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The standard analysis route proceeds as follows:

1.) Convergent sequences and series, completeness of the reals,
2.) Continuity, main theorems, trivial examples,
3.) Differentiability via limits,
4. or 5.) Integrals,
5. or 4.) Properties of limit functions via uniform convergence.

I propose the following reorganization of the material:

1.) Differentiation of polynomials, emphasis on tangent approximation,
2.) Differentiation rules, differentiation of rational functions,
3.) The monotonicity theorem via uniform estimates, before completeness,
4.) Completeness and limit functions, proofs via uniform estimates,
5.) Integrals, defined as generalized sums, computed with antiderivatives,
6.) Continuity, with less trivial examples.

Arguments why one would want such a reorganization are: The start is closer to the
background of the student, one spends more time on differentiation where technical skills
have to be trained, and discusses continuity when logical skills are more developed.

The main reasons why such a reorganization is possible are: The properties of limit
functions follow more easily from uniform error bounds than from uniform convergence
(e.g. if one has a pointwise convergent sequence of functions {fn} with a uniform Lipschitz
bound L, then the limit function also has L as Lipschitz bound). The first such uniform
error bounds follow for polynomials in a pre-analysis fashion. These bounds suffice to prove
the Monotonicity Theorem before completeness. Finally, the Monotonicity Theorem shows
that many interesting converging sequences indeed have uniform error estimates.

1. Derivatives of Polynomials

The elementary formula

xk − ak = (x− a) · (xk−1 + xk−2a+ . . .+ ak−1)

is good enough to replace all calls on continuity. The first consequence is

x, a ∈ [−R,R]⇒ |xk − ak| ≤ kRk−1 · |x− a|.
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One only needs the triangle inequality to get for polynomials P (X) :=
∑n
k=0 akX

k:

x, a ∈ [−R,R]⇒ |P (x)− P (a)| ≤
(∑

|ak|kRk−1
)
· |x− a| =: L · |x− a|.

In other words: From the data which give the polynomial and from the interval on which
we want to study it we can explicitly compute a Lipschitz bound. This conforms with the
common expectation (which is disappointed by continuous functions): Differences between
function values, |P (x) − P (a)|, increase no worse than proportionally to the difference of
the arguments, |x− a|.

The derivative controls this rough proportionality more precisely. The term (xk−1+xk−2a+
. . .+ ak−1), which multiplies (x− a) in the above elementary formula, differs “little” from
kak−1 on “small” intervals around a. The first inequality above makes this precise:

x ∈ [a− r, a+ r], R := |a|+ r ⇒∣∣(xk−1 + xk−2a+ . . .+ ak−1)− kak−1
∣∣ ≤ k(k − 1)/2Rk−2 · |x− a|

hence

|xk − ak − kak−1(x− a)| ≤ k(k − 1)/2Rk−2 · |x− a|2.

Observe that |x− a|2 is less than 1% of the argument difference |x− a| if r < 0.01.
Again, the triangle inequality extends this to polynomials P (X) :=

∑n
k=0 akX

k and again
the error bound is explicitly computable from the data of the function and the interval in
question:

x ∈ [a− r, a+ r], R := |a|+ r, P ′(a) :=
n∑
k=1

akka
k−1 ⇒

|P (x)− P (a)− P ′(a)(x− a)| ≤
(∑

|ak|k(k − 1)/2Rk−2
)
· |x− a|2 =: K · |x− a|2.

Application: At interior extremal points the derivative has to vanish. (If P ′(a) > 0 and
0 < x− a < P ′(a)/K then P (x) > P (a), etc.)

Note on Completeness. Consider the step function, which jumps from 0 to 1 at
√

2,
but consider as its domain only the rational numbers. This function is differentiable, but
not uniformly. On the other hand, if a function is uniformly continuous (or uniformly dif-
ferentiable) on a dense subset of an interval, then, using completeness, one can extend the
function to the whole interval without loosing continuity (or differentiability) and without
changing the visible behaviour of the function. This is clearly the case for polynomials.
Moreover, the above estimates make sense in any field between Q and R which the student
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happens to know. Even in C they are useful. Therefore one can indeed discuss differen-
tiability before completeness. – Of course completeness remains essential if one wants to
define inverse functions or limit functions. I chose to discuss completeness immediately
before constructing limit functions, because I view this as the more spectacular applica-
tion, but I am not advertising that choice here, I am merely saying: If one decides to work
with uniform error bounds then this imposes fewer restrictions on where in the course one
chooses to discuss completeness, while uniform convergence does need prior knowledge of
completeness.

2. Differentiation Rules, Derivatives of Rational Functions

Differentiation rules are ment to compute derivatives of “complicated” functions, built out
of “simpler” ones, from the derivatives of the “simpler” functions. Since linear combina-
tions, products and compositions of polynomials give again (easy to differentiate) polyno-
mials the promise looks limited. However, there are some other functions which can be
differentiated directly from their definitions, and this will broaden our possibilities consid-
erably. We start with x→ 1/x and observe (1/x−1/a) = (a−x)/(x ·a). While in the case
of polynomials we could compute suitable error constants for any interval [a− r, a+ r] we
now have to avoid division by zero. With this extra care we have:

0 < a/2 ≤ x⇒ |1/x− 1/a| = |x− a|
x · a ≤ 2

a2
· |x− a|

0 < a/2 ≤ x⇒ (1/x− 1/a+
x− a
a2

) =
(x− a)2

x · a2

{
≥ 0
≤ 2a−3 · (x− a)2.

Composition of polynomials with this one extra function gets us to all rational functions.
Of course, the proof of the chain rule must pay attention to the distances from zeros which
occur in the denominators.
In a similar way we handle the square root function. Here extra attention is needed for the
domain of the function: As long as we only know rational numbers, the domain is rather
thin, it contains only the squares of rational numbers (which, however, are still a dense
subset). The following computation remains valid as more numbers become known.

0 < a/2 ≤ x⇒ |
√
x−
√
a| = |x− a|√

x+
√
a
≤ 1

1.7
a−1/2 · |x− a|

0 < a/2 ≤ x⇒ (
√
x−
√
a− x− a

2
√
a

) =
−(x− a)2

2
√
a(
√
x+
√
a)2

{
≤ 0
≥ 0.2a−3/2 · (x− a)2.

If we compose this function with polynomials then the discussion of the domain quickly
becomes unmanagable; the computation shows that we know, even with error bounds,
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what the derivative of the square root function has to be, well before we know enough
about numbers to be able to use this function freely.

All known proofs of the differentiation rules have the following property:
Given two differentiable functions f, g we abbreviate their tangent functions as
lf (x) := f(a) + f ′(a)(x− a), lg(x) := g(a) + g′(a)(x− a).
Then, if we assume that the differences f − lf , g− lg are “small”, then also the differences
(α · f + β · g)− (α · lf + β · lg), f · g − lf · lg, f ◦ g − lf ◦ lg
are in the same sense “small”.
To prove something we have to specify “small”. Because of the functions known so far we
may say: f − lf is “small” means, there exists an interval [a− r, a+ r] and a constant K
such that

x ∈ [a− r, a+ r]⇒ |f(x)− lf (x)| ≤ K · |x− a|2.

Later f − lf is “small” may have a more subtle interpretation:
For every ε > 0 there exists δ > 0 such that

x ∈ [a− δ, a+ δ]⇒ |f(x)− lf (x)| ≤ ε · |x− a|.

I find it important to emphasize that the form of the tangent approximation and the form
of the differentiation rules do not depend on the specification of “small”. Moreover,
even the strategy of the proofs does not depend on what exactly we mean by “small”: if we
change the definition of “small” in the assumptions, we can follow these changes through
the proofs and end up with the changed conclusion. This possibility, to repeat the proofs
under slightly changed assumptions, allows one to emphasize what is essential in these
proofs.

3. Monotonicity Theorem and Related Results

A fundamental fact of analysis is that rough information about the derivative f ′ of a
function f allows to deduce sharper information about f . As an example, take Lipschitz
bounds:

If x ∈ [α, ω]⇒ |f ′(x)| ≤ L then

a, b ∈ [α, ω]⇒ |f(b)− f(a)| ≤ L · |b− a|.

For functions with uniform tangent approximations, i.e. for all the functions discussed so
far, this fundamental theorem can be proved without invoking (even before discussing) the
completeness of the reals. The only tool needed is Archimedes Principle, which is obvious
for the rationals and an axiom for the reals:
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Archimedes Principle

If 0 ≤ r and r ≤ 1
n

for all n ∈ N then r = 0.

The most intuitive result from the family of theorems that exploit derivative information
probably is the

Monotonicity Theorem

Main assumption:
x ∈ [α, ω]⇒ f ′(x) ≥ 0.

Technical assumption replacing completeness: The function f can be uniformly approxi-
mated by its derivatives, i.e. there exist positive constants r,K such that

x, a ∈ [α, ω], |x− a| ≤ r ⇒ |f(x)− f(a)− f ′(a)(x− a)| ≤ K · |x− a|2.
Then f is nondecreasing:

a, b ∈ [α, ω], a < b⇒ f(a) ≤ f(b).

Note: The uniformity in the technical assumption is the crucial part, not the quadratic
error bound; if one assumes
For each ε > 0 exists a δ > 0, which can be chosen independent of a, such that

x, a ∈ [α, ω], |x− a| ≤ δ ⇒ |f(x)− f(a)− f ′(a)(x− a)| ≤ ε · |x− a|,
then the strategy of the following proof also works.

Proof. For any x, y ∈ [α, ω], x < y with |x−y| ≤ r we have (because of the two assumptions
of the theorem):

−K · |x− y|2 ≤ f(y)− f(x)− f ′(x)(y − x) ≤ f(y)− f(x).
Apply this to sufficiently short subintervals [tj−1, tj ] of the interval [a, b], i.e. put
tj := a+ j/n · (b− a), 0 ≤ j ≤ n, with (b− a)/n ≤ r (Archimedes!) and have:

−K(b− a)2/n2 ≤ f(tj)− f(tj−1), j = 1 . . . n,
then sum for j = 1 . . . n:

−K(b− a)2/n ≤ f(b)− f(a).
Archimedes Principle improves this to the desired claim 0 ≤ f(b) − f(a). (The previous
inequality changes under the ε-δ-assumption to −K(b − a) · ε ≤ f(b) − f(a), which also
implies the theorem.)
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Immediate consequences are:

Generalized monotonicity:

f ′ ≤ g′, a < b⇒ f(b)− f(a) ≤ g(b)− g(a)

Explicit bounds:

m ≤ f ′ ≤M, a < b⇒ m · (b− a) ≤ f(b)− f(a) ≤M · (b− a)

Multiplicative version:

0 < f, g,
f ′

f
≤ g′

g
, a < b⇒ (

g

f
)′ =

g

f
(
g′

g
− f ′

f
) ≥ 0⇒ f(b)

f(a)
≤ g(b)
g(a)

Iterated application to second derivatives:

|f ′′| ≤ B, a < x ⇒ −B(x− a) ≤ f ′(x)− f ′(a) ≤ B(x− a)

⇒ −B
2

(x− a)2 ≤ f(x)− f(a)− f ′(a)(x− a) ≤ B

2
(x− a)2.

These are strong improvements over the error bounds which were initially computed from
the coefficients of polynomials. As illustration consider the Taylor polynomials Tn(X) for
a (not yet constructed) function with f ′ = −f, f(0) = 1:

Tn(x) :=
n∑
k=0

(−1)k
xk

k!
, 0 ≤ x ≤ 1, T ′n(x) = −Tn−1(x).

Since this is a Leibniz series we have the nested intervals:
[1− x, 1] ⊃ [T1(x), T2(x)] ⊃ [T3(x), T4(x)] ⊃ . . . ⊃ [T2n−1(x), T2n(x)]

hence in particular: |T ′′n (x)| ≤ 1. The “second derivative consequence” of the monotonicity
theorem now implies uniform bounds for polynomials of arbitrarily large degree:

x, a ∈ [0, 1]⇒ |Tn(x)− Tn(a) + Tn−1(a)(x− a)| ≤ 1
2

(x− a)2.

Clearly, if we only had the existence of a limit function T∞ then Archimedes Principle
would imply without further words differentiability and derivative of the limit function:

x, a ∈ [0, 1]⇒ |T∞(x)− T∞(a) + T∞(a)(x− a)| ≤ 1
2

(x− a)2.

4. Completeness and Limits of Sequences of Functions

At most occasions I have prefered to begin the discussion of completeness with nested inter-
vals; immediate applications are Leibniz series like the just mentioned Taylor polynomials.
Thus we have interesting limit functions together with their derivatives right from the start.
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Cauchy sequences are the second step; the most important applications are sequences or
series which are dominated by the geometric series (i.e. power series and the contraction
lemma). Existence of sup and inf for bounded nonempty sets gives the most compact
formulation for dealing with completeness. I have used the standard text book arguments,
only the applications change since the results of the earlier sections are of significant tech-
nical help.
Note. Since so much emphasis was placed on computable error bounds I mention that the
theorem “Monotone increasing, bounded sequences converge” is a very significant exception.
In my opinion this intuitively desirable theorem is a major justification of the standard limit
definition: Because the convergence speed of monotone increasing, bounded sequences can
be slowed down arbitrarily (namely by repeating the elements of the sequence more and
more often) one cannot prove the monotone sequence theorem with any version of a limit
definition which requires more explicit error control than the standard definition. By con-
trast, in numerical analysis one tries to use sequences which converge at least as fast as
some geometric sequence, i.e. one has more explicit control like |an+p − an| ≤ C · qn.

I illustrate how the monotonicity theorem often allows short replacements of standard
induction proofs.

Bernoulli’s inequality is a version of the monotonicity theorem:
f(x) := (1 + x)n ≥ 1 + n · x = f(0) + f ′(0) · x, since f ′′(x) ≥ 0 for x ≥ −1.

The monotonicity of n→ fn(x) := (1 + x/n)n, 0 ≤ x and the decreasing of
n → gn(x) := (1 − x/n)−n, 0 ≤ x < n requires no technical skill since (f ′n/fn)(x) =
1/(1 + x/n) ≤ (f ′n+1/fn+1(x) ≤ 1 ≤ 1/(1− x/n) = (g′n/gn)(x) ≤ (g′n−1/gn−1)(x).

The following are convenient estimates of the geometric series and its derivatives which give
the desired uniform constants when dealing with power series:

0 ≤ x < 1,
n∑
k=0

xk =
1− xn+1

1− x ≤ 1
1− x(

n∑
k=0

xk

)′
=

n∑
k=1

kxk =
−(n+ 1)xn

1− x +
1− xn+1

(1− x)2
≤ 1

(1− x)2(
n∑
k=0

xk

)′′
=
−(n+ 1)nxn−1

1− x − 2(n+ 1)xn

(1− x)2
+ 2

1− xn+1

(1− x)3
≤ 2

(1− x)3
.

As mentioned, the Contraction Lemma is also proved with explicit error bounds: Functions
f : M →M with |f ′| ≤ q < 1 are contracting, |f(x)−f(y)| ≤ q ·|x−y|. And for contracting
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maps sequences generated by iteration, an+1 := f(an), are geometrically dominated and
hence Cauchy:

|an+p − an| ≤
|a1 − a0|

1− q · qn.

An example of a contracting rational map with the irrational golden ratio as fixed point
is

f(x) := 1/(1 + x), f : [1/2, 1]→ [1/2, 1], |f ′(x)| ≤ | − (1 + x)−2| ≤ 4/9.
The approximating sequence a0 = 1, a1 = 1/(1 + 1), . . . , an = 1/(1 + 1/(1 + 1/ . . .)) consists
of the optimal approximations from continued fractions. This is to show that sequences
do appear in my approach, but they are handled with the monotonicity theorem and not
presented as the road to differentiation.

The main question about limit functions is, of course, “What is their derivative?” Usually
one employs uniform convergence of the differentiated sequence and the main theorem
connecting differentiation and integration. I illustrate the use of uniform error bounds in
the case of power series Pn(X) :=

∑n
k=0 akX

k. The basic tool in both approaches is the
comparison with a geometric series and it will better bring out the differences if I add an
assumption which simplifies either approach: a bound for the coefficients, |ak| ≤ C.
Then we have for all x with |x| ≤ q < 1

|Pn+m(x)− Pn(x)| ≤
∑
n<k

|ak|qk ≤
C

1− q q
n+1,

which shows that {Pn(x)} is a Cauchy sequence (in fact uniformly for |x| ≤ q). For the
first derivatives we obtain uniform bounds by comparing with the geometric series

|P ′n(x)| ≤
∑
k≥1

|ak|kqk−1 ≤ C

(1− q)2
=: L.

The Monotonicity Theorem implies for all n the Lipschitz bound

|x|, |y| ≤ q ⇒ |Pn(y)− Pn(x)| ≤ L · |y − x|

and Archimedes Principle extends this uniform estimate to the limit function

|x|, |y| ≤ q ⇒ |P∞(y)− P∞(x)| ≤ L · |y − x|.

Similarly we employ our estimate of the geometric series to get uniform bounds for the
second derivatives

|P ′′n (x)| ≤
∑
k≥2

|ak|k(k − 1)qk−2 ≤ C

(1− q)3
=: K,
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we use the Monotonicity Theorem to get uniform tangent approximations

|x|, |y| ≤ q ⇒ |Pn(y)− Pn(x)− P ′n(x)(y − x)| ≤ K · |y − x|2,

and Archimedes Principle again extends these uniform bounds to the limit

|x|, |y| ≤ q ⇒ |P∞(y)− P∞(x)− lim
n→∞

P ′n(x)(y − x)| ≤ K · |y − x|2.

This proof of the differentiability and the determination of the derivative of the limit func-
tion clearly extends to complex power series, a first step to higher dimensional analysis.
Another immediate extension is to the differentiation of curves c := (c1, c2, c3) : [a, b]→ R3,
which is important in itsself but also a prerequisite for analysis in Rn.

5. Integrals, Riemann Sums, Antiderivatives

Some notion of tangent (and hence some version of derivative) was known centuries be-
fore Newton. Similarly, summation of infinitesimals had already troubled the Greeks, and
Archimedes determination of the area bounded by a parabola and a secant was definite
progress. Against the background of this early knowledge I find the conceptual progress
achieved with the definition of the integral even more stunning than that achieved with
differentiation. I try to teach integrals as a fantastic generalization of sums, they allow for
example to “continuously sum” the velocity of an object in order to obtain the distance
which it travelled. With this goal in mind I think it is fundamental that Riemann sums of
a function f can be computed up to controlled errors if one knows an antiderivative F of
the given f , i.e. F ′ = f . I use the standard definition of the integral in terms of Riemann
sums. I add a construction of an antiderivative F for a continuous f which is in the spirit
of uniform error control, but from now on the differences to the standard approach are not
very pronounced.

Let f : [a, b]→ R3 be given. Consider a subdivision of [a, b], i.e. a = t0 < t1 < . . . < tn = b

and choose intermediate points τj ∈ [tj−1, tj ], j = 1 . . . n. For these data we define the

Riemann Sum

RS(f) :=
n∑
j=1

f(τj)(tj − tj−1).

Now, if f is at least continuous and F ′ = f then the difference |F (b) − F (a) − RS(f)| is
“small”; how “small” depends on the precise assumption for f , for example a Lipschitz
bound, x, y ∈ [a, b]⇒ |f(y)− f(x)| ≤ L · |y − x|, implies the

Error Bound

|F (b)− F (a)−RS(f)| ≤ L · (b− a) · max
1≤j≤n

|tj − tj−1|.
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This estimate (or other versions) follows from the Monotonicity Theorem and the triangle
inequality; first note the derivative bound:

x ∈ [tj−1, tj ]⇒|(F (x)− f(τj) · x)′| = |f(x)− f(τj)| ≤ L · |x− τj | ≤ L · |tj − tj−1|,
hence

|F (tj)− F (tj−1)− f(τj)(tj − tj−1)| ≤ L · |tj − tj−1|2,

so that summation over j = 1 . . . n gives the claimed error bound.

Continuity (see below) of f implies with the same arguments an ε-δ-error bound:

max
1≤j≤n

|tj − tj−1| ≤ δ ⇒ |F (b)− F (a)−RS(f)| ≤ ε · (b− a).

I prefer to define the integral for vector valued functions (for direct application to integrals
of velocities). The notion of limit has to be generalized to cover “convergence” of Riemann
sums: For every ε > 0 there is a subdivison of [a, b] such that for all finer subdivisions

and all choices of intermediate points τj the corresponding Riemann sums differ by less
than ε. Almost the same argument as used to prove the error bound gives: For continuous
(or better) f the Riemann sums converge; the limit is called the integral of f over [a, b],
notation

∫ b
a
f(x)dx. Moreover, if F ′ = f then the error bound proves

F (b)− F (a) =
∫ b

a

f(x)dx.

The triangle inequality for Riemann sums gives the Triangle Inequality for Integrals

a < b⇒
∣∣∣∣∣
∫ b

a

f(x)dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)|dx.

Also other analogies between sums and integrals need to be discussed.
I describe a construction of an antiderivative which is independent of the definition of the
integral (its proof, based on uniformity, works in Banach spaces).

Theorem. Let f be Lipschitz continuous on [a, b] (soon: uniformly continuous). Then
one can approximate f uniformly by piecewise linear “secant” functions sn. These have
piecewise quadratic antiderivatives and a limit of these is an antiderivative of f . In more
detail:

sn(tj) := f(tj), j = 0, . . . , n, (a = t0 < t1 < . . . < tn = b)

sn(x) :=
f(tj−1) · (tj − x) + f(tj) · (x− tj−1)

tj − tj−1
for x ∈ [tj−1, tj ]

|f(x)− sn(x)| ≤ L ·max |tj − tj−1| =: rn
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Obviously, sn has a piecewise quadratic antiderivative Sn, S
′
n(x) = sn(x), Sn(0) = 0. From

the Monotonicity Theorem and
|S′n+m(x)− S′n(x)| ≤ 2rn

we have the (uniform) Cauchy property:
|Sn+m(x)− Sn(x)| ≤ 2(b− a)rn,

which, by completeness, gives a limit function S∞. But we again have uniform error
bounds:

|(Sn(x)− Sn(c)− sn(c)(x− c))′| = |sn(x)− sn(c)| ≤ L · |x− c|,
hence

|Sn(x)− Sn(c)− sn(c)(x− c)| ≤ L · |x− c|2.

Archimedes Principle gives the final result:

|S∞(x)− S∞(c)− f(c)(x− c)| ≤ L · |x− c|2,

which says that S∞ is differentiable with derivative f , as claimed.

Note in this proof: The approximation Sn(b)− Sn(a) for S∞(b)− S∞(a) =
∫ b
a
f(x)dx is a

frequently used numerical approximation for the integral of f .

6. Continuity, Theorems and Examples

The arguments in this last section are the standard arguments. My point is that with the
experience of the previous sections one can achieve a better understanding of continuity
and, moreover, this takes less time than a treatment of continuity in the early parts of a
course. Since convergent sequences were such an essential tool (for getting limit functions)
we ask: “What kind of functions are compatible with convergence?” We define:

f : A ⊂ Rd → Re is called sequence continuous at a ∈ A
if every sequence an ∈ A which converges to the limit a ∈ A has its image sequence f(an)
converging to f(a).

We see that linear combinations, products, compositions of sequence continuous functions
are (directly from the definition) sequence continuous. But 1/f causes a problem:

If f(a) 6= 0 then we would like to find an interval [a− δ, a+ δ] on which f is not zero.

If such an interval could be found then on it 1/f would clearly be sequence continuous. It
is well known that such a δ > 0 can only be found with an indirect proof. But this proof is
essential for understanding continuity. It is also very similar to the equivalence of sequence
continuous and ε-δ-continuous.
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Definition: f is ε-δ-continuous at a if for every ε > 0 there exists a δ > 0 such that

x ∈ [a− δ, a+ δ ]⇒ |f(x)− f(a)| ≤ ε.

It remains to prove the main theorems and to show examples. First I give short summaries
of the proofs to recall what kind of arguments are involved. 1.) The intermediate value
theorem: By interval halfing construct a Cauchy sequence which converges to a preimage
of the given intermediate value. 2.) Boundedness on complete, bounded sets: In an indirect
proof construct by interval halfing a Cauchy sequence on which the function f is unbounded,
a contradiction to the continuity at the limit point of the Cauchy sequence. 3.) Extremal
values are assumed on complete, bounded sets: Since the function is bounded by the
previous result we have sup f and inf f ; with interval halfing we find Cauchy sequences
{an} such that the sequences of values, {f(an)}, converge to sup f resp. inf f . 4.) Uniform
continuity on complete, bounded sets: Necessarily indirect, if for some ε∗ > 0 no δ > 0
is good enough then we find a pair of Cauchy sequences {an}, {bn} which have the same

limit but |f(an)−f(bn)| ≥ ε∗, a contradiction to the continuity at the common limit point.
5.) Uniformly convergent sequences of continuous functions have a continuous limit function:
To given ε > 0 choose an ε/3-approximation from the sequence and for this (continuous!)
approximation find δ > 0 for ε/3-deviations; this δ guarantees with the triangle inequality
at most ε-deviations for the limit function.

From the construction of examples I recall that comparison with a geometric sequence is
the main tool. I find it misleading to call the following examples “weird”, as if continuity
“really” were much more harmless. 1.) The polygonal approximations of Hilbert’s cube
filling curve are explicitly continuous: To guarantee value differences ≤ 2−n the arguments
have to be closer than 8−n; Archimedes Principle concludes the same for the limit func-
tion. 2. Similarly for Cantor’s staircase, a monotone increasing continuous function which
is differentiable with derivative 0 except on a set of measure zero: The piecewise linear
approximations satisfy: To guarantee value differences ≤ 2−n the arguments have to be
closer than 3−n and Archimedes Principle does the rest. 3.) And continuous but nowhere
differentiable functions can be obtained as obviously uniform limits of sums of faster and
faster oscillating continuous functions like

∑
k 2−k sin(8kx).

In view of the much better-than-continuos properties of all the functions we have so far been
concerned with, I find it not so obvious how to demonstrate the usefulness of the notion
of continuity. The proof of the existence of solutions of ordinary differential equations
based on the Contraction Lemma in the complete metric space of continuous functions
(sup-norm) is my lowest level convincing example.

12



Since the Monotonicity Theorem and its consequences are usually derived from the (es-
sentially one-dimensional) Mean Value Theorem of Differentiation, I finally show that the
theorems which conclude from assuming derivative bounds can be obtained with shorter
proofs (again valid in Banach spaces).

Theorem: Derivative bounds are Lipschitz bounds.

More precisely, let A ⊂ Rd be a convex subset and let F : A → Re be ε-δ-differentiable,
and for emphasis: without any uniformity assumption. Assume further a bound on the
derivative: x ∈ A⇒ |TF (x)| ≤ L. Then

a, b ∈ A⇒ |F (a)− F (b)| ≤ L · |a− b|.

Indirect proof via halfing. If the inequality were not true then we had some a, b ∈ A with
|F (a)−F (b)| > L · |a−b|, i.e. with some fixed η > 0 we had |F (a)−F (b)| ≥ (L+η) · |a−b|.
Let m := (a+ b)/2 be the midpoint. Then for either a,m or m, b the same inequality has
to hold (since otherwise, by the triangle inequality, |F (a) − F (b)| < (L + η) · |a − b|). In
other words, we have a1, b1 with half the distance |a1 − b1| = |a− b|/2, but still

|F (a1)− F (b1)| ≥ (L+ η) · |a1 − b1|.
This procedure can be repeated, we get a pair of Cauchy sequences {an}, {bn} with the
same limit c between an and bn on the closed segment from a to b, but with the inequalities:

|F (an)− F (bn)| ≥ (L+ η) · |an − bn|.
By differentiability of F at c ∈ A we have for ε = η/2 a δ > 0 such that

x ∈ A, |x− c| ≤ δ ⇒ |F (x)− F (c)− TF |c · (x− c)| ≤ ε · |x− c|
⇒ |F (x)− F (c)| ≤ (L+ ε) · |x− c|.

Choose n so large that |an − c|, |bn − c| ≤ δ so that the last inequality holds for x = an

and x = bn. Add the inequalities and observe |an − c|+ |bn − c| = |an − bn| to obtain the
contradiction

(L+ η) · |an − bn| ≤ |F (an)− F (bn)| ≤ (L+ η/2) · |an − bn| < (L+ η) · |an − bn|.
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