Folium of Descartes

This is a famous curve with a long history (see e.g. http:
www-history.mcs.st-andrews.ac.uk /Curves/Curves.html). The curve is the solution set of the equation

$$
x^{3}+y^{3}=3 a x y .
$$

One can see that the solutions for different a differ only by scaling, namely divide the equation by a^{3} and replace $x / a, y / a$ by x, y.

The two most frequently given parametrizations are:

$$
\begin{aligned}
x(t) & =\frac{3 t}{1+t^{3}}, y(t)=\frac{3 t^{2}}{1+t^{3}} \\
r(\varphi) & =\frac{\sin 2 \varphi}{\sin ^{3} \varphi+\cos ^{3} \varphi},-\pi / 4<\varphi<3 \pi / 4
\end{aligned}
$$

The first parametrization has the disadvantage that at $t=-1$ the denominator vanishes, the curve jumps "from minus infinity to plus infinity", while the important double point at $0 \in \mathbb{R}^{2}$ is left out (or given
by $t=\infty)$. This can be remedied by the transformation $u=1 /(1+t), t=-1+1 / u$, which changes the parametrization to

$$
\begin{aligned}
x(u)= & \frac{u^{2}-u^{3}}{1-3 u+3 u^{2}}, y(u)=\frac{u-2 u^{2}+u^{3}}{1-3 u+3 u^{2}}, \\
& -\infty<u<\infty .
\end{aligned}
$$

H.K.

