
The Naproche System

D. Kühlwein, M. Cramer, P. Koepke, and B. Schröder

Mathematical Institute, University of Bonn
German Linguistics, University of Duisburg-Essen
{cramer,koepke,kuehlwei}@math.uni-bonn.de

bernhard.schroeder@uni-due.de

http://www.naproche.net

Abstract. The Naproche project (Natural language Proof Checking)
was initiated by Bernhard Schröder and Peter Koepke at the Uni-
versity of Bonn to focus on an interdisciplinary study of the semi-formal
language of mathematics. A central goal of Naproche is to develop a
controlled natural language (CNL) for mathematical texts and adapted
proof checking software which checks texts written in the CNL for syntac-
tical and mathematical correctness. The project is still at a prototypical
stage, further information is available at www.naproche.net.

This paper describes the Naproche system, an implementation of the
ideas developed by the Naproche project. The Naproche system accepts
LATEX-style texts, consisting of mathematical formulas imbedded in a
controlled natural language. Texts written in the controlled natural lan-
guage are parsed using techniques from computational linguistics and
transformed into first-order formulas. The formulas are given to an auto-
matic theorem prover which checks whether each formula of an argument
is a logical consequence of the preceding formulas or axioms.

Key words: Controlled natural language, formal mathematics, discourse
representation theory, automated theorem proving

1 Introduction

Considering that mathematics has a reputation of being an exact science, it is
interesting to note that one of the main concepts of mathematics, the mathemat-
ical proof, is somewhat vaguely defined. What exactly is a mathematical proof?
Firstly, one can distinguish between two kinds of mathematical proofs: Formal
and informal proofs.

Formal proofs are finite derivations in a calculus. They are sequences of
mathematical symbols and do not contain natural language elements. Given a
calculus, there is a definite answer whether or not a text is a formal proof.

An informal proof is a mixture of natural language and mathematical sym-
bols. Most proofs in mathematical textbooks and journals are informal. Contrary
to formal proofs, there is no clear criteria whether a text constitutes an informal
proof or not.

2 D. Kühlwein, M. Cramer, P. Koepke, and B. Schröder

Ever since Alfred Whitehead’s and Bertrand Russells’s work Prin-
cipia Mathematica [16] most mathematicians agree that it would be possible,
even if extremely tedious, to find a formal proof for every theorem. With this in
mind, one could interpret informal proofs as abbreviations for formal proofs.

Facilitating methods from (computational) linguistics, computer mathemat-
ics and mathematics, the Naproche project (NAtural language PROof CHEck-
ing), a joint initiative of Peter Koepke (Mathematics, University of Bonn)
and Bernhard Schröder (Linguistics, University of Duisburg-Essen), studies
the interplay between formal and informal proofs.

1.1 The Naproche System

As part of the Naproche project, we develop the Naproche system, a program
which aims to automatically translate informal proofs into their formal counter-
parts.

Of course, one first has to define what exactly a translation of an informal
proof is. Our approach is to see an informal proof as a blueprint for a formal
proof. The major stepstones in the derivation are given, and all that is left to do
is to flesh out each single step. To do this, we first transform the informal proof
into a sequence of first order logic statements. Once an input text is translated,
we use automated theorem provers (ATPs) to fill out the gaps. Proofs created
by ATPs are basically derivations in a calculus, and therefore this gives us a
method of creating a formal from an informal proof.

Given that this translation from natural language into first order logic is
sound, this procedure also gives a method of checking the correctness of informal
proofs.

There are several challenges which one has to face when trying to implement
such a program. Firstly, one has to teach the computer to automatically interpret
statements in natural language correctly. The fact that natural language is often
very ambiguous and that there are usually several different ways of stating the
same fact only adds to the difficulty. Another problem is the definition of the
translation algorithm from informal proofs into first order logic. And finally, one
has find a way to extend the first order translation of a text to a full formal
proof.

In order to handle the ambiguity of natural language texts, we developed a
controlled natural language (CNL) for mathematics, the Naproche CNL, which
has a clearly defined translation from texts written in this language into first or-
der formulas. We use an adapted version of Discourse Representation Structures
(DRS), which we call Proof Representation Structures (PRS), to extract the first
order representation of a Naproche CNL text. To fill the gaps in the proof, we
implemented a checking algorithm for PRS that creates the appropriate proof
obligations for the ATP.

We will present each part of the Naproche system in more detail.

The Naproche System 3

1.2 Related Work

While, to the authors knowledge, there is no other group that focuses on the
connection between informal and formal proofs, there are already several proof
checking systems that also emphasize the readability of their respective input
language.

A. Trybulec’s Mizar [7] is arguably the most prominent. It was started in
1973, and by today several non-trivial mathematical theorems have been proved
(e.g Gödel’s completeness theorem [2]). An active community continues to for-
mulate and prove theorems in Mizar. The results are published regularly in the
journal Formalized Mathematics.

The Isabelle [8] team is working on Isar [15], a “human-readable structured
proof language”. The System for Automated Deduction (SAD, [12]) checks texts
that are written in its input language, ForThel [13], for correctness.

We are collaborating with the VeriMathDoc project [1], which includes the
PLATO program [14]. Their goal is to develop a mathematical assistant sys-
tem that naturally supports mathematicians in the development, authoring and
publication of mathematical work.

2 The Architecture of the Naproche System

The Naproche system consists of three main modules: The User Interface, the
Linguistics module and the Logic module. Figure 1 shows an overview of the
architecture of the Naproche system.

Fig. 1. The architecture of the Naproche system.

The User Interface is the standard communication gateway between the user
and the Naproche system. The input text is given to the User Interface, and
the other modules report back to the User Interface. The module transforms

4 D. Kühlwein, M. Cramer, P. Koepke, and B. Schröder

the input text into a prolog list and hands it over to the Linguistics module.
Currently, our User Interface is web-based and can be found on the Naproche
website, www.naproche.net. We are also working on a plugin for the WYSIWYG
editor TEXMACS [11]. The input language is described in section 3.

The Linguistics module creates a PRS from the input text. Any errors or
warnings which occur during the creation are reported back to the User Interface.
The created PRS can either be given to the Logic module, or reported back to
the User Interface. Section 4 explains PRSs in greater detail.

With the help of ATPs, the Logic module checks PRSs for logical correctness.
As in the Linguistics module, errors or warnings which occur during the creation
are reported back to the User Interface. The result of the check is sent to the
User Interface. A brief overview of the checking algorithm is given in section 5.

3 The Naproche CNL

Natural language is usually full of ambiguities and heavily context dependent.
This makes extracting the semantics of an arbitrary text written in common
English a very hard, if not impossible, task. Controlled natural languages are
subsets of natural languages, which usually try to reduce complexity and elim-
inate ambiguity while preserving the the relevant parts of the expressiveness of
the original language. They give the user the means to ’easily’ process and work
with text written in such a language.

Attempto Controlled English (ACE) [3] showed that this concept can be very
successful. Texts written in ACE read like normal English while having a unique
first order representation which can be used for further tasks, e.g. reasoning or
queries over the text.

The Naproche CNL aims to be the mathematical equivalent of ACE, i.e. to
be as intuitive and expressive as the semi-formal language of mathematics as
used in textbooks and journals, while defining an unambiguous translation into
first order logic.

In the current version of the Naproche CNL, a text is structured by structure
markers: Axiom, Theorem, Lemma, Proof and Qed. For example, a theorem is
presented after the structure marker Theorem, and its proof follows between the
structure markers Proof and Qed.

First order formulas can be combined with natural language expressions to
form the usual mathematical constructs like statements, definitions, implications
and assumptions.

Assumptions are always opened by an assumption trigger (e.g. let, consider,
assume that . . .), and closed by a sentence starting with thus or by a Qed.
Definitions always start with define. Assertions are made by a first order formula
or a naturally predicated term (e.g. x is an ordinal), optionally preceeded a
statement trigger (e.g. then, hence, therefore, so, . . .). Additionally, negation,
conjunction, disjunction, quantification and implication may be expressed in
natural language.

The Naproche System 5

Since most mathematicians use LATEX for writing papers, we tried to keep
the Naproche CNL very close to original LATEX code.

As an example, we present a short proof written in the Naproche CNL.

Define $Trans(x)$ if and only if $\forall u, v (u \in v \and

v \in x) \implies u\in x$.

Define $Ord(x)$ if and only if $Trans(x) \and \forall y (y \in x

\implies Trans(y))$.

Theorem.

For all x, y, if $x \in y$ and $Ord(y)$ then $Ord(x)$.

Proof.

Suppose $x \in y$ and $Ord(y)$. Then $Trans(x)$.

Assume that $u \in x$. Then $u \in y$.

Hence $Trans(u)$. Thus $Ord(x)$.

Qed.

Note that formal quantification and implication is used in the definitions,
whereas the statement of the theorem is written using natural language quan-
tification and implication.

Substituting \and with \wedge and \implies with \rightarrow gives LATEX
compilable text:

Define Trans(x) if and only if ∀u, v(u ∈ v ∧ v ∈ x) → u ∈ x.

Define Ord(x) if and only if Trans(x) ∧ ∀y(y ∈ x → Trans(y)).

Theorem.

For all x, y, if x ∈ y and Ord(y) then Ord(x).

Proof.

Suppose x ∈ y and Ord(y). Then Trans(x). Assume that u ∈ x. Then
u ∈ y. Hence Trans(u). Thus Ord(x).

Qed.

4 Proof Representation Structures

While extracting the semantics of a CNL is definitely easier than extracting the
semantics of a text in unrestricted natural language, it is still no trivial task.
The more sophisticated the CNL gets, the more advanced approaches need to
be used.

Computational linguistics has developed several techniques to automatically
extract the semantics of a natural language text. We adapted the Discourse
Representation Structures (DRS, [4]) from Discourse Representation Theory,
which are also used in the Attempto project [3], for our needs, and called the

6 D. Kühlwein, M. Cramer, P. Koepke, and B. Schröder

result Proof Representation Structures1 (PRSs, see [5], [6]). PRSs are Discourse
Representation Structures that are enriched in such a way as to represent the
distinguishing characteristics of the semi-formal language of mathematics.

Fig. 2. A PRS with identification number i, discourse referents d1, ..., dn, mathematical
referents m1, ..mk, conditions c1, ..., cl and textual referents r1, ..rp

A PRS has five constituents: An identification number, a list of discourse
referents, a list of mathematical referents, a list of textual referents and an
ordered list of conditions. Similar to DRSs, we can display PRSs as “boxes” (See
fig. 2).

Mathematical referents are the terms and formulas which appear in the text.
As in DRSs, discourse referents are used to identify objects in the domain of
the discourse. However, the domain contains two kinds of objects: mathematical
objects like numbers or sets, and the symbols and formulas which are used to
refer to or make claims about mathematical objects. Discourse referents can
identify objects of either kind.

PRSs have identification numbers, so that they can be referred to at some
later point. The textual referents indicate the intratextual and intertextual ref-
erences.

Just as in the case of DRSs, PRSs and PRS conditions have to be defined
recursively: Let A, B be PRSs, f be a function symbol, X, X1, . . . , Xn discourse
referents, Y a mathematical referent, and let Word denote an English noun,
adjective or verb. Then

– holds(X) is a condition representing the claim that the formula referenced
by X is true.

– math id(X, Y) is a condition which binds a discourse referent to a mathe-
matical referent (a formula or a term).

– A is a condition.
– ¬A is a condition, representing a negation.
– A := B is a condition, representing a definition.
– A => B is a condition, representing an implication or universal quantifica-

tion.
– A <=> B is a condition, representing an equivalence statement.

1 Note that even though Claus Zinn [17] also uses the term Proof Representation
Structure, the definitions of Naproche and Zinn are different.

The Naproche System 7

– A <= B is a condition, representing a B if A statement.
– A ∨ B is a condition, representing a disjunction.
– A ==> B is a condition, representing an assumption.
– f :: A => B is a condition, representing a function definition.
– contradiction is a condition, representing a contradiction.
– predicate(X, Word) is a condition, representing a natural language state-

ment with one argument.
– predicate(X1, X2, Word) is a condition, representing a natural language

statement with two arguments.

Note that contrary to the case of DRSs, a bare PRS can be a direct condition
of a PRS. This allows to represent the nested structure of mathematical texts in
a PRS: The different building blocks of a text (axioms, definitions, lemmas, the-
orems, proofs), that are denoted by structure markers, correspond to sub-PRSs
(See fig. 3 for an example). The hierarchical structure of assumptions is repre-
sented by nesting conditions of the form A ==> B: A contains an assumption,
and B contains the representation of all claims made inside the scope of that
assumption.

The algorithm creating PRSs from CNL proceeds sequentially: It starts with
the empty PRS. Each sentence or structure marker in the discourse updates the
PRS according to an algorithm similar to a standard DRS construction algorithm
but taking the nesting of assumptions into account. [5]

The PRS constructed from the example proof is shown in figure 3.

5 Checking PRS

The checking algorithms keeps a list of first order formulas it considers to be true,
called premises, which gets continuously updated during the checking process.

To check a PRS, the algorithms considers the conditions of the PRS. The
conditions are checked sequentially and each condition is checked under the
currently active premises. According to the kind of condition, the Naproche
systen creates obligations which have to be discharged by an automated theorem
prover. If all obligations of a condition can be discharged, then the condition is
proved to be valid. After a conditions is deemed valid, the active premises get
updated, and the next condition gets checked. A PRS is accepted by Naproche
if all its conditions are valid.

In our example PRS (Fig. 3), the first condition is a definition. As this is the
first condition of the PRS, the sequence of currently active premises is empty.
Since definitions do not have to be checked, all we have to do is store the first
order representation of this definition as a premise for future use. So after this
condition is processed, the sequence of currently active premises contains the
formula ∀x Trans(x) ↔ (∀u, v(u ∈ v ∧ v ∈ x) → u ∈ x).

The second conditions is also a definition and therefore gets treated the same
way. The sequence of active premises after this condition is

[∀x Trans(x) ↔ (∀u, v(u ∈ v ∧ v ∈ x) → u ∈ x),
∀x Ord(x) ↔ (Trans(x) ∧ ∀y(y ∈ x → Trans(y)))]

8 D. Kühlwein, M. Cramer, P. Koepke, and B. Schröder

Fig. 3. The PRS for the proof of: For all x, y, if x ∈ y and Ord(y) then Ord(x).

The Naproche System 9

The next condition in our example PRS is a theorem condition. A theorem
conditions is a PRS with two sub-PRS, the goal PRS and the proof PRS. The
statement of the theorem is stored in the goal PRS, the proof for the theorem is
in the proof PRS. The algorithm first checks the proof PRS and then uses the
updated premises to check the goal PRS.

The first condition in the proof PRS is an assumption. Again, all we have to
do is to update the list of active premises. It now contains the following formulas:

[∀x Trans(x) ↔ (∀u, v(u ∈ v ∧ v ∈ x) → u ∈ x),
∀x Ord(x) ↔ (Trans(x) ∧ ∀y(y ∈ x → Trans(y))),
x ∈ y, Ord(y)]

Next comes the statement Trans(x). The algorithm tries to prove this state-
ment from the active premises. For this, the premises as well as the statement are
transformed into the TPTP first order format [9] and an ATP query is created:

fof(1, axiom, ![Vx]:((trans(Vx))<=>

(![Vu,Vv]:(((in(Vu,Vv))&(in(Vv,Vx)))=>(in(Vu,Vx)))))).

fof(2, axiom, ![Vx]:((ord(Vx))<=>

((trans(Vx))&(![Vy]:((in(Vy,Vx))=>(trans(Vy))))))).

fof(3, axiom, in(vx,vy)).

fof(4, axiom, ord(vy)).

fof(1, conjecture, trans(vx)).

Geoff Sutcliffe’s service tools for the TPTP library (e.g. SystemsOnTPTP
[10]) are used to interact with the ATP. The result is given as an output to the
user, Trans(x) gets added to the active premises and the checking algorithm
proceeds to the next condition.

The remaining conditions are checked in a similar fashion. The detailed pro-
cedure as well as considerations about the completeness and the correctness of
the algorithm can be found in [6].

6 Results

The Naproche system parses the Naproche CNL, creates the appropriate PRSs,
and checks them for correctness using automated theorem provers. The Burali-

Forti paradox, a well known mathematical theorem, as well as several basic
statements in group theory, were formulated in the Naproche CNL, and checked
for correctness with the Naproche system. A web-based interface to the Naproche
system can be found on our homepage www.naproche.net.

7 Future Work

There are two major points that we would like to improve in upcoming versions
of the Naproche system:

10 D. Kühlwein, M. Cramer, P. Koepke, and B. Schröder

Firstly, we will extend the Naproche controlled natural language to include
a rich mathematical formula language and many argumentative mathematical
phrases and constructs. And secondly, we shall improve the Naproche-ATP in-
teraction. We want to study which of the premises were actually used when
discharging a proof obligation and whether the systems can be tailored to do
inferences in the ’size’ of human proofsteps.

Once the Naproche system is sufficiently extensive and powerful, proofs from
various areas of mathematics can be reformulated and checked in a way under-
standable to men and machines.

References

1. VeriMathDoc, URL http://www.ags.uni-sb.de/ afiedler/verimathdoc/.
2. Patrick Braselmann and Peter Koepke. Gödels Completeness Theorem. Formalized

Mathematics, 13, 2005.
3. Norbert E. Fuchs, Stefan Höfler, Kaarel Kaljurand, Fabio Rinaldi, and Gerold

Schneider. Attempto Controlled English: A Knowledge Representation Language
Readable by Humans and Machines, 2005.

4. H. Kamp and U. Reyle. From Discourse to Logic: Introduction to Model-theoretic
Semantics of Natural Languge. Kluwer Academic Publisher, 1993.

5. Nickolay Kolev. Generating Proof Representation Structures for the Project
NAPROCHE. Master’s thesis, University of Bonn, 2008.

6. Daniel Kuehlwein. A Calculus for Proof Representation Structures. Master’s thesis,
University of Bonn, 2008.

7. Roman Matuszewski and Piotr Rudnicki. Mizar: the first 30 years. Mechanized
Mathematics and Its Applications, 4:2005, 2005.

8. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

9. G. Sutcliffe and C.B. Suttner. The TPTP Problem Library: CNF Release v1.2.1.
Journal of Automated Reasoning, 21(2):177–203, 1998.

10. Geoff Sutcliffe. System Description: SystemOn TPTP. In CADE, pages 406–410,
2000.

11. J. van der Hoeven. GNU TeXmacs: A free, structured, wysiwyg and technical text
editor. In Daniel Flipo, editor, Le document au XXI-ième siècle, volume 39–40,
pages 39–50, 14–17 mai 2001. Actes du congrès GUTenberg.

12. Konstantin Verchinine, Alexander Lyaletski, and Andrei Paskevich. System for
Automated Deduction (SAD): a tool for proof verification, volume 4603 of Lecture
Notes in Computer Science, pages 398–403. Springer, July 2007.

13. Konstantin Vershinin and Andrey Paskevich. ForTheL - the language of formal the-
ories. International Journal of Information Theories and Applications, 7(3):120–
126, 2000.

14. M. Wagner, S. Autexier, and C. Benzmüller. PLATO: A Mediator between Text-
Editors and Proof Assistance Systems. In S. Autexier and C. Benzmüller, editors,
7th Workshop on User Interfaces for Theorem Provers (UITP’06), volume 174(2)
of Electronic Notes on Theoretical Computer Science, pages 87–107. Elsevier, Au-
gust 2006.

15. Makarius Wenzel. From Insight to Proof - Festschrift in Honour of Andrzej Try-
bulec, chapter Isabelle/Isar - a generic framework for human-readable proof docu-
ments. 2007.

The Naproche System 11

16. Alfred North Whitehead and Bertrand Russell. Principia Mathematica. Cambridge
University Press, 1962.

17. Claus Zinn. Understanding Informal Mathematical Discourse. PhD thesis,
Friedrich-Alexander-Universitt Erlangen Nürnberg, 2004.

