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Preface to the Oct. 2002 Version

Over the years I have tried out many details from this manuscript in my Analysis I courses,
but only in the winter 1999/2000 course for computer science students did I have a chance
to teach completely along the following lines. In the first term I deviate substantially from
how the Analysis material is usually organized. Nevertheless, starting from the second
term, one can continue with a standard course.
A second preface is a 10 page summary to facilitate a comparison with the standard ap-
proach.
Since I treat continuity only at the end of the first term, people jump to the conclusion
that I want to reduce the role of continuity. Exam results support my conviction that I
actually achieve a better understanding of continuity, because it is only treated when the
students have already achieved quite a lot of experience with the arguments and goals of
Analysis.
One central theme is to make students observe that new objects in analysis are mostly
constructed via approximation by already well understood objects. Irrational numbers are
approximated by rational ones, new functions like exp, sin and cos are approximated by
polynomials or rational functions. These “constructions by approximation” are on the one
hand amazingly powerful, and on the other hand require careful arguments to figure out
what the derivatives of these only approximately computable functions are. On top of
that, the importance of almost all these new functions lies in the properties of their deriva-
tives (e.g., f 0 = f), so that some preliminary understanding of di↵erentiation is needed
before one can turn to them. This preliminary understanding is acquired by working with
polynomials.

This manuscript begins with two introductory chapters. First we discuss, with nine ex-
amples, absolute and relative di↵erences and errors. The last example discusses tangents
of the circle. The observed properties allow in the second chapter to define tangents (and
slopes) for the quadratic parabola and to explain with the properties of these tangents some
important applications, e.g. the concave mirror.
The developed comparison arguments can be generalized to define, in chapter 3, tangents
and slopes of all the polynomial functions. An important detail is that polynomial functions
deviate from their tangents by less than an explicit quadratic error term. These observa-
tions are the basis for a di↵erentiability definition in terms of explicit quadratic error terms.
One may think of this definition as “easy di↵erentiability”. All rational functions can im-
mediately be seen to be easily di↵erentiable. In chapter 4 we prove the di↵erentiation
rules. These rules do not change when the definition is developed until the final version is
reached.
In chapter 5 we meet the absolutely central “Monotonicity Theorem” for the first time. In
the present context it can be proved before discussing completeness, because all functions
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known at this point satisfy the assumption of the uniform quadratic error bounds. Appli-
cations of this theorem, even when dealing with polynomials, quickly go beyond what can
be computed explicitly. For example, it supplies the following fact which we will use a lot:

If one knows for a polynomial P in some interval [r,R] a bound |P 00|  K, then
we have:

x, a 2 [r,R] ) |P (x)� P (a)� P 0(a) · (x� a)|  K

2
|x� a|2.

After these preparations we want to construct new functions with interesting derivative
properties, construct them “by approximation”. This requires convergent sequences and
the completeness of the real numbers (chapter 6). We benefit from two mathematical facts.
First, all the approximating functions we need to use are rational functions. Therefore, we
can apply our Monotonicity Theorem and all the convergence estimates are derived with
this one tool. Second, the Monotonicity Theorem implies estimates such as

|fn(x)� fn(y)|  L · |x� y|, L independent of n.
Already Archimedes has formalized, how this implies the same inequality for a limit func-
tion. In other words, the Monotonicity Theorem for rational functions supplies an alterna-
tive to treating limit functions via uniform convergence.
The complex numbers are fundamental within Mathematics and also in other disciplines.
In chapter 7 we develop the content of chapters 3 - 5 for complex numbers and complex
functions, enriched by now having the completeness of R available.
The second tool for convergence proofs, in addition to the Monotonicity Theorem, is ma-
jorisation, usually by a geometric series. We use this tool in chapter 8 in developing complex
power series.
Simultanously with di↵erentiation, the mathematicians of the 17th century invented a dra-
matic generalization of summing, namely “Integration”. All functions treated so far can be
approximated uniformly by piecewise linear functions, again a consequence of the mono-
tonicity theorem. With this notion we prove in chapter 9 that Di↵erentiation and Integra-
tion are inverses of each other.
In chapter 10 we introduce continuous functions via the property that they map convergent
sequences to convergent sequences. The main theorems for continuous functions can, be-
cause of the preceeding preparation, now be proved with much less sweat and much more
appreciation than at an earlier stage of the analysis education.

Communication Problems in Class
The following points regularly cause problems in mathematical education; maybe they can
be reduced by being pointed out early.
Number 1: Of course one has to learn fundamental definitions by heart. It is a bit
grotesque, how many students can’t bring themselves to do this during the first term.
Number 2: A mathematical theorem, correctly learnt by heart and quoted, does not yet
say anything about understanding, objections from lawyers notwithstanding. It is necessary
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to use one’s own words to make correct arguments with the new mathematical notions.
Number 3: There are mathematical definitions which in daily language would not be
accepted: We call a set of objects a “Vector Space” if certain relations between its elements
hold true - but we do not say what the individual elements “are”. Or, we call a function
continuous, if an infinite set of implications is true - but we do not say how these implications
are to be verified.
Number 4: The syntax of mathematical statements is much more sensitive to minor
changes than we are used to in non-mathematical contexts. In particular one needs to get
used to the fact that a word that has been defined by mathematicians, can only be used
exactly as defined - it is not enough to have some feeling for what it means to be able to
talk mathematics.
Number 5: There is a conflict between the understanding of details and the overall
perception. When learning, a missing detail feels like a gap and distracts from getting
an overall picture. But the usual attempts to illuminate the overall picture do ignore the
details. So the feeling of being trapped between the gaps starts... turn to the details... miss
the overall picture... ignore the details... feel the gaps... Scylla and Charybdis.

Added Feb. 2011: Many, many thanks to Ursula Weiss for translating and to Michael
Livshits for starting the translation project and editing the English.

Hermann Karcher
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Preface 2: Comparison with the Classical Approach
“Uniform error bounds and di↵erentiation first, continuity and uniform convergence later”

The standard analysis route proceeds as follows:

1.) Convergent sequences and series, completeness of the reals,
2.) Continuity, main theorems, trivial examples,
3.) Di↵erentiability via limits,
4. or 5.) Integrals,
5. or 4.) Properties of limit functions via uniform convergence.

I propose the following reorganization of the material:

1.) Di↵erentiation of polynomials, emphasis on tangent approximation,
2.) Di↵erentiation rules, di↵erentiation of rational functions,
3.) The monotonicity theorem via uniform estimates, before completeness,
4.) Completeness and limit functions, proofs via uniform estimates,
5.) Integrals, defined as generalized sums, computed with antiderivatives,
6.) Continuity, with less trivial examples.

Arguments why one would want such a reorganization are: The start is closer to the
background of the student, one spends more time on di↵erentiation where technical skills
have to be trained, and discusses continuity when logical skills are more developed.

The main reasons why such a reorganization is possible are: The properties of limit
functions follow more easily from uniform error bounds than from uniform convergence
(e.g. if one has a pointwise convergent sequence of functions {fn} with a uniform Lipschitz
bound L, then the limit function also has L as Lipschitz bound). The first such uniform
error bounds follow for polynomials in a pre-analysis fashion. These bounds su�ce to prove
the Monotonicity Theorem before completeness. Finally, the Monotonicity Theorem shows
that many interesting converging sequences indeed have uniform error estimates.

1. Derivatives of Polynomials
The elementary formula

xk � ak = (x� a) · (xk�1 + xk�2a + . . . + ak�1)

is good enough to replace all calls on continuity. The first consequence is

x, a 2 [�R,R]) |xk � ak|  kRk�1 · |x� a|.

One only needs the triangle inequality to get for polynomials P (X) :=
Pn

k=0 akXk:

x, a 2 [�R,R]) |P (x)� P (a)| 
⇣X

|ak|kRk�1
⌘
· |x� a| =: L · |x� a|.
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In other words: From the data which give the polynomial and from the interval
on which we want to study it we can explicitly compute a Lipschitz bound. This
conforms with the common expectation (which is disappointed by continuous functions):
Di↵erences between function values, |P (x)� P (a)|, increase no worse than proportionally
to the di↵erence of the arguments, |x� a|.

The derivative controls this rough proportionality more precisely. The term (xk�1+xk�2a+
. . . + ak�1), which multiplies (x� a) in the above elementary formula, di↵ers “little” from
kak�1 on “small” intervals around a. The first inequality above makes this precise:

x 2 [a� r, a + r], R := |a| + r )
��(xk�1 + xk�2a + . . . + ak�1)� kak�1

��  k(k � 1)
2

Rk�2 · |x� a|

hence
��xk � ak � kak�1(x� a)

��  k(k � 1)
2

Rk�2 · |x� a|2.

Observe that |x� a|2 is less than 1% of the argument di↵erence |x� a| if r < 0.01.
Again, the triangle inequality extends this to polynomials P (X) :=

Pn
k=0 akXk and again

the error bound is explicitly computable from the data of the function and the
interval in question:

x 2 [a� r, a + r], R := |a| + r, P 0(a) :=
nX

k=1

akkak�1 )

|P (x)� P (a)� P 0(a)(x� a)| 
⇣X

|ak|k(k � 1)/2Rk�2
⌘
· |x� a|2 =: K · |x� a|2.

Application: At interior extremal points the derivative has to vanish. (If P 0(a) > 0 and
0 < x� a < P 0(a)/K then P (x) > P (a), etc.)

Note on Completeness. Consider the step function, which jumps from 0 to 1 at
p

2,
but consider as its domain only the rational numbers. This function is di↵erentiable, but
not uniformly. On the other hand, if a function is uniformly continuous (or uniformly dif-
ferentiable) on a dense subset of an interval, then, using completeness, one can extend the
function to the whole interval without loosing continuity (or di↵erentiability) and without
changing the visible behaviour of the function. This is clearly the case for polynomials.
Moreover, the above estimates make sense in any field between Q and R which the student
happens to know. Even in C they are useful. Therefore one can indeed discuss di↵er-
entiability before completeness. – Of course completeness remains essential if one wants
to define inverse functions or limit functions. I chose to discuss completeness immediately
before constructing limit functions, because I view this as the more spectacular application,
but I am not advertising that choice here, I am merely saying: If one decides to work
with uniform error bounds then this imposes fewer restrictions on where in
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the course one chooses to discuss completeness, while uniform convergence does
need prior knowledge of completeness.

2. Di↵erentiation Rules, Derivatives of Rational Functions

Di↵erentiation rules are meant to compute derivatives of “complicated” functions, built
out of “simpler” ones, from the derivatives of the “simpler” functions. Since linear combi-
nations, products and compositions of polynomials give again (easy to di↵erentiate) poly-
nomials the promise looks limited. However, there are some other functions which can be
di↵erentiated directly from their definitions, and this will broaden our possibilities consid-
erably. We start with x! 1/x and observe (1/x�1/a) = (a�x)/(x ·a). While in the case
of polynomials we could compute suitable error constants for any interval [a� r, a + r] we
now have to avoid division by zero. With this extra care we have:

0 < a/2  x) |1/x� 1/a| =
|x� a|
x · a  2

a2
· |x� a|

0 < a/2  x) (1/x� 1/a +
x� a

a2
) =

(x� a)2

x · a2

(
� 0
 2a�3 · (x� a)2.

Composition of polynomials with this one extra function gets us to all rational functions.
Of course, the proof of the chain rule must pay attention to the distances from zeros which
occur in the denominators.
In a similar way we handle the square root function. Here extra attention is needed for the
domain of the function: As long as we only know rational numbers, the domain is rather
thin, it contains only the squares of rational numbers (which, however, are still a dense
subset). The following computation remains valid as more numbers become known.

0 < a/2  x) |
p

x�
p

a| =
|x� a|p
x +

p
a
 1

1.7
a�1/2 · |x� a|

0 < a/2  x) (
p

x�
p

a� x� a

2
p

a
) =

�(x� a)2

2
p

a(
p

x +
p

a)2

(
 0
� 0.2a�3/2 · (x� a)2.

If we compose this function with polynomials then the discussion of the domain quickly
becomes unmanagable; the computation shows that we know, even with error bounds,
what the derivative of the square root function has to be, well before we know enough
about numbers to be able to use this function freely.

All known proofs of the di↵erentiation rules have the following property:
Given two di↵erentiable functions f, g, we abbreviate their tangent functions as
lf (x) := f(a) + f 0(a)(x� a), lg(x) := g(a) + g0(a)(x� a).
Then, if we assume that the di↵erences f � lf , g� lg are “small”, then also the di↵erences
(↵ · f + � · g)� (↵ · lf + � · lg), f · g � lf · lg, f � g � lf � lg
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are, in the same sense, “small”.
To prove something we have to specify “small”. Because of the functions known so far we
may say: f � lf is “small” near a, means, there exists an interval [a � r, a + r] and a
constant K such that

x 2 [a� r, a + r]) |f(x)� lf (x)|  K · |x� a|2.

Later f � lf is “small” near a may have a more subtle interpretation:
For every ✏ > 0 there exists � > 0 such that

x 2 [a� �, a + �]) |f(x)� lf (x)|  ✏ · |x� a|.

I find it important to emphasize that the form of the tangent approximation and the form
of the di↵erentiation rules do not depend on the specification of “small”. Moreover,
even the strategy of the proofs does not depend on what exactly we mean by “small”: if we
change the definition of “small” in the assumptions, we can follow these changes through
the proofs and end up with the changed conclusion. This possibility, to repeat the proofs
under slightly changed assumptions, allows one to emphasize what is essential in these
proofs.

3. Monotonicity Theorem and Related Results

A fundamental fact of analysis is that rough information about the derivative f 0 of a
function f allows to deduce sharper information about f . As an example, take Lipschitz
bounds:

If x 2 [↵,!]) |f 0(x)|  L then

a, b 2 [↵,!]) |f(b)� f(a)|  L · |b� a|.

For functions with uniform tangent approximations, i.e. for all the functions discussed
so far, this fundamental theorem can be proved without invoking (even before discussing)
the completeness of the reals. The only tool needed is Archimedes Principle, which is an
obvious fact for the rationals and, later, an axiom for the reals:

Archimedes Principle

If 0  r and r  1
n

for all n 2 N then r = 0.

The most intuitive result from the family of theorems that exploit derivative information
probably is the

Monotonicity Theorem
Main assumption:

x 2 [↵,!]) f 0(x) � 0.
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Technical assumption replacing completeness: The function f can be uniformly approxi-
mated by its derivatives, i.e. there exist positive constants r,K such that

x, a 2 [↵,!], |x� a|  r ) |f(x)� f(a)� f 0(a)(x� a)|  K · |x� a|2.
Then f is nondecreasing:

a, b 2 [↵,!], a < b) f(a)  f(b).

Note: The uniformity in the technical assumption is the crucial part, not the quadratic
error bound; if one assumes
For each ✏ > 0 exists a � > 0, which can be chosen independently of a, such that

x, a 2 [↵,!], |x� a|  � ) |f(x)� f(a)� f 0(a)(x� a)|  ✏ · |x� a|,
then the strategy of the following proof also works.

Proof. For any x, y 2 [↵,!], x < y with |x�y|  r we have (because of the two assumptions
of the theorem):

�K · |x� y|2  f(y)� f(x)� f 0(x)(y � x)  f(y)� f(x).
Apply this to su�ciently short subintervals [tj�1, tj ] of the interval [a, b], i.e. put
tj := a + j/n · (b� a), 0  j  n, with (b� a)/n  r (Archimedes!) and have:

�K(b� a)2/n2  f(tj)� f(tj�1), j = 1 . . . n,
then sum for j = 1 . . . n:

�K(b� a)2/n  f(b)� f(a).
Archimedes Principle improves this to the desired claim 0  f(b) � f(a). (The previous
inequality changes under the ✏-�-assumption to �K(b � a) · ✏  f(b) � f(a), which also
implies the theorem.)

Immediate consequences are:

Generalized monotonicity:

f 0  g0, a < b) f(b)� f(a)  g(b)� g(a)

Explicit bounds:

m  f 0 M, a < b) m · (b� a)  f(b)� f(a) M · (b� a)

Multiplicative version:

0 < f, g,
f 0

f
 g0

g
, a < b) (

g

f
)0 =

g

f
(
g0

g
� f 0

f
) � 0) f(b)

f(a)
 g(b)

g(a)
Iterated application to second derivatives:

|f 00|  B, a < x ) �B(x� a)  f 0(x)� f 0(a)  B(x� a)

) �B

2
(x� a)2  f(x)� f(a)� f 0(a)(x� a)  B

2
(x� a)2.

These are strong improvements over the error bounds which were initially computed from
the coe�cients of polynomials. As illustration consider the Taylor polynomials Tn(X) for
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a (not yet constructed) function with f 0 = �f, f(0) = 1:

Tn(x) :=
nX

k=0

(�1)k xk

k!
, 0  x  1, T 0n(x) = �Tn�1(x).

Since this is a Leibniz series we have the nested intervals:
[1� x, 1] � [T1(x), T2(x)] � [T3(x), T4(x)] � . . . � [T2n�1(x), T2n(x)]

hence in particular: |T 00n (x)|  1. The “second derivative consequence” of the monotonicity
theorem now implies uniform bounds for polynomials of arbitrarily large degree:

x, a 2 [0, 1]) |Tn(x)� Tn(a) + Tn�1(a)(x� a)|  1
2
(x� a)2.

Clearly, if we only had the existence of a limit function T1 then Archimedes Principle
would imply without further words di↵erentiability and derivative of the limit function:

x, a 2 [0, 1]) |T1(x)� T1(a) + T1(a)(x� a)|  1
2
(x� a)2.

4. Completeness and Limits of Sequences of Functions

At most occasions I have prefered to begin the discussion of completeness with nested inter-
vals; immediate applications are Leibniz series like the just mentioned Taylor polynomials.
Thus we have interesting limit functions together with their derivatives right from the start.
Cauchy sequences are the second step; the most important applications are sequences or
series which are dominated by the geometric series (i.e. power series and the contraction
lemma). Existence of sup and inf for bounded nonempty sets gives the most compact for-
mulation for dealing with completeness. I have used the standard text book arguments,
only the applications change since the results of the earlier sections are of significant tech-
nical help.
Note. Since so much emphasis was placed on computable error bounds I mention that the
theorem “Monotone increasing, bounded sequences converge” is a very significant
exception. In my opinion this intuitively desirable theorem is a major justification of the
standard limit definition: Because the convergence speed of monotone increasing, bounded
sequences can be slowed down arbitrarily (namely by repeating the elements of the sequence
more and more often) one cannot prove the monotone sequence theorem with any version
of a limit definition which requires more explicit error control than the standard definition.
By contrast, in numerical analysis one tries to use sequences which converge at least as fast
as some geometric sequence, i.e. one has more explicit control like |an+p � an|  C · qn.

Next I illustrate how the monotonicity theorem often allows short replacements of standard
induction proofs.
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Bernoulli’s inequality is a version of the monotonicity theorem:
f(x) := (1 + x)n � 1 + n · x = f(0) + f 0(0) · x, since f 00(x) � 0 for x � �1.

The monotonicity of n! fn(x) := (1 + x/n)n, 0  x and the decreasing of
n ! gn(x) := (1 � x/n)�n, 0  x < n requires no technical skill since (f 0n/fn)(x) =
1/(1 + x/n)  (f 0n+1/fn+1(x)  1  1/(1� x/n) = (g0n/gn)(x)  (g0n�1/gn�1)(x).

The following are convenient estimates of the geometric series and its derivatives which give
the desired uniform constants when dealing with power series:

0  x < 1,
nX

k=0

xk =
1� xn+1

1� x
 1

1� x 
nX

k=0

xk

!0
=

nX
k=1

kxk =
�(n + 1)xn

1� x
+

1� xn+1

(1� x)2
 1

(1� x)2 
nX

k=0

xk

!00
=
�(n + 1)nxn�1

1� x
� 2(n + 1)xn

(1� x)2
+ 2

1� xn+1

(1� x)3
 2

(1� x)3
.

As mentioned, the standard proof of the Contraction Lemma uses explicit error bounds
and our limit arguments are in the same spirit: Functions f : M ! M with |f 0|  q < 1
are contracting, |f(x)� f(y)|  q · |x� y|. And for contracting maps sequences generated
by iteration, an+1 := f(an), are geometrically dominated and hence Cauchy:

|an+p � an| 
|a1 � a0|

1� q
· qn.

An example of a contracting rational map with the irrational golden ratio as fixed point
is

f(x) := 1/(1 + x), f : [1/2, 1]! [1/2, 1], |f 0(x)|  |� (1 + x)�2|  4/9.
The approximating sequence a0 = 1, a1 = 1/(1+1), . . . , an = 1/(1+1/(1+1/ . . .)) consists
of the optimal approximations from continued fractions. This is to show that sequences
do appear in my approach, but they are handled with the monotonicity theorem and not
presented as the road to di↵erentiation.

The main question about limit functions is, of course, “What is their derivative?” Usually
one employs uniform convergence of the di↵erentiated sequence and the main theorem
connecting di↵erentiation and integration. I illustrate the use of uniform error bounds in
the case of power series Pn(X) :=

Pn
k=0 akXk. The basic tool in both approaches is the

comparison with a geometric series and it will better bring out the di↵erences if I add an
assumption which simplifies either approach: a bound for the coe�cients, |ak|  C.
Then we have for all x with |x|  q < 1

|Pn+m(x)� Pn(x)| 
X
n<k

|ak|qk  C

1� q
qn+1,
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which shows that {Pn(x)} is a Cauchy sequence (in fact uniformly for |x|  q). For the
first derivatives we obtain uniform bounds by comparing with the geometric series

|P 0n(x)| 
X
k�1

|ak|kqk�1  C

(1� q)2
=: L.

The Monotonicity Theorem implies for all n the Lipschitz bound

|x|, |y|  q ) |Pn(y)� Pn(x)|  L · |y � x|

and Archimedes Principle extends this uniform estimate to the limit function

|x|, |y|  q ) |P1(y)� P1(x)|  L · |y � x|.

Similarly we employ our estimate of the geometric series to get uniform bounds for the
second derivatives

|P 00n (x)| 
X
k�2

|ak|k(k � 1)qk�2  C

(1� q)3
=: K,

we use the Monotonicity Theorem to get uniform tangent approximations

|x|, |y|  q ) |Pn(y)� Pn(x)� P 0n(x)(y � x)|  K · |y � x|2,

and Archimedes Principle again extends these uniform bounds to the limit

|x|, |y|  q ) |P1(y)� P1(x)� lim
n!1

P 0n(x)(y � x)|  K · |y � x|2.

This proof of the di↵erentiability and the determination of the derivative of the limit func-
tion clearly extends to complex power series, a first step to higher dimensional analysis.
Another immediate extension is to the di↵erentiation of curves c := (c1, c2, c3) : [a, b]! R3,
which is important in itsself but also a prerequisite for analysis in Rn.

5. Integrals, Riemann Sums, Antiderivatives

Some notion of tangent (and hence some version of derivative) was known centuries be-
fore Newton. Similarly, summation of infinitesimals had already troubled the Greeks, and
Archimedes determination of the area bounded by a parabola and a secant was definite
progress. Against the background of this early knowledge I find the conceptual progress
achieved with the definition of the integral even more stunning than that achieved with
di↵erentiation. I try to teach integrals as a fantastic generalization of sums, they allow for
example to “continuously sum” the velocity of an object in order to obtain the distance
which it travelled. With this goal in mind I think it is fundamental that Riemann sums of
a function f can be computed up to controlled errors if one knows an antiderivative F of
the given f , i.e. F 0 = f . I use the standard definition of the integral in terms of Riemann
sums. I add a construction of an antiderivative F for a continuous f which is in the spirit
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of uniform error control, but from now on the di↵erences to the standard approach are not
very pronounced.

Let f : [a, b]! R3 be given. Consider a subdivision of [a, b], i.e. a = t0 < t1 < . . . < tn = b
and choose intermediate points ⌧j 2 [tj�1, tj ], j = 1 . . . n. For these data we define the

Riemann Sum

RS(f) :=
nX

j=1

f(⌧j)(tj � tj�1).

Now, if f is at least continuous and F 0 = f then the di↵erence |F (b) � F (a) � RS(f)| is
“small”. How “small” depends on the precise assumption for f . For example a Lipschitz
bound, x, y 2 [a, b]) |f(y)� f(x)|  L · |y � x|, implies the

Error Bound

|F (b)� F (a)�RS(f)|  L · (b� a) · max
1jn

|tj � tj�1|.

This estimate (or other versions) follows from the Monotonicity Theorem and the triangle
inequality; first note the derivative bound:

x 2 [tj�1, tj ])|(F (x)� f(⌧j) · x)0| = |f(x)� f(⌧j)|  L · |x� ⌧j |  L · |tj � tj�1|,
hence

|F (tj)� F (tj�1)� f(⌧j)(tj � tj�1)|  L · |tj � tj�1|2,
so that summation over j = 1 . . . n gives the claimed error bound.

Continuity (see below) of f implies with the same arguments an ✏-�-error bound:

max
1jn

|tj � tj�1|  � ) |F (b)� F (a)�RS(f)|  ✏ · (b� a).

I prefer to define the integral for vector valued functions (for direct application to integrals
of velocities). The notion of limit has to be generalized to cover “convergence” of Riemann
sums: For every ✏ > 0 there is a subdivison of [a, b] such that for all finer subdivisions
and all choices of intermediate points ⌧j the corresponding Riemann sums di↵er by less
than ✏. Almost the same argument as used to prove the error bound gives: For continuous
(or better) f the Riemann sums converge; the limit is called the integral of f over [a, b],
notation

R b
a f(x)dx. Moreover, if F 0 = f then the error bound proves

F (b)� F (a) =
Z b

a
f(x)dx.

The triangle inequality for Riemann sums gives the Triangle Inequality for Integrals

a < b)
�����
Z b

a
f(x)dx

����� 
Z b

a
|f(x)|dx.

Also, other analogies between sums and integrals need to be discussed.
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I describe a construction of an antiderivative which is independent of the definition of the
integral (its proof, based on uniformity, works in Banach spaces).

Theorem. Let f be Lipschitz continuous on [a, b] (soon: uniformly continuous). Then
one can approximate f uniformly by piecewise linear “secant” functions sn. These have
piecewise quadratic antiderivatives and a limit of these is an antiderivative of f . In more
detail:

sn(tj) := f(tj), j = 0, . . . , n, (a = t0 < t1 < . . . < tn = b)

sn(x) :=
f(tj�1) · (tj � x) + f(tj) · (x� tj�1)

tj � tj�1
for x 2 [tj�1, tj ]

|f(x)� sn(x)|  L · max |tj � tj�1| =: rn

Obviously, sn has a piecewise quadratic antiderivative Sn, S
0
n(x) = sn(x), Sn(0) = 0. From

the Monotonicity Theorem and
|S0

n+m(x)� S
0
n(x)|  2rn

we have the (uniform) Cauchy property:
|Sn+m(x)� Sn(x)|  2(b� a)rn,

which, by completeness, gives a limit function S1. But we again have uniform error
bounds:

|(Sn(x)� Sn(c)� sn(c)(x� c))0| = |sn(x)� sn(c)|  L · |x� c|,
hence

|Sn(x)� Sn(c)� sn(c)(x� c)|  L · |x� c|2.

Archimedes Principle gives the final result:

|S1(x)� S1(c)� f(c)(x� c)|  L · |x� c|2,

which says that S1 is di↵erentiable and S10 = f , as claimed.

Note in this proof: The approximation Sn(b)� Sn(a) for S1(b)� S1(a) =
R b

a f(x)dx is a
frequently used numerical approximation for the integral of f .

6. Continuity, Theorems and Examples

The arguments in this last section are the standard arguments. My point is that with the
experience of the previous sections one can achieve a better understanding of continuity
and, moreover, this takes less time than a treatment of continuity in the early parts of a
course. Since convergent sequences were such an essential tool (for getting limit functions)
we ask: “What kind of functions are compatible with convergence?” We define:

f : A ⇢ Rd ! Re is called sequence continuous at a 2 A
if every sequence an 2 A which converges to the limit a 2 A has its image sequence f(an)
converging to f(a).

14



We see that linear combinations, products, compositions of sequence continuous functions
are (directly from the definition) sequence continuous. But 1/f causes a problem:

If f(a) 6= 0 then we would like to find an interval [a� �, a + �] on which f is not zero.

If such an interval could be found then on it 1/f would clearly be sequence continuous. It
is well known that such a � > 0 can only be found with an indirect proof. But this proof is
essential for understanding continuity. It is also very similar to the equivalence of sequence
continuous and ✏-�-continuous.

Definition: f is ✏-�-continuous at a if for every ✏ > 0 there exists a � > 0 such that

x 2 [a� �, a + � ]) |f(x)� f(a)|  ✏.

It remains to prove the main theorems and to show examples. First I give short summaries
of the proofs to recall what kind of arguments are involved. 1.) The intermediate value
theorem: By interval halfing construct a Cauchy sequence which converges to a preimage
of the given intermediate value. 2.) Boundedness on complete, bounded sets: In an indirect
proof construct by interval halfing a Cauchy sequence on which the function f is unbounded,
a contradiction to the continuity at the limit point of the Cauchy sequence. 3.) Extremal
values are assumed on complete, bounded sets: Since the function is bounded by the
previous result we have sup f and inf f ; with interval halfing we find Cauchy sequences
{an} such that the sequences of values, {f(an)}, converge to sup f resp. inf f . 4.) Uniform
continuity on complete, bounded sets: Necessarily indirect, if for some ✏⇤ > 0 no � > 0
is good enough then we find a pair of Cauchy sequences {an}, {bn} which have the same
limit but |f(an)�f(bn)| � ✏⇤, a contradiction to the continuity at the common limit point.
5.) Uniformly convergent sequences of continuous functions have a continuous limit function:
To given ✏ > 0 choose an ✏/3-approximation from the sequence and for this (continuous!)
approximation find � > 0 for ✏/3-deviations; this � guarantees with the triangle inequality
at most ✏-deviations for the limit function.

From the construction of examples I recall that comparison with a geometric sequence is
the main tool. I find it misleading to call the following examples “weird”, as if continuity
“really” were much more harmless. 1.) The polygonal approximations of Hilbert’s cube
filling curve are explicitly continuous: To guarantee value di↵erences  2�n the arguments
have to be closer than 8�n; Archimedes Principle concludes the same for the limit func-
tion. 2. Similarly for Cantor’s staircase, a monotone increasing continuous function which
is di↵erentiable with derivative 0 except on a set of measure zero: The piecewise linear
approximations satisfy: To guarantee value di↵erences  2�n the arguments have to be
closer than 3�n and Archimedes Principle does the rest. 3.) And continuous but nowhere
di↵erentiable functions can be obtained as obviously uniform limits of sums of faster and
faster oscillating continuous functions like

P
k 2�k sin(8kx).
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In view of the much better-than-continuos properties of all the functions we have so far been
concerned with, I find it not so obvious how to demonstrate the usefulness of the notion
of continuity. The proof of the existence of solutions of ordinary di↵erential equations
based on the Contraction Lemma in the complete metric space of continuous functions
(sup-norm) is my lowest level convincing example.

Since the Monotonicity Theorem and its consequences are usually derived from the (es-
sentially one-dimensional) Mean Value Theorem of Di↵erentiation, I finally show that the
theorems which conclude from assuming derivative bounds can be obtained with shorter
proofs (again valid in Banach spaces).

Theorem: Derivative bounds are Lipschitz bounds.
More precisely, let A ⇢ Rd be a convex subset and let F : A ! Re be ✏-�-di↵erentiable,
and for emphasis: without any uniformity assumption. Assume further a bound on the
derivative: x 2 A) |TF (x)|  L. Then

a, b 2 A) |F (a)� F (b)|  L · |a� b|.

Indirect proof via halfing. If the inequality were not true then we had some a, b 2 A with
|F (a)�F (b)| > L · |a�b|, i.e. with some fixed ⌘ > 0 we had |F (a)�F (b)| � (L+⌘) · |a�b|.
Let m := (a + b)/2 be the midpoint. Then for either a,m or m, b the same inequality has
to hold (since otherwise, by the triangle inequality, |F (a) � F (b)| < (L + ⌘) · |a � b|). In
other words, we have a1, b1 with half the distance |a1 � b1| = |a� b|/2, but still

|F (a1)� F (b1)| � (L + ⌘) · |a1 � b1|.
This procedure can be repeated, we get a pair of Cauchy sequences {an}, {bn} with the same
limit c between an and bn on the closed segment from a to b, but with the inequalities:

|F (an)� F (bn)| � (L + ⌘) · |an � bn|.
By di↵erentiability of F at c 2 A we have for ✏ = ⌘/2 a � > 0 such that

x 2 A, |x� c|  � ) |F (x)� F (c)� TF |c · (x� c)|  ✏ · |x� c|
) |F (x)� F (c)|  (L + ✏) · |x� c|.

Choose n so large that |an � c|, |bn � c|  � so that the last inequality holds for x = an

and x = bn. Add the inequalities and observe |an � c| + |bn � c| = |an � bn| to obtain the
contradiction

(L + ⌘) · |an � bn|  |F (an)� F (bn)|  (L + ⌘/2) · |an � bn| < (L + ⌘) · |an � bn|.
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Absolute and Relative Errors

In this section we collect prerequisites about inequalities. Simple calculus situa-
tions can already be described adequately using percentage calculation. Looking
at the propagation of errors before the language of analysis is available prepares
the way for a good intuitive understanding of the objectives of calculus.

Example 1. Absolute and relative di↵erences and their behavior under adding
or multiplying a constant.
The equivalent statements x 2 [0.9, 1.1] or 0.9  x  1.1 can be put into words in the
following two ways, which have the same meaning but di↵erent focus:

x di↵ers from 1 by no more than 0.1 (“absolute di↵erence“ ),
x di↵ers from 1 by no more than 10% (“relative di↵erence“ ),

Terminology: Clearly, the statement “The relative (or percentage) di↵erence between x and
a is := |x� a|/|a|“ will be used only if a 6= 0. Often we will also tacitly assume 0 < x, a.

Under addition and multiplication by a constant, relative and absolute di↵erences show
di↵erent behavior. The first statement (0.9  x  1.1) implies:

x + 1 di↵ers from 2 by no more than 0.1 ,
x + 1 di↵ers from 2 by no more than 5% ,
2x di↵ers from 2 by no more than 0.2,
2x di↵ers from 2 by no more than 10%,
x� 0.7 di↵ers from 0.3 by no more than 0.1
x� 0.7 di↵ers from 0.3 by no more than 33% (!),
0.5x di↵ers from 0.5 by no more than 0.05,
0.5x di↵ers from 0.5 by no more than 10%.

Special attention deserves the enormous increase of relative di↵erences when we subtract
numbers close to the reference quantity.
When we square the numbers, it makes a di↵erence whether we look at the deviations at
the upper or the lower bound:

x2 lies in the interval [0.81, 1.21],
therefore x2 di↵ers from 1 by no more than 21% . Normally we don’t say: x is less than 1
by no more than 19% , and bigger than 1 by no more than 21% . But it’s common to say:
If x di↵ers from 1 by “approximately ” 10%, then x2 di↵ers from 1 by “approximately”
20% .
Apply these examples to the initial situation x 2 [99, 101].

Example 2. The Sizes of Di↵erent Powers.
While we have verbally expressed the di↵erence between approximate numbers and precise
constants in example 1, we will now consider the relative sizes of di↵erent powers. Caveat:
The behavior is opposite in intervals close to 0 and close to 1!
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For all x 2 (0, 0.1] we have:
x2 is not exceeding 10% of x,
x3 is not exceeding 1% of x.

For all x 2 (0, 0.02] we have:
x2 is not exceeding 2% of x,
x3 is not exceeding 0.04% of x.

In the interval [20,1) we have:
x does not exceed 5% of x2,
x does not exceed 0.25% of x3.

In the interval [100,1) we have:
x dos not exceed 1% of x2,
x dos not exceed 0.01% of x3.

See how the percentages depend on di↵erent intervals: e.g. in the first case: x2 = x · x 
0.1 · x, and that is to say that x2 is less or equal 10% of x, or x2/x  0.1.

Example 3. When we take reciprocals x! 1/x, small relative di↵erences change
very little
We assume a relative di↵erence of no more than 5%. Thus with a as 100%,

|x� a|/|a| = |(x/a)� 1|  0.05.

Calculations are often simpler without the absolute value bars: 1� 0.05  x/a  1 + 0.05
implies

1/(1 + 0.05)  a/x  1/(1� 0.05) or � 0.05/(1 + 0.05)  (a/x)� 1  0.05/(1� 0.05).

|1/x� 1/a|
|1/a| =

|x� a|
|x| = |1� a

x
|  0.05

1� 0.05
.It gives us

We notice that when we assume |x/a| di↵ers only “a little bit” ( 5%) from 1 , almost the
same holds for the reciprocal a/x, and the relative di↵erence between 1/x and 1/a is just
“a little bit” bigger than 0.05.
What changes when we sharpen the assumption from  5% to  1%?

Example 4. Errors
So far we have talked about “di↵erences”. It’s common to talk about “errors” when dealing
with numerical approximations of theoretically precise numbers. Let me use two famous
examples to explain.

(i) Archimedes’ approximation for ⇡, i.e. 310
71 < ⇡ < 31

7 , can be expressed as follows.
The numerical approximation 31

7 for ⇡ has an absolute error of at most 310
70 � 310

71 ⇠
0.002 and a relative error of at most (10

70 �
10
71 )/3.14 ⇠ 0.064 · 10�2, i.e. of at most

0.064%.
(ii) The inequality 1.42 = 1.96 < 2 < 2.25 = 1.52 implies the inequality 1.4 <

p
2 < 1.5 for

the number written by the symbol
p

2. This means that the numerical approximation
1.5 for

p
2 has an absolute error of at most 0.1 and a relative error of at most 0.1/1.4 ⇠

0.072, i.e., at most 7.2%.
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Example 5. Improvement of approximations by reasoning with relative and
absolute errors.
We combine examples 1, 3 and 4 in order to improve a given approximation for

p
2. Remem-

bering the factoring formula (a+ b)(a� b) = a2� b2, we specialize it to (
p

2+1)(
p

2�1) =
2� 1 = 1 and convert this to

p
2 =

1
(1 +

p
2)

+ 1.

We read the right hand side as “the value of the function x 7! 1/(1 + x) + 1 at x =
p

2”.
Now we will show that evaluating the function at an approximation x for

p
2 returns a

better approximation: According to example 1, the relative error of 1 + x (with respect to
1 +

p
2) is less than that of x (with respect to

p
2); according to example 3 the relative

error of 1 + x is almost the same as that of 1/(1 + x). According to example 1, the relative
error of 1/(1 + x) + 1 is again less than that of 1/(1 + x); hence 1/(1 + x) + 1 is a better
approximation for

p
2 than x.

Let’s go through this again, now using our numerical values.
Since 1.5 is an approximation of

p
2 with an absolute error < 0.1, the number 2.5 is an

approximation of 1 +
p

2 with the same absolute error and hence with a relative error less
than 0.1/2.4 ⇠ 0.042 or 4.2%. Therefore 1/2.5 = 0.4 is an approximation of 1/(1+

p
2) with

almost the same relative error 4.2%, which means with an absolute error of 0.4 · 4.2/100 <
0.017. (To be sure, calculate this absolute error directly from the approximations 1.4
and 1.5 for

p
2 by plugging them into 1/(1 + x).) Thus, 1 + 0.4 is an approximation

of 1 + 1/(1 +
p

2) =
p

2 with the same absolute error (< 0.017) and a relative error
0.017/1.4 < 0.0122, i.e. is less than 1.22%.
Our skillful use of our factoring formula, i.e. converting (

p
2 + 1)(

p
2 � 1) = 1

into
p

2 = 1 + 1/(1 +
p

2), helps us to get an approximation with the relative
error of less than 1.3% from an approximation with the relative error of less
than 7.2%. We have reduced the error to almost one sixth of the original. Of
course we can repeat this improvement. 1 + 1/(1 + 1.4) = 1 + 1/(1 + 7/5) = 17

12 ⇠ 1.4167
and 1.4167�

p
2 ⇠ 0.0025, which results in the relative error of 0.0025/1.4 < 0.0018 or less

than 0.18% (roughly one sixth of 1.3%).

Example 6. Irrationality of
p

2, an indirect proof.
I hope it causes some amazement to see these “self improving” formulas. Therefore we
look at our factoring formula once again. The symbol

p
2 appears twice. Let us see

what happens when we resolve it not as in example 5, but in a di↵erent way, i.e., top
2 = 1/(

p
2� 1)� 1. When we carefully reproduce the previous calculations, we observe

the following. Evaluating the right hand side at an approximation for
p

2 results in a worse
approximation! Who would ever want this? Indeed, nothing useful happens, when we see
the approximation (for

p
2) as a decimal number. However, when we see the approxiation

as a reduced fraction p/q with 1 < p/q < 2, we obtain (when we expand the first double
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fraction with the denominator of p/q):

1/(
p

q
� 1)� 1 =

q

p� q
� 1 =

2q � p

p� q
,

q < p < 2q we get 0 < p� q < q.and because of

Therefore we obtain a fraction with a smaller denominator! This observation allows us
to find an indirect proof for the irrationality of

p
2 with the help of our formula useless

for improvement of approximations.
Suppose

p
2 were rational, therefore equals a fraction, say,

p
2 = P/Q. Since there are only

finitely many fractions between 1 and 2 with a denominator  Q, we can pick the one
with the smallest denominator that equals

p
2, say

p
2 = p/q. But now, the previous

calculation produces:
p

q
=
p

2 =
1p

2� 1
� 1 =

2q � p

p� q
,

which is a fraction with denominator (p � q) smaller than the selected fraction p/q
having the smallest denominator. This contradiction refutes our assumption that

p
2

were rational. — Of course we may think of p/q as the completely reduced fraction. But
the proof is formulated such that we don’t use the concept of a completely reduced fraction.
Instead we only use the “principle of the smallest delinquent”: If

p
2 were rational, there

would be a smallest example for it. But a “smallest” example plugged into our formula
produces smaller denominators and thus shows that such a smallest example cannot exist.

Example 7. Irrationality of
p

2, “direct” proof using absolute errors
We pose the question: How far away from 0 is the value of the polynomial P (x) := x2 � 2
at some rational number x = p/q? We want to show |P (p/q)| � 1/q2, in words: The
absolute value of the polynomial P at x = p/q is at least 1/q2. If we prove the
statement for all reduced fractions, then it’s even more true for the non-reduced ones since
in this case the statement is weaker. Therefore we may assume that all the factors 2 have
been cancelled, i.e

either p is odd, or if not then q is odd.
In the first case, the numerator of P (p/q) = (p2� 2q2)/q2 is odd, hence it’s absolute value
is at least 1 and therefore |P (p/q)| � 1/q2. In the second case, p2 is divisible at least by
2 · 2, but 2q2 by only one factor 2; in this case the numerator of P (p/q) is the double of
an odd number, hence it’s absolute value is at least 2. In any case we get: The polynomial
P (x) := x2 � 2, whose zeros are the square roots of 2, has an absolute value of at least
1/q2. Therefore the polynomial cannot have any rational zeros.
It is useful to develop some feeling for how good the derived inequalities are. Allthough
we have used only a very simple argument for proving |P (p/q)| � 1/q2 the equality sign
holds in fact for infinitely many fractions: First, the equal sign in |P (p/q)| � 1/q2 holds for
p/q := 3/2; and then as well for the infinitely many fractions 7/5, 17/12, 41/29, . . . which
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are generated from p/q := 3/2 in example 5, since |numerator2 � 2·denominator2| doesn’t
change during improvement:

|(2q + p)2 � 2(p + q)2| = |2q2 � p2| = . . . = |2 · 22 � 32|.

Example 8. Mean Values and Errors
Mean values can often be used to make errors smaller. I am going to explain the three
most important mean values and the inequalities between them. Then I will use them to
improve approximations for square roots faster than in example 5.
Let 0 < a, b be positive numbers. Then

the Arithmetic Mean is the number A(a, b) := (a + b)/2,
the Geometric Mean is the number G(a, b) :=

p
a · b,

the Harmonic Mean is the number H(a, b) := 1/((1/a + 1/b)/2) = 2ab/(a + b).
A(a, b) is the center of the line segment with end points a, b. G(a, b) ist the side length of
a square which has the same area as the rectangle with side lengths a and b. Therefore
G(a, b) is as well the altidude of a right triangle where the measures of the hypotenuse
segments are a and b (right triangle altitude theorem). The radius of the circumcircle of
this triangle is A(a, b), and therefore we have:

G(a, b)  A(a, b).
This followos as well from the binomial formula 0  (

p
a�

p
b)2 = a + b� 2

p
a · b.

We have the simple relationships between the three means:
1/H(a, b) = A(1/a, 1/b) und G(a, b)2 = H(a, b) · A(a, b). Since G  A, the latter
implies
H(a, b)  G(a, b).

The distance between harmonic and arithmetic mean of a and b can be a lot smaller than
the distance between a and b, which equals

A(a, b)�H(a, b) =
a + b

2
� 2ab

a + b
=

(a + b)2 � 4ab

2(a + b)
=

a� b

2
· a� b

a + b
.

We see immediately that the distance between the means is always smaller than half of the
distance between a and b. But since we have seen in example 2 that small numbers get a
lot smaller when we square them, we understand that A(a, b)�H(a, b) is a lot smaller than
|a� b| in case a� b is only trickles of a + b.

Now we apply this to
p

3. Let a be an approximation of
p

3 and a >
p

3. Then b := 3/a
is an approximation which is too small. The arithmetic mean a1 := A(a, 3/a) and the
harmonic mean b1 := H(a, 3/a) = 3/a1 lie closer to each other having the unchanged
geometric mean G(a, 3/a) =

p
3 in between. It is worthwhile to try out by calculator how

rapidly this process of quadratic error reduction improves the approximation

a1 � b1 = A(a, 3/a)�H(a, 3/a) =
a� 3/a

2
· a� 3/a

a + 3/a
<

✓
a� 3/a

2

◆2

=
✓

a� b

2

◆2

.
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Example 9. Deviation of circle tangents from the circle.
Tangents will play a prominent role in di↵erential calculus. Up to precalculus, “tan-
gents” appear only as tangents to a circle. We want to look closer at the unit circle
K := {(x, y); x2 + y2 = 1} and its upper tangent T := {(x, y); y = 1}

If we increase x starting from 0 and move along the tangent, we move away from the
tangent point B. Simultaneously the distance to the circle gets larger, but in the beginning
apparently by a small amount only. Can we express this more clearly? Clear enough to be
able to invent the definition of a tanget to more complicated curves but circles?

The distance between the point P = (x, 1) 2 T and the tangent point B = (0, 1) 2 T \K
is |x|, compare the following picture. By the Pythagorean theorem, the distance between
P and the origin, the center of the circle K, is

p
1 + x2. Therefore the distance between P

and the unit circle is
p

1 + x2 � 1. Using example 2, we want to show that this distance is
a lot smaller than |x|, at least when P is close to B. (In the following calculation, we first
expand by

p
1 + x2 + 1 then we apply (a� 1)(a + 1) = a2 � 1, and eventually we decrease

the denominator under the square root by omitting x2, i.e. we make the fraction larger):

0 
p

1 + x2 � 1 = (
p

1 + x2 � 1) ·
p

1 + x2 + 1p
1 + x2 + 1

=
x2

p
1 + x2 + 1

 x2

2

|x|  0.1)
p

1 + x2 � 1  |x|
2

· |x|  0.05 · |x|.and therefore e.g.

I.e., close to B, more precisely for |x|  0.1, the distance between P and K is at most 5%
of the distance |x| between P and B; and for |x|  0.01 the distance between P and K is
at most 0.5% of |x|, etc. as we have seen in example 2. This shows: The tangent moves
away from the circle so slowly (when |x| grows) that the formulation “the tangent touches
the circle” is justified.

If we rather measure the distance between the circle and the tangent perpendicular to the
tangent (instead of perpendicular to the circle as we’ve done right now), then we have to
take the distance between (x, 1) 2 T and (x,

p
1� x2) 2 K. Apart from the fact that we

obviously have to assume |x|  1, almost the same as before happens (only the factor 1/2
disappears):

0  1�
p

1� x2 = (1�
p

1� x2) · 1 +
p

1� x2

1 +
p

1� x2
=

x2

1 +
p

1� x2
 x2.

The distance between P and K is not bigger than the square of the distance between P
and the tangent point B, hence by example 2 “a lot” smaller than that.
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B Px
< x2

K

T

How much slower than from the square does the tangent move away from the circle?

If we think the straight line T and the square Q were made out of metal, we could still say:
The straight line touches the square. But we do not mean this physical contact when
we say “The tangent touches the circle” in mathematics. We can very well express the
di↵erence by means of inequalities: The distance between the point P 2 T and the square
(measured in parallel to the y-axis) is the same as the distance between P and B, namely
x, no matter how small x is. I repeat that the distance between P and K is smaller
than x2 and therefore, it becomes a smaller and smaller percentage of x the smaller x
becomes. This big di↵erence between the tangency of T and K on the one side and the
tangency of T and Q on the other side doesn’t disappear when we measure the distances
from P perpendicular to Q and K (the perpendicular distance to the square ist x/

p
2, the

perpendicular distance to the circle is smaller than x2/2).
This is an important example where the meaning of a word as it has been defined

in mathematics can be di↵erent from its meaning in colloquial language. It’s completely
legitimate that the word “to touch” has a completely di↵erent meaning for somebody who
lays electricity cables than for somebody who says: A curve is touched by its tangent.
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Tangents to the Parabola

Derivatives and tangents are central to calculus. Having looked at the circle only
we haven’t been able to notice that yet, because we call a line a tangent line
at a point on the circle if it is perpendicular to its radius. Obviously we don’t
use any calculus notions in this case. Now we want to understand the case of a
less symmetric curve, the graph of the quadratic function x 7! x2. There is no
doubt about what straight line we want to call a tangent line. The properties of
these “naive” tangents which we can draw in the case of a circle or a parabola,
will lead us to the definition of a tangent in the next chapter. Though this
definition is not yet the definition that has been used since the end of the
19th century, it will take quite a long time until we are able to find functions
that should be “di↵erentiable” but our preliminary definition is too restrictive
for these complicated functions. Our preliminary definition will allow us to treat
many functions, including all the rational functions, using simpler arguments and
more explicit inequalities than the final definition.

The tangent at the lowest point of a circle has the property, that all secant lines on the
right hand side have a bigger (that is positive) slope than the (horizontal) tangent, while all
the secant lines on the left hand side have a smaller slope than the tangent. Now, through
every point (a, a2) on the graph of the function x 7! P (x) := x2 there is exactly one straight
line having this property. In order to show this, we calculate for every x 6= a the

P (x)� P (a)
x� a

=
x2 � a2

x� a
= x + a.Slope of the secant line:

x < a) x + a < 2a, Right hand side: a < x) 2a < x + a.Left hand side:

Therefore, the graph of the linear function ` with slope 2a and the value `(a) = a2, i.e.
`(x) := 2a · (x� a)+ a2 = 2a ·x� a2 has the property we’ve noticed when we looked at the
circle, namely, the slope of this straight line is smaller than the slope of any of the secant
lines on the right hand side of the parabola and larger that the slope of any of the secant
lines on its left hand side.
Furthermore, the Pythagoras theorem shows that any tangent to a circle doesn’t meet the
inside of this circle. We could say as well that the tangent keeps the circle to one of its
sides. The straight line we have just found has the same property for the parabola, i.e. it
is located entirely below the parabola since

P (x)� `(x) = x2 � (2a · x� a2) = (x� a)2 � 0.

These two properties can already motivate us to call the graph of the linear function ` a
tangent to the parabola. But there are further properties that support this. As we did
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for the circle, we will see now how slowly the tangent to the parabola moves away from
the parabola. We consider a point (x, `(x)), x 6= a (di↵erent from the tangency point) on
the tangent. By the Pythagoras theorem, its distance from the tangency point is at least
equal to the distance |x � a| between the x-coordinates. The distance from the parabola
is at most equal to the distance measured parallel to the y-axis, i.e. equals at most the
distance P (x) � `(x) = (x � a)2 between the points (x, `(x)) and (x, P (x)). (It looks like
the distance parallel to the y-axis is very far from the shortest, but no other distance
can be calculated that easily; and even this “unfavorable” distance is quadratically small
and therefore“very” small.) Exactly as for the circle, the ratio of the distance between
the point on the tangent and on the parabola, and the distance to the tangency point is
 (x� a)2/|x� a|. Hence, the tangent point (x, `(x)) is much closer to the parabola than
it is to the tangency point. The tangent touches the parabola so well that we have a bound
for the ratio of these distances which is proportional to the distance |x � a| from the
tangency point (along the x-axis).
We carry further the comparison between circle and parabola since the quantitative compar-
ison between the new and the well-known old stu↵ is the most important working method of
calculus. We will show the following. For any point (a, a2) on the parabola there is a circle
such that the parabola lies between the circle and its tangent line, see the following
picture. Hence, the tangent line touches the parabola at least as well as this circle.

Proof. What circle should we take? The definition of a tangent to the circle says that the
center of the circle lies on the straight line through (a, a2) which is perpendicular to the
tangent to the parabola. This straight line is called the normal line to the parabola and
is the graph of the following function

n(x) := � 1
2a

· (x� a) + a2 = � 1
2a

· x +
1
2

+ a2.

(Reminder: Perpendicular lines have slopes m and �1/m.)
When we imagine circles falling into the parabola from above, they stop when their center
is on the y-axis. Therefore, we choose the intersection (0, n(0)) of the normal line with
the y-axis as the center of the circle, and the distance from (a, a2) as its radius r. By the
Pythagoras theorem r2 = 1/4 + a2, and we get the promising

(x� 0)2 + (y � 1
2
� a2)2 = r2 =

1
4

+ a2.Equation of a Circle:

How can we show that the graph of the parabola does not meet the inside of this circle?
When we evaluate the left hand side at (x, y) = (x, x2), the value must be � r2! It is a
good idea to substract r2, since it’s often easier to recognize that an inequality is correct if
it is in the form . . . � 0. Further, we use the binomial formula
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>

Left hand side: Parabola between circle and tangent.
Right hand side: The parabola as a concave mirror, its focal point and focal line, a

Thales’ circle.

(u� v)2 = u2� 2uv + v2 with u = x2 and v = 1
2 + a2. Since squares are always � 0, we get

the desired inequality:

x2 + (x2 � 1
2
� a2)2 � r2 = x2 + x4 � 2x2(

1
2

+ a2) + (
1
2

+ a2)2 � (
1
4

+ a2)

= x4 � 2x2a2 + a4 = (x2 � a2)2

� 0.

Now we have so many analogies between a circle and a parabola that we can define:
The straight line `(x) := a2 + 2a(x � a) is called the tangent to the parabola
x ! x2 at x = a. The slope 2a of this straight line is called the slope of the
parabola at a.

Application:
I find it important that we can use the new definition immediately to explain new types
of things, e.g. the perfect behavior of a parabola as a concave mirror. Having defined
the normal line to the parabola together with its tangent line, we can generalize the law of
reflection: Light beams are reflected from curves in such a way that at the point of incidence
the angle which the incident ray makes with the normal is equal to the angle which the
reflected ray makes with the same normal. Now, when a beam that enters parallel to
the y-axis (picture to the right) reflects o↵ the parabola (x, x2), the reflected beam pass
through the point (0, 1

4 ). This is because this point is the center of Thales’ circle for the
(dotted) right triangle built by the y-axis, the normal and the tangent line. Therefore
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this point is called the focus point of the parabola. Having discovered this point, we can
easily see another geometric property of the parabola. Any point (x, x2) on the parabola
is equidistant from both the focus point and the so-called“focus line” y = �1

4 since

Distance to the focus point =
r

(x� 0)2 + (x2 � 1
4
)2

= |x2 +
1
4
| = Distance to the focus line.

Now we have two di↵erent defintions of the parabola, and I want to underline their
di↵erence once again. First, it is the graph of the function x 7! x2, and second it is the set
of all points in the Euclidean plane which are equidistant from a given point (the “focus
point”) and a given line (the “focus line”). The second property is obviously more similar
to the definition of a circle than the first one. We can also adapt the description of tangents
to a parabola to both defintions. When we use the geometric definition of a parabola, the
tangent at a point P of the parabola is defined to be the bisecting line of the line segments
from P to the focus and from P to the focus line. When we consider the parabola as the
graph of the function x 7! x2, the tangent line is the graph of a linear function: The
tangent at x = a is the graph of the linear function `(x) := a2 + 2a(x � a). In the next
section we will start with the definition of tangents to the graph of a function. Those will
be again the graphs of linear functions. After that we will get back to the tangents to more
general curves.

Excercise. Find the equation of the par-
abola that touches the unit circle from
inside at the point (a, b), with a2 + b2 =
1, b 6= 0 and passes through (1, 0), as in
the picture to the right.
In other words, for any point (a, b) of the
circle, where the tangent is not parallel
to the y-axis, there is a parabola such
that in the interval [a � l, a + l ], with
l := 1 � |a| the circle lies between the
parabola and its tangent.

Therefore we can say: Circles and parabola are touched equally well by their tangents: First
we have seen, that at any point the parabola lies between a circle and its tangent. The
excercise shows the inverse: At any point (where the tangent is not vertical) a circle lies be-
tween a (vertical) parabola and its tangent. – The geometric definition of a parabola allows
of course to consider non-vertical parabolas. Then the circle points with vertical tangents
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don’t play a special role. I preferred vertical parabolas since we wanted to concentrate on
the graph of a function first.

Exercises on the triangle inequality
a) Show the so-called triangle inequality |a + b|  |a| + |b| for a, b 2 R.
b) Under what conditions on a, b do we get equality |a + b| = |a| + |b| ?
c) Conclude from a) that |a + b + c|  |a| + |b| + |c| for a, b, c 2 R.
d) Conclude in a similar way that ak 2 R, k = 1 . . . n ) |

Pn
k=1 ak| 

Pn
k=1 |ak|.

The name “traingle inequality” is more suitable for the two-dimensional generalization of
this inequality.
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Derivatives and Tangents to Polynomials

It is perfectly O.K. to call appropriate straight lines tangents of particularly
simple curves like circles and parabolas, even though we don’t have a general
definition yet. Now we want to define the concept of a tangent for a class of curves,
namely the graphs of rather special functions, the graphs of polynomials; and
then we want to prove di↵erentiation rules. We need definitions for that. The
properties used for the definition will be motivated by what we have observed for
tangents to the graph of the quadratic function x 7! x2.

It is easy to write down a linear function ` with slope m whose value at a is equal to b; it is

`(x) := m · (x� a) + b.

From now on we agree that: If ` is the tangent to the polynomial P at a, we define the
slope of the polynomial P at a to be the slope of this tangent ` . And vice versa,
if we succeed in defining the slope m of a polynomial P at a, we call the straight line
`(x) := m · (x�a)+P (a) the tangent of P at a. Also, we can easily express in formulas the
di↵erence between the polynomial P and the linear function ` by means of the di↵erence
of slopes:

P (x)� `(x) = P (x)� P (a)�m · (x� a) =
✓

P (x)� P (a)
x� a

�m

◆
· (x� a)

= (Slope of the secant line – Slope of the straight line `) · (x� a).

In other words: We only have to define either the term slope (of a function at a), or the
term tangent (of a function at a); the other term is then defined easily. For illustration we
always draw the graph (x, f(x)), where x is in the domain of the function f . The tangent
(at a) is the graph of a linear function x 7! f(a) + m · (x� a).

First, we consider the power functions P (x) := xn and show that we can define the slope m
at a in such a way that the di↵erence between the values of the polynomial P and the linear
function x 7! P (a)+m · (x�a) is as “small” as we have observed for the quadratic function
x 7! x2. Then we turn this approximation property into our definition of a tangent and
show that all polynomials have computable tangents.

We start with computing the slope of the secant line:

P (x)� P (a)
x� a

:=
xn � an

x� a
= xn�1 + xn�2a + . . . + xan�2 + an�1.

Proof. To prove the last equation, we multiply it by (x� a). On the left hand side we can
cancel the denominator (x�a). On the right hand side after multiplying out, the terms xn

und �an appear only once, all the other terms twice, one of them with the plus sign and
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the other one with the minus sign, so that all of these cancel out.
First we assume 0 < a, x to make the situation as clear as possible, since we don’t really
know yet what to expect. Then the slopes of the secants on the right side of a (i.e. when
a < x) are larger than nan�1, and the slopes of the secants on the left side of a (x < a)
are smaller than nan�1. Therefore we should expect that nan�1 is the slope of P at a.
The expected tangent with this slope is

Ta(x) := nan�1 · (x� a) + an.

We will regard this expectation as legitimate if we can prove that this linear function doesn’t
deviate from P more than what we have observed for x 7! x2. We also note that it doesn’t
bother us at all that not all of the points of the tangent to a circle are close to this circle.
Therefore we want to require from a tangent only that it stays very close to the curve as
long as we are not too far away from the tangency point. For this reason we make the
following assumption: The distance between x and a is not bigger than some r > 0. i.e.
|x � a|  r. (In the case of polynomials we could always take r = 1, but we have already
seen in the case of circles that this is not practical, e.g. since the radius of the circle can be
much smaller than 1. Further, we will encounter other functions like x 7! 1/x where only
su�ciently small intervals [a � r, a + r] around the tangent point (a, f(a)) make sense for
approximations.)
Having agreed on this, we now derive an inequality from the somewhat lengthy formula for
the slope of the secant line, by estimating each term and using the triangle inequality:

x 2 [a� r, a + r] and R := |a| + rAssumption: ����x
n � an

x� a

����  n · Rn�1.Inequality of slopes:

To work on the di↵erence between xn and the expected tangent Ta(x), we have to apply
this inequality for the slope of secants for all exponents between 1 and n� 1 :

|Value of the function�Value of the tangent| = |x� a|·|Secant slope� Tangent slope|
= |xn � Ta(x)| =|x� a|·

��xn�1 + xn�2a + . . . + xan�2 + an�1 � n · an�1
��

=|x� a|·
��(xn�1 � an�1) + (xn�2a� an�1) + . . . + (xan�2 � an�1)

��
|x� a|·

�
|xn�1 � an�1| + |a| · |xn�2 � an�2| + . . . + |an�2| · |x� a|

�
(x� a)2 ·Rn�2 ·

�
(n� 1) + (n� 2) + . . . + 1

�
(Inequality of slopes)

=
n(n� 1)

2
Rn�2 · (x� a)2.

This inequality is right on target, since first, it says that the graph of P : x 7! xn in the
considered interval lies between two parabolas with the same tangent Ta, namely

x 2 [a� r, a + r] ) P�(x)  xn  P+(x) with

P�(x) := Ta(x)� n(n� 1)
2

Rn�2 · (x� a)2, P+(x) := Ta(x) +
n(n� 1)

2
Rn�2 · (x� a)2,
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and second, it says that the slopes of the secant lines to P in the interval [a � r, a + r]
di↵er from nan�1, i.e. the slope of x 7! Ta(x), by no more than n(n�1)

2 Rn�2 · |x� a| – i.e.,
they di↵er the less the closer x is to a. This idea, to compare more complicated functions,
namely power functions, with quadratic functions, has worked out and justifies the follow-
ing definition for functions f that are not necessarily defined on all of R but only on an
interval [↵,!] ⇢ R:

Definition of the elementary di↵erentiability:
A function f : [↵,!] ! R is called di↵erentiable at a 2 [↵,!] with derivative (or
slope) f 0(a) = m, if the following holds:
There is an intervall [a� r, a + r], r > 0, and a constant K such that

x 2 [a� r, a + r] \ [↵,!])
��f(x)� f(a)�m · (x� a)

��  K · |x� a|2,

or equivalently formulated with the slopes of secant lines (i.e. x 6= a)

x 2 [a� r, a + r] \ [↵,!])
����f(x)� f(a)

x� a
�m

����  K · |x� a|.

Remarks. (i) Justifications. With such an axiomatic defnition, we have to ask some
questions. Are the slopes f 0(a) uniquely determined by this definition? The uniqueness
lemma will answer this question with “yes”. Are su�ciently many functions di↵erentiable?
The following proposition will show this for all polynomials, the next chapter for rational
functions, and after having treated completeness we will have substantial possibilities for
our construction. Of course, we also have to ask: Is the term “slope” appropriate? The
answer “yes” has two parts: The definition implies immediately that increasing functions
f have derivatives f 0 � 0 (what we will show after having proved that polynomials are
di↵erentiable); the inverse, the monotonicity theorem, is a main result of calculus:
namely, functions with f 0 � 0 are (weekly) increasing.
(ii) Other definitions. With this definition only those functions are di↵erentiable that
can be approximated by their tangents as well as we’ve observed previously for circles
and parabolas (or where the slope of the secant lines di↵er no more from the slope of
the tangents than we’ve observed for x 7! x2). Later we will learn to build much more
complicated functions. These functions can be defined to be“di↵erentiable” using a slightly
weaker, less explicit property. This makes sense, since all the propositions we prove for
di↵erentiable functions, remain true when we use the weaker definition. In the beginning
we encounter only functions that don’t di↵er from their tangents by more than the quadratic
function x 7! x2 does.

Uniqueness lemma. If a function f is di↵erentiable at a, then it’s slope m is uniquely
determined.
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Indirect proof. If there were two di↵erent slopes m1 6= m2, the definition would give us
constants ri,Ki, i = 1, 2, with

|x� a|  ri ) |f(x)� f(a)�mi(x� a)|  Ki|x� a|2, i=1,2
Using the triangle inequality we get

|x� a|  min(r1, r2)) |(m1 �m2)(x� a)|  (K1 + K2) · |x� a|2,
and therefore

0 < |x� a| < min(r1, r2)) |m1 �m2|  (K1 + K2) · |x� a|.
But the last inequality is wrong if we choose x to be so close to a that

0 < |x� a| < min(r1, r2,
|m1 �m2|
2(K1 + K2)

).

Proposition.
Polynomials P : x 7!

Pn
k=0 akxk are di↵erentiable with P 0(a) =

Pn
k=1 akkak�1.

Here, we can choose the length of the interval [a� r, a + r] in the definition independently
of the selected polynomial; and the constant K will be calculated explicitly from the coef-
ficients of the polynomial and the bounds of the interval.
Exercise. Specialize every step of the following proof to polynomials of degree 3.

Proof. To give a similar proof as for power functions, one first has to extend the inequality
of slopes to polynomials.
Let the interval be (arbitrarily chosen) [a� r, a+ r]; define as above R := |a|+ r. Then the
inquality of slopes for powers gives us

x 2 [a� r, a + r]) |akxk � akak|  |ak|kRk�1 · |x� a|, k = 1 . . . n.
We can add up these inequalities to get the one for polynomials, stated below. Reminder:
The triangle inequality says |a + b|  |a|+ |b|, or for several summands |

P
k bk| 

P
k |bk|.

x 2 [a� r, a + r ], R := |a| + r,Assumption: �����
nX

k=0

akxk �
nX

k=0

akak

����� 
 

nX
k=1

|ak|kRk�1

!
· |x� a|.Inequality of slopes:

The proposition about di↵erentiability of polynomials, is derived the same way, by adding
up the inequalities that express the deviation of the individual powers from their tangents.

|akxk � ak · (ak + kak�1(x� a))|  |ak|
k(k � 1)

2
Rk�2|x� a|2.

Define a constant K :=
Pn

k=1 |ak|k(k�1)
2 Rk�2, that combines all the deviations of the

individual powers, and add up (for x 2 [a� r, a + r]) to get the desired
�����

nX
k=0

akxk �
nX

k=0

akak � (
nX

k=1

akkak�1) · (x� a)

�����  K · |x� a|2.Tangent deviation
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Notation: The polynomial P 0(x) :=
Pn

k=1 akkxk�1 from which the slopes can be calcu-
lated is called the derivative of the polynomial P (x) :=

Pn
k=0 akxk. The value P 0(a) is

called slope of P at a. With this, we can rewrite the tangent deviation for polynonmials
more clearly:

Di↵erentiation of Polynomials

x 2 [a� r, a + r ], P (x) :=
nX

k=0

akxk, P 0(x) :=
nX

k=1

akkxk�1,Assumption:

R := |a| + r, K :=
nX

k=1

|ak|
k(k � 1)

2
Rk�2.Constants:

`a(x) := P (a) + P 0(a) · (x� a).Tangent at a :

|P (x)� P (a)� P 0(a)(x� a)|  K|x� a|2,Tangent deviation: ����P (x)� P (a)
x� a

� P 0(a)
����  K · |x� a|.or for slopes (x 6= a):

The following proposition and its proof are part of the imminent understanding of the
definition of di↵erentiability. It also shows: if f has a local extreme value at c then f 0(c) = 0.

Proposition. Growth and non-negative slope.
Increasing functions f (i.e. x  y ) f(x)  f(y)) have a non-negative slope f 0(a) � 0 at
any point a. – The inequalities  cannot be replaced by < as can be seen from the strictly
increasing function x 7! f(x) := x3 where f 0(0) = 0.
Indirect proof. Suppose the derivative is negative at a, f 0(a) < 0. The definition gives
us constants r,K > 0 with

|x� a|  r ) |f(x)� f(a)� f 0(a)(x� a)|  K · |x� a|2.

We make r smaller, namely to min(r, |f 0(a)|/2K) > 0, and conclude that

a�r  x < a ) f(x) � f(a)+f 0(a)(x�a)�K · |x�a|2 � f(a)+f 0(a)(x�a)/2 > f(a),
a < x  a+r ) f(x)  f(a)+f 0(a)(x�a)+K · |x�a|2  f(a)+f 0(a)(x�a)/2 < f(a).

In other words, for x close to a and x < a we have f(x) > f(a), while at the right side of a
the values of the function are f(x) < f(a) – as we expect it from negative derivatives, but
which is a contradiction to the assumption that f is increasing.
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Comparison of derivative and di↵erence quotients.
The derivative f 0 of the dotted function f is drawn with a bold line. It is approximated by
two di↵erence quotients (with the relatively big step size h = 0.5),

by a one-sided one (blue): (f(x + h)� f(x))/h
and by a symmetric one (red): (f(x + h)� f(x� h))/2h.

The symmetric di↵erence quotients are too small when we are close to the inflection points
of f but otherwise a lot more precise than the one-sided ones. The smaller the step size,
the more superior are the symmetric quotients; for quadratic functions, they even give the
precise derivative, independent of the step size, because ((a + h)2 � (a� h)2)/2h = 2a.
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Rational Functions, Di↵erentiation Rules.
We can apply the definition of di↵erentiability to the function x 7! f(x) := 1/x
as well. It is di↵erentiable in its domain R \ {0} with the derivative f 0(a) =
�1/a2. All rational functions (i.e. fractions of polynomials) can be generated
from this function and the polynomials. Here the di↵erentiation rules become
important. They say: If two functions f, g are di↵erentiable, then f + g, f · g, f � g
are di↵erentiable as well and the derivatives of these composed functions can be
calculated explicitly from the values and derivatives of f, g. Though the concept of
a function changed a lot from Newton to Hilbert and consequently the definition
of di↵erentiability, the di↵erentiation rules stayed the same. We will explain the
reason for that.

The following example is important for two reasons. First, together with the chain rule, it
extends very much the set of functions we can di↵erentiate. Second, the interval [a�r, a+r]
where we compare the function and its tangent, cannot be chosen completely independent
of a any longer, since of course 0 must not lie in this interval.

Example f(x) = 1/x. We assume 0 < a, x. Then the secant slopes are:

1/x� 1/a

x� a
=
�1
x · a

Obviously (as for the other expamples with power functions), the number �1/a2 lies in
between the secant slopes on the right hand side (a < x) and the secant slopes on the left
hand side (x < a), so that only the value �1/a2 can be expected as the derivative. Then
Ta(x) := 1/a � (x � a)/a2 is the expected tangent. We calculate the di↵erence between
f(x) and the expected tangent:

f(x)� Ta(x) = x�1 � (a�1 � a�2 · (x� a)) = (
1
a2
� 1

x · a ) · (x� a) =
(x� a)2

x · a2
.

Choosing r := |a|/2 we avoid that 0 lies in the interval [a�r, a+r]. With f 0(a) = �1/a2 and
the constant K := 2/a3 this implies that the inequality in the definition of di↵erentiability
holds:

0 <
a

2
 x ) 0  f(x)� f(a)� f 0(a) · (x� a)  +

2
a3

(x� a)2.

Here I assumed 0 < a additionally, since then the calculation shows that the graph of this
function lies above any tangent and below some quadratic function with the same tangent.
(Vice versa for a < 0.)

Excercise. Deduce for f(x) = x�n and n > 1 that f 0(x) = �nx�n�1 is expected and:

0 <
a

2
 x ) 0  f(x)� f(a)� f 0(a) · (x� a)  n(n + 1)

(a/2)n+2
· (x� a)2.
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Di↵erentiation rules. Obviously one wants to determine the derivative directly from the
definition only for introductory examples where the definition is to be explained. Later one
looks for less time-consuming methods, like rules that allow for calculating the derivative
of f ·g and f �g from the derivatives of the two functions f and g. In general, for every new
way to construct functions from simpler ones, one looks for an appropriate di↵erentiation
rule. First, we answer the following question: How must the rules that correspond to the
sum, the product and the composition of functions look like? Then we prove these rules.
Next, we observe that we can describe curves in the plain by pairs of functions; how can we
di↵erentiate those? Later we will construct new functions as the inverse functions. What
di↵erentiation rule can we use to calculate their derivatives? In later chapters it will be
particularly important to construct new functions as limits of sequences of approximations
by some simpler functions; are there di↵erentiation rules for that as well?

Linear combinations.
We have already treated polynomials as linear combinations of power functions and can see
that for two polynomials P and Q, their derivatives P 0 and Q0, and ↵,� 2 R we have

(↵ · P + � · Q)0 = ↵ · P 0 + � · Q0.

This rule shouldn’t be di↵erent for more complicated functions, thus

(↵ · f + � · g)0 = ↵ · f 0 + � · g0.

Excercise. The proof is a direct application of the triangle inequality.

Product rule
If di↵erentiation rules exist at all, they have to be valid for the simplest functions as well.
To see how a product rule could look like, we multiply linear functions first:

`1(x) = w1 + m1(x� a), `2(x) = w2 + m2 · (x� a)

(`1`2)(x) = w1w2 + (w1m2 + w2 · m1) · (x� a) + m1m2 · (x� a)2.

The quadratic function `1`2 has at a the factor of (x�a) as its derivative: w1m2 +w2m1 =
(`1 · `02 + `2 · `01)(a). Thus, if there is a product rule, it should look as follows:

(f1 · f2)0(a) = f 01(a) · f2(a) + f1(a) · f 02(a).

Chain rule, or Composition rule
Again we try to find out how the rule could look like. Let ` be a linear function

`(x) = A + m · (x� a), m 6= 0

and f a function which is di↵erentiable at A. Then there are numbers R,K such that

Y 2 [A�R,A + R] ) |f(Y )� f(A)� f 0(A) · (Y �A)|  K · |Y �A|2.
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Plugging in Y = `(x) etc. into the inequaltiy for f , we find:

|x� a|  R/m ) |f(`(x))� f(`(a))� f 0(`(a)) · m · (x� a)|  K · m2 · |x� a|2.
Therefore, the composition f � ` has the derivative (f � `)0(a) = f 0(`(a)) · `0(a).
We expect this di↵erentiation rule also to be true for non-linear `.

Commentary. In the 19th century it became accepted to call a function di↵erentiable
when it can be approximated fairly well by linear functions (still called tangents), though
not quite as well as we have observed for polynomials. The essential thing is, that the
di↵erence between f(x) and the tangent Ta(x) near a should decrease faster than propor-
tionally to the distance |x�a|. As examples for such rougher but still su�ently good error
bounds we can take const · |x � a|1+p with 0 < p  1 (only the linear functions will be
“di↵erentiable” if we take p > 1). These error bounds have the advantage of being explicit,
but the deficiency is that it’s not possible to prove such explicit approximations in all the
interesting cases. The ultimate definition (that is 200 years younger than Newton!) works
with even rougher errors. I will use this definition later in this text. The error bounds are
expressed in the following way: the errors are  ✏ · |x�a|; however, ✏ is not a given constant
here, this would not be su�cient; we may choose an arbitrarily small ✏ > 0 as a factor, but
we have to pay for this by the fact that the approximation is valid only in a smaller interval
for a smaller ✏. We will work with the final definition later, but we mention it already now:

The ultimate definition of di↵erentiability. For every error factor ✏ > 0 there is a
(possibly very small) �(✏) = � > 0, such that the following inequalities hold at least in the
interval [a� �, a + �]:

|x� a|  � ) |f(x)� f(a)� f 0(a) · (x� a)|  ✏ · |x� a|.
There are still two alternatives for this formulation: For every ✏ we have to find the �
independent of a 2 [R,S], or weaker: we have to find the � allowing dependence on a.

In spite of all these possible variations for formulating the definitions and the assumptions
of theorems, the di↵erentiation rules are always the same. Namely, if two functions f and
g can be approximated by their tangents “well in some way”, then f · g and f � g have the
derivatives, which our initial considerations make us expect, and they are approximated by
their tangents “well in some way” in the same sense. We can express this “well in some
way” in formulas:

f(x)� f(a)� f 0(a) · (x� a) = �(x, a) · |x� a|,
and depending on the assumptions required right now we have:

x 2 [a� r, a + r] ) |�(x, a)|  K · |x� a|p, (0 < p  1)

or, for each ✏ > 0 there is a � > 0 such that

x 2 [a� �, a + �] ) |�(x, a)|  ✏,
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and where the constants r,K or � either depend on a, or better, where one choice of
constants holds “uniformly” for all a in the subset of the domain of f which is of interest
right now. All these variations occur, but the proofs of the di↵erentiation rules must be
adapted only to the exact requirements on �, otherwise they stay the same. During most of
the following proof of the product rule we do not need to know how “small” is specified, only
at the very end the definition of �i enters. – Most authors start their proofs by choosing r
or � so small that |�(x, a)|  1.

Proof of the product rule
Assumption: fi(x) = fi(a) + f 0i(a) · (x� a) + �i(x, a) · |x� a|, i = 1, 2 holds for functions
�i, which desribe the“small” errors which we have previously discussed. Then

f1(x) · f2(x) =⇣
f1(a) + f 01(a) · (x� a) + �1(x, a) · |x� a|

⌘
·
⇣
f2(a) + f 02(a) · (x� a) + �2(x, a) · |x� a|

⌘

gives us, after we expand and regroup, the di↵erence between the product and the expected
tangent:

(f1 · f2)(x) �
�
(f1 · f2)(a)+(f 01 · f2 + f1 · f 02)(a) · (x� a)

�
=h

(f1(a) + f 01(a) · (x� a)) · �2(x, a)+(f2(a) + f 02(a) · (x� a)) · �1(x, a)

+(f 01(a) · f 02(a) + �1(x, a) · �2(x, a)) · |x� a|
i
· |x� a|.

First, we simplify only under the assumption that a, x belong to a bounded (but maybe
very big) interval, let’s say a, x 2 [�R,R]. Then the expression in the square brackets
(using |�1 · �2|  1) becomes

[. . .]  const1 · �2 + const2 · �1 + (|(f 01 · f 02)(a)| + 1) · |x� a|,

where the constants const1, const2 can obviously be calculated explicitly from fi(a), f 0i(a)
and the length 2R of the interval. Such a combination of �1 and �2 is now “small” in the
same sense as required for �1 and �2, since the third term (|(f 01 ·f 02)(a)|+1) · |x�a| complies
with the sharpest condition for being “small”. For example:
The condition

|x� a|  r1 ) |�1(x, a)| M1 · |x� a|p, and |x� a|  r2 ) |�2(x, a)| M2 · |x� a|p
implies

|x� a|  min(r1, r2, 1))��(const1 · �2 + const2 · �1)(x, a) + (|(f 01 · f 02)(a)| + 1) · |x� a|
�� 

 (const1 · M2 + const2 · M1 + const3) · |x� a|p

= M3 · |x� a|p.
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The di↵erence between the product f1 · f2 and the expected tangent is indeed a small
error in the same sense as we have assumed for f1 and f2. In our simple example this
meant  M3|x � a|p+1 in the interval |x � a|  min(r1, r2, 1). All the later proofs of the
other product rules follow this pattern, in particular, the product written by · here, can be
replaced by any bilinear product, such as the scalar product, the cross product, the matrix
product, etc.

Proof of the Chain rule
First of all, we have to make sure that the values of the inner function fall into an interval
where the assumptions on the argument of the outer function hold. In our calculation of f�`
in the beginning, this was guaranteed by the implication |x� a|  R/m ) |`(x)� `(a)| =
|m(x � a)|  R. For a non-linear inner function this requires more e↵ort. Unlike for the
product rule, I will not formulate the proof for all kinds of “small” errors at once, but
restrict myself to the quadratic errors observed for polynomials. I postpone the discussion
of ✏-�-errors since we have to come back to the proof of the chain rule in higher-dimensional
situations anyway.

Assumptions:
|x� a|  r1 ) |f(x)� f(a)� f 0(a) · (x� a)| M1(x� a)2, f(a) = A and
|Y �A|  R2 ) |F (Y )� F (A)� F 0(A) · (Y �A)| M2 · (Y �A)2.

Now, if we can guarantee |f(x)� f(a)|  R2 (!!), we get our first important step,

|F (f(x)� F (f(a))� F 0(f(a)) · (f(x)� f(a))| M2 · (f(x)�A)2.(⇤)

Applying the triangle inequality to the assumption on f , we get a Lipschitz bound for f :

|x� a|  r1 ) |f(x)� f(a)|  (|f 0(a)| + M1 · r1) · |x� a| =: L · |x� a|.(⇤⇤)

Therefore
|x� a|  r: = min

�
r1, R2/L

�
indeed implies |f(x) � A|  R2 whenever |x � a|  r. This is an important step in the
proof that makes (*) available.
Next, multiply the assumption on f by |F 0(f(a))|) to get

|x�a|  r1 ) |F 0(f(a)) ·(f(x)�f(a))�F 0(f(a)) ·f 0(a) ·(x�a)|  |F 0(f(a))| ·M1 · |x�a|2.

The term F 0(f(a)) · (f(x) � f(a)) appears in this last inequaltiy and in inequaltiy (*).
Hence, both these inequalties in combination with the triangle inequality can be used to
eliminate this term, and we get the implication that finishes the proof:

|x� a|  r ) |F (f(x))� F (f(a))� F 0(f(a)) · f 0(a) · (x� a)|  Const · (x� a)2,

where the constants have been combined to Const := M2(|f 0(a)|+M1 ·r1)2+|F 0(f(a))|·M1.
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We repeat that it is an essential part of the proof to guarantee with assumptions on x
that Y := f(x) satisfies the assumptions made for F . We handled this part by deriving
the Lipschitz constant L for f near a. Proofs of the chain rule that ignore this step, are
incorrect.
Our proof with the ✏-�-errors will follow the same pattern, but neither will there be explicit
intervals in the assumptions, nor will the proof generate any explicit intervals where the
asserted inequalities hold.

Applications

(
1
f

)0 = � f 0

f2
.Reciprocal Rule:

Proof. Use F (x) = 1/x, F 0(x) = �1/x2 in the chain rule we have just proven.
This rule also gives a

(
f

g
)0 = (f

1
g
)0 =

f 0

g
� f · g0

g2
=

f 0g � fg0

g2
=

f

g
· (f 0

f
� g0

g
).Quotient Rule:

The latter form of the quotient rule is useful, for example, in the discussion of percentage
(or relative) errors. In natural sciences the squares of errors are often negligible, then the
derivative tells us
what impact errors in the arguments will have on the values of a function:

4f : = f(x)� f(a) ⇡ f 0(a) · (x� a)Absolute error:

Often one is more interested in the so-called relative error, where one has to divide by
f(a) > 0 .

4f

f
: =

f(x)� f(a)
f(a)

⇡ f 0

f
(a) · (x� a).Relative error:

Notation: For positive functions f > 0 we call f 0/f its growth rate, e.g. the birth rate is
such a quotient. These growth rates f 0/f appear in the natural sciences certainly as often
as the slopes f 0.

Curves in the plane. With pairs of functions f, g : [a, b] ! R we can describe curves in
the plane. E.g. f(t) := 2t/(1 + t2), g(t) = (1� t2)/(1 + t2) gives us a map from R to the
unit circle (except (0,�1)):

(f, g) : R ! R2, t!
� 2t
(1 + t2)

,
(1� t2)
(1 + t2)

�
, f(t)2 + g(t)2 = 1.
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Remarkably, this map sends the rational points in R into the points on the circle with
rational coordinates and vice versa, for rational p and q such that p2 + q2 = 1 we have the
rational t := (1 + q)/p. On the other hand, we will see that the circle is not traced out
at a constant speed. Among pairs of rational functions there are none that can do that,
trace a circle at constant speed. Only sin and cos, which we will construct at the end of
the chapter on the completeness of the real numbers, can.
In order to come to the definition of derivatives and tangents, we consider the simplest case
first. Let f and g be linear functions:

f(t) := p1 + m1 · t, g(t) := p2 + m2 · t.

Then we may write

p(t) := (f, g)(t) = (p1, p2) + (m1,m2) · t,
p(t2)� p(t1)

t2 � t1
= (m1,m2).

Thus, all the average velocities of this movement are constant, ~v = (m1,m2). Of course we
will agree that we define the instantaneous velocity in this clear case to be the vector ~v.

Now we want to compare more complicated curves with these simplest
linear curves.

Strategy: A curve (f1, f2) : [a, b]! R2 has the “derivative” or “velocity”
~v = (f 01(t0), f 02(t0)) at t0, if (f1(t), f2(t)) di↵ers, near t = t0, su�ciently little from the
following linear curve, the tangent movement:

t! (f1(t0), f2(t0)) + (f 01(t0), f
0
2(t0)) · (t� t0).

We have to make more precise what we mean by “di↵ers su�ciently little”. For this purpose
we generalize the “small errors”, that we assume for f1, f2 , using the Pythagoras theorem.
Suppose

fi(t)� fi(t0)� f 0i(0) · (t� t0) = �i(t, t0) · |t� t0|, (i = 1, 2),

where �i(t, t0) describe the currently used “small” errors, i.e., depending on the situation
either explicit errors like |�i(t, t0)|  Mi · |t � t0| in intervals [t0 � ri, t0 + ri] or ✏-�-errors
|�i(t, t0)|  ✏ in intervals [t0� �, t0 + �]. Here Mi and r := min(r1, r2) are constants, which
may depend on t0 or be independent of t0 in more favorable cases (we say in this case, that
the constants can be choosen “uniformly”), while for ✏-�-errors we need a � > 0 for every
✏ > 0, where again � = �(✏, t0), or better � = �(✏) (uniformly) for all t0 .
Indepenently of a precise meaning of “small” errors, the Pythagoras theorem will give us
t 2 [t0 � r, t0 + r])

��(f1, f2)(t)� (f1, f2)(t0)� (f 01, f
0
2)(t0) · (t� t0)

�� p�1(t, t0)2 + �2(t, t0)2 · |t� t0|.

41



And again we can see easily for any kind of small errors �1,�2, thatp
�2

1 + �2
2 is a small error of the same kind . For example, if for some p with 0 < p  1

|t� t0|  r ) |�i(t, t0)| Mi · |t� t0|p (i = 1, 2),

then

|t� t0|  r )
p

�1(t, t0)2 + �2(t, t0)2 
q

M2
1 + M2

2 · |t� t0|p =: M · |t� t0|p.

In other words: We can easily generalize the di↵erentiation of functions
f : [a, b]! R to the di↵erentiation of curves (f, g) : [a, b]! R2.

The corresponding simple di↵erentiation rule is called “componentwise di↵erentiation.”

(f, g)0(t) =
�
f 0(t), g0(t)

�
.The derivative of a curve is:

So we are able to di↵erentiate curves as easily as functions, and our initial considerations,
when we were looking for tangents to curves other than circles without having any defini-
tions, fit neatly into our theory now.

Example. For the circle we’ve just looked at,

k(t) := (
2t

1 + t2
,

1� t2

1 + t2
) = (

2t
1 + t2

,
2

1 + t2
� 1)

we obtain
k0(t) =

2
(1 + t2)2

· (1� t2, �2t), |k0(t)| =
2

1 + t2
.

Obviously the velocity (and therefore the tangent) is always perpendicular to the radius,
but the absolute value of the velocity of this circular movement is not constant.

Image, not graph, of this parametrized circle, with two parametrized tangents.

Commentary. Now we can di↵erentiate a big class of functions and curves, and do it
quickly by using the di↵erentiation rules. Yet, we don’t know any theorems that would
enable us to draw conclusions about a function from assumptions about its derivative. We
will turn to this central subject of analysis in the next chapter.
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The Monotonicity Theorem
The monotonicity theorem and related results allow us to derive properties of
functions from properties of their derivatives. First, we have to understand why
such conclusions are central to calculus. Second, to prove the monotonicity theo-
rem we need more subtle arguments when the assumptions on di↵erentiability are
weaker. Usually, the completeness of the real numbers is used in an indirect proof.
However, the uniform estimates that are true for all the functions we have dis-
cussed so far, allow us to prove it directly without using completeness. Therefore
these proofs work already if we know the rational numbers only. They allow us to
develop an essential part of quantitative analysis before any use of completeness.

Of course, the rules for calculating the derivatives we have discussed, don’t explain how
useful the calculation of the derivatives might be. With the monotonicity theorem we
turn to this question. While so far we have been able to obtain the treated properties of
derivatives of polynomial functions by simple calculation, this won’t be the case in most
situations. General statements can rarely be verified by direct calculation, we have to argue
from the definitions. And these arguments give better results than the earlier calculations,
even for polynomials.
First, repeat the definition of (elementary) di↵erentiability at one point, without mentioning
uniformity.

Definition. A function f : (↵,!)! R is called di↵erentiable at c 2 (↵,!) with slope (or
derivative) m = f 0(c) and tangent T (x) = f(c) + m · (x� c), if the following holds:
There is an interval [c� r, c + r] ⇢ (↵,!), r > 0, and a constant K such that:

x 2 [c� r, c + r]) |f(x)� f(c)�m · (x� c)|  K · (x� c)2.(dif)

We call K · (x � c)2 the quadratic deviation from the tangent. It is a smaller deviation
than allowed by the final definition in chapter 10. Now for “uniformity”. Without better
knowledge one would have to expect that the length 2r of the interval and the constant
K depend on the point c. However, all functions we have met so far (and will meet
until chapter 9) are better behaved: A function f is called uniformly di↵erentiable on
[a, b] ⇢ (↵,!) if constants r,K exist that work in (dif) for all c 2 [a, b].

From now on, the following argument that goes back to Archimedes becomes important.
Archimedes Strategy: In order to prove an inequality a  b it is enough to
prove the weaker inequalities a  b + p for all p > 0. Surprisingly, this is often
much easier.

Proof: If a  b were wrong, we would have a > b, and we could take p: = 1
2 (a� b) > 0. By

assumption we would have the inequality a  b + p, which would give us a  b + 1
2 (a� b),

and 1
2a  1

2b, contradicting our assumption a > b.
I don’t know any other proof which deserves the title The Prototype of an Indi-
rect Proof more than this one. Archimedes strategy is used extremely often in analysis.
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Archimedes himself worked with more particular assumptions, he used only unit fractions
p = 1/n. We will explain this in more details in the next chapter after we formulate the
Archimedes axiom for the real numbers.

After these preliminary remarks we now get to the core of the matter. The most basic
example of a theorem that deduces properties of f from assumptions on its derivative f 0 is
the

Monotonicity Theorem. Let f be di↵erentiable with the derivative f 0 � 0, then f is
weakly increasing:

x  y ) f(x)  f(y).
Corollaries 1 - 6. The statement of the theorem is of course already suggested by the
name “slope”. Nevertheless, the proof is not obvious. The theorem is very useful even for
the treatment of polynomials.
As an advertisement for the Monotonicity Theorem we are first showing some of its imme-
diate consequences.

1.) Generalzied Monotonicity Theorem
Functions with bigger derivative grow faster:

x  y and f 0  g0 imply f(y)� f(x)  g(y)� g(x),
since (g � f) meets the assumptions of the monotonicity theorem.

2.) The (D)L)–Theorem : Derivative bounds imply expansion-, or Lipschitz, bounds.
Or: a bound for f 0 is also a bound for all the slopes of secant lines to f :

|f 0|  L) |f(y)� f(x)|  L · |y � x| :
Define the linear function g(x):= L · x. Then �g0  f 0  g0 and the first corollary
implies

�L · (y � x)  f(y)� f(x)  +L · (y � x) for x  y.
Functions with this property play such a big role that they have their own name:
Definition. Functions with |f(y) � f(x)|  L · |y � x| are called Lipschitz continuous
(or of bounded expansion) with (global) Lipschitz bound (or expansion bound) L.

3.) Non-negative second derivatives imply convexity.
f 00 � 0 implies that the graph of f lies above any of its tangents.
Proof. Let Tc(X) := f(c)+f 0(c) ·(x�c) be the tangent at c. For the auxiliary function
h: = f � Tc we have first: h00 � 0. Further h0(c) = 0, which gives: x  c ) h0(x)  0
and: c  x ) h0(x) � 0. Therefore, by the monotonicity theorem, h is increasing on
the right hand side of c, and decreasing on the left hand side of c. Since h(c) = 0, this
implies h � 0, or f � Tc.

Application. Bernoulli’s inequality: �1  x, n 2 N ) (1 + x)n � (1 + n · x) (tangent at
c = 0) is an immediate consequence, since ((1 + x)n)00 � 0 if �1  x.
Using 3) is a very convenient way to derive a lot of other estimates, even for polynomials.
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4.) Second derivative and deviation from the tangent.
|f 00|  K implies that f di↵ers from its tangent at c by no more than 1

2K · (x � c)2.
Indeed, for the auxiliary function h(x):= f(x) � Tc(x) we have h(c) = 0 = h0(c) and
�K  h00  K.
We apply corollary 1 twice, first

x � c) �K · (x� c)  h0(x)� h0(c) = h0(x)  +K · (x� c),

x  c) �K · (c� x)  h0(x)� h0(c) = h0(x)  +K · (c� x)

and second:

�1
2
K · (x� c)2  h(x)� h(c) = f(x)� Tc(x)  1

2
K · (x� c)2.

This corollary explains the meaning of the constant in the quadratic deviation from the
tangent: every bound for the second derivative is a suitable constant. This result is often
much better than the “tangent deviation” we calculated from the absolute values of the
coe�cients in chapter 3.

5.) Second derivative and the deviation from a secant line, convexity again.
0  f 00 implies that in any intervall [a, b] the graph of f lies below the secant line Sab.
The secant line is the linear function Sab(x) := (f(a) · (b� x) + f(b) · (x� a))/(b� a).
For the auxiliary function h(x) := f(x)� Sab(x) we have h00 � 0, h(a) = 0 = h(b).
First, h0 is increasing since h00 � 0. Next, let c 2 (a, b) be arbitrary.
either: h0(c) � 0, then h0 � 0 in the interval [c, b] (h0 is increasing!) and therefore
h(c)  h(b) = 0.
or: h0(c) < 0, then h0  h0(c) < 0 in the interval [a, c] (h0 is increasing!) and therefore
0 = h(a) > h(c). Hence in both cases, we have h(c)  0, and therefore the graph of f
is below the secant line.

If f 00  B, then as above, we have 0  h00 for the auxiliary function
h(x) := �B(x� a)(b� x)/2 + Sab(x)� f(x).

We proved h  0, hence Sab(x)�B(x� a)(b� x)/2  f(x). Similarly, if �B  f 00.

6.) The multiplicative version of the monotonicity theorem for positive functions.
In connection with the relative errors we have to know the growth rates of functions.
Due to the quotient rule we have:

f 0

f
 g0

g
) (

g

f
)0 =

g

f
· (g0

g
� f 0

f
) � 0.

By the monotonicity theorem g/f is increasing and g grows faster than f :

a  x and
f 0

f
 g0

g
) g(a)

f(a)
 g(x)

f(x)
) f(x)

f(a)
 g(x)

g(a)
.
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We illustrate this multiplicative version by a specific application, where I want to emphasize
how easy the computations are.
Consider the polynomials fm(x) := (1 + x/m)m for 0  x and m 2 N. For small x, their
growth rates di↵er only little from 1, therefore these polynomials will turn out to be a good
approximations of the exponential function. If m < n, we have

f 0m
fm

(x) =
1

1 + x/m
 1

1 + x/n
=

f 0n
fn

(x).

Together with fm(0) = 1 = fn(0) the multiplicative monotonicity theorem implies

0  x und m < n) (1 +
x

m
)m  (1 +

x

n
)n.

It is a lot more tedious to prove this monotonicity (of n! (1 + x/n)n for fixed x) without
our multiplicative monotonicity theorem.
After having available this increasing sequence of functions {fn(x)}, the question arises:
“How fast does it grow?” Is it bounded for a fixed x? In spite of the simple appearance
of these polynomials, it is not easy to calculate an upper bound, but the multiplicative
monotonicity theorem will do it fast. Our approach deserves yet another comment. If we
regard the factor 1+x as paying an interest rate of x with respect to the principal amount
at the end of one year, then (1 + x/2)2 means paying half of the interest twice a year, etc.
Looking at this “backwards in time”, the final amount must be multiplied by (1 � x) in
order to calculate the initial amount that corresponds to an interest rate of x with respect
to the final amount. With this backwards view, we multiply by 1/(1�x/k)k for k payments
of x/k .
Therefore we consider

hj(x) :=
1

(1� x/j)j
for x 2 [0, j),

and we have

hj(0) = 1, and
h0j
hj

(x) =
1

1� x/j
� 1 � 1

1 + x/n
=

f 0n
fn

(x).

The multiplicative monotonicity theorem therefore implies without further calculations

0  x < j ) (1 + x/n)n  1/(1� x/j)j .

Thus, the compound interest interpretation of the first formula leads us to an increasing
and a decreasing sequence of rational functions, which are convenient bounds for each other!
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Enough of the corollaries of the monotonicity theorem for now, let us proceed towards its
proof. The most common way is an indirect proof which uses the completeness of the real
numbers (cf. next chapter) in an essential way. Since I have mangaged to get along without
this completeness so far - we haven’t needed any other numbers than the rational ones yet
- I want to demonstrate this important theorem without completeness first. As an added
benefit, this proof will be a step towards the integral calculus. On the other hand, waiving
completeness has its price. Indeed, the final di↵erentiability definition is too weak, so that
we cannot choose independently of c the constant K and the length r of intervals where
the quadratic inequality holds. In this case we will have to use completeness in order to
find a point of the interval that will allow us to get a contradiction to finish the indirect
proof.
It seems to me that the sophistication of these refined arguments shines more clearly if we
get along with the simpler arguments in simpler situations first, and then see later what
di�culties will make these simpler arguments fail.
At the moment, we have been dealing only with the rational functions, and these can be
approximated particularly well by their tangents, as we have seen. Also the next classes of
functions we are going to construct, sin, cos, exp and power series in general, do have this
pleasant property. It will need a substantial e↵ort to construct functions that are less well
di↵erentiable. Therefore we accept the stronger uniformity assumptions here.

Proof of the monotonicity theorem in case of uniform di↵erentiability.

The main assumption: Let f be di↵erentiable on [↵,!] and f 0 � 0.
The additional assumption: There are positive constants r,K such that the function
can be uniformly approximated by its tangents, i.e.,

c, x 2 [↵,!], |c� x|  r ) |f(x)� f(c)� f 0(c) · (x� c)|  K · |x� c|2.

The additional assumption allows us to waive completeness, hence we can, for example,
consider rational functions defined only on Q.

Statement: f is weakly increasing, i.e.

x  y 2 [↵,!] ) f(x)  f(y).

Remark: In our additional assumption it is essential that the constants r,K are indepedent
of c, we say they apply “uniformly”. The following proof works for all kinds of “small
errors”, as soon as the required constants can be choosen uniformly. A proof without
uniformity follows after we discuss completeness in the next chapter.

Proof: Divide the subinterval [x, y] into n equidistant parts, where n is at least so big that
(y � x)/n  r, or n � (! � ↵)/r. Set tk := x + k

n · (y � x), k = 0, . . . , n.
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Then, using the additional assumption, we find a constant K, independent of n and k, such
that the second of the following inequalities holds, and then, because f 0 � 0, the first one
follows as well.

�K · (tk � tk�1)2  �K · (tk � tk�1)2 + f 0(tk�1) · (tk � tk�1)  f(tk)� f(tk�1).

We plug tk � tk�1 = (y � x)/n into these inequalities and sum up over k = 1, . . . , n.

x  y ) �K · (y � x)2 · 1
n
 f(y)� f(x).

But now, following Archimedes, we can improve this inequality to 0  f(y)� f(x).
Let me summarize the proof. If we apply the definition of di↵erentiability to “small”
intervals and also use uniformity, then we obtain the statement for the subintervals, accurate
to “very small” errors. Adding all these subresults, we obtain the statement accurate to an
irrelevant 1/n Archimedes error.

Exercise. Let (f, g) : [↵,!] ! R2 be a uniformly di↵erentiable curve with bounded
derivative:

��(f, g)0
�� :=

p
f 02 + g02  L. Modify the previous proof a little bit and show

that L is an expansion bound (Lipschitz bound) to the curve, i.e.:
x, y 2 [↵,!] )

��(f, g)(x)� (f, g)(y)
�� :=p(f(x)� f(y))2 + (g(x)� g(y))2  L · |x� y|.

Similar arguments give us further properties of uniformly di↵erentiable functions (thus, in
particular of polynomials).

Theorem. Expansion bounds (Lipschitz bounds) for f 0.
Assumption. Let f be uniformly di↵erentiable with error constant K on all subintervals
of length 2r.
Statement. The derivative f 0 is Lipschitz bounded with expansion bound 2K. In formulas:

a, b 2 [↵,!]) |f 0(a)� f 0(b)|  2K · |b� a|.Expansion bound for f 0:

Note. A bound |f 00|  2K is a Lipschitz bound for f 0 by corollary 2 to the monotonicity
theorem and also controls the deviation of the graph from the tangent by corollary 4. Here
we see the opposite conclusion: If K is a (uniform) bound for the deviation of f from its
tangents, then 2K is a Lipschitz bound for f 0. If f 00 exists then also |f 00|  2K.

Proof: First, for every function h, the triangle inequality (reminder: |C �A|  |C �B| +
|B �A| ) implies that an expansion bound on [a, b] and [b, c] provides an expansion bound
on [a, c], for example

a < b < c, |h(b)� h(a)| L · |b� a|, |h(c)� h(b)|  L · |c� b|
) |h(c)� h(a)| L · (|b� a| + |c� b|) = L · |c� a|.

Therefore it su�ces to prove the existence of such expansion bounds on small subintervals.
Thus, we may assume in addition |b� a|  r.
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Then the assumption gives us first:

|f(b)� f(a)� f 0(a) · (b� a)|  K · (b� a)2,

|f(a)� f(b)� f 0(b) · (a� b)|  K · (a� b)2,

and now, the triangle inequality gives us the expansion bound on f 0 which we claimed:

|(f 0(a)� f 0(b)) · (b� a)|  2K · (b� a)2, or, for a 6= b : |f 0(a)� f 0(b)|  2K · |a� b|.

Information from Higher Derivatives, Taylor Approximation.

In the fourth corollary to the monotonicity theorem we got the quadratic deviation of
tangents from bounds for the second derivative. This idea can be iterated. We will get
higher and higher powers for the error terms. For small di↵erences in the arguments, higher
powers |x�a|k are much smaller than lower powers (chapter 1, example 2). In cases where
the higher derivatives don’t grow too fast, we can expect significantly better approximations
than by the tangent. As an example we consider the following

Assumption on the 4th derivative: f : [�R,+R]! R, |f (4)| M .

��f(x)� (f(0) + f 0(0) · x + f 00(0) · x2/2 + f 000(0) · x3/6 )
�� M · x4/24.Statement:

Proof. The already proven corollary 4 implies for f 00 due to |(f 00)00| M :
�M · x2/2  f 00(x)� (f 00(0) + f 000(0) · x)  M · x2/2 =

�
M · x3/6

�0.
By the generalized monotonicity theorem (1st corollary) we get from this for x � 0
�M · x3/6  f 0(x)� f 0(0)� (f 00(0) · x + f 000(0) · x2/2)  M · x3/6 =

�
M · x4/24

�0,
and analogous inequalities for x  0. One more application of the generalized monotonicity
theorem implies the assertion in both cases, x � 0 and x  0.

Remark. It is not di�cult to generalize this statement to higher derivatives. Even when
M is a lot bigger than B := max |f 00|, by chapter 1 there is still an interval around 0, where
the error M · x4/24 is much smaller than the tangent deviation B · x2/2. This observation
leads in favorable cases to a sequence of better and better approximations, called the Taylor
approximations. We will get back to this when we define the functions sin and cos.
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Illustration of Taylor approximations
Taylor polynomials of odd degree stay above or below the approximated function in general,
i.e., if the next higher derivative is 6= 0. Taylor polynomials of even degree switch from one
side to the other in general. At the point on the left, you see the tangent and the 3rd Taylor
polyonmial, at the point on the right the 2nd and 4th Taylor polynomial – Since f 00(w) = 0
at inflection points w, the 2nd Taylor polynomial coincides there with the tangent; therefore
the graphs of cubic functions are intersected by their tangents at the inflection point.

Beginnings of integral calculus At the time of Newton, di↵erentiation (“Tangent prob-
lem”) and integration (“Generalized sums”) had been developed independently of each
other before it was discovered that they are inverse processes (“Fundamental theorem of
calculus”). The completeness of the real numbers was formulated only 200 years later. The
next application of the monotonicity theorem goes as closely in the direction of integral
calculus as it is possible without completeness.

For this, I am explaining Riemann sums first. For their definition we need the following
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notations. Let [↵,!] be contained in the domain of a function f and [a, b] ⇢ [↵,!] a
subinterval with a so-called partition a = t0 < t1 < . . . < tn = b. The length of the longest
subinterval is called “the mesh size” of the partition, let’s say �: = max |tj � tj�1|. In every
subinterval we choose a sample point ⌧j 2 [tj�1, tj ], j = 1 . . . n, the so-called “tag”. Then
we come to the following

Definition: Each sum of the type
Pn

j=1 f(⌧j) · (tj � tj�1) is called a Riemann sum of f
for the interval [a, b].

Let us take a look at the following example. Consider the sum SN :=
PN

n=1 nk for fixed
k, thus a Riemann sum of the function x ! xk. This helps us to see how fast the SN

grow as a function of N . We compare the summands with values of the function xk:
x 2 [n, n + 1]) (x� 1)k  nk  xk (inequalities reversed if k < 0).
All of these three functions are derivatives, namly

x 2 [n, n + 1]) ( 1
k+1(x� 1)k+1)0  (nk · x)0  ( 1

k+1 · xk+1)0.
Therefore we get from the corollary 1 of the monotonicity theorem:

1
k+1((n)k+1 � (n� 1)k+1)  nk · (n + 1� n)  1

k+1 · ((n + 1)k+1 � nk+1)
(The monotonicity theorem is in fact trivial for power functions, therefore these inequalities
can be verified also directly). Next we sum up over n from 1 to N and get

1
k+1Nk+1 

PN
n=1 nk  1

k+1((N + 1)k+1 � 1).
The lower and the upper bounds coincide in the highest power of N , and we get the leading
term of the sum,

PN
n=1 nk ⇠ 1

k+1Nk+1. The other terms contribute a percentage of this
principal term that gets smaller when N gets bigger.

In the discussion of this example it was important that the summands were values of a
function which we could write as the derivative of another function. This is the case for
example for all polynomials; we also know that all the power functions x 7! xk with negative
exponent k < �1 are derivatives. To express this relationship we introduce the following

Definition. A function F is called an antiderivative of a function f , if F 0 = f .

Proposition. Riemann sums and uniformly di↵erentiable antiderivates.
Riemann sums of derivatives f 0 can be calculated by means of the antiderivative f up to
“small” errors. More precisly, the following is true
Statement: |f(b)� f(a)�

Pn
j=1 f 0(⌧j) · (tj � tj�1)|  K · |b� a| · �,

where K is the constant provided by uniform di↵erentiability of f and � := maxj |tj+1�tj |.
Note: If we have even f 0(t)  f 0(⌧j), for t 2 [tj�1, tj ] then the same proof gives us

f(b)� f(a) 
nX

k=1

f 0(⌧j) · (tj � tj�1),

similarly for the opposite inequality, if f 0(t) � f 0(⌧j).
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Proof. In every subinterval we have

|(f(tj)� f(tj�1))� f 0(⌧j) · (tj � tj�1)|
= |f(tj)� f(⌧j) + f(⌧j)� f(tj�1)� f 0(⌧j) · (tj � ⌧j + ⌧j � tj�1)| 
 K · (|tj � ⌧j |2 + |⌧j � tj�1|2)  K · � · |tj � tj�1|.

If we sum up these inequalities over j = 1, . . . , n and take into account
P

|tj�tj�1| = b�a,
we obtain the statement.

Remarks. First, it’s easy to believe that this proposition allows for a rather precise
estimation of certain sums, like in the previous example. Second, it is import that the
errors K · |b � a| · � get smaller, when the length � of the longest subinterval decreases.
Visualizing each summand f 0(⌧j) · (tj � tj�1) as the area of a rectangle of height f 0(⌧j)
over the subinterval [tj�1, tj ], we recognize that the Riemann sums approximate the “area”
below the graph of f 0 over the interval [a, b]. The biggest and the smallest Riemann sum
for a fixed partition di↵ers at most by K · |b� a| · � from the di↵erence between the values
of the antiderivative, f(b) � f(a). Alhough we haven’t provided a definition of the area
under the graph of f 0 yet, our error estimate is so good that we can expect now from any
definition of the area, as the Archimedes strategy demands, that

f(b)� f(a) is the area under the graph of f 0.
Certainly, any di↵erent number could not be a candidate for the area.
By the way, our estimation of the di↵erence between f(b)� f(a) and any Riemann sum is
already one half of the fundamental theorem of calculus. The remaining di�culties come
from the fact that for some functions, like g(x) := 1/x, we don’t know in advance (as we
do for polynomials) that they are derivatives of some other functions.
This is about as far as we can go without using the completeness of the real numbers.
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Real numbers, Completeness
The rational numbers are not enough to treat inverse functions or the existence
of limit functions like exp. They are not even enough to describe all the points
of a line segment. For an axiomatic description of the real numbers we need the
concepts of convergent sequence, sequence converging to zero or null se-
quence, nested intervals, Cauchy sequence. For their definition Archimedes’
axiom comes into action. The completeness axiom allows for proving the theorem
of Bolzano-Weierstrass, defining inverse functions, and constructing new functions
like exp, sin, cos as limits of approximations. – In the standard approach, the dif-
ficulties of this chapter appear already at the beginning.

Problems, which cannot be treated with rational numbers only. For all the
definitions and propositions discussed so far, it was enough to have the rational numbers
in mind when we talk about ”numbers”. (Of course, it was allowed to know more already,
since the statements and theorems of the first chapters remain true if the word ”numbers”
means either the rational or the real numbers.) I have to explain now, in which way the
rational numbers don’t su�ce. It’s probably known from school, that single numbers likep

2 are irrational, but when we focus too much on single numbers, we misconceive the size
of the problem. I will explain first, why we need more functions than the quotients of
polynomials we’ve considered up to now.
The square root is a special example of an inverse function. To some given, strictly
increasing (e.g. rational) function f it is easy to picture the graph of f together with
the the graph of its inverse function g: Reflect the points (x, f(x)) of the graph of f at
the bisecant of the first quadrant into the points (f(x), x) to get the graph of the inverse
function g. In this way we obtain a horizontal parabola as the graph of the square root
function from the graph of f(x) := x2. Under this reflection the straight lines with slope m
are mapped to straight lines of slope 1/m; therefore there is no doubt what the derivative
of g should be:

f 0(a) = m, g(f(x)) = x ) g0(f(a)) = 1/m,Derivative of the inverse function:

and, this is in accordance with the chain rule: 1 = (g � f)0(x) = g0(f(x)) · f 0(x).
Against this easy looking visual description, it is annoying that we cannot do this with
numbers. It wouldn’t help though to add the square roots of rational numbers to the
rational numbers. First, the roots of these roots would still be missing, and secondly, what
about all the other ”simple” inverse functions? Obviously, the rational numbers don’t
su�ce when dealing with inverse functions.
Other desires come from the natural sciences. A function with the growth rate f 0/f = 1
is more important than a function with slope f 0 = 1 in many situations. Functions with
f 0/f = 1 grow in intervals of length a by the constant factor f(a)/f(1), since the function
h(x) := f(x + a)/f(x) has the derivative 0 by the quotient rule, i.e. has the value h(x) =
h(0) = f(a)/f(0). (Functions with f 0 = 1 grow in intervals of length a additively by
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the constant f(a) � f(0).) Yet, such ”exponential functions” cannot be found among the
rational functions: Suppose f = P/Q = f 0, then the quotient rule for polynomials implies

P

Q
=
✓

P

Q

◆0
=

QP 0 � PQ0

Q2
) PQ = QP 0 � PQ0,

but this is impossible, since the degree of QP 0 � PQ0 is for sure at least 1 less than the
degree of PQ. But not only that, we cannot even define (with rational numbers only)
exponential functions or the trigonometric functions (sin, cos . . .) which are necessary to
describe oscillations or movements on the circle (rotations). The values of the exponential
function for example, are not rational for all rational arguments but 0, so that the graph
would have this single point (0, 1) 2 Q⇥Q only.
How immensely more numbers we desire, will be clear by the following reasoning: Of course,
we would want to be able to express the distance of any point on a straight line segment
from its initial point in terms of a number. But the rational numbers are very far away
from this. To see how far, we order the rational numbers so that we are able to count them:
We associate any (reduced) fraction m/n with the point (m,n) in the first quadrant. Now
we count these points by counting along the short diagonals one after the other:

(1, 1); (2, 1), (1, 2); (3, 1), (2, 2), (1, 3); (4, 1), (3, 2), (2, 3), (1, 4); . . ..
Now either we don’t count the non-reduced fractions or we ignore that every rational number
is counted again every once a while. Having been able to count the rational numbers in
the unit interval one after the other, we proceed to a second construction. We want to
surround every rational number by some space, i.e. cover it by an interval. Surprisingly we
can keep the total length ` of all the intervals arbitrarily small: We choose a number ` < 1,
then use half of the supply for covering the first rational number by an interval of length
`/2. For the second rational number we use again half of the remaining supply, and cover
it by an interval of lenght `/22. We continue this way, and after every step the last interval
used is as long as the remaining supply. The nth rational number will be covered by an
interval of length `/2n and this is just the remaining supply. Now, every rational number
will eventually be covered by some nonzero interval, but the total lenght of the intervals
is  `. Since we’ve choosen ` as small as we wanted, the rational numbers make up for
only an arbitrarily small part of the unit interval, all the other points must be described
by ”new” numbers.

Indeed, the real numbers are enough to solve all these problems: Rational functions f
which are strictly increasing in an interval [↵,!] of real numbers, have an inverse function
that is defined on the real image interval [f(↵), f(!)]; exp, sin, cos can be defined as real
valued functions on R; and every point of the unit interval can be described by exactly
one real number, the distance from the initial point. But these successes have their price.
We cannot write down the individual real numbers in a similarly explicit way as the ra-
tional numbers. We will have to consider a real number as given, when we have proved a
sequence to be ”convergent”: its limit is the real number. Usually, we don’t explicitly know

54



this limit, we only know the elements of the sequence as approximations. Thus, argueing
with real numbers, means argueing via approximations.
Notation: The word “sequence” is used as name for a map from the natural numbers N to
a set (of numbers, points, functions . . . ). We write sequences as {an}, {Pn}, {fn}, . . . .

The necessary notions.

We are going for an axiomatic description of the real numbers. For this, we need the
four very closely related notions sequence converging to zero = null sequence, con-
vergent sequence, nested intervals and Cauchy sequence. All four have a more
complicated logical structure, than required in the previous chapters; they cannot be de-
fined by explicit inequalities any more. But we only have to master this di�culty once,
the definition of the other three notions can be formulated easily in terms of null sequences,
we will discuss this notion in detail.
Necessary Defintions.
Convergent sequence: A sequence {an} is called convergent to a, if the sequence
{an � a} converges to zero. The number a is called limit of the sequence {an}, a =
limn!1 an.
It is intended to describe non-rational numbers as limits of convergent sequences of rational
numbers.
Nested intervals: A sequence of intervals, {[an, bn]} is called (convergent) nested in-
tervals if first, they are decreasing, [an+1, bn+1] ⇢ [an, bn], and second, {bn � an} is a null
sequence. (This null sequence property is implied by the Germann “Intervallschachtelung”;
we always want {bn � an} to be a null sequence and we occasionally emphasize this by
adding the word “convergent”.) If a number c is contained in all intervals of some nested
intervals, c 2 [an, bn], all n 2 N, then c is called limit of the (convergent) nested
intervals.
It is intended to see the intervals [an, bn] as approximations of their limit.
Cauchy sequence: A sequence of numbers {an} is called Cauchy sequence if there is
a null sequence {rn} such that for all m > n we have: |am � an|  rn.
We define Cauchy sequences in order to be able to talk about convergent sequences with-
out having to mention their limit.
Discussion of the notion ”sequence convergent to 0” or “null sequence”.
Since we want to create something principally new, something very di↵erent from all pre-
vious notions, I can only explain by examples what the new definition has to accomplish.
Therefore it will help, if you read the following reflections up to the definition of a null
sequence more than once.
Example. The sequence {rn := 1/n} shall be a null sequence.
Comparison. If {rn} is a null sequence and |an|  rn, then {an} should be a null sequence
as well. And if c is a constant, then {c · rn} should be a null sequence as well.
Consequences. We show that we can already argue with the three derived notions, if we
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only use the just formulated properties of null sequences.
(i) If c is the limit of nested interals {[an, bn]}, then c is also the limit of the sequences
{an} and {bn}. Proof: By assumption, {rn := bn � an} is a null sequence. It follows
|c� an|  rn, |bn � c|  rn, so that by definition lim an = c = lim bn .
(ii) Let {[an, bn]} be nested intervals and {cn} a sequence with cn 2 [an, bn], then {cn} is
a Cauchy sequence. (In particular, {an} and {bn} are Cauchy sequences.)
Proof: First, m � n implies by assumption that cm 2 [am, bm] ⇢ [an, bn], hence due to
|cm � cn|  |bn � an| = rn we get the Cauchy property.
(iii) If 0  q < 1 then {an := qn} is a sequence with limit 0. Proof: Due to 0  q < 1
and the summation formula for the geometric series we have a comparison (”majorization”)
with an already known sequence with limit 0:

n · qn 
nX

j=1

qj =
1� qn+1

1� q
 1

1� q
hence qn  1

1� q
· 1
n

=
const

n
.

(iv) If 0  q < 1 then the geometric series an :=
Pn

j=0 qj converges to 1/(1� q).
Proof: The di↵erence 1/(1� q)� an = qn+1/(1� q) is a sequence with limit 0 by (iii).
(v) If {an} converges to a and f is a function of bounded expansion, (i.e. |f(x)� f(y)| 
L · |x� y|), then the sequence of images {f(an)} converges to f(a). – This result will allow
us to see slopes of tangents as limits of the slopes of secant lines.
Proof: Plug in both definitions, |f(an)�f(a)|  L · |an�a|  L ·rn, and use the comparison
properties of null sequences.
Propaganda. These examples are not at all ”artfully” chosen. It is, indeed, only necessary
to understand null sequences in order to understand limits.
Next, for the definition of null sequences the following property is important which has
been defined already by Eudoxos and has been used by Archimedes very e↵ectively:
If we have two lengths di↵erent from 0, then we can lay out the shorter one
repeatedly until we have exceeded the longer one.
Since we want to describe the length of line segments by numbers, these numbers must
have this Eudoxos’ property as well. In our literature this axiom has two names:

Axom of Archimedes, Axiom of Eudoxos. For every real number R (no matter how
big) there is a natural number n 2 N which is bigger than R, i.e. R < n · 1 = n .
Comments. (i) For the rational numbers the statement of this axiom is an obvious fact.
(ii) There is an equivalent formulation for “small” numbers: the axiom also says that there
is no real number between 0 and the set of all unit fractions, {1/n; n 2 N} : For any r > 0
(no matter how small) there exists an n 2 N with n > R := 1/r or 0 < 1/n < r. We
formulate this property in a way that appears in many proofs, as a mnemonic:

Archimedes’ strategy. In order to prove the inequality a  b it su�ces to show the
(infinitely many) weaker inequalities a  b + const/n for all n 2 N.
Archimedes’ strategy is so important since is occurs astonishingly often that the weaker
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inequalities a  (b+const/n) can be proven a lot easier than the desired inequality a  b.
Indirect proof. Assume by contradiction that b < a. Then we set r := const/(a� b) > 0.
By Archimedes’ Axiom there is a natural number n with n > r. This implies const/n < a�b
and b + const/n < a, contradicting the assumption a  b + const/n for all n 2 N.
Below I will describe an “ordered field”, where Archimedes’ axiom doesn’t hold, where
there are ”infinitely small” elements between 0 and all the unit fractions {1/n; n 2 N}.

Now we can make a first attempt of defintion: A sequence {rn} is called a null sequence
(limit 0), if there is a constant const such that we have |rn|  const/n for all n 2 N.
The above listed properties of null sequences (and hence also the consequences (i)-(v)) are
valid statements following this definition. It will turn out that this attempt of a defintion
formulates too restrictive a condition. The majority of null sequences under the final
definition would not be null sequences with the above attempted definition. What else do
we want, what else have mathematicians found desirable? For example, the monotonically
decreasing sequence {1/pn; n 2 N} is not a null sequence under our first attempted
definition, although Archimedes’ axiom implies that between 0 and the elements of this
sequence there cannot be any real number. Our last request is motivated by such examples:
A monotonically decreasing sequence {rn} shall be a null sequence if between 0 and the set
of all rn there is no other real number. The accepted formulation of this can be expressed
by Archimedes’ Axiom as follows

Defintion of a null sequence (limit 0). A sequence {rn} is called null sequence if for
any natural number k 2 N there is an index nk with the following property:

n � nk ) |rn| 
1
k

.

Variations. In the literatur we often find the seemingly stronger defintion: A sequence
{rn} is called a null sequence, if for any positive number ✏ > 0 there is an index n✏ with
the following property:

n � n✏ ) |rn|  ✏.

Proof of equivalence. Let {rn} be a null sequence by the first formulation and let ✏ > 0.
How can we find n✏? First, by Archimedes’ axiom we find a natural number k > 1/✏ and by
the definition an nk such that n � nk ) |rn|  1/k. Since 1/k < ✏ we can put n✏ := nk.
Of course, the final definition of a null sequence can be used in the definitions of the three
derived notions in order to get alternative formulations where the term ”null sequence”
doesn’t appear (as often found in the literature):

Expanded definition of convergence. A sequence {an} is called convergent to a, if
for every ✏ > 0 there is an index n✏, such that:

n � n✏ ) |an � a|  ✏.
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Expanded definition of a Cauchy sequence. A sequence {an} is called a Cauchy
sequence, if for every ✏ > 0 there is an index n✏, such that

m,n � n✏ ) |am � an|  ✏.

These reformulations serve for a better comparison with the literature. They mean exactly
the same as the definitions in terms of null sequences. The direct recourse of the definition to
null sequences perhaps leads to proofs of convergence more concentrated on the essentials,
since of course a proof of convergence is finished as soon as we have managed to find a
majorization |an � a|  rn by some already known null sequence {rn}.
Supplement: A non-Archimedean ordering.

Definition. A polynomial is called positive by coe�cients, in formulas P
k
> 0, if the

smallest nonzero coe�cient of P is positive. Based on this we compare polynomials:

P is called bigger than Q by coe�cients, P
k
> Q, if and only if P �Q

k
> 0.

Excercise. As for real numbers we have: sum and product of polynomials positive by

coe�cents are positive by coe�cients; for every P 6= 0 we have P 2
k
> 0. Unlike for real

numbers we have for P (x) := x, that P
k
> 0 – but there is no n 2 N with P

k
> 1/n.

Excersise. This ordering can be extended to rational functions P/Q . Assume that all

common factors of P/Q have been cancelled, and define P/Q
k
> 0 if and only if either

P,Q
k
> 0 or �P,�Q

k
> 0. As for polynomials we define P/Q

k
> P1/Q1 if and only if

P/Q�P1/Q1
k
> 0. In this way, the field of rational functions becomes an ordered field, but

the order is not Archimedean.

Real numbers. It is common in the introductory analysis literature to describe the real
numbers axiomaticaly as an ordered field in which the Archimedean axiom and the axiom
of completeness hold. The existence of such a field is only proved in advanced literature.
Now that I have explained the role of the Archimedean axiom for the definition of the
notion of convergence, we only need one more notion, that of completeness. I will discuss
three common formulations. Here is the

First formulation of the axiom of completeness:
For all (convergent) nested intervals [ak, bk]k2N there is a (obviously then unique)
real number r, which is contained in all the nested intervals, r 2 [ak, bk] for all
k 2 N. r is called the limit of the (convergent) nested intervals.

Uniqueness lemma. If r1  r2 are limits of the nested intervals [ak, bk]k2N,
then r1 = r2 .

Proof. By assumption, r1, r2 are contained in all the intervals [ak, bk], therefore 0 
r2 � r1  bk � ak for all k. Now, since 0  r2 � r1 lies below a sequence with limit 0,
Archimedes’ axiom implies r2 � r1 = 0.
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Now we have to understand that we get indeed su�ciently many real numbers from the
completeness axiom. For this, I first show the theorem of Bolzano-Weierstrass which implies
that we have indeed as many numbers as there are points on a straight line segment. It
wouldn’t be possbile to prove this important theorem if we had been content with less than
the final defintion of null sequence. After that, we show the existence of inverse functions.
Eventually, we will construct the important functions exp, sin, cos.

Theorem of Bolzano-Weierstrass
Every monotonically increasing and bounded sequence {ak} converges.

Proof. We construct nested intervals {[ak, bk]}, where the left interval bounds are the
points of the given monotone sequence {ak}, and where the right interval bounds become
better and better upper bounds. The di�culty lies in choosing the bk in such a way that
bk � ak is a sequence with limit 0. Since the sequence {ak} is bounded, we denote some
given upper bound by b1. A sequence of auxiliary indices starts with e1 := 1.
Now, we repeat the following procedure:
Suppose we have defined already the indices of success ej � j for all j, j  m, and for all
k  em also the upper bounds bk.
Induction start: This supposition is true for m = 1.
Consider the next index k := em + 1 together with the center ck: = 1

2 (ak + bk�1).
Either ck is an upper bound of the sequence {ak}k2N, then set: bk := ck, em+1 := k > em .
Or ck is not an upper bound, then there is a next index (of success) em+1 > k with
aem+1 > ck. Since ck isn’t an upper bound, we continue to use the previous upper bound
and set for all k with em < k  em+1: bk := bem .
Only in the Either-part of the Alternative do we get a new (smaller) upper bound by
interval halfing; in the Or-part we achieve |bem+1 �aem+1 |  0.5 · |bem �aem | after, possibly,
many steps. But this inequality says that the sequence of interval lengths {bk � ak} of
the constructed nesting is indeed a null sequence. Using the axiom of completeness we
find a limit r 2 [ak, bk] of this constructed nested intervals and therefore of the given
monotonically increasing sequence {ak}. Of course r = limk!1 ak.
Obviously we have ak  r for all k 2 N, and there is no smaller upper bound for ak. We’ll
get back to this observation later.

Now we prove similarly the proposition that is suggested by reflecting the graph of f

Proposition on the Surjectivity of Monotone Functions. Let f : [a, b]! R be mono-
tone and expansion bounded. Then f is surjective onto the image [A1, B1]: = [f(a), f(b)].
If f is strictly monotone, then there exists an inverse function defined on the real interval
[A1, B1].

Proof. Let C 2 [A1, B1] be arbitrary and L be the expansion bound of f . We construct
nested intervals in [a, b], whose image invervals converge to C:
Put a1 = a, b1 = b, also f(a1) = A1, f(b1) = B1.
Consider D: = f((a1 + b1)/2).
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If D � C then put a2 := a1, b2 := (a1 + b1)/2, otherwise a2 := (a1 + b1)/2, b2 := b1.
We repeat this procedure:
Let [am, bm] be the last defined interval – we know by construction that C 2 f([am, bm]).
Consider D: = f((am + bm)/2).
If D � C, then put am+1 := am, bm+1 := (am + bm)/2,
otherwise am+1 := (am + bm)/2, bm+1 := bm.
Obviously {[ak, bk]} are (convergent) nested intervals with C 2 f([ak, bk]) for all k 2 N.
Since f has an expansion bound, this image nesting converges to C, by consequence (vi) in
the discussion of null sequences. Now we quote the axiom of completeness for the nested
intervals in the domain and find c 2 [ak, bk] for all k 2 N. Then |f(c)�C|  L·|bk�ak|,
hence f(c) = C by Archimedes’ axiom. – If we further assume strict monotonicity, then c
is the only preimage of C, thus the inverse function can be defined: f�1(C) := c.
Example: For f : (0,1]! (0,1], f(x) := x2, (f 0(x) = 2x) the inverse function, namely
the square root, has been defined: f�1 : (0,1]! (0,1], f�1(y) = py, f�1 � f(x) = x.
Due to the chain rule we expect:

(f�1)0(f(x)) =
1
2x

or (f�1)0(y) =
1

2py
.

We can deduce this without any di↵erentiation rule directly from the definition of di↵eren-
tiability by proving a quadratic approximation:

p
x�

p
a� 1

2
p

a
· (x� a) = (

1p
x +

p
a
� 1

2
p

a
) · (x� a)

=
p

a�px

2
p

a(
p

x +
p

a)
· (x� a) =

�(x� a)2

2
p

a · (px +
p

a)2
, hence

a

2
 x  2a ) �1

4
p

a
3 · (x� a)2 

p
x� (

p
a +

1
2
p

a
· (x� a))  0.

Remark. In order to emphasize that a di↵erentiation rule belongs to every new construc-
tion of functions, we prove the di↵erentiation rule for the inverse functions, which has been
plausibilized earlier. This proof doesn’t contribute to the discussion of completeness and
can therefore be read later.
Proof of the di↵erentiation rule for inverse functions.
Assumption: Let f : [a, b] ! [A,B] be strictly monotone; The inverse function exists by
the previous proposition and is denoted by f�1 : [A,B] ! [a, b]. Further let f be di↵eren-
tiable at c 2 [a, b], f(c) = C, f(x) = X and f 0(c) > 0.
We use di↵erentiability with quadratic error, i.e. the existence of constants r,K such that

|x� c |  r ) |f(x)� f(c)� f 0(c) · (x� c)|  K · (x� c)2

Claim: (f�1)0(C) = 1/f 0(c).
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Proof. Plug the notations into the inequality assumed for f and divide by f 0(c):

|x� c |  r ) | 1
f 0(c)

· (X � C)� f�1(X) + f�1(C)|  K

f 0(c)
· (x� c)2(⇤)

This inequality is almost the one we need; on the right hand side we only have to bound
(x � c)2 by (X � C)2, and further, the assumptions on x have to be transformed into
assumptions on X. As in the proof of the chain rule (please compare), the definition
of di↵erentiability together with the triangle inequality implies a two-sided comparison
between |x� c| and |f(x)� f(c)| = |X � C|:

|x� c |  r ) (f 0(c)�K · r) · |x� c |  |f(x)� f(c)|  (f 0(c) + K · r) · |x� c |.

To make the left inequaltiy useful, we decrease r to r� := min(r, f 0(c)/2K) and make the
latter inequality rougher in order to get a good two-sided approximiation:

|x� c |  r� ) 1
2
f 0(c) · |x� c |  |X � C|  3

2
f 0(c) · |x� c |.

So far, the inequality (⇤) holds under the assumption |x� c|  r and the lower estimate for
|X �C| under the assumption |x� c|  r� . We can formulate now an assuption on X �C
which implies |x � c|  r� , namely |X � C|  R := 1

2f 0(c) · r . Thus we have (⇤) under
an assumption on the arguments X of f�1. Finally we make (⇤) rougher by plugging in
|x� c|  2

f 0(c) · |X � C| to get

|X � C|  R ) |f�1(X)� f�1(C)� 1
f 0(c)

· (X � C)|  4K
f 0(c)3

· |X � C|2.

This is the desired quadratic approximation by tangents which shows (f�1)0(C) = 1/f 0(c).
The proof can be applied to ✏-�-errors: It is easy to replace K · (x � c)2 by ✏ · |x � c|; we
get more di�culties in arguing that the assumptions on |X � C| guarantee that the
assumptions for the validity of the used estimates for f hold. As in the proof of the chain
rule we have to get back to this detail only if we want to prove these propositions under
the weaker final definition of di↵erentiability, see the last chapter.

Construction of di↵erentiable functions as limit functions. This is the third prob-
lem where the axiom of completeness has to succeed. Here we need a longer chain of
arguments, since it cannot be too simple to determine the derivative of functions whose
values we don’t calculate but can only approximate.

First construction of the exponential function. We use the compound interest func-
tions which we have discussed as an application of the multiplicative monotonicity theorem:

0  x < j ) fn := (1 + x/n)n  1/(1� x/j)j =: hj(x).
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The growth rates of these function were

f 0n
fn

(x) =
1

1 + x/n
 1  1

1� x/j
=

h0j
hj

(x).

We see that the growth rates of the fn increase monotonically, and that those of the hj

converge monotonically decreasing to 1. So we can hope that these compound interest
functions converge to the exponential function. Due to the zeroes in the denominator we
consider now a fixed interval [0, 4] and take only the functions with n, j � 8. Then the
values of these functions are in nested intervals

x 2 [0, 4], n � 8 ) [1, h8(4)] � [f8(x), h8(x)] � [fn(x), hn(x)] � [fn+1(x), hn+1(x)].

Indeed, we even have convergent nested intervals, since the di↵erences hn(x) � fn(x) are
majorized by a null sequence already known to us. Set q := 1 � (x/n)2 < 1 and use
(1� qn) = (1� q)(1 + q + . . . + qn�1)  (1� q) · n = x2/n to get:

0  hn(x)� fn(x) = hn(x) ·
⇣
1�

�
1� (x/n)2

�n⌘  h8(4) · x2/n  256x2/n .

Therefore for every x 2 [0, 4], the nested intervals [fn(x), hn(x)] converge due to the
axiom of completeness. We call the limit E(x). We expect that this limit function
is di↵erentiable and that E0(x) = E(x) holds. The proof is surprisingly simple since
the functions fn comply with the assumptions of the monotonicity theorem and since
obviously:

x 2 [0, 4], n � 8 ) 0  f 00n (x)  f 0n(x)  fn(x)  h8(4) = 256.
First, the monotonicity theorem implies the Lipschitz bound 256 for all fn in [0, 4], hence

|fn(x)� fn(y)|  256|x� y|.
In our construction, the di↵erence between the limit function and the approximation is
already majorized by a sequence with limit 0:

|E(x)� fn(x)|  256x2/n
Therefore Archimedes’ strategy implies the same Lipschitz bound for the limit function:

x, y 2 [0, 4]) |E(x)�E(y)|  256|x� y|.

This argumentation with bounds, that hold for all approximations in the same way, and
which therefore can be extended immediately to the limit function, allows to prove dif-
ferentiability and determine the derivative. The bound for the second derivative and the
consequence 4 (deviation from the tanget) of the monotonicity theorem gives:

x, y 2 [0, 4], n � 8 ) |fn(y)� fn(x)� f 0n(x)(y � x)|  128(y � x)2.

Again, the di↵erences E(y) � fn(y), E(x) � fn(x), E(x) � f 0n(x) can be estimated by
sequences with limit 0, and hence Archimedes’ strategy implies

x, y 2 [0, 4]) |E(y)�E(x)�E(x)(y � x)|  128(y � x)2.
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This approximation means: The function y 7! E(y) is so well approximated by the linear
function y 7! E(x)� E(x)(y � x), that this is the tangent of the function E at x, see the
definition of di↵erentiability. Therefore we have in particular E0(x) = E(x).
This means that we have constructed our first limit function and determined its derivative.

Of course, we have to get rid of the restriction to the interval [0, 4] now. For that we
define functions Ek(x) := E(x/k)k : [0, 4k] ! R. We have Ek(0) = E(0) = 1 and the
chain rule implies E0

k = Ek. Thus the quotient rule gives (Ek/Ej)0 = 0, i.e. every two
of these functions coincide on the common part of their domain. This trick expands the
domain to [0,1). The formulas are also valid for k = �1, hence with E(�x) := 1/E(x)
the domain gets extended to all of R. In the same way we get the addition theorem from
h(x) := E(x)E(a)/E(a + x), h0 = 0, h(0) = 1.
Notation. We call the limit function which we have obtained in this way exponential
function,

exp : R ! R, exp(0) = 1, exp0 = exp, exp(a + x) = exp(a) · exp(x).

Taylor approximation of exp. For the construction of exp I have used the compound
interest functions since they supply upper and lower bounds. Even better known are the
Taylor approximations of exp. The n-th Taylor polynomial of exp is the polynomial Tn of
degree n, whose derivatives up to the order n at 0 coincide with those of the exponential
function. Due to

1 = exp(0) = exp0(0) = exp00(0) = . . . = exp(n)(0)
we can easily write down these Taylor polynomials.

Tn(x) :=
nX

k=0

xk

k!
, T 0n = Tn�1.Taylor polynomials of exp:

For any x 2 [0,1) the sequence {Tn(x)} increases monotonically. It is also bounded: Due
to T 0n(x)  Tn(x) and exp0 = exp we have that h(x) := Tn(x)/ exp(x) satisfies h0  0, 0 <
h(x), h(0) = 1 hence Tn(x)  exp(x). Therefore {Tn(x)} converges by the theorem of
Bolzano-Weierstrass. On the other hand, we have f (k)

n (0)  1, k = 0 . . . n for the lower
compound interest approximations. Therefore all the coe�cients of the polynomials fn are
at most as big as those of the Taylor Polynomials Tn, i.e.

x 2 [0,1) ) fn(x)  Tn(x)  exp(x).
Therefore, also the Tn(x) converge to exp(x). – If we want to start the construction with
the Taylor polynomials, then we have to provide primarily an upper bound for the Tn(x),
compare Leibniz series below.
Excercise. For every n 2 N the sequence {ak := kn/ exp(k)} has limit 0. (How big do
we have to choose x so that we can guarantee xn+1  exp(x)? It is not requested to get a
good approximation. Cf. p.56.)

Irrationality of e. To demonstrate the quality of this Taylor approximation, I will show:
e: = exp(1) is irrational.
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Proof. For 1/e = exp(�1) =
P1

k=0 (�1)k/k! we can immediately provide convergent nested
intervals (by employing the alternating signs):

an :=
2n�1X
k=0

(�1)k

k!
, bn :=

2nX
k=0

(�1)k

k!
, n = 1, 2, . . .

an+1 � an =
1

(2n)!
� 1

(2n + 1)!
> 0, bn � bn+1 =

1
(2n + 1)!

� 1
(2n + 2)!

> 0

0 < bn � an =
1

(2n)!
.

This implies for all N :

0 6= |1/e�
NX

k=0

(�1)k/k! |< 1/(N + 1)!

Now, if 1/e = P/Q were such that P,Q 2 N, then we select N : = Q in the last approxima-
tion and observe that the estimated di↵erence is a rational number whose denominator is
Q! :

0 6= |P · (Q� 1)!� Some Integer |
Q!

<
1

(Q + 1)!
.

Since a fraction 6= 0 with denominator Q! has at least the size 1/Q!, this last inequality is a
contradiction to the assumption 1/e = P/Q. (The “Some Integer” is

PQ
k=0(�1)k · Q!/k!.)

Leibniz series. The convenient nested intervals for 1/e just used is a special case of a
situation, which appears frequently enough to get its own name; we describe the nested
intervals for a Leibniz series:
Assumption: {rk} is a monotonically decreasing sequence with limit 0
Propostion: an: =

P2n�1
k=0 (�1)krk, bn: =

P2n
k=0(�1)krk defines nested intervals.

Proof:
an+1 � an = r2n � r2n+1 � 0, bn � bn+1 = r2n+1 � r2n+2 � 0, bn � an = r2n.

Examples . First, we can apply this on a negative interval [�R, 0] to the Taylor polyno-
mials Tn of exp, if we restrict ourselves to indices n � R. Next we show a

Construction of the trigonometric functions sin and cos. We want to try to con-
struct functions f, g: R ! R with f2(t) + g2(t) = 1, f 02(t) + g02(t) = const., since then the
curve t! (f(t), g(t)) parametizeses the unit circle with constant speed. Due to the chain
rule, we may assume const = 1 (replace f(t) by f(t/

p
const.)).

Assume we could find functions f, g which are repeatedly di↵erentiable with these proper-
ties. Then, by di↵erentiation, we conclude from

f2 + g2 = 1, f 02 + g02 = 1 that:
2 · f · f 0 + 2 · g · g0 = 0 and 2f 0 · f 00 + 2g0 · g00 = 0.

These two equalities can be read as scalar products: As expected, the velocity vector
(f 0, g0) is perpendicular to the position vector (f, g), and the acceleration vector (f 00, g00) is
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perpendicular to (f 0, g0) hence proportional to (f, g), or (f 00, g00) = c · (f, g). We obtain the
factor c = �1 by di↵erentiating f · f 0 + g · g0 = 0 to get f · f 00 + g · g00 + f 02 + g02 = 0 or
c + 1 = 0. Hence necessarily: (f 00, g00) + (f, g) = 0.
Next we also agree that our parametrization starts at (f(0), g(0)) = (1, 0) with the velocity
vector (f 0(0), g0(0)) = (0, 1). Having chosen these initial values we get from (f 00, g00) +
(f, g) = 0 all derivatives of the functions f and g at t = 0 – provided they exist and are
repeatedly di↵erentiable:

f(0) = 1, f 0(0) = 0, f 00(0) = �1, f 000(0) = 0, f (2k)(0) = (�1)k, f (2k+1)(0) = 0;

g(0) = 0, g0(0) = 1, g00(0) = 0, g000(0) = �1, g(2k)(0) = (0), g(2k+1)(0) = (�1)k.

Of couse, now it is easy to write down polynomial sequences which have derivatives at 0
coinciding with these derived values for higher and higher order:

Pn(t) = 1� t2

2
+

t4

4!
�+ . . . =

nX
k=0

(�1)k

(2k)!
· t2k,

Qn(t) = t� t3

6
+

t5

5!
�+ . . . =

nX
k=0

(�1)k

(2k + 1)!
· t2k+1.

They satisfy:

Q0
n = Pn, P 0n = �Qn�1, P 00n = �Pn�1, Q00

n = �Qn�1.

I will look more closely at these polynomials

Pn+1(t) = Pn(t)� (�1)n

(2n + 2)!
· t2n+2, Qn+1(t) = Qn(t)� (�1)n

(2n + 3)!
· t2n+3.

They are suitable for the application of the Leibniz criterion: Choose a fixed R > 0 and
only look at the polynomials with n � R. Then we have:
for n � R and |t|  2R, the sequences {|t|2n/(2n)!}n2N and {|t|2n+1/(2n + 1)!}n2N have
limit 0 and are monotone since consecutive terms are decreased by factors  |t|/2n  1.
Therefore, for 2m � R and |t|  2R we get the Leibniz nested intervals for the desired limit
functions f and g

{[P2m+1(t), P2m(t)]}, {[Q2m+1(t), Q2m(t)]}.

Due to the axiom of completeness, the functions f and g do exist as limit functions of
these convergent nested intervals.
Now we still need the di↵erentiability properties of these limit functions. This is now
particularly easy since the Leibniz’ nested intervals already give bounds indepenent of n.
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Archimedes’ strategy gets the same bounds for the limit functions:

2m � 2, 0  t  4 )
�7  P1(t)  P2m+1(t)  . . . f(t) . . . P2m(t)  P2(t)  4

�7  Q1(t)  Q2m+1(t)  . . . g(t) . . . Q2m(t)  Q2(t)  4.

Proof: 0  t  4 )

P2(t) = 1� t2

2
(1� t2

12
)  4 Q2(t) = t · (1� t2

6
· (1� t2

20
))  4

�7  1� t2

2
= P1(t) � 7  t� t3

3!
= Q1(t).

From these bounds for the polynomials and Q0
n = Pn, P 0n = �Qn�1 we get expansion

bounds from (corollaries of) the monotonicity theorem

n � 4, 0  s, t  4 ) |Pn(s)� Pn(t)|  7 · |s� t|, |Qn(s)�Qn(t)|  7 · |s� t|.

Then the triangle inequality implies

|f(s)� f(t)|  7 · |s� t| + null sequence, |g(s)� g(t)|  7 · |s� t| + null sequence.

and Archimedes’ trick removes the null sequences. Hence we have found the expansion
bound 7 (wich can be improved) for the limit functions in the interval [0, 4].
In the same way we get bounds independet of n for the second derivatives

P 00n = �Pn�1, Q00
n = �Qn�1

and therefore also bounds independent of n for the tangent deviation. Again by Archimedes’
trick we get the same inequalities for the two limit functions:

n � 4, 0  s, t  4)
|Pn(s)� Pn(t) + Qn�1(t)(s� t)|  4 · |s� t|2 ) |f(s)� f(t) + g(t)(s� t)|  4 · |s� t|2,
|Qn(s)�Qn(t)� Pn(t) · (s� t)|  4 · |s� t|2 ) |g(s)� g(t)� f(t)(s� t)|  4 · |s� t|2.

The latter two inequalitites say that the limit functions are di↵erentiable (more precisely
even uniformly di↵erentiable with quadratic tangent approximation).

We have: f 0 = �g, g0 = f, f(0) = 1, g(0) = 0.
These equalities show that f 0 and g0 are di↵erentiable, f 00 = �f, g00 = �g, etc.: The limit
functions are infinitely many times di↵erentiable. (We can now easily provide a better error
bound: From f 02 + g02 = 1 and the monotonicity theorem we get that 1, instead of 7, is
an expansion bound for f and g. In the same way we have |f 00|  1, |g00|  1, and therefore
the tangent deviation is  0.5|s� t|2.)
Notations: f = cos, g = sin, sin0 = cos, cos0 = � sin, tan := sin

cos , tan0 = 1 + tan2.
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The first positive zero of cos is called ⇡/2; due to P2(t)  P6(t)  cos(t)  P4(t) and
P4(
p

3) = �1/8, P6(1.5) � 0.07 we have:
p

2  1.5 + 0.07  ⇡/2 
p

3� 1/8 ⇠ 1.607.

Addition Theorems. For functions h with h00 = �h the function K(t) := h(t)2+h0(t)2 has
the derivative K0(t) = 2h0(t)(h(t)+h00(t)) = 0, hence is constant. Therefore, two functions
h1, h2 with the same initial values h1(a) = h2(a), h01(a) = h02(a) have a di↵erence h with
initial values h(a) = 0 = h0(a), thus 0 = K(a) = K(t), and h = 0. Therefore the functions
h1(t) := sin(a + t) and h2(t) := sin(a) cos(t) + cos(a) sin(t) coincide and their derivatives
h01(t) := cos(a+ t) and h02(t) := � sin(a) sin(t)+cos(a) cos(t) coincide as well. – With these
Addition Theorems f = cos, g = sin can be extended from the interval [0, 4] to all of R.

Approximations of cos.
The figure shows the graph of cos and the graphs of the 2nd, 4th and 6th Taylor polynomials
Tn. In addition, a much better approximation is shown:
From cos(2t) = cos2(t) � sin2(t) = 2 cos2(t) � 1 we get cos(4t) = 8 cos4(t) � 8 cos2(t) + 1.
Therefore one can compute cos(t) from cos(t/4) with the help of the polynomial P4(x) :=
8x2(x2 � 1) + 1 as follows: cos(t) = P4(cos(t/4)). The Taylor polynomials are for small
arguments much better approximations, so that we get improved approximations if we
combine Taylor polynomials on small arguments with this addition theorem. The figure
shows cos(t) ⇠ P4 � P4 � T4(t/16), and the extension of the graph over several periods is
to illustrate how good an approximation (more so on the smaller period interval [0,⇡/2])
we obtained.
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Inverse Functions of exp, tan, sin. Since exp : R ! (0,1) is strictly monotone and has
on each finite interval a bounded derivative we have a di↵erentiable inverse function, called
Logarithm Function, log : (0,1)! R with log(exp(x)) = x. The chain rule gives:

log0(exp(x)) =
1

exp0(x)
or with y := exp(x) : log0(y) =

1
y
.

From exp(x)n = exp(nx) we conclude n log( n
p

y) = log(y). This is combined with a simple
application of the monotonicity theorem:

y � 1 ) 0 < log0(y)  1 ) log(y)  1 · (y � 1) ) log(y)  n · ( n
p

y � 1).

This inequality shows, that the logarithm is an extremely slowly increasing function. The
earlier question “ How large do we have to choose x so that xm  exp(x) holds?” now has
a simple answer: The inequality is equivalent to m · log(x)  x and therefore – because of
m · log(x)  m · 2(

p
x� 1)  2m

p
x – the claim is implied by 2m

p
x  x, i.e.by 4m2  x.

Exponential functions for an arbitrary base a > 0 are defined with the help of the logarithm:

expa(x) := ax := exp(x log a), then exp0a = log(a) expa = exp0a(0) expa .Consequently

ax+h = ax · ah and
expa(x + h)� expa(x)

h
=

expa(h)� 1
h

· expa(x) � exp0a(0) expa(x).

We see: the addition theorem implies that we know the derivatives at all x, i.e. all limits
of di↵erence quotients of exponential functions, if we only know the limit at x = 0.

Also tan : (�⇡/2,+⇡/2) ! R is a strictly monotone di↵erentiable function with bounded
expansion on every closed subinterval [�a, b]. Again we have a di↵erentiable inverse func-
tion, called arc tangent function, arctan : R ! (�⇡/2,+⇡/2) with arctan(tan(x)) = x
and, by the chain rule

arctan0(tan(x)) =
1

tan0(x)
or with y := tan(x) : arctan0(y) =

1
1 + y2

.

We emphasize, that the di↵erential equations exp0 = exp, tan0 = 1 + tan2 imply that the
derivatives of the inverse functions are rational functions. In particular one can easily
compute higher derivatives of these inverse functions.

Finally, also sin : (�⇡/2,+⇡/2) ! (�1,+1) is a strictly monotone di↵erentiable function
with bounded nonzero derivative on closed subintervals [�a, b]. Again we have a di↵eren-
tiable inverse function, called arc sin function, arcsin : (�1,+1) ! (�⇡/2,+⇡/2) with
arcsin(sin(x)) = x and by the chain rule

arcsin0(sin(x)) =
1

sin0(x)
or with y := sin(x) : arcsin0(y) =

1p
1� y2

.
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With sin also arcsin is an odd function, so that all even derivatives vanish at 0.
arcsin00(y) = y(1� y2)�3/2, arcsin000(0) = 1.

The third Taylor polynomial of arcsin at 0 therefore is T3(y) = y + y3/6. We illustrate
with an iteration algorithm to compute ⇡/2 how well these Taylor polynomials approximate
these new functions. Assume that a1 is an approximation for ⇡/2. We have seen above
that b1 := cos(a1) can easily be computed acurately. Since cos(⇡/2� x) = sin(x) we have
⇡/2 = a1 + arcsin(b1). Hence put a2 := a1 + (b1 + b3

1/6), b2 := cos(a2), etc. Example:
a1 = 1, b1 = 0.5403, a2 = 1.5666, b2 = 0.0042059, a3 = 1.570796 . . . , b3 = 9.881 · 10�14.

Other Formulations of Completeness. Frequently one has some sequence which one
suspects to be convergent but which one cannot explicitly connect to (convergent) nested
intervals (e.g. the sequence Tn(x) of Taylor polynomials of exp). It would be nice to be able
to judge a sequence as convergent without having to know its limit. A necessary condition
comes from applying the triangle inequality to the definition of a sequence {ak} converging
to a :
For every n 2 N there exists an index kn such that

k, l � kn ) |ak � a|  1
n

, |a` � a|  1
n

, hence: |ak � a`| 
2
n

.

The last inequality is formulated without the limit a of the sequence! That suggests the
definition of a Cauchy sequence, already met earlier, but repeated:
A sequence {ak} is called Cauchy sequence if it satisfies: For every n 2 N there exists
some kn such that

k, ` � kn ) |ak � a`| 
1
n

.

With this notion we have the

Second Formulation of the Axiom of Completeness:
Every real Cauchy sequence has some real number r as limit.

This second formulation of completeness implies the first:
Consider given nested intervals {[ak, bk]} (with lim(bk�ak) = 0). We have for k  ` : ak 
a`  bk, consequently |a` � ak|  |bk � ak| and {|bk � ak|} converges by assumption to 0.
Therefore {ak} and similarly {bk} are Cauchy sequences. These have limits by assumption
(2nd formulation of completeness), in fact the same limit r because of the triangle inequality.
We have ak  r  bk because both sequences are monotone. In other words, the number
r lies in all the nested intervals, so that these are convergent as in the first formulation of
completeness.
For the other direction we construct for a given Cauchy sequence {ck} convergent nested
intervalls {[am, bm]}, so that each interval contains infinitely many of the ck. We need
several steps:
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1.) The whole Cauchy sequence {ck} lies in some interval [a1, b1].
Proof. The definition gives: For n = 2 we have k2 such that k, ` � k2 ) |ck�c`|  1

2 .
This implies for all ` : a1 := min{ck; k  k2}� 1

2  c`  max{ck; k  k2} + 1
2 =: b1.

2.) Consider d := 1
2 (a1 + b1). Either we have in [a1, d ] infinitely many elements of the

Cauchy sequence, then put a2 = a1, b2 = d. Otherwise put a2 = d, b2 = b1. Repeat
this procedure.

3.) Let [am, bm] the last already chosen interval that contains infinitely many elements of
the Cauchy sequence. Consider d = 1

2 (am + bm). Either [am, d ] contains infinitely
many elements of the Cauchy sequence, then put am+1 = am, bm+1 = d. Otherwise
put am+1 = d, bm+1 = bm, thus choosing the next interval.

4.) Since every interval is one half of the preceeding one we see that {[am, bm]} are con-
vergent nested intervals and they have, by the first formulation of completeness, some
limit r.

5.) We need to show that {ck} converges to r, or that {ck�r} converges to 0. Let ✏ > 0 be
given. First choose m so that |bm�am|  ✏/2. Next, by definition of a Cauchy sequence,
choose k✏ so that k, ` � k✏ ) |ck�c`|  ✏/2. In the interval [am, bm] are infinitely many
of the c`, pick one, c`⇤, with `⇤ � k✏. Of course r 2 [am, bm]. Finally we have with the
triangle inequality k � k✏ ) |ck � r|  |ck � c`⇤| + |c`⇤ � r|  ✏/2 + |bm � am|  ✏.

Example. Let {ak} be some “geometrically majorized” sequence, that is we have for all k

|ak+2 � ak+1|  q · |ak+1 � ak|, q < 1.(q1)

Claim. This sequence {ak} is Cauchy.
Note that we can allow ak 2 Rn or even in infinite dimensional complete spaces.

Proof. By applying the assumption k times we arrive at an estimate that also deserves
the name “geometrically majorized”:

|ak+2 � ak+1|  qk · |a1 � a0|.(q2)

From (q2) and the triangle inequality we conclude (assuming ` > k):

|a` � ak| 
`�1X
m=k

|am+1 � am| = |a1 � a0| ·
`�1X
m=k

qm�1  |a1 � a0|
1� q

· qk�1.

This majorization by a known null sequence is the Cauchy property of {ak} – so that a
limit in R exists. This simple argument has a frequently quoted consequence, the

Contraction Lemma. Let f be a map with expansion bound q < 1, so that we have
|f(y)� f(x)|  q · |y�x|. Choose some a0 in the domain of f . The previous claim shows:
The definition ak+1: = f(ak), k 2 N, gives a geometrically majorized Cauchy sequence.
The limit a := limk!1 ak together with the expansion bound q gives a (moreover unique)
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Fixed Point a = f(a).
Since the contraction lemma is a very e↵ective tool for proving existence of solutions of
nonlinear equations a = f(a) it has also the more prestigious name Banach Fixed Point
Theorem.
Example. f(x) := 1/(2 + x), x 2 [0,1), |f 0(x)|  1/4 satisfies the assumptions of the
contraction lemma. Choose a0 = 0. The recursive sequence ak+1: = f(ak), k 2 N runs
through the finite values of the convergent continued fraction

0,
1
2
,

2
5

=
1

2 + 1
2

,
5
12

=
1

2 + 1
2+1/2

, f(
5
12

), . . . ,
1

2 + 1
2+1/2...

,

which converges to the fixed point a = f(a) = 1/(2 + a) or a =
p

2� 1.

The third formulation of completeness goes back to Dedekind. It is based on the
following
Definition. Consider a nonempty subset ; 6= A ⇢ R. A number s is called smallest
upper bound or least upper bound or Supremum of A, notation: s = supA, if the
following holds:
1.) s is an upper bound of A (i.e. a 2 A) a  s).
2.) There is no smaller upper bound (i.e. r < s) there exists a 2 A with r < a).

Third Formulation of the Axiom of Completeness
Every non-empty and bounded from above subset A of R has a smallest upper
bound or least upper bound, also called supremum of A, and denoted supA.

Remark. The theorem of Bolzano-Weierstraß follows trivially. In the opposite direction,
the proof of this third formulation is similar to the proof of this theorem. The supremum
formulation of completeness is often considered as the most elegant one. However it requires
better technical skills in using analysis arguments than the other two formulations.
Exercise in Argumentation. Assume completeness in its third formulation. Consider
nested intervals {[ak, bk]} with lim(bk � ak) = 0. We show convergence, i.e. we find a
number c 2 [ak, bk] for all k. The non-empty set {ak} which is bounded above by b1 has
by assumption a least upper bound c, ak  c. Since each bk is an upper bound of the set
{ak}, we conclude for all k: c  bk, hence c 2 [ak, bk]. Therefore c is limit of the nested
intervals.

Application. Definition of arclength for expansion-bounded curves p : [a, b]! Rn.
Assumption: |p0|  L, hence |p(y)� p(x)|  L · |y � x| (“expansion-bounded”).
Consider an arbitrary subdivision a = x0 < x1 < . . . < xn = b of the interval [a, b] of
definition of p.
First we get a bound for all sums of secant-lengths which is independent of the chosen
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subdivision:
NX

k=1

|p(xk)� p(xk�1)| 
NX

k=1

L · |xk � xk�1| = L · |b� a|.

The sums of secant lengths are therefore a non-empty bounded set of real numbers and we
can use the third completeness formulation to define:

Length (p
��
[a,b]

) := sup{
NX

k=1

|p(xk)� p(xk�1)|; a = x0 < . . . < xN = b}.

This intuitive definition does not lead to formulas for computation of arc lengths. We find
these in the chapter on integration.

Summary on the Success of Completeness. The real numbers allowed us to solve
the existence problems from the beginning of the chapter by just quoting the completeness
axiom. By using uniform error bounds we were also able to extend knowlege on approximat-
ing functions (like “di↵erentiability”) to the limit function by just quoting the Archimedes
Axiom (or trick). With the exception of the fact that we did not create an intuitive under-
standing of the real numbers in their entirety, all our arguments were rather simple. They
consisted in quoting those two axioms. I cannot emphasize enough that this simplicity is
the result of our usage of uniform error estimates which, in turn, were consequences of
the monotonicity theorem. – The interplay between the real numbers and the notion of
continuity, treated in the final chapter, can only be handled with new kinds of arguments,
indirect arguments as we will see.
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Complex Numbers, Functions and Di↵erentiation

After having introduced the real numbers it is appropriate to review the definitions
and proofs of the theory of di↵erentiation. I want to use the complex numbers
in this repetition so that things do not look completely familiar and we have
to rethink our arguments. Between 1500-1800 mathematicians have used the
“imaginary unit” i2 = �1. The name imaginary number’ may indicate that
they were not totally comfortable with this tool. This changed after 1800 when
Gauss and others explained and visualized them as two-dimensional numbers.
Now electrical engineering, quantum theory and large portions of mathematics
cannot do without them.
The complex numbers will be defined such that the Euclidean plane is made into
a complete number field. Multiplication is compatible with Euclidean geometry
in that |z · w| = |z| · |w| holds. The complex rational functions are shown to be
di↵erentiable with the same arguments as the real rational functions. We need
di↵erent visualizations for the “two-dimensional” complex functions than were
used for the “one-dimensional” real functions. There is a “mixed chain rule” for
situations were real and complex di↵erentiation play together as in

c : I ! C, f : C ! C ) (f � c)0 = (f 0 � c) · c0.
We will prove for (not necessarily uniformly) di↵erentiable functions a replacement
of the (one-dimensional) monotonicity theorem, the (D)L)–Theorem , which says
that a Derivative bound is a Lipschitz bound:

|f 0|  L) |f(w)� f(z)|  L · |w � z|.

The first goal is to make the Euclidean plane into a number field. Let e, i be our preferred
orthonormal basis. We identify the real numbers with the first coordinate axis, e · R, but
instead of r · e we only write r. The additive group of the R-vectorspace C := spanR{e, i}
is the additive group of the number field to be constructed:
(a · e + b · i) + (x · e + y · i) = (a + x) · e + (b + y) · i.
Moreover, we know the multiplication R ⇥ C ! C (rsp. C ⇥ R ! C) already, namely as
the multiplication by scalars in the R-vectorspace C:
(r · e) · (x · e + y · i) = r · (x · e + y · i) = rx · e + ry · i = (x · e + y · i) · (r · e).
In particular: e · i = i = i · e.
For making C into a commutative ring, we are only missing one multiplication, the one
with the famous history:

i · i := �e.

We write down the trivial extension to linear combinations to get the desired multiplica-
tion formula:

(a · e + b · i) · (x · e + y · i) := (ax� by) · e + (ay + bx) · i .
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This multiplication has, because of (a · e + b · i) · (a · e� b · i) = (a2 + b2) · e,

(a · e + b · i)�1 = (a · e� b · i)/(a2 + b2).an inverse:

This makes C, or the Euclidean Plane, into a commutative field.

Compatibility of the Complex Numbers with the Euclidean Geometry

To get used to complex numbers as two-dimensional numbers it is important that also the
multiplication is compatible with the geometry.
(i) Addition acts as translation, Transa : z ! a + z, with a, z 2 C.

z := x� y · i.Definition, for each z = x + iy its complex conjugate is:

|z| :=
p

x2 + y2 =
p

zz̄.Definition of the Euclidean length of z = x + y · i:

(ii) Theorem (Compatibility of Euclidean lengths with multiplication)
For c := a + b · i and z := x + y · i holds:
1.) c · z = z · c, |c · z| = |c| · |z|.
2.) For c 6= 0 the map z 7! c · z is a similarity transformation: Every triangle {z1, z2, z3}
is mapped to the triangle {c · z1, c · z2, c · z3}. The image edgelengths are |c · zj � c · zk| =
|c| · |zj � zk|, i.e. all are changed by the same factor |c|. If c 6= 1 then 0 is the only fixed
point. The map z 7! c · z is, therefore, a rotation around 0 composed with a scaling by the
factor |c|.
Proof.
1.) c · z = (ax� by)� (ay + bx) · i = (a� b · i) · (x� y · i) = c · z.

|c · z|2 = (c · z) · (c · z) = c · (z · z) · c = |c|2 · |z|2.

2.) |(c · zj)� (c · zk)| = |c(zj � zk)| =
|c| · |zj � zk|,
j, k 2 {1, 2, 3}.

Multiplication by a complex number c 6= 0 is an angle preserving map, z 7! cz.

(iii) Theorem (Compatibility of inversion Inv: z 7! 1/z with straight lines and circles)
The inversion map z 7! 1/z acts as follows:

1. Lines through 0 7! lines through 0, (namely r ! r · (c/|c|) goes to r ! 1/r · (c̄/|c|),)
2. Lines not through 0 7! circles through 0, circles through 0 7! lines not through 0,
3. Circles not through 0 7! circles not through 0.
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Proof. Circles with midpoint m and radius r we describe as {z ; |z �m| = r} or better
Kr(m) := {z ; (z �m)(z̄ � m̄) = r2}. If mm̄ = r2 holds then 0 2 Kr(m).

The image of such a circle under the inversion map Inv: z 7! w = 1/z is

Inv(Kr(m)) = {w = 1/z ; (z �m)(z̄ � m̄)� r2 = 0 = (1�mw)(1� m̄w̄)� r2ww̄ },
which is, if mm̄ = r2, the following line not passing through 0:

Inv(Kr(m)) = {w ; 1 = mw + m̄w̄},
and is, if mm̄ 6= r2, M := m̄/(mm̄� r2), R2 := MM̄ � 1/(mm̄� r2), the circle:

Inv(Kr(m)) = {w ; (w �M)(w̄ � M̄) = R2 }.
The images of straight lines are easily determined. Note Inv � Inv = id.

Image under z 7! 1/z of four half-strips parallel to the axes (and not drawn to 1).
The parallel lines are mapped to circles, which are tangent to the axes at 0.

The middle square in the domain is mapped to the outside of the figure in the range.

Extension. This preservation of circles carries over to maps (called Möbius transforma-
tions) z 7! (az + b)/(cz + d) 6= const, which can be written if c 6= 0, ad� bc 6= 0 as

z 7! (az + b)
(cz + d)

=
a

c
� (ad� bc)/c2

(z + d/c)
,

which is a composition of two translations (by a/c and d/c), one rotation with scaling (from
the factor �(ad� bc)/c2) and one inversion. All these are maps which preserve circles.
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Theorem: Completeness of C
The complex numbers are complete,

that is, every Cauchy sequence {zk}, zk 2 C, converges.

Proof. {zk = xk + yk · i} is a complex Cauchy sequence if and only if {xk} and {yk} are
two real Cauchy sequences, because of

|z` � zk|2 = |xk � x`|2 + |yk � y`|2.

We are pleased that no new e↵orts were needed, the work with the reals R was su�cient.
Approximation plus quoting completeness will also in the complex case prove to be an
e�cient method to construct new interesting functions.

Rational Functions.
The necessary computations can hardly be distinguished from the corresponding real ones,
building visual intuitions will require more work. First we repeat for polynomials what we
did in the real case, starting with

|a|, |z|  R ) |zn � an � n · an�1 · (z � a)|  n · (n� 1)
2

· Rn�2 · |z � a|2.

In Words: The power functions P : z 7! P (z) := zn can be approximated by the linear
functions z ! an + n · an�1 · (z � a) with uniform quadratic errors. Therefore we also call
in the complex case the polynomial P 0 : z 7! P 0(z) := nzn�1 the “derivative” of the power
function P .
In the same way as in R these linear approximations with uniform quadratic errors extend
to polynomials (note that the error constant K is explicitly computed from the coe�cients
and the “interval”, better a circle):

|a|, |z|  R, P (z) :=
nX

k=0

akzk, P 0(z) =
nX

k=1

akkzk�1, K :=
nX

k=2

|ak|
k(k � 1)

2
Rk�2

) |P (z)� P (a)� P 0(a)(z � a)|  K · |z � a|2.

The function f : z 7! f(z) := 1/z is at a 6= 0 di↵erentiable with f 0a) = �1/a2 and also
uniformly di↵erentiable, if we keep some distance away from 0, e.g. |a| � r > 0:

0 < r  |a|, |z � a|  r/2) |1
z
� 1

a
+

z � a

a2
|  2

|a|2 |z � a|2  2
r2

|z � a|2.

Before we try to get an intuitive understanding of the derivatives of these simple functions
we need to ask: what is a promising way to visualize complex functions? In the real case
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one almost always chooses to draw the graph of f , but in the complex case this graph
{(z, f(z)) 2 C⇥ C} cannot be used because C⇥ C is 4-dimensional. What can one do?
In many areas of mathematics the words “function” and “map, mapping” are used in-
terchangeably. In the one-dimensional real case this did not become popular, because
1-dimensional images are not visually interesting. However, for complex functions one
obtains useful visualizations if one considers them as maps: Decorate the domain of the
function with some texture or draw some grid into it. Then draw the image of the domain
with its decoration. For each point we can “see” the image point with the help of the
decoration. For the same reason textures are used in computer graphics. Also, we can use
and compare maps of the earth which are made with quite di↵erent methods.
In our first example we use a square grid in the domain of f(z) = z2 as the texture. It will
always be the case that the strongest local deformation of the domain occurs near zeros of
the derivative. Grid squares farther away are mapped to only slightly deformed squares,
and the deviation from true squares gets less under subdivision of the grid. The grid curves
in the image are parabolas, as follows from

z = x + i · b! u(x) + i · v(x) := (x2 � b2) + i · 2b · x, u = v2/(4b2)� b2.

Image under z ! z2, together with a linear approximation
The sizes of coordinate meshes in the image at f(a) are given by |f 0(a)|, f 0(0) = 0.

We show the strong deformation of the parameter grid near zeros of the derivative again;
further away from these points the square grid meshes stay approximately square. The
second example is z ! z � z3/3. The zeros of the derivative are at ±1.
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Image under z ! z � z3/3. The zeros of f 0 at ±1 are marked in domain and range.

It is instructive, to map also other decorations of the domain, for example polar coordinate
grids. We postpone this, until some more theory suggests to us, what features of the images
to concentrate on.
As in the real case we need Di↵erentiation rules, after having done the simplest examples
directly from the definition. The di↵erentiation rules look the same as in the real case and
their proofs can be taken over without changes. In addition we have a new conceptional
problem: the grid curves in our images are curves in the Euclidean plane and we know
already how to di↵erentiate them. The comparison of curves in the domain grid with their
images in the image grid will be used to better understand the complex function (or map).
Therefore we need a rule, which uses the derivative of the complex function to transform
curve tangents in the domain to curve tangents in the range. I call this rule mixed chain
rule because it applies to situations where both, real and complex di↵erentiability, occur.
Because of this mixture of concepts I show the proof, although the details are not much
di↵erent from other chain rule proofs. First the reformulation of the already known rules:

Theorem. The Di↵erentiation Rules.
Let f, g be complex functions, about which we assume: there are other complex functions
f 0, g0 and constants Kf ,Kg such that the following assumptions hold (one may choose the
constants to be dependent on a or hold uniformly as long as one makes the same choice in
assumption and claim):

|z � a|  r ) |f(z)� f(a)�f 0(a) · (z � a)|  Kf · |z � a|2,Assumptions:

|z � b|  r ) |g(z)� g(b)�g0(b) · (z � b)|  Kg · |z � b|2.
(↵f + �g)0 = ↵ · f 0 + � · g0 (a = b),Then we have the Di↵erentiation Rules:

(f · g)0 = f 0 · g + f · g0 (a = b),

(f � g)0 = (f 0 � g) · g0 (a = g(b)).
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These rules imply that the complex rational functions z ! P (z)/Q(z) are, except at zeros of
denominators, complex di↵erentiable – at this point formally as described by the inequlities
of the definition, a visualization will follow below. The proofs show that the functions F
formed from f and g, namely ↵ · f + � · g, f · g, f � g, are approximated by the linear
functions z 7! F (a) + F 0(a) · (z � a) (“tangents”) with quadratic errors as was assumed
to be the case for f and g. Later results show – in strong contrast to the real case – that
complex di↵erentiable functions which are approximated by their tangents with coarser
errors do not exist!

We turn to the mixed chain rule and repeat the question: Given a (real) di↵erentiable curve
c : I 7! C and a complex di↵erentiable map (function) f how can the (real) derivative of
the image curve ĉ = f � c : I ! C be computed from the derivatives of f and c? Recall
for the di↵erentiable curve c : I ! C that there is another curve (or velocity or derivative)
c0 : I ! C and constants rc,Kc (usually dependent on t0) such that

|t� t0|  rc ) |c(t)� c(t0)� c0(t0)(t� t0)|  Kc · |t� t0|2.

Theorem. Mixed Chain Rule
Let c be a di↵erentiable curve as above, put a := c(t0) and ĉ := f � c,
where f is complex di↵erentiable at a, that is:

Assumption: |z � a|  rf ) |f(z)� f(a)� f 0(a) · (z � a)|  Kf · |z � a|2.
Claim: (f � c)0(t0) = f 0(c(t0)) · c0(t0),
which means: the linear approximation z ! f(a) + f 0(a) · (z � a) of f maps the tangent
t! c(t0) + c0(t0) · (t� t0) of c to the tangent t! ĉ(t0) + ĉ0(t0) · (t� t0) of ĉ.
And expressed as inequality:

|t� t0|  rĉ ) |f � c(t)� f � c(t0)� f 0(c(t0)) · c0(t0) · (t� t0)|  Kĉ · |t� t0|2.

Proof. The argument follows the familiar pattern, except that we use two di↵erent dif-
ferentiability concepts. The triangle inequality and the di↵erentiability assumptions imply
Lipschitz bounds `, L, for c: ` := |c0(t0)| + Kc · rc in the interval [t0 � rc, t0 + rc]
and for f : L := |f 0(a)| + Kf · rf in the disk {z; |z � a|  rf}.
First we decrease rc to r1 := min(rc, rf/`), so that the r1-interval around t0 is mapped by
c into the rf -disk around a = c(t0), where we have our assumptions on f :

|t� t0|  r1 ) |c(t)� c(t0)|  ` · r1  rf .
(This is an important step, which should not be overlooked in chain rule proofs.)
On the r1-interval we have the Lipschitz bound L · l for ĉ, which is only slightly bigger than
the product |f 0(a)| · |c0(t0)|, in agreement with the chain rule to be proved. In this proof
the main step consists in inserting the values of c (note c(t0) = a) into the di↵erentiability
inequality for f :
|t�t0|  r1 ) |c(t)�c(t0)|  rf ) |f(c(t))�f(a)�f 0(a)·(c(t)�c(t0))|  Kf ·|c(t)�c(t0)|2.
Here the not yet final term f 0(a) · (c(t) � c(t0)) is approximately the desired final term
f 0(a) · c0(t0) · (t� t0) with an error  |f 0(a)| · Kc · |t� t0|2.
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The triangle inequality gives
(Recall: |A�B|  F1, |B � C|  F2 ) |A� C| = |(A�B)� (C �B)|  F1 + F2.)
|t�t0|  r1 ) |f(c(t))�f(a)�f 0(a)·c0(t0)·(t�t0)|  Kf ·|c(t)�c(t0)|2+|f 0(a)|·Kc·|t�t0|2.
To unite the errors recall Kf · |c(t)� c(t0)|2  Kf · l2 · |t� t0|2.
Now define Kĉ := Kf · `2 + |f 0(a)| · Kc, and rĉ := r1 and we have achieved our goal:
With the constants rĉ,Kĉ we have:

|t� t0|  rĉ ) |ĉ(t)� ĉ(t0)� ĉ0(t0) · (t� t0)| =

= |f(c(t))� f(c(t0))� f 0(c(t0)) · c0(t0) · (t� t0)|  Kĉ · |t� t0|2.

This mixed chain rule implies an essential property of complex di↵erentiable functions
(maps) which has immediate implications about how our image figures look like and which
is also responsible for the surprisingly far reaching consequences of complex di↵erentiability
(as opposed to real di↵erentiability).

Theorem on the Preservation of Angles (Conformality) of complex di↵erentiable
maps.

Let f be complex di↵erentiable. The map f is at all points a where f 0(a) 6= 0
angle preserving.

Proof. The linear approximations z 7! f(a) + f 0(a) · (z� a) are (see the first result in this
chapter) rotations composed with scaling and therefore angle preserving. The mixed
chain rule implies: Let two di↵erentiable curves c1, c2 intersect at a, then the angle between
their tangents is the same as the angle between the tangents of the image curves f � c1,
f � c2 at f(a); this property is called angle preservation or conformality of the map f .

Visualization of Complex Functions. Because conformality is so important, we use for
the visualization of complex maps f (as in all previous illustrations) orthogonal grid curves
in the domain. It is easy to see in the image grid whether the image curves are also ortho-
gonal or not. It is even better to start from square grids (or at least infinitesimally square
grids) in the domain. Conformality implies that also their diagonals intersect orthogonally
in domain and range. Such grids are perceived by our eyes as made up of slightly bent
squares, and rather small deviations from this “squareness” are easily noticed. (View the
image below of z ! z + a · z̄2 with small a.)
The proposed visualization of complex functions by the pair of domain and image grids
(chosen infinitesimally square) shows very clearly whether or not a function is complex
di↵erentiable.
After having agreed on how to visualize functions we ask: “How can we add a visualization
of the derivative to our figures?” Derivatives at a point are defined as linear approximations
z ! f(a) + f 0(a) · (z � a) and are therefore themselves maps. We represent them in the
same way, except that we only take a small square in the domain and superimpose its
image onto the image grid of f . This image is again a square if f is conformal at a, see the
visualization of z 7! z2 three pages above.
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Summary of what we see in the following picture of a non-conformal map: The two grid
curves of the image grid of f through f(a) have as their tangents two grid lines of the
superimposed image parallelgram ( not a square!) obtained from the linear approximation
of f (at the point a).

Obviously not a conformal image under z ! z̄ + z2/4.
The image grid is not “infinitesimally square” and the image has a “fold edge”.

We know now what to concentrate on when viewing visualizations of complex functions.
Therefore we understand why standard polar coordinates are not well suited to represent
conformal maps: Although the parameter lines (radial rays and concentric circles) are
orthogonal, the shape of the (curved) parameter rectangles changes drastically. Their ratio
of edgelengths is neither bounded from below, nor from above. Therefore it is di�cult to
judge whether one is viewing a conformal map or not. Is it possible to make better polar
coordinates? We want to keep the radial rays but want to adjust the distances between the
circles. Begin with a pair of circles with radii 1 and R. A conformal stretching from 0 by
the factor R maps the initial circles to circles of radii R,R2. Each radial line is mapped onto
itsself. One can repeat this process. The next pictures show the result: One can indeed
make “infinitesimally square”, or conformal, polar coordinates. They are particularly well
compatible with inversion, the map z ! 1/z sends such a conformal polar grid onto itsself,
exchanging the interior and exterior of the unit circle. Also the behavior of z ! z2 in disks
around the zero z = 0 of the derivative is clearly represented: Circles around 0 of radius
= r are mapped to circles around 0 of radius = r2, radial rays are mapped to radial rays
in such a way that the angle of two rays at 0 is doubled, since points c, |c| = 1 on the unit
circle double their arc length distance from 1 under multiplication by c. Note how the little
squares double their edgelengths under the map.
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Ordinary and conformal (“localy square”) polar coordinate grids. Image of the locally
square grid under z 7! z(1� z2/3) is locally square. The zeros of f 0 dominate the image.
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Conformal polar coordinates serve to visualize z 7! z2 and z 7! 1/z̄.
The pieces of the figure covered by the smallest squares are sent by the map z 7! z2 to the
pieces covered by the middles-sized squares, and these in turn are sent to twice as large
(curved) squares again. This shows that the angles of the rays at zero are doubled. – The
inversion z 7! 1/z interchanges the interior and the exterior of the unit disk, and also the
upper and lower halfplane. But the conformal polar grid as a whole is mapped to itsself.
See p.72
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Before we can start with the construction of new functions, we need a replacements for the
monotonicity theorem which can’t even be formulated in the complex case. The theorem
that derivative bounds are Lipschitz bounds – quoted as the (D)L)–Theorem – is not quite
as intuitive to use but serves the same purpose. Since completeness has been introduced,
we prove this theorm under weaker assumptions than the earlier monotonicity theorem.

Derivative Bounds are Lipschitz Bounds for Complex Functions.
Quoted as (D)L)–Theorem

Assumption. Let f be complex di↵erentiable along the segment between z and w and
satisfy there |f 0|  L. Since we plan to use completeness we no longer assume uniform
tangent approximations but only: For each a between z and w there exist constants ra > 0,
Ka > 0 (which are explicitly allowed to depend on a ) so that:

|c� a|  ra ) |f(c)� f(a)� f 0(a) · (c� a)|  Ka · |c� a|2.

Claim. |f 0|  L) |f(z)� f(w)|  L · |z � w|.

Proof. Because of the non-uniform assumptions we need an indirect argument. Note that
later – when other “small” errors than the presently used quadratic errors are considered
– this same argument will work.
Assume the claim were wrong, i.e. we had some z, w such that

|f(z)� f(w)| > L · |z � w|, and hence for some suitable n
|f(z)� f(w)| � (L + 1/n) · |z � w|.

Put z0 = z, w0 = w and consider the midpoint m := 1
2 (z0 + w0). Then at least one of the

following two inequalities holds:
(*) |f(z0)� f(m)| � (L + 1/n) · |z0 �m|, |f(m)� f(w0)| � (L + 1/n) · |m� w0|,
since otherwise the triangle inequality would give

|f(z0)� f(w0)|  |f(z0)� f(m)| + |f(m)� f(w0)| < (L + 1/n) · (|z0 � w0|),
contradicting the initial assumption.
If the first inequality (*) holds put z1 = z0, w1 = m, otherwise put z1 = m, w1 = w0.
This procedure is repeated. Assume z0, . . . , zk, w0, . . . , wk are already defined such that

|f(zk)� f(wk)| � (L + 1/n) · |zk � wk|, |zk � wk| = 2�k · |z0 � w0|.
Put again m := 1

2 (zk + wk). In at least one of the two halfs we have the inequality with
the same factor (L + 1/n), therefore we can define zk+1, wk+1 such that

|f(zk+1 � f(wk+1)| � (L + 1/n) · |zk+1 � wk+1|, |zk+1 � wk+1| = |zk � wk|/2.
Therefore {zk} and {wk} are geometrically majorized Cauchy sequences, because of com-
pleteness they converge, moreover to the same limit c. The complex number c is by
construction for each k on the segment between zk and wk (c = zk or c = wk are allowed).
Therefore we have at least one of the two inequalities

(+) |f(zk)� f(c)| � (L + 1/n) · |zk � c| > 0 or |f(wk)� f(c)| � (L + 1/n) · |wk � c| > 0.
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These inequalities lead to a contradiction, if we use the di↵erentiability assumption on f
at c (a key point to make the argument work):
Choose k large enough so that |zk � wk| < min(rc, 1/(2nKc)) holds. Then we have for all
z on the segment between zk and wk that |z � c|  rc. From this we conclude:

|f(z)� f(c)� f 0(c) · (z � c)|  Kc · |z � c|2.
Finally use the bound |f 0(c)|  L and |z � c|  1/(2nKc) to get:

|f(z)� f(c)|  (L + 1/2n) · |z � c|,
contradicting one of the two inequalities (+) derived above for z = zk or for z = wk.

Remark. The structure of this proof: “With the help of completeness an indirect argument
allows to localize a point, where a contradiction to the assumptions exists”, can be found in
many analysis proofs. Other famous examples are the boundedness theorem for continuous
functions or the equivalence theorem of di↵erent continuity definitions or, later, the Cauchy
integral theorem. Note, that for this argument to work, the precise specification of a ”small
error” (in the continuity and di↵erentiability definitions) is irrelevant!

Using conformal polar coordinates with the map f(z) := (z + 1)/(z � 1). This map sends
straight lines and circles to straight lines and circles. Therefore one may extrapolate what
happens outside the shown decoration of domain and range. Because of f(f(z)) = z one
may view each of the figures as domain, the other as image. f interchanges 0 and �1
(marked o), maps the interior (resp. exterior) of the unit circle to the left (resp. right)
halfplane, and vice versa. The hole around +1 (marked +) in one figure is mapped onto the
exterior of the other figure. This suggests to talk about a “point1” which gets interchanged
with +1. The right figure shows the image of circular neighborhoods of 0 rsp. 1 from the
left figure mapped to circular neighborhoods of finite points.
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Complex Power Series
The completeness of the complex numbers and the (D)L)–Theorem allow to
define limit functions of complex valued function sequences. After introducing
completeness we constructed only three (particularly important) functions. With
the tool of power series we obtain a large class of limit functions which share
many properties with the polynomials. Their treatment also practises the sim-
plest and most important majorization technique, namely comparisons with the
geometric series. Power series are an important class of functions, every complex
di↵erentiable function (in particular all functions that have individual names) can
be represented as power series.

Definition. For a given sequence of numbers ak 2 C consider the

Pn(z) :=
nX

k=0

ak · zk.sequence of polynomials:

Both, the sequence of polynomials {z 7! Pn(z)} and also (in case of convergence) their
limit function z 7! P1(z) are called Power Series; usually they are written as

P1
k=0 akzk.

Theorem: Majorisation by a point of covergence.
Assumption. For some z0 6= 0 the sequence {Pn(z0)} converges. Put r := |z0|.
This convergence implies that {bk := Pk(z0)� Pk�1(z0) = akzk

0} is a null sequence, hence
bounded (recall: choose ✏ := 1 then find n1 such that m,n � n1 ) |bm � bn|  1; then we
have the bound |bk|  maxj=1...n1(|bj | + 1)).
Therefore a weaker assumption is popular:
There exist M, r > 0 such that |ak| · rk M for all k 2 N.
Claim. Let 0 < q < 1 and |z|  q · r. Then the sequence {Pn(z)} is q-geometrically
majorized and thus for all z with |z| < |z0| convergent.

Proof. |Pn(z)� Pn�1(z)| = |an · zn|  |anrnqn| M · qn, so that {Pn(z)} is Cauchy:

|Pn+m(z)� Pn(z)|  M

1� q
· qn+1.

Contraposition.
Should {Pn(z1)} not converge, then {Pn(z)} does not converge for any z with |z| > |z1|.

This result allows to almost completely describe the
Domain of Convergence of Power Series:
1.) There are power series, which do not converge for any z 6= 0, example ak := kk.
2.) There are power series, which converge for all z 2 C.
Examples: the already known power series for exp, sin, cos converge for all z 2 R, and the
theorem implies that they converge for all z 2 C.
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3.) For all other power series there exists R > 0, so that for |z| < R the sequence
{Pn(z)} converges and for |z| > R diverges. (For |z| = R we do not make a general
statement.) This number R is called radius of convergence of the power series. Clearly:

R = sup{|z|;Pn(z) converges}.

Please note right from the start: In the open disk |z| < R, although one does have con-
vergence, one does not have any quantitative control; however, in every smaller disk
|z|  q · R, (0 < q < 1) majorisation by the geometric series succeeds.
Before we do further work I show two tricks which will be our main tools for handling power
series. The first one is used to deal with di↵erentiated power series. The second trick is
used if the above first result cannot be applied because there is no convergence point on
the boundary of the disk of convergence (e.g. the derivative of the geometric series). For
the first trick we di↵erentiate the summation formula of the finite geometric series and get
the desired n-independent bounds by dropping the negative terms:

Assumption: 0  x < 1,
Claim (trick 1, convenient majorisations):

nX
k=0

xk =
1� xn+1

1� x
 1

1� x
,

 
nX

k=0

xk

!0
=

nX
k=1

kxk�1 =
�(n + 1)xn

1� x
+

1� xn+1

(1� x)2
 1

(1� x)2
,

 
nX

k=0

xk

!00
=

nX
k=2

k(k � 1)xk�2 =
�(n + 1)nxn�1

1� x
� 2(n + 1)xn

(1� x)2
+ 2

1� xn+1

(1� x)3
 2

(1� x)3
.

Assumption:
Let the radius of convergence of the power series {

Pn
k=0 ak · zk} be R 2 (0, 1).

Claim (trick 2, exploit q <
p

q < 1) :
Since pq · R is a convergence point, there exists M > 0 such that |ak|(

p
qR)k  M .

Therefore |z|  q · R ) |ak · zk| M · (pq)k, |ak · kzk�1|  M
qR · k(pq)k, etc, which gives

with trick 1 convenient bounds independent of n:

nX
k=0

|ak · zk| M
nX

k=0

(
p

q)k  M

1�pq
,

nX
k=1

|akk · zk�1|  M
p

qR

nX
k=0

k(
p

q)k�1  M
p

qR

1
(1�pq)2

,

nX
k=2

|akk(k � 1) · zk�2|  M

qR2

2
(1�pq)3

.
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One can determine the radius of convergence from the coe�cients ak of the power series by
two famous criteria. I will not use them much but their proofs demonstrate the importance
of trick 2 above: if one has |z|  q · R (R the radius of convergence) one might hope to,
but cannot, use majorization by a geometric series with the same q. One has to be content
with a slightly larger factor, like pq, q <

p
q < 1 as in trick 2.

The first, and simpler, of the two criteria gives only a su�cient condition:

Quotient Criterium:
If R := limk!1 |ak/ak+1| exists, then R is the radius of convergence.

Example: This provides a simple test for the convergence of the Taylor series of exp.

Proof. I only treat the case 0 < R < 1. For q 2 (0, 1) arbitrary we will show that the
radius of convergence is between q · R and R/q. Letting q go to 1 finishes the proof.
Because of the assumed convergence of {|ak/ak+1|} we can find for every q 2 (0, 1) some
kq such that:

k � kq )
p

q · R 
���� ak

ak+1

����  1
p

q
· R.

This implies for all k � kq a simple but crucial estimate:

|z|  q · R ) |Pk+1(z)� Pk(z)| = |ak+1 · zk+1|  q · R · |ak+1| · |z|k 
 pq · |ak| · |z|k =

p
q · |Pk(z)� Pk�1(z)|.

In the disk |z|  q · R the power series is pq-geometrically majorized and therefore
convergent, i. e. q · R is smaller or equal to the radius of convergence. (The initial portion
of the power series, that is for k < kq, is irrelevant for the convergence.) Similarly we
conclude with |ak+1| · R �

p
q · |ak|:

|z| � R/q ) |Pk+1(z)� Pk(z)| � (1/pq) · |Pk(z)� Pk�1(z)|,
hence divergence of {Pk(z)}, or: R/q is greater or equal to the radius of convergence.

The second criterion is necessary and su�cient:

Root Test. Put s := lim sup k
p

|ak| := limj!1(supk�j
k
p

|ak|). Then:
1.) The power series converges only for z = 0 if and only if s =1 holds.
2.) The power series converges for all z 2 C if and only if s = 0.
3.) If 0 < s <1, then we have for the radius of convergence R:

R =
1
s

= 1/ lim sup k
p

|ak|.

Proof. I only treat Nr. 3.).
First, we show R·s  1 with the only proof in this chapter, that does not use the geometric
series:
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For each z, for which {Pk(z)} converges, the sequence {akzk} is bounded, say |ak ·zk| M
for all k 2 N. Because the kth root is a monotone function that lies below its tangent at 1
we have

k
p

|ak| · |z|  k
p

M  1 +
M � 1

k
, implying (at the last step with Archimedes’ trick)

s · |z| = lim sup k
p

|ak| · |z|  sup
k�j

(1 +
M

k
) = 1 +

M

j
, ) s · |z|  1.

This holds for every |z| < R (:= radius of convergence) and therefore proves s · R  1.
Second, we will show for each q 2 (0, 1) that s ·R � q. Both inequalities (plus Archimedes’
trick) give s · R = 1.
Since 0 < s = lim sup k

p
|ak| <1 we find for each q 2 (0, 1) some kq so that:

k � kq ) sup k
p

|ak|  s/
p

q , hence |ak| · (
p

q/s)k  1.

Consequently for all k � kq and all |z|  q/s holds

|Pk+1(z)� Pk(z)| = |ak+1 · zk+1|  |ak+1 · (q/s)k+1 |  pqk+1.

Thus, in the disk |z|  q/s we have the power series pq-geometrically majorized (at least
for k � kq), hence proved convergence; i.e. q/s is less or equal to the radius of convergence
R. Therefore we also showed the left of the two inequalities q  s · R  1, hence R = 1/s.

Exercise. Treat the cases 1.) and 2.) of the root test.

Now we know enough about how power series converge, but we haven’t said anything about
properties of the limit functions. In particular:

“Are they di↵erentiable? If so, how does one find their derivative?”
We will answer this by geometrically majorizing the di↵erentiated power series {P 0n(z)},
{P 00n (z)}, with the technical tool of trick 2.

Exercise. There are other ways to geometrically majorize the di↵erentiated power series.
Recall: (n + 1) · qn  1 + q + . . . + qn  1/(1� q) and conclude (one may replace q by q1/2,
q1/3 etc. and square or cube etc. the inequality):

(n + 1) · qn = (n + 1) · (q1/2)n · (q1/2)n  (q1/2)n/(1� q1/2),
(n + 1)2 · qn = (n + 1)2 · (q2/3)n · (q1/3)n  (q1/3)n/(1� q1/3)2,

(n + 1)k · (qk/(k+1))n · (q1/(k+1))n  (q1/(k+1))n/(1� q1/(k+1))k.

Corollary: for each fixed k the sequence {an := nk · qn} converges to 0.
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Theorem. Geometric Majorization of Di↵erentiated Power Series
Assumption. The power series with the coe�cients ak has a radius of convergence r > 0.
Choose q 2 (0, 1).
Claim. The di↵erentiated polynomial squences {P 0n(z)}, {P 00n (z)} are in the disk |z|  q · r
geometrically majorized, hence convergent. They are, depending on the choice of q, but
independent of n, bounded in the disk |z|  q · r (For bounds see the proof).
Corollary. All the di↵erentiated power series have the same radius of convergence.

Proof. By assumption the power series {Pn(z)} converges if |z|  pq · r, consequently
ak · (pqr)k is bounded: |ak| ·

p
qk · rk M (trick 2 above). This implies in the smaller disk

|z|  q · r a geometric majorization of the power series and its derivatives:
First:
|Pn(z)� Pn�1(z)| = |an · zn|  |an · qn · rn| M ·pqn.
Because of trick 1 abovePp

qk  1/(1�pq),
P

k
p

qk�1  1/(1�pq)2,
P

k(k � 1)pqk�2  2/(1�pq)3

we have for all n 2 N and all |z|  q · r the bounds

|Pn(z)| M/(1�pq) =: Cq,

|P 0n(z)|  M
p

qr
· 1/(1�pq)2 =: Lq,

|P 00n (z)|  M

qr2
· 2/(1�pq)3 =: Bq.

The bound Lq and Archimedes’ trick give the same Lipschitz bound for the limit function.
The bound Bq controls the quadratic deviation of all the Pn(z) from their tangents. The
following theorem extends this control to the limit function:

Theorem. Derivative of the Limit Function
The di↵erentiated power series {P 0n(z)} converges in the disk |z| < r to the derivative of the
limit function P1 of the power series {Pn(z)}. In every smaller disk Dqr = {z ; |z|  q · r}
one has uniform quadratic approximation of the tangents:

z, a 2 Dqr ) |P1(z)� P1(a)� limP 0n(a)(z � a)|  Bq

2
|z � a|2.

Consequently P1 is di↵erentiable and the di↵erentiation rule is: (P1)0 := limP 0n.

Proof. We first recall why Lq is a Lipschitz bound for the limit function. From |P 0n(z)|  Lq

we have for the polynomial Pn from the (D)L)–Theorem that we proved for polynomials:
z, w 2 Dq·r ) |Pn(w)� Pn(z)|  Lq · |w � z|.

This inequality holds for every n. The Archimedes’ trick implies the same Lipschitz bound
for the limit function P1:

z, w 2 Dq·r ) |P1(w)� P1(z)|  Lq · |w � z|.
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We repeat this argument for the tangent approximation. We give the limit function of the
power series {P 0n(z)} the name Q1(z). Now |P 00n (z)|  Bq implies via the (D)L)–Theorem

z, w 2 Dq·r ) |Pn(w)� Pn(z)� P 0n(z) · (w � z)|  Bq · |w � z|2.
For the limit function holds via the triangle inequality:
z, w 2 Dq·r ) |P1(w)� P1(z)�Q1(z) · (w � z)|  Bq · |w � z|2 +

sum of three sequences converging to 0.
Archimedes’ trick gets rid of the three sequences:

z, w 2 Dq·r ) |P1(w)� P1(z)�Q1(z) · (w � z)|  Bq · |w � z|2.
This inequlity says, that P1 satisfies the definition for uniform di↵erentiability with deriva-
tive (P1)0 = Q1. In other words: “One di↵erentiates power series (in Dq·r) term by term
like polynomials”. Power series are automatically Taylor series:

 1X
k=0

ak zk

!0
=

1X
k=1

ak · k · zk�1, ak =
P (k)
1 (0)
k!

, P1(z) =
1X

k=0

P (k)
1 (0)
k!

zk.

Remark. Every convergent power series is derivative of some other convergent power
series:  1X

k=0

ak · zk+1

k + 1

!0
=

1X
k=0

ak zk.

Example. Up to now we could not write the function f(z) = 1/z as derivative of some
other function; however, in a subdisk of its domain of definition it could be written as a
geometric series. In this disk we now have an antiderivative:

|z � 1| < 1) 1
z

=
1

1� (1� z)
=

1X
k=0

(1� z)k =

 
�

1X
k=0

(1� z)k+1

k + 1

!0
.

In larger disks we have a similar albeit less esthetic result:

|z �R| < R ) 1
z

=
1

R� (R� z)
=

1
R

·
1X

k=0

(1� z

R
)k =

=

 1X
k=0


�1

k + 1
(1� z

R
)k+1 + (

1
k + 1

(1� 1
R

)k+1

�!0
.

The limit function of the last power series we denote by LR(z). We have LR(1) = 0 and
L0R(z) = 1/z in the disk |z �R| < R. Can we identify LR(z) with the logarithm function?
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About the Exponential Function. For the following kown real power series we define
complex extensions:

exp(z) :=
1X

k=0

zk

k!
, sin(z) :=

1X
k=0

(�1)kz2k+1

(2k + 1)!
, cos(z) :=

1X
k=0

(�1)kz2k

(2k)!
.

exp satisfies the same di↵erential equation and functional equation that it satisfies as real
function:

exp0 = exp and exp(a) · exp(z) = exp(a + z).

Proof. We find the derivative by termwise di↵erentiation. The quotient

q(z) := exp(a) · exp(z)/ exp(a + z)

satisfies q(0) = 1 and the quotient rule implies q0(z) = 0. The (D)L)–Theorem gives
q(z) = 1 for all z. (Without this theorem this conclusion is decidedly more lengthy.)

By comparing the power series one finds Euler’s formulas:

exp(iz) = cos(z) + i · sin(z) , exp(2⇡i) = exp(0) = 1,

cos z = (exp(iz) + exp(�iz))/2,

sin z = (exp(iz)� exp(�iz))/2i.

The addition theorem for exp implies (via insertion) the addition theorems of sin and cos.
The argument that we used in the real domain does not work since for complex numbers
we do not have a2 + b2 = 0) a = 0 = b. One example:

cos(z + w) =
1
2
(exp(iz + iw) + exp(�iz � iw)) =

=
1
2
(exp(iz) · exp(iw) + exp(�iz) · exp(�iw))

= +
1
2
(exp(iz) + exp(�iz)) · 1

2
(exp(iw) + exp(�iw))

� 1
2i

(exp(iz)� exp(�iz)) · 1
2i

(exp(iw)� exp(�iw))

= cos z · cosw � sin z · sinw.

From exp(2⇡i) = exp(0) = 1 we therefore get that cos and sin are also in the complex
domain 2⇡-periodic:

cos(z + 2⇡) = cos(z), sin(z + 2⇡) = sin(z).
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Angle preserving (= conformal) polar coordinates are obtained as image of the
Exponential function. The square net with its orthogonal 45�-diagonals (left)
is mapped to the orthogonal net (right) with orthogonal diagonal curves (spirals).
Also, a linear approximation is shown as superimposed square.

Inverse of the complex function exp. Since exp is 2⇡i-periodic, there is no unique
inverse function. Let `(z) be some (inner) inverse, i.e. exp(`(z)) = z.
If we knew di↵erentiability of `, the chain rule would give:

1 = exp0(`(z)) · `0(z) = z · `0(z) = 1, ) `0(z) = 1/z.
At least in disks |z � R| < R we just constructed power series LR(z) with derivative
L0R(z) = 1/z and with LR(1) = 0. Are they inverses of exp? We insert them into the
exponential function, h(z) := exp(L(z))/z, and check:

h(1) = 1 and h0(z) = exp0(L(z)) · L0(z)/z � exp(L(z))/z2 = 0.

The (D)L)–Theorem implies that h is the constant 1, hence exp(LR(z)) = z is proved at
least in |z �R| < R !
Finally we observe, that the union of the expanding disks {z; |z�R| < R} is the right half
plane {z : Re z > 0}; moreover, any two of the functions LR(z) agree on the intersection
of their disks of convergence (which is the smaller disk):

r  R, |z � r| < r ) h(z) := LR(z)� Lr(z) ) h(1) = 0, h0(z) = 0.

The inner inverse function of exp, which was above only defined on the right halfplane (the
extension to the complex plane minus the negative real axis has to wait until the chapter
on integrals), is called

principal value of the complex logarithm function, Log (z),

Log (1) = 0 , exp(Log z) = z , Log 0(z) = 1/z.
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As application we define powers with complex exponents

z↵ := exp(↵ · Log z) , (↵ 2 C,Re z > 0).

The chain rule generalizes the di↵erentiation rule for powers from integer exponents to
complex exponents:

(z↵)0 = ↵/z · exp(↵ · Log z) = ↵ · z↵�1.

Problem. The function z ! (1+z)↵ and its Taylor series at z = 0 (radius of convergence 1)
have at z = 0 the value 1 and both have the same growth rate f 0/f = ↵/(1 + z). Hence
their quotient is 1. Determine the coe�cients of this power series and check its growth rate.

Non approximating Taylor series. We pointed out already that Taylor polynomials
of a function f can only be expected to be convergent approximations if the derivatives
f (k)(x) do not grow too fast. This has to be emphasized by an example:

f(0) := 0, x 2 R \ {0} : f(x) := exp(�1/x2).Definition:

f (k)(0) := 0, x 2 R \ {0} : f 0(x) :=
2
x3

exp(�1/x2).Claim:

Proof. From our (real) approximation of exp by the compounded interest functions, that
is from 0  x) exp(�x)  1/(1 + x/n)n, we conclude

0  f(x)  1
(1 + 1/(x2n))n

 nn · x2n, |f 0(x)|  2nn · |x|2n�3.

Already with n = 1 the first inequality implies f 0(0) = 0. The second shows with n = 3
that:

|f 0(x)� f 0(0)� 0 · x|  27|x|3, hence f 00(0) = 0.
We continue by induction. Each di↵erentiation of exp(�1/x2) gives a factor 2/x3; di↵er-
entiation of the rational factors increases the denominator exponents only by 1. Therefore
constants Ck exist such that:

|x|  1) |f (k)(x)|  Cknn · |x|2n�3k.
The choice 2n � 3k + 2 implies

|x|  1) |f (k)(x)� 0� 0 · x|  Cknn|x|2, hence f (k)(0) = 0.
All Taylor polynomials of this function f are therefore 0. The Taylor series converges
phantastically, but their limit function 0 has little in common with f .

So much right now for power series. They allowed to extend all functions that were treated
in school to complex di↵erentiable functions. This has also extended our intuition of
functions to 2 dimensions. The theory of these functions holds further surprises. – The
following problem leads to a natural question.
Problem. Assume we are given a function f with f 00 = �f, f2+f 02 = 1. Define a function
g by g(x) := f(x/3) · (3� 4f(x/3)2).
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Show: g00 = �g. For f(0) = 0, we find f 0(0) = g0(0) and our real proof of the addition
theorems would show f = g. We do not yet have a theorem that allows the same conclusion
in the complex case, or do we?
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Taylor approximation of the geometric series z/(1� z) = z + z2 + z3 + . . .
The left top figure shows inside the disk of convergence a twelve-gon. The right top figure
is the image under z ! z/(1 � z); since this is a Möbius-transformation, all curves in
the image net are circles, see p. 63. In the two bottom figures we see the image of the
twelve-gon under the third and the fifth Taylor polynomial; the dotted image under z !
z/(1� z) is added for comparison. The base point for the Taylor expansion is marked (o).
– The pictures show that, also in this 2-dimensional situation, illustrations of the Taylor
approximations are quite suggestive; of course one cannot use the graph representation, the
preferred visualization in the 1-dimensional case.
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Riemann Sums, Integrals, Antiderivatives
Tangents of certain curves were already considered more than 2000 years ago and
for the notion “slope”, say of a mountain path, one has some intuitive understand-
ing before any definition. By contrast, integrals are a completely new concept.
Integrals, for example, allow to reconstruct from the velocity of a motion the trav-
elled path. If the motion would consist of “jumps”, such a reconstruction would
be a finite sum. For a given smooth velocity one needs a generalization which
may be called a “continuous summation”. Our definition, therefore, starts from
Riemann sums. We show that integration is an inverse of di↵erentiation and that
integrals can be computed from antiderivatives of the integrand.

The concept of antiderivative is simple: A function F is called antiderivative of f , if F 0 = f
holds. We use this notion for real and complex functions and also for curves f : I ! R3

(one may interprete f as velocity of the movement F ). We know already that convergent
power series have antiderivatives. And, towards integrals, we know that F (b)�F (a) is not
very di↵erent from the values of Riemann sums of f on the interval [a, b]. These facts will
be extended to the integral calculus. Our first step is an existence result which gives us
new functions in a di↵erent way than with power series:

Existence Theorem for Antiderivatives. L-Lipschitz-bounded maps f : I ! R (or
f : I ! R2, Rd) have antiderivatives F : I ! R (or R2, Rd), i.e. F 0 = f .

Remark. We will see that this theorem implies (the remaining part of) the fundamental
theorem of calculus.

Proof. The Lipschitz assumption: x, y 2 I ) |f(y)� f(x)|  L · |y�x| implies that f can
be uniformly approximated by piecewise linear functions as follows:
Subdivide the interval I = [x0, xn] into n equal parts x0 < x1 < . . . < xn, with distances
xj � xj�1 = (xn � x0)/n = |I|/n and define the “Secantapproximations” san of f :

x 2 [xj�1, xj ]) san(x) :=
(xj � x) · f(xj�1) + (x� xj�1) · f(xj)

xj � xj�1
.

All slopes of san are secant slopes of f , hence bounded by L:

x, y 2 I ! |san(y)� san(x)|  L · |y � x|.

The Di↵erence f � san has the Lipschitz bound 2L; moreover, f and san agree on all the
division points xj , f(xj) = san(xj) (j = 0, . . . , n), finally minj |x � xj |  |xn � x0|/2n.
This implies for the maximal di↵erence between f and san:

x 2 I ) |f(x)� san(x)|  2L · min
j

|x� xj | 
L · |I|

n
.
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We express this property by:
“f can be approximated uniformly by piecewise linear functions”.

The functions san have explicit piecewise quadratic antiderivatives SQn, SQ0
n = san; we

write them first for each subinterval

x 2 [xj�1, xj ]) SQn(x) := Cj�1 +
1
2

(x� xj�1)2 · f(xj)� (xj � x)2 · f(xj�1)
xj � xj�1

.

Finally we put C0 = 0 and we choose C1 so that the two definitions of SQn(x1) on [x0, x1]
and on [x1, x2] agree. Now repeat: Let the constants C0, C1, . . . , Cj�1 be determined so
that the left-sided and right-sided function values at the division points x0, ..., xj�1 agree;
then choose Cj so that the definitions of SQn(xj) on [xj�1, xj ] and on [xj , xj+1] agree.
Now we have

SQn(x0) = 0 , x 2 I ) SQ0
n(x) = san(x).

The sequences {SQn(x)}, x 2 I, are Cauchy: we have |san(x)� sam(x)| 
�

1
n + 1

m

�
·L · |I|

already and can conclude with the monotonicity theorem:

x 2 I ) |SQn(x)� SQm(x)|  max |
�
SQn � SQm

�0(x)| · |x� x0|


✓

1
n

+
1
m

◆
· L · |I|2.

By completeness the Cauchy sequences {SQn(x)} converge to give the values of a limit
function x 7! SQ1(x). Apply the monotonicity theorem again (for piecewise quadratic
functions with |SQ0

n(x)� san(a)|  L|x� a|) to get:

a, x 2 I ) |SQn(x)� SQn(a)� san(a) · (x� a)|  L · |x� a|2.

Finally by Archimedes’ trick (without quoting this old reference one says: taking limn!1)

x, y 2 I ) |SQ1(y)� SQ1(x)� f(x) · (y � x)|  L · |y � x|2.

This shows that the limit function SQ1 satisfies in I the inequality needed to apply the
di↵erentiability definition with derivative SQ0

1(x) = f(x).

SQ1 is the desired antiderivative of f .

The next task is, to define the integral of a function f in terms of its Riemann sums.
We need to make precise the following loose description: All Riemann sums of f based
on su�ciently fine subdivisions of the integration interval are so close to each other that
exactly one number can be considered as their “generalized limit”.
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Definition of the Integral. Let f : I ! R1 be a function. Let x0 < x1 < . . . < xn be
a subdivision S of the integration interval I = [a, b] = [x0, xn]. We define a measure of
smallness for the subdivision:

�(S) := max{|xj � xj�1|; j = 1, . . . , n}.

Finally let WS ⇢ R be the nonempty set of values of Riemann sums of f for the subdivision
S, i.e.

w 2WS , w =
nX

j=1

f(⌧j) · (xj � xj�1) for some ⌧j 2 [xj�1, xj ].

The function f is called Riemann-integrable on I = [a, b] if the following holds:

lim
n!1

sup{
[
S

WS ; �(S)  1/n} =: lim sup
�(S)!0

WS

= lim inf
�(S)!0

WS := lim
n!1

inf{
[
S

WU ; �(U)  1/n}.

This condition says: there is exactly one real number, namely
lim sup�(S)!0 WS = lim inf�(S)!0 WS,

which is approximated by Riemann sums for finer and finer subdivisions.
We call it “integral of f on [a, b]” and write

R
I f or

R b
a f(x)dx :

Z
I
f :=

Z b

a
f(x)dx := lim sup

�(S)!0

WS = lim inf
�(S)!0

WS.Integral of f on [a, b] :

A function f = (f1, f2, . . . , fd) : I ! Rd is called integrable, if all component functions fk

are integrable. We integrate component wise:R
I f := (

R
I f1,

R
I f2, . . . ,

R
I fd).

The vector-valued
R

I f can also be approximated by Riemann sums, because the Pythago-
rean theorem allows to combine all the component deviations:

For every error bound 1/n there exists a smallness measure �n so that:

Let S be a subdivision with smallness measure �(S)  �n

and let RS(f) :=
X

k

f(⌧k)(tk � tk�1) be a Riemann sum for the subdivision S,

then:
�� Z

I
f �RS(f)

��  1
n

.

Our existence theorem for antiderivatives and our control of Riemann sums of f by an
antiderivative F of f (generalized in the next chapter from Lipschitz to continuous f) gives
the
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Fundamental Theorem of Calculus.
L-Lipschitz-bounded f : I = [a, b] ! Rd are Riemann integrable. f has an antiderivative
F : I ! Rd, F 0 = f , and

Z
I
f :=

Z b

a
f(x)dx = F (b)� F (a).

Proof. Our previous existence theorem provides the antiderivative F of f . With the
Lipschitz bound L for f we proved in this existence theorem:

x, y 2 I ) |F (y)� F (x)� f(x) · (y � x)|  L · |y � x|2.

Choose n 2 N arbitrarily. We have for every subdivision S with smallness measure �(S) 
1/n and every Riemann sum RS(f) =

Pn
j=1 f(⌧j) · (xj � xj�1) for this subdivision by the

last theorem in the chapter on the monotonicity theorem

|F (b)� F (a)�RS(f)|  L · |I|
n

.

This bounds the di↵erence between F (b)� F (a) and arbitrary Riemann sums for subdivi-
sions with smallness measure  1/n by a sequence that converges to 0; the condition for
integrability is satisfied and F (b)� F (a) = lim sup�(S)!0 WS = lim inf�(S)!0 WS holds.

Comment. The di↵erential calculus to determine tangents and the integral calculus of
generalized summation were developed independently of each other. It was a great discovery
that integration can be viewed as an inverse of di↵erentiation. The supply of functions
with known antiderivatives was large right from the beginning, the fundamental theorem
could therefore be used to explicitly compute many integrals. This was, of course, a great
success because the definition of the integral provides only approximations, not methods of
computation.

A somewhat di↵erent formulation of the Fundamental Theorem is also important:
If a function F : I ! Rd has a Lipschitz-bounded derivative f = F 0 : I ! Rd and known
initial value F (a), then F can be reconstructed by integrating f :

F (x)� F (a) =
Z x

a
f(t)dt.

The assumption “Lipschitz-bounded” will be weakened to “continuous” in the next chapter;
but recall that the fundamental theorem is almost 200 years older than continuity.
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For Interpretations of Integrals it is often important to think of integrals as sums.
Here is a list of formal similarities:

1.)
X

k

(↵ · ak + � · bk) = ↵ ·
X

k

ak + � ·
X

k

bk, linear

Z
(↵ · f(x) + � · g(x))dx = ↵ ·

Z
f(x)dx + � ·

Z
g(x)dx. linear

2.)
mX

k=1

ak +
nX

k=m+1

ak =
nX
1

ak, associative

Z b

a
f +

Z c

b
f =

Z c

a
f, interval-additive

3.) ak = bk+1 � bk )
nX

k=1

ak = bn+1 � b1, collapsing sum

f = F 0 )
Z b

a
f(x)dx = F (b)� F (a), Fundamental Theorem

4.) ak  bk )
X

ak 
X

bk, Monotonicity

f  g )
Z b

a
f 

Z b

a
g, Monotonicity

5.) |
X

ak| 
X

|ak|, generalized triangle inequality

|
Z b

a
f(x)dx| 

Z b

a
|f(x)|dx, continuous triangle inequality.

Proof of the continuous triangle inequality for functions f : I ! Rd with respect to any
norm |.| on Rd. Choose — for each n 2 N — the smallness measure of subdivisions S of the
interval I = [a, b] so small that for all such subdivisions the di↵erence between Riemann
sums and integral is at most 1/n, on both sides of the inequality. For the Riemann sums
we have the generalized triangle inequality:

���
nX

j=1

f(⌧j) · (xj � xj�1)
��� 

nX
j=1

|f(⌧j)| · (xj � xj�1),

this implies for the integrals (the error 2/n is then removed with the Archimedes trick):

���
Z b

a
f(x)dx

��� 
Z b

a
|f(x)|dx +

2
n

for all n 2 N.
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Numerical Computations of Integrals. The above analogy between sums amd integrals
is also emphasized by formulas for numerical evaluation; the numerics therefore helps the
intuition. In accordance with the definition of the integral one subdivides the integration
interval I into small subintervals. The main idea is that the integrals of di↵erentiable
functions f can be approximated on small intervals by really simple formulas so well that
the summation over all the subintervals still leads to a good approximation for

R
I f . The

two simplest approximations are as follows
(a) the integral of the secant between the endpoints is computed
(b) the integral of the tangent at the midpoint is computed:

Z b

a
f(x)dx ⇠ f(a) + f(b)

2
(b� a).a) Secant Trapezoid:

Z b

a
f(x)dx ⇠ f(

a + b

2
)(b� a).b) Tangent Trapezoid:

How good are these approximations? As a consequence of the Monotonicity Theorem we
proved that bounds for the second derivative allow to bound the di↵erence of f and either
its tangent or its secant as follows:

Tc(x) := f(c) + f 0(c)(x� c),Tangent at c :

Sab(x) :=
�
f(a)(b� x) + f(b)(x� a)

�
/(b� a).Secant between a, b :

a  c, x  b, 0  f 00  B.Assumption:

0  f(x)� Tc(x)  1
2
B(x� c)2,Monotonicity Theorem )

0  Sab(x)� f(x)  1
2
B(x� a)(b� x).

The error estimate of the two trapezoid rules is obtained by integrating these two in-
equalities and using the monotonicity of the integral:

0  f 00  B, c :=
a + b

2
.Assumption:

0 
Z b

a
f(x)dx� f(c)(b� a)  B

24
(b� a)3,Tangent Trapezoid:

0  f(a) + f(b)
2

(b� a)�
Z b

a
f(x)dx  B

12
(b� a)3.Secant Trapezoid:

The assumption |f 00|  B implies the corresponding absolute value inequalities. It is useful
to remember though: As long as the second derivative does not change sign, one of the
trapezoid rules gives too large an approximation the other is too small. This leads to the
question:
Is it possible to average the two trapezoid rules to get a better rule? If our error estimates
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are realistic then the tangent trapezoid is twice as good as the secant trapezoid rule. This
agrees with Archimedes’ result that the area between parabola and secant is twice as large
as the area between parabola and tangent. Since the errors also have opposite sign we try
a 1:2 average and find the:

Z b

a
f(x)dx ⇠

�f(a) + f(b)
2

+ 2 · f(
a + b

2
)
�
· (b� a)

3
.Simpson rule:

For the quadratic parabola the Simpson rule gets the correct result:

Z b

a
x2dx =

1
3
(b3 � a3) =

�a2 + b2

2
+ 2(

a + b

2
)2
�
· (b� a)

3
.

In fact, the Simpson rule computes for every cubic polynomial P the correct integral.
Namely, with c being the interval midpoint we write x3 = (x � c + c)3 = (x � c)3+
quadratic remainder. The quadratic remainder is integrated correctly by the Simpson rule
and the integral of (x � c)3 is 0, also the value of the Simpson approximation. Therefore
we have the interpretation:
The Simpson rule computes the integral of the cubic polynomial P that agrees with f in
three values f(a), f(a+b

2 ), f(b) and the derivative f 0(a+b
2 ).

An error bound for the Simpson rule first shows that a bound for the fourth derivative of f ,
say |f (4)|  C, controls the di↵erence between f and P and the integral of this di↵erence
bounds the error of the Simpson rule.
The proof of this frequently used and rather precise error estimate is a more complicated
example for arguing with the monotonicity theorem. I simplify the notation by assuming
a = �b. For the function h := f � P we have the following

h(±a) = 0 = h(0), h0(0) = 0, |h(4)|  C,Assumption:

� a  x  a ) |h(x)|  C

24
x2(a2 � x2),Claim: �����

Z b

a
f(x)dx� 1

6

✓
f(a) + 4f(

a + b

2
) + f(b)

◆
(b� a))

����� 
C

2880
(b� a)5.Simpson error:

Proof. As with other applications of the monotonicity theorem the main result is the special
case where some derivative, here the fourth, does not change sign:
Claim0: h(±a) = 0 = h(0), h0(0) = 0, 0  h(4) ) h  0.
We interprete this: If f (4) � 0 then the Simpson approximation is larger than the integral
of f . Next, if Claim0 is proved and |f (4)|  C is assumed then Claim0 can be used for
g+(x) := +h(x)� C

24x2(a2 � x2), g�(x) := �h(x)� C
24x2(a2 � x2) since 0  g(4)

± .
Of course g±  0 implies the Claim for |h|. Then the Simpson-error is obtained from the
antiderivative (a2x3/3� x5/5)0 = x2(a2 � x2).
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Proof of Claim0. Our early applications of the monotonicity theorem include: 0  h(4)

implies that h00 lies above each tangent and below each secant. From this we conclude by
contradiction h00(0)  0: Assume h00(0) > 0; the tangent at 0 of h00 is at least on one of the
intervals [�a, 0] (case h000(0)  0) or [0, a] (if h000(0) � 0) strictly positive. The same is true
for h00 because it is above this tangent. Consequently is h0 on at least one of these intervals
strictly increasing and, because of h0(0) = 0 we have h0 < 0 on [�a, 0) OR h0 > 0 on (0, a].
This implies that h were strictly monotone on at least one of these intervals, contradicting
h(�a) = h(0) = h(a), thus proving h00(0)  0.
We give two versions for the end of the proof. The first and simpler version uses from the
next chapter that h assumes its maximum; the second version only uses what is presently
proved.
If the function h had positive values then it had a positive maximum h(c). Necessary
conditions for a maximum are h0(c) = 0, h00(c)  0. Since h00 is below each secant (recall
h(4) � 0), we have h00  0 between 0 and c. Therefore h had to be below its horizontal
tangent at 0, contradicting h(c) > 0.
Now the same conclusion without the Maximum Theorem. Assume that h had some positive
value h(x) > 0, for example 0 < x < a. Then h0 would have to have some positive values
on [0, x] and some negative values on [x, a]. For h0 to grow from h0(0) = 0 to positive values
we need h00 positive somewhere in [0, x], e.g. h00(c) > 0, c 2 (0, x). Later h0 decreases from
positive values to negative values which is impossible unless h00 is negative somewhere, e.g.
h00(d) < 0, d 2 (c, a). As in the first version h00 is below the secant on [0, d ] with values  0
at the endpoints – contradicting h00(c) > 0.

Integrals and Area below Graphs of Functions. The definition of area is built up
over many steps and cannot be summarized here. But an early result in that construction
is: compact sets have area. Another important property of area is its monotonicity:
if area(X) and area(Y ) are defined and X ⇢ Y then area(X)  area(Y ).
These properties su�ce to see that

area({(x, y); a  x  b, 0  y  f(x)}) =
R b

a f(x) dx,
or, the area under the graph of f is computed by

R b
a f(x) dx.

First, we interprete each term f(⌧j) · (xj � xj�1) of a Riemann sum of f as the area of a
rectangle which has as one edge the interval [xj�1, xj ] on the x-axis and which has height
f(⌧j). Therefore every Riemann sum is the area of a union of rectangles. Then, as the
measure of smallness of the subdivisions decreases to 0, the Riemann sums converge to the
integral. Finally, the set under the graph of f is compact and therefore has an area; and
by monotonicity, the integral is the only candidate number for the area, hence equals the
area. – In the 1-dimensional case we can fully explain the construction:

Computation of Arc Length by Integrals: length
�
p([a, x])

�
=
R x

a |p0(t)|dt.
The arc length of Lipschitz-bounded curves p : [a, b] ! Rd was earlier (in case d = 2)
defined as:
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length(p([a, b])) :=
sup{

PN
k=1 |p(xk)� p(xk�1)|; with a = x0 < x1 < . . . < xN = b a subdivision of [a, b] }.

We assume in addition that p( ) is a di↵erentiable curve with (presently) Lipschitz-bounded
derivative p0 : [a, b] ! Rd. The Fundamental Theorem of Calculus and the continuous
triangle inequality imply:

|p(xk)� p(xk�1)| =
���
Z xk

xk�1

p0(x)dx
��� 

Z xk

xk�1

|p0(x)|dx,

hence
NX

k=1

|p(xk)� p(xk�1)| 
Z b

a
|p0(x)|dx.

This shows that the integral is an upper bound for the length of any inscribed secant
polygon. The sup-definition of arc length now gives:

length(p[a, b]) 
Z b

a
|p0(x)|dx.

Next, we view the length and the integral as functions of the right endpoint of the interval:

L(t) := length (p([a, t])), F (t) :=
Z t

a
|p0(x)|dx,

and we aim to show the equality of these functions. Since L(a) = F (a) = 0 it would su�ce
to prove L0(t) = F 0(t). We now write inequalities for di↵erence quotients (the first one says
that the secant is shorter than the length, the second is the inequality proved above):

|p(t2)� p(t1)|
t2 � t1

 L(t2)� L(t1)
t2 � t1

=
length (p([t1, t2]))

t2 � t1
 1

t2 � t1

Z t2

t1

|p0(t)|dt.

Since p( ) is di↵erentiable we can take the limit t2 ! t1 explicitly at the two outermost
terms of the chain of inequalities:

|p0(t1)|  lim
t2!t1

L(t2)� L(t1)
t2 � t1

 |p0(t1)| = F 0(t1).

This shows that L( ) is di↵erentiable with derivative L0(t1) = |p0(t1)| = F 0(t1) for all
t1 2 [a, b]. So finally F = L holds and we have proved:

length(p([a, x]) =
Z x

a
|p0(t)|dt.

We repeat this result with a di↵erent wording. View the parameter t of the curve t! p(t)
as “time”: a moving point p is at time t at position p(t). This implies the interpretation:
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|p0(t)| is the (absolute value of the) velocity at time t of the moving point. And the length
L(t) is the distance travelled until time t. In formulas:

Travelled distance = L(t) =
Z t

0
|p0(⌧)|d⌧ = Integral of the velocity.

Let us look with this interpretation at the Riemann sums of the integral. Each term
|p0(⌧j)| · |tj � tj�1 is the distance that would be travelled with the (intermediate) velocity
|p0(⌧j)| between time tj�1 and time tj . Approximately this is the length of the secant
|p(tj)�p(tj�1)|. But the approximation is, percentage-wise, the better the shorter the time
interval is. The Riemann sum is the sum of these approximately travelled distances and
the deviation from the arc length gets, percentage-wise, smaller as the smallness measure
of the subdivision decreases.
The daily language cannot really express what the integral achieves in this situation. But
our comparison of Riemann sums and integrals gives, I believe, a su�ciently descriptive
mental image so that the following colloquial words make sense:

The integral
R t

a |p0(⌧)|d⌧ “sums continuously” the infinitesimal distances, which
are travelled as time progresses by the motion t! p(t) with instantaneous velocity
|p0(t)|.

Mean Value Property of Integrals

First recall that the center of mass S of points Pk with position pk 2 R3 and masses mk is
computed as the mean value:

Center of Mass S =
NX

k=1

mk

M
· pk, Total Mass M =

X
mk .

For some integrable function f : [a, b]! R3 we want to interprete the integral 1
b�a

R b
a f(t)dt

as a mean value. Consider the Riemann sums
PN

k=1 f(⌧k) · (tk � tk�1)/(b � a). Clearly,
these can be viewed as mean values of the f(⌧k) with masses (tk � tk�1)/(b� a).
Each refinement of the subdivision on which the Riemann sums are based uses more function
values f(⌧k) (with smaller masses) for this averaging. The colloquial formulation:

Z b

a
f(t)

dt

b� a
is a continuous average of the values f(t)

is a useful verbal rendition of the underlying mathematics.
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Continuity and Uniform Convergence

Towards the end of the 19th century continuity was established as a fundamental
notion of analysis, roughly 200 years after the begin of di↵erentiation and inte-
gration. I cannot retrace the reasons for this development here, I have to contend
myself with simpler motivations for introducing continuity than the historically
correct ones. In the earlier chapters we saw already how important convergent
sequences are in analysis. It is therefore a plausible question, that will lead to
continuity, to ask: What are the functions that map every sequence that
is convergent in the domain of the function to a convergent sequence
in the range? The main theorems on continuous functions cannot be proved
without using completeness. First we discuss the theorems that follow easily from
sequence-continuity. Then ✏-�-continuity is introduced and the remaining main
theorems are proved. Crucial are the convergence properties of sequences of con-
tinuous functions. We close with famous examples by Cantor, Weierstraß and
Hilbert.

Definition of continuity. A function f with domain D is called sequence-continuous
at a 2 D, if every sequence {ak} in D with lim ak = a is mapped to a sequence that
converges to f(a), lim f(ak) = f(a).
The function f is called continuous if it is continuous at every a 2 D.

We use this definition for real functions, complex functions, curves c : R ! Rd, maps
F : Rd ! Re and as we progress in increasingly general situations. Maps with a Lipschitz
bound |F (x) � F (y)|  L · |x � y| are, trivially, sequence-continuous since lim ak = a and
|F (ak)� F (a)|  L · |ak � a| imply limF (ak) = F (a).
The definition implies directly:

Theorem. Sums, products and compositions of continuous functions are continuous.

We will get to a more precise intuition how to imagine continuous functions once we establish
powerful function construction tools at the end of this section.

The first three theorems deal with properties so plausible that they are often used without
even realizing that they need to be proved. First the

Intermediate Value Theorem. Let f : [a, b] ! R be (sequence-)continuous and w 2 R
with f(a) < w < f(b). Then there is at least one c 2 (a, b) such that f(c) = w.
(It is enough to prove this in case w = 0, otherwise change f to f � w.)

Proof. We construct convergent nested intervals, beginning with a1 := a, b1 := b. Assume
we had the first n intervals [a1, b1] � [a2, b2] � · · · � [an, bn] defined in such a way that
f(an)  0, f(bn) � 0 and |bn � an| = |bn�1 � an�1|/2.
Consider the midpoint m := (an +bn)/2. If f(m) � 0, put an+1 = an, bn+1 = m; otherwise
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put an+1 = m, bn+1 = bn. We obtain the next interval. Let c be the limit point of these
convergent nested intervals, lim an = c = lim bn. Sequence-continuity of f together with
f(an)  0, f(bn) � 0 implies

0 � lim f(an) = f(c) = lim f(bn) � 0, i.e. f(c) = 0.

Problem. Use another formulation of completeness to prove this result.

Functions with a uniform Lipschitz bound L on bounded intervals [a, b] (e.g. polynomials)
have values f(x) 2 [f((a + b)/2) � L · (b � a)/2, f((a + b)/2) + L · (b � a)/2], i.e. are
bounded.
The rational function f(x) = 1/x is continuous in (0, 1) but not bounded. Such boundedness
failure can only happen near a boundary of the interval because we have the

Boundedness Theorem. Let [a, b] be finite and f : [a, b]! R be continuous.
Then f is bounded.

Proof. Assume that f is unbounded on [a, b] =: [a1, b1]. We first construct convergent
nested intervals {[an, bn]} so that f is unbounded on all of them. These constructions
are always by induction. So we assume that we have the first n intervals already and
m := (an + bn)/2 is the last midpoint. Since f is unbounded on [an, bn], f has to be
unbounded at least on one of [an,m], [m, bn]. We choose [an+1, bn+1] in two steps. First
we take the interval on which f is unbounded (or one of them); then we make the interval
smaller so that the maximum of f at the two endpoints is � n. Because we used interval
halfing, these nested intervals are convergent, say to c. Because of continuity we should
have lim f(an) = f(c), lim f(bn) = f(c), but this is a contradiction because at least one of
the sequences {f(an)}, {f(bn)} is unbounded.

The following refinement is quoted frequently

Maximal Value Theorem. Let f : [a, b] ! R be continuous. Then there is at least one
c 2 [a, b] such that x 2 [a, b] implies f(x)  f(c).
One quotes this as: f assumes at some c 2 [a, b] its maximum f(c).

Proof. Since f was already proved to be bounded on [a, b] =: [a1, b1], we can define:

S := sup{f(x);x 2 [a1, b1]}, S <1.

Again we construct convergent nested intervals {[an, bn]}, now with S = sup f([an, bn]).
Assume we have the first n such intervals and m := (an + bn)/2. On one of the two
subintervals [an,m], [m, bn] the supremum of f must still be S. Choose it preliminarily
as [an+1, bn+1]. In this interval find x with f(x) � S � 1/(n + 1). On one of the two
subintervals [an+1, x], [x, bn+1] the supremum of f must still be S, make it our choice of
[an+1, bn+1]. Let c be the limit of these nested intervals. By (sequence-)continuity we have
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lim f(an) = f(c) = lim f(bn)  S, hence of course f(c) = limmax{f(an), f(bn)}. But we
also have S � 1/n  max{f(an), f(bn)}, hence f(c) = S.

The definition of sequence-continuous says that we know the value f(a) at a if we know
the values of f at convergent (to a) neighboring points an, namlely f(a) = lim f(an). We
ask in the opposite direction: if one knows f(a), what can one conclude about values at
nearby points? The following theorem gives a simple answer which, however, can only be
proved indirectly.

Theorem on Positive Neighbors. Let f : (a, b)! R be sequence-continuous at c 2 (a, b)
and positive, f(c) > 0. Then there is some interval (c� �, c + �) on which f is positive.

Indirect Proof. First choose n1 so large, that (c � 1/n1, c + 1/n1) ⇢ (a, b). Either f is
positive on this interval (and we are done) or there exists a1 2 (c � 1/n1, c + 1/n1) with
f(a1)  0, a1 6= c. In the second case choose n2 > n1 so that a1 62 (c � 1/n2, c + 1/n2).
Again, either f is positive on this second interval or there exists a2 2 (c� 1/n2, c + 1/n2)
with f(a2)  0. We can repeat this procedure and either end up with an interval on which
f is positive or we find a sequence {ak} with lim ak = c and f(ak)  0, hence f(c)  0, a
contradiction – i.e. this possibility cannot arise, we end up with a (possibly small) interval
on which f is positive.

This looks like a complicated proof for an innocently looking statement. Other characteri-
zations of continuity seem desirable which make the above statement obvious.

The following definition looks at the function in the opposite way as sequence-continuity:
if one knows f(a) then one can say something about the values at nearby points: For every
acceptable deviation ✏ > 0 from f(a) there is an interval [a� �, a+ �] on which no larger
deviations from f(a) occur. In the standard more formal language:

Definition of ✏-�-Continuity. Let A,B be subsets of R, C or Rd. A map or function
f : A! B is called ✏-�-continuous at a 2 A if the following property holds:
For every ✏ > 0 (called error bound) there exists some � > 0 (called guarantee radius) so
that

x 2 A, |x� a|  � ) |f(x)� f(a)|  ✏.

If this holds for every a 2 A, then f is called ✏-�-continuous on A.
(The words “error bound, guarantee radius” are added to underscore the intentions pursued
with this definition, they can be omitted.)

Theorem on Equivalent Continuity Definitions.
A function f : (a, b)! R is sequence-continuous if and only if f is ✏-�-continuous.

Proof. a) Let f be ✏-�-continuous and let {ck} be a sequence converging to c. We want to
show: The image sequence f(ck) converges to f(c).
Let ✏ > 0 be given, we have to find k✏, such that

k � k✏ ) |f(ck)� f(c)|  ✏.
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The ✏-�-continuity of f gives for each given ✏ > 0 a guarantee intervall (c � �, c + �) such
that x 2 (c � �, c + �) ) |f(x) � f(c)|  ✏. The assumed convergence of {ck} gives us k�

such that k � k� ) |ck � c|  �. We put k✏ := k�, and combine these two implications to
give lim f(ck) = f(c), namely:

k � k✏ = k� ) |ck � c|  � ) |f(ck)� f(c)|  ✏.

b) In the other direction we have to conclude from the sequence-continuity of f that for
every ✏ > 0 there exists some � > 0, so that

|x� c| < � ) |f(x)� f(c)|  ✏.
The proof, again, has to be indirect and resembles the proof of the preceeding theorem.
If, for some (error bound) ✏⇤ it were NOT possible to find the needed (guarantee) interval
(c � �, c + �) (namely with the property x 2 (c � �, c + �) ) |f(x) � f(c)| < ✏⇤) then we
could define a sequence {ak} leading to a contradiction as follows:
Start by choosing n1 such that (c�1/n1, c+1/n1) ⇢ (a, b) and pick a1 2 (c�1/n1, c+1/n1)
with |f(a1)� f(c)| > ✏⇤. (In other words: a1 is a counter-example to (c� 1/n1, c + 1/n1)
being a guarantee interval.)
By induction assume that n1 < n2 < . . . < nk and a1, a2, . . . , ak are already chosen such
that aj 2 (c � 1/nj , c + 1/nj) and |f(aj) � f(c)| > ✏⇤. Next choose nk+1 large enough
so that ak 62 (c � 1/nk+1, c + 1/nk+1). Because of the indirect proof assumption no � is
good enough to prevent deviations > ✏⇤. Therefore we find ak+1 2 (c�1/nk+1, c+1/nk+1)
such that |f(ak+1) � f(c)| > ✏⇤. The sequence {ak} converges to c – but in contradiction
to the assumed sequence-continuity we have |f(ak+1) � f(c)| > ✏⇤, or f(c) 6= lim f(ak).
This shows that we cannot construct the sequence {ak+1}. Which means: after finitely
many steps we find � = 1/nk > 0 such that |x � c|  � ) |f(x) � f(c)|  ✏⇤. We proved
✏-�-continuity of f at c.

Problem. Use the ✏-�-definition to show that sum, product and composition of continuous
functions are continuous. This takes more work than with the first definition. On the other
hand, the theorem on positive neighbors is now straight forward: Choose ✏ := f(c)/2 > 0:
In the corresponding guarantee interval (c � �, c + �) we have f(c) � f(x)  f(c)/2 or
0 < f(c)/2  f(x), which is a positive lower bound.

The intermediate value theorem and the maximal value theorem do not get simpler proofs
by using ✏-�-continuity. The boundedness theorem however can be proved in a completely
di↵erent way. It relies on a property of finite intervals [a, b] that combines well with ✏-�-
continuity and leads to very short arguments. We first prove this interval property, the

Heine-Borel Covering Theorem. Vor every x 2 [a, b] we are given some �x > 0.
The conclusion is: One can find finitely many xk 2 [a, b] such that (abbreviating �k := �xk)
the interval [a, b] is covered by the open intervals (xk � �k, xk + �k).
This is also expressed as [a, b] ⇢

SK
k=1(xk � �k, xk + �k).
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Indirect Proof. The argument resembles the proof of the boundedness theorem. We
construct convergent nested intervals {[an, bn]}, such that each [an, bn] is NOT covered by
finitely many intervals (x � �x, x + �x). First step: the given interval [a, b] =: [a1, b1] is
not covered by finitely many of the (x � �x, x + �x). By induction assume that we have
found the first n intervals [a1, b1] � . . . � [an, bn], all not covered by finitely many of the
(x� �x, x + �x). Define m := (an + bn)/2 and observe that [an,m] or [m, bn] is not finitely
covered so that one of them can be taken as [an+1, bn+1]. Let c be the limit of these nested
intervals. Clearly, the single interval (c��c, c+�c) covers those intervals [an, bn] for which
|bn�an| = |b1�a1| ·2�n < �c holds. This contradiction prohibits the choice of these nested
intervals, hence: [a, b] is finitely covered.

Using the Heine Borel theorem we first generalize the boundedness theorem.

Definition of locally bounded. A function f is called locally bounded, if we have for
each point x of the domain of f some �x > 0 such that f is bounded on (x� �x, x + �x).
Continuous functions f are locally bounded because, for every c in their domain, there
exists a �1(c) > 0 such that

|x� c|  �1 ) |f(x)� f(c)|  1) |f(x)|  |f(c)| + 1.

Theorem. Each function f which is locally bounded on [a, b] is in fact globally bounded.

Proof. Cover [a, b] by finitely many of the intervals (x � �x, x + �x). The maximum of
the assumed local bounds on these intervals is a global bound for f on [a, b].

One can see that we have developed an easily used method of proof. In the literature these
arguments are unusually standardized. One therefore has to practise in mathematical
conversations to what extent variations in the wording are tolerable - learning the standard
words is not enough.
We use this method to prove the

Theorem on Uniform Continuity. Let f : [a, b] ! R be continuous. Then f is in fact
uniformly continuous, which means that the � can be chosen to work for all x 2 [a, b]:
Claim: For every ✏ > 0 there exists � > 0 such that for all x, y 2 [a, b] holds:

|x� y| < � ) |f(x)� f(y)| < ✏.

Proof. The pointwise continuity of f supplies for each ✏ > 0 and each x 2 [a, b] some
�x > 0 such that

x, y 2 [a, b] and |x� y| < 2 · �x ) |f(x)� f(y)| < ✏/2.
(Note that the extra factors 2, 1/2 are compatible with the continuity definition.)
Finitely many of the intervals (x� �x, x+ �x) cover [a, b], or [a, b] ⇢

SK
k=1(xk� �k, xk + �k).

Put � := mink=1...k �k. We show that this � is a suitable choice: For each x 2 [a, b] first
choose xk such that x 2 (xk � �k, xk + �k). This implies |f(x) � f(xk)| < ✏/2. Assuming
|x� y| < � we have y 2 (xk � 2�k, xk + 2�k), hence also |f(y)� f(xk)| < ✏/2. The triangle
inequality gives |f(x)� f(y)| < ✏ , finishing the proof.
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Theorem on Uniform Approximation. Continuous functions f : [a, b] ! R can be
uniformly approximated by piecewise linear functions, meaning:
For every ✏ > 0 there exists a piecewise linear function ` such that

for all x 2 [a, b] holds |f(x)� `(x)| < ✏.

Proof. Since f is uniformly continuous on [a, b] one can find for each ✏ > 0 some � > 0 so
that

x, y 2 [a, b], |x� y|  � ) |f(x)� f(y)|  ✏

2
.

With this � choose a subdivision a = t0 < t1 < . . . < tN = b satisfying |tj� tj�1| < �. Next
define a piecewise linear function ` by linearly interpolating f between tj�1 and tj :

t 2 [tj�1, tj ]) `(t) :=
f(tj) · (tj � t) + f(tj�1) · (t� tj�1)

tj � tj�1

The triangle inequality proves that l is ✏-close to f :

t 2 [a, b] )

|f(t)� `(t)|  |f(t)� f(tj)| + |`(t)� `(tj)| 
✏

2
+ |f(tj)� f(tj�1)|

t� tj�1

tj � tj�1
 ✏.

Problem. Give a proof of the maximal value theorem using Heine-Borel. Start as: Assume
for each x 2 [a, b] we had f(x) < S := sup f([a, b]). Continuity of f at x . . . .

The next goal is to generalize the Fundamental Theorem of Calculus from Lipschitz
continuous to continuous functions. We need to finalize the definition.

Final Definition of Di↵erentiability. A function f : (↵,!) ! R
is called di↵erentiable at a 2 (↵,!) with derivative m = f 0(a) and
tangent Ta(x) := f(a) + m · (x� a), if the following holds:

|f(x)� Ta(x)| = �a(x)|x� a| and �a(x) is continuous at x = a with �a(a) = 0

or:

|f(x)� f(a)
x� a

�m| = �a(x) and �a(x) is continuous at x = a with �a(a) = 0

or, after plugging in the continuity definition of �a :

For every ✏ > 0 there is a � > 0 such that: |x� a|  � ) |f(x)� Ta(x)|  ✏ · |x� a|.

Problem. In the chapter on complex numbers we proved that derivative bounds are
Lipschitz bounds without making uniformity assumptions. Use the same strategy of proof
to conclude the Monotonicity Theorem with the final version of di↵erentiability in the
assumption (adaption to the final definition is needed only at the end).
Let f : (↵,!)! R be di↵erentiable and continuous on [↵,!], then:

f 0 � 0 ) f is weakly monoton increasing, i.e. x  y ) f(x)  f(y).
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Theorem on the Existence of Antiderivatives and Integrals:
Continuous functions f : [↵,!]! R have antiderivatives F , i.e. F 0 = f .
Therefore they are integrable with

a, b 2 [↵,!]) F (b)� F (a) =
R b

a f(x)dx.

Proof. The arguments run as for Lipschitz continuous f in the chapter on integration, one
only has to adapt to the ✏-�-deviations.
For each 1/n > 0 let `n : [↵,!]! R be a uniform piecewise linear approximation satisfying
x 2 [↵,!] ) |f(x) � `n(x)|  1/n, |`n(x) � `m(x)|  (1/n + 1/m), see the preceeding
theorem. In this application we used already that f is uniformly continuous, i.e.: For every
✏ > 0 there is a � > 0 such that

x, y 2 [↵,!], |x� y|  � ) |f(x)� f(y)|  ✏) |`n(x)� `n(y)|  2/n + ✏.
As before, the `n have piecewise quadratic antiderivatives Qn : [↵,!] ! R satisfying
Q0

n = `n, Qn(0) = 0.
Apply the monotonicity theorem for each fixed y to the function x 7! Qn(x)�Qn(y); using
the previous estimate we get

x, y 2 [↵,!], |x� y|  � ) |Qn(x)�Qn(y)� `n(y)(x� y)|  (2/n + ✏) · |x� y|.
The monotonicity theorem also shows that the {Qn} are a Cauchy sequence, in formulas:

x 2 [↵,!]) |Qn(x)�Qm(x)|  max(|`n � `m|) · |x� ↵|  (1/n + 1/m) · |! � ↵|.
The completeness of R provides the limit function Q1 of this Cauchy sequence. The
Archimedes trick extends the tangent approximations of the Qn to the limit function:

x, y 2 [↵,!], |x� y|  � ) |Q1(x)�Q1(y)� f(y)(x� y)|  ✏ · |x� y|.
Our argument found for every ✏ > 0 some � > 0 such that this implication holds, in other
words Q1 is di↵erentiable with Q0

1 = f . The limit function is an antiderivative of f .

As in the chapter on integration we can approximate Riemann sums of f - up to Archimedes
errors - by Q1(b)�Q1(a). Therefore f is integrable in terms of its antiderivative:

a, b 2 [↵,!]) Q1(b)�Q1(a) =
R b

a f(x)dx, Q0
1 = f .

Sequences of Continuous Functions.
The previous theorems establish the main facts that are true for continuous functions - con-
sidered one at a time. The next developments are concerned with properties of convergent
sequences fn of continuous functions and with properties of the limit function. We meet a
new method to construct continuous functions in the theorem on uniformly convergent
sequences of functions. – For such sequences we ALWAYS make the following

Minimal Assumptions for Sequences of Functions {fn(x)}.
All the fn are continuous and the sequences of values {fn(x)} converge for each x 2 D ⇢
Domain (fn). (This is called pointwise convergence in D.)
These assumptions allow to define a limit function:

x 2 D, f(x) := limn!1 fn(x) – which is NOT necessarily continuous!!
Example:
D = [0, 1], fn(x) := xn, f(x) := limn!1 fn(x) implies f(1) = 1, f(x) = 0 für x 2 [0, 1).

111



The following theorems say under what additional assumptions one can conclude that the
limit function is indeed continuous.
First we use ideas from earlier chapters: If the errors can be controlled independently of n
(we also say “uniformly in n” or in the case of continuity “equicontinuous in n”) then the
error control extends via Archimedes to the limit function:

Theorem on Equicontinuous Sequences.
Assumptions.
For every ✏ > 0 and for each x 2 D there is a �x > 0 (NOT depending on n), such that:

x, y 2 D , |y � x|  �x ) |fn(y)� fn(x)|  ✏.

Claim: The limit function has the same continuity behavior:

x, y 2 D , |y � x|  �x ) |f(y)� f(x)|  ✏.

Proof. rn := |f(x) � fn(x)| and sn := |f(y) � fn(y)| are assumed to be convergent
to 0. The assumed continuity behavior of the {fn} and the triangle inequality imply

x, y 2 D, |y � x|  �x ) |f(y)� f(x)|  ✏ + rn + sn,
and Archimedes’ argument gets rid of rn and sn.

This theorem is su�cient to construct, at the end of the chapter, two famous continuous
examples: Cantor’s staircase and Hilbert’s square filling curve.
In the earlier chapters we met situations in which such an n-independent error control was
almost impossible to miss. But there are also interesting constructions with continuous
functions where the error control deteriorates as the index n increases, see the third example
at the end, Weierstraß’ oscillator. To express for these cases the additional assumption that
implies continuity we need a new notion, we need to make the “pointwise” convergence no
longer depend on the point of the domain, but make it “uniform”:

Definition of Uniformly Convergent Sequences of Functions.
The sequence of functions {fn} is called uniformly convergent (or closer to the assump-
tions: “uniformly Cauchy”) on D, if for every ✏ > 0 some n✏ exists, so that for ALL x 2 D
holds:

m,n � n✏ ) |fm(x)� fn(x)|  ✏.

One also formulates this as: The convergence (for n!1) of {fn(x)} is uniform in x.
Define ||f � g|| := sup{|f(x)� g(x)|;x 2 D} to be a distance between the functions f, g.

Main Theorem on Uniformly Convergent Sequences of Functions.
Assume that the continuous functions fn : (a, b) ! R are uniformly convergent and define
f(x) := limn!1 fn(x).

Claim: The limit function f is continuous.
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Proof. Since the statement is di↵erent in nature from all previous claims, we also meet
a new method of proof which I quote as “the ✏/3-argument”. It is su�cient to prove
continuity of the limit function at an arbitrary x 2 (a, b).
Let ✏ > 0 be given. Because the sequence is uniformly convergent we can choose n✏, such
that

x 2 (a, b), n � n✏ ) |f(x)� fn(x)|  ✏

3
.

Then pick any one n⇤ � n✏ and use the continuity of fn⇤ at x to find �x > 0 such that

x, y 2 (a, b), |x� y| < �x ) |fn⇤(y)� fn⇤(x)|  ✏

3
.

The triangle inequality gives the claim, f is continuous at x:

x, y 2 (a, b), |x� y| < �x ) |f(x)� f(y)| =

= |(f(x)� fn⇤(x)) + (fn⇤(x)� fn⇤(y)) + (fn⇤(y)� f(y))| 
 |f(x)� fn⇤(x)| + |fn⇤(x)� fn⇤(y)| + |fn⇤(y)� f(y)| 

 ✏

3
+

✏

3
+

✏

3
.

Remark. Observe the huge di↵erence to earlier determinations of �. In the past, � could
mostly be determined as some explicit and reasonably simple function of ✏. In this new
case the proof gives no quantitative control of �. If we decrease ✏ we will usually have to
take a larger n⇤ so that �x has to be chosen to fit a di↵erent function fn⇤ , a function that
may have a substantially worse continuity behavior. Application of this theorem gives no
quantitative control on the limit function. This fits, because the definition of continuity
also does not require any quantitative control.
Since we did get quantitative control of the limit function in the case of pointwise convergent
equicontinuous sequences, this looks like the stronger assumption.
We ask: Do such sequences in fact converge uniformly, at least on bounded closed intervals
[a, b]? They do:

Assumption. Let {fn : [a, b] 7! Rn} be a sequence of equicontinuous functions which
converge pointwise.
Claim. The fn converge in fact uniformly!
Proof. Given ✏ > 0 we find, for each x 2 [a, b] by equicontinuity, a �✏(x) > 0 such that for
all n 2 N

y 2 [a, b], |x� y| < 2�✏(x)) |fn(x)� fn(y)| < ✏/3
holds. Finitely many of the intervals (x� �✏(x), x + �✏(x)) cover [a, b]. Call their centers
x1, . . . , xk, . . . , xK . Since the fn converge pointwise we can find n✏ such that for all k =
1, . . . ,K holds:

m,n � n✏ ) |fn(xk)� fm(xk)|  ✏/3.
For each x 2 [a, b] choose an xk such that x 2 (xk � �✏(xk), xk + �✏(xk)). Then we have
m,n � n✏ ) |fn(x)�fm(x)  |fn(x)�fn(xk)|+ |fn(xk)�fm(xk)|+ |fm(xk)�fm(x)|  ✏,
proving uniform convergence.
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The two theorems on limit functions have immediate applications to integration or di↵er-
entiation of the limit function of a convergent sequence of functions.

Theorem on Integration of Limit Functions. Assume that the functions fn : [a, b]! R
are continuous and pointwise convergent, lim fn(x) =: f(x). We proved already that the
fn have antiderivatives, hence are integrable. What can be said about f?

a) If the {fn} converge uniformly, then we have for the limit function

lim
Z b

a
fn(x)dx =

Z b

a
lim fn(x)dx =

Z b

a
f(x)dx.

b) If the continuity behavior of the fn is uniform in n (the fn are equicontinuous) then

lim
Z b

a
fn(x)dx =

Z b

a
lim fn(x)dx =

Z b

a
f(x)dx.

Proof. The assumptions a) or b) allow, to use the two theorems on continuity of limit
functions. Therefore f is continuous, hence integrable.
Case a), uniform convergence, we have simple estimates for integrals:

||f � g||  ✏) |
Z b

a
f(x)dx�

Z b

a
g(x)dx| 

Z b

a
||f � g||dx = ||f � g|| · |b� a|.

Insert g = fn, n � n✏ to obtain lim
R

=
R

lim, integral and uniform limit can be inter-
changed.

Case b). We just proved that under the assumptions b) the pointwise convergence is in
fact uniform on [a, b] and the statement follows from part a).

Theorem on Di↵erentiation of limit functions of convergent function sequences.
Let fn : [a, b]! R be continuously di↵erentiable (i. e. f 0n is continuous). Assume that the se-
quences {fn(a)} and {f 0n(x)} converge for all x 2 [a, b]. Put lim fn(a) =: f(a), lim f 0n(x) =:
g(x). These assumptions are not su�cient to guarantee di↵erentiability of a limit function
f of the sequence {fn} and to prove f 0 = g.
Assume in addition that the sequence of the derivatives {f 0n} satisfies a) or b) in the
previous theorem on integration of convergent sequences.
Claim: fn converges to a di↵erentiable limit function f and one can interchange di↵erenti-
ation and limit:

f 0(x) =
⇣

lim
n!1

fn(x)
⌘0

= lim
n!1

(f 0n(x)) = g(x).

Proof. Since f 0n has the antiderivative fn, we have
R x

a f 0n(t)dt = fn(x)� fn(a).
Since the integrals on the left and {fn(a)} converge as n ! 1, we conclude first that
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{fn(x)} converges. Moreover, the left side converges to an antiderivative G of g:
G(x) :=

R x
a g(t)dt = limn!1

R x
a f 0n(t)dt = f(x)� f(a).

Finally, f(x) = f(a) + G(x) shows f 0(x) = G0(x) = g(x) and finishes the proof.

Remark: The arguments presented above to deal with limits of continuous functions sur-
vive many generalizations. They did not change much during the last 100 years and may
have reached their final form. I expect that readers can generalize these arguments to
handle limits of continuous curves cn : I ! Rd. Generalizations to maps Fn : Rm ! Rd

do not need much additional thought either. – By contrast, it is not obvious how to define
di↵erentiability of such maps F : Rm ! Rd. It needs even more thought to invert dif-
ferentiation; attempts to define antiderivatives meet new phenomena that do not exist for
1-dimensional functions. Before dealing with higher dimensional di↵erentiation it is there-
fore advantageous to have experience with continuity arguments. Therefore it is usually
taken as natural to treat continuity before di↵erentiation also for 1-dimensional functions.
I have changed this order to be able to start from the knowledge the students already have.
Moreover we can now, immediately after introducing continuity, construct very surprising
continuous functions. In the usual order of things these functions are widely separated from
the definition of continuity, because di↵erentiability is treated after continuity, but before
limits of sequences of functions.
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Examples of Continuous Functions
The intuitive aspect of functions, that what we imagine as their normal behavior, is of
course strongly influenced by the functions we know best. The explicitly computable Ra-
tional Functions will be the first candidates for many people. They create too harmless
a picture of the typical behavior of continuous functions. I will therefore present three
examples, which, to an intuition educated only by rational functions, have a very unusual
behavior. They are sometimes dismissed as exotic examples. However, if one adds to any of
these strange functions for example a rational function, then the behavior called “strange”
persists. Therefore we need to view it as the normal behavior of continuous functions. To
have an adequate intuition of the basic objects in a field is important because part of the
mathematical education consists in getting used to drastically abbreviated arguments that
still lead to correct conclusions.
The first example is the

Cantor Staircase. Recall that a di↵erentiable function with vanishing derivative, f 0 = 0,
is necessarily constant. A plausible attempt to weaken the assumptions of this important
result is refuted by the Cantor Staircase:
This functions is continuous and monotone increasing from 0 to 1 – while its derivative
exists and is zero “almost everywhere” (see below)!
The function is constructed by piecewise linear (hence continuous) monotone approxima-
tions fk : [0, 1] ! [0, 1]. As k increases the fk get constant on more and more subintervals
of [0, 1] and already coincide with the limit function on these constancy intervals.
The first piecewise linear function is:

f1(x) :=

8>>>>><
>>>>>:

3
2
· x for 0  x  1

3
1
2

for
1
3
 x  2

3
3
2
· x� 1

2
for

2
3
 x  1

The further functions fk are recursively defined. To get fk+1 from fk, scale its graph
horizontally by one third and vertically by one half; two of these decreased copies define
fk+1 on the left and right third of [0, 1], in the middle third fk+1 is constant = 1/2. With
formulas:

fk+1(x) :=

8>>>>><
>>>>>:

1
2
· fk(3x) for 0  x  1

3
1
2

for
1
3
 x  2

3
1
2
· (1 + fk(3x� 2)) for

2
3
 x  1
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Two approximations of the monotone continuous Cantor staircase, f 0 = 0 almost everywhere.
The continuity of these approximations is uniform (equicontinuous) in n:

x, y 2 [0, 1], |x� y| < 3�n ) |fk(x)� fk(y)| < 2�n

The approximations converge uniformly in x (geometrically dominated):
|fk(x)� fk+1(x)|  1

3 · 2�(k+1).

The function fk is constant on (2k � 1) disjoint subintervals having there increasing values
j · 2�k, (j = 1, . . . , 2k � 1). I call these intervals “plateau intervals”. At the boundary and
between these plateau intervals we have 2k intervals of length 3�k on which fk increases
from one plateau value to the next with slope (3/2)k. I call these intervals “ladder intervals”.
The recursive definition achieves, that fk+1 and fk agree on the plateau intervals of fk.
Each ladder interval of fk is subdivided into three subintervals. Each middle third becomes
a plateau interval of fk+1 with value in the middle between adjacent plateau values. The
other subintervals are the 2k+1 ladder intervals of fk+1; the slope of fk+1 is 3/2-times as
large as the slopes of fk. In particular (as claimed above):

x 2 [0, 1] ) |fk+1(x)� fk(x)|  1
3 · 2�(k+1).

x, y 2 [0, 1], |x� y| < 3�n ) |fk(x)� fk(y)| < 2�n

The sequence {fk} of continuous functions is uniformly (in x) geometrically dominated,
thus they converge to a continuous limit function. (Since the approximations are also
equicontinuous (error control is uniform in k) we have a second proof of the continuity of
the limit function.) This limit function agrees with fk on all open plateau intervals of fk. It
is therefore di↵erentiable there with derivative 0. All other points lie in 2k intervals (ladder
intervals of fk) of total length (2/3)k, which converges to 0. This is summarized in the
formuation: The Cantor staircase is “almost everywhere” di↵erentiable with derivative 0.
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Example 2: The Weierstraß Oscillator is a continuous but nowhere di↵erentiable
function. As before it is constructed from uniformly geometrically dominated functions.
Building block is the saw-tooth function (abbreviation: floor(x) resp. ceil(x) are those
integers that are nearest to x from below, resp. from above):
sawtooth(x) := min(x� floor (x), ceil (x)� x) = distance(x, Z).

fn(x) :=
nX

k=1

2�k · sawtooth(4k · x).

Clearly we have for all x: |fn(x)� fn+1(x)|  2�(n+1),
i.e. the sequence {fn} is a uniformly convergent sequence of continuous functions. There-
fore, it has a continuous limit function W (x) := lim fn(x). We call it Weierstraß oscillator
(note that in this case we do not have equicontinuous approximations). We need to argue,
why W is at no point di↵erentiable. Note first that at all rational points with denominator
4�n we can compute the value of the limit function from its n-th approximation, hence:

x := j · 4�n, �x = 0.5 · 4�n ) sawtooth(4nx) = 0, fn�1(x) = fn(x) = . . . = W (x)

fn(x + �x) = fn+1(x + �x) = . . . = W (x + �x)

W (x + �x) �W (x) + 2�(n+1)

W (x + �x)�W (x)
�x

� 2n

Each number with denominator 4�n can be written with denominator 4�N for all N � n.
Therefore we have from all points j · 4�n secants with slope � 2N over intervals of length
0.5 · 4�N , so that at these points no limit limN!1 of the secant slopes exists.
Finally, let x̃ 2 (j · 4�n, j · 4�n + 0.5 · 4�n) = (x0, x1). Then we have
W (x1)�W (x0) � 2�(n+1), hence max(|W (x̃)�W (x0)|, |W (x̃)�W (x1)|) � 0.5 · 2�(n+1)

and max(x̃ � x1, x2 � x̃)  2�2n�1. This shows that we also have from x̃ secants with
absolute value of their slope � 2n. Again, a finite limit of the secant slopes starting from
(x̃, W (x̃)) cannot exist.
In addition it is possible to show that the graph of W has infinite length over every interval
of non-zero length. The popular phrase for creating an intuition of a continuous function
W : “one can draw the graph of W with a pen without lifting the pen” does not make sense
for the Weierstraß oscillator, because one needs to draw with infinite velocity in directions
that do not exist.
Estimates for the length become simpler for the slight modification

P
2�n · sawtooth(8nx).
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Weierstraß’ continuous, nowhere di↵erentiable function is limit
of the uniformly convergent sequence: W (x) =

P1
n=1 2�n · sawtooth(4nx).

Example 3: Hilbert’s Square-filling Curve. Graphs of continuous functions are
“curves” which have a 1-1 projection to the x-axis. Typical continuous curves are more
complicated: Hilbert’s square filling curve passes through all points of the unit square.
Again, we construct this curve as limit of uniformly convergent approximations. All one
needs to understand is, how to go from one approximation to the next.
Let c1 : [0, 1] ! [0, 1] ⇥ [0, 1] be a continuous curve with c1(0) = (0, 0), c1(1) = (1, 0) (it
joins the two bottom vertices of the square and lies in the square).
c̃(x) := 1

2c1(4 · x), 0  x  0.25 is a curve of half the original size, but parametrized by an
interval of one quarter the original domain. Therefore we can join four of these half-sized
curves to perform the recursive step to the next approximation c2 : [0, 1] ! [0, 1] ⇥ [0, 1].
The endpoints of the four smaller copies are
c2(0) = (0, 0), c2(0.25) = (0, 0.5), c2(0.5) = (0.5, 0.5), c2(0.75) = (1, 0.5), c2(1) = (1, 0),
and, they lie each in one of the following sub-squares:
[0, 0.5] ⇥ [0, 0.5], [0, 0.5] ⇥ [0.5, 1], [0.5, 1] ⇥ [0.5, 1], [0.5, 1] ⇥ [0, 0.5]. The curve c2 again
joins the two bottom vertices of the unit square (see figures).
We have: if each point of the unit square has a distance  a to the image of c1, then each
point of the four sub-squares has a distance  1

2 · a from the corresponding subarc of c2. It
is also clear that:

|c3(s)� c2(s)|  1
2 · |c2(s)� c1(s)|.
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This shows that the iteratively defined sequence {ck} is uniformly geometrically dominated,
and therefore converges to a continuous limit curve. Furthermore, each point P of the
unit square is limit of the sequence Pk of the points that are closest to P on ck. Therefore
P is on the limit curve and the whole unit square is filled by the image of the limit curve.
– Pictures of the approximating curves are a bit confusing, because with each iteration the
number of double points increases. Hilbert has therefore modified the construction so that
all approximations are injectiv, see the following curves made of segments parallel to the
axes. – The double points are simple from another point of view: They are already points
on the limit curve and all points on the limit curve are limits of double points.

Hilbert’s square filling curve. Hilbert’s iteration of some arbitrary curve,
which joins (0, 0) and (1, 0), consists of four half-sized copies

which are put together along the dashed iteration guide.
The procedure is repeated with the iterated curve.
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Hilbert’s injective approximations join the midpoints of the segments
of the dotted Hilbert-iterations of the initial curve x! min(x, 1� x).

Looking back at these examples, note that all three were made with uniformly geometrically
dominated approximations. We used this fundamental tool before and we will meet it again
when we come to ordinary di↵erential equations.
However, since in each case the step from one approximation to the next was rather simple,
we should expect that these examples are still rather mild cases of continuity and our
intuition of continuity is still in its infancy.
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