allow ‘degeneracies’ in some directions.

Construction 4.2.19. For a fixed r > 0, let �p be the space of pairs (a, b) with
a, b ∈ [0; 1]pr, with coordinates by aω

i and bω
i for 1 6 i 6 r and 1 6 ω 6 p,

satisfying the condition aω
i 6 bω

i . Note that �p is compact.
Recall that Cp(r) is topologised as a subspace of �p: each tuple (a, b) ∈ �p

gives rise to a collection (c1, . . . , cr) of maps ci : [0; 1]p → [0; 1]p which are
defined coordinate-wise by ci(z)ω = aω

i + (bω
i − aω

i ) · zω. We call (a, b) non-
degenerate if aω

i < bω
i holds strictly for each i and ω, or, equivalently, if each

ci is an embedding. An element (a, b) belongs to Cp(r) if and only if it is
non-degenerate and the interiors (ai; bi) = ∏ω(aω

i ; bω
i ) are mutually disjoint.

Each rectilinear embedding ci determines 2p exterior sectors, namely

Aω
i := [0; 1]ω−1 × [0; aω

i ]× [0; 1]p−ω,

Bω
i := [0; 1]ω−1 × [bω

i ; 1]× [0; 1]p−ω,
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and [0; 1]p r
⋃

ω(Aω
i ∪ Bω

i ) is the interior of ci. Note that for p = 2, these
exterior sectors are exactly ‘above’, ‘below’, ‘left’, and ‘right’.

For a pair of input indices 1 6 i < i′ 6 r, we define Di,i′ ⊆ �p to contain all
non-degenerate pairs (a, b) such that the corresponding boxes ci and ci′ have
disjoint interior. Then clearly Cp(r) =

⋂
i<i′ Di,i′ . The disjointness condition

can be dismantled further: if ci and ci′ have disjoint interior, then ci′ has to
lie in one of the exterior halves of ci: if we put

Aω
i,i′ := {(c1, . . . , cr) ∈ Di,i′ ; im(ci′) ⊆ Aω

i },
Bω

i,i′ := {(c1, . . . , cr) ∈ Di,i′ ; im(ci′) ⊆ Bω
i },

then we get Di,i′ =
⋃

ω(Aω
i,i′ ∪ Bω

i,i′). Note that the closure Āω
i,i′ inside �p is

compact and contains boxes (a, b) which are possibly degenerate, but still ci′

lies inside one of the exterior sectors of ci; and similarly for B̄ω
i,i′ . We let

C̄p(r) :=
⋂

i<i′
(⋃

ω(Āω
i,i′ ∪ B̄ω

i,i′)
)

and write elements in C̄p(r) as tuples (c1, . . . , cr) of maps ci : [0; 1]p → [0; 1]p,
which are rectilinear, but possibly degenerate, and for each pair of boxes,
each one lies in one of the exterior sectors of the other.

Then C̄p(r) is compact, and the operadic structure given by composing
maps from Cp extends to C̄p; hence we obtain an operad C̄p with compact
operation spaces containing the little p-cubes operad Cp as a suboperad.

The same can be done with the dyeing construction and the tensor product
of the two operads:

Construction 4.2.20. Consider the dyeing N( C̄q): operations in N( C̄q) are
given by tuples (~c1, . . . ,~cr) where each ~ci is a rectilinear, but possibly degen-
erate map [0; 1]q × kiki → [0; 1]q × nn, and if we write ~ci = (ci,1, . . . , ci,ki), then
for each two pairs (i,j), (i′,j′) with ci,j and ci′,j′ landing on the same layer,
the box ci′,j′ lies in one of the exterior sectors of ci,j.

Again we obtain a pairing ζ̄ : ( C̄p, N( C̄q)) → N( C̄d) by concatenating
the coordinates, i.e. ζ̄((c1, . . . , cr), (~c1, . . . ,~cs)) = (c1 ×~c1, . . . , cr ×~cs). Then ζ̄

extends the old pairing, which we write as ζ : (Cp, N(Cq))→ Vp,q ⊆N( C̄d),
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and if we corestrict these maps to their respective images, we obtain a square
of operad maps

Cp �N(Cq) Cp ~N(Cq)

C̄p �N( C̄q) C̄p ~N( C̄q),

ζ�

ζ̄�

where the horizontal maps are by construction levelwise surjective and the
right vertical map is levelwise an inclusion of subspaces. Moreover, the left
vertical map is levelwise injective, with image the preimage of Cp ~N(Cq)

along ζ̄�. It is even levelwise an inclusion of subspaces; in particular, if we
can show that ζ̄� is an isomorphism onto its image, the same is true for ζ�.

Proof. The suboperads Cp ⊆ C̄p and N(Cq) ⊆ N( C̄q) are levelwise open.
Therefore, äY(Cp ∗N(Cq))(Y) ⊆ äY( C̄p ∗N( C̄q))(Y) is the inclusion of an
open subspace, and one easily checks that it is also saturated with respect to
the relation to be quotiented out: the requirement that all internal vertices
are labelled by non-degenerate configurations of boxes is preserved by input
permutation, adjacent composition, inserting units, and the interchange law.
This shows that the canonical map from the quotient of the subspace to the
subspace of the quotient is a homeomorphism.

The rest of this section aims to show that the map ζ̄� from the above
square is levelwise a homeomorphism. This is achieved in two steps: firstly,
we show that the domain C̄p �N( C̄q) is levelwise compact. Since the right
side is clearly Hausdorff, it then only remains to show that ζ̄� is levelwise
bijective. Let us start by showing the compactness of C̄p �N( C̄q):

Proposition 4.2.21. For each input profile K and each output colour n, the operation
space ( C̄p �N( C̄q))(

K
n) is compact.

Proof. By Lemma 4.2.18, the composition

ä
Y of type (K

n)
and bounded

( C̄p ∗N( C̄q))(Y) ↪→ ä
Y of type (K

n)

( C̄p ∗N( C̄q))(Y)

→ ( C̄p �N( C̄q))(
K
n)
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is surjective, and by Lemma 4.2.17, there are only finitely many bounded
two-parted N-trees Y of type (K

n). Finally, the space

( C̄p ∗N( C̄q))(Y) = ∏
v∈V•

C̄p(rv)× ∏
w∈V•

N( C̄q)(
Kw
nw
)

is compact: we have already seen that C̄p(rv) is compact, and for the second
factor, recall from Construction 3.4.4 that for k := |Kw|, we have

N( C̄q)(
Kw
nw
) = cat( C̄q)(

k
nw
) = ä

f : k→nw

C̄q( f−1(1))× · · · × C̄q( f−1(nw)).

For the right side, we see that the indexing set is finite and each summand is
compact, as a product of compact spaces.

4.2.4. An injectivity criterion for pairings

In order to prove Theorem 4.2.2, we still have to show that the induced map
ζ̄� : C̄p �N( C̄q)→N( C̄p+q) is levelwise injective. To this aim, we establish
an injectivity criterion for pairings.

This follows essentially [Bri00, Def. 6.1]; however, we phrase it in terms of
a general pairing ζ : (C,O)→ P of reduced operads, where C is monochro-
matic, and we close a small gap in Brinkmeier’s argument, see below. Since
all our operads are reduced, ζ�(n) is trivially bijective and we can exclude
nullaries at this stage of the proof, as there is nothing to show for them.

The idea the following: given an element ξ ∈ C~O, we want to inductively
build a labelled tree (Y, a) ∈ äY(C∗O)(Y) such that each subtree starts with
a ‘minimal’ crotch in the sense that it factors over all other potential crotches
of the same domain, and that all subtrees represent elements in C~ O which
are maximal among all potential arguments which, after composition, yield
the original element ξ. We call a pairing trackable, if such a procedure is
possible, and we will show that, in this case, the element ξ] ∈ C� O which is
represented by such a tree is uniquely determined by these properties. Finally,
we show that, under mild further assumptions, the assignment ξ 7→ ξ] is a
left inverse for ζ�.

Definition 4.2.22. The core core(C) of an operad C is the subcategory that
contains all invertible unaries. E.g. core(Cp) = {1}, while core(N(Cq)) = S.
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Definition 4.2.23. A pairing is called trackable if the following holds for both
domains, red and green, here formulated only for red:

t1. Minimal crotches
For each ξ ∈ (C~ O)(K

n), there is a µ ∈ C(r) such that:

a. there are ξ1, . . . , ξr ∈ C~ O, each one of arity at least 1, such that
ξ = ζ(µ, 1n) ◦ (ξ1, . . . , ξr) holds up to input permutation;

b. for each other µ̄ ∈ C(s) satisfying a, there are µ1, . . . , µs ∈ C such
that µ = µ̄ ◦ (µ1, . . . , µs) holds up to input permutation.

We call such a µ a minimal red crotch. Moreover, we require the following:

t1
a. for each other minimal red crotch µ′, there are α1, . . . , αr ∈ core(C)

such that µ′ = µ ◦ (α1, . . . , αr) holds up to input permutation.

t1
b. if µ1, . . . , µr are minimal red crotches for ξ1, . . . , ξr and µ ∈ C, then

µ ◦ (µ1, . . . , µr) is a minimal red crotch for ζ(µ, 1n) ◦ (ξ1, . . . , ξr).

t1
c. let si be the arity of ξi, define S := (s1, . . . , sr), and for τ ∈ Sr,

let τS ∈ S#K be the corresponding block permutation. Then we
require that τ∗S ξ = ξ in C~ O implies τ∗µ = µ in C.

t2. Maximal arguments
If µ is a minimal red crotch for ξ, then there are ξ1, . . . , ξr ∈ C~O with:

a. ξ = ζ(µ, 1n) ◦ (ξ1, . . . , ξr) holds up to input permutation;

b. for each other collection ξ̄1, . . . , ξ̄r satisfying a, there are ξi,j and
τ ∈ Sr with τ∗µ = µ and ξ̄τ(i) = ξi ◦ (ξi,1, . . . , ξi,si).

We call such a collection ξ1, . . . , ξr maximal arguments for µ to get ξ. In
addition, we require the following:

t2
a. for each other maximal collection ξ ′1, . . . , ξ ′r, there are αi ∈ core(C)

and τ ∈ Sr with τ∗µ = µ ◦ (α1, . . . , αr) and ξ ′τ(i) = ζ(αi, 1n) ◦ ξi.

t2
b. if ξ1, . . . , ξr are maximal arguments for µ to get ξ and if, moreover,

γi ∈ core(C~ O), then γ1 ◦ ξ1, . . . , γr ◦ ξr are maximal arguments
for µ to get ζ(µ, 1n) ◦ (γ1 ◦ ξ1, . . . , γr ◦ ξr).

t3. Uniqueness for unaries
If ξ has arity 1, then there is a minimal red crotch µ which has a maximal
argument ζ(1, ν); this property determines both µ and ν uniquely.
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Remark 4.2.24. Let ζ : (C,O)→ P be a trackable pairing and ξ ∈ C~ O.

1. If αi ∈ core(C) and ξ1, . . . , ξr are maximal for µ ◦ (α1, . . . , αr) to get ξ,
then ζ(α1, 1n) ◦ ξ1, . . . , ζ(αr, 1n) ◦ ξr are maximal for µ to get ξ.

2. If ν is a minimal green crotch for ξ and if α ∈ core(C), then ν is also a
minimal green crotch for ζ(α, 1n) ◦ ξ.

Given an operation ξ ∈ C~ O, we would like to construct a two-parted
tree representing it. This is formalised as follows:

Definition 4.2.25. Recall that for each profile (K
n), we have a chain of maps

äY of type (K
n)
(C∗ O)(Y) (C� O)(K

n) (C~ O)(K
n) ⊆ P(K

n).
pr ζ�

If ζ is trackable and ξ ∈ C~ O, then we call a labelled two-parted tree (Y, a)
with (ζ� ◦ pr)(Y, a) = ξ an optimal representative if the following holds:

m1. Y is a reduced two-parted N-tree with a red crotch;

m2. each internal vertex is a minimal crotch of the element in C~ O which
is represented by the subtree starting at that vertex;

m3. at each vertex, the incoming subtrees represent maximal arguments.

Lemma 4.2.26. If ζ : (C,O)→ P is a trackable pairing, then each ξ ∈ C~ O has
such a minimal representative (Y, a) and the element ξ] := pr(Y, a) ∈ C� O is
uniquely determined by ξ.

Proof. We build (Y, a) inductively: we choose a minimal red crotch, and then
consider its maximal arguments. For each of them, we find minimal green
crotches. If a subtree has arity 1, then we choose the two unary vertices by
property t3. In order to show that this process terminates, we have to see
that if an element ξ ′ represented by a subtree has arity at least 2 and if a
minimal crotch of ξ ′ is of arity 1, then the next crotch is of higher arity: by
Lemma 4.2.15, ξ ′ has either a green or a red crotch of arity at least 2. Now
note that a minimal crotch is always of maximal arity among all crotches of
the same domain. It may happen that we have to choose the ‘wrong’ domain,
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say ‘green’, i.e. there are only red crotches of arity 1. In this case, we have
ξ ′ = ζ(1, ν) ◦ ξ ′′ for a unary ν ∈ O. If ξ ′′ had a green crotch of arity at least 2,
then this would also apply to ξ ′, which is not possible. Therefore, ξ ′′ has a
red crotch of arity at least 2, and hence, the minimal red crotch of ξ ′ is of
higher arity. We end up with a tree having the properties m2 and m3. Its
crotch is red and the tree is reduced, where r1 and r2 are immediate, while
r3 follows from the previous paragraph, hence m1 holds as well.

We are left to show that pr(Y, a) ∈ C� O is uniquely determined by ξ,
and we do so by induction on the arity r > 1 of ξ: the case r = 1 is clear
by t3. For r > 2, let µ and µ′ be two choices of red minimal crotches of ξ

and let ξ1, . . . , ξr and ξ ′1, . . . , ξ ′r be the chosen maximal arguments for µ and
µ′, respectively, to get ξ. Moreover, we pick minimal green crotches νi for ξi
and ξ ′i for ν′i , and let ξi,j and ξ ′i,j be their maximal arguments to get ξi and
ξ ′i , respectively. Then the arity of each ξi,j has to be strictly smaller than
r, and, by the induction hypothesis, all optimal representatives for ξi,j and
ξ ′i,j encode the same elements ξ]i,j and ξ ′]i,j, respectively, inside C� O. Since
within the two optimal trees, the subtrees are optimal as well, we only have
to show that inside C� O, we have, writing µ� ν := χ(µ, ν) for the pairing
χ : (C,O)→ C� O,

(µ′ � 1) ◦ (1� ν′•) ◦ ξ ′]•,• = (µ� 1) ◦ (1� ν•) ◦ ξ]•,•,

where we shorten ν• := (ν1, . . . , νr) and similarly ξ]•,•.
To this aim, we note that by property t1

a, there are αi ∈ core(C) and
τ ∈ Sr such that τ∗µ = µ′ ◦ (α1, . . . , αr). Since τ is uniquely determined up
to those permutations whose respective block permutations fix ξ, and since
those, in turn, fix µ by t1

c, we can without loss of generality assume that
τ = id. Then ζ(α1, 1) ◦ ξ1, . . . , ζ(αr, 1) ◦ ξr are maximal arguments for µ′ to
get ξ. By axiom t2

a, this implies that there are α′i ∈ core(C) and τ ∈ Sr such
that µ′ ◦ (α′1, . . . , α′r) = µ′ and ξ ′τ(i) = ζ(ᾱi, 1) ◦ ξi for ᾱi := α′i ◦ αi, and again,
we can assume τ to be trivial. Moreover, we see that µ′ ◦ (ᾱ1, . . . , ᾱr) = µ.

Since ξ ′i and ξi differ only by postcomposition with ζ(ᾱi, 1n), we see by
Remark 4.2.24 that the minimal green crotches of ξi and ξ ′i coincide, i.e.
νi = ν′i and si = s′i. Hence we obtain by the interchange law

ξ ′i = ζ(ᾱi, 1) ◦ ζ(1, νi) ◦ (ξi,1, . . . , ξi,si)

= ζ(1, νi) ◦ (ζ(ᾱi, 1) ◦ ξi,1, . . . , ζ(ᾱi, 1) ◦ ξi,s′i ).
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As ζ(ᾱi, 1) is invertible, ζ(ᾱi, 1) ◦ ξi,1, . . . , ζ(ᾱi, 1) ◦ ξi,si are maximal arguments
for νi to obtain ξ ′i . By t2

a, there are βi,j ∈ core(O) with νi ◦ (βi,1, . . . , βi,si) = νi

and ζ(ᾱi, 1) ◦ ξi,j = ζ(1, βi,j) ◦ ξ ′i,j. A tedious, but straightforward check shows
that there is an optimal representative for ζ(1, βi,j) ◦ ξ ′i,j which is equivalent
to an optimal representative for ξ ′i,j, postcomposed with a single green vertex
labelled by βi,j, and thus, (1� βi,j) ◦ ξ ′]i,j = (ζ(1, βi,j) ◦ ξ ′i,j)

].
Moreover, we have (ζ(ᾱi, 1) ◦ ξi,j)

′] = (ᾱi � 1) ◦ ξ ′]i,j, which, altogether, im-
plies the equality (1� βi,j) ◦ ξ ′]i,j = (ᾱi � 1) ◦ ξ]i,j. As desired, we get

(µ′ � 1) ◦
(
1� ν′•

)
◦ ξ ′]•,• = (µ′ � 1) ◦ (1� ν•) ◦ ξ ′]•,•

= (µ′ � 1) ◦ (1� (ν• ◦ β•,•)) ◦ ξ ′]•,•

= (µ′ � 1) ◦ (1� ν•) ◦
(
(1� β•,•) ◦ ξ ′]•,•

)
= (µ′ � 1) ◦ (1� ν•) ◦

(
(ᾱ• � 1) ◦ ξ]•,•

)
=
(
(µ′ ◦ ᾱ•)� 1

)
◦ (1� ν•) ◦ ξ]•,•

= (µ� 1) ◦ (1� ν•) ◦ ξ]•,•.

Remark 4.2.27. I believe that the analogous statement in [Bri00, Prop. 6.10]
for the special case of the (monochromatic) compactified little cubes operad
misses the maximality assumption in order to guarantee the uniqueness of
the optimal representative: if µ is degenerate, then the operations µ1, . . . , µr

are not uniquely determined by µ ◦ (µ1, . . . , µr) and µ; however, the weaker,
and—in the end—sufficient, property t2 still holds.

Next, we want to show that, under mild extra assumptions, the assignment
(−)] is indeed a left inverse for ζ�:

Proposition 4.2.28. Let ζ : (C,O)→ P be a trackable pairing, and assume that:

p1. for all colours k, n ∈ N, the map ζ : C(1)× O(k
n)→ P(k

n) is injective;

p2. if ϑ ∈ C� O such that ζ�(ϑ) has a minimal red crotch of arity > 2, then ϑ

itself has a reduced representation with a red crotch of arity > 2.

Then for each ϑ ∈ C� O, we have (ζ�(ϑ))] = ϑ; in particular, the induced map
ζ� is levelwise injective.
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Proof. This proof essentially follows the one of [Bri00, Thm. 6.12]; however, I
think that in the general setting, we need to additionally assume p2.

Let ξ := ζ�(ϑ), and we aim to show that ξ] = ϑ. To do so, we proceed by
induction over the arity of ϑ: if ϑ is a unary, then ϑ is of the form µ� ν with
µ ∈ C(1) and ν ∈ O(k

n), and similarly, ξ] = µ′ � ν′ holds. Since ζ�(ξ]) = ξ,
we get ζ(µ, ν) = ζ(µ′, ν′), whence, by p1, we get both µ = µ′ and ν = ν′; in
particular, ξ] = ϑ.

For the induction step, we have so switch between red and green crotches.
Clearly, we can define optimal representatives with a green crotch in the same
way, and we define ξ[ := pr(Y, a) for (Y, a) being an optimal representative
with a green crotch, and show that ξ[ is uniquely determined by ξ. The
start of the induction works equally well, showing that ϑ = ξ[ if there is an
optimal representative with a green crotch having only one internal vertex.

Now assume that ϑ has arity at least 2. By Lemma 4.2.15, there is a reduced
representative for ϑ, which has either a green or a red crotch of arity at least 2.
If we find a red crotch of arity at least 2 and with label µ ∈ C, then we write
ϑ = (µ� 1) ◦ (ϑ1, . . . , ϑr). If we put ξi := ζ�(ϑi) and let µi be a minimal red
crotch of ξi, then, by t1

b, µ ◦ (µ1, . . . , µr) is a minimal crotch of ξ. Moreover,
let ξi,1, . . . , ξi,si be maximal arguments for µi to get ξi, and let ϑi,j := ξ[i,j. Since
each ϑi has strictly less inputs than ϑ, we see that µi ◦ (ϑi,1, . . . , ϑi,si) = ξ]i = ϑi,
and we therefore get, using the same notation as before,

ξ] = ((µ ◦ µ•)� 1) ◦ ϑ•,•

= (µ ◦ 1) ◦ (µ• � 1) ◦ ϑ•,•

= (µ ◦ 1) ◦ ϑ•

= ϑ.

However, if ϑ only admits a reduced representative which has a green crotch
of arity 2, then we have to argue differently: as in the previous paragraph,
we can inductively show that ξ[ = ϑ. Moreover, by p2, the minimal red crotch
µ of ξ has arity 1 as well. Hence, if (Y, a) is an optimal red representative for
ξ, we can employ the interchange law and exchange the unary crotch and its
adjacent green internal vertex (and reduce the tree again), which has to be of
arity at least 2. Hence we reached a representative for ξ] which has a green
crotch of arity 2, and we see, as above, that ξ] = (ζ�(ξ]))[ = ξ[ = ϑ.
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4.2.5. Injectivity of the compactified pairing

In order to finish the proof of Theorem 4.2.2, we are left to prove that the
compactified pairing ζ̄ : ( C̄p, N( C̄q))→N( C̄p+q) meets the requirements of
the injectivity criterion from Proposition 4.2.28. It is clear that ζ̄ satisfies p1,
as the two inclusions affect disjoint coordinates of [0; 1]p+q × nn, but we still
have to show trackability and p2:

Proposition 4.2.29. The pairing ζ̄ : ( C̄p, N( C̄q)) → N( C̄p+q) is trackable and
satisfies property p2.

In order to prove Proposition 4.2.29, we adapt the framing argument from
[Bri00, § 4] to the coloured situation.

Preparation 4.2.30. Let Fp be the set of tuples µ = (c1, . . . , cr) of (possibly
degenerate, possibly overlapping) rectilinear maps [0; 1]p → [0; 1]p. Then we
have a preorder on Fp by declaring (c1, . . . , cr) 6 (c′1, . . . , c′r′) whenever there
is a surjection π : rr → rr′ with ci ⊆ c′π(i) for each i. Likewise, we let Fq,n be the
set of tuples ν = (c1,1, . . . , cr,kr) of rectilinear maps ci,j : [0; 1]q → [0; 1]q × nn,
and we have a preorder on Fq,n by letting (ci,j)(i,j)∈K 6 (c′i,j)(i,j)∈K′ if there is
a column-preserving surjection π : YK → YK′ of tableaux with ci,j ⊆ c′π(i,j).

Although we do not need to give Fp and (Fq,n)n>1 the formal structure of
an operad, we can compose elements by composing rectilinear maps, and
permute their inputs by permuting the boxes. Clearly, if µ = µ′ ◦ (µ1, . . . , µr)

holds up to input permutation, then µ 6 µ′, and similarly for ν and ν′. The
converse also holds, see [Bri00, Cor. 4.8].

We have inclusions F′p := är C̄p(r) ⊆ Fp and F′q,n := äK N( C̄q)(
K
n) ⊆ Fq,n,

and for µ, µ′ ∈ F′p, we have µ 6 µ′ 6 µ if and only if µ and µ′ differ by an
input permutation, compare [Bri00, Lem. 4.5]. Similarly, for ν, ν′ ∈ F′q,n, we
have ν 6 ν′ 6 ν if and only if ν and ν′ differ by an input permutation and a
layer permutation, i.e. precomposition with elements from the core.

Construction 4.2.31. For each µ ∈ Fp, there is a smallest µ̄ ∈ F′p with µ 6 µ̄,
and similarly, for each ν ∈ Fq,n, there is a smallest ν̄ ∈ F′q,n with ν 6 ν̄. We
give details for the construction of µ̄; for ν̄ see Figure 4.7:

• We define an equivalence relation on rr that relates i and i′ if µ does not
lie in

⋃
ω Āω

i,i′ ∪ B̄ω
i,i′ from Construction 4.2.19.
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Figure 4.7. The inductive procedure which starts at an arbitrary configuration
(c1,1, . . . , c4,2) of squares and ends up with a configuration that lies
in N( C̄2)(3,2

2 ), where the colours indicate the equivalence relation.

• For each equivalence class, we find the smallest rectangle that contains
all ci from this class: it is given by the intersection of all rectangles with
this property, and we order these two new rectangles by the minimum
of their respective equivalence classes.

• If the new collection of boxes does not lie in F′p, then we repeat the
previous two steps.

In each step, the number of boxes decreases, so this procedure terminates
after finitely many steps and gives the desired collection µ̄. By the previous
paragraph, µ̄ is determined, up to input permutation, by the property of
being a smallest upper bound.

While we use the previous construction to produce minimal crotches, the
following construction is necessary to construct maximal arguments:

Construction 4.2.32. Let c = ∏ω[aω; bω] be a box and c′ = ∏ω[a′ω; b′ω] ⊆ c.
Then we define the inverse rescaling c−1 · c′ := ∏ω[āω; b̄ω] as follows: for all
1 6 ω 6 p with aω 6= bω, we let

āω :=
a′ω − aω

bω − aω
and b̄ω :=

b′ω − aω

bω − aω
,

and for each other coordinate ω, we set āω
i := 0 and b̄ω

i := 1.
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Figure 4.8. Calculating ν−1 ·π ξ for ν ∈N( C̄1)(
3,2
1 ) and ξ ∈N( C̄2)(

4,1,2,1
1 ), res-

ulting in ξ1 ∈ F2,3 and ξ2 ∈ F2,2. Both ξ1 and ξ2 have overlaps, but
still ξ = ζ(1, ν) ◦ (ξ1, ξ2) holds up to input permutation. The map
π : Y4,1,2,1 → Y3,2 lets π(1, 1) = (1, 3) and π(1, 4) = π(3, 1) = (1, 1).

For ξ = (c1,1, . . . , cs,ks) ∈ N( C̄p+q)(
K
n), if µ = (c1, . . . , cr) ∈ C̄p(r) is a red

crotch for ξ, then we have ξ 6 ζ(µ, 1n), so there is a surjection π : #K#K → rr with
ci,j ⊆ cπ(i) × [0; 1]q × nn for all (i,j). For each explicit choice of π, we define
µ−1 ·π ξ := (ξ1, . . . , ξr), where ξl := ((cl × [0; 1]q)−1 · ci,j)π(i)=l . Similarly, we
define ν−1 ·π ξ for ν ∈N( C̄q)(K′

n ) and π : YK → YK′ , see Figure 4.8.
Then we clearly have ξ = ζ(µ, 1n) ◦ (µ−1 ·π ξ) and ξ = ζ(1, ν) ◦ (ν−1 ·π ξ)

up to input permutation.

The collection µ−1 ◦π ξ should play the rôle of a collection of maximal argu-
ments; however, in general, ξl does not lie inside N( C̄p+q): as we insisted that
if the ωth coordinate of cl is degenerate, the respective coordinates of c−1

l · ci,j

are scaled to full size, there might be overlaps. Furthermore, the operations
ξ1, . . . , ξr depend on π, see Figure 4.8. The following criterion impedes this:

Construction 4.2.33. Let µ ∈ C̄p(r) and let 1 6 i 6 r such that the ith box of
µ has a degenerate coordinate, and let ξi ∈ ( C̄p ~N( C̄q))(

k1,...,ks
n ).

• Let µ′ ∈ C̄p(r + s− 1) be the operation where we have s boxes at the
same place as the original ith box. They are numbered i, . . . , i + s− 1,
and all successors get shifted by s− 1.
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Figure 4.9. Two operations ν ∈N( C̄1)(
2,2
1 ) and ξ1 ∈ ( C̄1 ~N( C̄1))(

2,1,2
2 ), and

their refinements ν′ ∈N( C̄1)(
4,2
1 ) and ξ ′1 ∈ ( C̄1 ~N( C̄1))(

2,1,2
4 ).

• For 1 6 h 6 s, let ξi,h ∈ C̄p ~N( C̄q))(
kh
n ) be the operation that arises

from ξi by keeping only the hth cluster, and in all directions 1 6 ω 6 p
in which the ith box of µ is flat, each of the kh boxes are scaled to full
size (this does not produce any overlap, since all boxes in ξi,h share
their first p coordinates, and if two boxes in ξi,h are at the same place,
then they are degenerate in a direction p + 1 6 ω 6 p + q as well).

Then ζ(µ, 1n) ◦i ξi = ζ(µ′, 1n) ◦{i,...,i+s−1} (ξi,1, . . . , ξi,s). For ξ ∈ C̄p ~N( C̄q),
we call µ optimal for ξ if there are ξ1, . . . , ξr with ξ = ζ(µ, 1n) ◦ (ξ1, . . . , ξr)

up to input permutation, and for each 1 6 i 6 r, the operation µ cannot be
refined any more as above, i.e. if ci is degenerate, then ξi is a unary.

A similar construction can be done for ν ∈ N( C̄q), by putting all boxes
that are to be placed into a degenerate box on separate layers, see Figure 4.9.

Remark 4.2.34. If µ is optimal for ξ, then µ−1 ·π ξ = (ξ1, . . . , ξr) does not
have the aforementioned problems any more: each ξi lives in C̄p ~N( C̄q),
since whenever we want to rescale a box to full size, there is enough space;
and secondly, all surjections π : ss → rr which satisfy ci,j ⊆ cπ(i) differ only
by precomposition with a permutation. Hence we write µ−1 · ξ without the
index π: the collection (ξ1, . . . , ξr) = µ−1 · ξ is uniquely determined up to
input and layer permutation.
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Now we have everything together to prove Proposition 4.2.29.

Proof of Proposition 4.2.29. We start by showing the trackability of ζ̄: given
ξ = (c1,1, . . . , cr,kr) ∈ ( C̄p~N( C̄q))(

K
n), with ci,j : [0; 1]p+q → [0; 1]p+q× nn, we

want to construct minimal crotches for ξ, and maximal arguments for them.
To do so, we consider again the projections prn

p : [0; 1]p+q × nn→ [0; 1]p and
prq : [0; 1]p+q → [0; 1]p+q. Then prn

p ◦ ci,j = prn
p ◦ ci,j′ holds for all 1 6 i 6 r

and 1 6 j,j′ 6 ki, as the pairing lands in the suboperad of N( C̄p+q) where
clusters satisfy this condition. Now we consider the two configurations

µ̃(ξ) := (prn
p ◦ c1,1, . . . , prn

p ◦ cr,1) ∈ Fp,

ν̃(ξ) :=
(
(prq × nn) ◦ c1,1, . . . , (prq × nn) ◦ cr,kr

)
∈ Fq,n.

The operation µ̃(ξ) contains r boxes, while ν̃(ξ) consists of |K| boxes, tied
together into r inputs. Clearly, µ̃(ξ) and ν̃(ξ) do not have to lie in F′p and
F′q,n, respectively, but we can consider their smallest upper bounds, µ and ν,
as in Construction 4.2.31: see Figure 4.10. Then µ and ν are by construction
optimal for ξ, and we put (ξ1, . . . , ξr) := µ−1 · ξ, and similarly for ν.

We are left to show that µ is a minimal red crotch and (ξ1, . . . , ξr) is a
collection of maximal arguments: if there is µ̄ ∈ C̄p(s) and ξ̄1, . . . , ξ̄s with
ζ(µ̄, 1n) ◦ (ξ̄1, . . . , ξ̄s) = ξ up to input permutation, then clearly µ̃(ξ) 6 µ̄.
Then we have µ 6 µ̄, whence there are µ1, . . . , µs with µ = µ̄ ◦ (µ1, . . . , µs)

up to input permutation. The maximality of (ξ1, . . . , ξr) can be checked in
the same way. Moreover, both µ and (ξ1, . . . , ξr) are uniquely determined
up to (input or layer) permutation, showing t1

a and t2
a, and similarly, t2

c

holds, using that core( C̄p ~N( C̄q)) ⊆ core(N(Cp+q)) = S, so we only have
to deal with layer permutations.

For t1
b we use that, for µ ∈ C̄p and ξ1, . . . , ξr ∈ C̄p ~N( C̄q), we have

µ̃(ζ(µ, 1n) ◦ (ξ1, . . . , ξr)) = µ ◦ (µ̃(ξ1), . . . , µ̃(ξr)). The property t1
c is imme-

diate from the construction, see the two degenerate black intervals 3 and 4 in
Figure 4.10, which can be permuted since swapping the above clusters 5 and
6 fixes the operation. If ξ is a unary, then it is of the form ζ(µ, ν), and this
decomposition is unique, showing t3.

To show p2, let ϑ ∈ C̄p �N( C̄q) be an operation such that ξ := ζ̄�(ϑ) has
a red crotch µ with arity at least 2, and we choose a reduced representative
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1,1

1,2

3,2

3,1

3,3
3,4

4,1

4,2

2,2

2,1

5,2

5,1

6,2

6,1

1 2 3 4

1,1

1,3
1,4
2,2

1,2

2,1

1,5

Figure 4.10. An element ξ ∈ ( C̄1 ~N( C̄1))(
2,2,4,2,2,2

2 ) and its minimal red crotch
µ ∈ C̄1(4) and minimal green crotch ν ∈N( C̄1)(

5,2
2 ).

for ϑ with a red crotch. Standing at a green vertex without adjacent leaves,
we denote the labels of the red vertices directly above it by µ1, . . . , µs, and let
µ̄ be their smallest common upper bound inside F′p, as in Construction 4.2.31.
Then we can write µi = µ̄ ◦ (µi,1, . . . , µi,si), and by the interchange law, we
can move µ̄ down and compose it with the next red ones. In this way, we
inductively reach a reduced representative for ϑ where each red vertex is
maximal with respect to its neighbours. For this representative, the (modified)
red crotch µ′ can be at most µ, as for each input 1 6 i 6 r of ϑ, the box
inside [0; 1]p which is given by composing the respective entries inside the
red vertices along the unique path from the leaf numbered by i down to
the root, has to lie in one of the boxes of µ, and for each input 1 6 h 6 s
of µ′, the collection of boxes arising in the same way, for the inputs of the
subtree starting with the hth incoming edge at µ′, fill the entire cube [0; 1]p

by the maximality property. Therefore, the arity of µ′ is at least as large as
the arity of µ, and we have constructed a reduced representative for ϑ with a
red crotch µ′ of arity at least 2.
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Chapter 4. Vertical operads and their algebras

This concludes the long proof of Theorem 4.2.2, and it additionally shows
the S-cofibrancy of Cp �N(Cq) as follows: since ζ� : Cp �N(Cq) → Vp,q

is levelwise injective, the input permutation acts freely on Cp �N(Cq), and
moreover, we saw that the subspaces of decomposable operations are retracts
of the larger ones, and these, in turn, are open manifolds.

Therefore, the category of Vp,q-algebras is Quillen equivalent to the category
of N(Cq)-algebras which are levelwise Cp-algebras in a compatible way.

Let me finally point out that, by restricting to appropriate connected
components, we can show in the same way that the connective suboperad
Vc

p,q ⊆ Vp,q is equivalent to the Boardman–Vogt tensor product Cc
p �Nc(Cq).

4.3. A cellular description of V1,1

From now on, we restrict our attention to the vertical operad V := V1,1. In
this section, we want to see how the operadic structure of V is related to
the cellular decomposition from Section 1.4. These results will be exploited
further in the next section in order to describe the algebraic operad H•(V1,1).

4.3.1. Path components of V1,1 and their decompositions

Recall that, by Proposition 4.1.3, the space V1,1(
K
n) is homotopy equivalent

to the ordered vertical configuration space ṼK(R
1,1 × nn). Let us start by

understanding its path components, extending Remark 1.1.6:

Remark 4.3.1. Recall from Example 3.4.7 the category ∆Σ of non-commutative
finite sets, whose arrows k → n are maps f : kk → nn, together with a total
order ≺ on each fibre. Let K = (k1, . . . , kr) be a tuple of positive integers
ki > 1 and let n > 1. Then we have

π0(V1,1(
K
n))
∼= π0(ṼK(R

1,1 × nn)) ∼= ∆Σ(k1
n )× · · · × ∆Σ(kr

n ).

The identification is done in the following way: given a tuple f = ( f1, . . . , fr)

of arrows fi ∈ ∆Σ(ki
n), we let Ṽf ⊆ ṼK(R

1,1 × nn) be the subspace of all tuples
(z1,1, . . . , zr,kr) such that, if we write f−1

i (l) = {j1 ≺ · · · ≺ jm}, then the lth

layer contains the points zi,j1 , . . . , zi,jm , and, if we write zi,j = (ζi, ti,j), then
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4.3. A cellular description of V1,1

ti,j1 < · · · < ti,jm . One readily checks that Ṽf is path connected and that
ṼK(R

1,1 × nn) decomposes as the disjoint union ä f Ṽf .
This identification is operadic in the following sense: we let ∆Σ× be the

N-coloured operad with ∆Σ×(K
n) := ∏i ∆Σ(ki

n), with τ∗ f = ( fτ(1), . . . , fτ(r))

and with entrywise composition as usual. Then the operad π0(V1,1) of sets is
isomorphic to the operad ∆Σ×.

The map π0(V1,1 ↪→ N(C2)) of operads is of the form ∆Σ× → N( )

and forgets, for each arrow fi : ki → n in ∆Σ, the order of the fibres.

Notation 4.3.2. An explicit arrow f ∈ ∆Σ(k
n) can be denoted as follows: if

f−1(l) = {jl,1 ≺ . . . ≺ jl,ml
}, then we represent f as the tuple

(j1,1 · · ·j1,m1 | · · · | jn,1 · · ·j1,mn).

For each element f ∈ ∆Σ×(K
n), we want to calculate the homology of the

corresponding component Ṽf . Note that for n = 1, all these components
are isomorphic and we calculated their integral homology in Theorem 1.2.5.
The case of arbitrary n would be just an easy generalisation; however, this
description does not behave nicely with respect to the operadic structure.
Instead we employ a multi-layered version of the cellular description from
Section 1.4. We want to emphasise the similarity between these constructions
and advice the reader to compare them.

Definition 4.3.3. Fix K, n, and f , and let 1 6 s 6 r. An allocation of f into s
colums is given by a pair (M, π) where:

1. M = (M1, . . . , Mn) with Ml = (m1,l, . . . , ms,l), where ma,l > 0;

2. π = (π1, . . . , πn) with πl : YMl
→ rr,

such that the following holds:

• for each i ∈ r, there is an aπ(i) ∈ ss such that for each l ∈ nn, the fibre
π−1

l (i) is contained in the column Y
aπ(i)
Ml

:= {(aπ(i), b); 1 6 b6 ma,l};

• we have #π−1
l (i) = # f−1

i (l).

We usually suppress M and just write π for a given allocation. Let Π f,s be
the set of all allocations of f into s columns. Note that Π f,s only depends on
the tuple of maps which underlies f , not on the orders on the fibre.
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Notation 4.3.4. Given an explicit allocation π of f into s columns, it will turn
out to be convenient to denote π by the matrix(

πn(1,1)···πn(1,m1,n) ··· πn(s,1)···πn(s,ms,n)
...

...
π1(1,1)···π1(1,m1,1) ··· π1(s,1)···π1(s,ms,1)

)
.

Example 4.3.5. Let f = (4 || 2 1 3, 1 | 3 | 2, | 1 2 | ) ∈ ∆Σ×(4,3,2
3 ). Then a possible

allocation of f into two columns is given by the matrix

π =
(

2 1 1 1
3 3 2
2 1

)
.

Note that, with regards to the type of an allocation, f only prescribes how
many instances of 1, 2, and 3 are on which layer, and pictorially, each entry
of f has to be rotated anticlockwise by 90° in order to ‘fit’ into the matrix.

Construction 4.3.6. Let π ∈ Π f,s and 1 6 α 6 s− 1, and let ı = (ı1, . . . , ın)

with ıl an (mα,l, mα+1,l)-shuffle. Then we define dα,ı(π) := (π′1, . . . , π′n) with
π′l := dα,ıl(πl) as in Definition 1.4.7. Consider the simplicial complex

ṼN :=
r

ä
i=1

ä
π∈Π f,s

∆s ×
n

∏
l=1

∆Ml

/
(π; dαζ, (dα,ıltl)l∈n) ∼ (dα,ıπ; ζ, (tl)l∈n),

where ∆Ml = ∏a ∆ma,l and tl ∈ ∆Ml, and with dα,ıltl as in Construction 4.3.6.
Again, we have a degenerate subcomplex ṼM ⊆ ṼN and, for each π, a map
fπ : ∆s ×∏l∆Ml → Ṽ∞

f to the one-point compactification of Ṽf :

• let Yf ,π : YK → äl{l} ×YMl
=: YM be the unique bijection that identi-

fies, for f−1
i (l) = {j1 ≺ · · · ≺ jm}, the subset {(i,j1) ≺ · · · ≺ (i,jm)}

with the fibre π−1
l (i) ⊆ YMl

in a monotone way.

• elements in Ṽf can be written as (ζ1, . . . , ζr; t1,1, . . . , tr,kr) with ζi ∈ R

and ti,j ∈ R; they are identified with tuples (z1,1, . . . , zr,kr) of points in
R2 × nn via zi,j := (ζi, ti,j, fi(j)) ∈ R2 × nn.

Now we put again ∆s = {−∞ 6 t1 6 · · · 6 ts 6 +∞}, write elements in the
multisimplex ∏l∆Ml as t = (tl,a,b), and define

fπ(ζ, t) :=

{
(a∗πζ, Y∗f ,πt) if (ζ, t) 6∈ ṼM,

∞ if (ζ, t) ∈ ṼM.
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Then the union äi äπ fπ factors through f∗ : ṼN → Ṽ∞
f . Moreover, we get

f−1
∗ (∞) = ṼM, and the corestriction ṼNr ṼM → Ṽf is an isomorphism. By

Poincaré–Lefschetz duality, we get

H•(Vf (R
1,1 × nn)) ∼= H|K|+r−•(ṼN, ṼM).

Remark 4.3.7. The relative cellular chain complex Ccell
• (ṼN, ṼM) is generated

by Π f,s in degree |K|+ s, and the differential is of the form

∂π =
s−1

∑
α=1

(−1)α · ∑
ı=(ı1,...,ın)

ıl:(mα,l,mα+1,l)

n

∏
l=1

sg(ıl)︸ ︷︷ ︸
=:sg(ı)

· dα,ı(π).

Example 4.3.8. If we let f = (2 3 | 1, 1 | 2) ∈ ∆Σ×(3,2
2 ), then

(
2 1
2 1 1

)
∈ Π f ,2 is a

7-dimensional multisimplex in (ṼN, ṼM), and we get

∂
(

2 1
2 1 1

)
= −

(
2 1
2 1 1

)
+
(

2 1
1 2 1

)
−
(

2 1
1 1 2

)
+
(

1 2
2 1 1

)
−
(

1 2
1 2 1

)
+
(

1 2
1 1 2

)
.

Similarly, if f = (1 | 3 2, 2 | 1, | 1, 1 | ) ∈ ∆Σ×(3,2,1,1
2 ), then

(
3 2 1 1
2 4 1

)
∈ Π f ,3 is

a 10-dimensional multisimplex and we get

∂
(

3 2 1 1
2 4 1

)
= −

(
3 2 1 1
2 4 1

)
+
(

3 2 1 1
4 2 1

)
+
(

3 2 1 1
2 4 1

)
−
(

3 2 1 1
2 1 4

)
.

As in Remark 1.4.5, these matrices for π already look like a configuration
fπ(ζ, t) ∈ Ṽf , one just has to rotate all entries anticlockwise by 90° and add
the internal order for each cluster as prescribed by the order of the fibres.

4.3.2. The operadic structure through simplices

Using the equivalences Φ : V1,1(
K
n)� ṼK(R

1,1 × nn) : Ψ from Proposition 4.1.3,
the operadic structure on V, more specifically the input permutation and the
composition law, gives rise to several maps of the form

ϕ : ∏i Ṽfi ∏i(V1,1) fi (V1,1)g Ṽg
Ψ
'

Φ
'

for some fi ∈ ∆Σ×(Ki
n ) and g ∈ ∆Σ×(L

m). If we choose a commutative ring R
and consider (co-)homology over R, then our aim is to find a combinatorial
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construction ϕ :
⊗

i R〈Π fi ,si〉 → R〈Πg,t〉 that reflects the map ϕ in homology
in the following sense: after identifying R〈Π fi ,si〉 ∼= C|Ki |+si

cell (ṼNfi
, ṼMfi

) as well
as R〈Πg,t〉 ∼= C|L|+t

cell (ṼNg , ṼMg ), the following square commutes:

⊗
i H|Ki |+si(ṼNfi

, ṼMfi
) H|L|+t(ṼNg , ṼMg )

⊗
i H#Ki−si(Ṽfi) H#L−t(Ṽg).

⊗
i [∑u πi,u] 7→[ϕ(

⊗
i ∑u πi,u)]

∼=Poincaré–Lefschetz P.–L.∼=

ϕ∗

Our approach is differential-topologically flavoured: if we denote by π◦

the interior of a cell π, then we will show, in several cases, that for each
collection of (|Ki|+ si)-cells πi, there is a specific (|L|+ t)-cell π′ such that
for each transversal intersection S ⊆ ∏i Ṽfi with ∏i π◦i ⊆ ∏i Ṽfi , the image
ϕ(S) is a single transversal intersection with π′◦.

Calculating the correct signs of these intersections, however, turns out to be
a rather lengthy, yet completely straightforward task. Therefore, we decided
to skip a general sign discussion and to calculate the sign by hand in all
situations where it is necessary: in this subsection, we just write ‘±’, which
is justified by a single transversal intersection.

If the reader gets wearied by the heaviness of the upcoming combinatorial
details, the author, who felt the same way, invites them to start with the
Examples 4.3.13 in order to get a feeling for what the lemmata aim at.

Lemma 4.3.9 (Input permutation). Let f ∈ ∆Σ×(K
n) and τ ∈ Sr. Then the input

permutation τ∗ : Hr−s(Ṽf )→ Hr−s(Ṽτ∗ f ) is reflected by the map

τ∗ : R〈Π f,s〉 → R〈Πτ∗ f,s〉, π 7→ ±(τ−1 ◦ π).

Proof. The map τ∗ : Ṽf → Ṽτ∗ f is an isomorphism, with inverse given by
(τ−1)∗, in particular an open embedding.

Let π ∈ Π f,s be a simplex. Then for each point z′ ∈ (τ−1 ◦ π)◦, the fibre
(τ∗)−1(z′) ⊆ π◦ contains a single point. Additionally, for each transversal
intersection S ⊆ Ṽf through z ∈ π◦, the image τ∗(S) is a single transversal
intersection with the interior (τ−1 ◦ π)◦.

Thus, if ∑l πl is a representing cocycle for the Poincaré–Lefschetz dual of a
class ξ ∈ Hr−s(Ṽf ), then ∑l ωl · (τ−1 ◦π) is a representing cocycle for the dual
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of τ∗ξ, where ωl is the sign comparing the orientation of the tangent space
Tzπ◦ ⊕ TzS with the one of Tτ∗z(τ−1 ◦ π)◦ ⊕ Tτ∗z(τ∗S) for any transversal
intersection S and a choice of orientation of TzS.

The next two lemmata are shown in exactly the same way, using again that
the maps we consider are open embeddings; hence we omit their proofs.

Lemma 4.3.10 (Postcomposing with unaries). Let f ∈ ∆Σ×(K
n) and g ∈ ∆Σ( n

n′).
Then the map g∗ : Hr−s(Ṽf ) → Hr−s(Ṽg◦ f ) induced by postcomposing with an
arbitrary operation g̃ inside the contractible component V1,1(

n
n′)g is reflected by

g∗ : R〈Π f,s〉 → R〈Πg◦ f,s〉, π 7→ ±(π ◦ g∗),

where (g∗M)a,l = ∑j∈g−1(l) ma,j and (g∗)−1 : YM → Yg∗M sends (j, a, b) with
g(j) = l to (l, a, m + b), where m = ∑j′≺jmj′,a.

Lemma 4.3.11 (Universal morphisms). Let f ∈ ∆Σ×(K
n) and f ′ ∈ ∆Σ×(K′

n′).
Consider the universal morphisms Un,n′ ∈ V1,1(

n,n′
n+n′) from Remark 3.4.10. Then

the postcomposition Un,n′ : Hr−s(Ṽf )⊗ Hr′−s′(Ṽf ′)→ H(r−s)+(r′−s′)(ṼUn,n′◦( f , f ′))

is reflected by the map

Un,n′ : R〈Π f,s〉 ⊗ R〈Π f ′,s′〉 → R〈ΠUn,n′◦( f , f ′),s+s′〉,

π ⊗ π′ 7→ ±(π t π′),

where π t π′ : YMtM′
∼= YM tYM′ → rr t r′r′ ∼= r + r′, with

(M tM′)a,l =


ma,l for a 6 s and l6 n,

m′a−s,l−n for a > s and l> n,

0 else.

Lemma 4.3.12 (Single columns). Let g ∈ ∆Σ×(K
n) and fi ∈ ∆Σ×(Li

ki
) with #K = r

and #Li = si. Then the map Hr−1(Ṽg)⊗
⊗

i Hsi−1(Ṽfi)→ Hs1+···+sr−1(Ṽg◦( f1,..., fr))

induced in the top-dimensional homology is reflected by the map of cells

(−) ◦g (−) : R〈Πg,1〉 ⊗
⊗

i R〈Π fi ,1〉 → R〈Πg◦( f1,..., fr),1〉,
π ⊗ (π1 ⊗ · · · ⊗ πr) 7→ ±π′,
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where π′ is defined as follows: if M = (m1, . . . , mn) is the partition that underlies π

and Qi = (qi,1, . . . , qi,ki) is the partition that underlies πi, then we use the bijection
ϕ := Yπ,g : YK → YM from Construction 4.3.6 and put m′l := ∑ml

b=1 qϕ−1(l,b). We
obtain Φ : YM′ → äi YQi and let π′ :=

(
äi π̃i

)
◦Φ with π̃i = πi + ∑i′<i si′ .

Proof. The main difference to the previous three lemmata is the obstacle that
the map Ṽg ×∏i Ṽfi → Ṽg◦( f1,..., fr) is not an embedding. To remedy this, we
replace both sides by slightly different relative multisimplicial complexes:
for each f ∈ ∆Σ×(K

n), we define Ṽf ,0 ⊆ Ṽf to be the subspace containing
all configurations of clusters in R1,1 × nn where the horizontal coordinate
ζ1 of the first cluster is 0. Then f : Ṽf ,0 ↪→ Ṽf is a deformation retract, the
retraction ρf given by shifting the entire configuration horizontally by −ζ1.
Moreover, Ṽf ,0 is the interior of a relative simplicial complex (ṼNf ,0, ṼMf ,0) where
we have a multisimplex ∆s−1 ×∏l∆Ml for each π ∈ Π f,s; here we omit the
parameter for the horizontal coordinate of the column which contains the
first cluster.

Via Poincaré–Lefschetz duality, the maps in homology which are induced
by f : Ṽf ,0 � Ṽf : ρf correspond to the maps in cohomology induced by the
canonical identification

C|K|+s−1
cell (ṼNf ,0, ṼMf ,0)

∼= R〈Π f,s〉 ∼= C|K|+s
cell (ṼNf , ṼMf )

up to sign. In the same fashion, the product Ṽf ,0 ×Rd is the interior of the
relative simplicial complex (ṼNf ,0, ṼMf ,0)× ([−∞; ∞]d, ∂[−∞; ∞]d), where we
have a multisimplex ∆s−1 ×∏l∆Ml× [−∞; ∞]d for each π ∈ Π f,s. The maps
′f : Ṽf ,0 ×Rd � Ṽf : ρ ′f enlarging the aforementioned ones by Rd � {0}, are,
via Poincaré–Lefschetz duality, again induced by the canonical identifications
of relative cellular cochain complexes.

Now we consider the map κ : Ṽg,0 ×∏i Ṽfi ,0 → Ṽg◦( f1,..., fr),0 ×R|K|, which
consists of the composition map and the map which remembers the vertical
coordinates from the first factor. Then ′g◦( f1,..., fr) ◦ κ ◦ (ρg ×∏i ρfi) is the com-
position map, and we can alternatively give a cellular description for κ.

It is a straightforward task to check that κ is indeed an open embedding.
Moreover, if S ⊆ Ṽg,0 × ∏i Ṽfi ,0 intersects the (|K| + ∑i|Li|)-dimensional
multisimplex π◦ ×∏i π◦i transversally, then κ(S) intersects the multisimplex
π′ from the statement transversally. Now the strategy of proof for Lemma
4.3.9 applies.
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Example 4.3.13. Here are some examples for the four previous lemmata:

1. Input permutation

(1 4 2)∗
(

2 4 2 3 1
4 2 1

)
= ±

(
4 1 4 3 2
1 4 2

)
2. Postcomposition with unaries

(1 2)∗
(

2 4 2 3 1
4 2 1

)
= ±

(
4 2 1
2 4 2 3 1

)
s1
∗
(

2 4 2 3 1
4 2 1

)
= ±( 4 2 2 4 2 1 3 1 )

d2
∗
(

2 4 2 3 1
4 2 1

)
= ±

(
2 4 2 3 1

4 2 1

)
3. Universal morphisms

U2,1
((

2 4 2 3 5 1 1
4 2 5 1

)
⊗ (2 3 1 1)

)
= ±

( 7 8 6 6
2 4 2 3 5 1 1
4 2 5 1

)
4. Cells with a single column

Let g = ( | 1 | , | 2 | 1 , 2 | | 1 3 ) ∈ ∆Σ×(1,2,3
3 ). Then( 2 3 3

1 2
3

)
◦g

(
(2 1)⊗

(
3 1
2 1

)
⊗
(

1 1 1
2 1
2 2

))
= ±

(
4 3 7 7 6 6 6
2 1 5 3
7 6

)
4.3.3. A Morse flow for ṼK(R

1,1 × n)

In this subsection, we fix a commutative ring R, a profile K = (k1, . . . , kr),
an output color n > 1, and a path component f = ( f1, . . . , fr) ∈ ∆Σ×(K

n), let
(ṼN, ṼM) be the relative simplicial complex with Ṽf = ṼNr ṼM, and declare
a discrete Morse flow on the relative cellular chain complex Ccell

• (ṼN, ṼM; R),
or, equivalently, the reversed cochain complex C|K|+r−•

cell (ṼN, ṼM; R).
We assume that the reader is familiar with the techniques of discrete Morse

theory; we give a short summary of them in Appendix B.

Remark 4.3.14. We have a preferred basis Ccell
|K|+s(Ṽ

N, ṼM; R) = R〈Π f,s〉, so we
can write the chain complex as a based complex R(Ω, ε), with Ω|K|+s = Π f,s
and incidence numbers επ,π′ = (−1)α · sg(ı) if π′ = dα,ıπ, and 0 else.

The pair (π, dα,ıπ) determines the parameters α and ı uniquely, whence
there is no ambiguity in the above expression.
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Notation 4.3.15. Let (M, π) be a cell. Let us abbreviate YM := (YM1 , . . . , YMn)

and Ya
M := (Ya

M1
, . . . , Ya

Mn
) for the ath column, and write Cπ(i) := Yaπ(i)

M for
the one that contains the ith cluster, and Pπ(i) := (π−1

1 (i), . . . , π−1
n (i)) ⊆ Cπ(i)

for the actual points of the ith cluster inside the aπ(i)th column.
There should be no confusion with the prior definition YM := äl{l} ×YMl

,
which contains exactly the same information as the tuple (YM1 , . . . , YMn).

Definition 4.3.16. Let 1 6 s 6 r as well as π ∈ Π f,s and 1 6 a 6 s. A ray (in
the ath column) is a system of subsets Q = (Q1, . . . , Qn) with Ql ⊆ Ya

Ml
, such

that the following holds:

1. there are 1 6 i1, . . . , it 6 r such that Q = Pπ(i1) ∪̇ · · · ∪̇ Pπ(it) holds, i.e.
Q is a union of clusters;

2. each Ql is an upper half ray: if (a, b) ∈ Ql and b′ > b, then (a, b′) ∈ Ql.

Example 4.3.17. Here are four examples of families Q = (Q1, Q2, Q3) of
subsets for the same cell π, depicted by dyeing a number in red if and only
if it lies in Q. The first two examples violate the first condition of being a
ray (in the first column), as the red collection is not a union of clusters. The
third example violates the second condition, as in the bottom line, there is a
black number on the right side of a red one. However, the last example is an
honest ray (in the second column):( 1 2

3 3 1 2 4 4
3 1 1 3 2 4

) ( 1 2
3 3 1 2 4 4
3 1 1 3 2 4

) ( 1 2
3 3 1 2 4 4
3 1 1 3 2 4

) ( 1 2
3 3 1 2 4 4
3 1 1 3 2 4

)
For each i, we want to consider the smallest ray containing all clusters of

number i′ 6 i inside the same column. This is formalised as follows:

Construction 4.3.18. For two rays Q and Q′ inside the ath column, the intersec-
tion Q∩Q′ := (Q1 ∩Q′1, . . . , Qn ∩Q′n) is again a ray, and moreover, the entire
column Ya

M itself is a ray. Hence, for each collection S = (S1, . . . , Sn) ⊆ YM

of subsets, there is a smallest ray containing S.
For each 1 6 i 6 r, we let Qπ(i) be the smallest ray that contains the

(levelwise) union
⋃

i′6i Pπ(i′)∩Cπ(i), i.e. that contains all clusters in the same
column as i, which have a number at most i.

Note that Pπ(i) ⊆ Qπ(i) ⊆ Cπ(i) and for i′ 6 i, we have Qπ(i′) ⊆ Qπ(i).
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Example 4.3.19. If π ∈ Π f ,3 is as below, then we have for example

Qπ(1) =
( 1 6 4

3 3 1 6 6 2 4 5
3 1 3 1 2 2 5

)
,

Qπ(2) =
( 1 6 4

3 3 1 6 6 2 4 5
3 1 3 1 2 2 5

)
,

Qπ(5) =
( 1 6 4

3 3 1 6 6 2 4 5
3 1 3 1 2 2 5

)
.

The idea for the Morse flow on (Ω, ε) is the following: if Qπ(1) ( Cπ(1),
then we declare π to be redundant, and we construct its collapsible partner π]

by putting the ray Qπ(1) in a new column on the right side of Cπ(1)r Qπ(1).
If not, and if π is not exhibited as a collapsible cell by the first step, we look at
the second ray Qπ(2). If Qπ(2) ( Cπ(2), then we declare π to be redundant,
and we proceed as above. This is done until we reach the highest cluster
number r. This idea is formalised as follows:

Definition 4.3.20. For a cell π, we define the two numbers, which attain
values in {1, . . . , r, ∞}:

ired(π) := min
(

1 6 i 6 r; Qπ(i) ( Cπ(i)
)
,

icoll(π) := min

(
1 6 i 6 r;

Qπ(i) =Cπ(i)
aπ(i) 6= 1

aπ(i′) 6= aπ(i)−1 for i′<i

)
.

We call π redundant if ired(π) < icoll(π), and collapsible if icoll(π) < ired(π).
The bijection (−)] : Ωred

h � Ωcoll
h+1 : (−)[ is defined as follows:

• If π is redundant, then we let i := ired(π) < ∞ and α := aπ(i), as well
as Q := Qπ(i) ( Cπ(i), and we define

M]
l

:= (m1,l, . . . , mα,l− #Ql, #Ql, . . . , ms,l).

Then there is a unique (levelwise) map ϕ : YM] → YM that identifies
Yα

M] with Yα
M r Qπ(i), Yα+1

M] with Qπ(i), and the other columns as they
are in a monotone way, and we put π] := π ◦ ϕ.

• If π is collapsible, let i := icoll(π) < ∞ and α := aπ(i)− 1. We define the
shuffle ı := (ı1, . . . , ın) to be the tuple of standard (mα,l, mα+1,l)-shuffles
that put the respective left components entirely under the right ones,
and we set π[ := dα,ıπ.
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Proposition 4.3.21. The previous definition declares a Morse flow Λ and the derived
chain complex R(Ω, ε)Λ is formal, i.e. ∂Λ = 0.

Proof. Huge parts of the proof are straightforward combinatorial arguments,
which we leave to the reader: let me say a word on acyclicity of the modified
graph and on formality of the derived chain complex.

In order to show acyclicity, we consider, for each cell π ∈ Ωh and each
1 6 i 6 r, the integer δi(π) := #

⋃
i′6i Qπ(i′) and δ(π) := (δ1(π) . . . , δr(π)).

Then one can show that δ(π) 6 δ(π′) holds if επ,π′ 6= 0, and δ(π]) = δ(π)

for all redundant cells π. Therefore, it is enough to exclude cycles inside the
subgraph where all cells attain the same value along δ.

To do so, we consider the assignment ν(π) = (aπ(1), . . . , aπ(r)) ∈ Zr, and
we show that for each two-step path π′ ↘ π ↗ π] inside the subgraph with
fixed δ, the difference ν(π])− ν(π′) lies in the subset of tuples which are of
the form (0, . . . , 0, 1, ar−s, . . . , ar) ∈ Zr. As this subset is positively linearly
independent, no cycles can appear.

In order to show formality, we fix an essential cell π and consider all
column-permuted cells πτ: we consider the partition Mτ with mτ

α,l := mτ−1(α),l,
and if Yτ : YMτ → YM describes the permutation of columns, then we set
πτ := π ◦Yτ. One easily shows that πτ is collapsible if τ 6= id. Now for each
1 6 l6 n, let τMl

∈ Sm1,l+···+ms,l be the block permutation with respect to
Ml, and consider the chain

π̃ := ∑
τ

sg(τ) ·
n

∏
l=1

sg(τMl
) · πτ ∈ R(Ω, ε)|K|+s.

Under the chain map ΦΛ : R(Ω, ε)→ R(Ω, ε)Λ, the chain π̃ gets sent to the
single essential cell π ∈ R(Ω, ε)Λ

|K|+s, as all other summands are collapsible.
We claim that π̃ is a cycle in R(Ω, ε), which implies that also π = ΦΛ(π̃) is a
cycle, and, thus, concludes the proof.

To this aim, note that each boundary π′ of some πτ occurs exactly twice
as a summand in ∂π̃, since dα,ıπ

τ = dα′,ı′π
τ′ holds if and only if α = α′ and

τ′ = (α α+1) · τ, and the shuffle ı′ is complementary to ı as in Definition 1.4.6.
In this case, the signs cancel out: if we put µ := Mτ−1(α) and ν := Mτ−1(α+1),
then we see sg((α α+1)Mτ

l
) = (−1)µlνl and sg(ı′) = (−1)µlνl · sg(ı). Hence
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we get the calculation

(−1)α · sg(τ′) ·
n

∏
l=1

sg(τ′Ml
) · sg(ı′l)

= (−1)α · sg(τ) ·
n

∏
l=1

sg((α α+1)Mτ
l
) · sg(τMl

) · (−1)µlνl · sg(ıl)

= −(−1)α · sg(τ) ·
n

∏
l=1

sg(τMl
) · sg(ıl).

By Remark B.8, the dual discrete Morse flow on the dualised and mirrored
chain complex C|K|+r−•

cell (ṼN, ṼM; R) yields again a formal derived complex,
generated by the (dual) essential cells. Using once again Poincaré–Lefschetz
duality, we obtain the following statement:

Corollary 4.3.22. Hr−s(Ṽf ; R) ∼= Hr−s(C|K|+r−•
cell (ṼN, ṼM; R)) is freely generated

by the essential cells in Π f,s.

This result can be compared with the homology calculations from Theorem
1.2.5 in the following way:

Remark 4.3.23. A cell π ∈ Π f,s is essential if and only if Qπ(i) = Cπ(i) holds
for all i, and for all i with aπ(i) 6= 1, there is an i′ < i with aπ(i′) = aπ(i)− 1.

For n = 1, this recovers Theorem 1.2.5: if (Q1, . . . ,Ql) is a ray partition
of agility 1 6 s 6 r with σ(Q) = id, then we can construct an essential cell
out of it: we can write {1, . . . , l} = {β1,1, . . . , βs,hs} such that β1,1 < · · · < βs,1

and βa,b < βa,b′ and that ({βa,1, . . . , βa,ha})16a6s are exactly the equivalence
classes with respect to the agility relation in Notation 1.2.2.

Then we let M := (m1, . . . , ms) with ma := ∑b #Qβa,b and for each a, we let
ϕa : äbQβa,b → Ya

M be the unique bijection that stacks Qβa,b below Qβa,b+1 .
Moreover, consider πβ : Qβ → rr with πβ(i,j) = i for each β. Then we let

π :=
(

äa äb πβa,b

)
◦
(

äa ϕ−1
a
)

: YM → rr.

It is easy to see that π is essential, and that this construction gives a bijection
between ray partitions Q of agility s with σ(Q) = id and essential cells with
s columns, yielding a generator in homology of degree r− s.
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4.4. The homology of V1,1-algebras

In this section, we describe the algebraic operad H•(V; R) for V := V1,1 in
terms of generators and relations in the sense of Section 3.2. By doing so, we
classify all Künneth operations (with coefficients in R) that V imposes on
all its algebras. The result will be quite similar to the classical calculations
[CLM76, § iii] for the little d-cubes operad.

4.4.1. Generators

The aim of this subsection is to give an explicit system of generators for the
algebraic operad H•(V). While nearly all generators are ground classes of
certain path components, there is a single family of generators in degree 1,
which generalises the idea of a Browder bracket from Example 3.2.13.

Definition 4.4.1 (Vertical Browder bracket). For each n, n′ > 1, we consider
the circle of vertical configurations

γn,n′ : S1 → Ṽn,n′(R
1,1 × n + n′ − 1),

(x, y) 7→
(
(x, y, 1), . . . , (x, y, n); (0, 0, 1), (0, 0, n + 1) . . . , (0, 0, n+n′−1)

)
.

If we choose the standard orientation on S1 and let [S1] ∈ H1(S
1) be its funda-

mental class, then (γn,n′)∗[S
1] generates the first homology of the respective

path component of Ṽn,n′(R
1,1 × n + n′ − 1).

Using the equivalence Ψ : Ṽn,n′(R
1,1 × n + n′ − 1)→ V( n,n′

n+n′−1), we define
the vertical Browder bracket bn,n′ := (Ψ ◦ γn,n′)∗[S

1], see Figure 4.11.

Now we can already formulate the main theorem of this subsection:

Theorem 4.4.2. The operad H•(V) is generated by the following classes:

1. the ground class v1 ∈ H0(V(1)), called the ‘void’;

2. for each f : k→ n in ∆Σ, the ground class f ∈ H0(V(k
n) f );

3. for each n, n′ > 1, the ground class un,n′ ∈ H0(V( n,n′
n+n′)) of the component

containing the universal morphism;

4. for each n, n′ > 1, the vertical Browder bracket bn,n′ ∈ H1(V( n,n′
n+n′−1)).
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1,1

1,2

2,1

2,2

1

2

3

Figure 4.11. The loop Ψ ◦ γ2,2 : S1 → V(2,2
3 )

This formally means the following: we consider the free symmetric quiver
A over the set of these classes, e.g. A( n,n′

n+n′−1) = R〈bn,n′ , (1 2)∗bn,n′〉. Then we
get a map of quivers A→ H•(V), and the theorem claims that its adjoint
Ψ(A)→ H•(V) is surjective for each colour profile.

In order to prove the theorem, we make use of the Morse flow from the
previous subsection. Therefore, we have to relate the cellular description of
the operadic structure from Subsection 4.3.2 to the derived complex coming
from the Morse flow from Subsection 4.3.3.

Notation 4.4.3. Throughout the subsection, we write C̄• := C|K|+r−•
cell (ṼN, ṼM)

whenever it is clear which input profile, which output colour, and which
path component we consider.

Moreover, we let Ω̄h be the set of all (dual) cells of codimension h, which
we shall denote by π as well. By Remark B.8, the Morse flow from Subsection
4.3.3 gives rise to a dual Morse flow on Ω̄•, which we denote by Λ as well,
and where the rôles of collapsible and redundant cells are switched.

The derived complex C̄Λ
• is formal and we have a pair of chain homotopy

equivalences ϕΛ : C̄• � C̄Λ
• : ψΛ. Since C̄Λ

• is formal, the chain map ψΛ attains
values in the cycles of C̄•.

161



Chapter 4. Vertical operads and their algebras

For a cycle c ∈ C̄h, we denote by [c] ∈ Hh(V) the induced homology class,
and for an essential cell η ∈ Ω̄ess

h , we denote by JηK := [ψΛη] the homology
class represented by ψΛη ∈ C̄h. If π is collapsible, then we set JπK := 0.

Let us start with a general observation which actually holds for each based
chain complex, together with a discrete Morse flow on it:

Remark 4.4.4. Let η ∈ Ω̄ess
h be an essential cell and let c ∈ C̄h be a linear

combination of collapsible cells such that η + c ∈ Ch is a cycle. Then we see

[η + c] = ψΛ
∗ ϕΛ
∗ [η + c] = [ψΛη] = JηK.

Now we can start with the first ingredient of the proof of Theorem 4.4.2,
which decomposes homology classes which are not of the highest dimension
into classes of smaller arity:

Proposition 4.4.5. Let r > 2 and h 6 r− 2 and let x ∈ Hh(V(K
n)) be an additive

generator. Then there are:

1. a decomposition {1, . . . , r} = A ∪̇ A′ into two non-empty subsets,

2. integers k, k′ > 1 and y ∈ H#A−1(V(K|A
k )) and y′ ∈ Hh−#A+1(V(K|A′

k′ )),

3. a map f : k + k′ → nn in ∆Σ, and

4. a permutation τ ∈ Sr,

such that τ∗x = ± f ◦ uk,k′ ◦ (y⊗ y′) holds.

The proof of Proposition 4.4.5 requires some preparing lemmata, for which
it may be useful to repeat the constructions from Subsection 4.3.2.

Lemma 4.4.6. Let f : k + k′ → nn be a map in ∆Σ such that the two restrictions f |k
and f |k′ are injective. Let η be an essential cell of V(K

k) and η′ be an essential cell of
V(K′

k′ ). Then (η t η′) ◦ f ∗ is an essential cell in V(K·K′
n ) and we have

f ◦ uk,k′ ◦ (JηK⊗ Jη′K) = ±J(η t η′) ◦ f ∗K.
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Proof. Since f |k and f |k′ are both injective, the columns of η̄ := (η t η′) ◦ f ∗

agree, up to layer permutation, empty layers, and shifts of all cluster numbers
inside the rear columns, with the ones of η and η′. Therefore, there is no
1 6 i 6 r + r′ with Qη̄(i) ( Cη̄(i). Secondly, if aη̄(i) 6= 1, then there is an
i′ < i with aη̄(i′) = aη̄(i)− 1: the only interesting situation is the case where
the ith cluster lies in the first column that comes from η′; however, in this
case, aη̄(i)− 1 is the last column that comes from η and, thus, contains at
least one cluster with number i′ 6 r < i. This shows that η̄ is essential.

Moreover, we can write ψΛη = η + ∑b µb · πb and ψΛη′ = η′ + ∑b′ µ
′
b′ · π′b′ ,

where πb and π′b′ are collapsible, and µb and µ′b′ are non-trivial coefficients.
It is now easy to see that cells of the form (η t π′b′) ◦ f ∗ or (πb t η′) ◦ f ∗ or
(πb t πb′) ◦ f ∗ are again collapsible, as in all these cases, there is an index
1 6 i 6 r + r′ such that the corresponding ray is not the entire column.

By Lemma 4.3.10 and Lemma 4.3.11, we obtain that f ◦ uk,k′ ◦ (JηK⊗ Jη′K)
is represented by the cocycle f∗Uk,k′(ψ

Λη ⊗ ψΛη′), which is of the form

±η̄ + ∑
b
±µb · (πb t η′) f ∗ + ∑

b′
±µ′b′ · (η t π′b′) f ∗ + ∑

b,b′
±(µbµ′b′) · (πb t π′b′) f ∗.︸ ︷︷ ︸

=:c

Now note that c is a linear combination of collapsible cells. By Remark 4.4.4,
we get [±η̄ + c] = ±Jη̄K, as desired.

Lemma 4.4.7. Let η be an essential cell and let a−1
η (1) = {1 = i1 < · · · < it}. Now

we consider the permutation τ := (i2 i2−1 · · · 2) · · · (it it−1 · · · t) ∈ Sr. Then
η̄ := τ−1 ◦ η is essential with a−1

η̄ (1) = {1, . . . , t}, and we have τ∗JηK = ±Jη̄K.

Before proving Lemma 4.4.7, let us prove Proposition 4.4.5 with the help
of Lemma 4.4.7.

Proof of Proposition 4.4.5. There is an essential dual cell η of codimension h
such that x = ±JηK. Since we have h 6 r− 2, the cell η must have at least
two columns. Let A := a−1

η (1) and A′ := {1, . . . , r}r A and define τ ∈ Sr as
in the previous Lemma 4.4.7, as well as η̄ := τ−1 ◦ η. By Lemma 4.4.7, η̄ is
again essential and τ∗x = ±τ∗JηK = ±Jη̄K.

By looking only at the first column of η̄ and removing empty layers, we
obtain an essential cell ϑ of V(K|A

k ), as well as an injective map g : kk ↪→ nn.
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Similarly, we look at the remaining columns of η̄ and shift all cluster numbers
down. By removing empty layers, we obtain an essential cell ϑ′ of V(K|A′

k′ ), as
well as an injective map g′ : k′k′ ↪→ nn.

If we let f := g t g′ : k + k′ ∼= kk t k′k′ → nn, then both restrictions f |k and
f |k′ are injective and we get η̄ = (ϑ t ϑ′) ◦ f ∗. If we finally set y := JϑK and
y′ := Jϑ′K, then by Lemma 4.4.6, we get x = ±Jη̄K = ± f ◦ uk,k′ ◦ (y⊗ y′).

In order to prove Lemma 4.4.7, we need a further auxiliary statement,
which describes what ψΛη looks like for an essential cell η:

Lemma 4.4.8. Let η be an essential cell and let π be a summand of the cycle ψΛη.
Then we have aπ = aη .

Proof. Let (ΓΛ, λΛ) be the modified graph from Definition B.4. Using the nota-
tion from Construction B.6, we show µΛ

η,π = ∑γ : η π λΛ(γ) = 0 for aπ 6= aη .
To do so, let T be the set of all collapsible cells ρ with aρ 6= aη such that

there is a path γ1 : η = π0 ↘ · · · ↗ π2m = ρ with aπ2l = aη for l < m. For
each ρ ∈ M, we let P(ρ) be the set of all such paths. If π is any cell with
aπ 6= aη , then there is a bijection between the set of all paths γ : η  π and
the set of all triples (ρ, γ1, γ2) with ρ ∈ T, γ1 ∈ P(ρ), and γ2 : ρ  π, by
setting ρ to be the first collapsible cell along γ with aρ 6= aη . Then we see

µΛ
η,π = ∑

ρ∈T

(
∑

γ1∈P(ρ)
λΛ(γ1)

)
︸ ︷︷ ︸

=:λ(ρ)

·
(

∑
γ2 : ρ π

λΛ(γ2)

)
.

It hence suffices to show that λ(ρ) = 0 holds for each ρ ∈ T. To this aim, we
construct a pairing on P(ρ) that matches two paths with a different sign: for
each path γ1 ∈ P(ρ), consider its final two segments π2m−2 ↘ π2m−1 ↗ ρ.
We let (M, π) := π2m−1 and let i := ired(π), as well as α = aπ(i)− 1 > 1. Be
aware that the notions of being redundant and being collapsible have been
toggled when passing to the dual complex, i.e. we have Qπ(i) = Cπ(i). Then
ρ = dα,ıπ, where ı is the tuple of standard shuffles, see Definition 1.4.6.

Moreover, there is an index 1 6 β 6 s and an (Mβ, Mβ+1)-shuffle  with
π2m−2 = dβ,π. We argue that β = α− 1: as aπ2m−2 = aη 6= aρ, we have β 6= α.
If β = α + 1, then min(a−1

η (β)) = i, while min(a−1
η (β− 1)) > i. Moreover,
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Qη(i) = Cη(i), since η is not collapsible, and aη(i) = α + 1 > 2, whence η

is redundant: this is not possible. The same issue occurs if two completely
different neighboured columns are merged, which excludes the remaining
cases in which β 6= α− 1.

In order to simplify the notation a bit, let us denote the columns of the cell
π by A : Yα−1

M → rr, B : Yα
M → rr and C : Yα+1

M → rr. Then, schematically, the
path γ1 looks as follows:

η (∗, (A, B), C, ∗) (∗, A, C
B , ∗)

· · · (∗, A, B, C, ∗)

We call γ1 of type 1 if  is the complementary standard shuffle, i.e. it puts A on
top of B, and of type 2 otherwise, compare Definition 1.4.6.

Consider the cell π̄ = (∗, B, A, C, ∗) which arises from π by switching the
(α− 1)st and the αth column. We claim that π′ is again redundant: let i′ be the
minimum of im(A) ∪̇ im(B) ⊆ rr. Since aη = aπ2m−2 holds and η is essential,
we have i′ < i. However, i′ cannot lie in B, as otherwise, ired(π) 6 i′ < i.
Therefore, i′ is the minimum of im(A). Moreover, Qπ̄(i′) = Cπ̄(i′) holds, as
otherwise, Qπ(i′) ( Cπ(i′) and icoll(π) 6 i′ < i. As no further columns are
affected, π̄ is indeed redundant and its collapsible partner can be written as
π̄] = (∗, A

B , C, ∗).
If γ1 is of type 1, then π2m−2 = π̄] holds; in particular, π2m−3 = π̄. Since

aπ2m−4 = aπ2m−2 , there is a shuffle ̄ with π2m−4 = dβ, ̄π̄ = (∗, ̄(B, A), C, ∗). In
this case, we can shorten the path γ1 as follows:

η (∗, ̄(B, A), C, ∗) (∗, A
B , C, ∗) (∗, A, C

B , ∗)

· · · (∗, B, A, C, ∗) (∗, A, B, C, ∗)

One checks that the green arrow carries the sign (−1)α−1 · sg( ̄) ·∏l(−1)#Al·#Bl

while the alternative concatenation of three black arrows has exactly the op-
posite sign, using that the signs of the arrows which go upwards are toggled
in the Morse graph ΓΛ. Conversely, if γ1 is of type 2, then π2m−2 6= π̄] and
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we can prolongate the path γ1 as follows:

η (∗, (A, B), C, ∗) (∗, A
B , C, ∗) (∗, A, C

B , ∗)

· · · (∗, B, A, C, ∗) (∗, A, B, C, ∗)

These constructions are clearly inverses of each other, yielding the desired
pairing on P(ρ).

Now we can give the outstanding proof of Lemma 4.4.7, which then also
concludes the proof of Proposition 4.4.5.

Proof of Lemma 4.4.7. Recall that we wrote η̄ := τ−1 ◦ η; hence aη̄ = aη ◦ τ and
one readily checks that τ(l) = il for 1 6 l 6 t, and so a−1

η̄ (1) = {1, . . . , t}.
Now let π be any cell with a−1

π = {i1 < · · · < it}. Then, in τ−1 ◦ π, every
cluster number outside the first column stays as it is or increases by one. In
particular, the rays stay as they are, and the ordering of the columns by their
minima remains. This shows that if η is essential, then also τ−1 ◦ η = η̄ is
essential, and if π is collapsible, then τ−1 ◦ π is collapsible as well.

We have ψΛη = η + c, where c = ∑b µb · πb is a linear combination of
collapsible cells. By Lemma 4.4.8, we have aπb = aη for each summand πb,
in particular, a−1

πb
= {i1 < · · · < it} holds. Moreover, τ∗JηK = τ∗[ψΛη] is

via Lemma 4.3.9 represented by ±η̄ + ∑b(±µb) · (τ−1 ◦ π). By the previous
paragraph, τ−1 ◦ π is again essential. Finally, by Remark 4.4.4, the homology
class represented by the above cycle coincides with ±Jη̄K.

We are left to decompose top-dimensional cells into our desired generators.
Here we have to deal only with a single column, which facilitates some of
our combinatorial considerations.

Remark 4.4.9. If we have a single column, then the multi-layered YM can be
written as a usual tableau

YM = {(l,j); 1 6 l6 n and 1 6 j6 ml},

and for each cell π of V(K
n) f and each S = {i1 < · · · < is}, we have a map

fS,π ∈ ∆Σ(ki1+···+kis
n ), where the ordering of the fibres reflects the ordering of

the points inside the single column.
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In order to run inductive arguments, we have to partially order the set of
cells, and therefore introduce a measure for them:

Construction 4.4.10. For each path component f ∈ ∆Σ×(K
n), there is a specific

top-dimensional cell πf : YM → rr such that, for each 1 6 b < b′ 6 ml, we
have πf (l, b) 6 πf (l, b′). For an arbitrary cell π in V(K

n) f , we define its height

ht(π) := #
{
(l, b, b′); b < b′ and π(l, b) > π(l, b′)

}
.

Intuitively, the height of π measures the distance from π to π f , and we have
π = π f if and only if ht(π) = 0. We note the following:

1. It is easy to see that πf is essential if and only if, for each 1 6 i 6 r,
there is an i′ < i and a layer l containing both i and i′.

2. Let π 6= π f be a cell. Then there is a smallest pair (l, b′), with respect
to the lexicographic order on YM, such that there is a b < b′ satisfying
π(l, b) > π(l, b′), and in this case, b can be chosen to be b′ − 1, since
if π(l, b′ − 1) 6 π(l, b′), then b′ would not have been minimal.

Our strategy is as follows: given a top-dimensional essential cell η of height
t, we want to write JηK as a sum of Jη̄K and an element in the operadic span,
such that η̄ has height t− 1.

For the induction start, we have to write Jπf K itself as an element in the
operadic span. To do so, we construct a family of toric classes, which can be
decomposed into the vertical Browder brackets from Definition 4.4.1.

Construction 4.4.11. For each n > 1 we consider the map

γn : S1 → Ṽn,n(R
1,1 × nn),

(x, y) 7→ ((0, 0, 1), . . . , (0, 0, n); (x, y, 1), . . . , (x, y, n)),

and under the homotopy equivalence Ψ : Ṽn,n(R1,1 × nn) → V(n,n
n ), we let

bn := (Ψ ◦ γn)∗[S1] ∈ H1(V(n,n
n )). Then bn can be decomposed into vertical

Browder brackets as follows: if we let bln := gl ◦ bn,n ◦ ((1 · · · l)⊗ (1 · · · l))
with gl := (n+1 2 | · · · | n+l− 1 l| 1 | l+1 n+l| · · · | n 2n−1) ∈ ∆Σ(2n−1

n ),
then we have bn = b1

n + · · ·+ bn
n, as one can check ‘by hand’, by tracking

which edges of the dual cell complex are crossed.
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Figure 4.12. The two-dimensional toric class b f , once for f = (1 3 | 2 , | 1 , 3 | 2 1)
and once for f = (1 2 | , | 1 , 3 | 2 1). The cell π f is crossed when all
boxes are aligned at the bottom of their respective circles. In the
first case, the cell πf is essential, while in the second case, the ray
Qπ f (1) does not include the box 2,1.

For each f ∈ ∆Σ×(K
n) we define a class bf ∈ Hr−1(V(K

n) f ) recursively by

b f1 := f1,

b f1,..., fs+1 := bn ◦ (b f1,..., fs ⊗ fs+1).

Then bf lies by construction in the operadic span and can geometrically be
realised by an embedding γf : (S1)r−1 ↪→ Ṽf which has 2r−1 transversal inter-
sections with cells of codimension r− 1, namely at γ f ((0,±1), . . . , (0,±1)).

It is an easy (and actually quite satisfying) exercise left to the reader to
check that there is only one intersection with a cell which has a chance to be
essential, namely πf , which is hit in γ f ((0, 1), . . . , (0, 1)), see Figure 4.12. We
therefore obtain Jπf K = ±bf .
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Now we can carry out the advertised inductive argument:

Proposition 4.4.12. Let #K = r and x ∈ Hr−1(V(K
n)). Then x lies in the operadic

span of the generators from Theorem 4.4.2.

Proof. We proceed by induction on the arity r. For r = 1, the statement is
clear since H0(V(k

n)) = R〈∆Σ(k
n)〉.

For the induction step ‘r− 1→ r’ we do the following: we can assume that
x = JηK for an essential cell in V(K

n) f . Now we start a second induction on
the height t := ht(η). For t = 0, we have η = π f , and we have already seen
that Jπ f K = ±b f . For the induction step ‘t− 1→ t’, let (l0, b′0) be the minimal
pair from Construction 4.4.10, and let η̄ be the cell where η(l0, b′0 − 1) and
π(l0, b′0) are toggled. Then ht(η̄) = ht(η)− 1, so either η̄ is collapsible and
Jη̄K = 0, or η̄ is essential, and by the (inner) induction hypothesis, Jη̄K lies in
the operadic span.

Now let i′ := η(l0, b′0) and i := η(l0, b′0 − 1), i.e. i′ < i, and consider the
permutation τ := (i′+1 · · · i) ∈ Sr. Then one readily checks that τ−1 ◦ η is
again essential and τ∗JηK = Jτ−1 ◦ ηK holds, and moreover, τ−1 ◦ η̄ is essential
if and only if η̄ is, and in this case we have Jτ−1 ◦ η̄K = τ∗Jη̄K.

There are 1 6 j 6 ki and 1 6 j′ 6 ki′ such that (l0, b′0) corresponds to
(i′,j′) and (l0, b′0 − 1) corresponds to (i,j). We let σ′ := (1 · · ·j′) ∈ Ski′

and
σ := (1 · · ·j) ∈ Ski , and we let g := (g1, . . . , gr−1), where gj = fdij for j 6= i′,
and gi′ ∈ ∆Σ(ki′+ki−1

n ) is determined by gi′ ◦ (1 · · · ki′) ◦ ski′ ◦ (σ′ t σ) = fη̄,{i,i′}
as in Remark 4.4.9.

Now we let K′ := (k1, . . . , ki′−1, ki + ki′ − 1, ki′−1, . . . , k̂i, . . . , kr) and define
a top-dimensional cell ϑ of V(K′

n )g : we decrease ml0 by 1 and let

ϑ(l, b) :=

{
(si′ ◦ τ ◦ η)(l0, db′0 b) if l= l0,

(si′ ◦ τ ◦ η)(l, b) else.

Pictorially, the two problematic points are fused into a single one, all points
with cluster number i′ or i now carry the number i′, and all cluster numbers
above i are shifted down by 1.

One readily checks that ϑ is again essential, mainly because we merged
two clusters. Since the arity of ϑ is r− 1, the outer induction hypothesis tells
us that JϑK is contained in the operadic span.
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Now we employ Lemma 4.3.12: the circle b := bki′,ki ◦ (σ′ ⊗ σ) intersects
two cells, called δ and δ̄, of V( ki′,ki

ki′+ki−1) transversally. Furthermore, the cellular
composition ϑ ◦g (1⊗i′−1 ⊗ δ⊗ 1⊗r−1−i′) agrees, up to sign, with τ−1 ◦ η, and
the same holds for δ̄ and τ−1 ◦ η̄. If we write ψΛϑ = ϑ + ∑b µb · πb, then
one readily checks that all cells of the form πb ◦g (1⊗i′−1 ⊗ δ⊗ 1⊗r−1−i′) are
again collapsible, and the same holds for δ̄. This shows by Lemma 4.3.12

that, abbreviating s := r− i′ − 1, we have

JϑK ◦
(
1⊗i′−1 ⊗ b⊗ 1⊗s)

=
[
± ϑ ◦g (1

⊗i′−1 ⊗ δ⊗ 1⊗s)± ϑ ◦g (1
⊗i′−1 ⊗ δ̄⊗ 1⊗s)

+ ∑b µb ·
(
± πb ◦g (1⊗i′−1 ⊗ δ⊗ 1⊗s)± πb ◦g (1⊗i′−1 ⊗ δ̄⊗ 1⊗s)

)]
= ±Jτ−1 ◦ ηK± Jτ−1 ◦ η̄K

= ±τ∗JηK± τ∗Jη̄K.

Since both τ∗Jη̄K and JϑK ◦ (1⊗i′−1 ⊗ b⊗ 1⊗s) lie in the operadic span, the
same applies to τ∗JηK, and hence also to JηK = x.

This concludes the proof of Theorem 4.4.2 as well:

Proof of Theorem 4.4.2. We show that each additive generator x ∈ Hh(V(K
n)),

can be written as a linear combination of operadic compositions applied to
our generators, and we procced by induction over the arity r := #K of x.

For r = 0, we have to deal with the ground class vn of V(n). Here we see
vn = f ◦ v1, where f : 11 → nn is an arbitrary map. For r = 1, note that V(k

n)

has contractible components and H0(V(k
n)) = R〈∆Σ(k

n)〉, so x is, up to sign,
one of the maps f : k→ n.

For the induction step ‘r− 1→ r’, we use the previous results: if h = r− 1,
then we can directly apply Proposition 4.4.12, and if h 6 r− 2, then we first
apply Proposition 4.4.5 in order to decompose τ∗x = ± f ◦ uk,k′ ◦ (y ⊗ y′),
where both y and y′ have strictly smaller arity. By the induction hypothesis,
both y and y′ lie in the span of our generators.

Let us close this long subsection with a similar statement for the homology
H•(Vc) of the connective suboperad.
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Theorem 4.4.13. The operad H•(Vc) is generated by the following classes:

1. the void v1 ∈ H0(Vc(1));

2. for each surjective f : k→ n in ∆Σ, the ground class f ∈ H0(Vc(k
n));

3. the ground class pn,n′ := s1 ◦ (2 · · · n+1) ◦ un,n′ ∈ H0(Vc( n,n′
n+n′−1)), for each

n, n′ > 1, called the ‘vertical Pontrjagin product’;

4. for each n, n′ > 1, the vertical Browder bracket bn,n′ ∈ H1(V
c( n,n′

n+n′−1)).

In principle, we could have put sn ◦ un,n′ for the vertical Pontrjagin product;
however, we wanted it to be a class in the same path component as bn,n′ .

The main reason for us to call the classes pn,n′ ‘vertical Pontrjagin products’
is the fact that p1,1 ∈ H0(Vc(1,1

1 )) = H0(C2(2)) is the ground class for the
classical Pontrjagin product.

Proof. One can show ‘by hand’ that all classes x ∈ Hh(V
c(K

n)) with arity
#K 6 2 can be expressed in terms of the above generators; here all occurring
spaces Vc(K

n) are equivalent to graphs. We are left to show that H•(Vc) is
generated by classes of arity at most 2.

For each x of arity at least 3, an iterated application of Proposition 4.4.5
gives rise to a permutation τ ∈ Sr which satisfies τ∗x = ± f ◦ (x1, . . . , xr−h),
where f = ( f1, . . . , fr−h) ∈ H0(V(k′1,...,k′r−h

n )), and each xl is a top-dimensional
class without empty layers. It is now easy to see that the decomposition of
Proposition 4.4.12 does not create empty layers, and moreover, only path
components without empty layers have non-vanishing top homology. Hence,
each xl is connective and of arity strictly smaller than r, so by induction, xl
lies in the span of the above generators.

We are left to study the 0-dimensional class f . Here we can see that, by the
construction of f in Proposition 4.4.5, f itself is connective, and it is an easy,
purely combinatorial exercise to check that π0(Vc) is indeed generated by
unaries, i.e. surjective maps in ∆Σ, and the vertical Pontrjagin products.

4.4.2. Relations

In the previous subsection, we gave a system of generators for H•(V) and
H•(Vc); now we want to find a system of relations between them. Let us
start by fixing some notation.
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Notation 4.4.14. Let σ ∈ St be a permutation and let n1, . . . , nt > 0 be a
collection of non-negative integers. Then we denote by σn1,...,nt ∈ Sn1+···+nt

the corresponding block permutation.
Secondly, we use the short notation ρj := (1 · · ·j) ∈ Sk for each 1 6 j6 k

whenever it is clear from the context what k is.

Remark 4.4.15 (Relations among ground classes). Recall that all generators
of H•(V), apart from the vertical Browder brackets, are ground classes of a
certain path component. Hence, it is a purely combinatorial task to show the
following relations:

1. the composition of unaries g ◦ f , i.e. the ∆Σ-maps in H•(V), equals
the actual composition g f in the category ∆Σ. Since this is already
suggested by the notation, we will not mention this any more;

2. if we write vn = d1 ◦ vn−1 for the empty configuration on n layers, then
f ◦ vk = vn for each map f : k→ n;

3. the universal morphisms are associative:

un+n′,n′′ ◦ (un,n′ ⊗ 1n′′) = un,n′+n′′ ◦ (1n ⊗ un′,n′′);

4. the universal morphisms are commutative up to layer permutation:

(1 2)∗un,n′ = (1 2)n′,n ◦ un′,n;

5. using the void as one of the arguments for the universal morphism un,1

is the same applying a coface: un,1 ◦ (1n ⊗ v1) = dn+1;

6. unaries can be ‘pulled out’ of a universal morphism: for f : k→ n and
f ′ : k′ → n′, we have

un,n′ ◦ ( f ⊗ f ′) = ( f t f ′) ◦ uk,k′ ;

7. precomposing with un,n′ equalises some of the ∆Σ-maps, as we do not
remember the entire order of each fibre, but only its restrictions to nn
and n′n′. Formally, if f : n + n′ → m is a map in ∆Σ and σ ∈ Sn+n′ is
a permutation such that σ|n and σ|n′ are monotone, and if f σ and f
coincide in Fin (though perhaps not in ∆Σ), then f σ ◦ un,n′ = f ◦ un,n′ .
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The relations involving the vertical Browder brackets are slightly more
complicated, mainly because there is one layer which contains two arguments.
Let us start with the relations in arity 2.

Proposition 4.4.16 (Relations including Browder brackets in arity 2). The
following relations hold inside H•(V):

1. the Browder brackets are commutative up to layer permutation:

(1 2)∗bn,n′ = (2 3)1,n′−1,n−1 ◦ bn′,n;

2. the Browder brackets are cancelled by the void:

bn,1 ◦ (1n ⊗ v1) = 0;

3. Browder brackets and codegeneracies are related in the following way:

bn−1,n′ ◦ (sl⊗ 1n′) =

{
s1 ◦ bn,n′ + s1ρ2 ◦ bn,n′ ◦ (ρ2 ⊗ 1n′) if l= 1,

sl ◦ bn,n′ else;

4. Browder brackets and cofaces are related in the following way:

bn+1,n′ ◦ (dl⊗ 1n′) =

{
0 if l= 1,

dl ◦ bn,n′ else;

5. Browder brackets and layer permutations are related in the following way:

bn,n′ ◦ (σ⊗ 1n′) = σρ−1
σ−1(1) ◦ bn,n′ ◦ (ρσ−1(1) ⊗ 1n′);

6. if n, n′ > 2, then there are several ways to produce loops as in Example 1.5.7,
This is captured by the ‘loop interchange relation’

(s2 − s2(2 3))(3 · · · n+1) ◦ bn,n′

= (1 2)(s2 − s2(2 3))(3 · · · n+1) ◦ bn,n′ ◦ (ρ2 ⊗ ρ2).
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Figure 4.13. (s2 − s2(2 3))(3 4) ◦ b3,2 = (1 2)(s2 − s2(2 3))(3 4) ◦ b3,2 ◦ (ρ2 ⊗ ρ2).

Proof. Since all relations are proven in the same way, let us prove the loop
interchange relation, as it is the most unexpected one. First of all, we see
that all four summands in the formula live in the same path component of
V( n,n′

n+n′−2), namely f = ( f1, f2) with f1(j) = j, while f2(1) = 1, f2(2) = 2,
and f2(j) = n− 2 +j else.

Now recall that V( n,n′
n+n′−2) f is equivalent to a graph with two vertices v1,2

and v2,1, which are dual to the top-dimensional cells where the first cluster is
on the left or right side of the second cluster (hence the indexing), respectively.
In this easy situation, we do not have to care about the simplicial sign system
and can just orient each edge such that it points from v1,2 towards v2,1.

We have one edge for each shuffle of the two clusters subordinate to the
distribution f of boxes to the layers. Since the only layers with more than
one box are the two bottom ones, there are exactly four edges, which we may
call (1 2

1 2), (
1 2
2 1), (

2 1
1 2), and (2 1

2 1), in accordance to Notation 4.3.4.
Then all four summands are represented by loops in the graph, which start

at v1,2 and cross one of the edges in positive and one of the edges in negative
direction, see Figure 4.13. Hence, if we abbreviate σ := (3 · · · n+1), then the
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brackets are represented by the following cellular cycles:

s2σ ◦ bn,n′ =
[
(1 2

1 2)− (1 2
2 1)
]
,

s2(2 3)σ ◦ bn,n′ =
[
(2 1

1 2)− (2 1
2 1)
]
,

(1 2)s2σ ◦ bn,n′ ◦ (ρ2 ⊗ ρ2) =
[
(1 2

1 2)− (2 1
1 2)
]
,

(1 2)s2(2 3)σ ◦ bn,n′ ◦ (ρ2 ⊗ ρ2) =
[
(1 2

2 1)− (2 1
2 1)
]
.

Therefore, we finally get

(s2 − s2(2 3))σ ◦ bn,n′ =
[
(1 2

1 2)− (1 2
2 1)− (2 1

1 2) + (2 1
2 1)
]

= (1 2)(s2 − s2(2 3))σ ◦ bn,n′ ◦ (ρ2 ⊗ ρ2).

There are clearly analogues of the formulæ 2 – 5 with nullaries and unaries
in the second argument; here we use formula 1 in order to deduce them from
the given ones. Similarly, formula 6 can be phrased for other boxes than only
the first and the second one of each cluster, using formula 4.

Since all ∆Σ-maps can be written as d ◦ s ◦ σ, where d is a composition of
cofaces, s is a composition of codegeneracies, and σ is a permutation, we can
nearly ‘pull out’ ∆Σ-maps as arguments of Browder brackets: it may happen
that we are left with a single permutation of the form ρj. This is the reason
why the following proposition takes these permutations into account.

Proposition 4.4.17 (Relations including Browder brackets in arity 3). The
following relations hold inside H•(V):

1. the Browder bracket and the universal morphisms are related in the following
way: for each 1 6 j6 n′, we have

bn,n′+n′′ ◦ (1n ⊗ (ρj ◦ un′,n′′))

= un+n′−1,n′′ ◦ ((bn,n′ ◦ (1n ⊗ ρj))⊗ 1n′′),

while for all 1 6 j6 n′′, we have for σ := (2 3)n,n′′−1,n′ ∈ Sn+n′+n′′−1

bn,n′+n′′ ◦ (1n ⊗ ρn′+jun′,n′′)

= (2 3)∗(σ ◦ un+n′′−1,n((bn,n′′ ◦ (1n ⊗ ρj))⊗ 1n′));
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2. if we compose two Browder brackets in a way that the two spinning layers do
not meet, then we obtain an associativity property: for 2 6 j6 n′, we obtain

bn,n′+n′′−1 ◦ (1n ⊗ (ρj ◦ bn′,n′′))

= −ρ2 ◦ bn+n′−1,n′′ ◦ ((ρ2 ◦ bn,n′ ◦ (1n ⊗ ρj))⊗ 1n′′),

while for 2 6 j6 n′′, we have for σ := (2 3)n,n′′−1,n′−1 ∈ Sn+n′+n′′−2

bn,n′+n′′−1 ◦ (1n ⊗ (ρn′−1+j ◦ bn′,n′′))

= (2 3)∗(σρ2 ◦ bn′+n′′−1,n′((ρ2 ◦ bn,n′′(1n ⊗ ρj))⊗ 1n′));

3. if in a composition of two Browder brackets, two spinning layers meet, we
obtain a generalised Jacobi identity. Formally, this means

0 = bn,n′+n′′−1(1n ⊗ bn′,n′′)

+ (1 2 3)∗((2 3 4)1,n′−1,n′′−1,n−1 ◦ bn′,n′′+n−1 ◦ (1n′ ⊗ bn′′,n))

+ (1 3 2)∗((2 4 3)1,n′′−1,n−1,n′−1 ◦ bn′′,n+n′−1 ◦ (1n′′ ⊗ bn,n′)).

Proof. Again, the proofs are very similar to each other, whence we prove, as
an example, the generalised Jacobi identity: first of all, note that all three
summands x1, x2 and x3 appearing in the formula lie in the same path
component of V( n,n′,n′′

n+n′+n′′−2), namely f = ( f1, f2, f3) with f1(j) = j being
the inclusion of the first block, f2(1) = 1 and f2(j) = n− 1 +j else, while
f3(j) = 1 and f3(j) = n + n′ − 2 + l else.

Moreover, each summand is by construction represented by a smoothly
embedded 2-torus S1 × S1 ↪→ V( n,n′,n′′

n+n′+n′′−2) f , where the first factor paramet-
rises the outer bracket and the second one the inner bracket. Each of these
tori intersects exactly four cells of codimension 2 transversally. Note that
since all layers apart from the first one carry only a single box, the cells are
determined by the vertical alignment of the three boxes on the first layer, i.e.
we have six cells of codimension 2, which we may call (σ(1) σ(2) σ(3)), for each
permutation σ ∈ S3. Calculating the signs of the transversal intersections by
hand, we obtain that, under Poincaré–Lefschetz duality, the three classes x1,
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x2, and x3 are represented by the dual cocycles

x1 = (−1)n′−1 · [(1 2 3) + (1 3 2)− (3 2 1)− (2 3 1)],

x2 = (−1)n′−1 · [(2 3 1) + (2 1 3)− (1 3 2)− (3 1 2)],

x3 = (−1)n′−1 · [(3 1 2) + (3 2 1)− (1 2 3)− (2 1 3)].

This shows that x1 + x2 + x3 = 0 holds, since each permutation occurs twice
among these twelve summands, with mutually different signs.

Remark 4.4.18. One can show that we have actually found all relations in
order to give a full presentation in the sense of Section 3.2.

The proof is lengthy, but straightforward: one can introduce a ‘normal form’
for trees with internal vertices labelled by our generators (e.g. all unaries
are gathered near the root, we only have permutations of the form ρj inside
brackets, etc.), show that all trees can be written as a linear combination of
trees which are in normal form, and finally give a surjection from the set of
essential cells to the set of trees in normal form. However, as we will at no
point need that our list of relations is exhaustive, we omit the details.

This presentation can be translated into a structure result for algebras over
H•(V): an H•(V)-algebra is the same as a functor A• : ∆Σ→ R-ModZ, that
comes together with:

• a unit 1 ∈ A1,0 induced by v1,

• unions −t− : An,h ⊗ An′,h′ → An+n′,h+h′ induced by un,n′ ,

• brackets [−,−] : An,h ⊗ An′,h′ → An+n′−1,h+h′+1 induced by bn,n′ ,

such that the above relations hold with respect to the Koszul sign rule: for
example, we have

a t b = (−1)ab · (1 2)n(b),n(a)(b t a),

a t 1 = dn(a)+1a,

[a, b t c] = [a, b] t c,

0 = (−1)ac · [a, [b, c]] + (−1)ab · σ1[b, [c, a]] + (−1)bc · σ2[c, [a, b]],
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where we write n(a) := n and (−1)a := (−1)h for a ∈ An,h, and where we
put σ1 := (2 3 4)1,n(b)−1,n(c)−1,n(a)−1 and σ2 := (2 4 3)1,n(c)−1,n(a)−1,n(b)−1.

I would like to point out that, apart from layer permutations that enter
quite often, these formulæ are very close to the ones in Example 3.2.13.

This structure result holds in particular for the homology of a V-algebra.
Furthermore, by Proposition 3.3.3, we see that if we work over a field F

with characteristic 0, then the homology H•(V(R1,1 × nn; X); F)n>1 of the free
V-algebra over a sequence X := (Xn)n>1 of spaces is isomorphic to the free
H•(V)-algebra over H•(X).

Remark 4.4.19. The induced map ϕ : H•(V)→ H•(N(C2)) of operads is not
injective: for example, the map H0(V(k

n)) → H0(N(C2)(
k
n)) is induced by

the map ∆Σ(k
n)→ Fin(k

n) which forgets the ordering of the fibres.
One can show that the entire kernel of ϕ is, as an operadic ideal, generated

by the differences f ′ − f of ∆Σ-maps whose underlying maps in Fin are
equal. Along ϕ, the unexpected loop interchange relation becomes trivial, as
already the difference s2 − s2(2 3) is 0 inside R〈Fin〉(n+n′−1

n+n′−2).

A similar story can be told for the connective suboperad H•(Vc). Here we
keep all relations that do not contain the symbols dl or un,n′ , since all other
generators are connective. In addition to them, we have further relations in-
volving the vertical Pontrjagin product pn,n′ . Let us start again with relations
among ground classes:

Remark 4.4.20 (Relations among connective ground classes).

1. the vertical Pontrjagin products are associative:

pn+n′−1,n′′ ◦ (pn,n′ ⊗ 1n′′) = pn,n′+n′′−1 ◦ (1n ⊗ pn′,n′′);

2. the Pontrjagin products are commutative up to layer permutation:

(1 2)∗pn,n′ = (2 3)1,n′−1,n−1 ◦ pn′,n;

3. using the void as one of the arguments in a vertical Pontrjagin product
pn,1 does not change anything: pn,1 ◦ (1n ⊗ v1) = 1n;
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4. degeneracies can be ‘pulled out’ of one argument of a vertical Pontrjagin
product: pn−1,n′ ◦ (sl⊗ 1n′) = sl ◦ pn,n′ ;

5. as for the Browder brackets, permutations can be ‘pulled out’ up to a
cyclic remainder:

pn,n′ ◦ (σ⊗ 1n′) = σρ−1
σ−1(1) ◦ pn,n′ ◦ (ρσ−1(1) ⊗ 1n′)

6. precomposing with pn,n′ equalises some ∆Σ-maps: if f : n + n′ − 1→ m
is a map in ∆Σ and σ ∈ Sn+n′−1 is a permutation such that σ|n and
σ|{1,n+1,...,n+n′−1} are monotone, and if f σ and f coincide as maps in
Fin (though perhaps not in ∆Σ), then we have f σ ◦ pn,n′ = f ◦ pn,n′ .

Finally, there are relations between vertical Browder brackets and vertical
Pontrjagin products, which are captured in the following proposition:

Proposition 4.4.21. The following relations hold in H•(Vc):

1. without any cyclic permutation, the Browder bracket and the vertical product
are related as follows: if we write σ := (2 3)n,n′′−1,n′−1 ∈ Sn+n′+n′′−2, then
we have a generalised Leibniz rule

bn,n′+n′′−1 ◦ (1n ⊗ pn′,n′′)

= pn+n′−1,n′′ ◦ (bn,n′ ⊗ 1n′′) + (2 3)∗(σ ◦ pn+n′′−1,n′ ◦ (bn,n′′ ⊗ 1n′));

2. if 2 6 j6 n′, then we have

bn,n′+n′′−1 ◦ (1n ⊗ (ρj ◦ pn′,n′′))

= ρ2 ◦ pn+n′−1,n′′ ◦ ((ρ2 ◦ bn,n′ ◦ (1n ⊗ ρj))⊗ 1n′′);

3. if 2 6 j6 n′′, then we have for σ = (2 3)n,n′′−1,n′−1 ∈ Sn+n′+n′′−2

bn,n′+n′′−1 ◦ (1n ⊗ (ρn′+j−1 ◦ pn′,n′′))

= (2 3)∗(σρ2 ◦ pn+n′′−1,n′ ◦ ((ρ2 ◦ bn,n′′ ◦ (1n ⊗ ρj))⊗ 1n′)).
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Proof. We show the first formula by using pn′,n′′ = s1(2 · · · n′+1) ◦ un′,n′ and
the relations from H•(V). First we calculate that

bn,n′ ◦ (1n ⊗ s1)

= (1 2)∗((2 3)1,n′−1,n−1 ◦ bn′,n ◦ (s1 ⊗ 1n))

= (2 3)1,n′−1,n−1 ◦ (1 2)∗
(
s1 ◦ bn′+1,n + s1ρ2 ◦ bn′+1,n ◦ (ρ2 ⊗ 1n)

)
= s1(2 · · · n+1) ◦ (1 2)∗((2 3)1,n′,n−1 ◦ bn′+1,n)

+ s1ρn+1 ◦ (1 2)∗((2 3)1,n′,n−1 ◦ bn′+1,n ◦ (ρ2 ⊗ 1n))

= s1(2 · · · n+1) ◦ bn,n′+1 + s1ρn+1 ◦ bn,n′+1 ◦ (1n ⊗ ρ2).

Similarly, we see that bn,n′ ◦ (1n ⊗ σ) = σ̃ ◦ bn,n′ holds if σ(1) = 1, where
σ̃(n− 1 +j) := n− 1 + σ(j). This can be used for the remaining calculation:

bn,n′+n′′−1 ◦ (1n ⊗ pn′,n′′)

= bn,n′+n′′−1 ◦ (1n ⊗ s1(2 · · · n′+1) ◦ un′,n′′)

= s1(2 · · · n+1) ◦ bn,n′+n′′−1 ◦ (1n ⊗ ((2 · · · n′+1) ◦ un′,n′′))

+ s1ρn+1 ◦ bn,n′+n′′−1 ◦ (1n ⊗ (ρn+1 ◦ un′,n′′))

= s1(2 · · · n+n′) ◦ bn,n′+n′′−1 ◦ (1n ⊗ un′,n′′)

+ s1ρn+1 ◦ bn,n′+n′′−1 ◦ (1n ⊗ (ρn+1 ◦ un′,n′′))

= s1(2 · · · n+n′) ◦ un+n′−1,n′′ ◦ (bn,n′ ⊗ 1n′′)

+ (2 3)∗
(
s1ρn+1(2 3)n,n′′−1,n′ ◦ un+n′′−1,n′ ◦ (bn,n′′ ⊗ 1n′)

)
= pn+n′−1,n′′ ◦ (bn,n′ ⊗ 1n′′) + (2 3)∗(σ ◦ pn+n′′−1,n′ ◦ (bn,n′′ ⊗ 1n′)).

Remark 4.4.22. Again, one can show that this list of relations is exhaustive,
and again, this can be rephrased as a structure result for H•(Vc)-algebras:
if we denote by ∆Σsurj ⊆ ∆Σ the subcategory of surjective ∆Σ-maps, then
H•(Vc)-algebras are the same as functors A• : ∆Σsurj → R-ModZ, with:

• a unit 1 ∈ A1,0 induced by v1,

• products − · − : An,h ⊗ An′,h′ → An+n′−1,h+h′ induced by pn,n′ ,

• brackets [−,−] : An,h ⊗ An′,h′ → An+n′−1,h+h′+1 induced by bn,n′ ,
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such that the aforementioned relations hold with respect to the Koszul sign
rule, for example

a · (b · c) = (a · b) · c,

a · b = (−1)ab · (2 3)n(b)−1,n(a)−1(b · a),
a · 1 = a,

[a, b · c] = [a, b] · c + (−1)bc · (2 3)n(a),n(c)−1,n(b)−1([a, c] · b).

Note that the subfamily (A1,h)h>0 carries an action of H•(Vc
1,1|1) = 2,

and in this description, the vertical Pontrjagin product p1,1 and the classical
Pontrjagin product p, as well as the vertical Browder bracket b1,1 and the
classical Browder bracket b agree: this justifies the notation ‘·’ and ‘[−,−]’.

In particular, we recover the classical1 Jacobi identity and Leibniz rule for
the Pontrjagin product and the Browder bracket as the special case in which
all arguments are supported on a single layer.

Finally, I would like to point out that the Cartan formula for expressions of
the form [a · a′, b · b′] is easily established by applying the Leibniz rule twice
and by using the (graded) commutativity of the bracket.

4.4.3. Squaring operations

In this last subsection, we describe a system of divided power operations in
the sense of Construction 3.3.10 that arise from the operad V.

We start by constructing a sequence of classes cn ∈ H1(V(n,n
n )) which give

rise to operations Q : Hh(Xn)→ H1+2h(Xn) for each V-algebra (Xn)n>1, and
we study relations among them. Afterwards, we show that Q, together with
the Künneth operations, exhausts all squaring operations, i.e. divided power
operations with one input of multiplicity 2.

Remark 4.4.23 (Unordered operation spaces). For K = (k1, . . . , kr) and k > 1,
let r(k) be the number of occurrences of k inside K. Recall that the symmetric
group SK = ∏k>1 Sr(k) acts freely on both V(K

n) and ṼK(R
1,1× nn) by exchan-

ging clusters of the same size.

1 Note that, in contrast to Cohen’s work, which was summarised in Example 3.2.13, we use a
different sign convention by defining [a, b] to be bn,n′ (a⊗ b) instead of (−1)a · bn,n′ (a⊗ b).
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The homotopy equivalence Ψ : ṼK(R
1,1 × nn)� V(K

n) : Φ from Proposition
4.1.3 is SK-equivariant, whence we get for each subgroup G ⊆ SK an induced
homotopy equivalence Ψ̄ : ṼK(R

1,1 × nn)/G� Ṽ(K
n)/G : Φ̄.

The path components of V(K
n)/G are given by equivalence classes of tuples

[ f ] := [ f1, . . . , fr] with fi ∈ ∆Σ(ki
n), and two tuples are identified if they differ

only by an index permutation from G. We occasionally use the short notation
(Ṽ/G)[ f ] for the respective path component.

Since the action of G on ṼK(R
1,1 × nn) preserves the (relative, dual) cellular

structure, we get an induced cellular structure on ṼK(R
1,1 × nn)/G, with cells

given by equivalence classes [π] of maps YM → rr, where two such maps π

and π′ are identified if they differ by postcomposition with a permutation in
G. We depict such a cell as in Notation 4.3.4 by a matrix, but we use square
brackets to indicate that we speak of [π] instead of π.

Construction 4.4.24 (Vertical Dyer–Lashof squares). For a fixed n > 1, we
consider the path component 12 := (1, 1) ∈ ∆Σ×(n,n

n ) and the loop

[0; 1] Ṽ12

S1 (Ṽ(n,n
n )/S2)[12],

α

ᾱ

which is defined by

α(t) =
(
(eπi·t, 1), . . . , (eπi·t, n); (eπi·(t−1), 1), . . . , (eπi·(t−1), n)

)
.

Pictorially, on the lth layer, the lth box from the first cluster and the lth box
from the second cluster change places, as in Figure 4.14.

We define cn := (Ψ̄ ◦ ᾱ)∗[S1] ∈ H1((V/S)[12]). As S2 acts freely on V(n,n
n ),

this gives rise to an operation, which we call vertical Dyer–Lashof square

Q := Qcn : Hh(Xn)→ H1+2h(Xn),

for each V-algebra (Xn)n>1, whenever h is even or we work mod 2, compare
Construction 3.3.10.
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2,1 1,1

2,2 1,2

1

2

Figure 4.14. Ψ ◦ α : [0; 1]→ V(2,2
2 ) with (Ψ̄ ◦ ᾱ)∗[S1] = c2 ∈ H1(V(n,n

n )/S2).

Proposition 4.4.25. For each V-algebra (Xn)n>1, the following formulæ hold inside
the F2-homology (Hh(Xn; F2))n>1,h>0:

1. Q commutes with cofaces: Q(dlx) = dlQx;

2. Q commutes with permutations: Q(σx) = σQx;

3. Q interacts with codegeneracies in the following way: define g ∈ ∆Σ(2n−1
n )

as (2 n+1 | · · · | l n+l−1 | l+1 1 n+l| l+2 n+l+1 | · · · | n 2n−1)
and write ρl := (1 · · · l) ∈ Sn as before. Then

Q(slx) = slQx + g[ρl+1x, ρlx];

4. Q commutes with unifiers: Q(x t x′) = Qx tQx′;

5. Q inside a Browder bracket can be translated into a sum of Browder brackets:
if x ∈ H•(Xn) and x′ ∈ H•(Xn′), then we let gl ∈ ∆Σ(2n−1

n ) as in Construc-
tion 4.4.11 and g′l := glt 1n′−1 ∈ ∆Σ(2n+n′−1

n+n′−1 ). Then we get

[Qx, x′] =
n

∑
l=1

g′l[ρlx, ρl[x, x′]].

6. the Browder bracket measures to what extend Q fails to be additive:

Q(x + x′) = Qx + Qx′ +
n

∑
l=1

gl[ρlx, ρlx′];
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7. Q and the vertical Pontrjagin product satisfy a generalised Cartan formula:

Q(x · x′) = Qx ·Qx′ + s2s4 · · · s2n′+2n−4(x · [x, x′] · x′).

Proof. The relations 1 – 5 are all proven in the same way; thus, we exemplarily
show 5. Let E = (Ew)w>1 be the free V-algebra over two points, which we
consider as charges: a point called ‘+’ of colour n, and a point called ‘−’ of
colour n′. If we abbreviate K(r, r′) := (r× n, r′ × n′) and Gr,r′ := Sr ×Sr′ for
r, r′ > 0, then, for each w > 1, the level Ew decomposes, up to equivalence, as

Ew ' ä
r,r′>0

ṼK(r,r′)(R
1,1 × ww)/Gr,r′ .

Each of the summands splits again into (Ṽ/G)[ f ],[ f ′], with [ f ] = [ f1, . . . , fr]

and [ f ′] = [ f ′1, . . . , f ′r′ ], with fi ∈ ∆Σ(n
w) and f ′i ∈ ∆Σ(n′

w), and each of these
components has a (relative, dual) cellular decomposition as in Remark 4.4.23.
Since we work over F2, we do not have to care about orientations, whence
each homology class of (Ṽ/G)[ f ],[ f ′] has, via Poincaré–Lefschetz duality, a
representation as a cellular cocycle.

With this in mind, we show relation 5 first for the special case where:

• x is the ground class e of (Ṽ/G)[1],∅ ⊆ En, the space of configurations
of a single cluster of positive charge, which has one point on each layer;

• x′ is the ground class e′ of (Ṽ/G)∅,[1] ⊆ En′ , the space of configurations
of a single cluster of negative charge, which has one point on each layer.

Then [Qe, e′] is represented by an embedded 2-torus S1 × S1 ↪→ (Ṽ/G)[ f , f ],[ f ′],
where f ∈ ∆Σ( n

n+n′−1) is the inclusion of the first block and f ′(1) = 1, while
f ′(l) = n + l− 1 for 2 6 l6 n′ − 1. This 2-torus intersects two dual cells of
codimension 2 transversally, namely

π1 :=


3
...
3
1 2
...
1 2
1 2 3

 and π2 :=


3
...
3
1 2
...
1 2
3 1 2

.
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Therefore [Qe, e′] is represented by the cellular cocycle π1 + π2. Exactly the
same holds for y := ∑l g′l[ρle, ρl[e, e′]]: there are four intersections, with

π′1 := π1, π′2 :=


3
...
3
2 1
...
2 1
3 2 1

 = π2, π′3 :=


3
...
3
1 2
...
1 2
1 3 2

, and π′4 :=


3
...
3
2 1
...
2 1
2 3 1

 = π′3.

Hence y is represented by π′1 + π′2 + π′3 + π′4 = π1 + π2.
The case of a general V-algebra X = (Xn)n>1 and of general homology

classes x ∈ Hh(Xn) and x′ ∈ Hh′(Xn′) now follows from abstract considera-
tions: if we write O := Csing

• (V) for the corresponding operad in F2-chain
complexes and consider the formal (coloured) chain complex B = F2〈β, β′〉,
where β is of degree h and colour n, while β′ is of degree h′ and colour n′,
then FO(B), the free O-algebra over B, decomposes into chain complexes
Csing
• (V( f , f ′))⊗G (F2〈β〉⊗r ⊗F2〈β′〉⊗r′) for varying ( f , f ′) ∈ ∆Σ×(r×n,r′×n′

w )

with r, r′ > 0 and w > 1, and G ⊆ Gr,r′ being the isotropy group of ( f , f ′).
Similarly, for a fixed pair ( f , f ′), the singular chain complex of the compon-
ent (V/G)[ f ],[ f ′] is of the form Csing

• (V( f , f ′))⊗G (F2〈ε〉⊗r ⊗F2〈ε′〉⊗r′), where
both ε and ε′ are of degree 0. By sending ε to β and ε′ to β′, we obtain a chain
map ϕ f , f ′ : Csing

• ((V/G)[ f ],[ f ′])→ FO(B) of degree r · h + r′ · h′.
If we choose representing singular cycles ξ for x and ξ ′ for x′, then the map

B→ Csing
• (X) sending β to ξ and β′ to ξ ′ has an adjoint ψ : FO(B)→ Csing

• (X),
and altogether, we obtain, for each ( f , f ′) ∈ ∆Σ×(r×n,r′×n′

w ), a map

Φ f , f ′ : H•((V/G)[ f ],[ f ′]) H•+rh+r′h′(FO(B)w) H•+rh+r′h′(Xw),
(ϕ f ,f ′)∗ (ψm)∗

It is straightforward to check that Φ1,∅(e) = x and Φ∅,1(e′) = x′, and that Φ
commutes with Künneth operations and Q in the sense that

m(Φe1 ⊗ · · · ⊗Φes) = Φ(m(e1 ⊗ · · · ⊗ es)),

Q(Φē) = Φ(Qē),

for each operation m ∈ H•(V) and for each collection e1, . . . , es, ē of fitting
classes in H•(E). This proves the claim.
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Relation 6 follows from Remark 3.3.14 and the observation that the homo-
logical transfer pr!(cn) is given by ∑l gl ◦ bn,n ◦ (ρl⊗ ρl), while relation 7

follows from the previous ones and the equality x · x′ = s1(2 · · · n+1)(x t x′):

Q(x · x′) = Q(s1(2 · · · n+1)(x t x′))

= s1(2 · · · n+1)(Qx tQx′)

+ g[ρn+1(x t x′), (2 · · · n+1)(x t x′)]

= Qx ·Qx′ + g(n+n′+1 · · · 2n+n′)[ρn+1(x t x′), x t x′]

= Qx ·Qx′ + g(n+n′+1 · · · 2n+n′)([ρn+1(x t x′), x] t x′)

= Qx ·Qx′ + s2s4 · · · s2n′+2n−4(x · [x, x′] · x′)

Remark 4.4.26. If the homology classes to which we want to apply Q lie in
the colour-1 part of H•(X), then the operation Q coincides with the classical
Dyer–Lashof operation coming from the suboperad Vc

1,1|1 = C2. In this case,
our formulæ recover many classical relations from [CLM76, § iii], e.g.

[Qx, x′] = [x, [x, x′]],

Q(x + x′) = Qx + Qx′ + [x, x′],

Q(x · x′) = Qx ·Qx′ + x · [x, x′] · x′.

The reader should not be surprised by the first formula: in some sources, e.g.
[Böd90b, § 4.5] and [BH14, Prop. 4.1.12], one can find the formula ‘[Qx, x′] = 0’
for Q being the top operation for E2-algebras. This is a misquote of [CLM76,
§ iii, Thm. 1.2], where the ‘top Dyer–Lashof operation’ is given another name,
whence the correct formula was included in another list.

Indeed, consider the E2-algebra FC2({+,−}) ' är,r′ C̃r+r′(R
2)/(Sr ×Sr′)

and let x and x′ be the two ground classes of the components of configurations
consisting of a single point. Then, by the same methods as in the previous
proof, [Qx, x′] is represented by a relative cellular cocycle, which is not 0, and
hence also not a boundary, as it is of maximal codimension.

Let me point out that since all Dyer–Lashof squares we consider are either
Pontrjagin products or top-dimensional, there are no Adem relations similar
to [CLM76, Thm. iii.1.1] to be expected; though they might enter in the
description of the homology of Vp,q-algebras for p + q > 3.
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Finally, we want to point out that this sole construction Q exhausts all
squaring operations.

Proposition 4.4.27. Let c ∈ Hh(V(k,k
n )/S2). Then Qc can be expressed in terms

of Q and Künneth operations.

Proof. We can assume that c is subordinate to a single path component Vf /S2

with f = ( f1, f2), as otherwise, c decomposes as a sum of classes. If f1 6= f2,
then pr : V→ V/S2 restricts over the component [ f ] to a trivial covering,
and there is a class m ∈ Hh(V(k,k

n )) with c = pr∗m, whence Qc(x) = m(x⊗ x)
by Remark 3.3.13. Thus, we only have to consider the map f1 = f2 =: f .

We can write f = d ◦ s ◦ σ with d a composition of cofaces, s a composition
of codegeneracies and σ a permutation. Then there is a class c′ ∈ Hh(V(k,k

n′ ))

such that c = dc′ and we get Qc = dQc′ by Lemma 3.3.15. Thus, we can
assume that f = s ◦ σ is surjective.

Note that h ∈ {0, 1}, and if h = 0, then again, there is a m with c = pr∗mc
and Qc(x) = m(x⊗ x). Hence, we only have to deal with h = 1. Here we see
that H1((V/S)[ f ]) = F2〈Π f ,1/S2〉, so we may assume that c corresponds to
a cell [π] ∈ Π f ,1/S2.

There is maximal colour n′ > n such that we find a factorisation of f into
a surjective f ′ : k→ n′ and an iterated codegeneracy s′ : n′ → n, and a class
c′ ∈ H1((V/S)[ f ′]) such that c = s′c′. If we write al := # f ′−1(l) for each
1 6 l6 n′, then there are σ2, . . . , σn′ ∈ S2 such that c′ corresponds to the cell

c′ =

 an′×σn′ (1) an′×σn′ (2)
...

a2×σ2(1) a2×σ2(2)
a1×1 a2×2

,
as otherwise, c′ can be decomposed further, contradicting the maximality of
n′. (Here the term ‘a×j’ denotes an a-fold repetition of the symbol j.) This
means that c′ = Qc′′( f ′) for some c′′ ∈ H1((V/S2)[12]). In particular, we get
Qc(x) = sQc′′( f ′x) for each x ∈ H•(Xk), so we only have to deal with Qc′′ .

Therefore, we can assume that c lies in the component [12] = [1, 1]. Again
there are σ2, . . . , σn ∈ S2 such that

c =

[
σn(1) σn(2)

...
σ2(1) σ2(2)

1 2

]
,
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and we prove that Qc can be expressed via Q and via Künneth operations, by
downwards induction on h := ht(c) := min(l; σl 6= 1) ∈ {2, . . . , n + 1}. For
h = n + 1, we have c = cn, and for the induction step ‘n + 1, . . . , h+ 1→ h’,
we consider the ∆Σ-map

g :=
(
2 n+1 | · · · |h n+h−1 | 1 | σ∗h+1(h+1 n+h) | · · · | σ∗n (n 2n−1)

)
,

where σ∗(j j′) interchanges the two symbols j and j′ if σ 6= 1. Then
c̄ := c + g ◦ bn,n corresponds to a cell that differs from c by swapping the
entry in the hth row. Hence we get ht(c̄) > ht(c) and the induction hypothesis
applies. Moreover, we see that Qc(x) = Qc̄(x)− g[x, x] holds, as desired.

Again, I would like to close this long chapter with a list of open questions:

1. Classify, up to equivalence, all levelwise path connected Vp,q-algebras
X = (Xn)n>1. We already know that each Xn is a connected Ep-algebra,
whence it is by May’s recognition principle [May72] equivalent to a
p-fold loop space. For the remaining q directions, a combinatorial en-
hancement of the recognition principle seems to be necessary. As a first
task, one should try to find an adjunction Σ̃ : TopN

∗ � TopN
∗ : Ω̃ such

that for each based sequence X, the sequence Ω̃(X) carries the structure
of an N(C1)-algebra, and such that the arising natural transformation
UN(C1)FN(C1) ⇒ Ω̃Σ̃ is an equivalence for connected spaces.

2. Provide a presentation of the algebraic operads H•(Vp,q) and H•(Vc
p,q)

for general p and q. I assume that the same cellular methods can be
used here; one just has to be more patient than I have been.

3. Prove or disprove that, over F2, all higher divided power operations can
be expressed in terms of Q and Künneth operations. After having found
all such power operations and all relations between them, we should
end up with a result similar to [CLM76, § iii]: for each (based, symmet-
ric) sequence X, the F2-homology of the free V1,1-algebra FV1,1(X) is the
free W ′-algebra over H•(X), where a W ′-algebra is a H•(V1,1)-algebra,
together with all power operations and satisfying all relations: here we
most likely will have to include coloured Nishida relations, describing
how Q interacts with the (dual) Steenrod squares. Finally, one should
understand what the situation looks like mod p for odd primes.
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Homology operations on moduli spaces
of surfaces

Es soll das Innere von Ω auf eine
von einem geradlinigen Schlitz begrenzte

Ebene konform abgebildet werden.

David Hilbert

As already anticipated in Subsection 3.4.1, we aim to apply the operadic tech-
niques from the previous chapters in order to gain a better understanding of
moduli spaces and mapping class groups of surfaces with multiple boundary
components and their homology.

In order to pursue this aim, we start this chapter by making the action of
dyed E2-operads on models of M precise in two mutually comparable ways;
this extends the classical construction [Mil86; Böd90b] in a straightforward
way and involves a coloured version of Tillmann’s surface operad [Til00],
which is related to Segal’s conformalcobordism PROP [Seg88].

Secondly, we turn our attention to a specific simplicial model [Böd90a;
ABE08] of M. The idiosyncrasy of this model makes it necessary to restrict
ourselves to the vertical suboperad V1,1 ⊆N(C2); this construction extends a
description from [Böd90b, § 5]. As a consequence, the homology of M can be
endowed with the operations which we described in Section 4.4. Moreover,
we will encounter several ad-hoc constructions of homology operations which
involve multiple boundary components.

In the third and last section of this chapter, we apply these constructions
to explicit low-genus calculations in the unstable range and, by doing so,
contribute to the map of the world („Weltkarte“) which has been initiated and
developed by our working group over the last decade.
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Chapter 5. Homology operations on moduli spaces of surfaces

5.1. Moduli spaces and classical operadic actions on them

This section explicates which models for moduli spaces of Riemann surfaces
we want to use and what the E2-actions look like in these cases.

5.1.1. Surfaces, mapping class groups, and moduli spaces

Definition 5.1.1. A surface with parametrised boundary is a pair (S , Θ) where:

1. S is a smooth, compact, oriented, possibly disconnected surface with
boundary ∂S ⊆ S , together with a decomposition ∂S = ∂inS t ∂outS
into incoming and outgoing boundary curves, such that each component
of S has non-empty outgoing boundary.

2. Θ = (Θin, Θout) is a pair of diffeomorphisms Θin : kk× S1 → ∂inS and
Θout : nn× S1 → ∂outS , where k := #π0(∂inS) and n := #π0(∂outS).

To save notation, we sometimes treat Θ as a single map, which then is the dis-
joint sum k + n→ ∂S of the parametrisations. Each path component of the
boundary ∂S is endowed with two orientations: one induced from the ori-
entation of S , by using an inwards-pointing normal vector field, and one
coming from the parametrisation. For a component of ∂outS we require them
to coincide, whereas for a component of ∂inS we require them to differ.

2 13 4 5
∂inS

∂outS
1 4 2 3

Figure 5.1. A surface S with five incoming and four outgoing boundary curves,
where the arrows indicate the orientations of the parametrisations.
The components of S receive a canonical ordering by their minimal
outgoing boundary curves.
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5.1. Moduli spaces and classical operadic actions on them

Definition 5.1.2 (Surface types). A diffeomorphism Ψ : (S , Θ) → (S ′, Θ′) of
surfaces with parametrised boundary is a diffeomorphism Ψ : S → S ′ which
preserves the parametrisations, i.e. Θ′ = Ψ ◦Θ.

A surface type is an isomorphism class Σ of surfaces with parametrised
boundary curves. In particular, let Σg,n be the isomorphism class of connected
surfaces with genus g > 0 and n > 1 outgoing parametrised boundary curves
and no incoming boundary curve.

Remark 5.1.3. We write Σ : k→ n if Σ is a surface type with k incoming and
n outgoing boundary curves. Then Σ is determined by the following data:

1. a number 1 6 l 6 n of path components;

2. genera g1, . . . , gl > 0 for each path component;

3. a partition nn = n1 ∪̇ · · · ∪̇ nl into non-empty subsets nj, which has no
additional order, which means min(nj) < min(nj+1): if we number the
components of Σ by their minimal outgoing boundary curve, then the
jth component has all outgoing boundary curves indexed in nj;

4. a partition kk = k1 ∪̇ · · · ∪̇ kl into possibly empty subsets: the jth com-
ponent has all incoming boundary curves numbered in kj.

Then these surface types assemble into a PROP (hCob2,∂,t, 0), which is a
subcategory of hCob2 from Example 3.4.3, containing only isomorphism
classes of cobordisms where each component has at least one outgoing
boundary curve, called the positive boundary subcategory.

Definition 5.1.4. Given a surface (S , Θ), we denote by Diff(S) the group of
automorphisms in the sense of Definition 5.1.2: it is the group of diffeomor-
phisms Φ : S → S which satisfy Φ ◦Θ = Θ. Note that this is equivalent to
the condition Φ|∂S = id∂S , whence Diff(S) does not depend on Θ.

We endow Diff(S) with the C∞-topology of uniform convergence of differ-
entials of all orders and define the mapping class group Γ(S) := π0(Diff(S)) to
be the group of isotopy classes of diffeomorphisms. We denote isotopy classes
by small Greek letters and use capital Greek letters for diffeomorphisms.

The isomorphism type of Γ(S) depends only on the surface type of S :
each diffeomorphism S → S ′ gives rise an isomorphism Γ(S) → Γ(S ′) by
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Chapter 5. Homology operations on moduli spaces of surfaces

conjugating diffeomorphisms. We denote by Γ(Σ) the isomorphism type of
Γ(S) for some S of type Σ; particularly, we write Γg,n := Γ(Σg,n).

We assume that the reader is familiar with the basic properties of mapping
class groups, as it is for example presented in [FM12], and hence forgo a
collection of foundational examples.

Remark 5.1.5. Since each component of S has non-empty boundary, [ES70,
Thm. 1d] tells us that the group Diff(S) is homotopy discrete, so the projec-
tion Diff(S)→ Γ(S) to path components is a homotopy equivalence.

As Diff(S) is an innate structure group for surface bundles, the group
cohomology of Diff(S)—or, equivalently, the cohomology of Γ(S)—encodes
characteristic classes for them.

This is the main reason why we are interested in models for the classifying
spaces BΓ(S) ' BDiff(S) and their (co-)homology, which leads us to the
definition of a moduli space M(Σ) of Riemann surfaces of a certain type.
Here is one way of giving a precise model:

Definition 5.1.6. For each ε > 0, we define the two ε-half-annuli

Ain
ε := {z ∈ C; 1 6 |z| < 1 + ε},

Aout
ε := {z ∈ C; 2− ε < |z| 6 2}.

Both come with an embedding of the unit circle S1 ⊆ C into them as follows:
we have αin

ε : S1 ↪→ Ain
ε , z 7→ z and αout

ε : S1 ↪→ Aout
ε , z 7→ 2 · z.

Definition 5.1.7. Let Σ be a surface type. A Riemann surface of type Σ is a pair
(F , Θ), where F is a Riemann surface with underlying surface UF , such
that (UF , Θ) is a surface with parametrised boundary of type Σ, and the
boundary parametrisations respect the complex structure as follows: there
is1 an ε > 0 and there are holomorphic embeddings Θ̃in : kk×Ain

ε ↪→ F and
Θ̃out : nn×Aout

ε ↪→ F such that

Θin = Θ̃in ◦ (kk × αin
ε ),

Θout = Θ̃out ◦ (nn× αout
ε ).

1 Since there are only finitely many boundary curves, requiring a common constant ε > 0
for all curves does not make the condition stronger.

192



5.1. Moduli spaces and classical operadic actions on them

An isomorphism (F , Θ)→ (F ′, Θ′) is a complex isomorphism Ψ : F → F ′
that satisfies Θ′ = UΨ ◦Θ. We denote by M(Σ) the moduli space of Riemann
surfaces of type Σ, and particularly, we abbreviate Mg,n := M(Σg,n). Elements
in M(Σ) are conformal classes C = [F , Θ] of Riemann surfaces of type Σ.

We topologise M(Σ) as follows: for each surface (S , Θ) of type Σ, we can
consider the classical Teichmüller space T(S , Θ), see [Tei40], of marked Riemann
surfaces, whose elements are equivalence classes of triples (F , Λ, q), where
(F , Λ) is a Riemann surface and q : (S , Θ)→ (UF , Λ) is a diffeomorphism
of surfaces, and where two triples (F , Λ, q) and (F ′, Λ′, q′) are identified if
the map q′ ◦ q−1 : UF → UF ′ is isotopic to a complex isomorphism F → F ′.
The Teichmüller space T(S , Θ) can be given a metric which measures the
dilatation of q′ ◦ q−1, and it is a classical result that with respect to this metric,
T(S , Θ) is contractible [Tei40].

Moreover, Diff(S) right acts on T(S , Θ) by Φ∗[F , Λ, q] = [F , Λ, q ◦Φ], and
this action factors through an action of Γ(S). The map

T(S , Θ)→M(Σ), [F , Λ, q] 7→ [F , Λ]

is Γ(S)-invariant and the induced map T(S , Θ)/Γ(S)→M(Σ) is a bijection.
Now we endow M(Σ) with the quotient topology from the left side. This
way of topologising M(Σ) does not depend on the choice of (S , Θ) inside Σ.

Recall that every connected component of S has non-empty boundary.
Thus, the action of Γ(S) on T(S , Θ) is free and proper [EE69, § 5], whence
M(Σ) is indeed a classifying space for the group Γ(S).

We should point out that there are many useful models for BDiff(S); for
example, the space Emb∂(S , R∞) of embeddings S ↪→ R∞, which restrict to
a fixed standard embedding at the boundary, is contractible, and the group
Diff(S) acts freely and properly on it by precomposition. In fact, this model
can equally well be used in order to describe the E2-structure on äg>0 BΓg,1;
however, the generalisation to the case with multiple boundary curves would
become very technical; so we decided to stick to the other one.

Construction 5.1.8 (Punctures). The previous constructions can be repeated
mutatis mutandis in combination with a finite subset P = {P1, . . . , Pm} ⊆ S̊ ,
whose elements are called punctures.
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A punctured surface with parametrised boundary is a triple (S, Θ,P) where
(S , Θ) is a surface as before, and P ⊆ S̊ is a finite subset of the interior of S .

A diffeomorphism Ψ : (S , Θ,P) → (S ′, Θ′,P ′) of punctured surfaces with
boundary is required to additionally satisfy Ψ(P) = P ′. A punctured surface
type is an isomorphism class of punctured surfaces; in particular, let Σm

g,n
be the isomorphism class of connected surfaces with genus g > 0, n > 1
outgoing boundary curves, no incoming boundary curves, and m > 0 disjoint
points (arbitrarily distributed over the single component of S).

We define the group Diff(S ,P) to be the automorphism group of (S , Θ,P)
in the aforementioned sense; i.e. the group of diffeomorphisms Φ : S → S
which satisfy Φ|∂S = id∂S and Φ(P) = P ; note that Φ is allowed to permute
the punctures. We define the mapping class group Γ(S ,P) := π0(Diff(S ,P))
and write Γ(Σ) for the isomorphism type of Γ(S ,P) for some (S ,P) of type
Σ; particularly, we write Γm

g,n := Γ(Σm
g,n). The projection Diff(S ,P)→ Γ(S ,P)

to path components is again a homotopy equivalence.
A punctured Riemann surface of type Σ is a tuple (F , Θ,P) where F is a

Riemann surface and (UF ,P) is a punctured surface of type Σ, such that
the parametrisations respect the complex structure in the above sense. An
isomorphism of punctured Riemann surfaces (F , Θ,P) → (F ′, Θ′,P ′) is a
biholomorphism Ψ : F → F ′ such that UΨ is a diffeomorphism of punctured
surfaces. We denote by M(Σ) the moduli space of punctured Riemann sur-
faces of type Σ: elements are conformal classes C = [F , Θ,P ]. Particularly,
we write Mm

g,n := M(Σm
g,n). Again, M(Σ) is a classifying space for Γ(Σ).

5.1.2. The coloured surface operad

In this subsection, we rebuild the conformal cobordism category from [Seg88,
§ 4], with a few technical modifications which give rise to an honest (strictly
unital) PROP in the sense of Subsection 3.4.2. By our general machinery from
Section 3.4, we then obtain a coloured surface operad M which generalises
the construction from [Til00].

Let us start by making the sewing construction precise, using collared
Riemann surfaces in the following way:

Definition 5.1.9. Define the standard half-annuli Ain := Ain
1 and Aout := Aout

1 ,
and write αin := αin

1 and αout := αout
1 .
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A Riemann surface (F , Θ) is called regularly collared if there are holomor-
phic embeddings Θ̄in : kk×Ain ↪→ F and Θ̄out : nn×Aout ↪→ F which restrict
at the boundary to Θin and Θout, respectively. For a punctured Riemann
surface (F , Θ,P), we additionally require that P avoids the image of Θ̄. Note
that if there are holomorphic extensions Θ̄in and Θ̄out, then they are uniquely
determined by Θin and Θout via the Cauchy–Riemann equations.

We denote by M◦(Σ) ⊆ M(Σ) the subspace of all conformal classes of
regularly collared Riemann surfaces. This inclusion is a deformation retract,
a retraction given by making incoming boundary curves small enough and
outgoing boundary curves large enough: formally, there is an ε > 0 such
that Θin can be extended to Θ̃in : kk×Ain

ε ↪→ F and P avoids the image of
Θ̃in. Let 0 < λ 6 1 be the supremum of these ε, capped by 1, and glue in
the collars kk× {z ∈ C; 1+λ

2 6 |z| < 1 + λ}, amalgamated over kk×Ain
λ . Then

proceed similarly for the outgoing boundary curves.
This shows that M◦(Σ) is another (slightly smaller) model for BΓ(Σ).

Particularly, we abbreviate Mm
g,n·◦ := M◦(Σm

g,n).

Example 5.1.10. Let Σ be the class of connected surfaces of genus g = 0,
one incoming and one outgoing boundary curve, and no punctures. Then
the moduli space M(Σ) is homeomorphic to S1 × (1; ∞) as follows: to each
pair (w, r) ∈ S1 × (1; ∞), we assign the surface A(r) := {z ∈ C; 1 6 |z| 6 r},
together with the incoming boundary ∂inA(r) = S1, the outgoing boundary
∂outA(r) = r · S1, and the parametrisations Θin(z) = z and Θout(z) = r · w · z.

Clearly, these parametrisations can be extended to the standard half-annuli
if and only if A(r) is ‘thick enough’, which means that r > 2. Hence, under
the above identification, M◦(Σ) corresponds to the subspace [2; ∞)× S1.

The main merit of introducing collared versions of moduli spaces is that we
gained the possibility of sewing two of them in a strict way. This is formalised
by the construction of the following topologically enriched PROP.

Construction 5.1.11. We define a topological PROP M•
∂ , called the conformal

cobordism category, with morphism spaces

M•
∂(

k
n) := ä

Σ : k→n
M◦(Σ),
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where Σ ranges over all surface types of (possibly punctured) surfaces. The
structure of a PROP is defined as follows:

1. Identity. For each n > 0, the identity 1n is given by the conformal class
of n disjoint standard annuli

F := nn× {z ∈ C; 1 6 |z| 6 2}.

2. Composition. If C = [F , Θ,P ] and C ′ = [F ′, Θ′,P ′] are two conformal
classes of collared Riemann surfaces, where C : k→ n and C ′ : n→ m,
then we define C ′ ◦ C by sewing of surfaces as follows: its underlying
Riemann surface is given by the pushout

nn× (Ain ∩Aout) F ′ r ∂inF ′

F r ∂outF F ′ tn×A F ,

Θ̄′ in

Θ̄out

p

together with the amalgamated conformal structure: it is well-defined
as the two constituents form an open cover; the new set of punctures is
defined to be P ∪̇ P ′, using that the punctures do not touch the collars.
Finally, the new boundary parametrisations of C ′ ◦ C : k→ m are given
by the incoming one from C and the outgoing one from C ′.

3. Monoidal sum. For two conformal classes C and C ′ of collared Riemann
surfaces, their monoidal sum C t C ′ is defined to be the conformal class
of their disjoint union, together with the disjoint union of parametrisa-
tions and puncturing subsets. The twists are given by permuting the
boundary curves, that is: precomposing Θin with the automorphism on
kk× S1 induced by the permutation on the left factor; similarly for Θout.

There is a subcategory M∂ ⊆ M•
∂ which allows only unpunctured surface

types, and in fact, this is the more common one.

Remark 5.1.12. This construction deserves some remarks:

1. Morphisms in M∂ and M•
∂ are called (conformal) cobordisms. Nowadays,

topological cobordism categories are modelled in a slightly different
way, see for example [Gal+09].
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2. The subscript ∂ comes from the fact that there is also a category M
where one drops the condition that each component of a cobordism C
needs at least one outgoing boundary curve. Classically, M∂ ⊆ M is
called the positive boundary subcategory. Note that the homotopy category
π0(M) is the discrete cobordism category from Example 3.4.3.

3. The only cobordism which ends in 0 is the empty one. On the other
hand, the moduli space Mm

g,n·◦ is a component of M•
∂(

0
n): they describe

exactly the components indexed by connected surface types. Since all
cobordisms in M•

∂(
0
1) have to be connected, we obtain

M∂(
0
1) = ä

g>0
Mg,1·◦ and M•

∂(
0
1) = ä

g,m>0
Mm

g,1·◦.

Definition 5.1.13. We define the coloured surface operad M := rep(M∂) to be
the operad represented by M∂ as defined in Construction 3.4.9, i.e. it is an
N-coloured operad with M(k1,...,kr

n ) = M∂(
k1+···+kr

n ).

If we restrict M to the colour 1, then we obtain a model for the classical
monochromatic surface operad which was introduced in [Til00] and which,
in our language, will consistently be called M|1. Note that this coincides with
the valency-1 part M∂(1) of the PROP M∂ as in Construction 3.4.4.

Example 5.1.14. In contrast to the little d-discs operads, the initial M-algebra
is non-trivial: for instance, its colour-1 part M(1) homotopy equivalent to the
familiar collection of moduli spaces

M(1) = M∂(
0
1) ' ä

g>0
Mg,1.

Remark 5.1.15. There is a connective suboperad Mc ⊆M, similar to Subsection
3.4.5, which contains only those conformal cobordisms F , together with input
assignments, such that the equivalence relation on π0(F ), which relates two
components if both have an incoming boundary curve from the same input
block, is full. Then the initial Mc-algebra is given by Mc(n) = äg Mg,n·◦.

The same can be done with punctures, resulting in a coloured operad M•

with connective part M•,c ⊆M• satisfying M•,c(n) = äg,m Mm
g,n·◦.

Corollary 5.1.16. A map O→Mc of N-coloured operads endows (äg,m Mm
g,n·◦)n>1

with the structure of an O-algebra, which contains (äg Mg,n·◦)n>1 as a subalgebra.
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1,2 1,13,1 3,2 2,1

1 4 2 3

Θ̄in
−→

Θ̄out
−→

Figure 5.2. An operation in M(2,1,2
4 ), represented by a Riemann surface together

with parametrisations of the incoming and the outgoing boundary
curves, and their unique extension to the standard half-annuli.

5.1.3. Coloured actions of the little 2-discs operad

Definition 5.1.17. We make the little 2-discs operad D2 a bit smaller: recall
that operations in D2 are tuples (c1, . . . , cr) of embeddings ci : D2 ↪→ D2

which are of the form ci(z) = ẑi + ε i · z, with ẑi ∈ D2 and ε i > 0, and we
require that the images ci(D̊

2) of the interior of the disc are mutually disjoint.
These embeddings ci can easily be extended to c̄i : C → C by the same

prescription, and we define the subspace D′2(r) ⊆ D2(r) to contain all config-
urations µ = (c1, . . . , cr) of discs such that even the images c̄i(2 · D̊2) of the
interior of the disc of radius 2 are mutually disjoint. In this case, we say the
configuration µ is 2-disjoint.

Clearly, D′2(1) = D(1), so the identity is contained in D′2, and moreover,
this stronger disjointness condition is preserved by composition, whence D′2
is a suboperad of D2. The inclusion D′2 ↪→ D2 is clearly an equivalence of
S-cofibrant operads, and in order to save notation, we might as well write
D2 for the smaller substitute.

Construction 5.1.18. There is an inclusion of operads ı : D2 ↪→M|1 as follows:
given a 2-disjoint configuration µ = (c1, . . . , cr) with ci(z) = ẑi + ε i · z, we
assign to it the connected collared Riemann surface ı(µ) = [F , Θ] which has
r incoming boundary curves, a single outgoing boundary curve, genus 0 and
no punctures, with

F := {z ∈ C; |z| 6 2}r
(
c1(D̊

2) ∪̇ · · · ∪̇ cr(D̊
2)
)
,
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1
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Figure 5.3. An instance of D2(2)× (D2(2)× D2(1))→ D2(3) and its transform-
ation via ı to M|1.

together with the boundary parametrisations Θout : S1 ↪→ UF , z 7→ 2 · z and
Θin : rr× S1 ↪→ UF , (i, z) 7→ ci(z). Then the 2-disjointness condition ensures
that Θin can be extended to a holomorphic embedding rr×Ain ↪→ F . One
readily checks that ı is indeed a map of operads, i.e. it is strictly unital and
commutes with the compositions, see Figure 5.3 for an example.

Construction 5.1.19. Since M|1 = M∂(
−
1 ), the operad morphism ı : D2 →M|1

is adjoint to a map of PROPs ı̄ : cat(D2)→ M∂, and by passing to representable
operads, we obtain a map of N-coloured operads

rep(ı̄) : N(D2)→M.

This gives in particular a map D2 �S→M, so for each M-algebra (Xn)n>1,
the constituent Xn is a D2-algebra together with an Sn-action by D2-automor-
phisms. Since the initial M-algebra has the property M(1) = äg Mg,1·◦, this
recovers the classical E2-structure on moduli spaces of Riemann surfaces with
a single outgoing boundary curve from [Mil86; Böd90b].

Moreover, the connective suboperad Nc(D2) gets sent to the connective sub-
operad Mc; in particular, by Corollary 5.1.16, the sequence (äg,m Mm

g,n·◦)n>1

is an Nc(D2)-algebra which contains (äg Mg,n·◦)n>1 as a subalgebra.

199



Chapter 5. Homology operations on moduli spaces of surfaces

Remark 5.1.20. The Nc(D2)-action respects the bigrading by the genus and
the number of punctures in the following way: let µ ∈Nc(D2)(

k1,...,kr
n ) and

C = µ(C1, . . . , Cr). Then clearly, the punctures add up, i.e. m(C) = ∑i m(Ci),
and a quick Euler characteristic calculation shows that for the genus, we get

g(C) = (1− n) + ∑i(ki − 1) + ∑i g(Ci).

Example 5.1.21. This construction generalises the one from [ST08] as well:
they studied the space X := äg>−1 Mg,2, where M−1,2 := M(Σ0,1 t Σ0,1), as
an algebra over D2, and this action is exactly the restriction of the M|2-action
on äΣ : 0→2 M(Σ) along the aforementioned map D2 →M|2, by finally noting
that {Σ0,1 t Σ0,1} ∪

{
Σg,2; g > 0

}
is a submonoid of {Σ : 0→ 2}.

To be more precise, Segal and Tillmann use the framed little 2-discs operad
Dfr

2 , which allows, for each little disc, a rotation; clearly Dfr
2 can equally well

be included into M|1 = M∂(
−
1 ); we just have to additionally rotate Θin. Then,

again, we obtain a map Dfr
2 �S→M that restricts to Dfr

2 →M|2.

Apart from some strictifications and combinatorial generalisations, nothing
surprisingly new has happened in this chapter so far. However, to the best of
my knowledge, the generalisation to the case of multiple boundary curves
has not yet been exploited for either homological calculations or questions of
group completions and deloopings, and this is what we will pursue in the
remainder of this chapter and the next one. Let me additionally point out
that the questions of Chapter 6 and their answers relie only on the material
which we have already presented, and are independent of the remainder of
the current chapter.

5.2. Operadic actions on Bödigheimer’s simplicial model

From now on, we want to focus on a particular model Pm
g,n for the moduli

spaces Mm
g,n, that is based on an old work of Hilbert [Hil09], has been

established by Bödigheimer [Böd90a], and admits a (relative) multisimplicial
description [ABE08; BH14], which is useful for unstable calculations.

The aim of this section is to formally establish an operadic action of a
variation of Vc

1,1 on (äg,m Pm
g,n)n>1 which is, up to homotopy, a restriction of

the previously described action of Nc(D2) on (äg,m Mm
g,n·◦)n>1.
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5.2. Operadic actions on Bödigheimer’s simplicial model

5.2.1. Different shapes of the collars

For technical reasons, we first of all have to introduce two slightly different
models for Mm

g,n, namely Mm
g,n· and Mm

g,n· : pictorially, we replace annuli by
square-shaped frames, or, more generally, by square-shaped frames where
the length of the left face may be disturbed.

In order to save digits and brackets, let us abbreviate I2 := [−1; 1]2 ⊆ C

for the centred unit square, and we write rI2 := [−r; r]2 for the scaled one.
Moreover, we define the (outgoing) frame Eout := 2I2 r I2.

Construction 5.2.1. Let Mm
g,n· be the moduli space whose elements are con-

formal classes C = [F , Θ,P ] of punctured Riemann surfaces (with corners2),
together with a holomorphic parametrisation Θ : Eout × nn→ F which sends
∂Eout × nn to ∂F and avoids the punctures.

Then we clearly have a map Mm
g,n·◦ →Mm

g,n· by gluing 2I2 r 2D̊2 at each
boundary circle, with homotopy inverse given by gluing (2

√
2)D2 r 2I̊2 at

each boundary square. Hence, Mm
g,n· is another model for Mm

g,n.

In a similar way as Nc(D2) acts on (äg,m Mm
g,n·◦)n>1, we can construct an

action of Nc(C2) on (äg,m Mm
g,n· )n>1:

Construction 5.2.2. We modify the little 2-cubes operad by defining C′2(r) to
contain tuples (c1, . . . , cr) of conformal rectilinear embeddings

ci : I2 ↪→ I2, z 7→ ẑi + ε i · z.

such that the images c̄i(2I̊2) of the interior of the squares with double size
are mutually disjoint.

There is an inclusion C′2 ↪→ C2 by relaxing the conditions of being disjoint
and conformal and by rescaling the square I2 to [0; 1]2: this is an equivalence
of S-cofibrant operads, compare [MSS02, Prop. ii.4.5]. Again, we might as
well write C2 for the smaller and origin-centred substitute.

In the same fashion as above, Nc(C2) acts on (äg,m Mm
g, ·n)n>1: given an

operation µ := (~c1, . . . ,~cr) with~ci : I2× kiki ↪→ I2× nn, and Ci ∈Mmi
gi ,ki · , we can

construct a new surface µ(C1, . . . , Cr) by considering (2I2× nn)r
⋃

i~ci(I̊
2× kiki),

2 One way to formalise this is to consider instead the moduli space of closed Riemann surfaces
F̄ , together with a holomorphic embedding Θ̄ : (CP1 r I2)× nn → F̄ which avoids the
punctures; then F = F̄ r Θ̄((CP1 r 2I2)× nn) and Θ = Θ̄|Eout×n.
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Chapter 5. Homology operations on moduli spaces of surfaces

and by gluing in C1, . . . , Cr at the arising k1 + · · ·+ kr square-shaped holes.
The resulting surface is connected since µ was connective.

We have an equivariant family of equivalences D2(r) ↪→ C2(r) by taking,
for each configuration of r small discs, the configuration of maximal squares
inside these discs. This gives rise to an equivariant family ϕ of equivalences
Nc(D2)(K

n)→Nc(C2)(K
n), and we easily see that the square

Nc(D2)(
k1,...,kr

n )×∏i M
mi
gi ,ki ·◦ Mm1+···+mr

g,n·◦

Nc(C2)(
k1,...,kr

n )×∏i M
mi
gi ,ki · Mm1+···+mr

g,n·

' '

is H-commutative, where g is determined as in Remark 5.1.20. Furthermore,
although ϕ is not a strict operad morphism, all necessary diagrams commute
up to homotopy. Hence, the homology operations arising from both actions
are comparable via the induced isomorphism H•(Mm

g,n·◦)→ H•(Mm
g,n· ).

We therefore may use squares instead of discs from now on. However, in
order to use the advertised model Pm

g,n, we need a slightly more flexible boun-
dary behaviour: for each small square, we focus on the left vertical strip of
its frame; then, roughly speaking, the following happens in the context of slit
pictures: firstly, each puncture ‘steals’ a segment of positive height from the
left strips, and secondly, the boundary squares can ‘steal from each other’. In
this way, the size of the left vertical strip can become larger or smaller, and
the sum of their differences is 0 if there are no punctures, and negative else.
Formally, this is captured by the following definition:

Definition 5.2.3. For a real number ω > −2, we define the ω-frame Eout(ω)

as the Riemann surface that arises from gluing S := [−2; 1)× [−1; 1 + ω]

into Eout r [−2; 1)× (−1; 1) by identifying both copies of (x,−1), as well as
(x, 1 + ω) from S with (x, 1) from the remainder of Eout; then Eout(0) = Eout.

For technical reasons, we also define E(ω), which additionally contains
the inner boundary, i.e. we start with 2I2 r I̊2, remove the left strip, and glue
in [−2; 1]× [−1; 1 + ω]. We call E(ω)r Eout(ω) the inner boundary.

Now we are ready to define the space Mm
g,n· :
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5.2. Operadic actions on Bödigheimer’s simplicial model

1

1

Figure 5.4. The three square frames Eout, Eout(−1/2), and Eout(1/2).

Definition 5.2.4. For n > 1 and m > 0, we define the parameter spaces

Ωm
n :=

{
{(ω1, . . . , ωn) ∈ (−2; ∞)n; ω1 + · · ·+ ωn = 0} if m = 0,

{(ω1, . . . , ωn) ∈ (−2; ∞)n; ω1 + · · ·+ ωn 6 0} if m > 0,

and for technical reasons, we also define Ω̊0
n := Ω0

n and Ω̊m
n := Ωm

n r Ω0
n.

Now we let Mm
g,n· be the moduli space whose elements are conformal classes

C = [F , Θ,P ] of punctured Riemann surfaces which come together with
(ω1, . . . , ωn) ∈ Ωm

n , and holomorphic parametrisations Θ : älEout(ωl)→ F
that avoid the punctures.

Then we have a bundle map pr : Mm
g,n· → Ωm

n which assigns to each C the
tuple (ω1, . . . , ωn), and the subspace Mm

g,n· ⊆Mm
g,n· is the fibre of (0, . . . , 0).

Since the base space Ωm
n is contractible, the inclusion is an equivalence. We

call the parameters ω1, . . . , ωn the deviation of the boundary curves.

5.2.2. The space of slit domains

Here we give a short survey on the relative simplicial model of slit domains
[Böd90a; ABE08], which has been extended to the case of multiple boundary
curves in [BH14]. We omit a complete description of the combinatorics of the
simplicial boundary maps and refer to [BH14, § 2.3] instead.

Definition 5.2.5. For each parameters g, m > 0 and n > 1, there is relative
(1 + n)-semisimplicial complex (Pm

g,n, P′mg,n) whose interior |Pm
g,n|r |P′mg,n| we

denote by Pm
g,n, and whose non-degenerate (q, p1, . . . , pn)-cells are given by

tuples π = (σq, . . . , σ0), where σi is an automorphism of the augmented tableau

Y0
p1,...,pn

:= {(l,j); 1 6 l6 n and 0 6 j6 pl},
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Chapter 5. Homology operations on moduli spaces of surfaces

and where π has to satisfy the properties of [BH14, Def. 2.3.3]:

s1. σ0 = ∏l((l, 0) · · · (l, pl)), where ((l, 0) · · · (l, pl)) denotes a cycle;

s2. σi(l, pl) = (l, 0) for each 0 6 i 6 q and 1 6 l6 n;

s3. σq has n + m cycles (including fixed points), and no cycle contains two
different symbols of the form (l, 0).

s4. if N denotes the word length norm with respect to the generating set
of all transpositions, then ∑i N(σi · σ−1

i−1) = 2g + m + 2n− 2;

s5. the relation on nn, which is spanned by l∼ l′ if there are i,j,j′ with
σi(l,j) = (l′,j′), is full;

s6. the tuple is ‘minimal’ in two ways: we have σi 6= σi−1, and there is no
(l,j) such that σi(l,j) = (l,j+ 1) for all i.

Construction 5.2.6. If we use the coordinates ∆r = {−1 6 t1 6 · · · 6 tr 6 1},
then each slit domain B ∈ Pm

g,n is represented by a tuple(
π;−1 < xq < · · · < x1 < 1; (−1 < yl,1 < · · · < yl,pl

< 1)16l6n
)
,

where π is a non-degenerate cell in the above sense. We can visualise B in
the following way, see Figure 5.5:

• subdivide I2 × nn into rectangles Ri,l,j := [xi+1; xi]× [yl,j; yl,j+1]× {l},
where x0 = yl,pl+1 = 1 and xq+1 = yl,0 = −1;

• glue the left face of Ri,l,j to the right face of Ri+1,l,j;

• if σi(l,j) = (l,j+ 1), then we glue the top face of Ri,l,j to the bottom
face of Ri,l,j+1;

• if not, then we mark the top face of Ri,l,j and the bottom face of Ri,σi(l,j)
with the same colour. In this case, the top face of Ri,l,j and the bottom
face of Ri,l,j+1 form a slit, see Figure 5.5.
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•
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1
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Figure 5.5. The visualisation of the slit domain (π; x, y1, y2) with coordinates
x = (−1/4, 0, 1/2), y1 = (−1/2,−1/4, 1/2), and y2 = (−1/2, 0, 1/2), and
the simplex π = (σ3, σ2, σ1, σ0) with σ3 = (01 21 22 12 31)(11)(02 32),
abbreviating jl := (l,j). We have m = 1 and g = 0, as well as the
deviations ω1 = 3/4 and ω2 = −1.

Construction 5.2.7. Given B ∈ Pm
g,n, we can form an element G(B) ∈Mm

g,n·
by continuing the above gluing recipe as follows:

• identify faces of the same marking colour, i.e. the top face of Ri,l,j with
the bottom face of Ri,σi(l,j), and call the result G̃(B);

• for each layer 1 6 l6 n, if ((l1,j1) · · · (ls,js)) is the cycle of σq with
(l1,j1) = (l, 0), then we define the deviation

ωl :=
s

∑
a=1

yla,ja+1 − yla,ja .

• note that G̃(B) has n + m boundary curves, and for each 1 6 l6 n, the
boundary curve of G̃(B) which contains the bottom face of Rq,l,0 can
be identified with the inner boundary of E(ωl). Thus, we can attach
the ωl-frame E(ωl) to it.
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Chapter 5. Homology operations on moduli spaces of surfaces

• to the remaining m boundary curves, we attach a fixed Euclidean disc
which contains a single puncture.

• the complex structure is given by noticing that each point has a neigh-
bourhood that is canonically identified with an open subset of C, apart
from the endpoints of a slit; here we obtain a branching point, with
ramification index the length of the cycle of σi · σ−1

i−1 which contains the
respective point.

In this way, we have reached a Riemann surface G(B), which is connected by
s5, and a quick Euler characteristic check shows that it has genus g by the
norm condition s4. Now a key result of [Böd90a, § 5.2] tells us that the arising
map G : Pm

g,n →Mm
g,n· , called the gluing construction, is not only continuous,

but a homotopy equivalence.

Remark 5.2.8. Bödigheimer models the gluing construction in a slightly
different manner: he uses the coordinates ∆r = {−∞ 6 t1 6 · · · 6 tr 6 +∞},
constructs an open surface by discarding ∂[−∞; ∞]2 × nn, and closes each end
with a single point. Those ends which correspond to boundary curves come
with a choice of tangent vector, by pointing from +∞ leftwards. The result
lies in ~Mm

g,n, another model for Mm
g,n where boundary curves are replaced

by ordered punctures Q1, . . . , Qn on a closed surface F̄ which come together
with tangential directions.

An inverse of the gluing construction is based on a uniformisation method
of Hilbert [Hil09] and uses a harmonic function u : F̄ → R∪ {∞} in order to
reach a normal form for the given Riemann surface. The crucial point of the
construction is the observation that this harmonic function is unique up to a
contractible (even affine) choice [Koc91, Thm. 11.3], whence the inverse of
the gluing construction is defined on an affine bundle over ~Mm

g,n.
In this description, the parameters ω1, . . . , ωn correspond, up to rescaling

[−∞; ∞] to [−1; 1], to the residues of u at Q1, . . . , Qn.

Recall that Nc(C2) acts on (äg,m Mm
g,n· )n>1. We want to construct a similar

description for (äg,m Mm
g,n· )n>1, and (äg,m Pm

g,n)n>1, by the implantation of
slit domains in the spirit of [Böd90b, § 3], such that the actions are comparable
via the zig-zag Mm

g,n· ↪→Mm
g,n· ← Pm

g,n of homotopy equivalences.
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5.2. Operadic actions on Bödigheimer’s simplicial model

Here, two independent problems arise:

• As one can see in Figure 5.5, the lengths of corresponding slits are
coupled, even if they lie on different layers. Hence, if we want to pro-
duce a larger slit domain by placing the existing squares into new ones,
the layers from a single slit domain have to stay vertically aligned. This
condition is exactly the one captured by the suboperad Vc

1,1 ⊆Nc(C2).
However, there is no need to assume this for Mm

g,n· . We therefore expect
an action of Vc

1,1 on (äg,m Pm
g,n)n>1 that extends, via G : Pm

g,n →Mm
g,n· ,

to an action of Nc(C2) on (äg,m Mm
g,n· )n>1. One special case3 of these

operations using verticality has been described in [Böd90b, § 5] where
pairs of vertically aligned boxes have been considered.

• In both situations, we have to deal with the fact that the boundary of the
arguments we want to glue in is not quite the boundary of a square, but
has a deviated left face. To make this precise, we need an enlargement
of both Nc(C2) and Vc

1,1, in which each operation already ‘knows’ the
deviation of its arguments, and if the argument has k boundary curves,
then the deviation ranges in a contractible subspace of (−2; ∞)k.

Note that the second issue does not appear in the case which is considered
in [Böd90b]: if n = 1 and m = 0, i.e. we have a single boundary curve and no
punctures, then all occurring deviations are trivial.

5.2.3. Interlude: Operads with a colour space

This subsection provides a setting in which the second of the aforementioned
problems can be addressed: we have to enlarge the colour set N to a colour
space än>1(−2; ∞)n, and this is formally captured by the notion of an internal
operad, which generalises the concept of an internal category from [Gro61]
in a straightforward way. We only need the following special case, which is
homotopically well-behaved.

3 To be precise, Bödigheimer did not consider slit domains describing surfaces with two
boundary curves, but so-called ‘partitioned slit domains’, which, in our language, are slit
domains in Pg−1,2, identified with the moduli space Mg,1 by gluing a pair of pants.
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Chapter 5. Homology operations on moduli spaces of surfaces

Definition 5.2.9. Let N be a set and let (Ωn)n∈N be a family of contractible
spaces. Then an än Ωn-coloured operad O is given by the following data:

1. for each n ∈ N, a functor O(−n) := (N o Σ)op → Top,

2. for each k1, . . . , kr, n ∈ N, a source map4 d1 and a target map d0 as in

∏i Ωki O(k1,...,kr
n ) Ωn;

d1 d0

3. for each n ∈ N, a map 1n : Ωn → O(n
n), called the unit,

4. for K = (k1, . . . , kr) and tuples L1, . . . , Lr, a composition map

O(K
n)×∏i Ωki

r

∏
i=1

O(Li
ki
)→ O(L1···Lr

n ),

where ‘×∏i Ωki ’ denotes the fibre product of spaces,

which have to satisfy the obvious axioms. An O-algebra is given by a collection
of maps (d0 : Xn → Ωn)n∈N , together with maps

λ : O(k1,...,kr
n )×∏i Ωki

r

∏
i=1

Xki → Xn,

satisfying the obvious axioms. We additionally require the following two
properties, which ensure a homotopically nice behaviour:

• we require that the source assignment d1 : O(K
n)→ ΩK is a fibre bundle,

and that for each path component P ⊆ O(K
n), the subspace d0(P) ⊆ Ωn

is contractible and d0 : P→ d0(P) is a fibre bundle;

• for an algebra, we require that for each component P ⊆ Xn, the sub-
space d0(P) ⊆ Ωn is contractible and d0 : P→ d0(P) is a fibre bundle.

If we fix, for each n ∈ N, a basepoint 0n ∈ Ωn and regard N as a discrete
subspace of än Ωn via the inclusion of basepoints, then the restriction O|N is
a usual N-coloured operad, to which all our constructions from Chapter 3

apply. The following proposition shows that the same applies, homologically,
to O-algebras.

4 The symbols d0 and d1 are borrowed from the simplicial description of the corresponding
topological nerve.
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5.2. Operadic actions on Bödigheimer’s simplicial model

Proposition 5.2.10. Let O be an än Ωn-coloured operad and X be an O-algebra.

1. the family (H•(Xn))n∈N carries the structure of an H•(O|N)-algebra.

2. if S2 acts freely on O(k,k
n ), and we work over F2 or h is even, then we have,

for each class c ∈ Hs(O|N(k,k
n )/S2), a divided power operation

Qc : Hh(Xk)→ Hs+2h(Xn),

and all relations for the homology of O|N-algebras hold in H•(X) as well.

Proof. Let Pi ⊆ Xki be a path component and write d0P := ∏i d0Pi. Then the
inclusion d−1

1 (d0P) ↪→ O(K
n) is a restriction of the bundle d1 : O(K

n)→ ΩK to a
contractible subspace of the base, and hence is itself an equivalence.

Secondly, the subspace inclusion d−1
1 (d0P)×d0P ∏i Pi ↪→ d−1

1 (d0P)×∏i Pi

is a homotopy equivalence since the fibre product is taken over a contractible
space and both structure maps are fibrations. We obtain a zig-zag

(O|N)(K
n)×∏i Pi

O(K
n)×∏i Pi

d−1
1 (d0P)×∏i Pi

d−1
1 (d0P)×d0P ∏i Pi Xn,

'

'

'

λ

where the dashed arrow is an arrow in the homotopy category. In particular,
after applying the homotopy functor H•, we reach the desired morphism
H•((O|N)(K

n))⊗
⊗

i H•(Pi) → H•(Xn) for each choice of path components
Pi ⊆ Xki . A lengthy diagram chase now shows that these maps satisfy the
compatibility requirements for an operadic action, essentially because there
are no choices of inverses involved.

For the divided power operations, choose a path component P ⊆ Xk. By
Lemma 3.3.9, each choice of representative µ ∈ Csing

s (O|N(k,k
n )) ⊆ Csing

s (O(k,k
n ))

gives rise to a map Q̃c : Hh(P)→ Hs+2h(O(
k,k
n )×S2 P2) by sending [ξ] to the

class [µ⊗S2 ξ⊗2]. Secondly, the inclusion ı : d−1
1 (d0P2)×d0P2

P2 ↪→ O(k,k
n )× P2
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is a S2-equivariant homotopy equivalence and S2 acts freely on both sides.
Hence the induced map H•(d−1

1 (d0P2)×d0P2

S2
P2) → H•(O(k,k

n )×S2 P2) is an
isomorphism and we obtain the upper arrow in the square

Hh(P) Hs+2h(Xn)

Hs+2h(O(
k,k
n )×S2 P2) Hs+2h(d−1

1 (d0P2)×d0P2

S2
P2).

QP
c

Q̃c

∼=
Hs+2h(ıS2 )

Hs+2h(λS2 )

Finally, in order to define Qc on Hh(Xk) =
⊕

P Hh(P), we employ the sum
formula from Remark 3.3.14: let x = x1 + · · ·+ xt ∈ Hh(Xk) be a class with
xl ∈ Hh(Pl), then we define Qc(x) by induction on t, with Qc(0) = 0 and

Qc(x) := QP1
c (x− xt) + Qc(xt) + (pr!c)((x− xt)⊗ xt),

where pr! is the homological transfer. Again, the compatibility requirements
are easily checked as there are no choices of inverses involved.

Let me point out that the above construction for the divided power opera-
tions works in higher generality, i.e. for higher arity and not only over F2,
compare Subsection 3.3.1. However, as we will make no use of it, we skipped
this generalisation in order to save notation.

5.2.4. Operadic actions on the space of slit domains

Construction 5.2.11. We define the (−2; ∞)-coloured little 2-cubes operad C2
by constructing, for each r > 0, the operation space C2 (r) in several steps:

• For each integer u > 0, we define C∞
2 (u) to be the space of all tuples

ν := (c1, . . . , cu, ω1, . . . , ωu) with:

– ωl ∈ (−2; ∞) for 1 6 l 6 u;

– cl : I2 ↪→ [−1; 1]× [−1; ∞) is a rectilinear and conformal embed-
ding, and the images of c1, . . . , cu have disjoint interiors;

– we additionally require c1
l (1) = c1

l′(1), where c1
l : I1 ↪→ I1 is the

restriction to the first coordinate. This means that the u squares
may have different size, but they are ‘right-justified’.
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5.2. Operadic actions on Bödigheimer’s simplicial model

• From each ν ∈ C∞
2 (u), we extract the following data:

– its joint interior image im(ν) :=
⋃

l cl(I̊
2);

– the common right border xν := c1
1(1); then −1 < xν 6 1;

– if ε l > 0 denotes the scaling factor of the embedding cl , then we
put ων := ε1 ·ω1 + · · ·+ εu ·ωu;

– the automorphism ϕ̃ν of [−1; ∞) that scales the vertical segment
attained by cl by the factor 1 + ωl

2 . We write ϕν := id[−1; xν] × ϕ̃ν.

• For each surjection π : rr → ss with ua := #π−1(a), we construct a space

C2 (r)π :=
{
(νa)

s
a=1 ∈ ∏a C∞

2 (ua);
im(νa)⊆ [−1; xνa ]× [−1; 1+∑a′<a ωνa′ ],

im(νa)∩
⋃

a′<a(ϕνa−1··· ϕνa′ )(im(νa′)) =∅

}
.

• For each surjection α : ss→ s′s′, we get a cofibration α∗ : C2 (r)απ ↪→ C2 (r)π

by permuting box labels and by splitting entries νa into several neigh-
boured ones. We use these maps to glue C2 (r) together as

C2 (r) := ä
π : r�s

{π} × C2 (r)π

/
(απ, ν) ∼ (π, α∗ν).

For each surjective map π : rr → ss with ua := #π−1(a), we have a canonical
identification π# : rr → äa π−1(a) ∼= Yu1,...,us and for each µ := [π; ν] ∈ C2 (r),
we can write ν = (µ1, . . . , µs) with µa = (ca,1, . . . , ca,ua , ωa,1, . . . , ωa,ua). We let
ωi := ωπ#(i) and ci := cπ#(i), and define

d0µ := ωµ1 + · · ·+ ωµs ,

d1µ := (ω1, . . . , ωr).

Input permutation is given τ∗[π, ν] = [πτ, ν], the unit 1 : (−2; ∞) → C2 (1)
assigns to each ω the pair (idI2 , ω), and composition is given by composing
rectilinear embeddings. For this, it is important that during this process, the
deviation does not change, see Figure 5.6.

Finally, note that the maps d0 and d1 are indeed fibre bundles and that the
monochromatic operad C2 |{0}, in which all parameters ω are 0, is exactly the
classical little 2-cubes operad C2.
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2

3

1 ◦



 =
2

1 , ,
1 1

2

2
1

4
5

3

Figure 5.6. An instance of C2 (3)×Ω3
(C2 (1)× C2 (2)× C2 (2))→ C2 (5). If we

denote the outer operation by µ, then d1µ = (4/3,−1/2, 0), and since
the scaling factors are r1 = r3 = 3/10 and r2 = 2/5, we get d0µ = 1/5.
The grid illustrates where area is gained or lost.

Next, we want to consider a dyed version of C2 that extends Nc(C2). We
give a general recipe how to dye an operad with contractible colour space.

Construction 5.2.12. Let Ω be contractible and let Cbe an Ω-coloured operad.
Then, as in Section 3.4, we can define a dyed version N(C) with colour space
än>1 Ωn and operation spaces

N(C)(k1,...,kr
n ) := ä

f : k→n
C(# f−1(1))× · · · × C(# f−1(n))

∼= ä
u1,...,un>0

(
C(u1)× · · · × C(un)

)
×∏lSul

Σ( k1+···+kr
u1+···+un

).

where k := k1 + · · ·+ kr, with source and target assignments

d0[µ1, . . . , µn, ϕ] = (d0µ1, . . . , d0µn) ∈ Ωn,

d1[µ1, . . . , µn, ϕ] = ϕ∗(d1µ1, . . . , d1µn) ∈ ∏i Ωki .

Then d1 is indeed a fibre bundle, as it is a product of fibre bundles, and the
image of a path component of N(C)(k1,...,kr

n ) under d0 is a product of images
of path components of C(# f−1(l)) and hence again contractible.

The rest of the construction is exactly as in Section 3.4, and in addition,
each choice of basepoint 0 ∈ Ω defines a family 0n = (0, . . . , 0) ∈ Ωn of
basepoints and it is straightforward to check that N(C)|N ∼= N(C|{0}).

Finally, there is a connective suboperad Nc(C) ⊆N(C) for which we sum
only over those maps f : k→ nn such that if we put fi : kiki ↪→ kk→ nn, then the
tuple ( f1, . . . , fr) is connective in the sense of Subsection 3.4.5.
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5.2. Operadic actions on Bödigheimer’s simplicial model

If we insist again that in C2 , even the double-sized images of the interiors
are mutually disjoint, then the dyed operad Nc(C2 ) acts on the collection
(äg,m Mm

g,n· )n>1 from Definition 5.2.4 as follows:

Construction 5.2.13. Abbreviating Ω := (−2; ∞), we endow (äg,m Mm
g,n· )n>1

with the structure of an Nc(C2 )-algebra:

• we have maps d0 : äg,m Mm
g,n· → Ωn, the image of Mm

g,n· is the con-
tractible space Ωm

n ⊆ Ωn, and d0 : Mm
g,n· → Ωm

n is a fibre bundle.

• for µ ∈Nc(C2 )(
k1,...,kr

n ) and Ci ∈Mmi
gi ,ki · with d1µ = (d0C1, . . . , d0Cr), we

can form a compound Riemann surface µ(C1, . . . , Cr) ∈Mm1+···+mr
g,n· with

g as in Remark 5.1.20 and d0µ(C1, . . . , Cr) = d0µ, in the same way as in
Construction 5.2.2, using that a neighbourhood of the boundary of each
input box can be canonically identified with the fitting ω-frame E(ω).

This construction clearly extends the Nc(C2)-action on (äg,m Mm
g,n· )n>1, in

the sense that the following diagram commutes:

Nc(C2)(
k1,...,kr

n )×∏i M
mi
gi ,ki · Mm1+···+mr

g,n·

Nc(C2 )(
k1,...,kr

n )×∏i M
mi
gi ,ki · Mm1+···+mr

g,n· .

' '

Secondly, we finally have sufficiently addressed all obstacles in order to
formally define an operadic action on the collection of slit domains:

Construction 5.2.14. As in Chapter 4, let Vc,
1,1 ⊆ N(C2 ) be the suboperad

containing all operations where boxes from the same cluster have the same
behaviour with respect to their first coordinate, i.e. they lie above each other
and have the same width (though maybe different deviations).

Then we can construct an action of Vc,
1,1 on (äg,m Pm

g,n)n>1 by implanting
slit domains exactly as in [Böd90b, § 3]: here we skip those technical details of
the construction which are exactly the same as in Bödigheimer’s work, but
emphasise where we need the new apparatus.

Firstly, note that we have maps d0 : äg,m Pm
g,n → Ωn, the image of each path

component Pm
g,n is the contractible subspace Ω̊m

n ⊆ Ωn, and the restriction
d0 : Pm

g,n → Ω̊m
n is a fibre bundle.
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1,2

1,1

3,1

2,1

2,2

4,1



=

, , ,

Figure 5.7. An instance of V
c,

1,1 (2,2,1,1
2 )×Ω4

(P0,2 ×P1
0,2 ×P1,1 ×P1

0,1) → P2
2,2.

Here we simplified the visualisation: if there are only slit pairs, i.e.
transpositions in σi · σ−1

i−1, then it is clear how to reglue them and
we can just draw a single line for each slit, and if all slit pairs have
different lengths, then we do not need to distinguish them by colour.

If µ ∈ Vc,
1,1 (

k1,...,kr
n ) and Bi ∈ Pmi

gi ,ki
such that d1µ = (d0B1, . . . , d0Br), then

we can form a compound slit domain µ(B1, . . . ,Br) ∈ Pm1+···+mr
g,n , where g is

again determined as in Remark 5.1.20. To do so, we implant slit pictures,
as depicted in Figure 5.7: the operation µ yields a surjective map π : rr → ss
as before, i.e. there are −1 < x1 < · · · < xs 6 1 such that c1

i,j(1) = xa for
each i ∈ π−1(a). Now we build up the new slit domain by proceeding from
right to left: for π−1(s) = {i1, . . . , iu}, we start with an empty slit domain on
I2 × nn and place the slit pictures Bi1 , . . . ,Biu on them. There is no ambiguity,
since all boxes are on top of each other. Here we heavily use the verticality
condition in order to get a proper slit domain, as there may be corresponding
slits from the same input in different boxes.

In order to continue with the next stage and to add all slit domains Bi with
i ∈ π−1(s− 1), we reglue the layers according to the already implanted slits.
Now we use that the operation µ anticipates the deviations that arise from
this step, and thus, we have a canonical identification of the reglued area left
of the implanted slit domains, and the area in which the remaining boxes
from µ dwell. Hence we can proceed as in the first step and, finally, build
the slit domain µ(B1, . . . ,Br) inductively.
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5.2. Operadic actions on Bödigheimer’s simplicial model

Finally, the gluing construction G : Pm
g,n → Mm

g,n· translates by definition
implanting of slit pictures into gluing in Riemann surfaces with deviated
square frames, i.e. we even have an—even strictly—commuting square

V ,c
1,1 (

k1,...,kr
n )×∏i P

mi
gi ,ki

Pm1+···+mr
g,n

Nc(C2 )(
k1,...,kr

n )×∏i M
mi
gi ,ki · Mm1+···+mr

g,n· ,

where g is determined as in Remark 5.1.20. Moreover, the action of V ,c
1,1 on

the sequence (äg,m Pm
g,n)n>1 extends the (monochromatic) action of C2 on

äg Pg,1 that has been described in [Böd90b, § 3].

Let us close this subsection with a conceptual remark: the reader may be sur-
prised that the restriction to the vertical suboperad V ,c

1,1 is necessary. Roughly
speaking, elements in Pm

g,n do not only encode conformal classes of Riemann
surfaces F , but come with an additional continuous map u : F → [−1; 1],
that has a certain boundary behaviour, (or—as in Bödigheimer’s work—a
harmonic function u : F̄ → R∪ {∞} starting from a closed surface) by pro-
jecting down the slit domain to the first coordinate. Although this additional
datum ranges in a contractible domain, there is no canonical choice for a
compound surface if the boundary curves from the same input are not glued
to the same level of u.

The reason why we deliberately accept this ‘artificial’ restriction is the
following: Bödigheimer’s simplicial model of slit domains has been proved
useful for explicit homology calculations in the unstable range [ABE08;
Meh11; Wan11; BH14; Boe18], and we want to exploit our operadic descrip-
tion for a reformulation and an enhancement of their results: this is what we
carry out in Section 5.3.

5.2.5. Homology operations on the space of slit domains

In the previous subsection, we saw that the än>1(−2; ∞)n-coloured operad
Vc,

1,1 acts on the collection (äg,m Pm
g,n)n>1. Now we want to understand the

homology operations that arise from this construction.
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Construction 5.2.15. Since Vc,
1,1 |N = Vc

1,1, we obtain, by Proposition 5.2.10,
a (graded) action of the algebraic operad H•(Vc

1,1) on the family of graded
modules H•(Pm

g,n). Using the presentation of H•(Vc
1,1) from Section 4.4, we

obtain the following five fundamental types of operations:

1. the unit 1 ∈ H0(P0,1), which is the ground class of P0,1;

2. for each σ ∈ Sn a permutation

σ : Hh(P
m
g,n)→ Hh(P

m
g,n),

which is induced by the map σ : Pm
g,n → Pm

g,n that permutes the layers
of the slit domain, or, in terms of Mm

g,n, permutes the boundary curves.
The map σ clearly is an isomorphism.

3. for each 1 6 l6 n− 1 a codegeneracy

sl : Hh(P
m
g,n)→ Hh(P

m
g+1,n−1),

which is induced by the map sl : Pm
g,n → Pm

g+1,n−1 that unites the lth

and the (l+ 1)st layer of a slit picture on a single layer, or, in terms of
Mm

g,n, glues a pair of pants joining the lth and the (l+ 1)st boundary
component. By Harer’s stability theorem [Har84; Iva90; Bol12; Ran16],
sl is an isomorphism if h 6 2

3 · (g− 2) and surjective if h 6 2
3 · (g + 1).

4. the vertical Pontrjagin product

− · − : Hh(P
m
g,n)⊗ Hh′(P

m′
g′,n′)→ Hh+h′(P

m+m′
g+g′,n+n′−1),

which is induced by the map − · − : Pm
g,n ×Pm′

g′,n′ → Pm+m′
g+g′,n+n′−1 that

merges, on the first layer, the respective first layers of both arguments,
or, in terms of Mm

g,n, combining two surfaces by forming the boundary-
connected sum along their respective first boundary curves.

5. the vertical Browder bracket

[−,−] : Hh(P
m
g,n)⊗ Hh′(P

m′
g′,n′)→ Hh+h′+1(P

m+m′
g+g′,n+n′−1),

which is induced by [−,−] : Pm
g,n×Pm′

g′,n′ → map(S1,Pm+m′
g+g′,n+n′−1), that

lets the first layer of the first argument spin around the first layer of the
second argument.
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s2 =


,

 =

Figure 5.8. Instances of s2 : P0,3→P1,2 and [−,−] : P1
0,2×P1

0,2→map(S1,P2
0,3).

Remark 5.2.16. We saw in Theorem 4.4.2 that H•(Vc
1,1) is, as an algebraic op-

erad, generated by these operations, whence these are all Künneth operations
which arise from the action of V

c,
1,1 on the spaces of slit domains.

Additionally, all relations we developed in Subsection 4.4.2 hold here; we
can even say a little bit more: since the Vc,

1,1 -action on (äg,m Pm
g,n)n>1 factors,

up to homotopy, through the Nc(C2 )-action on (äg,m Mm
g,n· )n>1, all relations

inside the operadic kernel of H•(Vc
1,1)→ H•(Nc(C2)) hold: these are spelled

out in Remark 4.4.19.

Construction 5.2.17. If we work over F2 or if h is even, then the class cn from
Construction 4.4.24 gives rise to a vertical Dyer–Lashof square

Q : Hh(P
m
g,n)→ H1+2h(P

2m
2g+n−1,n),

and all relations from Subsection 4.4.3 hold. We give a geometric description
of Qx if x is supported on an h-dimensional manifold M as in Remark 3.3.8:
in this case, Qx is supported on the mapping torus S1 n M2 of the twist:

Consider the map γ : [0; 1]× (Pm
g,n)

2 → P2m
2g+n−1,n which takes two slit do-

mains on n layers, puts the lth layers of the first and the second argument on
the lth layer of the new one and lets them switch places on all layers simul-
taneously, performing a rotation around each other by 180°. Then we have
γ(B,B′, 0) = γ(B′,B, 1), whence γ factors over γ̄ : S1 n (Pm

g,n)
2 → P2m

2g+n−1,n,
and for each map α : M→ Pm

g,n, we get Q(α∗[M]) = γ̄∗(idS1 n α2)∗[S1 n M2],
where [M] and [S1 n M2] are the fundamental classes.
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Q =

Figure 5.9. Qα := γ̄ ◦ (idS1 n α2) : S1 n T2 → P1,2 for α : S1 → P0,2

5.2.6. Further ad-hoc constructions

In this last subsection, we want to discuss two further ad-hoc constructions
for homology operations on moduli spaces, which will turn out to be useful
for the upcoming calculations, and make a final remark on a slightly more
general model of slit domains.

The first construction lifts the T-operation T : Hh(M
m
g,n)→ Hh+1(M

m−1
g+1,n)

from [Meh11] over the pair-of-pants gluing sn : Mm−1
g,n+1 →Mm−1

g+1,n:

Construction 5.2.18 (T̂-operation). Let g > 0 and m, n > 1, i.e. we have
at least one puncture. Then there is an m-fold covering α : Mm−1,1

g,n →Mm
g,n

which marks one of the punctures.
We also have a projection Mm−1,1

g,n →Mm−1
g,n which forgets the chosen punc-

ture, and this bundle is a subbundle of the universal surface bundle over
Mm−1

g,n , where points in the fibre have to avoid the boundary curve and the
given m− 1 punctures. Over this space, we can consider the vertical unit
tangent bundle p : WT := S(T⊥Mm−1,1

g,n )→Mm−1,1
g,n , which is a 1-dimensional

sphere bundle. Then WT is oriented, as the structure group Mm−1,1
g,n contains

only orientation-preserving diffeomorphisms.
We construct a map ϑ : WT →Mm−1

g,n+1, which exploits the observation that
a chosen puncture together with a unit tangential direction carries the same
information as a parametrised boundary curve.

Explicitly, we do the following: via the exponential map, a point in WT

is given by a conformal class of a Riemann surface F , a subset P ⊆ F̊ of
cardinality m− 1, a point x ∈ F with a small disc D ⊆ F̊ rP around it, and
a point x′ on ∂D. If we remove D̊ and parametrise ∂D such that the angle 0°
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is mapped to x′, then we have reached a new parametrised boundary curve.
Finally, we use the homological transfer maps and define

T̂ : Hh(M
m
g,n) Hh(M

m−1,1
g,n ) Hh+1(WT) Hh+1(M

m−1
g,n+1).

α! p! ϑ∗

Under the gluing construction Pm
g,n →Mm

g,n, the map ϑ can also be visualised
in terms of slit domains: if W̃T denotes the pullback of the bundle WT along
the equivalence Pm−1,1

g,n →Mm−1,1
g,n , then an element in W̃T is given by a slit do-

main, together with the choice of one of the cycles of σq containing no letter of
the form 0l, and, on the circle given by regluing the left faces of the rectangles
inside the chosen cycle, a marked point. We can turn this left face into an
honest boundary curve by providing a new layer for it: we draw a small slit at
the given position and pair it with a single slit on a new layer, see Figure 5.10.
This gives rise to a map ϑ̃ : W̃T → Pm−1

g,n+1, covering ϑ up to homotopy.
We define T := sn ◦ T̂ : Hh(M

m
g,n)→ Hh+1(M

m−1
g+1,n), which is exactly the

T-operation defined in [Meh11, Def. 84].

Secondly, we want to remind the reader of the so-called E-operation from
[Meh11, Def. 86], which we do not intend to lift:

Reminder 5.2.19 (E-operation). Let g > 0, n > 1, and m > 2. Then we
consider the (m

2 )-sheeted covering β : Mm−2,2
g,n →Mm

g,n where two punctures
are separated from the other ones, but they are not ordered.

Next, consider the torus bundle q : WE →Mm−2,2
g,n given by the fibre product

of the two vertical tangent bundles at the two punctures.5

There is a map η : WE →Mm−1
g+1,n as follows: note that an element in WE

is defined by a conformal class of a Riemann surface F , a subset P ⊆ F̊ of
cardinality m− 2, two (unordered) punctures x1, x2 ∈ F with small disjoint
discs D1, D2 ⊆ F̊ r P around them, and points x′i ∈ ∂Di. If we cut along
the two straight lines from x1 to x′1 and from x2 to x′2 and reglue, then we
have identified the two punctures and increased the genus by 1. Finally, we

5 Formally, we consider the double covering Mm−2,1,1
g,n →Mm−2,2

g,n where the two points are
ordered. Then, over B := Mm−2,1,1

g,n , there are two unit vertical tangent bundles L and L′ and
the fibre product L×B L′ →Mm−2,1,1

g,n is S2-equivariant. The induced map on quotients is
the desired bundle.
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T̂ = E =

Figure 5.10. The two ad-hoc constructions T̂ : Hh(P
1
1,1)→ Hh+1(P1,2) as well as

E : Hh(P
2
1,1)→ Hh+2(P

1
2,1), here applied to ground classes. Here

the first toric factor is drawn in red, while the second toric factor
is drawn in green. In the second picture, a homotopy between the
drawn class and the one where red and green are toggled is given
by interchanging the positions of the two black slit pairs.

forget that the joint puncture is special among the other ones. Again, this
construction can be visualised in terms of slit pictures, see Figure 5.10.

The torus bundle q : WE →Mm−2,2
g,n is not orientable, but if we work over

F2, then we still have a homological transfer, which can be used to define

E : Hh(M
m
g,n) Hh(M

m−2,2
g,n ) Hh+2(WE) Hh+2(M

m−1
g+1,n).

β! q! η∗

Let us point out that the E-operation can also be applied integrally to ground
classes x ∈ H0(Mm

g,n): here the class x is of the form ı[∗], where ı : ∗ ↪→Mm
g,n

is any basepoint inclusion, and ı∗WE is just a 2-torus. Hence we can define
Ex := ϕ∗[T2] ∈ H2(Mm−1

g+1,n), where ϕ : T2 ∼= ı∗WE →WE →Mm−1
g+1,n. The sign

of Ex depends a priori on the choice of identification T2 ∼= ı∗WE; however, if
tw: T2 → T2 denotes the twist, then ϕ is homotopic to ϕ ◦ tw, the homotopy
given by a path exchanging the two punctures; hence 2 · Ex = 0.

We close this section with a remark on a combinatorially enhanced model:

Remark 5.2.20. As already indicated in Definition 5.2.5, there is a more
general model Pm

g [ρ] for Mm
g,n, where ρ ∈ Sλ is a permutation with exactly n

cycles (including fixed points), for some λ > n: here, the slit domains take
place on λ layers and σq is allowed to contain cycles which have more than
a single symbol of the form 0l, and if we remove all other symbols from σq,
then we obtain ρ. We call these objects slit domains with multiplicities, and we
clearly have Pm

g,n = Pm
g [idn]. Note that the equivalence Pm

g [ρ] 'Mm
g,n is not

canonical, but depends on a choice of ordering of the cycles of ρ.
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It is not possible to extend the Vc
1,1-action on (äg,m Pm

g,n)n>1 to these more
enhanced models just by implanting slit domains; this already fails on the
level of path components: for the transposition τ = (1 2) ∈ S2, the two opera-
tions below would induce maps between the given path components, while
they themselves lie in the same component of Vc

1,1(
2,2
2 ):

1,1

1,2

2,1

2,2

: (P0
0[τ])

2 → P0
0[id2]

1,1

2,2

2,1

1,2

: (P0
0[τ])

2 → P1
0[τ],

In particular, the result of these operations once lies in a model for M1
0,2

and once in a model for M1
0,1. I think this issue has been overseen in [BH14,

Prop. 4.2.2]. Here we see that the combinatorial type of the result does not
only depend on the orders on the fibres of each ∆Σ-map fi : ki → n, but
merely on a single large map f ∈ ∆Σ(k1+···+kr

n ); this would also distinguish
the two above operations.

More formally, one can define an action of the smaller operad Nc(C1)

on (äρ∈Sλ
äg,m Pm

g [ρ])λ>1: given a connective configuration of clusters of
intervals on λ large intervals, then we can cross [−1; 1] with everything and
then implant slit pictures with multiplicities into the arising boxes. The three
examples from [BH14, § 4.2] are indeed instances of this smaller action.

A more elaborated approach, which we have not pursued to a meaning-
ful end, enlarges the combinatorics of Vc

1,1, ending up with an operad S

with colour set äλ>1 Sλ and with operation spaces S(π1,...,πr
ρ ) containing

configurations of vertically aligned slitted boxes, together with a regluing
prescription that resembles the colours π1, . . . , πr, such that the global per-
mutation arising from the regluing of slits equals ρ. Such an operad deserves
the name slit operad; it is possible, yet very technical, to define it, and the
collection (äg,m Pm

g [ρ])ρ is an algebra over S.

5.3. Low-genus calculations

In this last section, we want to employ the previously established structure
results in order to describe some very concrete generators. By doing so, we
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contribute to a long project which involves results of [Ehr98; Abh05; God07;
ABE08; Vis11; Meh11; BH14; Boe18]. We start by recalling parts of their work.

5.3.1. Current ‘state of the art’

This subsection is a mere summary of low-genus calculations which have
already been performed: let us start by describing six toric generators in the
homology of moduli spaces with a single boundary curve, which have been
given the names a, b, c, d, e, and f.

Definition 5.3.1 (Toric generators). We consider the following classes:

1. the ground class a ∈ H0(M1
0,1), represented by a single puncture inside

a disc, i.e. a single slit pair on a single layer. Note that the product

a · − : Hh(M
m
g,n)→ Hh(M

m+1
g,n )

is the same as forming the boundary-connected sum with a punctured
disc at the first boundary curve of the given surface. In [BT01, Thm. 1.3],
it was shown that this (topological) map admits a stable retraction, and
hence, the induced map in homology is split monic;

2. the circle b := Qa ∈ H1(M
2
0,1), represented by two punctures switching

places, or a small slit pair inside a large one, performing a half-rotation,
see Figure 5.11;

3. the ground class c ∈ H0(M1,1). Note that the product

c · − : Hh(M
m
g,n)→ Hh(M

m
g+1,n)

is the classical genus stabilisation, and Harer’s (improved) stability
theorem [Har84; Iva90; Bol12; Ran16] tells us that it is an isomorphism
for h 6 2

3 · (g− 1);

4. the circle d := Ta ∈ H1(M1,1), which is depicted in Figure 5.11;

5. the 2-torus e := Ea2 ∈ H2(M1
1,1);

6. the 3-torus f ∈ H3(M2
1,1) which is due to [Boe18] and is depicted in

Figure 5.11 as well (we will decompose f into smaller classes soon).
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5.3. Low-genus calculations

a b c d e f

Figure 5.11. The six generators, depicted as maps from tori into the space of slit
domains. Here the first toric factor is drawn in red, the second one
in green, and the third one in blue.

There are a few relations between these toric classes, that are either imme-
diate or have been calculated in previous work.

Remark 5.3.2 (Relations). Since e = Ea2, we already know that e must have
2-torsion, whence 2 · e = 0. Moreover, if x ∈ Hh(Mg,n) is any class in some
moduli space without punctures, then we obtain T(x · a) = (−1)h · (x · d),
simply because the T-operation effects only the newly added puncture.

The relation Qc = 3 · cd is due to [God07, Ex. 6] and also appears in [Meh11,
§ 1.2]. In particular, [c, c] = 2 ·Qc = 6 · cd 6= 0, showing that the E2-structure
on äg Mg,1 cannot be enhanced to an E3-structure [FS96, Thm. 2.5], although
the group completion ΩB äg Mg,1 has the homotopy type of an infinite loop
space [Til97, Thm. A].

Let me finally mention that [Meh11, § 1.2] also claims that [c, d] = d2 holds,
a relation which we are going to disprove in the next subsection.

As we can see in the Tables 5.1 and 5.2, these toric generators describe
much of the homology of low-genus moduli spaces; only a few generators
are unknown. An empty field means that the respective homology group is
trivial, and all homology groups that are not listed are trivial.

These tables contain two generators that have not been explained yet and
which both are due to [Boe18]: on the one hand, he found a rational generator
s ∈ H3(M2,1; Q), which means that for some rational number λ 6= 0, the
class λs is an integral generator of the free summand. On the other hand,
there is a class w ∈ H4(M2,1) which has 3-torsion and is obtained from the
Segal–Tillmann map C6(R2) → M2,2 → M2,1, see [ST08], where the latter
arrow is given by capping with a disc. However, both generators will play
no further rôle in the upcoming discussion.
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0 1 2 3 4

M1,1 Z〈c〉 Z〈d〉

M1
1,1 Z〈ac〉 Z〈ad〉 Z2〈e〉

M2
1,1 Z

〈
a2c
〉

Z
〈
a2d

〉
⊕Z2〈bc〉 Z2〈ae, bd〉 Z2〈f〉

M2,1 Z
〈
c2〉 Z10〈cd〉 Z2

〈
d2〉 Z〈λs〉 ⊕Z2〈Te〉 Z3〈w〉 ⊕Z2〈?〉

Table 5.1. Generators for the integral homology of low-genus moduli spaces.
Only a single generator of H4(M2,1) with 2-torsion is missing.

0 1 2 3 4 5

M1,1 c d

M1
1,1 ac ad e Eb

M2
1,1 a2c a2d, bc ae, bd, ? a Eb, f, ? ?

M2,1 c2 cd d2, ? λs, Te, Qd ?, TEb ?

Table 5.2. Generators for the F2-homology of low-genus moduli spaces. Here
some more gaps appear, which arise from the torsion part in the uni-
versal coefficient theorem; however, some other generators could have
been described via the Dyer–Lashof square Q and the E-operation.

In order to complete the survey, I ought to mention that calculations for
genus 3 have been made in [Wan11]; however, no explicit generators have
been described yet.

5.3.2. Two folklore statements

Before considering explicit classes in the homology of moduli spaces with
multiple boundary curves, let us take the time to spell out two statements
which I believe are well-known to the experts, but, to the best of my know-
ledge, have never been written down explicitly so far.

The first one claims that a single genus stabilisation step cancels the
(vertical) Browder bracket. Let me point out that, in the case of a single
boundary curve, it follows from abstract considerations that the Browder
bracket [x, x′] of two classes x ∈ H•(Mg,1) and x′ ∈ H•(Mg′,1) vanishes after
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5.3. Low-genus calculations

finitely many stabilisation steps: the group completion äg Mg,1 →M∞,1 ×Z

is given by iterated stabilisations and respects the E2-structure on both sides.
Furthermore, the right side has the homology6 of an infinite loop space [Til97,
Thm. A], so its E2-Browder bracket vanishes. Here is a stronger statement.

Proposition 5.3.3. For each pair of classes x ∈ H•(Mm
g,n) and x′ ∈ H•(Mm′

g′,n′),
we have c · [x, x′] = 0.

Proof. We use the (connective) coloured surface operad Mc from Definition
5.1.13 and consider the loop γ : S1 →Mc( n,n′

n+n′−1) which is depicted as follows:

· · · · · ·2,1

1,1

1,2 1,n 2,2 2,n′

Then clearly c · [x, x′] = [γ](x⊗ x′), so it suffices to show that [γ] is trivial
in the first homology of Mc( n,n′

n+n′−1). To do so, we recycle an argument from
[Bia20]: let I ⊆ S1 be a small closed interval on the standard circle. Then we
define a map γ̃ : T2 r I̊2 → Mc( n,n′

n+n′−1) whose source is a bounded 2-torus
and which is depicted as follows:

· · · · · ·2,1 1,1 1,2 1,n 2,2 2,n′

Here the excluded square I̊2 parametrises the situation in which both discs
live inside the blue region, and this is exactly the case where the disjointness
condition is violated.

Now one readily checks that, after identifying ∂I2 ∼= S1, the boundary of γ̃

is homotopic to γ. Hence, the cycle γ is a boundary, as desired.

6 And, after applying the Quillen plus construction, also the homotopy type.
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Chapter 5. Homology operations on moduli spaces of surfaces

The previous proof provides a stronger result: for each Mc-algebra X, we
have a genus stabilising operation c · − and a Browder bracket [−,−] in
homology, and their composition c · [−,−] is trivial in H•(X).

The second statement I would like to mention concerns the generator b.

Remark 5.3.4. As in the work of [BT01, Thm. 1.3] on the injectivity of a · −, i.e.
adding a single puncture, we can ask if the map Hh(M

m
g,n)→ Hh+1(M

m+2
g,n ),

which is given by multiplication with b, is injective.
Integrally, this statement is wrong, as one can already see in the case of a

single boundary curve and genus 0: the class b itself is a free generator of
H1(M

2
0,1)
∼= Z, while by the Koszul sign rule, we get b2 = −b2.

Over the field F2 and in the case of a single boundary curve, the situation
looks different: based on work of [BCT89], Bianchi [Bia20, Thm. 6.5] recently
has established an isomorphism⊕

m>0

H•(Γm
g,1)
∼= F2[Qia]i>0 ⊗ H•(Γg,1; Sym(H))

of modules over the Dyer–Lashof algebra F2[Qia]i>0, where Sym(H) is the
symmetric algebra over the symplectic representation of Γg,1. This implies
that the homology of punctured moduli spaces is a free F2[Qia]i>0-module,
whence not only the multiplication with the classes a and b, but with any
iterated Dyer–Lashof square Qia is injective.

5.3.3. Generators with multiple boundary curves

Next, we will describe several toric classes in the low-genus homology of
moduli spaces of surfaces with multiple boundary curves. Our approach starts
with the observation that the previously described generators x1 ∈ {c, d, e}
are of the form s1x2 for certain lifted homology classes x2 ∈ H•(Mm

g,2) for
suitable g, m > 0, and we want to understand the lifted ones.

We give these lifted classes an index corresponding to the number of
boundary curves of their respective moduli space, and in all cases, we will
reach the relation xn−1 = s1xn. For the sake of consistency, our old six toric
generators silently carry an index 1, which we decided to skip for the sake of
continuity and simplicity.
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c2 d2 e2

Figure 5.12. The generators c2, d2 and e2, depicted as maps from tori into the
space of parallel slit domains on two layers.

Construction 5.3.5. We consider the following three toric classes, which have
been depicted in Figure 5.12:

1. the ground class c2 ∈ H0(M0,2) of the moduli space of a cylinder. Note
that the vertical product

c2 · − : Hh(M
m
g,n)→ Hh(M

m
g,n+1),

is the same as forming the boundary-connected sum with a cylinder, or,
in other words, gluing in an ‘inverse’ pair of pants at the first boundary
curve. Again, a part of Harer’s stability theorem [Har84; Iva90; Bol12;
Ran16] tells us that this map is an isomorphism for h 6 2

3 · (g− 1), and
an epimorphism for h 6 2

3 · g. We clearly have c = s1c2.

2. the circle d2 := T̂a ∈ H1(M0,2). By construction, s1d2 = s1T̂a = Ta = d,
which is a generator of H1(M1,1) ∼= Z. Therefore, d2 is a generator of
H1(M0,2), that is: the standard Dehn twist on the cylinder.

3. the 2-torus e2 ∈ H2(M1
0,2) which is depicted in Figure 5.12. Note that e2

can be constructed by applying the E-operation to the ground class of
M(Σ1

0,1 t Σ1
0,1), the moduli space of two punctured discs7 (but we have

not introduced the E-operation for these cases). However, this does not
imply that e2 has 2-torsion, as the two punctures on Σ1

0,1 t Σ1
0,1 cannot

be interchanged by a path. Indeed, M1
0,2 ' T2, as we see in the proof

of Proposition 5.3.12, whence its homology is torsion-free.

7 In this disconnected situation, the genus does not increase. This is similar to the grading in
[ST08, § 3], where the sum of two discs has been given the genus −1.
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Remark 5.3.6. Here are some first observations:

1. If x ∈ Hh(Mg,n) is a class in the homology of a moduli space without
punctures, then we clearly have T̂(x · a) = (−1)h · x · d2, for the same
reason as in Remark 5.3.2, and similarly, T̂[x, a] = (−1)h+1 · [x, d2].

2. the 3-torus f can be lifted to a class in f2 ∈ H3(M2
0,2), but we can also

express f2 through a vertical Browder bracket (1 2)[a, e2]. In particular,
we can describe f itself as s1[a, e2]; here we use that s1(1 2) = s1, as the
Vc

1,1-action factors, up to homotopy, through Nc(C2).

Finally, we can use these enhanced generators in order to show certain
divisibility properties of the classical Browder bracket.

Proposition 5.3.7. For each class x ∈ H•(Mm
g,n), we have

[c, x] = 2 · s1[c2, x],

[d, x] = 2 · s1[d2, x].

Proof. We prove the first relation, since the second one follows in the same
way. Note that s1c2 = c and (1 2)c2 = c2 holds, as well as s1 = s1(1 2), since
the action of V

c,
1,1 factors through Nc(C2 ). Employing the relations among

codegeneracies and vertical Browder brackets from Proposition 4.4.16, we get
[c, x] = [s1c2, x] = s1[c2, x] + s1(1 2)[(1 2)c2, x] = 2 · s1[c2, x].

Remark 5.3.8. Note that the previous Proposition 5.3.7 implies that [c, d] is
divisible by 2 (even by 4), and since it lives in H2(M2,1) ∼= Z2, it has to be
trivial, and not, as [Meh11, § 1.2] claimed, the generator d2.

5.3.4. The homology of M1,2

In this last subsection, we give a complete list of generators of H•(M1,2), both
integrally and over F2. To do so, we relate M1,2 to M1

1,1.

Remark 5.3.9. For each g > 0, we have a map cap : Mg,2 → M1
g,1 given by

capping the second boundary curve with a punctured disc. Up to homotopy,
this map coincides with the vertical unit tangent bundle S(T⊥M1

g,1) over the
surface bundle M1

g,1 →Mg,1, the homotopy equivalence being precisely the
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g2 g3

' ' ' (1 3)

d2
2

Figure 5.13. Left: the 2-torus g2 ∈ H2(M1,2): the two (unpaired) green slits move
together inside the black pair, keeping a constant distance. Right:
the class g3 ∈ H2(M0,3) and a homotopy to the 2-torus (1 3)d2

2.

map ϑT : S(T⊥M1
g,1)→Mg,2 from Construction 5.2.18. Under this identific-

ation, the fibre inclusion S1 ↪→Mg,2 parametrises the Dehn twist about the
second boundary curve.

For g ∈ {0, 1}, this sphere bundle is trivial: one way to see this is by noting
that the corresponding second integral cohomology groups H2(Γ1

0,1; Z) and
H2(Γ1

1,1; Z) vanish, compare Table 5.1 for the second one. Hence we may
choose a section M1

g,1 → S(T⊥M1
g,1), and, postcomposing with the equival-

ence ϑT, we obtain a section η : M1
g,1 →Mg,2 for g 6 2.

Construction 5.3.10. We consider a new toric generator g2 := η∗e ∈ H2(M1,2)

which is depicted in Figure 5.13: the section M1
g,1 → S(T⊥M1

g,1) marks a
fixed point on the circle around the puncture, and at this position, the new
slit pair starts. Clearly g2 again has 2-torsion: we see 2 · g2 = η∗(2 · e) = 0.

The class g2 can be lifted to g3 ∈ H2(M0,3), which means g2 = s1g3, and
this class g3 can, in turn, be identified with (1 3)d2

2, see Figure 5.13. Note
that g3 has no 2-torsion, as M0,3 ' BΓ0,3 ∼= T3; indeed g3 is one of the free
generators of H2(M0,3) ∼= Z3: the group Γ0,3 is generated by the Dehn twists
about the three boundary curves and each of the tori d2

2, (1 2)d2
2, and (1 3)d2

2
parametrises two of them.

On the other hand, one may ask which class from H2(M2,1) ∼= Z2〈d2〉 the 2-
torus g2 itself lifts. Here we easily see that s1g2 = s1s1(1 3)d2

2 = s1s1d2
2 = d2.

Now we have all classes at hand to describe the generators of H•(M1,2).
Since we already know M1,2 'M1

1,1 × S1, the previous results, together with
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the Künneth theorem and the universal coefficient theorem, tell us that

H•(M1,2; Z) = (Z, Z2, Z⊕Z2, Z2),

H•(M1,2; F2) = (F2, F2
2, F2

2, F2
2, F2).

Proposition 5.3.11. The integral homology of M1,2 is generated as follows:

0 1 2 3

M1,2 Z〈c2c〉 Z〈c2d, d2c〉 Z〈d2d〉 ⊕Z2〈g2〉 Z2
〈

T̂e
〉

Proof. Clearly, the ground class c2c generates H0(M1,2). Secondly, 2 · g2 = 0
and s1g2 = d2 6= 0 inside H2(M2,1), whence g2 generates the Z2-summand
of H2(M1,2). Similarly, s1T̂e = Te 6= 0, whence T̂e generates H3(M1,2) ∼= Z2.

For the first homology, the product c2d = η∗(ad) generates the summand
H1(M

1
1,1) in the Künneth decomposition of H•(M1,2) ∼= H•(M1

1,1 × S1), and
d2c is exactly the Dehn twist about the second boundary curve.

For the free part of the second homology, we note that d2d is supported
on a 2-torus S1 × S1 →M1,2 ' S1 ×M1

1,1, which is of the form f1 × f2, where
f1 : S1 → S1 is the identity and f2 : S1 →M1

1,1 is ad; hence it is the homology
cross product of the two generators of H1(M

1
1,1) and H1(S

1).

If we consider instead homology over F2, then we encounter an occurrence
of a vertical Dyer–Lashof square, applied to the fundamental Dehn twist d2:

Proposition 5.3.12. The F2-homology of M1,2 is generated by the following classes:

0 1 2 3 4

M1,2 c2c c2d, d2c d2d, g2 T̂e, Qd2 T̂Eb

Proof. Nearly each generator can be taken, via the universal coefficient the-
orem, from the previous integral result; we only need a second generator
for H3(M1,2; F2) and a generator of H4(M1,2; F2). The latter generator is easy
to find, as we know that s1T̂Eb = TEb 6= 0 in H3(M2,1; F2). To identify the
second generator of H3(M1,2; F2) with the vertical Dyer–Lashof square Qd2,
it suffices to show that s1Qd2 is neither 0 nor s1T̂e inside H3(M2,1; F2).

To this aim, we start by showing that s1[d2, a] = e holds (even integrally):
note that M1

0,2 fibres over M0,2 as the universal surface bundle, with fibre a
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cylinder. In this description, we have M0,2 ' S1, where the fundamental loop
corresponds to the Dehn twist on the cylinder, and M1

0,2 is the mapping torus
of the Dehn twist D on S1 × [0; 1]. Since D is isotopic to the identity (though
not isotopic relative the boundary), M1

0,2 is equivalent to a 2-torus, whose
two fundamental loops are given by the loop of the base, i.e. the Dehn twist,
and the loop of the fibre, i.e. the single puncture rotating once inside the
cylinder. This is exactly what the 2-torus of [d2, a] parametrises up to sign.
Hence, [d2, a] is a generator of H2(M1

0,2)
∼= Z, and thus e2 = k · [d2, a] for

some k ∈ Z. Since k · s1[d2, a] = s1e2 = e 6= 0, we conclude that s1[d2, a] 6= 0
inside H2(M1

1,1)
∼= Z2〈e〉, which proves the subclaim. From that, it follows

that Te = s1T̂s1[d2, a] = s1s1T̂[d2, a] = s1s1[d2, d2]; here we have used that
the relation T̂ ◦ f = ( f t 11) ◦ T̂ holds by construction.

Coming back to the statement, we can employ the relations from Propos-
ition 4.4.25 and obtain that s1Qd2 = Qs1d2 + s1s1[d2, d2] = Qd + Te holds
inside H2(M2,1; F2). Finally, we use from Table 5.2 that Qd is neither Te nor
0, whence s1Qd2 is neither Te = s1T̂e nor 0.

Let us close this chapter again with a few open questions to the reader:

1. I am convinced that the factor in the relation e2 = k · [d2, a] is a unit,
or, in other words, that e2 is a generator of H2(M1

0,2) as well. So far, we
only know that k is odd, as s1e2 6= 0 holds inside Z2.

2. Some of these explicit calculations are useful in order to improve the
slopes for higher-order homological stability [GKR19]. One aim is to
calculate H3(M4,1; Z): rationally, this group vanishes by calculations of
[Tom05]; however, it is integrally unknown. If we could show that it
vanishes, we would be able to improve the slope for integral secondary
homological stability for the sequence (Γg,1)g>0.

3. Similarly, it would be useful to determine H4(M4,1; Q) or H4(M5,1; Q):
understanding these two vector spaces would help us to improve the
slope for rational secondary homological stability for (Γg,1)g>0. Maybe
it is possible to construct a vertical Browder bracket that does not vanish
in H4(M4,1; Q).
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Chapter 6

Parametrised moduli spaces of surfaces
as infinite loop spaces

One would like to characterize its homotopy type,
but in reality one must settle for less.

Ib Madsen, on the moduli space Mg

The methods which we developed so far can be applied to a problem of a
different kind: for a space A, we study the E2-algebra M•,1[A] := äg Mg,1[A]

of surface bundles over A and compute the homotopy type of its group com-
pletion ΩBM•,1[A]: it turns out to be the product of the infinite loop space
associated with the two-dimensional oriented tangential Thom spectrum
MTSO(2) as in the Madsen–Weiss theorem, with a certain free infinite loop
space depending on the family of all ‘∂-irreducible’ maps from π1(A) into
mapping class groups Γg,n with g > 0 and n > 1.

This is joint work with Andrea Bianchi and Jens Reinhold which culminated
in the eponymous article [BKR21]. I decided to summarise the key steps of
[BKR21, § 2+3+6] in Section 6.2. However, as the main result heavily relies on
operadic techniques which are based on my own work and are deeply related
to the previous chapters of this thesis, I decided to give [BKR21, § 4+5] a full
treatise in Section 6.3.

6.1. Formulation of the problem

In this foundational first section, we give a short survey on classical results
and formulate the generalisation we aim to make. Let us start with recalling
the concept of group completing an H-monoid, and the theorem of Madsen
and Weiss.
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6.1.1. The Madsen–Weiss theorem

Very often, we work with Ed-algebras whose homotopy type or homology is
hard to understand, but its group completion is more accessible.

Construction 6.1.1 (Group completion). Let M be an E1-algebra. We can form
its bar construction BM, which comes with a natural map ΣM→ BM, and
we are interested in the adjoint M→ ΩBM.

If the submonoid π0(M) of the Pontrjagin ring H•(M; Z) satisfies the Ore
condition [Ore31] (which is e.g. satisfied if M is H-commutative), then this
map behaves like a group completion in the sense of [MS76]: the induced map
in integral homology is isomorphic to the localisation of the Pontrjagin ring
H•(M; Z) at the submonoid π0(M) ⊆ H0(M; Z) of path components.

By basic obstruction theory, being a group completion determines the weak
homotopy type uniquely among simple spaces. In particular, if M itself is
grouplike (which means that the monoid π0(M) is a group) then the map
M→ ΩBM is a weak equivalence.

Secondly, we need a concise definition of the two-dimensional oriented
tangential Thom spectrum [Gal+09].

Definition 6.1.2 (Oriented tangential Thom spectrum). We consider on R∞

the standard Euclidean scalar product; then all Rn ⊆ R∞ are isometrically
included. For each dimension d > 0, we have the orthogonal tautological bundle
Rn → γ⊥d,n → Gd,n over the oriented Graßmannian Gd,n := Gr+d (R

d+n).
Now if we consider the inclusion ın : Gd,n ↪→ Gd,n+1 which is induced by

Rd+n = Rd+n × {0} ↪→ Rd+n+1, then we have an isomorphism of (n + 1)-di-
mensional vector bundles ı∗nγ⊥d,n+1

∼= γ⊥d,n ⊕RR, where RR denotes the trivial
line bundle. In particular, we have a morphism of vector bundles

γ⊥d,n ⊕RR γ⊥d,n+1

Gd,n+1 Gd,n,

yielding a map of Thom spaces Th(γ⊥d,n) ∧ S1 ∼= Th(γ⊥d,n ⊕RR)→ Th(γ⊥d,n+1).
Thus, we obtain a spectrum MTSO(d), with MTSO(d)d+n = Th(γ⊥d,n), which
we call the d-dimensional oriented tangential Thom spectrum.
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With these facts at hand, the Madsen–Weiss theorem [MW07] can be for-
mulated as follows: we have seen that the collection M•,1 := äg Mg,1 carries1

the structure of an E2-algebra, more precisely an algebra over the little 2-discs
operad D2. Secondly, there is a scanning map M•,1 → Ω∞MTSO(2) which
enjoys the property of being a group completion. Thus, the group completion
of M•,1 can be identified with the infinite loop space Ω∞MTSO(2):

ΩBM•,1 ' Ω∞MTSO(2).

This theorem was the key ingredient for the proof of the Mumford conjecture:
if we fix a binary operation µ ∈ D2(2) and a conformal class C1 ∈M1,1, then
we get a stabilisation map µ(C1,−) : Mg,1 →Mg+1,1, and we define the stable
moduli space M∞,1 as the homotopy colimit of the tower of stabilisation maps.
Then M∞,1 is a classifying space for the stable mapping class group Γ∞,1, and
hence its cohomology encodes stable characteristic classes for surface bundles.

There is a family of rational cohomology classes κi ∈ H2i(M∞,1; Q) for
i > 1, called Mumford–Miller–Morita classes [Mum83; Mil86; Mor87], which
was known for a long time to be algebraically independent [Mil86, Thm. 1.1];
in particular, there is an inclusion of Q-algebras Q[κ1, κ2, . . . ]→ H•(M∞,1; Q).
The famous Mumford conjecture states that this map is an isomorphism.

This statement was provable by means of the Madsen–Weiss theorem:
it is not hard to see that the homology of the group completion ΩBM•,1
coincides with the homology of the product space Z×M∞,1; one copy of the
stable moduli space for each integer. Therefore, we obtain an isomorphism
in homology H•(M∞,1) ∼= H•(Ω∞

0 MTSO(2)), where Ω∞
0 MTSO(2) denotes

the path component of Ω∞MTSO(2) containing the constant loop. The right
side, in turn, is accessible by standard methods, see e.g. [Hat11, Apx. C].

6.1.2. Our generalisation of the problem

We consider the analogous problem with M•,1 replaced by the space M•,1[A]

of surface bundles over some path connected space A, called parametrised
moduli space, which is topologised by being identified with the space of maps

1 In this chapter, we decided to skip decorations indicating a regular collaring. The reader is
free to choose their preferred model from the previous chapter.
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from A to M•,1. This parametrised moduli space is again an E2-algebra by
extending the action pointwise, and it is our goal to understand its group
completion ΩBM•,1[A]

Remark 6.1.3. There are two immediate facts which we can observe:

1. Note that M•,1 is not only a E2-algebra, but also an algebra over the
(monochromatic) surface operad M|1, so the same applies to M•,1[A]

by pointwise action. The main theorem of [Til00] then tells us that the
homotopy type we wish to understand is an infinite loop space.

2. We have a map M•,1 →M•,1[A] which assigns to each conformal class
C the constant map with value C. Conversely, each choice of basepoint
in A gives rise to an evaluation map M•,1[A] → M•,1, which is a left
inverse of the former one. Moreover, both maps are morphisms of M|1-
algebras, so when passing to group completions, we recover the infinite
loop space ΩBM•,1 as a rectract of the infinite loop space ΩBM•,1[A].
This shows that Ω∞MTSO(2) is a direct factor of ΩBM•,1[A].

Thus, there is a spectrum E[A] such that ΩBM•,1[A] has the homotopy type
of Ω∞MTSO(2)×Ω∞E[A], and we aim to understand E[A].

Remark 6.1.4. For any discrete group Γ and each path connected space A,
one can describe the homotopy of the mapping space as

BΓ[A] ' ä
[ω]∈Conj(π→Γ)

BZ(im(ω), Γ),

where π := π1(A) and Conj(π → Γ) is the set of conjugacy classes of homo-
morphisms ω : π → Γ, where two homomorphisms ω and ω′ are conjugate
if there exists a ϕ ∈ Γ with ω′ = ϕ · ω · ϕ−1, and where Z(Π, Γ) is the cen-
traliser of a subgroup Π ⊆ Γ. Note that the isomorphism type of the group
Z(im(ω), Γ) only depends on the conjugacy class of ω.

Therefore, the problem we address is strongly related to analysing the
structure of centralisers of elements of mapping class groups: recall that
if we fix a surface Sg,1 of type Σg,1, then Mg,1 is a classifying space for the
mapping class group Γ(Sg,1), whence we have a homotopy equivalence

M•,1[A] ' ä
g>0

BΓ(Sg,1)[A] ' ä
g>0

ä
[ω]∈Conj(π→Γ(Sg,1))

BZ(im(ω), Γ(Sg,1)).
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Therefore, the answer to our problem will necessarily involve a structure
result for centralisers of mapping classes.

6.1.3. Results and outline

It may be surprising at first glance that for the advertised structure result
for centralisers of mapping classes, we have to widen our view and pass to
mapping class groups of surfaces with multiple boundary curves.

The parametrised moduli space Mg,n[A] of surfaces of genus g with n
parametrised boundary circles admits an action by the isometry group of the
disjoint union of n oriented circles, i.e. by the topological group Tn oSn. We
introduce, for each n > 1 and g > 0, a conjugation-invariant irreducibility cri-
terion for subgroups of Γ(Sg,n), and consider the subspace Cg,n[A] ⊆Mg,n[A]

of connected components whose corresponding conjugacy classes of maps
π1(A) → π1(Mg,n) ∼= Γg,n have an irreducible image. Then the pointwise
action of Tn oSn on Mg,n[A] restricts to an action on Cg,n[A], and our main
result is the following identification, where � denotes the homotopy quotient:

Theorem 6.4.1. For every path connected space A, there is a weak
equivalence of loop spaces

ΩBM•,1[A] ' Ω∞MTSO(2)×Ω∞Σ∞
+ ä

n>1
ä
g>0

Cg,n[A] � (Tn oSn).

The proof of this theorem relies on two ingredients: in a first step, which
constitutes Section 6.2, we describe centralisers of subgroups of mapping class
groups. As a result, we will obtain that M•,1[A] is the first level of a relatively
free M-algebra, relative to a suboperad built out of the groups Tn oSn,
and the generators being precisely the aforementioned spaces Cg,n[A], which
assemble into an algebra over this suboperad.

Secondly, we develop in Section 6.3 an operadic machinery to compute the
homotopy type of group completions of relatively free algebras over coloured
operads, provided that the operad in question is homologically stable in a
meaningful sense. This part of the work is a generalisation of [Til00; Bas+17]
to the coloured and relative case.

237
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6.2. Parametrised moduli spaces as free algebras

The aim of this section is to study centralisers of subgroups of mapping class
groups of surfaces, culminating in a description of M•,1[A] as the first level
of a relatively free M-algebra. As already announced in the introduction, we
only highlight the main steps and refer to [BKR21, § 2+3+6] for details.

6.2.1. Fixed-arc complexes and ∂-irreducibility

Here we introduce the notion of ∂-irreducibility for subgroups of mapping
class groups. This summarises the content of [BKR21, § 2.2+2.3] and uses the
notation from Subsection 5.1.1.

Idea 6.2.1. Let us fix a surface S of type Σg,n, with g > 0 and n > 1, and focus
on the mapping class group Γ(S). Given a subgroup Π ⊆ Γ(S), we construct
a system of simple closed curves on S which cuts S into two subsurfaces W
and Y, where the subsurface W ⊂ S is, up to isotopy, the maximal subsurface
of S satisfying the following conditions:

1. all connected components of W touch ∂S ;

2. each ϕ ∈ Π can be represented by a diffeomorphism of S fixing W
pointwise.

We start by recalling some standard facts about embedded arcs in surfaces.
The material of this subsection is taken, up to minor changes, from [FM12];
for the following definition see [FM12, § 1.2.7].

Definition 6.2.2. An arc in S is a smooth embedding α : [0; 1] ↪→ S such that
we have α−1(∂S) = {0, 1} and α is transverse to ∂S . Two arcs are disjoint if
their images are disjoint (also at the endpoints). An arc is essential if it does
not cut S in two parts, one of which is a disc.

Two arcs α and α′ are directly isotopic if α(0) = α′(0), α(1) = α′(1), and
there is an isotopy of embeddings [0; 1] ↪→ S which is stationary on {0, 1}
and connects α to α′. Two arcs are inversely isotopic if the previous holds after
reparametrising one of the two arcs in the opposite direction. Two arcs are
isotopic if they are directly or inversely isotopic: we then write α ∼ α′.
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α0

α1

α2

α3

α4

α5

1 2

Figure 6.1. A maximal collection of six pairwise non-parallel arcs α0, . . . , α5 on
a surface of type Σ1,2.

Two arcs α and β are in minimal position if they are disjoint at their end-
points, intersect transversely, and the number of intersection points in α ∪ β

is minimal among all choices of α′ ∼ α and β′ ∼ β with α′ and β′ disjoint at
the endpoints and transverse.

Note that we only consider isotopy classes of arcs relative to their endpoints;
two arcs sharing one endpoint are never considered in minimal position (and,
by convention, cannot be isotoped to be in minimal position).

If χ(S) 6 0, then the following holds, see [FM12, § 1.2.7]: given a collection
of essential arcs α1, . . . , αk in S which are pairwise non-isotopic and have
all distinct endpoints, one can replace each αi with an arc α′i ∼ αi so that
α′1, . . . , α′k are pairwise in minimal position. Among all connected surfaces
with non-empty boundary, the only one with positive Euler characteristic
is the disc Σ0,1, for which the statement holds vacuously, as there are no
essential arcs in Σ0,1.

Definition 6.2.3. Two arcs α and α′ in S are directly parallel if they are disjoint
and there is an embedding [0; 1]× [0; 1] ↪→ S restricting to α on [0; 1]×{0} and
to α′ on [0; 1]× {1}, and restricting to an embedding {0, 1} × [0; 1] ↪→ ∂S .

Two arcs α and α′ are inversely parallel if the previous holds after repara-
metrising one of the two arcs in the opposite direction. Two arcs α and α′ are
parallel if they are directly or inversely parallel.

Let us fix a subgroup Π ⊆ Γ(S) and study the isotopy classes of arcs and
curves that it fixes.
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Definition 6.2.4. The fixed-arc complex of Π is an abstract simplicial complex
whose vertices are isotopy classes of essential arcs α in S which are fixed by
all ϕ ∈ Π. A collection of isotopy classes of arcs α0, . . . , αh spans an h-simplex
if α0, . . . , αh can be isotoped to disjoint, pairwise non-parallel arcs α′0, . . . , α′h.

The subgroup Π is called ∂-irreducible if its fixed-arc complex is empty and
if S is not of type Σ0,1. Being ∂-irreducible is a conjugation invariant.

Example 6.2.5. Here are some examples of fixed-arc complexes:

1. Every isotopy class of essential arcs in S is fixed (up to isotopy) by the
identity 1 ∈ Γ(S). Therefore, the trivial subgroup is not ∂-irreducible,
provided that S admits some essential arc; otherwise, S is a disc Σ0,1

and in this case, {1} = Γ0,1 is not ∂-irreducible by definition.

2. The fixed-arc complex of 〈ϕ〉 ⊆ Γ0,2 ∼= Z is empty if ϕ 6= 1, and consists
of uncountably many vertices, joined by no higher simplex if ϕ = 1.

3. For g > 1 the subgroup spanned by the boundary Dehn twist D∂ ∈ Γg,1

is ∂-irreducible, though there are plenty of isotopy classes of simple
closed curves in Σg,1 that are fixed by D∂. Nevertheless, no isotopy class
of essential arcs is fixed by D∂: here it is crucial to consider isotopy
classes of arcs relative to their endpoints, which lie at the boundary.

Now we turn to the decomposition of S into Y and W from Idea 6.2.1,
which we formalise as follows:

Construction 6.2.6. Let S be a connected surface which is not of type Σ0,1,
let Π ⊆ Γ(S), and let α0, . . . αh be disjoint, essential, pairwise non-parallel
arcs in S , representing a maximal simplex in the fixed-arc complex of Π.

Let U be a closed, small neighbourhood of the union α0 ∪ · · · ∪ αh ∪ ∂S ,
and let W ⊂ S be the union of U and all components of S rU that are discs.
Then W is a closed, possibly disconnected subsurface of S , and we denote by
Y the closure of S rW.

If ∂W denotes the union of all boundary components of W, and ∂Y denotes
the union of all boundary components of Y, then ∂W = ∂S ∪ c1 ∪ · · · ∪ ck, for
some k > 0 and some curves c1, . . . , ck ⊂ S ; similarly ∂Y = c1 ∪ · · · ∪ ck. The
curves c1, . . . , ck inherit a canonical boundary orientation from Y, which is
oriented as subsurface of S .
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3 1 2 1

d1

d3

d5 d7

d2 d4 d6

c1 c2 c3 c4 c5

Y

W
Y

W

d

c

Figure 6.2. Two examples of a decomposition of S into Y and W, according
to the subgroup spanned by a single mapping class ϕ. In the first
case, ϕ is given by the product of the Dehn twists along the curves
d1, . . . , d7, and in the second case, ϕ is just the Dehn twist along the
single green curve d. In the second case, 〈ϕ〉 is ∂-irreducible, the cut
locus consists only of the isotopy class of d, oriented as an outgoing
boundary Y, while W is merely a collar neighbourhood of ∂S . The
cut loci are drawn in red.

Definition 6.2.7. For Π and α0, . . . αh as above, we define the cut locus of Π as
the isotopy class of the multicurve c1, . . . , ck, denoted [c1, . . . , ck]. Here and in
the following, a multicurve is an unordered collection of disjoint and oriented
simple closed curves, and an isotopy moves all curves simultaneously. We
declare the cut locus of Γ0,1 to be empty and W to be the entire surface Σ0,1.

A priori, the cut locus depends on both a choice of a maximal simplex in
the fixed-arc complex of Π, and on a choice of arcs α0, . . . , αh representing it.
In [BKR21, Lem. a.5], we show that the cut locus only depends on Π. When
referring to the cut locus of a subgroup Π ⊆ Γ(S) we mean the cut locus of
Π with respect to any maximal simplex in the fixed-arc complex of Π.

Remark 6.2.8. The cut locus of behaves well under conjugation: let ψ ∈ Γ(S)
be a mapping class, Π ⊆ Γ(S) be a subgroup, and let [c1, . . . , ck] be the cut
locus of Π; then [ψ(c1), . . . , ψ(ck)] is the cut locus of ψ ·Π · ψ−1.

Thus, if ψ lies in the centraliser of Π, then ψ preserves the cut locus of Π as
an unordered collection of isotopy classes of oriented simple closed curves.
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6.2.2. Centralisers of mapping classes

In this subsection, we want to use the decomposition of S which we assigned
to a subgroup Π ∈ Γ(S) in order to describe the centraliser Z(Π, Γ(S)) of Π.
By doing so, we summarise the content of [BKR21, § 3]. As a first ingredient,
we need the notion of an extended mapping class group.

Definition 6.2.9. Let (S , Θ) be a surface with parametrised boundary, of
type Σ : k → n and let H ⊆ Sk ×Sn be a subgroup. We let DiffH(S , Θ) be
the topological group of orientation-preserving diffeomorphisms Φ : S → S
such that there is a permutation (σ, τ) ∈ H with

Φ ◦Θin = Θin ◦ (σ× idS1),

Φ ◦Θout = Θout ◦ (τ × idS1),

and we define the extended mapping class group ΓH(S , Θ) := π0(DiffH(S , Θ)).
If the parametrisation is clear from the context, we write ΓH(S).

We have a map ΓH(S)→ H, whose kernel is given by the usual mapping
class group Γ(S).

Next, we fix a surface S of type Σg,n, a subgroup Π ∈ Γ(S) and oriented
simple closed curves c1, . . . , ck ⊂ S representing the cut locus of Π. Moreover,
we let W ∪Y be the associated decomposition of S .

Recall from Construction 6.2.6 that the curves c1, . . . , ck inherit an orienta-
tion from Y, and in this way, c1, . . . , ck become incoming curves for W and
outgoing curves for Y. In fact, we have ∂Y = ∂outY = c1 ∪ · · · ∪ ck = ∂inW,
whereas ∂outW = ∂S .

For each ϕ ∈ Π, we choose a representative Φ : S → S which fixes W
pointwise. In particular, Φ decomposes into diffeomorphisms Φ|Y : Y → Y
and Φ|W : W →W that fix the respective boundaries pointwise.

Construction 6.2.10. Let ϕY ∈ Γ(Y) be the mapping class represented by
Φ|Y and let Z(ΠY, ΓSk(Y)) be the centraliser of ΠY := {ϕY; ϕ ∈ Π} inside
ΓSk(Y). Secondly, we can regard Sk as a subgroup of Sk ×Sn, and consider
the extended mapping class group ΓSk(W).

The crucial observation is the fact that, given mapping classes ψW ∈ ΓSk(W)

and ψY ∈ Z(ΠY, ΓSk(Y)) inducing the same boundary curve permutation in
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Sk, we can build out of it an element in the desired centraliser Z(Π, Γ(S)) as
follows: we pick representatives ΨW : W →W and ΨY : Y → Y; then the fact
that ψW and ψY project to the same permutation of π0(∂inW) = π0(∂Y) = kk,
together with the fact that both ΨW and ΨY preserve the boundary paramet-
risation (up to permutation), implies that ΨY|∂Y = ΨW |∂inW , and hence we
can glue the two diffeomorphisms together to a diffeomorphism of S .

It is easy to see [BKR21, Lem. 3.5] that the resulting mapping class com-
mutes with each ϕ ∈ Π. Thus, we have constructed a homomorphism

ε : ΓSk(W)×Sk Z(ΠY, ΓSk(Y))→ Z(Π, Γ(S)),

where ‘×Sk ’ denotes the fibre product of groups. It turns out [BKR21, § 3.4]
that ε is surjective, and the kernel of ε has the following description:

Construction 6.2.11. For each 1 6 j 6 k, we can consider the Dehn twist
Dj about the jth curve cj of the cut locus. Then Dj is clearly an element
in ΓSk(W), but it also lies in Z(ΠY, ΓSk(Y)), since it is central in the non-
extended mapping class group Γ(Y), to which each ϕY belongs.

Hence, (Dj, D−1
j ) lies in the fibre product ΓSk(W)×Sk Z(ΠY, ΓSk(Y)), and

its image ε(Dj, D−1
j ) is trivial, as the two Dehn twists cancel each other out

when they are amalgamated over the cut locus.
In [BKR21, § 3.3] we show that these diagonally embedded Dehn twists

generate the kernel of ε. As they mutually commute and satisfy no further
relation, they generate a subgroup which is free abelian of rank k.

Corollary 6.2.12. We have an isomorphism of groups

Z(Π, Γ(S)) ∼=
ΓSk(W)×Sk Z(ΠY, ΓSk(Y))

Zk .

We still need to get a deeper understanding of the centraliser Z(ΠY, ΓSk(Y)).
To do so, we start by fixing for each g > 0 and n > 1 a standard surface Sg,n,
and, for each conjugacy class of subgroups in Γ(Sg,n), a representative.

Notation 6.2.13. For each path component P ⊆ Y, the subgroup Π restricts
to a subgroup ΠP of Γ(P). Two path components P and P′ of Y are called
similar if there is a diffeomorphism Ξ : P → P′ preserving the boundary
parametrisation (up to permutation), such that ΠP′ = Ξ ·ΠP · Ξ−1.
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We write Y = äi äj Yi,j, where Y1,1, . . . , Yr,sr ⊆ Y are the connected com-
ponents of Y, and Yi,j is similar to Yi′,j′ if and only if i = i′ holds. We also
define Yi := äj Yi,j and abbreviate Πi,j := ΠYi,j .

For each 1 6 i 6 r, there are unique gi > 0 and ki > 1 such that Yi,j is of
type Σgi ,ki , regardless of j. We fix a diffeomorphism Ξi,j : Yi,j → Sgi ,ki which
respects the boundary parametrisation. This gives rise to an isomorphism
Γ(Yi,j)→ Γ(Sgi ,ki), under which Πi,j corresponds to Π̄i,j := Ξ · (Πi,j) ·Ξ−1

i,j . Up
to replacing Ξi,j by another diffeomorphism, we can assume that Π̄i,j coin-
cides with the chosen representative inside the conjugacy class. Under this
assumption, we also have Π̄i,j = Π̄i,j′ for each 1 6 i 6 r and 1 6 j, j′ 6 si,
and we write Π̄i := Π̄i,1.

Remark 6.2.14. It is not hard to see that the subgroup Πi,j is ∂-irreducible,
essentially because W emerged from a maximal simplex; for details, see
[BKR21, Lem. 3.3]. Secondly, we show in [BKR21, Lem. 3.6] that the centraliser
Z(ΠY, ΓSk

(Y)) splits as the product of wreath products

Z(ΠY, ΓSk(Y)) ∼=
r

∏
i=1

Z(Π̄i, ΓSki (Sgi ,ki)) oSsi ,

as each ψY ∈ ΓSk(Y) which commutes with ΠY has to preserve the subsur-
faces Y1, . . . , Yr, and each ψYi ∈ ΓSki ·si (Yi) which commutes with ΠYi can be
written as a permutation of similar components, followed by a tuple of auto-
morphisms ψi,j, one for each component Yi,j, and ψi,j has to commute with
Πi,j. Finally, we use the diffeomorphisms Ξi,j to identify the latter centralisers
with the centralisers of Π̄i inside ΓSki (Sgi ,ki).

We finish this subsection by mentioning a technicality: when forming the
fibre product ΓSk(W)×Sk Z(ΠY, ΓSk(Y)), only the subgroup of Sk containing
permutations which are hit by both factors is relevant. In general, this sub-
group depends on the topological type of W, but if W is connected (which
e.g. is the case if S has only a single outgoing boundary curve) then ΓSk(W)

surjects onto Sk, so we only have to deal with the left side.
Here we see that if we denote by Hi ⊆ Ski the image of Z(Π̄i, ΓSki (Sgi ,ki))

under the projection ΓSki (Sgi ,ki) → Ski , then the image of Z(ΠY, ΓSk(Y))
under ΓSk(Y)→ Sk is given by ∏i Hi oSsi . This yields the following result:
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Corollary 6.2.15. If W is connected, then we have an isomorphism

Z(Π, Γ(S)) ∼=
Γ∏i Hi oSsi (W)×∏i Hi oSsi ∏i Z(Π̄i) oSsi

∏i Zki ·si
.

6.2.3. Twisted tori and an operadic description

In this subsection we use the structure result for centralisers of mapping
class groups from the previous subsection in order to describe M•,1[A] as the
first level of a relatively free M-algebra. By doing so, we use the model for
moduli spaces of collared Riemann surfaces from Subsection 5.1.2 and we
summarise the results from [BKR21, § 6].

Construction 6.2.16. For each n > 1, the Lie group Tn oSn is denoted by
Tn and called the twisted k-torus; it is the isometry group of än S1.

We can embed Tn in the endomorphism space M∂(
n
n) as follows: given an

element (w1, . . . , wk, σ), we assign to it the conformal class C = [F , Θ] with

F := nn× {z ∈ C; 1 6 |z| 6 2},

together with the inherited complex structure, and the two parametrisations
Θin : nn× S1 ↪→ S and Θout : nn× S1 ↪→ S given by

Θin(l, z) := (σ(l), z),

Θout(l, z) := (l, wl · z).

This assignment in fact embeds Tn as a group into the automorphisms of n;
in particular, the identity of n can be described as the image of the unit of Tn

along the embedding. If we put T := (Tn)n>1, considered as an N-coloured
operad with only unaries, then this gives an inclusion of operads  : T ↪→M,
whose image lies in the connective suboperad Mc, as T contains only unaries,
and all unaries are connective.

Lemma 6.2.17. The group Tk acts freely on the space M∂(
k
n) by precomposition.

This statement is shown in [BKR21, Lem. 4.14]; however, as we use a slight-
ly refined model for the conformal cobordism PROP, let us repeat the proof.
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(

e πi
4 , e 4πi

3 , 1, (1 2 3)
)
= 3 1 2

1 2 3

Figure 6.3. An instance of the inclusion  : T3 oS3 ↪→ M∂(
3
3): the little black

ticks show the points Θout(l, 1), while the little red ticks show the
points Θin(l, 1), for l∈ {1, 2, 3}.

Proof. Let C = [F , Θ] : k→ n be a morphism in M∂ and (w1, . . . , wk; σ) ∈ Tk
be an element in the twisted k-torus. The morphism C ◦ (w1, . . . , wk; σ) is
represented by (F , Θ′) with Θ′out = Θout, while

Θ′in(j, z) = Θin(σ(j), w−1
j · z).

If C ◦ (w1, . . . , wk, σ) = C, then there is a biholomorphism Ψ : S → S such
that Ψ ◦Θ = Θ′. The same applies to the unique extension to the standard
half-annuli, i.e. Ψ ◦ Θ̄ = Θ̄′. In particular, Ψ restricts to the identity of the
image of Θ̄out. Since Ψ is a holomorphic map, it must be the identity on a
closed and open subset of F ; and since each connected component of S has
non-empty outgoing boundary, and hence intersects the image of Θ̄out, we
conclude that Ψ must be the identity of F .

It follows that the automorphism of kk× S1 given by (j, z) 7→ (σ(j), wj · z)
is the identity, and this implies that (w1, . . . , wk, σ) is the identity of Tk.

Recall from Remark 6.1.4 that since Mg,n is a classifying space for Γ(Sg,n),
we have, for π := π1(A), a decomposition

Mg,n[A] ' ä
[ω]∈Conj(π→Γg,n)

BZ(im(ω), Γ(Sg,n)).

Construction 6.2.18. For each homomorphism ω : π → Γ(Sg,n), we denote
by Mg,n[ω] the corresponding connected component of Mg,n[A].

Now recall that the colour-n part of the connective surface operad Mc|n acts
on äg Mg,n[A] by extending the action from Subsection 5.1.2 pointwise. By
restriction, the twisted n-torus Tn acts on äg Mg,n[A], and it clearly preserves
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1 2

d1 d4

d2 d3

Figure 6.4. If we denote by Di the Dehn twist about the curve di for each i, then
the mapping classes D1D2D4 and D1D3D4 are both ∂-irreducible in
Γ(S3,2) and not conjugate to each other, but they are conjugate in
the extended mapping class group ΓS2(S3,2).

the summands Mg,n[A]. Even better, the component Mg,n[ω] ⊆ Mg,n[A] is
invariant under the action of Tn ⊆ Tn, but not necessarily under the action
of Sn. We denote by Sn ·Mg,n[ω] ⊆Mg,n[A] the orbit of Mg,n[ω] under the
action of Sn, or, equivalently, under the action of Tn. Then we have

Sn ·Mg,n[ω] =
⋃
ω′

Mg,n[ω
′],

where ω′ ranges over all conjugates of ω in the extended mapping class group
ΓSn(Sg,n). These conjugates still lie in the subgroup Γ(Sg,n), which is normal.

Now we have everything at hand to define a T-algebra C[A] which enjoys
the property that FM

T (C[A])1 'M•,1[A] holds.

Construction 6.2.19. For each n > 1 and g > 0, we define the space

Cg,n[A] := ä
[ω]∈Conj(π→Γ(Sg,n))

im(ω) ∂-irreducible

Mg,n[ω].

Then the action of Tn on Mg,n[A] restricts to an action on those components
with constitute Cg,n[A], simply because for every ∂-irreducible subgroup
Π ⊆ Γ(Sg,n), all conjugates by elements from the extended mapping class
group are still ∂-irreducible.
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We define Cn[A] := äg Cg,n[A] and obtain a T-algebra C[A] := (Cn[A])n>1.
As the sequence (M•,n[A])n>0 is an Mc-algebra, the inclusion of T-algebras
C[A] ↪→ (M•,n[A])n>0 gives rise to a morphism κ : FMc

T (C[A])→ (M•,n[A])n>0

of Mc-algebras by considering the adjoint. Since Mc(K
1) = M(K

1), the first level
of κ is of the form FM

T (C[A])1 →M•,1[A] and a morphism of M|1-algebras.

Proposition 6.2.20. The first level κ1 : FM
T (C[A])1 →M•,1[A] is an equivalence

of M|1-algebras.

This is the content of [BKR21, Thm. 6.5], but we highlight the main steps
of the proof to emphasise the connection to the result from Subsection 6.2.2.

Proof. Since κ1 is already a map of M|1-algebras, it suffices to show that it
is a weak equivalence on the level of spaces. To do so, let us first compare
the path components on both sides. The coend formula for FM

T (C[A])1 is an
instance of Example 3.3.26: we have

FM
T (C[A])1

∼=
∫ (k1,...,kr)∈N oΣ

M(k1,...,kr
1 )×∏i Tki

(Ck1 [A]× · · · × Ckr [A])

Given a homomorphism ω : π → Γ(Sg,1), we consider its image Π := im(ω)

and the decomposition of Sg,1 into W and Y. We denote by Π̄i the ∂-irreduci-
ble subgroup in Γ(Sgi ,ki) induced by Π, and write Hi ⊆ Ski for the image of
Z(Π̄i, ΓSki (Sgi ,ki)) under the projection to Ski as before. We have an induced
group homomorphism ω̄i : π → Γ(Sgi ,ki), and Mgi ,ki [ω̄i] ' BZ(Π̄i, Γ(Sgi ,ki)).

If we denote by ΣW : k → 1 the surface type of W, then M(ΣW) can be
regarded as a connected component of M(s1×n1,...,sr×nr

1 ), using the notation of
Construction 3.3.10. If we define

F[ω] := M(ΣW)×∏i Tki oSsi
∏i(Ski ·Mgi ,ki [ω̄i])

si

= M(ΣW)×∏i Tki ·sio(Hi oSsi )
∏i Mgi ,ki [ω̄i]

si ,

then there is an obvious map F[ω]→ FM
T (C[A])1, which is an isomorphism

onto its image [BKR21, Lem. 6.6], which in turn is a connected component.
Even more: if we regard F[ω] as a subspace of FM

T (C[A])1, then we obtain
a decomposition FM

T (C[A])1 = äg ä[ω] F[ω], where [ω] ranges over all con-
jugacy classes of maps π → Γ(Sg,1) with ∂-irreducible image.
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6.3. Algebras over coloured operads with homological stability

On the other hand, we already know that M•,1[A] decomposes into con-
nected components Mg,1[ω], where [ω] ranges over the same index set, and
it is not hard to see that κ1 decomposes into maps κ[ω] : F[ω]→Mg,1[ω].

In [BKR21, Prop. 6.7], we finally show that these constituents κ[ω] are ho-
motopy equivalences: here we use that the summands Mg,1[ω] are classifying
spaces for the centraliser Z(im(ω), Γ(Sg,1)), and invoke Corollary 6.2.15. By
a careful inspection of the associated fibre sequences, we see that forming the
fibre product of extended mapping class groups causes, for the respective
classifying spaces, a balancing relation on the product of classifying spaces
of non-extended mapping class groups, and similarly, quotienting out the
diagonally embedded free abelian group Zki ·si translates to a balancing of
the induced toric actions on classifying spaces.

This last result tells us that we have an equivalence among group comple-
tions ΩBM•,1[A] ' ΩBFM

T (C[A])1, and the upcoming section shows that the
right side is easier to understand.

6.3. Algebras over coloured operads with homological
stability

In this section, we would like to study the open problem from the last section
more systematically: if O is an N-coloured operad with homological stability
(which is to be made precise soon), I is a topological category together with
a map B� I → O, and if X = (Xn)n∈N a (B� I)-algebra, what can we say
about the levelwise homotopy type of the relatively free algebra FO

B�I(X)? By
answering this question, we extend [Bas+17, § 5], where the monochromatic
and non-relative case was treated, i.e. I = N = ∗, so B� I = B.

Let us briefly summarise the strategy of [Bas+17, § 5]: in a first step, the
authors introduce the notion of a (monochromatic) operad with homological
stability. Such an operad O comes in particular with a morphism of operads2

ı : D1 → O, satisfying the weak homotopy commutativity condition, which
demands that ı(D1(2)) ⊆ O(2) lies in a single path component; hence it
makes sense to consider group completions of O-algebras.

2 In principle, any A∞-operad would suffice; we restrict to D1 for simplicity.
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In a second step, the authors of [Bas+17] focus on operads with homological
stability O which come with a map π : O→ D∞ of operads under D1. Thus,
we have, for each based space X, two interesting maps of O-algebras:

1. FO
B(X)→ FO

B(∗) = O(0) induced by X → ∗;

2. FO
B(X)→ π∗FD∞

B (X), the unit of the base-change adjunction.

Intuitively, the first map forgets the space X, while the second map forgets
the operad O. In [Bas+17, Thm. 5.4], it is shown that the product map induces
a weak equivalence ΩBFO

B(X)→ ΩBO(0)×Ω∞Σ∞X on group completions.
Finally, an operad with homological stability O admits a replacement by an-

other operad with homological stability O′ := O× D∞ which additionally has
a comparison map π : O′ → D∞, and, under mild extra point-set assumptions
(e.g. O is S-free and X is well-based), the free algebras FO

B(X) and FO′
B (X) are

equivalent as A∞-algebras, and hence have equivalent group completions.

6.3.1. Coloured operads with homological stability

In this subsection, we introduce the notion of an N-coloured operad with
homological stability for each colour set N. Here we heavily use the operadic
framework established in Chapter 3.

Recall from Example 3.1.4 the monochromatic operad B of based spaces,
and recall from Example 3.3.25 that for each colour set N, the Boardman–Vogt
tensor product B� N models N-indexed families of based spaces.

Definition 6.3.1. A based N-coloured operad is an operad map B� N → O.
This is the same as an N-coloured operad Owith a choice of nullary operation
vn ∈ O(n) for each colour n ∈ N. A morphism of based operads is an operad
morphism ρ : O→ P with ρ(vOn) = ρ(vPn ).

The operations vn of a based operad can be used to block inputs by pre-
composition with them: more precisely, for each input profile K = (k1, . . . , kr)

and 1 6 i 6 r, we have a face map di : O(K
n) → O(diK

n ) by diµ := µ ◦i vki . In
this way, the functors O(−n) : (N o Σ)op → Top, which are part of the operadic
structure, can be extended to O(−n) : (N o Inj)op → Top as in Example 3.3.25.
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6.3. Algebras over coloured operads with homological stability

Moreover we have the capping morphism which places the preferred nullary
at each input, and hence produces an element in the initial algebra,

β : O(k1,...,kr
n )→ O(n), µ 7→ µ(vk1 , . . . , vkr).

Example 6.3.2. 1. The little d-discs operad Dd has precisely one nullary
operation and hence is canonically based. The same applies to Dd � N
for each colour set N.

2. For each small and topologically enriched category I, the tensor product
B� I differs from I by the single nullary operation vn ∈ (B� I)(n)

for each colour n, and (B� I)-algebras are the same as topologically
enriched functors I→ Top∗ to the category of based spaces.

Definition 6.3.3. An operad under D1 is an N-coloured operad O, together
with an operad morphism ı : D1 � N → O satisfying the weak homotopy
commutativity condition levelwise, meaning that ı((D1 � N)(n,n

n )) ⊆ O(n,n
n )

is contained in a single path component.
If O is an operad under D1, then O is canonically based by vn := ı(v� n),

where v ∈ D1(0) is the unique nullary. Secondly, each O-algebra (Xn)n∈N is
levelwise an H-commutative D1-algebra, so for each n ∈ N, the set π0(Xn) is
an abelian monoid, whose (unique) binary operation we denote by ‘�’. There
is a bar construction of Xn and by the group completion theorem [MS76], we
have an isomorphism H•(ΩBXn) ∼= H•(Xn)[π0(Xn)−1].

A morphism ρ : O→ O′ of operads ı : D1 � N → O and ı′ : D1 � N → O′

under D1 is a morphism of operads such that ρ ◦ ı = ı′ holds. In that case, for
each O′-algebra X, the levelwise group completions of the O′-algebra X and of
the O-algebra ρ∗X coincide, as they only depend on the (D1 � N)-structure.

Notation 6.3.4. Let ı : D1�N → O be an operad under D1. Then we fix a bin-
ary operation p ∈ D1(2) and abbreviate µ � µ′ := ı(p� n) ◦ (µ, µ′) ∈ O(K·K′

n )

for operations µ ∈ O(K
n) and µ′ ∈ O(K′

n ). If (Xn)n∈N is an O-algebra and if
x, x′ ∈ Xn, then we also write x � x′ := ı(p� n)(x, x′).

The notation ‘�’ is pictorially inspired by the following example.

Example 6.3.5. The map D2 ↪→ M|1 from Construction 5.1.18 gives rise to
ıM : D1 �N→ D2 �N→N(D2)→M, turning M into an operad under D1.
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Chapter 6. Parametrised moduli spaces of surfaces as infinite loop spaces

1 2 1 2 1 2

Figure 6.5. The three generators e1
2, e2

2 and e1,2
2 of π0(M(2)).

The capping maps β : M(K
n) → M(n) are induced by—literally—capping

each incoming boundary curve with a disc. The abelian monoid π0(M(n))

contains all surface types Σ : 0→ n, and the addition is defined by gluing n
pairs of pants; the neutral element is given by an ordered collection of n discs.
Thus, π0(M(n)) is finitely generated as an abelian monoid: for instance, it
is generated by the following elements eln and el,l′

n , see Figure 6.5:

1. For 1 6 l6 n, we let eln be the isomorphism type of surfaces with n
path components, such that the component carrying the lth boundary
curve has genus 1, whereas all others components are discs.

2. For each 1 6 l < l′ 6 n, we let el,l′
n be the isomorphism type of

surfaces with n − 1 path components, all of genus 0, such that one
component is a cylinder carrying the lth and the l′th boundary curve.

Construction 6.3.6 (Stable operation space). We call an operad O under D1

admissibly graded if each of the abelian monoids π0(O(n)) is finitely generated
and, for each input profile K, the degree map

|·| : O(K
n)

β−→ O(n)→ π0(O(n)), µ 7→ |µ| = [β(µ)]

that assigns to each operation µ the path component of its capped version
β(µ) is surjective.3 In this case we write, for each δ ∈ π0(O(n)),

O(K
n)

δ :=
{

µ ∈ O(K
n); |µ| = δ

}
6= ∅.

3 In the monochromatic setting, the degree map is automatically surjective: by the weak
homotopy commutativity condition, we obtain an operad map ↪→ π0(O) and if we
write (r) = {pr}, then β(pr+1 ◦1 δ) = p1 ◦ δ = 1 ◦ δ = δ for each δ ∈ π0(O(0)). For the
coloured case, though, it seems necessary to additionally assume this property.
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6.3. Algebras over coloured operads with homological stability

Note that O(K
n)

δ is a union of connected components of O(K
n). Now we choose,

for each n ∈ N, a finite generating set En ⊆ π0(O(n)) and let en ∈ π0(O(n)) be
the sum of all elements from En. If we fix a nullary operation ẽn ∈ O(n) with
|ẽn| = en, called propagator, then we obtain, for each component δ ∈ π0(O(n))

and each input profile K, a stabilisation map

stab : O(K
n)

δ → O(K
n)

δ�en , µ 7→ µ � ẽn.

From this, we can form, for each K and n, the stable operation space

O(K
n)

∞ := hocolim
(
O(K

n)
0 O(K

n)
en O(K

n)
2en · · ·stab stab stab

)
.

Definition 6.3.7. Let Obe an operad under D1 which is admissibly graded. By
the associativity of the operadic composition, capping inputs and stabilisation
commute, i.e. for each δ the square

O(K
n)

δ O(K
n)

δ�en

O(n)
δ O(n)

δ�en .

stab

β β

stab

commutes. We therefore obtain a stable capping map βK
n : O(K

n)
∞ → O(n)

∞

for each input profile K, which depends, up to homotopy, only on the com-
ponent from which the propagator is chosen, i.e. on the generating set En.

We call O an operad with homological stability if there is a choice of generating
sets such that all stable capping maps βK

n induce isomorphisms in integral
homology.

Example 6.3.8. The coloured surface operad M is admissibly graded, and we
may use the generating sets from Example 6.3.5.

It is even an operad with homological stability: here we use that mul-
tiplying with a propagator automatically yields a connected cobordism and
increases the genus by at least one, see Figure 6.6, so the stable capping map
is given, on each component, by the capping map M∞,n+k1+···+kr → M∞,n

between stable moduli spaces of Riemann surfaces: this map is a homology
equivalence by Harer’s stability theorem [Har84].
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ẽ2

µ

�

1 2

2,2 2,11,1

Figure 6.6. A single stabilisation step on M(1,2
2 ). Note that |ẽ2| = e1

2 � e2
2 � e1,2

2 is
the isomorphism class of surfaces of type Σ2,2.

6.3.2. Derived base-change and a splitting result

Recall that we want to establish an analogue of [Bas+17, Thm. 5.4] for the
coloured and relative case, i.e. we want to consider relatively free algebras,
relative to a map P→ O of based operads, where we will soon restrict to the
case P= B� I for an enriched category I.

The most convenient setting for such a discussion does not use the strict
functor FO

P, but a homotopically better behaved one, which we denote by
F̃O
P. This simplifies many point-set issues, and, with regard to our original

problem, it will turn out to be equivalent to the space we want to understand.
The functor F̃O

P can be constructed by considering the model structure on
the categories of O- and P-algebras as in [BM07], but we decided to give
an explicit description in the fashion of [Bas+17]. Here we assume that the
reader is familiar with monads and their two-sided bar constructions, as it
was discussed in [May72].

Construction 6.3.9. Let P→ O be a map of based N-coloured operads. Then
we obtain monads O := UO

B�N FO
B�N and P := UP

B�N FP
B�N on TopN

∗ , and O

is a left P-functor by the transformation OP⇒ O2 ⇒ O. For each P-algebra
X, we consider the two-sided bar construction B•(O, P, X), with p-simplices
Bp(O, P, X) := OPpUP

B�NX, which is an N-coloured simplicial space, and
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6.3. Algebras over coloured operads with homological stability

define the derived free algebra F̃O
P(X) := |B•(O, P, X)| to be its levelwise4 geo-

metric realisation. Then F̃O
P(X) is itself an O-algebra with multiplication

O|B•(O, P, X)| ∼= |B•(O2, P, X)| → |B•(O, P, X)|,

where the first identification is due to [May72, Lem. 9.7] and the last map
is given by |B•(κ, P, X)| for the operadic composition κ : O2 ⇒ O. Secondly,
we have a map F̃O

P(X)→ FO
P(X) of O-algebras, by noticing that FO

P(X) is the
reflexive coequaliser5 of B1(O, P, X)⇒ B0(O, P, X), see Construction 3.1.15.

Before stating our main theorem, let us fix, once and for all, the point-set
requirements we want to assume:

Setting 6.3.10. Throughout this section, we consider the following:

1. Let Obe an N-coloured S-free operad (Remark 3.3.11) with homological
stability, such that the inclusions {1n} ↪→ O(n

n) are cofibrations.

2. Let I be a topologically enriched category with object set N, such that
the inclusions {1n} ↪→ I(n

n) are cofibrations. We assume that there is a
map B� I→ O of based N-coloured operads.

3. Let X = (Xn)n∈N be an (B� I)-algebra, or, in other words, an enriched
functor X• : I→ Top∗, and we assume that each Xn is well-based.

Moreover, we assume that all involved spaces are Hausdorff.

Of course, the example we have in mind is O being the surface operad M,
I being the family T of twisted tori, and X being the family C[A]+ with a
levelwise extra basepoint. We want to show the following statement:

Theorem 6.3.11 (Splitting theorem). In the above Setting 6.3.10, we have, for
each n ∈ N, a weak equivalence of loop spaces

ΩBF̃O
B�I(X)n ' ΩBO(n)×Ω∞Σ∞hocolimI(X•).

4 For us, levelwise always refers to the N-grading, not to the spaces of simplices.
5 To be pendantic, we saw in Construction 3.1.15 only that X is the reflexive coequaliser of

FPUPFPUPX ⇒ FPUPX, but the same holds relative to B� N, and in fact for each mon-
adic adjunction [GKR18, § 3.2]; here we consider the monadic adjunction FP

B�N ` UP
B�N .
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The proof of Theorem 6.3.11 will occupy the rest of this section. Let us
start by establishing a map which compares the two sides.

To do so, we start by constructing an N-coloured version of the E∞-operad
D∞, and show that we can, without loss of generality, assume that there is a
comparison map from O to it.

Construction 6.3.12. For each colour set N, recall from Example 3.4.3 the
chaotic category EN with object set N and morphism spaces (EN)(k

n) = ∗ for
all k, n ∈ N. Then we consider the N-coloured operad D∞ � EN.

Lemma 6.3.13. For the proof of Theorem 6.3.11, we can without loss of generality
assume a map π : O→ D∞ � EN such that the diagram

B� N B� I

D1 � N O

D∞ � EN

π

commutes, where all arrows apart from π are either given or induced by the canonical
maps B→ D1 → D∞ and N → I→ EN.

Proof. The commutativity of the square is part of the general setting: recall
that we assumed that B� I → O is a map of based operads, and O is cano-
nically based as an operad under D1.

To establish the map π, we replace O by a slightly larger operad: if we
consider the product operad O′ := O× (D∞ � EN), together with:

• the diagonal inclusion D1 � N → O′,

• the diagonal inclusion B� I→ O′,

• the second projection π : O′ → D∞ � EN,

then the above diagram clearly commutes with O replaced by O′. Moreover,
note that each operation space of D∞ � EN is contractible: hence O′ is again
admissibly graded with π0(O′(n)) = π0(O(n)) and O′ is again an operad with
homological stability, satisfying O′(n) = O(n).
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6.3. Algebras over coloured operads with homological stability

Finally, the first projection O′ → O induces a map of monads O′ ⇒ O and
hence a map F̃O′

B�I(X)→ UO
O′ F̃O

B�I(X) of O′-algebras, which is in particular a
morphism of A∞-algebras. If we denote the monad for B� I by I, then, for
each p > 0, the map Bp(O′, I, X)→ Bp(O, I, X) is an equivalence, since O is
S-free, each Xn is well-based, and every space is Hausdorff. Secondly, both
simplicial spaces are proper in the sense of [May72, § 11], using that the in-
clusions of the identities are cofibrations. By [May74, Thm. a.4], the induced
map F̃O′

B�I(X)→ F̃O
B�I(X) among geometric realisations is an equivalence as

well, so their levelwise group completions are equivalent as loop spaces.

Using the lemma, we obtain, as in the monochromatic case, two maps:

1. the map X → ∗ to ∗ = (∗)n∈N induces a map F̃O
B�I(X) → F̃O

B�I(∗) of
O-algebras, which is in particular a map of A∞-algebras.

2. the morphism O→ D∞ � EN induces a map F̃O
B�I(X) → F̃D∞�EN

B�I (X)

of A∞-algebras.

The two targets can be identified with the following spaces:

Lemma 6.3.14. For each n ∈ N, we have equivalences of A∞-algebras

F̃O
B�I(∗)n ' O(n),

F̃D∞�EN
B�I (X)n ' FD∞

B (hocolimI(X•)).

Proof. For the first equivalence, we note that, since (B� I)(n) = ∗, we have
FB�I
B�N(∗)n = ∗ for each n ∈ N. Now consider the natural map

F̃O
B�I(∗) = F̃O

B�I(FB�I
B�N(∗))→ FO

B�I(FB�I
B�N(∗)) = FO

B�N(∗) =
(
O(n)

)
n∈N .

This map arises from the augmentation B• := B•(O, I, I(∗))→ B−1 := O(∗),
which has an extra degeneracy s−1 : Bp → Bp+1 induced by the unit of I, and
hence is an equivalence by [Rie14, Cor. 4.5.2].

For the second equivalence, we start with the general observation that,
for a sequence Q → P → O of N-coloured operads, we have a levelwise
equivalence of O-algebras among the derived algebras F̃O

Q(X) ' F̃O
P(F̃P

Q (X)):
by construction, the left side is the geometric realisation of the bisimplicial
space with Bp,q := OPp+1QqX. If we first realise each Bp,•, then we obtain a
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simplicial space B̃• with B̃p := |B•(OPp+1, Q, X)|. Again, we have an augmen-
tation map B̃• → B̃−1 := |B•(O, Q, X)|, that admits an extra degeneracy by
the unit of P, whence the induced map |B•,•| ' |B̃•| → B̃−1 is an equivalence,
as desired. In our case, we get for each n ∈ N an equivalence of D∞-algebras

F̃D∞�EN
B�I (X)n ' F̃D∞�EN

B�EN(F̃B�EN
B�I (X))n

' FD∞
B (hocolimI(X•)),

where for the last equivalence, we use that F̃B�EN
B�I (X) is, when regarded as

a functor EN → Top∗, the constant diagram with value hocolimI(X•), and
applying F̃D∞�EN

B�EN is the same as postcomposing with FD∞
B objectwise, using

that the natural map F̃D∞
B (X) → FD∞

B (X) is an equivalence for each based
space X, as the underlying simplicial space is constant.

Putting everything together, we get, for each n ∈ N, a map of A∞-algebras

F̃O
B�I(X)n → O(n)× FD∞

B (hocolimI(X•)),

which, after group completion, gives us the map from Theorem 6.3.11. In the
next subsection, we will show that it is an equivalence.

6.3.3. Proof of the splitting theorem

For the proof of Theorem 6.3.11, let us first consider the strict and absolute
case: we denote the monads associated with O and D∞ � EN by O and D,
respectively, and we also write O(X)n and D(X)n for the nth levels.

Since permuting and capping inputs preserve the degree of the operations,
we obtain, for each colour n ∈ N and each degree δ ∈ π0(O(n)), a functor
O(−n)

δ : (N o Inj)op → Top. This gives rise to a decomposition

O(X)n = ä
δ

O(X)δ
n with O(X)δ

n :=
∫K∈N oInj

O(K
n)

δ × XK.

We denote by x̃n := [ẽn; ()] ∈ O(X)en
n the image of the propagator and define,

in analogy with Construction 6.3.6,

O(X)∞
n := hocolim

(
O(X)0

n O(X)en
n O(X)2en

n · · ·−� x̃n −� x̃n −� x̃n
)

.
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6.3. Algebras over coloured operads with homological stability

Again, we have two relevant maps:

1. The map f : O(X)→ O(∗) decomposes into maps f δ
n : O(X)δ

n → O(∗)δ
n

which are compatible with stabilisations. Therefore we obtain a map
between the mapping telescopes f ∞

n : O(X)∞
n → O(∗)∞

n .

2. Similarly, the map of O-algebras η : O(X)→ D(X) restricts to maps of
spaces ηδ

n : O(X)δ
n → D(X)n, and the triangle

O(X)δ
n O(X)δ�en

n

D(X)n

ηδ
n

−� x̃n

ηδ�en
n

is H-commutative, whence we obtain a map from the mapping telescope
η∞

n : O(X)∞
n → D(X)n.

Lemma 6.3.15. For each colour n ∈ N, the product map

( f ∞
n , η∞

n ) : O(X)∞
n → O(∗)∞

n ×D(X)n

is a homology equivalence.

Let us first prove Theorem 6.3.11 using Lemma 6.3.15:

Proof of Theorem 6.3.11. Let us abbreviate Õ := F̃O
B�I and D̃ := F̃D∞�EN

B�I . Then
we have to show that the map ( f , η) : Õ(X)→ Õ(∗)× D̃(X) from the previ-
ous section is levelwise an equivalence.

To this aim, we study the stabilisations for Õ: as before, restricting the
operation spaces of O gives rise to a grading of each level B•(O, I, X)n; we
denote the components by B•(O, I, X)δ

n and their realisations by Õ(X)δ
n.

Adding the propagator gives rise to maps B•(O, I, X)δ
n → B•(O, I, X)δ�en

n of
simplicial spaces, and, thus, also to maps Õ(X)δ

n → Õ(X)δ�en
n . We denote the

colimits by B•(O, I, X)∞
n and Õ(X)∞

n ; then clearly Õ(X)∞
n ' |B•(O, I, X)∞

n |.
Again, we obtain a product map ( f ∞

n , η∞
n ) : Õ(X)∞

n → Õ(∗)∞
n × D̃(X)n,

and we claim that it is a homology equivalence: since we have already seen
that the simplicial spaces are proper, we can invoke the spectral sequence for
the geometric realisation from [Seg74, Prop. a1], whence it is enough to see
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that for each dimension p > 0 and each colour n ∈ N, the map of p-simplices
Bp(O, I, X)∞

n → Bp(O, I, ∗)∞
n × Bp(D, I, X)n is a homology equivalence. As

we have Bp(O, I, ∗)∞
n = O(∗)∞

n , the map in question is exactly the map from
Lemma 6.3.15 for the sequence IpX. This shows the subclaim.

The rest of the proof is a combinatorially enhanced variation of the first part
of the proof of [Bas+17, Thm. 5.4] which uses the classical group completion
theorem: let us denote by en ∈ π0(Õ(∗)n × D̃(X)n) the component of the 0-
simplex (ẽn, [v;∅]), i.e. the propagator and the unit, and by xn ∈ π0(Õ(X)n)

the component of the 0-simplex x̃n. By a classical telescope argument, the
subclaim implies that the map

H•( fn, ηn) : H•(Õ(X)n)[x−1
n ]→ H•(Õ(∗)n × D̃(X)n)[e−1

n ]

induced by the map of Pontrjagin rings is an isomorphism.
Next, recall that all our capping morphisms βK

n : O(K
n) → π0(O(n)) are

assumed to be surjective. Then ( fn, ηn)∗ : π0(Õ(X)n)→ π0(Õ(∗)n × D̃(X)n)

is surjective as well, so under the above map, the multiplicative submon-
oid π0(Õ(X)n) is sent surjectively onto the submonoid π0(Õ(∗)n × D̃(X)n).
Therefore, we can localise further, with respect to the multiplicative submon-
oids of all path components on both sides, still obtaining an isomorphism.
We get a diagram

H•(Õ(X)n)[x−1
n ] H•(Õ(∗)n × D̃(X)n)[e−1

n ]

H•(Õ(X)n)[π
−1
0 ] H•(Õ(∗)n × D̃(X)n)[π

−1
0 ]

H•(ΩBÕ(X)n) H•(ΩBÕ(∗)n ×ΩBD̃(X)n),

H•( fn,ηn)

∼=

H•( fn,ηn)

∼=

H•(ΩB( fn,ηn))

∼=

where the vertical isomorphisms between the second and the third row follow
from the group completion theorem [MS76, Prop. 1] for D1-algebras. This
shows that ΩB( fn, ηn) is a homology equivalence of loop spaces and, thus, a
weak equivalence.

The pending proof of Lemma 6.3.15 requires some further preparation.
Recall that, for each tuple K, we denote by N[K] ⊆ N o Inj the full subgroup-
oid spanned by objects of the form τ∗K. For an input profile K and an output
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6.3. Algebras over coloured operads with homological stability

n ∈ N, recall the stable operation spaces O(K
n)

∞. Since input permutation and
precomposition commute with stabilisation, these spaces assemble, for each
n and each K, into a functor O(−n)

∞ : N[K]op → Top.
Now let Q : N[K]→ Top be any functor. Again, we have two maps: firstly,

for each tuple L = τ∗K and each n ∈ N, we have the stable capping map
O(L

n)
∞ ×Q(L) → O(n)

∞, which in addition discards the factor Q(L). These
maps define a natural transformation of functors N[K]op × N[K] → Top,
from O(−n)

∞ ×Q(−) to the constant functor with value O(n)
∞, so we get

α1 :
∫ L∈N[K]

O(L
n)

∞ ×Q(L)→ O(n)
∞.

Secondly, the morphism π : O→ D∞ � EN gives, for each n ∈ N, rise to a
natural transformation O∞(−n)⇒ (D∞ ⊗ EN)(−n) of functors N[K]op → Top,
so we obtain a morphism, where L ranges in N[K],

α2 :
∫ L

O(L
n)

∞ ×Q(L)→
∫ L

(D∞ � EN)(L
n)×Q(L) ∼= D∞(r)×Sr ä

L=τ∗K
Q(L).

The following lemma is a coloured version of [Bas+17, Lem. 5.2].

Lemma 6.3.16. The product map αQ := (α1, α2) is a homology equivalence:

αQ :
∫ L∈N[K]

O(L
n)

∞ ×Q(L)→ O(n)
∞ × D∞(r)×Sr ä

L∈N[K]
Q(L).

Proof. Since D∞(r) is contractible, the sequence

O(L
n)

∞ O(L
n)

∞ ×Q(L) D∞(r)×Q(L)π×id

induces a split long exact sequence of homotopy groups for each L = τ∗K
and each choice of basepoint. If we take for the total space and the base space
the disjoint union over all such L, the common fibre for each component
is O(L

n)
∞ ∼= O(K

n)
∞. If we moreover quotient by the free and compatible Sr-

actions on total space and base space, we finally obtain a long exact sequence
of homotopy groups which is assigned to

O(K
n)

∞ →
∫ L

O(L
n)

∞ ×Q(L)→ D∞(r)×Sr ä
L=τ∗K

Q(L).
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Chapter 6. Parametrised moduli spaces of surfaces as infinite loop spaces

Now the product map αQ is the composition of the two middle vertical maps
in the following (3×3)-diagram, where we abbreviate S := Sr,

O(K
n)

∞ ∫L
O(L

n)
∞ ×Q(L) D∞(r)×Sr äL Q(L)

O(K
n)

∞ ∫L(
O(L

n)
∞ × (D∞ � EN)(L

n)
)
×Q(L) D∞(r)×Sr äL Q(L)

O(n)
∞ O(n)

∞ × D∞(r)×Sr äL Q(L) D∞(r)×Sr äL Q(L).

∫L(id,π)×id

βK
n

∫L(βL
n×id)×id

Here the top left square commutes up to homotopy, and all other squares
commute strictly. We have already seen that the top row induces a long exact
sequence on homotopy groups, and the second row is clearly a fibration. By
the five lemma, the first middle vertical map is a weak equivalence. Similarly,
we know that both, the second and the third row, are fibrations, so we obtain
a morphism between the associated Serre spectral sequences in homology.
Since O is an operad with homological stability, the map βK

n between the
fibres is a homology equivalence, so by a standard argument [Wei94, 5.2.12],
also the second middle vertical map is a homology equivalence.

Now we have everything together to prove Lemma 6.3.15.

Proof of Lemma 6.3.15. Recall that, after identifying the stable spaces O(∗)∞
n

and O(n)
∞, our aim is to show that the map

q := ( f ∞
n , η∞

n ) : O(X)∞
n → O(n)

∞ ×D(X)n

induces isomorphisms on homology. If we denote by (N o Inj)6r the full
subcategory of N o Inj whose objects are tuples of length at most r, then the
two sides of q are exhaustively filtered by F−1 := F′−1 := ∗ and

Fr :=
∫K∈(NoInj)6r

O(K
n)

∞ × XK,

F′r := O(n)
∞ ×

∫K∈(NoInj)6r

(D∞ � EN)(K
n)× XK,
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6.3. Algebras over coloured operads with homological stability

and the map q is filtration-preserving. Now let us fix a system Sr ⊆ Nr of
representatives for unordered tuples and set Q(K) := Xk1 ∧ · · · ∧ Xkr . Then
the filtration quotients are of the form

Fr/Fr−1
∼=

∨
K∈Sr

∫ L∈N[K]
O(L

n)
∞
+ ∧Q(L),

F′r /F′r−1
∼=

∨
K∈Sr

O(n)
∞
+ ∧ D∞(r)+ ∧Sr

∨
L=τ∗K

Q(L),

and the map qr : Fr/Fr−1 → F′r /F′r−1 between the filtration quotients splits as
a bouquet qr =

∨
K∈Sr

qK. We show that each qK is a homology equivalence; it
then follows that also the map qr between the filtration quotients is a homo-
logy equivalence, so by applying the comparison argument [Wei94, 5.2.12]
to the morphism of spectral sequences assigned to the filtration-preserving
map q, we get that q itself is a homology equivalence.

In order to see that each qK is indeed a homology equivalence, we use that
X is well-based and obtain that the induced maps∫ L∈N[K]

O(L
n)

∞ →
∫ L∈N[K]

O(L
n)

∞ ×Q(L)

and D∞(r)×Sr [K]→ D∞(r)×Sr ä
L=τ∗K

Q(L)

are cofibrations, where we write [K] := {τ∗K; τ ∈ Sr}. If we write αQ for the
product map from Lemma 6.3.16 and α0 for the analogous one for ∗ = (∗)n∈N ,
then we obtain a morphism of cofibre sequences (written vertically)∫L∈N[K]

O(L
n)

∞ O(n)
∞ × D∞(r)×Sr [K]

∫L∈N[K]
O(L

n)
∞ ×Q(L) O(n)

∞ × D∞(r)×Sr äL Q(L)

∫L∈N[K]
O(L

n)
∞
+ ∧Q(L) O(n)

∞
+ ∧ D∞(r)+ ∧Sr

∨
LQ(L),

α0

αQ

qK

where L ranges in N[K]. By Lemma 6.3.16, α0 and αQ induce isomorphisms in
homology, so by the five lemma applied to the long exact sequence associated
to the cofibre sequence, we obtain that also qK is a homology equivalence.

263



Chapter 6. Parametrised moduli spaces of surfaces as infinite loop spaces

6.4. The main result and two outlooks

Combining the ingredients of the previous two sections, we have everything
together to prove the already announced main theorem of the chapter:

Theorem 6.4.1. For each path connected space A, there is a weak equivalence of
loop spaces

ΩBM•,1[A] ' Ω∞MTSO(2)×Ω∞Σ∞
+ ä

n>1
ä
g>0

Cg,n[A] � (Tn oSn).

Proof. The point-set requirements of Setting 6.3.10 are clearly satisfied in
the case O = M, I = T, and X = C[A]+ = (Cn[A]+)n>0, where for each
colour n > 1, a disjoint basepoint is added, on which the twisted torus acts
trivially. Note that the map B�T→M combines the map B�N →M from
Example 6.3.5 with the map T→M from Definition 6.2.16: these obviously
interchange. Secondly, note that FM

B�T(C[A]+) ∼= FM
T (C[A]).

If we apply Theorem 6.3.11, then we obtain, for each n > 1,

ΩBF̃M
B�T(C[A]+)n ' ΩBM(n)×Ω∞Σ∞hocolimT(C•[A]+).

Consider the left side first: we claim that ϕ : F̃M
B�T(C[A]+)→ FM

B�T(C[A]+),
the map of M-algebras from the derived relatively free algebra to the actual
one, is an equivalence: here we use that the basepoints are isolated, whence
the map splits into äK∈S ϕK for a system S ⊆ är Nr of representatives of
tuples with respect to coordinate permutation. If we denote again by r(k) > 0
the number of occurrences of k in the sequence K, then the compact Lie group
G := ∏k>0 Tk oSrk acts on Y := M(K

n)×∏i Cki [A], and ϕK is exactly the map
that compares the homotopy quotient of this action with the actual quotient.
However, Y is a Hausdorff space and G acts freely on Y, since M is S-free and
Tk acts freely on M by precomposition, see Lemma 6.2.17. In this situation,
[Kör18, Thm. a.7] tells us that the map comparing the homotopy quotient
with the actual quotient is an equivalence. In particular, for n = 1, the left
side is equivalent, as a loop space, to ΩBM•,1[A] by Proposition 6.2.20.

Let us now look at the right side: here we see that

hocolimT(C•[A]+) '
∨
k>1

Ck[A]+ �Tk = {∗} tä
k>1

Ck[A] �Tk,
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where � denotes the homotopy quotient. If we focus again on the case n = 1,
then we saw in Example 5.1.14 that the first level of the initial M-algebra,
M(1), coincides with the old M|1-algebra äg Mg,1, whose group completion
is accessible by the Madsen–Weiss theorem. Hence, we can replace the factor
ΩBM(1) by Ω∞MTSO(2). This proves the claim.

Note that both sides of the equivalence depend only on the fundamental
group π := π1(A). I would like to emphasise two special cases:

1. If π ∼= Z, then conjugacy classes of maps π → Γg,n are just con-
jugacy classes of mapping classes, and our irreducibility criterion for
subgroups translates to an irreducibility criterion for single mapping
classes ϕ by considering the subgroup 〈ϕ〉 spanned by ϕ.

2. If π is a torsion group, then there are no non-trivial homomorphisms
π → Γg,n, since Γg,n is torsion free. As the trivial subgroup will turn
out to be non-irreducible, we obtain ΩBM•,1[A] ' Ω∞MTSO(2).

Let us close this chapter by showing two directions into which one might
wish to go from here:

Outlook 6.4.2. We can consider parametrised versions of further well-known
Ed-algebras. In [BKR21, Apx. B], we studied the following two cases, which
are much easier and do not need the coloured operadic setting.

On the one hand, the E2-algebra är BBrr[A] of parametrised braid spaces:
again, we can introduce an irreducibility criterion for subgroups Π ⊆ Brr,
where Π is irreducible if it is not conjugate to the block sum of subgroups
of smaller braid groups. If we put CBr[A] := är ä[ω] BZ(im(ω), Brr), where
[ω] ranges again over all conjugacy classes of maps π → Brr with irreducible
image, then one can show that är BBrr[A] is equivalent to the free E2-algebra
over CBr[A]; thus, we obtain

ΩB ä
r>0

BBrr[A] ' Ω2Σ2
+C

Br[A].

On the other hand, consider the E∞-algebra är BSr[A]: again, we have an
irreducibility criterion for subgroups Π ⊆ Sr, where Π is irreducible if it
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is not conjugate to the block sum of subgroups inside smaller symmetric
groups, i.e. if Π is transitive. If we define CS[A] := är ä[ω] BZ(im(ω),Sr),
where [ω] ranges again over all conjugacy classes of maps π → Sr with
irreducible image, then one can show that är BSr[A] is equivalent to the free
E∞-algebra over CS[A]; hence we obtain

ΩB ä
r>0

BSr[A] ' Ω∞Σ∞
+C

S[A].

In the special case π ∼= Z, we consider cyclic and transitive subgroups of
Sr; these are spanned by a long cycle. Up to conjugation, there is one such
subgroup for each r > 0, and its centraliser is the subgroup itself, and hence
isomorphic to Zr. In this way, we recover the result of [Rei19, Cor. 4.32]: for
π1(A) ∼= Z, we have ΩB är BSr[A] ' Ω∞Σ∞

+ är BZr.
As in the case of the Mumford conjecture, one might try to understand the

homology of the stable parametrised spaces BΓ∞,1[A], BBr∞[A], or BS∞[A]

in terms of the homology of A.
One further aim is to understand the group completion of the E∞-algebra

än BGLn(R)[A] for a ring R; this can be seen as the parametrised algebraic
K-theory of R over A. Once again, the infinite loop space ΩB än BGLn(R)[A]

contains the classical algebraic K-theory ΩB än BGLn(R) as a direct factor,
and it would be interesting to understand the remainder.

Outlook 6.4.3. In [Gal+09], the authors introduced a topological category
Cobd of (oriented) cobordisms and identified its homotopy type BCobd with
Ω∞−1MTSO(d). For d = 2, this result can be related to the Madsen–Weiss
theorem, by showing that the inclusion of the positive boundary subcategory
Cob2,∂ ↪→ Cob2 induces an equivalence on classifying spaces and by identi-
fying the map äg Mg,1 = Cob2,∂(

∅
S1)→ ΩBCob2 as a group completion.

Similarly, we can consider a category Cobd[A] of parametrised cobordisms,
formally defined as the topological category of maps from A to Cobd. This is
a special case of the construction from [RS17], where additionally, tangential
structures are allowed to vary over A. Our result can be seen as a first step
towards understanding BCob2[A].
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A. Artin’s braid groups

The theory of braids goes back to the works of Artin from 1925 [Art25]. In
our topological setting, the most concise definitions of the pure braid group on
r strands, called PBrr, and the braid group on r strands, called Brr, are given by

PBrr := π1
(
C̃r(R

2)
)
,

Brr := π1
(
Cr(R

2)
)
,

where we choose as basepoints the standard configurations ((1, 0), . . . , (r, 0))
and {(1, 0), . . . , (r, 0)}, respectively. Since Cr(R2) arises from C̃r(R2) by quo-
tienting out the free Sr-action on C̃r(R2), these groups assemble into a short
exact sequence

1→ PBrr → Brr → Sr → 1.

Elements in Brr are called braids, and a braid is called pure if it belongs to
PBrr, i.e. if it projects to the trivial permutation of points. We can visualise
braids by drawing the union of the trajectories of the r points, as a subset of
R2 × [0; 1] for some representing path γ : [0; 1]→ Cr(R2), see Figure A.1.

•

•

•

•

•

•

•

•

•

•

•

•

1 2 3 1 2 3

1 2 3 1 2 3

t = 0

t = 1

Figure A.1. Two braids on three strands. The left one is pure, but the right one
is not; its corresponding permutation interchanges 1 and 3.
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Thinking of braids as being built out of strands of hair, we prefer to read
them from top to bottom, i.e. the time coordinate increases when we move
downwards. Consequently, we form the product [γ] · [γ′] of two braids by
placing the braid [γ] below the braid [γ′].

Let us now restrict ourselves to the pure braid group PBrr. As in Section
1.5, we want to consider, for each 1 6 u < v 6 r, a specific ‘elementary’ pure
braid αu,v, which is depicted in Figure A.2.

1 u v r

1 u v r

• •· · · · · · · · ·• •

• •· · · · · · · · ·• •

Figure A.2. The generator αu,v inside PBrr.

As done in [Lam00, p. 276], one can give a full presentation of PBrr which
uses the collection of these braids αu,v for 1 6 u < v 6 r as generating set,
and a sufficient set of relations is given by the following equalities, where ‘?’
abbreviates first factor of the corresponding term: y−1 · h · (?) = y−1 · h · y.
The relations identify the conjugate αu′,v′ · αu,v · α−1

u′,v′ with
αu,v if v < u′ or u < u′ < v′ < v,

α−1
u′,v · αu,v · (?) if u′ < v′ = u < v,(

αu,v′ · αu,v
)−1 · αu,v · (?) if u < v = u′ < v′,(

α−1
u,v′ · α−1

u,u′ · αu,v′ · αu,u′
)−1 · αu,v · (?) if u < u′ < v < v′.

Lambropoulou uses a ‘mirrored’ generating set au,v = αr−u,r−v, and she com-
poses braids from bottom to top; hence her formulæ look slightly different.

B. Discrete Morse theory

In this Appendix, we repeat the basic notions of discrete Morse theory in the
sense of [For98], a technique which is very useful for homological calculations.
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B. Discrete Morse theory

As we use the theory basically only in Chapter 4, we will be very short; in
particular, we will forgo a survey on the geometric background, and refer to
[Heß12] for a comprehensive treatment.

Remark B.1. Let R be a commutative ring. A finite and non-negative R-chain
complex (C•, ∂), together with a choice of bases for each Ch, is the same as
a sequence Ω = (Ω0, Ω1, . . . ) of sets such that äh Ωh is finite, together with
a labelling ε : Ωh ×Ωh−1 → R, (π, π′) 7→ επ,π′ for each h > 1, such that for
each π ∈ Ωh and π′′ ∈ Ωh−2, we have

∑
π′∈Ωh−1

επ,π′ · επ′,π′′ = 0.

We call such a collection (Ω, ε) a based complex, and we recover the chain
complex (C•, ∂) = R(Ω, ε) by linearising Ch := R〈Ωh〉 and ∂π = ∑π′ επ,π′ · π′.
Moreover, we call the elements π ∈ Ωh the h-cells of (Ω, ε) and επ,π′ ∈ R the
incidence number of π and π′.

Definition B.2. A (finite) directed graph is a tuple Γ = (Ω, A, d) where Ω and
A are finite sets and d : A→ Ω×Ω is injective. If a ∈ A with d(a) = (π, π′),
then we interpret a as an arrow from π to π′, write a : π → π′.

For π, π′ ∈ Ω, a path from π to π′, write γ : π  π′, is a finite sequence
of arrows π = π0 → · · · → πt = π′, and we call t the length of γ. A cycle is a
path γ : π  π of positive length.

An R-valued labelling of Γ is a map λ : A→ R, and we call the pair (Γ, λ) a
labelled directed graph. For each a : π → π′, we write λπ,π′ := λ(a), which is
well-defined as d was assumed to be injective. If γ : π  π′ is a path, given
by π = π0 → · · · → πt = π′, then we let λ(γ) := λπ0,π1 · · · λπt−1,πt ∈ R.

Construction B.3. Each based complex (Ω, ε) has an underlying labelled
directed graph (Γ, λ) with vertex set Ω := äh Ωh and arrows π → π′ with
label λπ,π′ := επ,π′ whenever π ∈ Ωh and π′ ∈ Ωh−1 with επ,π′ 6= 0.

Definition B.4. Let (Ω, ε) be a based complex. Then a matching Λ on (Ω, ε)

is given by declaring, for each h > 0:

1. a decomposition Ωh = Ωess
h ∪̇Ωred

h ∪̇Ωcoll
h , and

2. a bijection (−)] : Ωred
h � Ωcoll

h+1 : (−)[,
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such that for each π ∈ Ωred
h , the incidence number επ],π ∈ R is invertible.

We call a cell π essential, redundant, or collapsible if it lies inside Ωess, Ωred,
or Ωcoll, respectively. Let Γ be the underlying directed graph of (Ω, ε) and let
ΓΛ be the directed graph arising from Γ by inverting all arrows of the form
π] → π. We call the matching Λ a discrete Morse flow if ΓΛ has no cycles.

Notation B.5. Inside ΓΛ, we denote an inverted arrow by ‘↗’, as it raises the
degree, while we denote a usual arrow by ‘↘’, as it lowers the degree.

Construction B.6. Let (Ω, ε) be a based complex and Λ be a discrete Morse
flow on (Ω, ε).

• On the modified directed graph ΓΛ as above, we define a labelling λΛ

where we put λΛ
π′,π := −λ−1

π,π′ for all inverted arrows π′ ↗ π.

• We define the derived based complex (Ω, ε)Λ with vertices only the essen-
tial cells, and for η ∈ Ωess

h and η′ ∈ Ωess
h−1, we let

εΛ
η,η′ := ∑

γ : η η′
λΛ(γ),

where γ ranges over all paths from η to η′ inside ΓΛ.

One readily checks that we have again ∑η′ ε
Λ
η,η′ · εΛ

η′,η′′ = 0 for all η ∈ Ωess
h and

η′′ ∈ Ωess
h−2, whence (Ω, ε)Λ is indeed again a based complex. Moreover, we

have chain maps ϕΛ : R(Ω, ε)� R(Ω, ε)Λ : ψΛ by

ϕΛ(π) := ∑
γ : π η

λΛ(γ) · η and ψΛ(η) := ∑
γ : η π

λΛ(γ) · π,

where the first sum ranges over all paths inside ΓΛ from π to a critical cell η

of the same dimension, and the second sum ranges over all paths inside ΓΛ

from η to a cell π of the same dimension. Note the following:

• if η is essential, then ϕΛ(η) = η; if π is collapsible, then ϕΛ(π) = 0.

• ψΛ(η) differs from η only by collapsible cells.

The main result of [For98, Thm. 7.3] is the following statement.
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Theorem B.7. The chain maps ϕΛ : R(Ω, ε)� R(Ω, ε)Λ : ψΛ are chain homotopy
inverses of each other.

Let me make a few remarks about this statement:

1. We immediately see that ϕΛ ◦ ψΛ is the identity on the derived complex
R(Ω, ε)Λ, as ψΛ(η) differs from η only by collapsible cells, and these
vanish again when applying ϕΛ.

2. To be historically precise, [For98, Thm. 7.3] only shows that the induced
maps in homology are inverses for each other. An explicit chain homo-
topy ψΛ ◦ ϕΛ ⇒ idR(Ω,ε) is constructed e.g. in [Heß12, Thm. 1.1.13].

3. In many sources, the derived complex R(Ω, ε)Λ has a different de-
scription: it is defined as a subcomplex of R(Ω, ε) containing so-called
invariant chains. It is then an additional observation that this subcom-
plex is isomorphic to R(Ω, ε)Λ, see for example [For98, Thm. 8.2].

Finally, the entire construction behaves nicely with respect to dualising, as
the following remark shows.

Remark B.8. If (Ω, ε) is a based complex of dimension d (i.e. there are no
cells of dimension larger than d), then we define its dual (Ω, ε)∗ := (Ω∗, ε∗)

with Ω∗h := Ωd−h and ε∗π,π′ := επ′,π for π ∈ Ω∗h and π′ ∈ Ω∗h−1.
On the side of chain complexes, this corresponds to the dualised and

mirrored chain complex (C∗d−•, ∂∗), together with the dual basis.
If Λ is a discrete Morse flow for (Ω, ε), then we obtain a discrete Morse

flow Λ∗ for (Ω, ε)∗ by exchanging the rôles of redundant and collapsible cells.
Additionally, the two chain complexes (R(Ω, ε)Λ)∗d−• and (R(Ω, ε)∗d−•)

Λ∗ are
isomorphic: clearly, the hth level of both sides is freely generated by Ωess

d−h,
and for an essential cell π of dimension d− h, and an essential cell π′ of
dimension h + 1, we have

(ε∗)Λ∗
π,π′ = ∑

γ : π π′

inside ΓΛ∗

λΛ∗(γ) = ∑
γ : π′ π
inside ΓΛ

λΛ(γ) = εΛ
π′,π = (εΛ)∗π,π′ .
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Symbol Index

Ass associative operad, 78

[−,−] Browder bracket, 91

Brr braid group on r strands, 269

B operad of based sets (or general objects), 77

O� O′ Boardman–Vogt tensor product of O and O′, 100

cat(C) PROP associated to the monochromatic operad C, 109

Cd little d-cubes operad, 79

ChR category of chain complexes of R-modules, 76

Ccell
• cellular chain complex, 29

Csing
• singular chain complex, 83

µ ◦i µ′ partial composition inside an operad, 81

commutative operad, 78

C̃r(E) configuration space of r ordered points in E, 2

Cr(E) configuration space of r unordered points in E, 2

Dd little d-discs operad, 79

∆Σ category of non-commutative finite sets, 111

∆Σ× operad with ∆Σ×(k1,...,kr
n ) = ∏i ∆Σ(ki

n), 149

EN chaotic category with object set N, 258
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Symbol Index

Fin skeletal category of finite sets with all maps, 108

Find PROP associated to Cd, 111

FO free O-algebra, 82

FO
P free O-algebra over a given P-algebra, 82

F̃O
P derived free O-algebra over a given P-algebra, 257

Γm
g,n mapping class group of surfaces of type Σm

g,n, 191

G o Inj wreath product of G = (Gn)n∈N and Inj, 47

G[K] connected subgroupoid of G o Inj spanned by objects of the
form τ∗K, 47

hCob2 2-dimensional homotopy cobordism category, 108

I trivial (monochromatic) operad, 77

ı′ counterpart of the shuffle ı, 29

Inj skeletal category of finite sets with injections, 46∫k∈I H(k, k) coend construction for a functor on Iop × I, 77

M conformal cobordism category, 196

M coloured surface operad, 197

Mm
g,n moduli space of surfaces of type Σm

g,n, 193

Mg,1[A] moduli space of Σg,1-bundles over A, 237

MTSO(d) d-dimensional oriented tangential Thom spectrum, 236

N(C) dyeing of the monochromatic operad C, 113

Nc(C) connective suboperad of N(C), 117

O-Alg category of O-algebras, 81
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Symbol Index

PBrr pure braid group on r strands, 269

Pm
g,n space of parallel slit domains of type Σm

g,n, 204

R
d Poisson d-operad in R-modules, 90

Qc divided power operation induced by the class c, 97

rep(P) representable operad underlying the PROP P, 112

R-Mod category of R-modules, 76

Σm
g,n isomorphism class of connected surfaces of genus g > 0, n > 1

boundary curves, and m > 0 punctures, 191

Σ skeletal category of finite sets with bijections, 46

σK block permutation, for σ ∈ Sr and K = (k1, . . . , kr), 78

S sequence (Sn)n>1 of symmetric groups, 47

SK subgroup of S|K| preserving the unordered partition K, 3

SK automorphism group AutN oΣ(K), 104

Tn nth twisted torus Tn oSn, 247

ṼK(E) configuration space of ordered vertical clusters in E, 2

VK(E) configuration space of unordered vertical clusters in E, 3

Vk
r (E) short notation for VK(E) with K = (k, . . . , k), 4

Ṽ<
K (Rp,1) component of ṼK(R

p,1) in which points within a cluster are
ordered in accordance to their last coordinate, 28

V(E; X) configuration space of labelled vertical clusters in E, 47

Vp,q vertical operad, 120

X[n] based sequence (Xk)k>1 with Xn = X and Xk = ∗ else, 48

YK tableau of type K, 6

Z(Π, Γ) centraliser of a subgroup Π ⊆ Γ, 238
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Dicta index

. . . nos esse quasi nanos gigantum umeris insidentes.

Bernard de Chartres, quoted by John of Salesbury (‘Dicebat Bern-
ardus Carnotensis nos esse quasi nanos gigantum humeris in-
sidentes, ut possimus plura eis et remotiora videre, non utique
proprii visus acumine, aut eminentia corporis, sed quia in altum
subvehimur et extollimur magnitudine gigantea’) in Metalogicon,
Vol. iv, 1159. Transl. ed. by J. B. Hall, K. S. B. Keats-Rohan, in
Corpus Christianorum Continuatio Mediaevalis 98, doi: 10.1484/
M.CCT-EB.5.105892

Ἀρχὰς εἶναι τῶν ὅλων ἀτόμους καὶ κενὸν, τὰ δ’ ἂλλα πάντα νενομίσθαι.

Democritus, quoted by Diog. Laërtius in Vitae Philosophorum, 9:44.
Transl. Lives of Eminent Philosophers, ed. by S. White. Cambridge:
Cambridge University Press, 2021. doi: 10.1017/9781139047111

Ubi materia, ibi geometria.

Johannes Kepler, De fundamentis astrologiæ certioribus, Thesis xx,
1601. In: Joannis Kepleri astronomi opera omnia 1. Ed. by C. Frisch.
Frankfurt a. M., Erlangen: Heyder & Zimmer, 1858.

The inputs are numbered red, yellow, and green;
and their colours are three, two, and four!

Spoken by either Andrea Bianchi or myself in one of our weekly
‘Forschungsseminar’ meetings in Carl-Friedrich Bödigheimer’s
office, Bonn, 2019.
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Dicta index

First recall what trees themselves are.

Tom Leinster. Higher Operads, Higher Categories, § 7.3. London
Mathematical Society Lecture Note Series 298. Cambridge: Cam-
bridge University Press, 2004. doi: 10.1017/CBO9780511525896.

Es soll das Innere von Ω auf eine
von einem geradlinigen Schlitz begrenzte
bene konform abgebildet werden.

David Hilbert. ‘Zur Theorie der konfirmen Abbildung’. In: Nachr.
Königl. Ges. Wiss. (1909), pp. 314–323.

One would like to characterize its homotopy type,
but in reality one must settle for less.

Ib Madsen. ‘Moduli spaces from a topological viewpoint’. In:
Proceedings of the International Congress of Mathematicians 2006 1,
Ed. by M. Sanz-Solé, J. Soria, J. L. Varona, and J. Verdera. Madrid:
European Mathematical Society, 2007, pp. 385–412.
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Index

Algebra over an operad, 81

derived free, 255

free, 82, 121, 238

initial, 81, 251

Arc complex, 240

Bar construction, 53, 61

two-sided, 254

Base-change, 82, 249, 254

Boardman–Vogt tensor product,
100, 129, 250

Braid group, 32, 265, 267

Browder bracket, 92, 225

vertical, 160, 216

Cabling, 78, 86

Capping morphism, 251

Cellular monoid, 63–68

Centraliser, 236, 242

Chaotic category, 108, 256

Cobordism category
conformal, 195

homotopy, 108

parametrised, 266

positive boundary
subcategory, 191

Coend, 47

enriched, 77

Configuration space
coloured, 17

labelled vertical, 47–73, 121

vertical, 2–43, 48, 69, 121, 148

Connective suboperad, 117, 197

Discrete Morse flow, 155, 270

Dunn additivity, 103, 123

Dyeing, 113, 125, 134, 199

Dyer–Lashof square, 94

vertical, 182, 217

Grafting, 85

Group completion, 69, 234, 250

Harer stability, 216, 222, 227, 253

Interchange law, 101, 130, 135, 147

Internal operad, 207

Jacobi identity, 91, 175

James product, 63

Künneth operation, 93, 160, 187

Leibniz rule, 91

Little d-cubes/discs operad, 79, 83,
91, 95, 103, 104, 111, 125,
160
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Index

Madsen–Weiss theorem, 235

Mapping class group, 191

extended, 242

stable, 235

Moduli space of Riemann surfaces,
193

parametrised, 235–266

stable, 235, 253

Monad, 82, 254

Monoidal category
nice, 76

Mumford conjecture, 235

Mumford–Miller–Morita class, 235

Non-commutative finite sets, 111,
148, 221

Operad
based, 250

coloured, 80–103, 250

vertical, 120–188, 207

with homological stability,
250–263

Operadic ideal, 89

Operadic relation, 88

Operation
divided power, 93–99

E-, 219

T̂-/T-, 218

Pairing of operads, 100, 121, 123,
124, 136

Poincaré–Lefschetz duality, 8, 29,
151, 154, 176, 184

Poisson d-operad, 90, 116, 181

Pontrjagin product, 92

vertical, 171, 216

PROP, 107, 191, 195

Propagator, 253

Quiver, 86, 129

Reidemeister–Schreier method, 40

Schreier transversal, 39

Shuffle, 28

Slit domain, 203

Stabilisation map, 13, 222, 253

Stable homology, 69, 235

Stable splitting, 49–52

Surface operad
coloured, 197

Surface type, 191

Swiss cheese operad, 120

Tableau, 6, 27, 34, 64, 166

augmented, 203

Teichmüller space, 193

Thom isomorphism, 23, 50, 70

Thom spectrum, 234

Torus
mapping, 96, 217

twisted, 245–249

Transfer, 97, 210, 219

Tree, 84, 129, 136

Universal morphism, 113, 155, 160

Well-based, 49

Wreath product, 46
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