
The Mandelbrot Set And
Its Associated Julia Sets

If one wants to study iterations of functions or map-
pings, f◦n = f ◦ . . . ◦ f , as n becomes arbitrarily large
then Julia sets are an important tool. They show up
as the boundaries of those sets of points p whose it-
eration sequences f◦n(p) converge to a selected fixed
point pf = f(pf ). One of the best studied cases is
the study of iterations in the complex plane given by
the family of quadratic maps

z → fc(z) := z2 − c.

The Mandelbrot set will be defined as a set of pa-
rameter values c. It provides us with some classifi-
cation of the different ‘dynamical’ behaviour of the
functions fc in the following sense: If one chooses a
c-value from some specific part of the Mandelbrot set
then one can predict rather well how the iteration se-
quences zn+1 := fc(zn) behave.

1) Infinity is always an attractor. Or, more
precisely, for each parameter value c we can define a



Radius Rc ≥ 1 such that for |z| > Rc the iteration
sequences f◦n(z) converge to infinity. Proof: The tri-
angle inequality shows that |fc(z)| ≥ |z|2−|c| and then
|fc(z)| > |z| is certainly true if |z2| − |c| > |z|. There-
fore it is sufficient to define Rc := 1/2 +

√
1/4 + |c|,

which is the positive solution of R2 −R− |c| = 0.
This implies: if we start the iteration with z1 > Rc

then the absolute values |zn| increase monotonically—
and indeed faster and faster to infinity. Moreover, any
starting value z1 whose iteration sequence converges
to infinity will end up after finitely many iterations in
this neighborhood of infinity, U∞ := {z ∈ C | |z| >
Rc}. The set of all points whose iteration sequence
converges to infinity is therefore an open set, called
the attractor basin A∞(c) of infinity.

2) Definition of the Julia set Jc. On the other
hand, the attractor basin of infinity is never all of C,
since fc has fixed points zf = 1/2±

√
1/4 + c (and also

points of period n, that satisfy a polynomial equation
of degree 2n, namely f◦n(z) = z).

Definition. The nonempty, compact boundary of the
attractor basin of infinity is called the Julia set of fc,

Jc := ∂A∞(c).



Example. If c = 0 then the exterior of the unit circle
is the attractor basin of infinity, its boundary, the unit
circle, is the Julia set J0. The open unit disk is the
attractor basin of the fixed point 0 of fc. The other
fixed point 1 lies on the Julia set; 1 is an expand-
ing fixed point since f ′c(1) = 2; its iterated preimages
−1,±i, . . . all lie on the Julia set.
Qualitatively this picture persists for parameter val-
ues c near 0 because the smaller fixed point remains
attractive. However, the Julia set immediately stops
being a smooth curve—it becomes a continuous curve
that oscillates so wildly that no segment of it has finite
length. Its image is one of those sets called a fractal for
which a fractional dimension between 1 and 2 can be
defined. Our rainbow coloration is intended to show
Jc as a continuously parametrized curve. We next
take a more carefull look at attractive fixed points.

3) c-values for which one fixed point of fc is
attractive.

There is a simple criterion for this: if the derivative
at the fixed point satisfies |f ′c(zf )| = |2zf | < 1 then
zf is a linearly attractive fixed point; if |2zf | > 1 then
zf is an expanding fixed point; if the derivative has



absolute value 1 then no general statement is true (but
interesting phenomena occur for special values of the
derivative).
Since the sum of the two fixed points is 1, the deriva-
tive f ′c can have absolute value < 1 at most at one of
them. Let wc be that square root of 1 + 4c having a
positive real part. Then |1− wc| is the smaller of the
absolute values (of the derivatives of fc at the fixed
points). The set of parameter values c with a (lin-
early) attractive fixed point of fc is therefore the set
{c | |1−wc| < 1}, or {c = (w2 − 1)/4 | |1−w| < 1}.
In other words, the numbers 1 + 4c are the squares of
numbers w that lie in a disk of radius one with 0 on
its boundary. The apple shaped boundary is therefore
the square of a circle through 0. It is called a cardioid.

4) The definition of the Mandelbrot set in the
parameter plane.

The behavior of the iteration sequence zn+1 := fc(zn)
in the z-plane depends strongly on the value of the
parameter c. It turns out that for those c satisfying
|c| > Rc, the set of points z whose iteration sequences
do not converge to infinity has area = 0. Such points
are too rare to be found by trial and error, but one



can still compute many as iterated preimages of an
unstable fixed point. It follows from |c| > Rc that
only the points of the Julia set Jc do not converge to
infinity. Moreover, the Julia set is no longer a curve,
but is a totally disconnected set: no two points of the
Julia set can be joined by a curve inside the Julia set.
(In this case our coloration of Jc has no significance.)
The Mandelbrot set is defined by the opposite be-
haviour of the Julia sets:
Mandelbrot Set : M := {c | Jc is a connected set}

There is an 80 year old theorem by Julia or Fatou that
says:

M = {c | f◦nc (0) stays bounded}
= {c | |f◦nc (0)| < Rc for all n}.

This provides us with an algorithm for determining
the complement of M; namely c 6∈ M if and only if
the iteration sequence {f◦nc (0)} reaches an absolute
value > Rc for some positive integer n. (But, the
closer c is to M, the larger this termination number
n becomes).
On the other hand, if fc has an attractive fixed point,
then it is also known that {f◦nc (0)} converges towards



that fixed point. The interior of the cardioid described
above is therefore part of the Mandelbrot set, and in
fact it is a large part of it.
As experiments we suggest to choose c-values from the
apple-shaped belly of the Mandelbrot set and observe
how the Julia sets deform as c varies from 0 to the car-
dioid boundary. For an actual animation, choose the
deformation interval with the mouse (Action Menu)
and then select ‘Morph’ in the Animation Menu. To
see how the derivative at the fixed point controls the
iteration near the fixed point, choose ‘Iterate Forward’
(Action Menu) and watch how chosen points converge
to the fixed point. This is very different for c from dif-
ferent parts of the Mandelbrot belly.

5) Attractive periodic orbits. As introduction let
us determine the orbits of period 2, i.e., the fixed
points of fc ◦ fc that are not also fixed points of fc.
Observe that:

fc ◦ fc(z)− z = z4 − 2cz2 − z + c2 − c

= (z2 − z − c)(z2 + z − c + 1).

The roots of the first quadratic factor are the fixed
points of fc, the roots of the other quadratic factor



are a pair of points that are not fixed points of fc, but
are fixed points of fc ◦ fc, which means, they are an
orbit of period 2, clearly the only one. Such an orbit
is (linearly) attractive if the product of the derivatives
at the points of the orbit has absolute value < 1. The
constant coefficient in the quadratic equation is the
product of its roots, i.e. the product of the points of
period 2 is 1− c. Therefore:

The set of c-values for which the orbit of period 2 is
attractive is the disk {c | |1− c| < 1/4}.
Again, this disk is part of the Mandelbrot set since
{f◦nc (0)} has the two points of period 2 as its only
limit points.
The interior of the Mandelbrot set has only two com-
ponents that are explicitly computable. These are the
c-values giving attractive fixed points or attractive or-
bits of period 2. For example, the points of period 3
are the zeros of a polynomial of degree 6, namely:(

fc ◦ fc ◦ fc(z)− z
)
/(z2 − z − c)

= z6 + z5 + (1− 3c)z4 + (1− 2c)z3+

+ (1− 3c + 3c2)z2 + (c− 1)2z + 1− c(c− 1)2.

But since this polynomial cannot be factored (with



c a parameter) into two polynomials of degree 3 it
does not provide us with a description of the attrac-
tive orbits of period 3. However, it does give those
c-values for which the period 3 orbits are superattrac-
tive (i.e. (f◦3)′(orbit point) = 0), since in this case the
constant term must vanish. Approximate solutions of
1−c(c−1)2 = 0 are c = 1.7549, c = 0.12256±0.74486i.
One can navigate in the Mandelbrot set and observe
that the complex solutions are in the middle of the
two biggest blobs that touch the primary apple from
either side.
Linearly attractive orbits always have c-values which
belong to open subsets of the Mandelbrot set (in par-
ticular all the blobs touching the two explicit compo-
nents), but the closure of these open subsets does not
exhaust the Mandelbrot set. For example for c = i
the orbit of 0 is 0 7→ −i 7→ −1 − i 7→ i 7→ −1 − i . . .,
i.e., after two preliminary steps it reaches an orbit of
period 2. Since this orbit stays clearly bounded we
have i ∈ M (by the criterium quoted before). On the
other hand, if the iteration z 7→ z2 − i had any at-
tractor (besides ∞), then the orbit of 0 would have
to converge to the attracting orbit. Therefore there
is no attractor and no attractor basin. In fact, the



complement of the Julia set is the (simply connected)
attractor basin of ∞. Because of its appearance, this
Julia set is called a dendrite.
To generalize this observation, consider, for any c, the
orbit of 0: 0 7→ −c 7→ c2 − c 7→ c4 − 2c3 + c2 − c 7→
(c4−2c3 +c2−c)2−c 7→ . . .. If 0 is on a periodic orbit
for some c, then this orbit is superattractive. If the
periodicity starts later then this periodic orbit may
not be an attractor even though the orbit of 0 reaches
it in finitely many steps. For example c2−c is periodic
of period 3, if c3 · (c−2) · (c3−2c2 +c−1)2 · (c6−2c5 +
2c4 − 2c3 + c2 + 1) = 0; c = 2 is the largest point on
the Mandelbrot set, the third factor has as roots the
three c-values (mentioned before) for which the itera-
tion has superattractive orbits of period 3. The last
factor has the root c = 1.239225555+0.4126021816 · i,
its Julia set is another dendrite. A third dendrite is
obtained, for example, if the 4th point c4−2c3 +c2−c
in the orbit of 0 is a fixed point, which is the case
if c4(c − 2)(c3 − 2c2 + 2c2 − 2) = 0; here the last
factor has the numerical solutions c = 1.543689 and
c = 0.2281555± 1.1151425 · i.

6) Suggestions for experiments. The final entry
in the Action Menu for the Julia set fractal is a hier-



achical menu with five submenus, each of which lists a
number of related c-values that you may select. The
c-values in these menus were selected because they
typify either some special topological property of the
associated Julia set or some dynamical property of the
iteration dynamics of z 7→ z2 − c, and these proper-
ties are referenced by special abbreviations added to
the menu item. (In addition some menu items also
list a “name” that is in common use to refer to the
Julia set, usually deriving from its shape). For conve-
nience we will list in the next couple of pages all the
items from these five menus, but first we explain the
abbreviations used to describe them.

‘FP’ means ‘fixed point’, the corresponding c-values
are from the belly of the Mandelbrot set. ‘cyc k’
means ‘cyclic of period k’, the corresponding c-values
are from the blobs directly attached to the belly; its
Julia sets have a fixed point which is a common bound-
ary point of k components of the attractor basin and
the attractive orbit wanders cyclicly through these k
components. ‘per 2 · 3’ means: this c-value has an at-
tractor of period 6 and the c-value is from a blob which
is attached to the disk in M (which gives the attrac-



tive orbits of period 2). By contrast, ‘per 3 · 2’ means
that the c-value is from the biggest blob which is at-
tached to a period-3 blob (attached to the belly); its
attractor has also period 6, but the open sets through
which the attractive orbit travels are arranged quite
differently in the two cases. One should compare both
of them with the cyclic attractors of period 2 resp. 3.
The abbreviation ‘tch 1-2’ means that the c-value is
in the Mandelbrot set a common boundary point be-
tween the belly (i.e. the component of attractive fixed
points) and the component of attractors of period 2.
For the ‘Siegel disks’ see Nr. 8 of this ATO first; the
column entry in the list gives the rotation number of
the derivative (of the iteration map) at the fixed point.
In the dendrite section of the list we mean by ‘ev per 2’
that the orbit of 0 is ‘eventually periodic with period
2’, as explained in Nr5 of this ATO. Finally, if c 6∈ M
then the Julia set is a totally disconnected Cantor set
and there are no such easy distinctions between dif-
ferent kinds of behaviour of the iteration on the Julia
set (all other points are iterated to ∞).



Interesting C-values From the Action Submenus.

C−values Popular Name Behaviour
Attractors Menu.

0.0 + 0.0 ·i Circle FP
0.0 + 0.1 ·i Rough Circle FP

0.127 + 0.6435 ·i Near-Rabbit FP
−0.353 − 0.1025 ·i Near-Dragon FP
0.7455 + 0.0 ·i Near San Marco FP

1.0 + 0.0 ·i cyc 2
1.0 + 0.2 ·i cyc 2

0.1227 + 0.7545 ·i Rabbit cyc 3
1.756 + 0.0 ·i Airplane cyc 3

−0.2818 + 0.5341 ·i cyc 4
1.3136 + 0.0 ·i per 2 · 2
−0.3795 + 0.3386 ·i cyc 5
0.5045 + 0.5659 ·i cyc 5
−0.3909 + 0.2159 ·i cyc 6
0.1136 + 0.8636 ·i per 3 · 2
1.1409 + 0.2409 ·i Rabbit’s Shadow per 2 · 3
−0.3773 + 0.1455 ·i cyc 7
−0.1205 + 0.6114 ·i cyc 7
−0.36 − 0.1 ·i Dragon cyc 8
0.3614 + 0.6182 ·i cyc 8
−0.3273 + 0.5659 ·i per 4 · 2

1.0 + 0.2659 ·i per 2 · 4
1.3795 + 0.0 ·i per 2 · 2 · 2
0.0318 + 0.7932 ·i Rabbit Triplets per 3 · 3
−0.0500 + 0.6318 ·i cyc 10
−0.4068 + 0.3409 ·i per 5 · 2
0.5341 + 0.6023 ·i per 5 · 2
0.9205 + 0.2477 ·i per 2 · 5
1.2114 + 0.1545 ·i per 2 · 5
0.6977 + 0.2818 ·i cyc 11
0.4864 + 0.6023 ·i Quintuple Rabbits per 5 · 3

0.65842566307252 − 0.44980525145595 ·i SuperAttractor per 21



Interesting C-values From the Action Submenus.

C−values Popular Name Behaviour
Between Attractors Menu.

0.75 + 0.0 ·i San Marco tch 1-2
1.25 + 0.0 ·i San Marco’s Shadow tch 2-2·2
0.125 + 0.64952 ·i Balloon Rabbit tch 1-3

−0.35676 + 0.32858 ·i tch 1-5
Siegel Disks Menu.

0.390540870218 + 0.586787907347 ·i 2π · i · gold
−0.08142637539 + 0.61027336571 ·i 2π · i/

√
2

0.66973645476 − 0.316746426417 ·i 2π · i/
√

5
One Simply Connected Open Component Menu.

0.0 + 1.0 ·i Dendrite ev per 2
0.2281554936539 + 1.1151425080399 ·i Dendrite FP[after 3]
1.2392255553895 − 0.4126021816020 ·i Dendrite ev per 3
−0.4245127190500 − 0.2075302281667 ·i FP after 7
1.1623415998840 + 0.2923689338965 ·i per 2 after 7
Outside Mandelbrot set Menu.

0.765 + 0.12 ·i Cantor set
−0.4 − 0.25 ·i Cantor set

−0.4253 − 0.2078 ·i Cantor set



An experiment which one should always make after
one has computed a Julia set for some c from the
Mandelbrot set: Remember from which part of M c
came and then ‘Iterate Forward’ (Action Menu) mouse
selected points until they visually converge to a peri-
odic attractor. Observe how the shape of the Julia set
lets one guess the period of its attractor and how this
relates to the position of c in M.

7) Computation of the Julia set. In addition to
the attractor at infinity there is at most one further
attractor in the z → (z2−c) systems. All preimages of
non-attractive fixed points or non-attractive periodic
orbits are points on the Julia set. Since |f ′c| > 1 along
the Julia set (with some exceptions), the preimage
computation is numerically stable. This is a common
method for computing Julia sets.
In our program we compute preimages starting from
the circle {z | |z| = Rc} around the wanted Julia
set. Under inverse images these curves converge from
outside to the Julia set. Such an approximation by
curves allows us to color the Julia set in a continuous
way and thus emphasize that, despite its wild looks
it is the image of a continuous curve—at least for c ∈



M , otherwise we recall that the Julia set is totally
disconnected, so in particular is not the image of a
curve. Our computation works also for c 6∈ M, since
our ‘curves’ of course consist of only finitely many
points, and the inverse images of each of these points
have their limit points on the Julia set.

8) Self-similarity of a Julia set. A well adver-
tised property of these Julia sets is their so called
‘self-similarity’. By this one means: Take a small
piece of the Julia set and enlarge it; the result looks
very much like a larger piece of that same Julia set.
For the Julia sets of the present quadratic iterations,
this self-similarity is easily understood from the defi-
nitions: The iteration map fc is a conformal map that
stretches its Julia set 1:2 onto itsself. In other words,
the iteration map itself maps any small piece of its
Julia set to roughly twice as large a piece, and it does
so in an angle preserving way. From this point of view
self-similarity should come as no surprise.

9) Siegel Disks. We next would like to explain an
experimentally observable phenomenon that mathe-
maticians find truly surprising, but this needs a little
preparation.



Simplifying Mappings. Imagine that we want to de-
scribe something on the surface of the earth, for exam-
ple a walk. For a long time, people have been more
comfortable giving the description on a map of the
earth rather than on the earth itself. Mathematicians
view a map of the earth more precisely as a mapping F
from the earth to a piece of paper and they describe
(or even prove) properties of the map by properties
of the mapping F . An example of a useful property
is ‘conformality’: angles between curves on the earth
are the same as the angles between the corresponding
curves on the map.
Conjugation by simplifying mappings. Let us con-
sider one of the above iteration maps fc and assume
that it has an attractive fixed point zf with derivative
q := f ′c(zf ), |q| < 1. The simplest map with the same
derivative is the linear map L(z) := q · z. It is the def-
inition of derivative that the behaviour of fc near the
fixed point looks ‘almost’ like the behaviour of L near
its fixed point 0, and ‘almost’ means: the smaller the
neighborhoods of the fixed points (on which the maps
are compared) the more the maps look alike. But
more is true for fc because of the assumption |q| < 1,
we have the theorem: There exists on a fixed(!) neigh-



borhood of the fixed point zf a simplifying map F to
a neighborhood of 0 ∈ C that makes fc look exactly
like its linear approximation L, by which we mean:
fc = F−1◦L◦F . In particular, this tells us everything
about the iterations of fc in terms of the iterations of
L because they also look the same when compared us-
ing (‘conjugation’ by) F : f◦nc = F−1 ◦ L◦n ◦ F .
Siegel’s Theorem. The previous result cannot be true
in general if |q| = 1. For example if q = exp(2πi/k),
then L◦k = id, but f◦kc =/ id. Therefore they can-
not look alike under a simplifying (i.e., ‘conjugating’)
mapping F . But if z → q · z is an irrational ro-
tation and if some further condition is satisfied, for
example if q := exp(2πi/

√
2), then there is again

such a simplifying mapping F such that fc looks near
that fixed point exactly like its linearization, namely:
fc = F−1 ◦ L ◦ F .
Experiment. While Siegel’s proof insures only very
small neighborhoods on which the simplifying map-
ping F exists, these neighborhoods are surprisingly
large in the present case. One can ‘observe’ Siegel’s
theorem by first choosing c = ((1 − q)2 − 1)/4 such
that f ′c(zf ) = q with q = exp(2πi · k/

√
p), p prime

(or square free), then one chooses points on a fairly



straight radial curve from the fixed point almost out to
the Julia set. Under repeated iterations these points
travel on closed curves around the fixed point (’cir-
cles’ when viewed with F ) and all of them travel with
the same angular velocity, i.e., one observes that they
remain on non-intersecting radial curves.
H.K.




