User Defined by Curvature*

A planar curve (parametrized by arc length) can be reconstructed from its curvature function $t \mapsto \kappa(t)$ as follows:
(1) take the antiderivative of $\kappa, \alpha(t):=\int^{t} \kappa(\sigma) d \sigma$,
(2) choose an initial point p, an initial tangent vector $\dot{c}(0)$ and an orthonormal basis $e_{1}=\dot{c}(0), e_{2}$,
so the definition of curvature (namely $\kappa:=|\ddot{c}|$, plus a sign convention) implies that,
(3) $\dot{c}(t)=e_{1} \cdot \cos \alpha(t)+e_{2} \cdot \sin \alpha(t)$.

Then one more integration,
(4) $c(t)=p+\int_{0}^{t} \dot{c}(\sigma) d \sigma$,
determines the curve. This description explains why the curvature is also called the "rotation speed" of the tangent vector field $\dot{c}(t)$.
In 3D-XplorMath one can select User Curvature. A dialog box opens and one can enter the desired curvature function. The initial point p is taken as the origin and the initial tangent is taken as the unit vector in the positive x-direction.

The parameter $g g$ in this case defines a "precision divisor", that can be between 1 and 30 . The size of the

[^0]subintervals used in approximating the above integrals is $\delta:=(t M a x-t M i n) /(t$ Resolution -1$)$ if $g g=1$, and in general it is $\delta / g g$. If the curvature function κ becomes very large somewhere, and in particular if it is infinite at an endpoint of the interval $[t M i n, t M a x]$, it is a good idea to use a fairly large value of $g g$ to counteract the resulting numerical inaccuracies that will occur in the evaluation of the integrals.
Note that 3D-XplorMath offers the same Action Menu Entries as for explicitly parametrized curves. For example try the caustics.
R.S.P.

[^0]: * This file is from the 3D-XplorMath project. Please see: http://3D-XplorMath.org/

