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Abstract

We compare two statements of the refined local Langlands correspon-
dence for connected reductive groups defined over a p-adic field – one in-
volving Kottwitz’s set B(G) of isocrystals with additional structure, and
one involving the cohomology set H1(u → W,Z → G) of [Kal16b]. We
show that if either statement is valid for all connected reductive groups,
then so is the other. We also discuss how the second statement depends on
the choice of element of H1(u → W,Z → G).

CONTENTS

1 Introduction 2

2 Notation 4

3 Comparison of the cohomology of two Galois gerbes 5

3.1 Review of B(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Review of H1(u→W,Z → G) . . . . . . . . . . . . . . . . . . . . 6

3.3 A comparison map B(G)bas → H1(u→W,Z(G)→ G) . . . . . 8

4 The relationship between LLCrig and LLCiso 11

4.1 Review of LLCrig and LLCiso . . . . . . . . . . . . . . . . . . . . . 12

4.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Reducing LLCrig to the case of groups with connected center 16

5.1 z-embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1.1 Definition and construction . . . . . . . . . . . . . . . . . 17

5.1.2 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1.3 Endoscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Comparison of LLCrig(ψ, xrig) and LLCrig(ψz, xrig) . . . . . . . . 30

6 Changing the rigidifying datum in LLCrig 31

6.1 Description of H1(W,Z) . . . . . . . . . . . . . . . . . . . . . . . 32

6.2 From isomorphism to duality . . . . . . . . . . . . . . . . . . . . 35

6.3 Switching between normalizations . . . . . . . . . . . . . . . . . 36

This research is supported in part by NSF grant DMS-1161489.

1



1 INTRODUCTION

The basic form of the local Langlands conjecture predicts a correspondence
between Langlands parameters ϕ for a given connected reductive group G′

defined over a local field F and finite sets Πϕ(G′) of irreducible admissible
representations of the topological group G′(F ). Refinements of this conjecture
give a description of the elements of Πϕ. When the group G′ is not quasi-split,
these refinements involve the choice of realization of G′ as an inner form of a
quasi-split group G, as well as further objects of Galois-cohomological nature.
More precisely, one fixes a quasi-split group G and an inner twist ψ : G → G′.
Then σ 7→ ψ−1σ(ψ) is a 1-cocycle of the absolute Galois group of F with values
in the adjoint group of G. To state the refined local Langlands conjecture, one
needs to fix a lift of this 1-cocycle to a 1-cocycle of a certain modification of the
Galois group of F with values in G, rather than its adjoint quotient.

One statement of the refined local Langlands conjecture uses Kottwitz’s set
B(G) of isocrystals with G-structure [Kot85], [Kot97], [Kot], and in particu-
lar the subset B(G)bas of basic isocrystals, to provide a lift [xiso] ∈ B(G)bas of
ψ−1σ(ψ). This statement will be referred to as LLCiso(ψ, xiso) in this paper (for
the purposes of the introduction, we will be vague about the difference be-
tween the 1-cocycle xiso and its cohomology class [xiso]). We will denote by
LLCiso the totality of all statements LLCiso(ψ, [xiso]) for all possible quasi-split
groups G, inner twists ψ : G→ G′, and lifts [xiso] ∈ B(G)bas of ψ−1σ(ψ).

The statement LLCiso(ψ, xiso) is formulated in [Kal14, §2.4] for discrete param-
eters (see also [Rap95, §5]), and in [KMSW, §1.6.1] for tempered parameters
of unitary groups. A general formulation can be found in [Kal16a, §2.5]. The
set B(G) occurs naturally in the study of Shimura varieties and Rapoport-Zink
spaces. A conjecture of Kottwitz [Rap95, Conjecture 5.1] describes the contri-
bution of cuspidal L-packets to the cohomology of Rapoport-Zink spaces in
terms of the parameterization given by LLCiso. This makes LLCiso well suited
for the study of these geometric objects and conversely hints at the possibility
of finding a proof of LLCiso by studying Rapoport-Zink spaces and their gener-
alizations. A conjectural program for this was recently announced by Fargues
[Far], building on his description of vector bundles on the Fargues-Fontaine
curve [FF] and ideas of Scholze. At the same time, this statement of the local
Langlands conjecture has the disadvantage of not being available for all con-
nected reductive groups, because the 1-cocycle ψ−1σ(ψ) may fail to lift to an
element of B(G)bas. This is not a problem when the center of G is connected,
but it is a significant problem when G is simply connected, for example. A
further disadvantage of LLCiso is that it is unclear how it relates to Arthur’s
work on the stabilization of the trace formula for groups which do not satisfy
the Hasse principle.

Another statement of the refined local Langlands conjecture uses the cohomo-
logy set H1(u → W,Z(G) → G) defined in [Kal16b] to provide a lift [xrig] of
ψ−1σ(ψ). This statement, which we will call LLCrig(ψ, xrig) in this paper, is
available for all connected reductive groups (without assumption on the cen-
ter). There is an explicit connection between it and the stabilization of the
Arthur-Selberg trace formula [Kal]. It has been furthermore shown [Kal16b,
§5.6] that when the ground field is R this statement is true and that the set
H1(u → W,Z(G) → G) is in canonical bijection with the set of equivalence
classes of strong real forms ofG due to Adams-Barbasch-Vogan [ABV92]. How-
ever, it is not clear how LLCrig relates to the cohomology of Rapoport-Zink
spaces.
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Our main goal in this paper is to compare the statements LLCiso and LLCrig,
thereby building a bridge between the stable Arthur-Selberg trace formula and
the cohomology of Rapoport-Zink spaces, and in particular Fargues’ conjec-
tural program. We expect that this bridge will be useful in both ways. In
one direction, it will facilitate applications of the trace formula to the study of
Shimura varieties and their local analogs. In the other direction, it will transfer
potential results of Fargues’ program to the setting of the trace formula and
also to the setting of arbitrary connected reductive groups without assumption
on their center.

The comparison of the two statements is based on a comparison of the coho-
mology sets B(G)bas and H1(u → W,Z(G) → G). The set B(G) was initially
defined as a set of Frobenius-twisted conjugacy classes in the group G [Kot85]
and was later reinterpreted as the cohomology of a certain Galois gerbe with
values inG, initially in the case of tori in [Kot97, §8], and then later in general in
[Kot]. The set H1(u→W,Z(G)→ G) was defined directly using Galois gerbes
[Kal16b, §3]. The two Galois gerbes underlying B(G) and H1(u→ W,Z(G)→
G) are of quite different nature. The one forB(G) is bound by a split pro-torus,
while the one for H1(u → W,Z(G) → G) is bound by a pro-finite multiplica-
tive group which is far from being split and whose character module encodes
the arithmetic of the ground field F . For this reason, we did not initially ex-
pect that there can be any reasonable comparison between the two. However,
it turns out that a certain universal property of the pro-finite multiplicative
group that binds the gerbe of [Kal16b] is responsible for the existence of an
essentially unique homomorphism between the two gerbes. This homomor-
phism leads in turn to a comparison map B(G)bas → H1(u → W,Z(G) → G).
The comparison map is in general neither injective, nor surjective. For exam-
ple we have B(Gm)bas = Z and H1(u → W,Gm → Gm) = 0, while for a
1-dimensional anisotropic torus S we have B(S)bas = H1(Γ, S) = Z/2Z and
H1(u → W,S → S) = Q/2Z. In general, there is a simple description of the
comparison map B(G)bas → H1(u → W,Z(G) → G) in terms of generalized
Tate-Nakayama duality. This description plays a central role in the comparison
between LLCiso and LLCrig.

We will now describe the structure of this paper. The reader who wishes a more
general introduction to the different statements of the refined local Langlands
conjecture and the problems presented by non-quasi-split groups might find
the survey [Kal16a] useful. The comparison of the cohomology sets B(G)bas
and H1(u → W,Z(G) → G) is done in Section 3. In Section 4 we briefly recall
the statements LLCiso(ψ, xiso) and LLCrig(ψ, xrig) for a fixed inner twist ψ : G→
G′ of a quasi-split connected reductive group G. They depend on the choice of
a lifts [xiso] ∈ B(G)bas and [xrig] ∈ H1(u → W,Z(G) → G) of the class of
ψ−1σ(ψ). The lift [xiso] will not always exist, but in Section 4 we make the
assumption that it does. We then give a comparison between LLCiso(ψ, xiso)
and LLCrig(ψ, xrig). The backbone of this comparison is the map B(G)bas →
H1(u → W,Z(G) → G) studied in 3. The comparison is given by an explicit
formula and can be calculated explicitly for any given example. A consequence
of this comparison is that the statements LLCiso(ψ, xiso) and LLCrig(ψ, xrig) are
equivalent.

In particular, once LLCrig(ψ, xrig) is proved for all ψ and all [xrig], it implies
LLCiso(ψ, xiso) for all ψ and all xiso. This establishes the implication LLCrig ⇒
LLCiso. We also want to obtain the converse implication, but the fact that
ψ−1σ(ψ) doesn’t always lift toB(G)bas necessitates further work, which is done
in Sections 5 and 6.
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In Section 5 we deal with the problem that the comparison of Section 4 was
done under the assumption that ψ−1σ(ψ) lifts to B(G)bas. This assumption
cannot be removed and the way we deal with it is necessarily roundabout.
Namely, given a connected reductive group G we introduce a procedure that
embeds G into a connected reductive group Gz with connected center and
comparable representation theory and endoscopy. The idea for this procedure
is due to Kottwitz and was communicated verbally to the author some years
ago. This procedure, which we call z-embedding, is formalized and general-
ized in Subsection 5.1, where we also study its implications to representations,
endoscopy, and inner twistings. In particular, to any inner twist ψ : G → G′

there is an associated inner twist ψz : Gz → G′z of z-embeddings. The natural
map H1(u → W,Z(G) → G) → H1(u → W,Z(Gz) → Gz) is bijective. Let
[xrig] ∈ H1(u→ W,Z(G)→ G) lift the class of ψ−1σ(ψ) = ψ−1

z σ(ψz). We show
that the statements LLCrig(ψ, xrig) and LLCrig(ψz, xrig) are equivalent.

A consequence of the results of Sections 4 and 5 is the following. Let [xiso] ∈
B(Gz)bas be a lift of ψ−1σ(ψ) = ψ−1

z σ(ψz). It exists since Z(Gz) is connected.
Let [xrig] ∈ H1(u → W,Z(Gz) → Gz) = H1(u → W,Z(G) → G) be its image
under the comparison map B(Gz)bas → H1(u → W,Z(Gz) → Gz). Then the
statements LLCiso(ψz, xiso) and LLCrig(ψ, xrig) are equivalent. In other words,
once the statement LLCiso(ψ̃, x̃iso) is proved for every inner twist ψ̃ : G̃ → G̃′

of a quasi-split connected reductive group G̃ with connected center, and some
[xiso] ∈ B(G̃)bas lifting ψ−1σ(ψ), then this implies the validity of the statement
LLCrig(ψ, xrig) for every inner twist ψ : G → G′ of a quasi-split connected re-
ductive group G, without assumption on the center, and some [xrig] ∈ H1(u→
W,Z(G)→ G) lifting ψ−1σ(ψ).

In order to complete the proof of the implication LLCiso ⇒ LLCrig, we must
now show that if [x1,rig], [x2,rig] ∈ H1(u → W,Z(G) → G) both lift the class of
ψ−1σ(ψ), then the statements LLCrig(ψ, x1,rig) and LLCrig(ψ, x2,rig) are equiv-
alent. This is done in Section 6. We give an explicit relationship between
LLCrig(ψ, x1,rig) and LLCrig(ψ, x2,rig). The experience of [KMSW] has shown
that such a relationship is of interest in its own right. For example, it would be
useful when one proves LLCrig(ψ, xrig) using the trace formula and the local-
global methods of [Kal].

2 NOTATION

Throughout this paper, F will denote a p-adic field, i.e. a finite extension of the
field Qp of p-adic numbers. We fix an algebraic closure F of F and let Γ denote
the absolute Galois group of F/F and WF the absolute Weil group. We will
write LF for the Langlands group of F , which we can interpret either as the
product WF × SL2(C) or WF × SU2(R).

Given a group scheme G defined over F we will denote by G × E its base
change to an extension E of F . Given an abelian group G, we will write G[n]
for the subroup of n-torsion points, and G[tor] for the torsion subgroup of G.
Given a topological group G we will write GD for the group of continuous
homomorphisms G→ C×.
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3 COMPARISON OF THE COHOMOLOGY OF TWO GALOIS GERBES

The purpose of this section is to construct for any affine algebraic group G a
comparison map B(G)bas → H1(u → W,Z(G) → G), where B(G)bas is the
set of isomorphism classes of basic isocrystals with G-structure [Kot85], and
H1(u → W,Z(G) → G) is a variant of the cohomology set introduced in
[Kal16b]. We will first review each of these sets from a point of view that is
slightly different than their original definition.

3.1 Review of B(G)

Let G be an affine algebraic group. In [Kot85], Kottwitz studies the set B(G)
of Frobenius-twisted conjugacy classes of elements of G(L), where L is the
completion of the maximal unramified extension of F . This set can also be
described as the set of continuous cohomology classes of WF with values in
G(L) [Kot97, §1.4], or as the set of continuous cohomology classes of a certain
Galois gerbe with values in G(F ) [Kot97, §8], [Kot].

In this subsection we will review the set B(G), as well as a certain subset of it
called B(G)bas. We will give a slightly different construction, again in terms of
Galois gerbes, but closer in spirit to the point of view of [Kal16b].

We begin by recalling the pro-torus D = DF defined in [Kot]. Consider the
contravariant functor Φ from the category of all finite Galois extensions of F
contained in F with morphisms given by F -algebra homomorphisms, to the
category of affine group schemes over F , defined to send every extension E/F
to the split one-dimensional torus Gm and every homomorphismE → K to the
[K : E]-power map. The pro-torus D is defined as the limit of Φ. We claim that
the group H2(Γ,D(F )) has a distinguished element. To construct it, we will
introduce a variation of the construction of D that will be useful later as well.
Consider the functor Φ′ between the same categories as Φ, but now defined by
Φ′(E/F ) = µ[E:F ] and Φ′(E → K) = ( )[K:E] : µ[K:F ] → µ[E:F ]. Let µ be the
limit of Φ′. If we identifyH2(Γ, µn(F )) = Z/nZ via local class field theory, then
according to [NSW08, Corollary 2.7.6], we have

H2(Γ, µ(F )) = lim←−
n

H2(Γ, µn(F )) = Ẑ.

We have the obvious map µ→ D and the image of 1 ∈ Ẑ under this map is the
distinguished element of H2(Γ,D(F )).

Let
1→ D(F )→ E → Γ→ 1 (3.1)

be an extension corresponding to the distinguished class. The topological group
E acts on the discrete group G(F ) via the map E → Γ and we consider the
cohomology set H1(E , G(F )). The restriction of an element of this set to D
is a Γ-invariant G(F )-conjugacy class of continuous group homomorphisms
D(F ) → G(F ). The set B(G) is defined to be the subset of H1(E , G(F )) con-
sisting of those classes whose restriction to D is given by algebraic homo-
morphisms D → G. The smaller set B(G)bas consists of those elements of
B(G) for which the restriction to D(F ) consists of homomorphisms taking im-
age in Z(G). Then the G(F )-conjugacy class of these homomorphisms con-
sists of a single element, and this element if Γ-fixed, i.e. it is an element of
HomF (D, Z(G)).
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We note that, while this construction ofB(G) andB(G)bas used a specific choice
of the extension E within the isomorphism class given by the distinguished
element of H2(Γ,D(F )), the result is in fact independent of this choice up to
a unique isomorphism. It is clear that if E ′ is another extension in the same
isomorphism class and if we fix an isomorphism f : E ′ → E , then composing
1-cocycles with f provides a bijection H1(E , G(F )) → H1(E ′, G(F )) and this
bijection identifies the corresponding versions of B(G) and B(G)bas. We claim
now that this bijection does not depend on the choice of f . A second such
isomorphism has the form f ′(e) = f(e) · x(σe), where x ∈ Z1(Γ,D(F )) and
σe ∈ Γ is the image of e. For any z ∈ Z1(E , G(F )) we have z(f ′(e)) = z(f(e) ·
x(σe)) = z(f(e)) · z(x(σe)). The restriction z|D factors through the projection
D → Φ(E/F ) = Gm for a suitable finite extension E/F . By Hilbert 90 the
composition of x with the projection D → Gm is a co-boundary, and hence
e 7→ z(x(σe)) is itself a co-boundary.

Now let G = S be a torus. Then we trivially have B(S) = B(S)bas. The restric-
tion of an element of B(S) to the protorus D is an element of HomF (D, S) =
Hom(X∗(S),Q)Γ = [X∗(S)⊗Q]Γ. Thus restriction provides a map

B(S)→ [X∗(S)⊗Q]Γ (3.2)

which is sometimes called the Newton map. The kernel of the Newton map is
equal to the image of the inflation H1(Γ, S) → B(S). Furthermore, Kottwitz
constructs a functorial isomorphism

X∗(S)Γ → B(S). (3.3)

The composition of this isomorphism with the Newton map is given by

N� : X∗(S)Γ → [X∗(S)⊗Q]Γ, y 7→ [E : F ]−1NE/F (y),

where E/F is any finite Galois extension that splits S. Altogether we obtain
the commutative diagram with exact rows

0 // H1(Γ, S) // B(S) // HomF (D, S)Γ

0 // X∗(S)Γ[tor] //

TN

OO

X∗(S)Γ
N� //

(3.3)

OO

[X∗(S)⊗Q]Γ

(3.4)

where TN is the Tate-Nakayama isomorphism. The isomorphism (3.3) can be
phrased as a duality statement. If Ŝ = X∗(S) ⊗ C× denotes the complex torus
dual to S, then X∗(ŜΓ) = X∗(S)Γ and thus (3.3) becomes the duality pairing

ŜΓ ⊗B(S)→ C×. (3.5)

This duality in turn generalizes to the case where G is a connected reductive
group. In that case, we have the duality

Z(Ĝ)Γ ⊗B(G)bas → C×. (3.6)

3.2 Review of H1(u→W,Z → G)

We will now give a short review of the cohomology set H1(u → W,Z →
G) introduced in [Kal16b] for an affine algebraic group G and a multiplica-
tive finite central subgroup Z, both defined over F . Consider the functor Φ′′
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from the category of finite Galois extensions of F contained in F to the cat-
egory of affine group schemes over F that sends the object E/F to uE/F =
ResE/Fµ[E:F ]/µ[E:F ] and the morphism E → K to the map uK/F → uE/F
that assigns to f ∈ uK/F the function σ 7→

∏
τ 7→σ f(τ)

m
n . Here µ[E:F ] is the

group scheme of roots of unity of order [E : F ], which we can think of as be-
ing defined either over F or over E. Moreover, we are using the interpretation
ResE/Fµ[E:F ](F ) = Maps(ΓE/F , µ[E:F ](F )), and we are seeing µ[E:F ] as em-
bedded diagonally into ResE/Fµ[E:F ]. Let u be the limit of this functor. It is a
multiplicative pro-finite algebraic group. According to [Kal16b, Theorem 3.1]
we have H1(Γ, u) = 0 and H2(Γ, u) = Ẑ. Let

1→ u(F )→W → Γ→ 1 (3.7)

be an extension corresponding to the element −1 ∈ Ẑ = H2(Γ, u). As in the
previous subsection we can consider the cohomology set H1(W,G(F )) and we
define H1(u→W,Z → G) to be the subset of those cohomology classes whose
restriction to u(F ) takes image in Z. Then this restriction is the composition
of the natural projection u(F ) → uE/F (F ) for some E/F with a group homo-
morphism uE/F (F ) → Z(F ). This composition is automatically an element of
HomF (u, Z). The set H1(u→W,Z → G) is independent of the choice of W up
to a unique isomorphism due to the vanishing of H1(Γ, u).

For the purposes of comparing with B(G)bas we define for any multiplicative
central subgroup Z ⊂ G defined over F (but not necessarily finite)

H1(u→W,Z → G) = lim−→
Z′
H1(u→W,Z ′ → G) (3.8)

where Z ′ runs over all finite subgroups of Z defined over F .

Let S = G be a torus and Z ⊂ S a finite subgroup. Restricting an element
of H1(u → W,Z → S) to the group u provides an element of Hom(u, Z)Γ =
Hom(X∗(Z),Q/Z). There is a functorial isomorphism

Ȳ

IY
[tor]→ H1(u→W,Z → S), (3.9)

where Ȳ = X∗(S/Z), Y = X∗(S), and IY = 〈σ(y) − y|y ∈ Y, σ ∈ Γ〉. Taking
the limit over all finite subgroups Z of S we obtain a restriction map H1(u →
W,S → S)→ Hom(u, S)Γ = Hom(X∗(S),Q/Z) and a functorial isomorphism
(Y ⊗ Q/IY )[tor] → H1(u → W,S → S). Altogether we obtain a commutative
diagram with exact rows

0 // H1(Γ, S) // H1(u→W,S → S) // HomF (u, S)

0 // Y
IY [tor]

TN

OO

// Y⊗Q
IY [tor]

(3.9)

OO

// Y⊗Q
Y

(3.10)

Again we can phrase the isomorphism (3.9) as a duality pairing. Indeed, let̂̄S → Ŝ be the universal cover of Ŝ, that is, the projective limit of all tori Ŝ′ that
are finite covers of S. Let [̂̄S]+ be the preimage in ̂̄S of ŜΓ, which can also be
identified with the projective limit of [Ŝ′]+, the latter being the preimage in Ŝ′

of ŜΓ. Moreover, let [̂̄S]+,◦ be the projective limit of [Ŝ′]+,◦, and define [̂̄S]Γ,◦

analogously. We have the chain of subgroups [̂̄S]+,◦ = [̂̄S]Γ,◦ ⊂ [̂̄S]Γ ⊂ [̂̄S]+
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and the equalities π0([̂̄S]+) = lim←−π0([Ŝ′]+), X∗(̂̄S) = Y ⊗ Q, and Y⊗Q
IY [tor] =

X∗(π0([̂̄S]+)). The isomorphism (3.9) becomes the duality pairing

π0([̂̄S]+)⊗H1(u→W,S → S)→ C×. (3.11)

This duality pairing again generalizes to the case of a connected reductive
group G. Let Ĝ be the complex Langlands dual group of G and let ̂̄G be the
projective limit of all central isogenies with target Ĝ. Defining Z( ̂̄G)+ to be
the preimage of Z(Ĝ)Γ we again obtain the tower of subgroups Z( ̂̄G)+,◦ =

Z( ̂̄G)Γ,◦ ⊂ Z( ̂̄G)Γ ⊂ Z( ̂̄G)+. We have the duality pairing

π0(Z( ̂̄G)+)⊗H1(u→W,Z(G)→ G)→ C×. (3.12)

3.3 A comparison map B(G)bas → H1(u→W,Z(G)→ G)

According to [Kal16b, Proposition 3.2] there exists a unique φn ∈ HomF (u, µn)

with the property that the image of −1 ∈ Ẑ = H2(Γ, u) under φn is equal to
1 ∈ Z/nZ = H2(Γ, µn). For two natural numbers n|m, the composition of φm
with ( )

m
n : µm → µn is equal to φn. Thus we obtain φ ∈ HomF (u, µ), which

sends −1 ∈ Ẑ = H2(Γ, u) to 1 ∈ Ẑ = H2(Γ, µ). We compose φ with the obvious
map µ → D and denote the result again by φ ∈ HomF (u,D). We can then
realize the extension (3.1) as the push-out of the extension (3.7) along φ, i.e.

1 // u //

φ

��

W //

��

Γ // 1

1 // D // E // Γ // 1

(3.13)

Composing 1-cocycles with the homomorphism W → E provides a map

B(G)bas → H1(u→W,Z(G)→ G). (3.14)

Note that when G is a torus, this map is a homomorphism of abelian groups
and is moreover functorial. For general G, the map is a map of sets. It does not
make sense to ask for its functoriality, because the assignments G 7→ B(G)bas
and G 7→ H1(u→W,Z(G)→ G) are not functors.

We will now discuss how the map (3.14) translates under the isomorphisms
(3.3) and (3.9), as well as under the dualities (3.6) and (3.12).

Lemma 3.1. LetE/F be a finite Galois extension and n a divisor of [E : F ]. Consider
the map

ResE/Fµ[E:F ]

−NE/F−→ µ[E:F ]
( )[E:F ]/n

−→ µn.

This map descends to uE/F and its composition with the natural projection u→ uE/F
equals φn.

Proof. We have H2(Γ,ResE/Fµ[E:F ]) = H2(ΓE , µ[E:F ]) = Z/[E : F ]Z. The
image of −1 ∈ Ẑ = H2(Γ, u) in H2(Γ, uE/F ) is equal to the image of −1 ∈
Z/[E : F ]Z = H2(Γ,ResE/Fµ[E:F ]) there. The lemma will be proved once we
show that the map in the statement of the lemma maps −1 ∈ Z/[E : F ]Z to
1 ∈ Z/nZ = H2(Γ, µn).
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The composition of the isomorphism H2(ΓE , µ[E:F ]) ∼= H2(Γ,ResE/Fµ[E:F ])
with NE/F is equal to the corestriction map. The composition

Z/[E : F ]Z = H2(ΓE , µ[E:F ])
cor−→ H2(Γ, µ[E:F ]) = Z/[E : F ]Z,

where we have used the local reciprocity maps for the fields E and F , respec-
tively, is equal to the identity. This completes the proof.

Proposition 3.2. Let S be a torus. The composition of (3.14) for G = S with the
isomorphisms (3.3) and (3.9) is given by

Y

IY
→ Y ⊗Q

IY
[tor], y 7→ y −N�(y).

Proof. Let us denote by α the composition we are studying, and by β the dis-
played map. Both of these are functorial homomorphisms and our goal is to
show that they are equal. Taking a look at diagrams (3.4) and (3.10) we note
that both α and β identify the copies of Y

IY [tor] embedded into their source
and target: For α this follows from the fact that (3.14) identifies the copies of
H1(Γ, S) in B(S) and H1(u→W,S → S) and both (3.3) and (3.9) restrict to the
classical Tate-Nakayama isomorphism on Y

IY [tor]; for β this follows from the
fact that Y

IY [tor] = ker(NE/F : Y → Y )/IY . This leads to the diagram

0 // Y
IY [tor] // Y

IY

N� //

β

��
α

��

[Y ⊗Q]Γ

γ

��
0 // Y

IY [tor] // Y⊗Q
IY [tor] // Y⊗Q

Y

We claim that if γ is given by multiplication by −1, followed by the inclusion
[Y ⊗ Q]Γ → Y ⊗ Q, followed by the projection Y ⊗ Q → Y ⊗ Q/Y , then the
diagram commutes with both α and β. In the case of β this is obvious, because
the image of β(y) = y−N�(y) in Y ⊗Q/Y is equal to−N�(y) and thus coincides
with the image of N�(y) under γ. In the case of α we take y ∈ Y and send it
via (3.3) to an element by ∈ B(S). The restriction of by to D is the element of
Hom(D, S)Γ = [Y ⊗Q]Γ given byN�(y) according to Diagram (3.4). The image
of this element under γ is then −N�(y) ∈ Y ⊗ Q/Y . On the other hand, let
cy ∈ H1(u → W,S → S) be the image of by under (3.14). Then cy|u = φ ◦ by|D.
To describe this, we use Lemma 3.1. It tells us that the dual of φn is the map
Z/nZ → (Z/[E : F ]Z)[ΓE/F ] that sends 1 ∈ Z/nZ to − [E:F ]

n

∑
σ∈ΓE/F

[σ]. If we
identify X∗(u) = Q[Γ] and X∗(D) = Q, this means that the dual of φ is the
composition

Q→ Q→ Q/Z→ Q/Z[Γ]

of the negation, the natural projection, and the diagonal embedding. Hence
composing by|D with φ is the same as sending N�(y) under

[Y ⊗Q]Γ = Hom(X,Q)Γ → Hom(X,Q/Z[Γ])Γ =
Y ⊗Q
Y

the result of which is −N�(y).

We have thus proved the commutativity of the above diagram for both α and
β. This proves the lemma for all tori S for which Y/IY [tor] = 0. In particular,
the lemma is proved for induced tori. The general case can be easily reduced
to the case of induced tori using the functoriality of α and β. Indeed, let S be
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any torus and let E/F be a finite extension splitting S. Then Y is a finitely
generated Z[ΓE/F ]-module and we choose a free Z[ΓE/F ]-module Ỹ with a
surjection Ỹ → Y . If S̃ is the torus with X∗(S̃) = Ỹ we obtain a surjection of
tori S̃ → S. According to [Kot, Proposition 10.4] the natural mapB(S̃)→ B(S)
is surjective. This, together with the equality αS̃ = βS̃ that we have just shown
implies αS = βS .

Let now G be a connected reductive group defined over F . In order to discuss
how the comparison map (3.14) translates under the dualities (3.6) and (3.12)
we need a convenient presentation of the cover ̂̄G. For this, let Zn ⊂ Z(G) be
the preimage in Z(G) of (Z(G)/Z(Gder))[n]. Then the Zn form an exhaustive
tower of finite subgroups of Z(G). Set Gn = G/Zn, then Gn = Gad × Z(Gn)
with Z(Gn) = Z(G1)/Z(G1)[n], and Z(G1) = Z(G)/Z(Gder). Note that Z(G1),
and hence also Z(Gn), is a torus. Dually we obtain

Ĝn = Ĝsc × Ĉn

where Ĉn is the torus dual to Z(Gn). Since Z(G1) = G/Gder is the maximal
torus quotient of G, its dual Ĉ1 is the maximal normal torus in Ĝ, i.e. Z(Ĝ)◦. It
will be convenient to identify Ĉn = Ĉ1. Then the map Ĉm → Ĉn becomes the
m/n-power map on Ĉ1. We obtain

̂̄G = lim←− Ĝn = Ĝsc × Ĉ∞, Ĉ∞ = lim←− Ĉn.

Elements of Z( ̂̄G) can thus be written as tuples (a, (bn)n), where a ∈ Z(Ĝsc)

and bn ∈ Ĉ1 with b
m
n
m = bn for n|m. We make explicit the condition of (a, (bn)n)

to belong to each of the subgroups Z( ̂̄G)+,◦ = Z( ̂̄G)Γ,◦ ⊂ Z( ̂̄G)Γ ⊂ Z( ̂̄G)+ as
follows. To be in Z( ̂̄G)+, a tuple (a, (bn)n) must have a Γ-fixed image in Z(Ĝ).
This image is simply ader · b1, where ader is the image of a in Z(Ĝder). The
condition of belonging to Z( ̂̄G)Γ is a ∈ Z(Ĝsc)

Γ and bn ∈ ĈΓ
1 . The condition of

belonging to Z( ̂̄G)+,◦ = Z( ̂̄G)Γ,◦ is a = 1 and bn ∈ ĈΓ,◦
1 .

Proposition 3.3. Under the dualities (3.6) and (3.12), the comparison map (3.14) is
translated to the map

π0((Z(Gsc)× Ĉ∞)+)→ Z(Ĝ)Γ (3.15)

sending a tuple (a, (bn)n) with a ∈ Z(Gsc) and bn ∈ Ĉn to

ader · b1
NE/F (b[E:F ])

for a sufficiently large finite Galois extension E/F .

Before we give the proof, let us note that this map is well-defined. By assump-
tion, ader · b1 ∈ Z(Ĝ)Γ, and moreover NE/F (b[E:F ]) ∈ Z(Ĝ)Γ, so the image of
this map does belong to Z(Ĝ)Γ. The term NE/F (b[E:F ]) is independent of the

choice of E/F provided ΓE acts trivially on Ĉ1. Finally, if (a, (bn)n) ∈ Z( ̂̄G)+,◦,
then a = 1 and bn ∈ ĈΓ,◦

1 . Therefore NE/F (b[E:F ]) = b
[E:F ]
[E:F ] = b1, so the image

of (a, (bn)n) is indeed equal to 1.

Proof. Let S ⊂ G be an elliptic maximal torus. Then for each b ∈ B(S) the
restriction b|D takes values in Z(G), because D is a split pro-torus. It follows
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that (3.14) maps B(S) to the subgroup H1(u → W,Z(G) → S) of H1(u →
W,S → S). We can write this subgroup as the colimit

H1(u→W,Z(G)→ S) = lim−→
n

H1(u→W,Zn → S)

where Zn ⊂ Z(G) is as above. We can describe the subgroup of Y⊗Q
IY [tor] to

which H1(u → W,Z(G) → S) corresponds under the isomorphism (3.9) as
follows. The quotient Sn = S/Zn is an elliptic maximal torus of Gn and equals
Sad × Z(Gn). Thus X∗(Sn) = X∗(Sad)⊕ 1

nX∗(Z(G1)) and if we let S̄ = lim−→Sn,
then we get

Ȳ = X∗(S̄) = X∗(Sad)⊕X∗(Z(G1))⊗Q ⊂ Y ⊗Q.

Now let y ∈ Y and consider the element y −N�(y) ∈ Y ⊗ Q that is the image
of y under the map of Proposition 3.2. Since S is elliptic, we have N�(y) ∈
[X∗(S) ⊗ Q]Γ = [X∗(Z(G)) ⊗ Q]Γ. Under the natural pairing between X∗(S)
and X∗(S) the element N�(y) thus annihilates X∗(Sad)⊗Q, which implies that
its image in X∗(Sad)⊗Q is zero. It follows that in the decomposition Y ⊗Q =
X∗(Sad)⊗Q⊕X∗(Z(G))⊗Q the element y−N�(y) ∈ Y ⊗Q has the coordinates
(y, y −N�(y)). The map

Y → Ȳ , y 7→ (y, y −N�(y))

dualizes to the map

Ŝsc × Ĉ∞ → Ŝ, (a, (bn)) 7→ ader · b1
NE/F (b[E:F ])

.

To complete the proof, we use [Kot85, Proposition 5.3], which says that the
image of B(S) in B(G) equals B(G)bas, together with the fact that the map
B(S) → B(G)bas dualizes under (3.6) to the inclusion Z(Ĝ)Γ → ŜΓ, while the
map H1(u → W,Z(G) → S) → H1(u → W,Z(G) → G) dualizes under (3.12)
to the inclusion π0(Z( ̂̄G)+)→ π0([̂̄S]+).

4 THE RELATIONSHIP BETWEEN LLCRIG AND LLCISO

Let G be a quasi-split connected reductive group defined over F . Let ψ : G →
G′ be an inner twist. In this section we are going to compare two different
statements of the refined local Langlands correspondence for G′. One is based
on Kottwitz’s cohomology set B(G) of isocrystals with G-structure and is for-
mulated in [Kal14, §2.4]; we shall refer to it as LLCiso. The other one is based
on the cohomology set H1(u → W,Z(G) → G) and is formulated in [Kal16b,
§5.4]; we will call it LLCrig.

The statement LLCiso is defined for the given inner twist ψ if and only if the
class in H1(Γ, Gad) of the 1-cocycle ψ−1σ(ψ) belongs to the image of the natu-
ral mapB(G)bas → H1(Γ, Gad). This map is surjective when Z(G) is connected,
thanks to [Kot, Proposition 10.4], and in this case LLCiso is always defined. In
this section we will not assume that Z(G) is connected, but instead we will as-
sume that the class of ψ−1σ(ψ) does lift toB(G)bas, so that LLCiso is defined and
we can compare it to LLCrig. In the case when ψ−1σ(ψ) doesn’t lift to B(G)bas,
only the statement LLCrig is defined. In the next section we will establish re-
sults which allow us to compare LLCrig for the inner twist ψ to LLCiso for a
different group, for which it is defined.
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4.1 Review of LLCrig and LLCiso

We will give here a brief review of the two formulations in order to establish
the necessary notation. The reader my wish to consult the expository note
[Kal16a] as well as the references [Kal14] and [Kal16b] for further details. The
language we will use here is slightly different than in these references. This
is done in order to emphasize the formal similarity of the two statements and
facilitate their comparison. At the same time, we hope that the slightly different
presentation given here can help to further illuminate the statements.

Let ϕ : LF → LG be a tempered Langlands parameter. Set Sϕ = Cent(ϕ, Ĝ).
The basic form of the local Langlands conjecture asserts the existence of an
L-packet Πϕ(G′) of irreducible tempered representations of G′(F ). The two
statements of the refined local Langlands conjecture we will review provide a
parameterization of Πϕ(G′) and a description of its endoscopic transfer. They
both depend on the choice of a Whittaker datum w for G as well as on a choice
of a certain 1-cocycle that lifts the 1-cocycle ψ−1σ(ψ) ∈ Z1(Γ, Gad).

We recall that an endoscopic datum for G is a tuple e = (H,H, s, ξ) consisting
of a quasi-split connected reductive group H , a split extension H of Ĥ by WF

such that the homomorphism WF → Out(Ĥ) that it induces coincides under
the canonical isomorphism Out(H) = Out(Ĥ) with the homomorphism Γ →
Out(H) given by the rational structure of H , an element s ∈ Z(Ĥ)Γ, and an
L-embedding ξ : H → LG that identifies Ĥ with Cent(ξ(s), Ĝ)◦.

Given a semi-simple element s ∈ Sϕ, the pair (s, ϕ) leads to an endoscopic
datum e as follows. Set Ĥ = Cent(s, Ĝ)◦, H = Ĥ · ϕ(WF ), and ξ = id. The
image of ϕ is now trivially contained inH.

We also recall that a z-pair for e is a tuple z = (H1, ξ1) consisting of a z-extension
H1 of H and an L-embedding ξ1 : H → LH1 that extends the embedding
Ĥ → Ĥ1 dual to the projection H1 → H . Note that if we compose ϕ with ξ1 we
obtain a tempered Langlands parameter for H1.

In what follows we will use the normalization of the transfer factor ∆′w de-
scribed in [KS, (5.5.2)]. It is a function that takes as arguments an element
γ1 ∈ H1(F ) and an element δ ∈ G(F ), both strongly regular semi-simple. We
will also use a theorem of Steinberg which asserts that for any strongly regular
semi-simple δ′ ∈ G′(F ) there exists δ ∈ G(F ) that is stably conjugate to δ′, by
which we mean that the G(F )-conjugacy classes of δ and ψ−1(δ′) coincide. See
[PR94, Proposition 6.19], which is to be applied to S′der = Cent(δ,G′der).

The statement of LLCiso involves the choice of an algebraic 1-cocycle xiso :
E → G such that the image of xiso in Z1(Γ, Gad) is equal to the 1-cocycle
σ 7→ ψ−1σ(ψ). While such a 1-cocycle may not exist in general, we are op-
erating in this section under the assumption that it does. The pair (ψ, xiso) is
then called an extended pure inner twist. The duality (3.6) turns the cohomo-
logy class [xiso] into a character 〈[xiso],−〉 of Z(Ĝ)Γ.

Let δ ∈ G(F ) and δ′ ∈ G′(F ) be strongly regular semi-simple elements and
assume that they are stably conjugate. For any g ∈ G(F ) with δ′ = ψ(gδg−1)
the 1-cocycle

E → G, e 7→ g−1xiso(e)σe(g)
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takes values in S = Cent(δ,G). Its class is independent of the choice of g and
will be denoted by inv[xiso](δ, δ′) ∈ B(S). Here σe ∈ Γ is the image of e ∈ E
under the natural projection E → Γ.

We now recall the normalization ∆′[w, e, z, (ψ, xiso)] of the Langlands-Shelstad
transfer factor for the group G′ from [Kal14, §2.3]. Let γ1 ∈ H1(F ) and δ′ ∈
G′(F ) be strongly regular related elements. Write γ ∈ H(F ) for the image of γ1

and SH = Cent(γ,H). Choose δ ∈ G(F ) that is stably conjugate to δ′. Then

∆′[w, e, z, (ψ, xiso)](γ1, δ
′) = ∆′w(γ1, δ) · 〈inv[xiso](δ, δ′), sγ,δ〉. (4.1)

Here sγ,δ ∈ ŜΓ is the image of s ∈ Z(Ĥ)Γ under the composition of the natural
inclusion Z(Ĥ)→ ŜH with φ̂−1

γ,δ , where φγ,δ : SH → S is the unique admissible
isomorphism mapping γ to δ, and 〈−,−〉 is the duality (3.5).

We will now formulate the statement LLCiso(ψ, xiso). Let Sϕ ∩ Ĝsc denote the
subgroup of Ĝsc consisting of elements fixed by the action of LF on Ĝsc given
by Ad ◦ϕ. Let S\ϕ be the quotient of Sϕ by the image in Ĝ of [Sϕ ∩ Ĝsc]

◦. This is
a complex algebraic group. Note that the image of [Sϕ ∩ Gsc]

◦ in Ĝ is equal to
[Sϕ ∩Gder]

◦. Then LLCiso(ψ, xiso) asserts that there is a bijection between the L-
packet Πϕ(G′) and the set Irr(S\ϕ, [xiso]) of those irreducible algebraic represen-
tations of S\ϕ whose restriction to Z(Ĝ)Γ is 〈[xiso],−〉-isotypic. If for π ∈ Πϕ(G′)
we denote by 〈π,−〉 the character of the corresponding irreducible represen-
tation of S\ϕ, and by Θπ the Harish-Chandra character of the representation π,
then for any semi-simple element s ∈ Sϕ we can form the virtual character

Θs
ϕ,[xiso] = e(G′)

∑
π∈Πϕ(G′)

〈π, s〉Θπ. (4.2)

Here e(G′) is the Kottwitz sign [Kot83] of G′. Then LLCiso(ψ, xiso) asserts fur-
ther that for all f ′ ∈ C∞c (G′(F )) the following character identity should hold

Θ1
ξ1◦ϕ,1(fH) = Θs

ϕ,[xiso](f
′). (4.3)

Here we have constructed an endoscopic datum e from s and ϕ and have
chosen an arbitrary z-pair z for e. The function fH ∈ C∞c (H1(F )) is chosen
to have matching orbital integrals with f ′ with respect to the transfer factor
∆′[w, e, z, (ψ, xiso)] as defined in [KS99, §5.5].

We will now review LLCrig. It involves the choice of xrig ∈ Z1(u→W,Z(G)→
G) whose image in Z1(Γ, Gad) is equal to σ 7→ ψ−1σ(ψ). The existence of this
xrig is guaranteed by [Kal16b, Corollary 3.8]. The pair (ψ, xrig) is called a rigid
inner twist. The duality (3.12) turns the cohomology class of xrig into a char-

acter 〈[xrig],−〉 of π0(Z( ̂̄G)+). Here we are using the notation ̂̄G introduced in
subsection 3.3.

Let δ ∈ G(F ) and δ′ ∈ G′(F ) be strongly regular semi-simple and assume that
they are stably conjugate. For any g ∈ G(F ) with δ′ = ψ(gδg−1) the 1-cocycle

W → G, w 7→ g−1xrig(w)σw(g)

takes values in S = Cent(δ,G). Its class is independent of the choice of g and
will be denoted by inv[xrig](δ, δ′) ∈ H1(u→ W,Z(G)→ S). Here σw ∈ Γ is the
image of w ∈W under the natural projection W → Γ.

Let e = (H,H, s, ξ) and z = (H1, ξ1) be an endoscopic datum and z-pair. There
is again a normalization of the transfer factor, but it involves a refinement of e.

13



This refinement is a tuple ė = (H,H, ṡ, ξ). The only difference is the element
ṡ ∈ Z( ̂̄H)+, which is a lift of s. Here ̂̄H is the inverse limit of Ĥn, where the
quotient Hn = H/Zn is formed by using the canonical injection Z(G)→ Z(H)
to map Zn ⊂ Z(G) into Z(H). The definition of the transfer factor is then given
by

∆′[w, ė, z, (ψ, xrig)](γ1, δ
′) = ∆′w(γ1, δ) · 〈inv[xrig](δ, δ′), ṡγ,δ〉. (4.4)

To describe ṡγ,δ, recall the map Z(Ĥ) → Ŝ induced by the admissible isomor-
phism φγ,δ . It lifts uniquely to a map Z( ̂̄H) → ̂̄S and ṡγ,δ is the image of ṡ
under this map. It is paired with inv[xrig](δ, δ′) ∈ H1(u→W,Z(G)→ S) using
the duality (3.11).

Let now S+
ϕ be the preimage of Sϕ in ̂̄G. Then LLCrig(ψ, xrig) asserts that there is

a bijection between the L-packet Πϕ(G′) and the set Irr(π0(S+
ϕ ), [xrig]) of those

irreducible representations of the pro-finite group π0(S+
ϕ ) whose restriction to

π0(Z( ̂̄G)+) is 〈[xrig],−〉-isotypic. If for π ∈ Πϕ(G′) we denote by 〈π,−〉 the
character of the corresponding irreducible representation of π0(S+

ϕ ), then for
any semi-simple element ṡ ∈ S+

ϕ we can form the virtual character

Θṡ
ϕ,[xrig] = e(G′)

∑
π∈Πϕ(G′)

〈π, ṡ〉Θπ (4.5)

and LLCrig(ψ, xrig) asserts further that for all f ′ ∈ C∞c (G′(F )) the following
character identity should hold

Θ1
ξ1◦ϕ,1(fH) = Θṡ

ϕ,[xrig](f
′). (4.6)

Here we have constructed a refined endoscopic datum ė from ṡ and ϕ and have
chosen an arbitrary z-pair z for e. The function fH ∈ C∞c (H1(F )) is chosen
to have matching orbital integrals with f ′ with respect to the transfer factor
∆′[w, ė, z, (ψ, xrig)].

4.2 Comparison

We will now show that LLCiso(ψ, xiso) and LLCrig(ψ, xrig) are equivalent, pro-
vided xrig is the image of xiso under the comparison map (3.14). As in the pre-
vious subsection we fix a Whittaker datum w for G and let ϕ : LF → LG be a
tempered Langlands parameter. Recall from subsection 3.3 that ̂̄G = Ĝsc× Ĉ∞.
We can thus write elements of S+

ϕ ⊂ ̂̄G as pairs (a, (bn)n) with a ∈ Ĝsc and
bn ∈ Ĉn. Taking our cue from Proposition 3.3 we introduce the homomor-
phism

S+
ϕ → Sϕ, (a, (bn)) 7→ ader · b1

NE/F (b[E:F ])
. (4.7)

Here again ader ∈ Ĝder is the image of a, E/F is a suitably large finite Galois
extension and the expressionNE/F (b[E:F ]) is independent of the choice ofE/F .
The fact that this map is a group homomorphism is clear since the elements
bn are central. Furthermore, we have S+,◦

ϕ = Cent(ϕ, ̂̄G)◦ = [Sϕ ∩ Ĝsc]
◦ ×

ĈΓ,◦
∞ . Thus for (a, (bn)n) ∈ S+,◦

ϕ we have N[E:F ](b[E:F ]) = b1 and the image of
(a, (bn)n) in Sϕ is simply a ∈ [Sϕ ∩ Ĝsc]

◦, showing that (4.7) induces a group
homomorphism π0(S+

ϕ )→ S\ϕ.

14



Let xiso : E → G be a 1-cocycle whose image in Z1(Γ, Gad) equals ψ−1σ(ψ). Let
xrig : W → G be the composition of xiso with the homomorphism W → E of
Diagram (3.13). Thus the class [xrig] ∈ H1(u → W,Z(G) → G) of xrig is the
image of the class [xiso] ∈ B(G)bas of xiso under (3.14). We denote by 〈[xiso],−〉
and 〈[xrig],−〉 the characters of Z(Ĝ)Γ and π0(Z( ̂̄G)+) given by the dualities
(3.6) and (3.12).

Lemma 4.1. Pullback along (4.7) induces a bijection

Irr(S\ϕ, [xiso])→ Irr(π0(S+
ϕ ), [xrig]). (4.8)

Proof. For the proof we need to study the kernel and image of (4.7). By def-
inition of S+

ϕ , the map (a, (bn)n) 7→ ader · b1 is a surjection onto Sϕ, and we
see that Sϕ is equal to the product of Z(Ĝ)Γ with the image of (4.7). This im-
plies that composing an irreducible representation of S\ϕ with (4.7) leads to an
irreducible representation of π0(S+

ϕ ). Moreover, according to Proposition 3.3,
if we start with an element of Irr(S\ϕ, [xiso]) the result will be an element of
Irr(π0(S+

ϕ ), [xrig]).

We have thus shown that composition with (4.7) induces a map Irr(S\ϕ, [xiso])→
Irr(π0(S+

ϕ ), [xrig]). We will now argue that this map is bijective. Injectivity fol-
lows immediately from the fact that Z(Ĝ)Γ and the image of (4.7) generate S\ϕ,
as one sees for example by examining the characters of the irreducible repre-
sentations.

For surjectivity, we study the kernel of (4.7). If (a, (bn)n) ∈ S+
ϕ belongs to that

kernel, then aderb1N[E:F ](b[E:F ])
−1 lifts to an element e ∈ [Sϕ ∩ Ĝsc]

◦. We have
already noted that [Sϕ ∩ Ĝsc]

◦ ⊂ S+,◦
ϕ , so we may replace a by ae−1 with-

out changing the class of (a, (bn)n) modulo S+,◦
ϕ , thereby achieving aderb1 =

N[E:F ](b[E:F ]) ∈ Z(Ĝ)Γ. Thus (a, (bn)n) is an element of Z( ̂̄G)+ and more-
over belongs to the kernel of (3.15). We conclude that under the natural map
π0(Z( ̂̄G)+)→ π0(S+

ϕ ) the kernel of (3.15) surjects onto the kernel of (4.7). Since
〈[xrig],−〉 is the pull-back of 〈[xiso],−〉 under (3.15), any ρ ∈ Irr(π0(S+

ϕ ), [xrig])
is trivial on the kernel of (4.7) and thus descends to a representation of the im-
age of this map. We extend this representation to S\ϕ by letting it be given by
〈[xiso],−〉 on the image of Z(Ĝ)Γ in S\ϕ. The result is an element of Irr(S\ϕ, [xiso])
whose pull-back to π0(S+

ϕ ) equals ρ. This completes the proof of surjectiv-
ity.

We will now compare the character identities (4.3) and (4.6). Let ṡrig ∈ S+
ϕ and

let siso ∈ Sϕ be the image of ṡrig under (4.7). By construction of the bijection
(4.8) we have

Θsiso
ϕ,[xiso] = Θ

ṡrig

ϕ,[xrig], (4.9)

so the right-hand-sides of (4.3) and (4.6) agree. To compare the left-hand-sides,
we let ėrig = (H,H, ṡrig, ξ) be the refined endoscopic datum corresponding to
ṡrig and ϕ. The endoscopic datum corresponding to siso and ϕ is then eiso =
(H,H, siso, ξ). That is, the terms H , H, and ξ are common to both ėrig and eiso.
The reason for this is that if we write ṡrig = (a, (bn)n), the image of ṡrig in Sϕ
under the natural projection S+

ϕ → Sϕ is equal to ader · b1 and differs from siso

only by the element NE/F (b[E:F ]) ∈ Z(Ĝ)Γ. In particular, we may fix a z-pair
z = (H1, ξ1) that serves both ėrig and eiso.
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We claim that for any strongly regular semi-simple elements γ1 ∈ H1(F ) and
δ′ ∈ G′(F ) we have

∆′[w, ėrig, z, (ψ, xrig)](γ1, δ
′) = ∆′[w, eiso, z, (ψ, xiso)](γ1, δ

′).

For this, fix δ ∈ G(F ) and g ∈ G(F ) such that δ′ = ψ(gδg−1). Setting as before
S = Cent(δ,G) we have inv[xrig](δ, δ′) ∈ H1(u → W,Z(G) → S) represented
by the 1-cocycle w 7→ g−1xrig(w)σw(g) as well as inv[xiso](δ, δ′) ∈ B(S) repre-
sented by the 1-cocycle e 7→ g−1xiso(e)σe(g). Since xiso is the composition of
xrig with the homomorphism W → E of Diagram (3.13), the same is true for
the 1-cocycles representing the two invariants. In other words, inv[xiso](δ, δ′)
is the image of inv[xrig](δ, δ′) under the map (3.14) for the torus S. Proposition
3.3 applied to the torus S then implies that

〈inv[xiso](δ, δ′), siso〉 = 〈inv[xrig](δ, δ′), ṡrig〉

and this proves the claim about the equality of transfer factors. This in turn im-
plies that the function fH occurring in the left-hand-side of (4.3) is the same as
the function fH occurring in the left-hand-side of (4.6). Thus the two left-hand-
sides are equal. This shows that the equations (4.3) and (4.6) are equivalent.

5 REDUCING LLCRIG TO THE CASE OF GROUPS WITH CONNECTED CENTER

In the last section we showed that when G is a connected reductive group
defined and quasi-split over F and ψ : G → G′ is an inner twist whose
corresponding class in H1(Γ, Gad) lifts to an element [xiso] ∈ B(G)bas, then
LLCiso(ψ, xiso) is equivalent to LLCrig(ψ, xrig), where xrig is the image of xiso
under the comparison map (3.14). When G does not have connected center,
then the class of ψ may fail to lift to B(G)bas (for example, this is always the
case when G is simply connected). In that case we do not have a statement
for LLCiso. There is however a statement for LLCrig, since the class of ψ al-
ways lifts to H1(u → W,Z(G) → G). In this section we will construct for any
connected reductive group G an embedding G → Gz into a connected reduc-
tive group Gz that has connected center and comparable endoscopy. We will
also construct an inner twist ψz : Gz → G′z corresponding to ψ. We will then
show that LLCrig(ψ, xrig) is equivalent to LLCrig(ψz, xrig), for any xrig ∈ Z1(u→
W,Z(G)→ G) lifting ψ−1σ(ψ). Combining this with the result of the previous
section, and using the fact that now there does exist [xiso] ∈ B(Gz)bas lifting the
class of ψz , this implies that LLCrig(ψ, xrig) is equivalent to LLCiso(ψz, xiso) pro-
vided that the images of [xrig] ∈ H1(u → W,Z(G) → G) and [xiso] ∈ B(Gz)bas
in H1(u → W,Z(Gz) → Gz) coincide. In other words, once the validity of
LLCiso is established for all extended pure inner twists of connected reductive
groups with connected center, it implies the validity of LLCrig(ψ, xrig) for all
inner twists ψ : G → G′ of connected reductive groups, without assumption
on the center, and some suitable xrig lifting ψ−1σ(ψ). The final step would then
be to establish the validity of LLCrig(ψ, xrig) for all xrig lifting ψ−1σ(ψ), not just
those corresponding to elements [xiso] ∈ B(Gz)bas. This will be addressed in
the next section.

5.1 z-embeddings

We will introduce here the notion of a z-embedding and collect some of its
properties. A z-embedding is a procedure which embeds a given connected re-
ductive groupG over a p-adic field F into a connected reductive groupGz with
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comparable endoscopy and connected center. The idea about the construction
of Gz is due to Kottwitz, who communicated it verbally to the author some
years ago. It forms the core of Proposition 5.2. It turns out however, that the
procedure of taking a z-embedding is not directly compatible with passage to
endoscopic groups, and it is also not transitive. Luckily, a somewhat weaker
notion, that of a pseudo-z-embedding, does have the necessary flexibility. For
this reason we work in this subsection with the weaker notion, which turns out
to suffice for our applications. The main properties of pseudo-z-embeddings
are the fact that their representation theory and endoscopy is related to that of
the original group in a very close and straightforward way, and that they are
in some sense stable under taking endoscopic groups and also under iteration.

We alert the reader that the requirement that a (pseudo-)z-embedding have the
same endoscopy as the original group makes it a much more delicate object
than an arbitrary group with connected center into which the original group
embeds. For example, the embedding of SLn into GLn is not a z-embedding.
Furthermore, a z-embedding is not simply the dual notion to a z-extension, as
it has to satisfy a more stringent cohomological requirement. Finally, we want
to point out that a z-embedding is usually a ramified group, even if the original
group is unramified. This additional ramification is benign, as it only affects
the center, but it is nonetheless present. This makes the application of this
notion to a global setting problematic. Thankfully, our needs here are purely
local.

5.1.1 Definition and construction

Let G be a connected reductive group defined over F .

Definition 5.1. A pseudo-z-embedding of G is an embedding G → Gz of G into a
connected reductive group Gz defined over F , subject to the following conditions

1. Gz/G is a torus;

2. H1(F,Gz/G) = 1;

3. the natural map H1(F,Z(G))→ H1(F,Z(Gz)) is bijective.

If moreover Z(Gz) is connected and Gz/G is an induced torus we will call this a
z-embedding.

Proposition 5.2. Let Z be a diagonalizable group defined over F . There exists an
embedding Z → T of Z into a torus T defined over F with the property that T/Z is
an induced torus and H1(Γ, Z)→ H1(Γ, T ) is a bijection.

Proof. Let Z → T0 be an embedding of Z into an arbitrary F -torus T0 and
let C0 be the cokernel that embedding. Let K1/F be the splitting extension
of T0, and let K/K1 be an extension which we will specify in a moment. Put
C = ResK/F (C0 × K). Since C0 × K is split, C is induced. Let T be the fiber
product of T0 and C over C0. This is a diagonalizable group and a quick look
at its character module reveals that it is in fact a torus. We obtain the diagram

1 // Z // T //

��

C //

NK/F

��

1

1 // Z // T0
// C0

// 1
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whereNK/F is the norm map. SinceC is induced,H1(F,C) vanishes and hence
the natural map H1(F,Z) → H1(F, T ) is surjective (for any choice of K). We
claim that we can choose K in such a way that this map is also injective. This
is equivalent to demanding that the map

C(F )
NK/F−→ C0(F ) −→ H1(F,Z)

be trivial. We split this map as follows

C(F ) = C0(K)
NK/K1−→ C0(K1)

NK1/F−→ C0(F )→ H1(F,Z).

Fix an isomorphism [Gm,K1 ]n → C0 ×K1. Then we have

C0(K)
NK/K1// C0(K1)

NK1/F // C0(F ) // H1(F,Z)

[K×]n
[NK/K1

]n

//

OO

[K×1 ]n

OO

If ik denotes the inclusion of the k-th coordinate, then the map

K×1
ik−→ [K×1 ]n → H1(F,Z)

is continuous and its target is finite, so its kernel is a norm subgroup of K×1 .
The intersection of these norm subgroups for 1 ≤ k ≤ n is again a norm sub-
group, and we choose K to be the corresponding abelian extension of K1. We
have thus shown the existence of an extension K/K1 for which the canoni-
cal map H1(F,Z) → H1(F, T ) is bijective and this completes the proof of the
proposition.

Corollary 5.3. Any connected reductive F -group G has a z-embedding. Moreover, if
G is quasi-split, there is a natural choice for it.

Proof. Apply Proposition 5.2 to the diagonalizable group Z(G) to obtain an
embedding Z(G)→ T . Form the push-out

Z(G) //

��

G

��
T // Gz

The maps T → Gz and G → Gz are injective, because Z(G) → G and Z(G) →
T are. Moreover, the injection T → Gz identifies T with Z(Gz), and

coker(G→ Gz) = coker(Z(G)→ T ) = C.

We come now to the naturality assertion. In the proof of Proposition 5.2 we
made two choices – that of the torus T0 and of the field extension K. In fact,
there is always a natural choice for K once T0 has been fixed: Let Θ be the
preimage inC0(K1) of the kernel ofC0(F )→ H1(F,Z). For any two extensions
K,K ′ of K1 we have im(NK∩K′/K1

) = im(NK/K1
) · im(NK′/K1

). Thus the set
of extensions K/K1 for which im(NK/K1

) ⊂ Θ has a smallest element, namely
their intersection.

If we assume in addition that G is quasi-split then there is also a natural choice
for T0, namely the minimal Levi subgroup of G.
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5.1.2 Basic properties

Let 1→ G→ Gz → C → 1 be a pseudo-z-embedding.

Fact 5.4. If Gz → Gx is a pseudo-z-embedding, then so is G→ Gx.

Proof. The map H1(F,Z(G)) → H1(F,Z(Gx)) is the composition of the bijec-
tions H1(F,Z(G)) → H1(F,Z(Gz)) and H1(F,Z(Gz)) → H1(F,Z(Gx)) and
thus itself bijective. Moreover, the reductive group Gx/G is an extension of the
torusGx/Gz by the torus C and hence itself a torus withH1(F,Gx/G) = 1.

Fact 5.5. The map Z(Gz)(F )→ C(F ) is surjective andGz(F ) = Z(Gz)(F ) ·G(F ).

Proof. The injectivity of H1(F,Z(G)) → H1(F,Z(Gz)) implies the first point.
For the second, we note that Gz,der ⊂ G and hence we have an exact sequence

1→ Z(G)→ Z(Gz)×G→ Gz → 1.

The surjectivity of Z(Gz)(F ) × G(F ) → Gz(F ) is equivalent to the injectivity
of H1(F,Z(G)) → H1(F,Z(Gz)) × H1(F,G), which in turn follows from the
injectivity of H1(F,Z(G))→ H1(F,Z(Gz)).

It follows from this fact that, if πz is an irreducible representation of Gz(F ),
then its restriction π to G(F ) is still irreducible. Conversely any irreducible
representation π of G(F ) can be extended to an irreducible representation πz
ofGz(F ) – for this one needs to choose an extension ωz : Z(Gz)(F )→ C× of the
central character ω of π. Then π ⊗ ωz is a representation of G(F ) × Z(Gz)(F )
which factors through the surjection G(F ) × Z(Gz)(F ) → Gz(F ). The set of
extensions of π to a representation of Gz(F ) is a torsor for C(F )D.

Fact 5.6. If G → G1 and G → G2 are pseudo-z-embeddings, then there exists a
connected reductive group G3 with embeddings G1 → G3 and G2 → G3 that are both
pseudo-z-embeddings.

Proof. We construct G3 as the push-out of the diagram G1 ← Z(G) → Z(G2),
i.e. the quotient of G1 × Z(G2) by the subgroup {(z, z−1)|z ∈ Z(G)}. The map
G1 → G3 given by g 7→ (g, 1) is injective and its cokernel is Z(G2)/Z(G) =
G2/G. It is a pseudo-z-embedding, becauseH1(F,G2/G) = 1 andZ(G2)(F )→
[G2/G](F ) is surjective. The map G2 → G3 given by writing an element g2 ∈
G2 as a product g · z2 with g ∈ G and z2 ∈ Z(G2) and mapping it to (g, z2) ∈
G3 is well-defined and injective, and its cokernel is G1/G. This map is also a
pseudo-z-embedding because H1(F,G1/G) = 1 and Z(G1)(F ) → [G1/G](F )
is surjective.

Fact 5.7. We have mutually inverse bijections

{maximal tori of G} ↔ {maximal tori of Gz}
T 7→ Z(Gz)

◦ · T
(Tz ∩G)◦ ← [ Tz

Proof. This follows from Gz,der ⊂ G.
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Fact 5.8. Let Z ⊂ G be a finite central subgroup. The natural map

H1(u→W,Z → G)→ H1(u→W,Z → Gz)

is bijective. If T and Tz correspond under the bijection of Fact 5.7, then the natural
map

H1(u→W,Z → T )→ H1(u→W,Z → Tz)

is bijective.

Proof. We will discuss the second map, the argument for the first being the
same. From the long exact sequence for W -cohomology we obtain the exact
sequence

Tz(F )→ C(F )→ H1(u→W,Z → T )→ H1(u→W,Z → Tz)→ H1(Γ, C).

The surjectivity of H1(u → W,Z → T ) → H1(u → W,Z → T1) follows from
the vanishing of H1(Γ, C) and its injectivity is a consequence of the surjectivity
of Tz(F ) → C(F ), which follows from the surjectivity of Z(Gz)(F ) → C(F )
stated in Fact 5.5.

Fact 5.9. Let ψ : G → G′ be an inner twist and u ∈ Z1(F,Gad) be the element s.t.
ψ−1σ(ψ) = Ad(u(σ)). Then there exists a connected reductive groupG′z and an inner
twist ψz : Gz → G′z s.t. ψ−1

z σ(ψz) = Ad(u(σ)) fitting into the diagram

1 // G //

ψ

��

Gz //

ψz

��

C // 1

1 // G′ // G′z // C // 1

Proof: We construct G′z as the push-out

Z(G) //

ψ

��

Z(Gz)

��
G′ // G′z

Then the map id×ψ : Z(Gz)×G→ Z(Gz)×G′ descends to a map ψz : Gz → G′z
which clearly has the desired property.

We now consider the dual side. We have the exact sequence

1→ Ĉ → Ĝz → Ĝ→ 1. (5.1)

Let Ψ+(G) be the set of Ĝ-conjugacy classes of admissible L-homomorphisms
LF × SL2 → LG. This set contains all Langlands parameters (those homomor-
phisms that are trivial on SL2) as well as the set of Arthur parameters (those
homomorphisms whose restriction to LF projects to a relatively bounded sub-
set of Ĝ). We will also interpret Ψ+(G) as a subset of H1(LF × SL2, Ĝz) via the
projection LGz → Ĝz .

Lemma 5.10. The three maps

H1(WF , Ĉ)→ H1(WF , Z(Ĝz))→ H1(WF , Ĝz)→ Ψ+(Gz)

are injective.
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Proof. We have

H1(WF , Ĉ) // H1(WF , Z(Ĝz))� _

��
C(F )D // Gz(F )D

and the first of the three maps is injective because Gz(F )→ C(F ) is surjective.
The second map is injective due to [Kot84, 1.6]. The third map is injective
because it can be seen as the inflation map associated to the quotient map LF ×
SL2 →WF .

Lemma 5.11. The action of H1(WF , Ĉ) on Ψ+(Gz) given by pointwise multiplica-
tion of cocycles is simple.

Proof. Consider the braided crossed module Ĝsc → Ĝz . According to [Kal15,
§5.3], there is a canonical isomorphism

H1(WF , Ĝsc → Ĝz)→ Z(Gz)(F )D.

Composing the restriction map Ψ+(Gz) → H1(WF , Ĝz) with the natural map
H1(WF , Ĝz) → H1(WF , Ĝsc → Ĝz) we obtain the top left horizontal map in
the diagram

Ψ+(Gz) // H1(WF , Ĝsc → Ĝz)
∼= // Z(Gz)(F )D

H1(WF , Ĉ)
∼= //

OO

H1(WF , 1→ Ĉ)
∼= //

OO

C(F )D
?�

OO

The simplicity of the action of C(F )D on Z(Gz)(F )D by multiplication of char-
acters now implies the simplicity of the action of H1(WF , Ĉ) on Ψ+(Ĝz).

Lemma 5.12. Let ϕz ∈ Ψ+(Gz) and let ϕ ∈ Ψ+(G) be its image. Then we have the
exact sequence

1→ ĈΓ → Sϕz
→ Sϕ → 1.

Recall that Sϕ = Cent(ϕ, Ĝ) and Sϕz = Cent(ϕz, Ĝz).

Proof. The exact sequence (5.1) has an action of WF , and hence also of LF . We
twist it by ϕz and obtain the long exact cohomology sequence

1→ ĈΓ → Sϕz → Sϕ → H1(LF , Ĉ)→ H1(LF , ϕz, Ĝz). (5.2)

Here, H1(LF , ϕz, Ĝz) is the continuous cohomology group of Ĝz for the ac-
tion of WF given by ϕz . To prove the lemma, we must show that the map
H1(LF , Ĉ)→ H1(LF , ϕz, Ĝz) is injective.

By [Ser97, §5.3, Prop. 35], we have a bijection

H1(LF , ϕz, Ĝz)→ H1(LF , Ĝz).

Composing this bijection with the last arrow in the long exact cohomology
sequence (5.2), we obtain a map

H1(LF , Ĉ)→ H1(LF , Ĝz).
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This map is in fact the orbit map through ϕz for the action of H1(LF , Ĉ) on
H1(LF , Ĝz) by multiplication of 1-cocycles. Since Ĉ is abelian, H1(LF , Ĉ) =

H1(WF , Ĉ). Moreover, since ϕz belongs to the subset Ψ+(Gz) ⊂ H1(LF , Ĝz),
so does also its orbit under H1(WF , Ĉ). According to Lemma 5.11 the orbit
map is injective and the proof is complete.

Corollary 5.13. The map Ψ+(Gz) → Ψ+(G) is surjective and its fibers are torsors
for the action of H1(WF , Ĉ) on Ψ+(Gz) by multiplication of cocycles. This map also
induces a surjection between the sets of Langlands parameters and between the sets of
Arthur parameters.

Proof. Let ϕ ∈ Ψ+(G) and let ϕ0 ∈ H1(WF , Ĝ) be its restriction to WF . We will
argue that there exists a lift ϕ0,z ∈ H1(WF , Ĝz) of ϕ0. Moreover, we will show
that if ϕ0(WF ) ⊂ Ĝ is bounded, then ϕ0,z can be chosen in such a way that
ϕ0,z(WF ) ⊂ Ĝz is bounded.

From the exact sequence (5.1) ofWF -modules we obtain the following diagram
with exact rows

H1(WF , Ĉ) // H1(WF , Ĝz) //

��

H1(WF , Ĝ) //

��

H2(WF , Ĉ)

H1(WF , Ĉ) // H1(WF , Ĝsc → Ĝz) // H1(WF , Ĝsc → Ĝ) // H2(WF , Ĉ)

It implies that if ϕ′ ∈ H1(WF , Ĝsc → Ĝz) is an element whose image in the
group H1(WF , Ĝsc → Ĝ) is the same as the image of ϕ0 there, then there exists
ϕ0,z ∈ H1(WF , Ĝz) mapping simultaneously to ϕ0 and to ϕ′.

According to [Kal15, Proposition 4.5.1] we have the functorial isomorphism
H1(WF , Ĝsc → Ĝ) = Homcts(Z(G)(F ),C×). Note that under this isomor-
phism, the unitary characters of Z(G)(F ) correspond to precisely those ele-
ments ofH1(WF , Ĝsc → Ĝ) whose image inH1(WF , cok(Ĝsc → Ĝ)) is bounded.
Indeed, this image corresponds by the usual Langlands duality for tori to a
character of Z(G)◦(F ) and it is bounded if and only if the character is unitary,
but a character of Z(G)(F ) is unitary if and only if its restriction to Z(G)◦(F )
is unitary.

The image of ϕ0 in H1(WF , Ĝsc → Ĝ) thus corresponds to a character χ0 of
Z(G)(F ). Write this character as a product χu · χs where χu : Z(G)(F ) → C×
is unitary and χs : Z(G)(F ) → R>0. By Pontryagin theory χu extends to
a unitary character χu,z : Z(Gz)(F ) → C×. On the other hand, χs kills the
maximal compact subgroup K ⊂ Z(G)(F ). If Kz ⊂ Z(Gz)(F ) is the maximal
compact subgroup, then Z(G)/K ⊂ Z(Gz)/Kz is an inclusion of finite-rank
free Z-modules. Since R>0 is injective, the homomorphism χs extends to a
homomorphism χs,z : Z(Gz)(F )/Kz → R>0. We set χ0,z = χu,z · χs,z . If
χ0 is unitary, so that χs = 1, we choose χs,z = 1 and χ0,z is unitary. Let
ϕ′ ∈ H1(WF , Ĝsc → Ĝz) correspond to χ0,z . Choose ϕ0,z to map to the pair
(ϕ0, ϕ

′). Thus ϕ0,z lifts ϕ0. Moreover, if ϕ0 is bounded, then so is its image in
H1(WF , cok(Ĝsc → Ĝ)), and hence the character χ0 is unitary. Then χ0,z is also
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unitary and thus the image of ϕ′ in Z1(WF , cok(Ĝsc → Ĝz)) is bounded. To
show that ϕ0,z is bounded consider the diagonal map

Ĝz → Ĝ× cok(Ĝsc → Ĝz).

The composition of ϕ0,z with this map is bounded, but the kernel of this map
is the finite central subgroup Ĉ ∩ Ĝz,der, and thus ϕ0,z is itself bounded.

Our next step is to extend ϕ0,z to an admissible 1-cocycle LF → Ĝz that lifts
ϕ|LF

. We apply Lemma 5.12 to ϕ0,z to obtain a surjective homomorphism

Cent(ϕ0,z(WF ), Ĝz)→ Cent(ϕ0(WF ), Ĝ)

of complex algebraic groups with reductive connected components. The re-
striction of this map to the neutral connected components remains surjective
and its kernel is still central. Thus this map restricts further to an isogeny on
the level of derived subgroups. The restriction of ϕ to SL2 ⊂ LF is a homo-
morphism of algebraic groups SL2 → Cent(ϕ0(WF ), Ĝ)◦der and lifts uniquely
along this isogeny to a homomorphism SL2 → Cent(ϕ0,z(WF ), Ĝz)

◦
der. We thus

obtain a lift ϕ1,z : LF → Ĝz of ϕ|LF
→ Ĝ. This completes the proof for the case

of Langlands parameters.

To handle general elements of Ψ+(G), we repeat this argument again to ac-
commodate the second copy of SL2. That is, we apply Lemma 5.12 to ϕ1,z

and obtain an isogeny Cent(ϕ1,z(LF ), Ĝz)
◦
der → Cent(ϕ(LF ), Ĝ)◦der and ob-

tain a lift of ϕ|SL2
: SL2 → Cent(φ(LF ), Ĝ)◦der to a homomorphism SL2 →

Cent(ϕ1,z(LF ), Ĝz)
◦
der, which together with ϕ1,z provides a lift ϕz ∈ Ψ+(Gz)

of ϕ.

We have thus proved that Ψ+(Gz)→ Ψ+(G) is surjective and induces a surjec-
tion between the sets of Langlands parameters and between the sets of Arthur
parameters. To show that the group H1(WF , Ĉ) acts transitively on the fibers
of this map, consider the exact sequence (5.1) with action of LF × SL2 given by
the quotient map of this group to WF and the corresponding exact sequence of
pointed sets

H1(LF × SL2, Ĉ)→ Ψ+(Gz)→ Ψ+(G)

According to [Ser97, §5.7, Prop. 42] the groupH1(LF ×SL2, Ĉ) acts transitively
on the fibers. But since Ĉ is a torus this group is equal to H1(WF , Ĉ). Finally,
the simplicity of this action comes from Lemma 5.11.

5.1.3 Endoscopy

We continue with a pseudo-z-embedding 1 → G → Gz → C → 1, but assume
now that G, and hence also Gz , is quasi-split. As before we set Zn ⊂ Z(G) to
be the preimage of (Z(G)/Z(Gder))[n] and form Gn = G/Zn, Ḡ = lim−→Gn, and̂̄G = lim←− Ĝn. We also form Gz,n = Gz/Zn, Ḡz = lim−→Gz,n and ̂̄Gz = lim←− Ĝz,n.

For every n we have the exact sequence

1→ Gn → Gz,n → C → 1.
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Since the composition Z(Gz)(F ) → Z(Gz,n)(F ) → C(F ) is surjective, so must
be the map Z(Gz,n)(F )→ C(F ). Thus the above exact sequence is a pseudo-z-
embedding. Dually we obtain the exact sequence

1→ Ĉ → Ĝz,n → Ĝn → 1

and taking the limit over n we arrive at the exact sequence

1→ Ĉ → ̂̄Gz → ̂̄G→ 1.

Let ė = (H,H, ṡ, ξ) be a refined endoscopic datum for G. We are going to
construct a refined endoscopic datum ėz = (Hz, ṡz,Hz, ξz) for Gz . Let ṡz ∈̂̄Gz be any preimage of ṡ. We form Hz and ξz using the following pull-back
diagram:

1 // Ĉ // LGz // LG // 1

1 // Ĉ // Hz //

ξz

OO

H //

ξ

OO

1

Dually, we construct Hz as the push-out:

Z(G) //

��

H

��
Z(Gz) // Hz

Lemma 5.14. The quadruple ėz is a refined endoscopic datum for Gz . Furthermore,
the natural embedding H → Hz is a pseudo-z-embedding with cokernel C.

Proof. Let us consider the second statement first. By construction we have the
exact sequence

1→ H → Hz → C → 1.

It provides the exact sequence

1→ Z(H)→ Z(Hz)→ C → 1.

The surjectivity ofH1(F,Z(H))→ H1(F,Z(Hz)) follows from the vanishing of
H1(F,C), and the injectivity of the same map is equivalent to the surjectivity of
Z(Hz)(F ) → C(F ), which in turns follows from the fact that the composition
of this map with the natural inclusion Z(Gz)(F ) → Z(Hz)(F ) is equal to the
surjective map Z(Gz)(F )→ C(F ) of Fact 5.5.

To ease notation we now assume H ⊂ LG and Hz ⊂ LGz , so that ξ and ξz
are the natural inclusions. Let sz ∈ Ĝz be the image of ṡz . We will argue that
ez = (Hz,Hz, sz, ξz) is an endoscopic datum for Gz . Let s ∈ Ĝ be the image of
ṡ.

1. Hz is quasi-split: This holds because H is quasi-split and contains Hz,der,
since the quotient Hz/H is a torus.
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2. [Ĝz]
◦
sz is a dual group for Hz : Let TH → TG be an admissible isomor-

phism from a maximal torus of H to a maximal torus of G. We form the
push-outs

Z(G) //

��

TH

��

Z(G) //

��

TG

��
Z(Gz) // THz Z(Gz) // TGz

and obtain an isomorphism THz → TGz from a maximal torus in Hz to
a maximal torus in Gz . Let T Ĝz ⊂ Ĝz be a maximal torus containing
sz . Its image T Ĝ in Ĝ contains s. There exists an admissible isomor-
phism T̂Gz → T Ĝz with the following property: The induced isomor-
phism T̂G → T Ĝ when composed with T̂H → T̂G identifies the coroot
system R∨(TH , H) with the root system R(T Ĝ, Ĥ). But in the diagram

T̂Hz //

��

T Ĝz

��
T̂H // T Ĝ

the left arrow induces a bijection R∨(THz , Hz) → R∨(TH , H) while the
right arrow induces a bijectionR(T Ĝz , [Ĝz]

◦
sz )→ R(T Ĝ, Ĝs). This implies

that the top horizontal arrow induces a bijection

R∨(THz , Hz)→ R(T Ĝz , [Ĝz]
◦
sz ).

This shows that [Ĝz]
◦
sz is a dual group of Hz .

3. Hz is an extension of WF by Ĥz : Since LGz → LG is surjective, so is
also Hz → H. Composing the latter map with H → WF we obtain a
continuous surjective map Hz → WF . Its kernel is the preimage of Ĥ
in Hz . Let’s call this kernel K for a moment. Then we have the exact
sequence of topological groups and continuous homomorphisms

1→ K → Hz →WF → 1.

We claim that this is an extension, i.e. that the induced mapHz/K →WF

is an isomorphism of topological groups. To prove this, we will use that
Hz is locally-compact and σ-compact. Indeed, sinceH is a split extension
of WF by Ĥ , and both WF and Ĥ are locally-compact and σ-compact, so
isH, and so is the product LGz ×H, of whichHz is a closed subgroup. It
follows thatHz is locally-compact and σ-compact, and the open mapping
theorem implies that the surjection Hz → WF is open. This proves the
claim that the natural continuous bijective homomorphismHz/K →WF

is an isomorphism of topological groups.

Next, one checks that ξz restricts to a continuous bijective homomor-
phism from K to the preimage of ξ(Ĥ) in LGz , the latter being precisely
[Ĝz]

◦
sz . K being a closed subgroup of Hz is also locally-compact and σ-

compact, so ξz : K → [Ĝz]
◦
sz is an isomorphism of topological groups.

Having already shown in the previous point that [Ĝz]
◦
sz is a dual group

for Ĥz , we conclude that indeedHz is an extension of WF by Ĥz .
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4. The extension 1 → Ĥz → Hz → WF → 1 is split: We know that the
extension 1 → Ĥ → H → WF → 1 is split, so we may choose a splitting
WF → H, which we then compose with ξ : H → LG and obtain an
element a ∈ Z1(WF , Ĝ). According to Corollary 5.13, a lifts to an element
az ∈ Z1(WF , Ĝz), which we interpret as an L-homomorphism WF →
LGz . Its image is contained in the image of ξz . But ξz is an isomorphism
of topological groups onto its image, due to the local- and σ-compactness
ofHz , so in the end we obtain a continuousL-homomorphismWF → Hz ,
which is just the splitting we were looking for.

5. ṡz ∈ Z(̂̄Hz)
+: It is enough to show sz ∈ Z(Ĥz)

Γ. Consider the exact
sequence of WF -modules

1→ Ĉ → Z(Ĥz)→ Z(Ĥ)→ 1.

Then s ∈ Z(Ĥ)Γ maps to an element of H1(WF , Ĉ) whose image in
H1(WF , Z(Ĥz)) is trivial. By Lemma 5.10 and the already proved fact
that H → Hz is a pseudo-z-embedding, we conclude that the image of s
in H1(WF , Ĉ) is trivial, so s can be lifted to an element of Z(Ĥz)

Γ. But
the set of such lifts is a torsor under ĈΓ ⊂ Z(Ĥz)

Γ, hence sz ∈ Z(Ĥz)
Γ as

claimed.

6. The L-action of WF on Ĥz obtained from the extension Hz is the same
as the L-action coming from the rational structure of Hz : We have to
show that the image of σ ∈ Γ in Out(Hz) corresponds via the canonical
isomorphism Out(Hz) ∼= Out(Ĥz) to the image of Ad(gσ) for some gσ ∈
LGz mapping to σ. For this it is enough to show that the action of σ on
R∨(THz , Hz) is translated via the isomorphism THz → TGz to the action
of an element of w · σ, where w belongs to the Weyl group of TGz . The
vertical arrows in the diagram

THz // TGz

TH //

OO

TG

OO

induce bijections of root- and coroot-systems and Weyl-groups. Since the
assertion holds for the bottom map, it also holds for the top.

There is an inverse construction as well. Let ėz = (Hz,Hz, ṡz, ξz) be a refined
endoscopic datum for Gz . Then ξz(Ĥz) contains the central torus Ĉ and this
gives an injection Ĉ → Ĥz , which dually provides a surjection Hz → C.
Let H = ker(Hz → C), Ĥ = cok(Ĉ → Ĥz), let ṡ be the image of ṡz under
Z(̂̄Hz) → Z( ̂̄H) and ξ be the composition of ξz with the canonical projection
Ĝz → Ĝ. One checks that (H,H, ṡ, ξ) is a refined endoscopic datum for G in a
way similar to the above argument.

Fact 5.15. The above constructions provide mutually inverse bijections between the
isomorphism classes of refined endoscopic data for G and those for Gz .
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Proof. The assignment (Hz,Hz, ṡz, ξz) 7→ (H,H, ṡ, ξ) is a map between the
two sets of isomorphism classes. We claim that the assignment (H,H, ṡ, ξ) →
(Hz,Hz, ṡz, ξz) is also a map. We needed to choose a lift ṡz of ṡ. The set of
choices is a torsor under ĈΓ, which is a connected subgroup of Z(̂̄Hz)

+ (be-
cause 1 = H1(F,C) = π0(ĈΓ)D). The image of ṡz in π0(Z(̂̄Hz)

+) is thus
uniquely determined by ṡ and the claim is proved. Checking that the two maps
are inverses of each other is straightforward.

Lemma 5.16. Let (H, s,H, ξ) and (Hz, sz,Hz, ξz) correspond under the mutually
inverse bijections. Then either both are elliptic or both are not.

Proof. By construction of Hz the left square below is cocartesian, and applying
the left-exact functor X∗(−)Γ we obtain the right square below, which is then
cartesian.

Z(G) //

��

Z(H)

��

X∗(Z(Hz))
Γ //

��

X∗(Z(H))Γ

��
Z(Gz) // Z(Hz) X∗(Z(Gz))

Γ // X∗(Z(G))Γ

The top map of the right diagram provides an isomorphism

ker
(
X∗(Z(Hz))

Γ → X∗(Z(Gz))
Γ
)
→ ker

(
X∗(Z(H))Γ → X∗(Z(G))Γ

)
The lemma now follows from the fact that ellipticity ofHz resp. H is equivalent
to the corresponding kernel being finite.

We continue with ėz = (Hz,Hz, ṡz, ξz) and ė = (H,H, ṡ, ξ) corresponding
under the mutually inverse bijections. Let zz = (Hz,1, ξz,1) be a z-pair for
ėz . Thus Hz,1 → Hz is a z-extension, whose kernel we denote by K, and
ξz,1 : Hz → LHz,1 is an L-embedding extending the embedding Ĥz → Ĥz,1.
From zz we can construct a z-pair z = (H1, ξ1) for ė as follows: H1 is the fiber
product of Hz,1 and H over Hz , and ξ1 : H → LH1 is the unique factoring of

Hz
ξz,1−→ LHz,1 → LH1

throughHz → H.

Lemma 5.17.

1. H1 → Hz,1 is a pseudo-z-embedding with cokernel C.

2. H1 → H is a z-extension with kernel K.

3. (H1, ξ1) is a z-pair for ė and the map (Hz,1, ξz,1) 7→ (H1, ξ1) from the set of z-
pairs for ėz to the set of z-pairs for ė has fibers which are torsors for Z1(WF , Ĉ)
acting on the second component of the z-pairs by pointwise multiplication.
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Proof. By construction we have the diagram

1

��

1

��
1 // K // H1

//

��

H //

��

1

1 // K // Hz,1
//

��

Hz
//

��

1

C

��

C

��
1 1

We see thatH1 embeds intoHz,1 with abelian quotient, so the derived group of
H1 equals that of Hz,1. This shows that H1 is a z-extension of H . To prove that
H1 → Hz,1 is a pseudo-z-embedding, we only need to show that Hz,1(F ) →
C(F ) is surjective. This follows from the surjectivity of Hz,1(F ) → Hz(F )
(which relies on the fact that K is induced), and the surjectivity of Hz(F ) →
C(F ) (as H → Hz is a pseudo-z-embedding). The final point now follows eas-
ily from the fact that the kernels of Hz → H and LHz,1 → LH1 are both equal
to Ĉ.

Recall that we are assuming that G, and hence also Gz , is quasi-split. The
bijection of Fact 5.7 extends to a bijection between the sets of splittings of G
and Gz , as well as a bijection between the sets of Whittaker data for G and Gz .

Lemma 5.18. Let ėz = (Hz,Hz, ṡz, ξz) and ė = (H,H, ṡ, ξ) be refined endoscopic
data for Gz and G, whose equivalence classes correspond via the bijections of Fact
5.15. Let zz = (Hz,1, ξz,1) and z = (H1, ξ1) be z-pairs for ėz and ė, corresponding as
in Lemma 5.17. Let ψ : G→ G′ and ψz : Gz → G′z be compatible inner twists, as in
Fact 5.9. Let x ∈ Z1(u → W,Z → G) map to ψ−1σ(ψ) ∈ Z1(Γ, Gad). Let wz and
w be Whittaker data that correspond to each other.

If γ1 ∈ H1(F ) and δ′ ∈ G′(F ) are strongly G-regular elements, then

∆′[wz, ėz, zz, (ψz, x)](γ1, δ
′) = ∆′[w, ė, z, (ψ, x)](γ1, δ

′).

Proof. Choose δ ∈ G(F ) which is stably-conjugate to δ′ and let γ be the image
of γ1 in H(F ). Let T ′ = Cent(δ′, G′), T = Cent(δ,G), TH1 = Cent(γ1, H1),
TH = Cent(γ,H). Each of the groups G, G′, H , H1 has the corresponding
pseudo-z-inflation, which we denote by a subscript z, and each of the tori T ,
T ′, TH , TH1 has a torus corresponding under the bijections of Fact 5.7, which
we will also denote by a subscript z.

We now recall from (4.4) and [KS, (5.5.2)] that ∆′[w, ė, z, (ψ, x)](γ1, δ
′) is given

by
ε∆−1

I (γ, δ)∆II(γ, δ)∆III2(γ1, δ)∆IV (γ, δ)〈inv[x](δ, δ′), ṡγ,δ〉.

Note that we are dealing with untwisted endoscopy and ∆new
I in [KS] is the

same as the original ∆I . We will now discuss the individual terms and show
that they match the corresponding terms in ∆′[wz, ėz, zz, (ψz, x)](γ1, δ

′).
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Write w = (B0, χ0), where B0 ⊂ G is a Borel subgroup and χ0 is a generic
character of the F -points of the unipotent radical U0 of B0. Extend B0 to a
pinning spl = (T0, B0, {Xα}) of G and choose a character χF : F → C×
so that χ0 corresponds to spl and χF as in [KS99, §5.3]. Let TH0 ⊂ H be a
minimal Levi subgroup. Then ε is the Langlands normalization of the ε-factor
εL(X∗(T0)⊗ C−X∗(TH0 )⊗ C, ψF ). Analogously, the ε-factor in the definition
of ∆′[wz, ėz, zz, (ψz, x)](γ1, δ

′) is given by εL(X∗(T0,z)⊗C−X∗(THz
0 )⊗C, ψF ),

where T0,z ⊂ Gz and THz
0 ⊂ Hz correspond to T0 and TH0 as in Fact 5.7. But

then T0,z is an extension of C by T0 and THz
0 is an extension of C by TH0 . The

two epsilon factors above are thus equal, due to their additivity [Tat79, (3.4.2)].

For the discussion of the remaining factors, we fix the admissible isomorphism
TH → T that sends γ to δ. It extends uniquely to an admissible isomorphism
THz → Tz . We furthermore choose a-data and χ-data for T . Since they depend
only on the roots, they work equally well for Tz .

The factor ∆I(γ, δ) depends on the admissible isomorphism, the splitting spl
and a-data. Since its construction involves only the preimage of T inGsc, which
is the same as the preimage of Tz in Gz,sc = Gsc, we see that this factor matches
the corresponding factor for Gz .

The factors ∆II and ∆IV are also immediately seen to match their counterparts
in Gz , because they only depend on the chosen χ-data and the root-values of δ.

The factor ∆III2(γ1, δ) needs closer attention. We recall briefly its construc-
tion, following loosely [KS99, §4.4] but specializing to the non-twisted setting
at hand. We have chosen χ-data for T , which we transport via the chosen
admissible isomorphism TH → T to obtain χ-data for TH . The surjection
TH1 → TH induces an L-embedding LT → LTH1 . It also induces a bijec-
tion on the root systems, so we also obtain χ-data for TH1 . These χ-data
provide, according to the procedure of [LS87, §2.6], admissible L-embeddings
LT → LG and LTH1 → LH1. The admissible isomorphism TH → T induces
an L-isomorphism LT → LTH . We obtain the following diagram

LH1
LTH1? _oo LTH1oo LTH? _oo

H
?�

ξ1

OO

� � ξ // LG LT? _oo

∼=

OO (5.3)

The dotted arrow is defined to be the unique L-automorphism of LTH1 extend-
ing the identity on T̂H1 and making the diagram commutative. The restriction
of this L-automorphism to WF is then a Langlands parameter a : WF → LTH1

and
∆III2(γH1 , γ) = 〈a, γH1〉,

where 〈·, ·〉 is the Langlands duality pairing. The construction of the term ∆III2

contributing to ∆′[wz, ėz, zz, (ψz, x)](γ1, δ
′) is the same, but involves the analog

of diagram (5.3) where all objects and arrows have subscript z. This latter di-
agram surjects onto (5.3), with the kernel at each node being Ĉ. In particular,
we see that the composition of az : WF → LTHz,1 with the natural projection
LTHz,1 → LTH1 is equal to a. The functoriality of the pairing 〈·, ·〉 and the fact
that γ1 belongs to the subgroup TH1(F ) of THz,1(F ) now implies that the two
versions of ∆III2 agree.

The final term to be compared is 〈inv[x](δ, δ′), ṡγ,δ〉. Here inv[x](δ, δ′) ∈ H1(u→
W,Z → T ). It is a direct observation that mapping this element into H1(u →
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W,Z → Tz) gives the same result as mapping δ and δ′ into Tz(F ) and T ′z(F )
and then computing inv[x](δ, δ′). At the same time, tracing through the defi-
nition of ṡγ,δ we see that it is the image of ṡz,γ,δ under the projection ̂̄Tz → ̂̄T .
The functoriality of the duality pairing 〈−,−〉 completes the proof.

5.2 Comparison of LLCrig(ψ, xrig) and LLCrig(ψz, xrig)

We now assume that for all inner twists ψ̃ : G̃ → G̃′ of connected reductive
quasi-split groups with connected center, and all x̃rig ∈ Z1(u→W,Z(G̃)→ G̃)

lifting ψ̃−1σ(ψ̃), the statement LLCrig(ψ̃, x̃) holds. Furthermore, we assume the
following natural compatibility. If G̃ → G̃z is a pseudo-z-embedding into a
group G̃z with connected center and ψ̃z : G̃z → G̃′z is the inner twist compat-
ible with ψ̃ as in Fact 5.9, then for any tempered parameter ϕ̃z : LF → LG̃z
with corresponding ϕ̃ : LF → LG̃ restriction of representations provides a bi-
jection Πϕ̃z

(G̃′z) → Πϕ̃(G̃′) and this bijection is compatible with the bijection
π0(S+

ϕ̃z
) → π0(S+

ϕ̃ ) (see below for an argument about why the second map is
bijective).

Under this assumption, we will show that LLCrig(ψ, xrig) holds for any con-
nected reductive quasi-split groupGwith fixed Whittaker datum w, inner twist
ψ : G → G′, and xrig ∈ Z1(u → W,Z(G) → G) lifting ψ−1σ(ψ). For this, we
choose a pseudo-z-embeddingG→ Gz such thatGz has connected center. This
is possible by Corollary 5.3. Let wz be the Whittaker datum for Gz determined
by w. Let ψz : Gz → G′z be the inner twist corresponding to ψ as in Fact 5.9.

Let ϕ : LF → LG be a tempered Langlands parameter. Choose a tempered
Langlands parameter ϕz : LF → LGz lifting ϕ. It exists by Corollary 5.13. Let
Πϕz

(G′z) be the corresponding tempered L-packet. All elements of Πϕz
(G′z)

have the same central character and Fact 5.5 implies that restriction to G′(F )
provides an injective map Πϕz (G′z) → Πtemp(G′). Define Πϕ(G′) to be the im-
age of this map so that we obtain a bijection

Πϕz (G′z)→ Πϕ(G′). (5.4)

Applying Lemma 5.12 to each pseudo-z-embeddingGn → Gz,n and taking the
limit we obtain the exact sequence

1→ ĈΓ → S+
ϕz
→ S+

ϕ → 1.

Applying the right-exact functor π0 and noting that ĈΓ is connected we obtain
the isomorphism

π0(S+
ϕz

)→ π0(S+
ϕ ). (5.5)

From (5.4) and (5.5) we obtain the bijection

Irr(π0(S+
ϕ ), [xrig])→ Πϕ(G′). (5.6)

A-priori the packet Πϕ(G′) and the bijection (5.6) could depend on the choice
of lift ϕz of ϕ, as well as on the choice of z-embedding G→ Gz . We claim that
this is not the case. Indeed, any other lift of ϕ is of the form ϕz · ϕc for some
ϕc ∈ Z1(WF , Ĉ). Then πz 7→ πz ⊗ χc is a bijection Πϕz

(G′z) → Πϕz·ϕc
(G′z),

where χc : C(F ) → C× is the character corresponding to ϕc. This bijection is
compatible with the identity Sϕz = Sϕz·ϕc . Since χc restricts trivially to G′(F )
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we conclude that the packet Πϕ(G′) and the bijection (5.6) is indeed indepen-
dent of the choice of ϕz .

We will now argue that they are also independent of the choice of z-embedding.
If G → Gz and G → Gy are two z-embeddings, we construct as in Fact 5.6 a
common refinement Gx. Then G → Gx, Gz → Gx, and Gy → Gx, are pseudo-
z-embeddings and the center of Gx is connected. Choose ϕx : LF → LGx
lifting ϕ by Corollary 5.13 and let ϕz : LF → LGz and ϕy : LF → LGy be the
corresponding parameters. We have the commutative diagrams of bijections

π0(S+
ϕx

)

yy %%

Πϕx
(G′x)

xx &&
π0(S+

ϕy
)

%%

π0(S+
ϕz

)

yy

Πϕy (G′y)

&&

Πϕz (G′z)

xx
π0(S+

ϕ ) Πϕ(G′)

This together with the natural compatibility of LLCrig along the pseudo-z-
embeddings Gz → Gx and Gy → Gx assumed above implies that the set
Πϕ(G′) and the bijection (5.6) provided by Gz coincide with those provided
by Gy .

The sets Πϕ(G′) for various ϕ exhaust Πtemp(G′). Indeed, for any π ∈ Πtemp(G′)
we can find an extension of its central character to a unitary character χ :
Z(G′z)(F ) → C×. Then πz = π ⊗ χ is an extension of π to an element πz ∈
Πtemp(G′z), which by LLCrig(ψz, xrig) belongs to some packet Πϕz

(G′z). By con-
struction π then belongs to Πϕ(G′), where ϕ is the composition of ϕz with the
projection LGz → LG. The same argument also shows that the sets Πϕ(G′) for
various parameters ϕ are disjoint.

We will now argue that the character identity (4.6) holds for the packet Πϕ(G).
It will be more convenient to consider the following formulation

Θṡ
ϕ,xrig

(δ′) =
∑
γ1

∆′[w, ė, z, (ψ, xrig)](γ1, δ
′)∆IV (γ1, δ

′)−2Θ1
ξ1◦ϕ,1(γ1), (5.7)

which is equivalent to (4.6), as one sees using the Weyl integration formula.
Here δ′ ∈ G′(F ) is a strongly regular semi-simple element and γ1 runs over
the set of stable conjugacy classes of strongly regular semi-simple elements in
H1(F ).

According to the construction of Πϕ(G), the virtual character Θṡ
ϕ,xrig

is the re-
striction to G′(F ) of the virtual character Θṡ

ϕz,xrig
of the group G′z(F ) for any

lift ϕz of ϕ. In the same way, Θ1
ξ1◦ϕ,1 is the restriction to H1(F ) of the vir-

tual character Θ1
ξz,1◦ϕz,1

of the group Hz,1(F ). Lemma 5.18 implies that the
transfer factor ∆′[w, ė, z, (ψ, xrig)] remains unchanged if we pass from G′ to G′z .
In the proof we mentioned the much simpler statement that the factor ∆IV

also doesn’t change. Finally, the set of stable classes in Hz,1(F ) of the element
γ1 ∈ H1(F ) is the same as the set of stable classes in H1(F ). The identity (5.7)
thus follows from the corresponding identity for the parameter ϕz .

6 CHANGING THE RIGIDIFYING DATUM IN LLCRIG

In this section we will study the following question: Given an connected re-
ductive group G defined and quasi-split over F , an inner twist ψ : G → G′,
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and two elements x1,rig, x2,rig ∈ Z1(u → W,Z(G) → G) lifting ψ−1σ(ψ) ∈
Z1(Γ, Gad), what is the relationship between the statements LLCrig(ψ, x1,rig)
and LLCrig(ψ, x2,rig)? The answer to this question will be given by an explicit
relation between the two statements. This relation can be used either to switch
from one normalization to another in applications, or to deduce the validity of
one normalization from the validity of another as a step in the proof of LLCrig.
The latter situation will occur if one wants to deduce LLCrig from LLCiso us-
ing the results of the previous two sections, because not all elements xrig will
come fromB(G)bas orB(Gz)bas. This situation would also occur if one wants to
deduce LLCrig using the stabilized trace formula and the local-global passage
established in [Kal].

6.1 Description of H1(W,Z)

In [Kal16b] we studied the cohomology set H1(u → W,Z → G), where G is
an affine algebraic group, in particular a torus, and Z is a multiplicative finite
central subgroup. In order to understand how LLCrig(ψ, xrig) depends on the
choice of xrig, we will also need to understand the cohomology group H1(u→
W,Z → Z), where Z is a multiplicative finite algebraic group defined over F .
This cohomology group is the same as H1(W,Z) – the group of continuous
cohomology classes of the topological group W with values in the finite group
Z(F ).

Let S be a torus over F , Z ⊂ S a finite subgroup, and S̄ = S/Z. We write again
Y = X∗(S) and Ȳ = X∗(S̄). The following is part of [Kal16b, Diagram (3.6)],

1 // H1(Γ, Z)
Inf //

��

H1(u→W,Z → Z)
Res //

��

Hom(u, Z)Γ

1 // H1(Γ, S)
Inf // H1(u→W,Z → S)

Res //

��

Hom(u, Z)Γ

��
H1(Γ, S) // H1(Γ, S̄) //

��

H2(Γ, Z)

��
1 1

(6.1)

describing the relationship between H1(u → W,Z → S) and the usual coho-
mology groups H1(Γ, S) and H1(Γ, S̄). We have so far the following diagram
that is isomorphic to Diagram (6.1)

1 // Ĥ−2(Γ, Ȳ /Y ) //

��

? //

��

Ẑ−1(Γ, Ȳ /Y )

1 // Ĥ−1(Γ, Y ) // Ẑ−1(Γ,Ȳ )

B̂−1(Γ,Y )
//

��

Ẑ−1(Γ, Ȳ /Y )

��
Ĥ−1(Γ, Y ) // Ĥ−1(Γ, Ȳ ) // Ĥ−1(Γ, Ȳ /Y )

��
1

(6.2)
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Here we are using hats to denote Tate cohomology groups. Since Γ is not a
finite group, we must explain what we mean by that. We warn the reader
that we do not mean the Tate cohomology groups for profinite groups as de-
fined for example in [NSW08, Ch 1. §9]. Let A be a discrete Γ-module that
is finitely generated over Z. Then it is inflated from ΓE/F for some finite Ga-
lois extension E/F . For any finite Galois extension K/F containing E, the
identity map Ĉ−1(ΓE/F , A) = A = Ĉ−1(ΓK/F , A) respects the subgroups Ẑ−1

and B̂−1 and hence produces a map Ĥ−1(ΓE/F , A) → Ĥ−1(ΓK/F , A). We
declare Ĥ−1(Γ, A) to be the colimit of this system. It is easily seen that this
colimit stabilizes. As for degree (−2), assume further that A is finite and de-
fine Ĥ−2(Γ, A) to be equal to H1(Γ, A). This is the limit of the finite groups
Ĥ−2(ΓK/F , A) = H1(ΓK/F , A) with respect to the coinflation map. It is argued
in [Lan83, VI.1] that this limit stabilizes.

The isomorphism Ĥ−1(Γ, Y ) → H1(Γ, S) and its analog for S̄ are the usual

Tate-Nakayama isomorphisms. The isomorphism Ẑ−1(Γ,Ȳ )

B̂−1(Γ,Y )
→ H1(u→W,Z →

S) was constructed in [Kal16b, §4], where also the more elementary isomor-
phism Ẑ−1(Γ, Ȳ /Y )→ Hom(u, Z)Γ is discussed. The isomorphisms Ĥ−2(Γ, Ȳ /Y )→
H1(Γ, Z) and Ĥ−1(Γ, Ȳ /Y )→ H2(Γ, Z) are variants of Poitou-Tate duality and
are discussed in [Lan83, VI.1].

The purpose of this section is to demystify the question mark in Diagram (6.2)
and the arrows connecting with it. We claim that

? = Ĉ−2(Γ, Ȳ /Y )/B̂−2(Γ, Ȳ /Y ) = lim←− Ĉ
−2(ΓE/F , Ȳ /Y )/B̂−2(ΓE/F , Ȳ /Y ),

where again the limit is taken over all finite Galois extensions K/F through
which the action of Γ on Ȳ /Y factors, and the transition maps are given by
coinflation. In Diagram (6.2), the horizontal map going into this term is given
by the natural inclusion of Ẑ−2 into Ĉ−2, the horizontal map going out of this
term is given by the differential, and the vertical map going out of this term
is given by first lifting an element of ? to an element of C−2(ΓE/F , Ȳ ) and
then taking the differential. A simple computation shows that all these maps
respect the relevant transition maps in the direct and inverse systems involved
and that the diagram is commutative. It is also clear that the outer rim of that
diagram, i.e. the sequence

1→ Ĥ−2(Γ, Ȳ /Y )→ Ĉ−2(Γ, Ȳ /Y )

B̂−2(Γ, Ȳ /Y )
→ Ẑ−1(Γ, Ȳ /Y )→ Ĥ−1(Γ, Ȳ /Y )→ 1,

(6.3)
is exact. The latter corresponds to the exactness of the part of Diagram (6.1)
corresponding to the inf-res sequence [Kal16b, (3.5)] for G = Z.

Recall Ĉ−2(ΓE/F , Ȳ /Y ) = Maps(ΓE/F , Ȳ /Y ) and that given such a (−2)-co-
chain f , its differential is df =

∑
σ∈ΓE/F

σ−1f(σ)− f(σ) ∈ Ĉ−1(ΓE/F , Ȳ /Y ) =

Ȳ /Y . Recall further that the coinflation map sends f ′ ∈ Maps(ΓK/F , Ȳ /Y )
to f ∈ Maps(ΓE/F , Ȳ /Y ) given by f(σ) =

∑
σ′ 7→σ f

′(σ′). From this formula
it is obvious that coinflation is surjective. Moreover, since the first, third, and
fourth (co)limits of the above four-term exact sequence all stabilize, so must
also the second term.

Next we define an isomorphism

Ĉ−2(Γ, Ȳ /Y )/B̂−2(Γ, Ȳ /Y )→ H1(W,Z). (6.4)
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We choose S so that H1(Γ, S̄) = 1 and the map H1(Γ, Z) → H1(Γ, S) is bijec-
tive. This is possible according to Proposition 5.2. We claim that then the map
H1(W,Z)→ H1(u→ W,Z → S) is also bijective. Indeed, its surjectivity is im-
mediate from H1(Γ, S̄) = 1. Its kernel is equal to the image of S̄(F ) = S̄(F )W

in H1(W,Z) under the connecting homomorphism. This is the same as the
inflation of the kernel of H1(Γ, Z)→ H1(Γ, S), which is trivial. A similar argu-
ment shows that the map Ĉ−2(Γ, Ȳ /Y )/B̂−2(Γ, Ȳ /Y )→ Ẑ−1(Γ, Ȳ )/B̂−1(Γ, Y )
is bijective. We now define (6.4) as the composition of the three bijections

Ĉ−2(Γ, Ȳ /Y )

B̂−2(Γ, Ȳ /Y )
→ Ẑ−1(Γ, Ȳ )

B̂−1(Γ, Y )
→ H1(u→W,Z → S)→ H1(W,Z). (6.5)

We must now argue that this composition is independent of the choice of S
and is functorial in Z. For independence of S, let Z → S1 and Z → S2 be
two choices of S. Let S3 be the push-out of the diagram S1 ← Z → S2, which
we think of as a quotient of S1 × S2. Then Z → S3 given by z 7→ (z, 1) =
(1, z) is a third embedding with the same properties. Moreover, we have the
embeddings S1 → S3 and S2 → S3 given by s1 7→ (s1, 1) and s2 7→ (1, s2). The
first one leads to the exact sequence

1→ S1 → S3 → S̄2 → 1

from which, by taking W -cohomology, we obtain the exact sequence

S3(F )→ S̄2(F )→ H1(u→W,Z → S1)→ H1(u→W,Z → S3)→ H1(Γ, S̄2).

Now S3(F ) contains S2(F ) which surjects onto S̄2(F ), while H1(Γ, S̄2) = 1,
and we conclude that H1(u→ W,Z → S1)→ H1(u→ W,Z → S3) is bijective.
In the same way we conclude thatH1(u→W,Z → S2)→ H1(u→W,Z → S3)
is bijective. This, together with the fact that all maps in (6.5) are functorial in S
proves that S1 and S2 lead to the same isomorphism (6.4).

The proof of functoriality of (6.4) in Z is similar. Given Z1 → Z2, choose em-
beddings Z1 → S1 and Z2 → S2 and take S3 to be the push-out of S1 ← Z1 →
S2. Then we obtain the exact sequence

1→ Z2 → S3 → S̄1 × S̄2 → 1.

The map S3(F )→ S̄2(F )×S̄1(F ) is surjective, because its composition with the
obvious map S1(F )×S2(F )→ S3(F ) gives the surjective map S1(F )×S2(F )→
S̄1(F ) × S̄2(F ). Moreover, H1(Γ, S̄1 × S̄2) = 1. Thus we may construct the
isomorphism (6.4) for Z2 by using (6.5) with the embedding Z2 → S3. But
we now have the morphism [Z1 → S1] → [Z2 → S3] of embeddings and the
functoriality of (6.4) follows from the functoriality of the three arrows in (6.5).

Although we will not need this, we remark that there is an explicit formula
for the isomorphism (6.4) that does not involve a choice of S. In order to give
it, we will use the notation established in [Kal16b, §4.4,§4.5,§4.6]. In particu-
lar we have the exhaustive tower of finite Galois extensions Ek/F , a co-final
sequence nk ∈ N (which we may specify to be nk = [Ek : F ]), a 1-cocycle
ck ∈ Z2(ΓEk/F , E

×
k ) representing the fundamental class, and an nk-th root map

lk : F
× → F

×
. This data leads to explicit elements ξk ∈ Z2(Γ, uEk/F,nk

) given
by [Kal16b, (4.7)] and thus to explicit extensions Wk = uEk/F,nk

�ξk Γ. There
are also surjective transition maps Wk+1 → Wk and the limit of this system is
W .

In order to give the intrinsic formula of (6.4), we first replace the finite Γ-
module Ȳ /Y , which a-priori depends on the choice of S, by the isomorphic
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module A∨ = Hom(X∗(Z),Q/Z). Let [λ̄] ∈ Ĉ−2(Γ, A∨). Choose k large
enough so that exp(Z)|nk and let [λ̄k] ∈ Ĉ−2(ΓEk/F , A

∨) be the image of [λ̄].
Then the map

z[λ̄k] : Wk → Z(F ), x� σ 7→ φd[λ̄k],k(x) · (−dlkck tEk/F [λ̄k])(σ)

is an element of Z1(Wk, Z). In the first factor on the right we are using the
isomorphism [A∨]NEk/F → Hom(uEk/F,nk

, Z)Γ discussed in the beginning of
[Kal16b, §4.6] to obtain φd[λ̄k],k. In the second factor on the right tEk/F is the
unbalanced cup-product of [Kal16b, §4.3] and we are using the isomorphism
A∨ = Hom(µnk

, Z). One can check that the inflation of the class [z[λ̄k]] to an
element [z[λ̄]] ∈ H1(W,Z) is independent of the choice of k and that [λ̄] 7→ [z[λ̄]]
is an explicit realization of (6.4). This formula for z[λ̄k] follows directly from
(6.5) and the corresponding formula for zλ̄,k from the beginning of [Kal16b,
§4.6]. We will however not need it and shall therefore skip the details.

6.2 From isomorphism to duality

In this section we are going to explicitly describe the Pontryagin dual of the
commutative diagram (6.2).

Let again S be a torus over F , Z ⊂ S a finite subgroup, and S̄ = S/Z. Let
Y = X∗(S) and Ȳ = X∗(S̄). We consider the dual tori Ŝ = Hom(Y,C×) and̂̄S = Hom(Ȳ ,C×). They form the isogeny

1→ Ẑ → ̂̄S → Ŝ → 1

with Ẑ = Hom(Ȳ /Y,C×) being the Pontryagin dual of Z. We claim that the
Pontryagin dual of Diagram (6.2) is the following diagram.

1 H1(Γ, Ẑ)oo Z1(Γ, Ẑ)oooo Ĉ0(Γ,Ẑ)

B̂0(Γ,Ẑ)

−doo

1 Ĥ0(Γ, Ŝ)oo

−δ

OO

π0([̂̄S]+)oo

−d

OO

Ĉ0(Γ,Ẑ)

B̂0(Γ,Ẑ)
oo

Ĥ0(Γ, Ŝ) Ĥ0(Γ, ̂̄S)oo

OO

Ĥ0(Γ, Ẑ)oo

OO

(6.6)

Here we have defined Ĥ0(Γ,−) in the same way as we defined Ĥ−1(Γ,−) in
the previous section – as the colimit with respect to the transition maps induced
by the identity Ĉ0(ΓE/F , A) = A = Ĉ0(ΓK/F , A) for any tower of finite Galois
extensions K/E/F with A being inflated from ΓE/F .

In the middle term of the diagram [̂̄S]+ is again the preimage in ̂̄S of ŜΓ. We
have written d for the obvious differentials, and δ for the connecting homo-
morphism. We are forced to place minus signs in order to obtain the correct
duality, as we shall now see.

To describe how each term of this diagram is the Pontryagin dual of the cor-
responding term in Diagram (6.2), we begin with the term involving Ŝ and ̂̄S.
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We have the natural pairing Y ⊗ Ŝ → C×. If we write N for the norm map of
the action of ΓE/F , where E/F is any finite Galois extension splitting S, then
the kernel of N in Y is the exact annihilator of the image of N in Ŝ, the latter
happening to be ŜΓ,◦. At the same time, IE/FY is the exact annihilator of ŜΓ.
This explains why the bottom left square in Diagram (6.6) is dual to the bot-
tom left square in Diagram (6.2). To describe the terms involving Ẑ, we use the
following.

Lemma 6.1. Let ∆ be a finite group and let A and B be finite ∆-modules in duality.
For any i ≥ 0, cup product induces perfect duality of finite groups

Ĉ−i−1(∆, A)⊗ Ĉi(∆, B)→ Ĉ−1(∆,Q/Z) = Q/Z

under which Ẑ−i−1(∆, A)⊥ = B̂i(∆, B) and B̂−i−1(∆, A)⊥ = Ẑi(∆, B). If ∆′ →
∆ is a surjection of finite groups, then

a ∪ inf(b) = inf(coinf(a) ∪ b), a ∈ Ĉ−i−1(∆′, A), b ∈ Ĉi(∆, B).

Proof. The perfect duality and the compatibility with inflation and coinflation
can be seen by a direct computation using the formula for the cup product. The
statement about annihilators comes from the formula da ∪ b+ (−1)i+1a ∪ db =

d(a ∪ b) and the fact that B̂−1(∆,Q/Z) = 0.

This lemma shows that each term in Diagram (6.6) involving Ẑ is dual to the
corresponding term in Diagram (6.2). To show commutativity, we reinterpret
the natural pairing Y ⊗ Ŝ → C× as the pairing Ĉ−1(ΓE/F , Y )⊗ Ĉ0(ΓE/F , Ŝ)→
Ĉ−1(ΓE/F ,C×) given by the cup-product, where E/F is any finite Galois ex-
tension splitting S. The commutativity of the diagram now follows from the
formula da ∪ b + (−1)i+1a ∪ db = d(a ∪ b) and the fact that B̂−1(∆,Q/Z) = 0.
The occurrence of (−1)i+1 in this cup-product formula is what forces the ap-
pearance of the minus-signs in Diagram (6.6).

6.3 Switching between normalizations

We will now discuss the effect of changing the rigidifying element xrig of the
rigid inner twist (ψ, xrig) on the statement LLCrig(ψ, xrig). Let ψ : G→ G′ be an
inner twist and x1,rig, x2,rig ∈ Z1(u → W,Z(G) → G) be two elements lifting
ψ−1σ(ψ) ∈ Z1(Γ, Gad). Given a tempered Langlands parameter ϕ : LF → LG
we have the statements LLCrig(ψ, x1,rig) and LLCrig(ψ, x2,rig), each of which
leads to one of the two bijections

Irr(π0(S+
ϕ ), [x1,rig])→ Πϕ(G′)← Irr(π0(S+

ϕ ), [x2,rig]).

We will now describe an explicit bijection

Irr(π0(S+
ϕ ), [x1,rig])→ Irr(π0(S+

ϕ ), [x2,rig]) (6.7)

and then argue that this bijection is compatible with the above two bijections
in the obvious way.

For this let n be large enough so that x1,rig, x2,rig ∈ Z1(u → W,Zn → G). Then
there exists y ∈ Z1(W,Zn) with x2,rig = y · x1,rig. We have the exact sequence

1→ Ẑn → Ĝn → Ĝ→ 1,
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where we have defined Ẑn to be the kernel of the projection Ĝn → Ĝ, which
is at the same time the Pontryagin dual of Zn. On this sequence we have an
action of LF via Ad ◦ ϕ. Since each element of Irr(π0(S+

ϕ ), [xi,rig]) kills the

kernel of ̂̄G → Ĝn, we may replace S+
ϕ with its image in Ĝn, which we do

without change in notation. We have S+,◦
ϕ ⊂ Z0(LF , Ĝn), which implies that

the differential d : C0(LF , Ĝn)→ C1(LF , Ĝn), when restricted to the subgroup
S+
ϕ , factors through π0(S+

ϕ ) and takes image in Z1(LF , Ẑn). The action of LF
on Ẑn by Ad ◦ ϕ is inflated from WF and is the same as the action of WF on
Ẑn coming from the Γ-structure on ̂̄G. Moreover, since Ẑn is finite, we have
Z1(LF , Ẑn) = Z1(WF , Ẑn) = Z1(Γ, Ẑn). The differential thus leads to a group
homomorphism d : π0(S+

ϕ ) → Z1(Γ, Ẑn). The element [y] ∈ H1(W,Zn) pro-
vides a character on Z1(Γ, Ẑn) as discussed in Subsection 6.2. Via the negative
differential −d, we pull this character to a linear character π0(S+

ϕ ) → C×. The
bijection (6.7) is given by tensor product with this linear character.

Lemma 6.2. Assume the validity of LLCrig(ψ, x2,rig). Then the composition of the
bijection Irr(π0(S+

ϕ ), [x2,rig])→ Πϕ(G′) with the bijection (6.7) is the unique bijection
Irr(π0(S+

ϕ ), [x1,rig])→ Πϕ(G′) that makes LLCrig(ψ, x1,rig) true.

Proof. Consider the left hand side of (4.6) for the two rigid inner twists (ψ, x1,rig)

and (ψ, x2,rig). Let us denote the two functions occurring there by f ė,1 and f ė,2.
The condition of matching orbital integrals together with Lemma 6.3 imply
f ė,2 = 〈[y], (−d)ṡ〉f ė,1. Looking at the right hand side of (4.6) and its definition
(4.5) we conclude that LLCrig(ψ, x1,rig) is equivalent to the equation∑

π∈Πϕ(G′)

〈π̇, ṡ〉2Θπ̇ = 〈[y], (−d)ṡ〉
∑

π∈Πϕ(G′)

〈π̇, ṡ〉1Θπ̇,

where we have inserted the subscripts 1 and 2 to distinguish between the two
pairings coming from the two statements LLCrig(ψ, x1,rig) and LLCrig(ψ, x2,rig).
The linear independence of the characters of tempered representations ofG′(F )
imply 〈π̇, ṡ〉2 = 〈[y], (−d)ṡ〉〈π, ṡ〉1. Since this is true for all ṡ ∈ π0(S+

ϕ ) we are
done.

In order to complete the proof of Lemma 6.2 we must state and prove Lemma
6.3, which tells us how the transfer factor (4.4) changes when we switch from
x1,rig to x2,rig. For this we take a second look at the complex number 〈[y], (−d)ṡ〉.
It can be reinterpreted as follows. Let ė = (H,H, ṡ, ξ) be the refined endo-
scopic datum associated to (ϕ, ṡ), as explained in Subsection 4.1. We map
Zn under Z(G) → Z(H) and form H̄ = H/Zn. If we restrict the differential
d : C0(Γ, Z( ̂̄H)) → C1(Γ, Z( ̂̄H)) to the subgroup Z( ̂̄H)+ ⊂ C0(Γ, Z( ̂̄H)), then
it kills the connected component Z( ̂̄H)+,◦ = Z( ̂̄H)Γ,◦ ⊂ Z0(Γ, Z( ̂̄H)) and its
image belongs to Z1(Γ, Ẑn). We can thus map the element ṡ ∈ π0(Z( ̂̄H)+) of
the refined endoscopic datum ė under the negative of this differential and obtain
an element (−d)ṡ ∈ Z1(Γ, Ẑn). We can then pair this element with the class of y
inH1(W,Zn) using the duality discussed in Section 6.2 and obtain the complex
number 〈[y], (−d)ṡ〉. Of course, this coincides with the previous definition of
〈[y], (−d)ṡ〉, but this interpretation makes the following lemma independent of
the previous discussion.

Lemma 6.3. We have

∆′[w, ė, z, (ψ, x2,rig)] = 〈[y], (−d)ṡ〉∆′[w, ė, z, (ψ, x1,rig)].
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Proof. Let γ1 ∈ H1,G-sr(F ) and δ′ ∈ G′sr(F ) be a pair of related elements and fix
δ ∈ Gsr(F ) stably conjugate to δ′. Then according to (4.4) we have

∆′[w, ė, z, (ψ, x2,rig)](γ1, δ
′)

∆′[w, ė, z, (ψ, x1,rig)](γ1, δ′)
=
〈inv[x2,rig](δ, δ′), ṡγ,δ〉
〈inv[x1,rig](δ, δ′), ṡγ,δ〉

.

Both inv[x2,rig](δ, δ′) and inv[x1,rig](δ, δ′) are elements of H1(u → W,Zn →
S), where S ⊂ G is the centralizer of δ. The difference inv[x2,rig](δ, δ′) −
inv[x1,rig](δ, δ′) is equal to the image of [y] ∈ H1(W,Zn). It follows that the right
hand side above is equal to 〈[y], ṡγ,δ〉. According to Diagram (6.6), we would
get the same result if we mapped ṡγ,δ ∈ π0([̂̄S]+) to the group Z1(Γ, Ẑn) via−d
and then paired the result with [y] ∈ H1(W,Zn). The image of ṡγ,δ in Z1(Γ, Ẑn)

is the same as the image of ṡ under the differential−d : π0(Z( ̂̄H)+)→ Z1(Γ, Ẑn)
and we see that the right hand side is equal to 〈[y], (−d)ṡ〉, as claimed.
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en théorie de Hodge p-adique, preprint.

[Kal] Tasho Kaletha, Global rigid inner forms and multiplicities of discrete au-
tomorphic representations, arXiv:1501.01667.

[Kal14] , Supercuspidal L-packets via isocrystals, Amer. J. Math. 136
(2014), no. 1, 203–239. MR 3163358

[Kal15] , Epipelagic L-packets and rectifying characters, Invent. Math.
202 (2015), no. 1, 1–89. MR 3402796

[Kal16a] , The local Langlands conjectures for non-quasi-split groups, Fam-
ilies of automorphic forms and the trace formula, Simons Symp.,
Springer, [Cham], 2016, pp. 217–257. MR 3675168

[Kal16b] , Rigid inner forms of real and p-adic groups, Ann. of Math. (2)
184 (2016), no. 2, 559–632. MR 3548533

[KMSW] Tasho Kaletha, Alberto Minguez, Sug Woo Shin, and Paul-James
White, Endoscopic classification of representations: Inner forms of unitary
groups, arXiv:1409.3731.

[Kot] Robert E. Kottwitz, B(G) for all local and global fields, arXiv:1401.5728.

[Kot83] , Sign changes in harmonic analysis on reductive groups, Trans.
Amer. Math. Soc. 278 (1983), no. 1, 289–297. MR 697075 (84i:22012)

[Kot84] , Stable trace formula: cuspidal tempered terms, Duke Math. J. 51
(1984), no. 3, 611–650. MR 757954 (85m:11080)

38



[Kot85] , Isocrystals with additional structure, Compositio Math. 56
(1985), no. 2, 201–220. MR 809866 (87i:14040)

[Kot97] , Isocrystals with additional structure. II, Compositio Math. 109
(1997), no. 3, 255–339. MR 1485921 (99e:20061)

[KS] Robert E. Kottwitz and Diana Shelstad, On splitting invariants and
sign conventions in endoscopic transfer, arXiv:1201.5658.

[KS99] , Foundations of twisted endoscopy, Astérisque (1999), no. 255,
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