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Abstract

We present different statements of the local Langlands conjectures for
non-quasi-split groups that currently exist in the literature and provide an
overview of their historic development. Afterwards, we formulate the con-
jectural multiplicity formula for discrete automorphic representations of
non-quasi-split groups.
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1 Motivation and review of the quasi-split
case

1.1 The basic form of the local Langlands conjecture
Let F be a local field of characteristic zero (see Subsection 1.6 for a brief
discussion of this assumption) and let G be a connected reductive alge-
braic group defined over F . A basic problem in representation theory is to
classify the irreducible admissible representations of the topological group
G(F ). The Langlands classification reduces this problem to that of classi-
fying the tempered irreducible admissible representations of G(F ), whose
set of equivalence classes will be denoted by Πtemp(G). In this paper, we
will focus exclusively on tempered representations.

The local Langlands conjecture, as outlined for example in [Bor79], pro-
poses a partition of this set indexed by arithmetic objects that are closely
related to representations of the absolute Galois group Γ of F . More pre-
cisely, let WF be the Weil group of F . Then

LF =

{
WF , F archimedean
WF × SU2(R), F non-archimedean

is the local Langlands group of F , a variant of the Weil-Deligne group sug-
gested in [Lan79a, p.209] and [Kot84, p.647]. Let Ĝ be the connected com-
plex Langlands dual group of G, as defined for example in [Bor79, §2] or
[Kot84, §1], and let LG = Ĝ oWF be the Weil-form of the L-group of G.
Let Φtemp(G) be the set of Ĝ-conjugacy classes of tempered admissible L-
homomorphisms LF → LG. We recall from [Lan83, IV.2], see also [Bor79,
§8], that an L-homomorphism is a homomorphism φ : LF → LG that
commutes with the projections to WF of its source and target. It is called
admissible if it is continuous and sends elements ofWF to semi-simple ele-
ments of LG. It is called tempered if its image projects to a bounded subset
of Ĝ.

The basic form of the local Langlands conjecture is the following.

Conjecture A. 1. There exists a map

LL : Πtemp(G)→ Φtemp(G), (1)

with finite fibers Πφ(G) = LL−1(φ).

2. The fiber Πφ(G) is empty if and only if φ is not relevant, i.e. its image is
contained in a parabolic subgroup of LG that is not relevant for G.
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3. If φ ∈ Φtemp(G) is unramified, then each π ∈ Πφ(G) is Kπ-spherical
for some hyperspecial maximal compact subgroup Kπ and for every such K
there is exactly oneK-spherical π ∈ Πφ(G). The correspondence Πφ(G)↔
φ is given by the Satake isomorphism.

4. If one element of Πφ(G) belongs to the essential discrete series, then all
elements of Πφ(G) do, and this is the case if and only if the image of φ is not
contained in a proper parabolic subgroup of LG (or equivalently in a proper
Levi subgroup of LG).

5. If φ ∈ Φtemp(G) is the image of φM ∈ Φtemp(M) for a proper Levi sub-
group M ⊂ G, then Πφ(G) consists of the irreducible constituents of the
representations that are parabolically induced from elements of ΠφM (M).

There are further expected properties, some of which are listed in [Bor79,
§10] and are a bit technical to describe here. This basic form of the local
Langlands conjecture has the advantage of being relatively easy to state. It
is however insufficient for most applications. What is needed is the abil-
ity to address individual representations of G(F ), rather than finite sets
of representations. Ideally this would lead to a bijection between the set
Πtemp(G) and a refinement of the set Φtemp(G). Moreover, one needs a
link between the classification of representations of reductive groups over
local fields and the classification of automorphic representations of reduc-
tive groups over number fields. Both of these are provided by the refined
local Langlands conjecture.

1.2 The refined local Langlands conjecture for quasi-
split groups 1
Formulating the necessary refinement of the local Langlands conjecture is
a non-trivial task. We will begin with the case when G is quasi-split, in
which a statement has been known for some time.

Given φ ∈ Φtemp(G), we consider the complex algebraic group Sφ =

Cent(φ(LF ), Ĝ). The arguments of [Kot84, §10] show that S◦φ is a reduc-
tive group. Let S̄φ = Sφ/Z(Ĝ)Γ. The first refinement of the basic local
Langlands conjecture can now be stated as follows.

Conjecture B. There exists an injective map

ι : Πφ → Irr(π0(S̄φ)), (2)

which is bijective if F is p-adic.

We have denoted here by Irr the set of equivalence classes of irreducible
representations of the finite group π0(S̄φ). Various forms of this refinement
appear in the works of Langlands and Shelstad, see for example [She79],
as well as Lusztig [Lus83].

A further refinement rests on a conjecture of Shahidi stated in [Sha90,
§9]. To describe it, recall that a Whittaker datum for G is a G(F )-conjugacy
class of pairs (B,ψ), whereB is a Borel subgroup ofG defined over F with
unipotent radical U , and ψ is a non-degenerate character U(F ) → C×,
i.e. a character whose restriction to each simple relative root subgroup of
U is non-trivial. When G is adjoint, it has a unique Whittaker datum. In
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general, there can be more than one Whittaker datum, but there are always
only finitely many. Given a Whittaker datum w = (B,ψ), an admissible
representation π is called w-generic if HomU(F )(π, ψ) 6= 0. A strong form
of Shahidi’s conjecture is the following.

Conjecture C. Each set Πφ(G) contains a unique w-generic constituent.

This allows us to assume, as we shall do from now on, that ι maps
the unique w-generic constituent of Πφ(G) to the trivial representation of
π0(S̄φ). It is then more apt to write ιw instead of just ι. We shall soon
introduce another refinement, which will specify ιw uniquely. One can then
ask the question: How does ιw depend on w. This dependence can be
quantified precisely [Kal13, §4], but we will not go into this here. We will
next state a further refinement that ties the sets Πφ(G) into the stabilization
of the Arthur-Selberg trace formula. It also has the effect of ensuring that
the map ιw is unique (provided it exists).

1.3 Endoscopic transfer of functions
Before we can state the next refinement of the local Langlands conjecture
we must review the notion of endoscopic transfer of functions, and for
this we must review the notion of endoscopic data and transfer factors.
The notion of endoscopic data was initially introduced in [LS87] and later
generalized to the twisted case in [KS99]. We will present the point of view
of [KS99], but specialized to the ordinary, i.e. non-twisted, case.

Definition 1. 1. An endoscopic datum is a tuple e = (Ge,Ge, se, ηe), where
Ge is a quasi-split connected reductive group defined over F , Ge is a split
extension of Ĝe by WF (but without a chosen splitting), se ∈ Ĝ is a semi-
simple element, and ηe : Ge → LG is an L-homomorphism that restricts
to an isomorphism of complex reductive groups Ĝe → Cent(se, Ĝ)◦ and
satisfies the following: There exists s′ ∈ Z(Ĝ)se such that for all h ∈ Ge,
s′ηe(h) = ηe(h)s′.

2. An isomorphism between endoscopic data e1 and e2 is an element g ∈ Ĝ

satisfying gηe1(Ge1)g−1 = ηe2(Ge2) and gse1g−1 ∈ Z(Ĝ) · se2 .

3. A z-pair for e is a pair z = (Ge
1, η

e
1), where Ge

1 is an extension of Ge by
an induced1 torus with the property that Ge

1,der is simply connected, and
ηe1 : Ge → LGe

1 is an injective L-homomorphism that restricts to the homo-
morphism Ĝe → Ĝe

1 dual to the given projection Ge
1 → Ge.

We emphasize here that the crucial properties of a z-pair are that the
representation theory ofGe(F ) andGe

1(F ) are very closely related, and that
the map ηe1 exists. The latter is a consequence of the simply-connectedness
of the derived subgroup of Ge

1.
There are two processes that produce endoscopic data [She83, §4.2], one

appearing in the stabilization of the geometric side of the trace formula,
and one in the stabilization of the spectral side (or, said differently, in the

1We remind the reader that an induced torus is a product of tori of the form ResE/FGm for
finite extensions E/F .
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spectral interpretation of the stable trace formula). These processes natu-
rally produce the extension Ge. This extension is however not always iso-
morphic to the L-group of Ge. The purpose of the z-pair is to circumvent
this technical difficulty. It is shown in [KS99, §2.2] that z-pairs always exist.

In some cases the extension Ge is isomorphic to LGe and the z-pair
becomes superfluous. For example, this is the case when Gder is simply-
connected [Lan79b, Proposition 1]. Further examples are the symplecic
and special orthogonal groups. It is then more convenient to work with
a hybrid notion that combines an endoscopic datum and a z-pair. More-
over, we can replace in the above definition se by s′ without changing the
isomorphism class of the endoscopic datum. This leads to the following
definition.

Definition 2. An extended endoscopic triple is a triple e = (Ge, se, Lηe), where
Ge is a quasi-split connected reductive group defined over F , se ∈ Ĝ is a semi-
simple element, and Lηe : LGe → LG is an L-homomorphism that restricts to
an isomorphism of complex reductive groups Ĝe → Cent(se, Ĝ)◦ and satisfies
seLηe(h) = Lηe(h)se.

The relationship between Definitions 1 and 2 is the following: If (Ge, se, Lηe)
is an extended endoscopic triple, then (Ge, LGe, se, Lηe|Ĝe) is an endo-
scopic datum. Moreover, even thoughGe will generally not have a simply-
connected derived group, one can take (Ge, id) as a z-pair for itself.

In this paper we will work with the notion of an extended endoscopic
triple. This will allow us to avoid some routine technical discussions. The
more general case of an endoscopic datum and a z-pair doesn’t bring any
substantial changes but comes at the cost of burdening the exposition. Thus
we now assume given an extended endoscopic triple e for G, as well as a
Whittaker datum w forG. Associated to these data there is a transfer factor,
i.e. a function

∆[w, e] : Ge
sr(F )×Gsr(F )→ C,

where the subscript “sr” means semi-simple and strongly regular (those
are the elements whose centralizer is a maximal torus). A variant of the
factor ∆ was defined in [LS87], then renormalized in [KS99], and slightly
modified in [KS] to make it compatible with a corrected version of the
twisted transfer factor. We will review the construction, taking these de-
velopments into account. For the readers familiar with these references we
note that the factor we are about to describe is the factor denoted by ∆′λ in
[KS, (5.5.2)], in the case of ordinary endoscopy. In particular, it does not cor-
respond to the relative factor ∆ defined in [LS87]. The difference between
the two lies in the inversion of the endoscopic element s. We work with
this modified factor in order to avoid having to use inverses later when
dealing with inner forms.

We first recall the notion of an admissible isomorphism between a max-
imal torus Se of Ge and a maximal torus S of G. Let (T,B) be a Borel pair
of G defined over F and let (T̂ , B̂) be a Γ-stable Borel pair of Ĝ. Part of the
datum of the dual group is an identification X∗(T ) = X∗(T̂ ). The same is
true for Ge and we fix a Borel pair (T e, Be) of Ge defined over F and a Γ-
stable Borel pair (T̂ e, B̂e) of Ĝe. The notion of isomorphism of endoscopic
data allows us to assume that η−1(T̂ , B̂) = (T̂ e, B̂e). Then η induces an iso-
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morphism X∗(T̂ e) → X∗(T̂ ), and this leads to an isomorphism T e → T .
An isomorphism Se → S is called admissible, if it is the composition of the
following kinds of isomorphisms:

• Ad(h) : Se → T e for h ∈ Ge.

• Ad(g) : S → T for g ∈ G.

• The isomorphism T e → T .

Let γ ∈ Ge
sr(F ). Let Se ⊂ Ge be the centralizer of γ, which is a maximal

torus of Ge. Let δ ∈ Gsr(F ) and let S ⊂ G be its centralizer. The elements γ
and δ are called related if there exists an admissible isomorphism Se → S
mapping γ to δ. If such an isomorphism exists, it is unique, and will be
called ϕγ,δ .

Next, we recall the relationship between pinnings and Whittaker data
from [KS99, §5.3]. Extend the Borel pair (T,B) to anF -pinning (T,B, {Xα}).
Here α runs over the set ∆ of absolute roots of T in G that are simple rela-
tive to B and Xα is a non-zero root vector for α. Each Xα determines a ho-
momorphism ξα : Ga → U by the rule dξα(1) = Xα. Combining all homo-
morphisms xα we obtain an isomorphism

∏
αGa → U/[U,U ]. Composing

the inverse of this isomorphism with the summation map
∏
αGa → Ga we

obtain a homomorphism U → Ga that is defined over F and hence leads
to a homomorphism U(F ) → F . Composing the latter with an additive
character ψF : F → C× we obtain a character ψ : U(F ) → C× which is
generic by construction. Thus (B,ψ) is a Whittaker datum. Since all Whit-
taker data arise from this construction, we may assume that our choices of
pinning and ψF were made in such a way that (B,ψ) represents w.

We can now review the construction of the transfer factor ∆[w, e]. If γ
and δ are not related, we set ∆[w, e](γ, δ) = 0. Otherwise, it is the product
of terms

εL(V, ψF )∆−1
I ∆II∆III2∆IV ,

which we will explain now. Note that the term ∆III1 of [LS87] is missing,
as it is being subsumed by ∆I in the quasi-split case. The letter V stands for
the degree 0 virtual Galois representation X∗(T ) ⊗ C − X∗(T e) ⊗ C. The
term εL(V, ψ) is the local L-factor normalized according to [Tat79, §3.6].
The term ∆IV is the quotient

|det(Ad(δ)− 1|Lie(G)/Lie(S))|
1
2

|det(Ad(γ)− 1|Lie(Ge)/Lie(Se))| 12
.

To describe the other terms, we need additional auxiliary data. We fix a set
of a-data [LS87, §2.2] for the set R(S,G) of absolute roots of S in G, which
is a function

R(S,G)→ F
×
, α 7→ aα

satisfying aσλ = σ(aλ) for σ ∈ Γ and a−λ = −aλ. We also fix a set of χ-
data [LS87, §2.5] forR(S,G). To recall what this means, let Γα = Stab(α,Γ)
and Γ±α = Stab({α,−α},Γ) for α ∈ R(S,G). Let Fα and F±α be the fixed
fields of Γα and Γ±α respectively. Then Fα/F±α is an extension of degree
1 or 2. A set of χ-data is a set of characters χα : F×α → C× for each
α ∈ R(S,G), satisfying the conditions χσα = χα ◦ σ−1, χ−α = χ−1

α , and
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if [Fα : F±α] = 2, then χα|F×
±α

is non-trivial but trivial on the subgroup of

norms from F×α .
With these choices, we have

∆II =
∏
α

χα

(
α(δ)− 1

aα

)
,

where the product is taken over the set of orbits for the action of Γ on
R(S,G) r ϕ∗,−1

γ,δ (R(Se, Ge)).
The term ∆I involves the so-called splitting invariant [LS87, §2.3] of S.

Let g ∈ G be such that gTg−1 = S. Write Ω(T,G) for the absolute Weyl
group. For each σ ∈ Γ there exists ω(σ) ∈ Ω(T,G) such that for all t ∈ T

ω(σ)σ(t) = g−1σ(gtg−1)g.

Let ω(σ) = sα1 . . . sαk be a reduced expression and let ni be the image of[
0 1
−1 0

]
under the homomorphism SL2 → G attached to the simple root

vector Xαi . Then n(σ) = n1 . . . nk is independent of the choice of reduced
expression. The splitting invariant of S is the class λ ∈ H1(Γ, Ssc) of the
1-cocycle

σ 7→
∏

α∨(aα)g(n(σ)[g−1σ(g)]−1)g−1.

The product runs over the subset {α > 0, σ−1α < 0} of R(S,G), with
positivity being taken with respect to the Borel subgroup gBg−1. The term
∆I is defined as

〈λ, se〉
where the pairing 〈−,−〉 is the canonical pairing between H1(Γ, Ssc) and
π0([Ŝ/Z(Ĝ)]Γ) induced by Tate-Nakayama duality. Here we interpret se as
an element of [Z(Ĝe)/Z(Ĝ)]Γ, embed the latter into Ŝe/Z(Ĝ), and use the
admissible isomorphism ϕγ,δ to transport it to Ŝ/Z(Ĝ).

We turn to the term ∆III2 . The construction in [LS87, §2.6] associates
to the fixed χ-data a Ĝ-conjugacy class of L-embeddings ξG : LS → LG.
This construction is rather technical and we will not review it here. Via the
admissible isomorphism ϕγ,δ , the χ-data can be transferred to Se and pro-
vides a Ĝe-conjugacy class of L-embeddings ξe : LSe → LGe. The admis-
sible isomorphism ϕγ,δ provides dually an L-isomorphism Lϕγ,δ : LS →
LSe. The composition ξ′ = Lη◦ξe ◦Lϕγ,δ is then another Ĝ-conjugacy class
of L-embeddings LS → LG. Via conjugation by Ĝ we can arrange that ξG
and ξ′ coincide on Ŝ. Then we have ξ′ = a · ξG for some a ∈ Z1(WF , Ŝ).
The term ∆III2 is then given by

〈a, δ〉

where 〈−,−〉 is the pairing given by Langlands duality for tori.
We have completed the review of the construction of the transfer factor

∆[w, e]. We now recall the notion of matching functions from [KS99, §5.5].

Definition 3. Two functions fw,e ∈ C∞c (Ge(F )) and f ∈ C∞c (G(F )) are called
matching (or ∆[w, e]-matching, if we want to emphasize the transfer factor) if for
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all γ ∈ Ge
sr(F ) we have

SOγ(fw,e) =
∑
δ

∆[w, e](γ, δ)Oδ(f),

where δ runs over the set of conjugacy classes in Gsr(F ).

We remark that the stable orbital integrals at regular (but possibly not
strongly regular) semi-simple elements can be expressed in terms of the
stable orbital integrals at strongly regular semi-simple elements by conti-
nuity, but one has to be careful with the summation index, see [LS87, §4.3].
The stable orbital integrals at singular elements can be related to the stable
orbital integrals at regular elements, see [Kot88, §3].

One of the central pillars of the theory of endoscopy is the following
theorem.

Theorem 4. For each function f ∈ C∞c (G(F )) there exists a matching function
fw,e ∈ C∞c (Ge(F )).

In the case of archimedean F this theorem was proved by Shelstad
in [She81] and [She82] in the setting of Schwartz-functions and extends
to the setting of smooth compactly supported functions by the results of
Bouaziz [Bou94]. In the case of non-archimedean F the proof of this theo-
rem involves the work of many authors, in particular Waldspurger [Wal97],
[Wal06], and Ngo [Ngô10].

1.4 The refined local Langlands conjecture for quasi-
split groups 2
With the endoscopic transfer of functions at hand we can state the final
refinement of the local Langlands conjecture in the setting of quasi-split
groups.

Recall that Conjecture B asserted the existence of a map ιw : Πφ(G) →
Irr(π0(S̄φ)). We can write this map as a pairing

〈−,−〉 : Πφ × π0(S̄φ)→ C, (π, s) 7→ tr(ιw(π)(s)).

When F is p-adic, so that the map ιw is expected to be bijective, we may
allow ourselves to call this pairing “perfect”. Since π0(S̄φ) may be non-
abelian the word “perfect” is to be interpreted with care, but its definition
is simply the one that is equivalent to saying that the map ιw, which can be
recovered from 〈−,−〉, is bijective. Using this pairing we can form, for any
φ ∈ Φtemp(G) and s ∈ Sφ the virtual character

Θs
φ =

∑
π∈Πφ(G)

〈π, s〉Θπ, (3)

where Θπ is the Harish-Chandra character of the admissible representation
π. Let now e = (Ge, se, Lηe) be an extended endoscopic triple and φe ∈
Φtemp(Ge). Put φ = Lηe ◦ φe. It is then automatic that se ∈ Sφ.

Conjecture D. For any pair of matching functions fw,e and f we have the equal-
ity

Θ1
φe(fw,e) = Θse

φ (f).
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Note that this statement implies that the distribution Θ1
φ is stable.

This is the last refinement of the local Langlands conjecture for quasi-
split groups. Notice that the linear independence of the distributions Θπ ,
together with the disjointness of the packets Πφ(G), imply that the map ιw
of (2) is unique, provided it exists and satisfies Conjectures B and D. On the
other hand, these conjectures do not characterize the assignment φ 7→ Πφ.
The most obvious case is that of those φ for which Πφ is a singleton set. For
them the content of the refined conjecture is that the constituent of Πφ is
generic with respect to each Whittaker datum and its character is a stable
distribution. In the case of quasi-split symplectic and special orthogonal
groups, Arthur [Art13] shows that the addition of a supplementary conjec-
ture – twisted endoscopic transfer to GLn – is sufficient to uniquely char-
acterize the correspondence φ 7→ Πφ. For general groups such a unique
characterization is sill not known.

From now on we will group these four conjectures under the name “re-
fined local Langlands conjecture”. In the archimedean case, this conjec-
ture is known by the work of Shelstad. Many statements were derived in
[She81], [She82], but with an implicit set of transfer factors instead of the
explicitly constructed ones that we have reviewed in the previous section,
as those were only developed in [LS87]. The papers [She08a], [She10], and
[She08b] recast the theory using the canonical factors of [LS87] and pro-
vide many additional and stronger statements. In particular, the refined
local Langlands conjecture is completely known for quasi-split real groups.
We note here that Shelstad’s work is not limited to the case of quasi-split
groups. This will be discussed soon.

In the non-archimedean case, much less is known. On the one hand,
there are general results for special kinds of groups. The case of GLn
(in which most of the refinements discussed here do not come to bear) is
known by the work of Harris-Taylor [HT01] and Henniart [Hen00]. The
book [Art13] proves the refined local Langlands conjecture for quasi-split
symplectic and odd special orthogonal groups, and a slightly weaker ver-
sion of it for even special orthogonal groups. Arthur’s strategy has been
reiterated in [Mok15] to cover the case of quasi-split unitary groups. In
these cases, the uniqueness of the generic constituent in Conjecture C is not
proved. This uniqueness follows from the works of Moeglin-Waldspurger,
Waldspurger, and Beuzart-Plessis, on the Gan-Gross-Prasad conjecture. A
short proof can be found in [Ato15]. On the other hand, there are results
about special kinds of representations for general classes of groups. The
papers [DR09] and [Kal11] cover the case of regular depth-zero supercusp-
idal representations of unramified p-adic groups, while the papers [RY14]
and [Kal15] cover the case of epipelagic representations of tamely rami-
fied groups. Earlier work of Kazhdan-Lusztig [KL87] and Lusztig [Lus95]
proves a variant of this conjecture for unipotent representations of split
simple adjoint groups, where the representations are not assumed to be
tempered and the character identities are not studied.

1.5 Global motivation for the refinement
We now take F to be a number field, and G to be a connected reductive
group, defined and quasi-split over F . We fix a Borel subgroup TU = B ⊂
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G and generic character ψ : U(F ) \ U(AF )→ C×.
We have the stabilization [Art02, (0.4)] of the geometric side of the trace

formula
IGgeom(f) =

∑
ι(G,Ge)SG

e

(f e).

Here the sum runs over isomorphism classes of global elliptic extended en-
doscopic triples e = (Ge, se, Lηe), SG

e

is the so called stable trace formula
for Ge, and f e = (f e

v) is a function on Ge(A) such that f e
v matches fv . We

note that global extended endoscopic triples are defined in the same way
as in the local case in Definition 2, with only one difference: The condition
on ηe is that there exists a ∈ Z1(WF , Z(Ĝ)) whose class is everywhere lo-
cally trivial, so that seηe(h) = z(h̄)ηe(h)se for all h ∈ Ge, where h̄ ∈ WF is
the projection of h. One checks that ηe provides a Γ-equivariant injection
Z(Ĝ) → Z(Ĝe). The triple e is called elliptic if this injection restricts to a
bijection Z(Ĝ)Γ,◦ → Z(Ĝe)Γ,◦.

The trace formula is an identity of the form

IGspec(f) = IGgeom(f),

where the right hand side is [Art02, (0.1)] and the left hand side is [Art01,
(0.2)]. The stabilization of the geometric side has as a formal consequence
a stabilization of the spectral side. This allows us to write

IGdisc(f) =
∑

ι(G,Ge)SG
e

disc(f e).

Here IGdisc is the essential part of IGspec, see [Art01, (3.5)] or [Art88, (4.3)]. It
contains the trace of discrete automorphic representations ofG(A), but also
some contributions coming from Eisenstein series. This is the part of the
trace formula one would like to understand in order to study automorphic
representations, and the stabilization identity is meant to shed some light
on it.

However, it is a-priori unclear what the spectral content of SG
e

disc(f e)
is. The key to understanding this content lies in the refined local Lang-
lands correspondence. Namely, just like the central ingredients of IGdisc(f)
are the characters of discrete automorphic representations, the central in-
gredients of SG

e

disc(f e) are the stable characters of discrete automorphic L-
packets. This is the content of Arthur’s “stable multiplicity formula”, as
stated for example in [Art13, Theorem 4.1.2]. However, unlike the case of
stable orbital integrals, which are defined unconditionally and in an ele-
mentary way, stable characters can only be defined once the refined local
Langlands correspondence, or at least Conjectures A and B have been es-
tablished. Granting these, they are the global analogs of the characters Θ1

φ

of Equation (3) and can be constructed out of these once a suitable notion of
global parameters has been introduced, as was done for example in [Art13].
A global discrete parameter φ provides local parameters φv : LFv → LG
and the associated stable character is then the product of the characters
Θ1
φv over all v. Moreover, to have a chance at proving the stable multiplic-

ity formula, Conjecture D must also be established.
Another crucial ingredient in the interpretation of the spectral side of

the stable trace formula is the multiplicity formula for discrete automor-
phic representations. Given a global discrete parameter φ one obtains from
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the local parameters φv : LFv → LG the packets Πφv . One also obtains a
group S̄φ with maps S̄φ → S̄φv . For each π = ⊗′vπv with πv ∈ Πφv one
considers the formula

m(π, φ) = |π0(S̄φ)|−1
∑

x∈π0(S̄φ)

∏
v

〈πv, x〉.

It is then conjectured that the integer m(π, φ) is the φ-contribution of π to
the discrete spectrum of G, and that the multiplicity of π in the discrete
spectrum is equal to the sum of m(π, φ) over all (equivalence classes of)
global parameters φ. We will discuss this formula in more detail in Section
5, where we will extend it to the case of non-quasi-split groups.

In all of these formulas, the existence of the map ιw : Πφv → Irr(π0(S̄φv )),
and hence of the pairing 〈−,−〉, is crucial. There are further formulas
which one can obtain, for example the inversion of endoscopic transfer,
which allows one to obtain the characters of tempered representations from
the stable characters of temperedL-packets. We refer the reader to [She08b]
for a statement of this in the archimedean case, and to [Kal13] for a sample
application.

1.6 Remarks on the characteristic of F
We have assumed throughout this section that F has characteristic zero.
While it is believed that most of this material carries over in some form
for fields (local or global as appropriate) of positive characteristic, most
of the literature assumes that F has characteristic zero. For example, the
work [LS87], [LS90], and [KS99] is written with this assumption. The later
work [KS] is written for arbitrary local fields, which suggests that the def-
inition of transfer factors should work in positive characteristic. However,
the descent theory of [LS90] is not worked out in this setting. The fun-
damental lemma is proved in [Ngô10] in positive characteristic and then
transfered to characteristic zero in [Wal09]. But the proof of the transfer
theorem (Theorem 4) is only done in characterstic zero [Wal97]. Turning to
the global situation, the theory of the trace formula, even before stabiliza-
tion, for general reductive groups over global fields of positive characteris-
tic is not developed. Thus, while most definitions, results, and conjectures,
presented here are expected to hold (either in the same form or with some
modifications) in positive characteristic, little factual information is actu-
ally present.

2 Non-quasi-split groups: Problems and ap-
proaches
We return now to the case of a local field F of characteristic zero and let G
be a connected reductive group defined over F , but not necessarily quasi-
split. We would like to formulate a refined local Langlands correspondence
for G and to have global applications for it similar to the ones outlined in
the last section. We are then met with the following problems

11



• There is no Whittaker datum, hence no canonical normalization of
the transfer factor ∆(−,−).

The transfer factor ∆(−,−) is still defined in [LS87] and [KS99], but only
up to a complex scalar. This has the effect that the notion of matching func-
tions is also only defined up to a scalar. The trouble with this is that Con-
jecture D can no longer be stated in the precise form given above, and this
makes the spectral interpretation of the stable trace formula problematic.
Even worse, Arthur notices in [Art06, (3.1)] the following.

• Even the non-canonical normalizations of ∆(γ, δ) are not invariant
under automorphisms of endoscopic data.

This is a problem, because in the stabilization identity we are summing
over isomorphism classes of endoscopic groups. The problem can be over-
come, but it does indicate that something is not quite right.

• There is no good map ι : Πφ → Irr(π0(S̄φ)).

The standard example for this comes from the work of Labesse and Lang-
lands [LL79]. We follow here Shelstad’s report [She79]. Let F be p-adic
and G the unique inner form of SL2, so that G(Qp) is the group of ele-
ments of reduced norm 1 in the unique quaternion algebra over F . We
construct a parameter by taking a quadratic extension E/F and a charac-
ter θ : E× → C× for which θ−1 · (θ ◦ σ) is non-trivial and of order 2, where
σ ∈ ΓE/F is the non-trivial element. Let σ◦ ∈WE/F be a lift of σ. Then

φ(e) =

[
θ(e) 0

0 θ(σ(e))

]
, e ∈ E×, φ(σ◦) =

[
0 1
1 0

]
.

is a homomorphism WE/F → PGL2(C). One checks that

S̄φ = Sφ =

{[
1 0
0 1

]
,

[
−1 0
0 1

]
,

[
0 1
1 0

]
,

[
0 1
−1 0

]}
∼= Z/2Z⊕ Z/2Z.

The packet Πφ(SL2(F )) has exactly four elements. However, the packet
Πφ(G) has only one element π. Moreover, no character of χ of Sφ can be
paired with this π so that the endoscopic character identities hold. In fact,
in order to have the desired character identities, one must attach to π the
function on S̄φ given by

f(s) =

{
2, s = 1

0, s 6= 1
, (4)

which is obviously not a character.
This last problem is most severe. Without the pairing between π0(S̄φ)

and Πφ, we cannot state the global multiplicity formula and we cannot
hope for a spectral interpretation of the stable trace formula.

2.1 Shelstad’s work on real groups
Despite these problems, we have a very good understanding of the case
of real groups thanks to the work of Langlands and Shelstad. Langlands
has constructed in [Lan97] the map (1) and has shown that Conjecture
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A holds. Shelstad has shown [She82], [She10], [She08b] that once an ar-
bitrary choice of the transfer factor ∆(−,−) has been fixed, and further
choices specific to real groups have been made, there exists an embed-
ding ι : Πφ(G) → Irr(π0(S̄φ)), thus verifying Conjecture B, and has more-
over shown that the corresponding pairing makes the endoscopic charac-
ter identities of Conjecture D true. Even more, Shelstad has shown that if
one combines the maps ι for multiple groups G, namely those that com-
prise a so called K-group, then one obtains a bijection between the disjoint
union of the corresponding L-packets and the set Irr(π0(S̄φ)). For the no-
tion of K-group we refer the reader to [Art99, §1] and [She08b, §4], and we
note here only that it is unrelated to the Adams-Barbasch-Vogan notion of
strong real forms that we will encounter below.

It may be worth pointing out here that the group π0(S̄φ) is always an
elementary 2-group in the archimedean case, so that Irr(π0(S̄φ)) is in fact
the Pontryagin dual group of that elementary 2-group. This work uses
the results of Harish-Chandra and Knapp-Zuckerman on the classification
of discrete series, and more generally of tempered representations, of real
semi-simple groups.

2.2 Arthur’s mediating functions
Turning now to p-adic fields, the example of the inner form of SL2 shows
that we cannot expect to have a result in the p-adic case that is similar
to that of Shelstad in the real case, because the virtual characters needed
in the formulation of Conjecture D for general groups cannot be obtained
from characters of π0(S̄φ). In his monograph [Art89], Arthur proposes to
replace the pairing 〈−,−〉 by a combination of two objects. The first object
is called the “spectral transfer factor”, and denoted by ∆(φe, π). Here again
we assume to be given an extended endoscopic triple e forG. We moreover
assume fixed some arbitrary normalization of the transfer factor ∆, which
we now qualify as “geometric”, in order to distinguish it from the new
“spectral” transfer factor. The spectral transfer factor takes as variables
tempered parameters φe for Ge, as well as tempered representations π of
G(F ). The role of the spectral transfer factor is to make the identity

Θ1
φe(f e) =

∑
π

∆(φe, π)Θπ(f)

true, whenever f e and f are matching with respect to the fixed normaliza-
tion of the geometric transfer factor. Thus in particular the spectral factor
depends on the geometric factor. Moreover, the isomorphisms of endo-
scopic data have to disturb the spectral factor in the same way that they
disturb the geometric factor.

The second object is called the “mediating function”, and denoted by
ρ(∆, s). The role of the mediating function is to make the product 〈π, s〉 =
ρ(∆, s)·∆(φe, π) independent of the choice of geometric factor ∆, invariant
under isomorphisms of endoscopic data, and a class function on the group
π0(S̄φ).

In the later paper [Art06], Arthur modifies this proposition to involve
not the group S̄φ, but rather its preimage Ssc

φ in the simply-connected cover
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of Ĝ, and demands that 〈π, s〉 is not just a class function, but in fact a char-
acter of an irreducible representation of π0(Ssc

φ ). This is supported by the
observation that the function (4) is indeed the character of the unique 2-
dimensional irreducible representation of the quaternion group, which is
the group Ssc

φ in the case of the inner forms of SL2. Besides this observa-
tion, the introduction of the group Ssc

φ has its roots in Kottwitz’s theorem
[Kot86, Theorem 1.2] that relates the Galois cohomology set H1(Γ, G) to
the Pontryagin dual of the finite abelian group π0(Z(Ĝ)Γ).

Let us be more precise. It is known that there exists a connected re-
ductive group G∗, defined and quasi-split over F , together with an iso-
morphism ξ : G∗ → G defined over F and having the property that for
all σ ∈ ΓF the automorphism ξ−1σ(ξ) of G∗ is inner. It is furthermore
known that G∗ is uniquely determined by G. Then G is called an inner
form of G∗ and ξ : G∗ → G is called an inner twist. The inner twist
provides an identification of the dual groups of G∗ and G. The function
σ 7→ ξ−1σ(ξ) is an element of Z1(Γ, G∗ad). Kottwitz’s theorem interprets
this element as a character [ξ] : Z(Ĝ∗sc)

Γ → C×. Arthur suggests that one
choose an arbitrary extension Ξ : Z(Ĝ∗sc) → C× of this character. Then,
for every φ ∈ Φtemp(G∗), the L-packet Πφ(G) should be in (non-canonical)
bijection with the set Irr(π0(Ssc

φ ),Ξ) of irreducible representations of the
finite group π0(Ssc

φ ) that transform under the image of Z(Ĝ∗sc) by the char-
acter Ξ. For π ∈ Πφ(G), the character of the representation of π0(Ssc

φ ) cor-
responding to π via this bijection should be the class function 〈π,−〉. For
each choice of geometric transfer factor ∆, we should have the expression
〈π,−〉 = ρ(∆,−) ·∆(φe, π) as above.

This conjecture is stated uniformly for archimedean and non-archime-
dean local fields. In the archimedean case, this conjecture has been settled
by Shelstad in [She10] and [She08b], using deep information about the rep-
resentation theory and harmonic analysis of real reductive groups. In the
non-archimedean case, the conjecture is open. The main challenges that
impede its resolution are that the conjectural objects ∆(φe, π) and ρ(∆, s)
make the extension of the refined local Langlands conjecture to non-quasi-
split groups less precise and harder to state, and this leads to a weaker grip
on them by the trace formula.

2.3 Vogan’s pure inner forms
The work of Adams, Barbasch, and Vogan, [ABV92], introduces the fol-
lowing fundamental idea: When trying to describe L-packets, one should
treat all reductive groups in a given inner class together. That is, instead of
trying to describe the L-packets of G alone, one should fix the quasi-split
inner form G∗ of G and then describe the L-packets of all inner forms of
G∗ (of which G is one) at the same time. Here is a nice numerical example
that underscores this idea: For a fixed positive integer n, the real groups
U(p, q) with p+q = n constitute an inner class. For any discrete Langlands
parameter φ one has |Sφ| = 2n and |S̄φ| = 2n−1. On the other hand, one
has |Πφ(U(p, q))| =

(
p+q
q

)
. Thus

| tp+q=n Πφ(U(p, q))| = |Sφ|.
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Notice however that U(p, q) and U(q, p) are the same inner form of the
quasi-split unitary group G∗ (and are isomorphic as groups), but in order
for the above equation to work out, we must treat them separately. This
is not just a numerical quirk. It hints at a fundamental technical difficulty
that will be of crucial importance.

In order to describe this difficulty more precisely, we need to recall a
bit of Galois cohomology. The set of isomorphism classes of groups G
which are inner forms of G∗ is in bijection with the image of H1(ΓF , G

∗
ad)

in H1(ΓF ,Aut(G∗)). However, this is a badly behaved set. Indeed, we can
treat GLn as an inner form of itself either via the identity map or via the
isomorphism g 7→ g−t. Those two identifications clearly have different ef-
fects on representations. Thus, if we want to parameterize representations,
we should treat these cases separately. This leads to considering not just
the groups G which are inner forms of G∗, up to isomorphism, but rather
inner twists ξ : G∗ → G, up to isomorphism. Here, an isomorphism from
ξ1 : G∗ → G1 to ξ2 : G∗ → G2 is an isomorphism f : G1 → G2 defined
over F for which ξ−1

2 ◦f ◦ξ1 is an inner automorphism ofG∗. According to
this definition, f = id is not an isomorphism between the two inner twists
id : GLn → GLn and (−)−t : GLn → GLn. In fact, we have achieved a
rigidification of the problem, which means that we have cut down the au-
tomorphism group from Aut(G) to Aut(ξ), where Aut(ξ) works out to be
the subgroup of Aut(G) given byGad(F ). However, as Vogan points out in
[Vog93, §2], this rigidification is not enough. Indeed, we run into problems

already with a group as simple asG∗ = SL2/R. Let θ = Ad
[
1
−1

]
. Then

the map f = id : G∗ → G∗ is an isomorphism between the inner twists
id : G∗ → G∗ and θ : G∗ → G∗. However, θ swaps the constituents of
discrete series L-packets (this can be computed explicitly in this example
using K-types; it is however a general feature that the action of Gad(F ) on
G(F ) preserves each tempered L-packet Πφ, as one can see from the sta-
bility of Θ1

φ and the linear independence of characters). This is a problem
because we would like an isomorphism between inner twists to be com-
patible with the parameterization of L-packets.

This leads Vogan to introduce in [Vog93] the notion of a pure inner
twist (in fact, Vogan calls it “pure rational form”), which is a pair (ξ, z)
with ξ : G∗ → G inner twist and z ∈ Z1(Γ, G∗) having the property
ξ−1σ(ξ) = Ad(z(σ)). An isomorphism from (ξ1, z1) to (ξ2, z2) is now a
pair (f, δ) with f : G1 → G2 an isomorphism over F , δ ∈ G∗ and satisfy-
ing the identities ξ−1

2 fξ1 = Ad(δ) and z1(σ) = δ−1z2(σ)σ(δ). One can now
check that Aut((ξ, z)) = G(F ), thus an automorphism of (ξ, z) fixes each
isomorphism class of representations and each rational conjugacy class of
elements. We now finally have a shot of trying to parameterize the dis-
joint union of L-packets Πφ((ξ, z)), where (ξ, z) runs over the set of iso-
morphism classes of pure inner twists of a given quasi-split group G∗, and
where Πφ((ξ, z)) is the L-packet on the group G that is the target of the
pure inner twist (ξ, z) : G∗ → G. According to Vogan’s formulation of
the local Langlands correspondence [Vog93, Conjecture 4.3 and Conjecture
4.15], there should exist a bijection

ιw : t(ξ,z)Πφ((ξ, z))→ Irr(π0(Sφ)).
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Note that we are not using S̄φ = Sφ/Z(Ĝ)Γ here. In terms of the example
with unitary groups, one checks that U(p, q) and U(q, p), despite being the
same group, are not isomorphic pure inner twists of the quasi-split unitary
group G∗. In fact, the set of isomorphism classes of pure inner twists of
G∗ is in bijection with H1(ΓF , G

∗). In the case of unitary groups, this set is
precisely the set of pairs (p, q) of non-negative integers such that p+ q = n.

Note furthermore that now, both in the real and in the p-adic case, the
map ιw is expected to be a bijection. Thus this generalization of Conjecture
B makes it more uniform than its version for quasi-split groups. More-
over, it is still normalized to send the unique w-generic representation in
Πφ((id, 1)) to the trivial representation of π0(Sφ), i.e. it is compatible with
Conjecture C.

The bijection ιw is expected to fit in the following commutative diagram

⊔
(ξ,z)

Πφ((ξ, z))
ιw //

��

Irr(π0(Sφ))

��
H1(Γ, G) // π0(Z(Ĝ)Γ)∗

(5)

The bottom map is Kottwitz’s map [Kot86, Theorem 1.2]. The left map
sends any constituent of Πφ((ξ, z)) to the class of z. The right map assigns
to an irreducible representation of π0(Sφ) the character by which the group
π0(Z(Ĝ)Γ) acts. When F is p-adic, the bottom map is a bijection. This
means that the set Πφ((ξ, z)), which is an L-packet on the pure inner form
G of G∗ that is the target of the pure inner twist (ξ, z) : G∗ → G, is in
bijection with the corresponding fiber of the right map. When F is real,
one can obtain a similar statement by considering K-groups.

We have thus seen that Conjectures B and C generalize beautifully to
pure inner twists. It was an observation of Kottwitz that Conjecture D also
does. The first step is to construct a natural normalization of the geometric
transfer factor for a pure inner twist (ξ, z) : G∗ → G and an extended endo-
scopic triple e, which we shall call ∆[w, e, z]. This was carried out in [Kal11,
§2] and we will review it here. Let γ ∈ Ge

sr(F ) and δ ∈ Gsr(F ) be related.
Using a theorem of Steinberg one can show that there exists g ∈ G∗ such
that δ = ξ(gδ∗g−1) with δ∗ ∈ G∗(F ). By definition, γ and δ∗ are also re-
lated, so the value ∆[w, e](γ, δ∗) is non-zero. Moreover, σ 7→ g−1z(σ)σ(g)
is a 1-cocycle of Γ in S = Cent(δ,G) whose class we call inv[z](δ∗, δ). We
then set

∆[w, e, z](γ, δ) = ∆[w, e](γ, δ∗) · 〈inv[z](δ∗, δ), se〉, (6)

where se is transported to Ŝ via the maps Z(Ĝe)Γ → Ŝe → Ŝ, with Se =
Cent(γ,Ge) and the second map coming form the admissible isomorphism
φγ,δ . One then has to check that the function ∆[w, e, z] is indeed a geomet-
ric transfer factor and this is done in [Kal11, Proposition 2.2.2]. With the
transfer factor and the bijection ιw in place, we can now state Conjecture
D exactly as it was stated in the case of quasi-split groups. We will give
the statement of the new versions of Conjectures B, C, and D, together as a
new conjecture.

16



Conjecture E. Let G∗ be a quasi-split connected reductive group defined over
F and let w be a Whittaker datum for G∗. Let φ ∈ Φtemp(G∗). For each pure
inner twist (ξ, z) : G∗ → G let Πφ((ξ, z)) denote the L-packet Πφ(G) of con-
jecture A. Then there exists a bijection ιw making Diagram (5) commutative and
sending the unique w-generic constituent of Πφ((id, 1)) to the trivial represen-
tation of π0(Sφ). Moreover, if e is an extended endoscopic triple for G∗ and if
f e ∈ C∞c (Ge(F )) and f ∈ C∞c (G(F )) are ∆[w, e, z]-matching functions, then

Θ1
φe(f e) = e(G)

∑
π∈Πφ((ξ,z))

〈π, se〉Θπ(f)

provided φe ∈ Φtemp(Ge) is such that φ = Lηe ◦ φe.

Here e(G) ∈ {±1} is the so-called Kottwitz sign ofG, defined in [Kot83].
Note that the set Πφ((ξ, z)) does not depend on z (but we still need to in-
clude z in the notation for counting purposes, because the same ξ can be
equipped with multiple z). The bijection ιw however does depend on z.
We shall specify how later.

This conjecture is very close to the formulation of the local Langlands
conjecture given by Vogan in [Vog93], apart from the fact that Vogan does
not discuss endoscopic transfer. In the real case, it can be shown using Shel-
stad’s work that this conjecture is true. We refer the reader to [Kal16, §5.6]
for details. In the p-adic case, its validity has been checked in [DR09] and
[Kal11] for regular depth-zero supercuspidal L-packets. It has also been
checked in [Kal15] for the L-packets consisting of epipelagic representa-
tions [RY14]. In fact, the latter work is valid in the broader framework of
isocrystals with additional structure, which will be discussed next.

The relationship between the statements of Conjectures B and D given
here and those suggested by Arthur in [Art89] is straightforward. One has
to replace Ssc

φ with Sφ and demand ρ(∆[w, e, z], se) = 1. This specifies
the function ρ(∆, se) uniquely and Arthur’s formulation of the conjectures
follows from the one given here.

It thus appears that pure inner twists provide a resolution to all prob-
lems obstructing a formulation of the refined local Langlands conjecture
for general reductive groups. Unfortunately, this is not quite true. The
theory is perfect for inner twists whose isomorphism class, which is an el-
ement of H1(ΓF , G

∗
ad), is in the image of the natural map H1(ΓF , G

∗) →
H1(ΓF , G

∗
ad). However, since this map is in general not surjective, not ev-

ery group G can be described as the target of a pure inner twist (ξ, z) :
G∗ → G of a quasi-split group G∗. Basic examples are provided by the
groups of units of central simple algebras. These are inner forms of the
quasi-split group G∗ = GLn. However, the generalized Hilbert 90 theo-
rem states that H1(Γ, G∗) = {1}. Thus no non-trivial inner form of G∗

can be made pure. There are also other examples, involving inner forms of
symplectic and special orthogonal groups.

2.4 Work of Adams, Barbasch, and Vogan
The fact that pure inner forms are not sufficient to describe the refined local
Langlands conjecture for all connected reductive groups begs the question
of whether there exists a notion that is more general than pure inner forms
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yet still has the necessary structure as to allow a version of Conjecture E to
be stated. In the archimedean case, such a notion is presented by Adams,
Barbasch, and Vogan, in [ABV92]. It is the notion of a “strong rational
form”. The set of equivalence classes of strong rational forms contains the
set of equivalence classes of pure inner forms. At the same time it is large
enough to encompass all inner forms. Moreover, in [ABV92] a bijection

ι : txΠφ(x))→ Irralg(π0(S̃φ))

is constructed, where S̃φ is the preimage of Sφ in the universal covering of
Ĝ. When Ĝ is semi-simple, this covering is just Ĝsc, but when Ĝ is a torus,
this covering is affine space. In general, it is a mix of these two cases.

Thus, the book [ABV92] contains a proof of suitable generalizations of
conjectures B and C. It does not discuss the character identities stated as
Conjecture D. The main focus of [ABV92] is in fact the study of how non-
tempered representations interface with the conjectures of Langlands and
Arthur. This is a fascinating topic that is well beyond the scope of our
review.

2.5 Kottwitz’s work on isocrystals with additional struc-
ture
The notion of “strong rational forms” introduced by Adams, Barbasch, and
Vogan, resolved in the archimedean case the problem that pure inner forms
are not sufficient to allow a statement of Conjecture E that encompasses all
connected reductive groups. It thus became desirable to find an analogous
notion in the non-archimedean case. This was formally formulated as a
problem in [Vog93, §9], where Vogan lists the desired properties that this
conjectural notion should have. The solution in the archimedean case did
not suggest in any way whether a solution in the non-archimedean case
exists and where it might be found, as the construction of strong rational
forms in [ABV92] made crucial use of the fact that Gal(C/R) has only one
non-trivial element.

Led by his and Langlands’ work on Shimura varieties, Kottwitz intro-
duced in [Kot85] and [Kot97] the setB(G) of equivalence classes of isocrys-
tals with G-structure, for any connected reductive group G defined over a
non-archimedean local field. The notion of an isocrystal plays a central
role in the classification of p-divisible groups. Let F be a p-adic field and
Fu its maximal unramified extension, and L its completion. An isocrys-
tal is a finite-dimensional L-vector space V equipped with a Frobenius-
semi-linear bijection. According to Kottwitz, an isocrystal withG-structure
is a ⊗-functor from the category of finite-dimensional representations of
the algebraic group G to the category of isocrystals. This can be given a
cohomological description. Indeed, the set of isomorphism classes of n-
dimensional isocrystals can be identified with H1(WF ,GLn(L̄)), and the
set of isomorphism classes of isocrystals with G-structure can be identified
with H1(WF , G(L̄)).

Manin has shown that the category of isocrystals is semi-simple and
the simple objects are classified by the set Q of rational numbers. The ra-
tional number corresponding to a given simple object is called its slope. A
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general isocrystal is thus given by a string of rational numbers, called its
slope decomposition. The objects of constant slope, i.e. the isotypic objects,
are called basic isocrystals. Kottwitz generalizes this notion to the case of
isocrystals withG-structure. The setB(F )bas of equivalence classes of basic
isocrystals with additional structure is a subset of B(G).

Kottwitz shows that there exists a functorial injectionH1(Γ, G)→ B(G)bas.
He furthermore shows that each element b ∈ B(G)bas leads to an inner
form Gb of G. More precisely, one needs to take b to be a representative of
the equivalence class given by an element ofB(G)bas, and then one obtains
an inner twist ξ : G → Gb. We will call the pair (ξ, b) an extended pure
inner twist, for a lack of a better name.

The bijection H1(Γ, G) → π0(Z(Ĝ)Γ)∗ used in Diagram (5) extends to
a bijection B(G)bas → X∗(Z(Ĝ)Γ). This allows one to conjecture the exis-
tence of a diagram similar to (5), but with B(G)bas in place of H1(Γ, G). In
order to be able to state an analog of Conjecture E, the last missing ingre-
dient is the normalization of the transfer factor. This has been established
in [Kal14, §2]. We will not review the construction here, as it is quite anal-
ogous to the one reviewed in the section on pure inner forms. The analog
of Conjecture E in the context of isocrystals is then the following conjecture
made by Kottwitz.

Conjecture F. Let G∗ be a quasi-split connected reductive group defined over
F , w a fixed Whittaker datum for G∗, and φ ∈ Φtemp(G∗). Let S\φ = Sφ/[Sφ ∩
[Ĝ]der]

◦. For each extended pure inner twist (ξ, b) : G∗ → G let Πφ((ξ, b)) denote
the L-packet Πφ(G) provided by conjecture A. Then there exists a commutative
diagram ⊔

(ξ,b)

Πφ((ξ, b))
ιw //

��

Irr(S\φ)

��
B(G∗)bas // X∗(Z(Ĝ)Γ)

(7)

in which the top arrow is bijective. We have used Irr to denote the set of irreducible
algebraic representation of the disconnected reductive group S\φ. The image of the
unique w-generic constituent of Πφ((id, 1)) is the trivial representation of S\φ.

Given an extended pure inner twist (ξ, b) : G∗ → G and an extended endo-
scopic triple e for G∗, for any ∆[w, e, b]-matching functions f e ∈ C∞c (Ge(F ))
and f ∈ C∞c (G(F )) the equality

Θ1
φe(f e) = e(G)

∑
π∈Πφ((ξ,b))

〈π, se〉Θπ(f)

holds, where φe ∈ Φtemp(Ge) is such that φ = Lηe ◦ φe.

A version of this conjecture was stated in [Rap95, §5], and later in [Kal14,
§2.4]. A verification of this conjecture was given in [Kal14] for regular
depth-zero supercuspidal parameters, and in [Kal15] for epipelagic param-
eters. Moreover, while we have only considered non-archimedean fields so
far, the conjecture also makes sense for archimedean fields thanks to Kot-
twitz’s recent construction [Kot14] of B(G) for all local and global fields.
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Given this conjecture, there is the following obvious question: How
much bigger is B(G∗)bas than H1(Γ, G∗)? Is it enough to treat all reductive
groups?

The answer is the following: When Z(G∗) is connected, Kottwitz has
shown that the natural map B(G∗)bas → H1(Γ, G∗ad) is surjective. In other
words, every inner form can be enriched with the datum of an extended
pure inner twist. For such groups G∗, conjecture F provides a framework
to treat all their inner forms. Important examples of such groupsG∗ are the
group GL(N), whose inner forms are the multiplicative groups of central
simple algebras of degree N ; the unitary groups UE/F (N) associated to
quadratic extensions E/F ; as well as the similitude groups GUE/F (N),
GSpN , and GON .

At the other end of the spectrum are the semi-simple groups. For them,
the natural injection H1(Γ, G∗) → B(G∗)bas is surjective. Thus the set
B(G∗)bas does not provide any additional inner forms beyond the pure
ones, and Conjecture F is the same as Conjecture E. In particular, no inner
forms of SL(N) and Sp(N) can be reached by either conjecture.

3 The canonical Galois gerbe and its coho-
mology
In [LR87], Langlands and Rapoport introduced the notion of a “Galois
gerbe”. Their motivation is the study of the points on the special fiber of
a Shimura variety. In [Kot97], Kottwitz observed that the set B(G) can be
described using the cohomology of certain Galois gerbes. This lead to the
idea that it might be possible to overcome the limitations of the set B(G)
discussed in the previous section by using different Galois gerbes.

In this section, we are going to describe the construction of a canonical
Galois gerbe over a local field of characteristic zero and discuss its proper-
ties. We will see in the next section how this gerbe leads to a generalization
of Conjecture E that encompasses all connected reductive groups.

3.1 The canonical Galois gerbe
Langlands and Rapoport define [LR87, §2] a Galois gerbe to be an extension
of groups

1→ u→W → Γ→ 1

where u is the set of F -points of an affine algebraic group and Γ is the
absolute Galois group of F . Given such a gerbe, one can let it act on G∗(F )
through its map to Γ and consider the cohomology group H1(W,G∗).

From now on, let F be a local field of characteristic zero. A simple
example of a Galois gerbe can be obtained as follows. The relative Weil
group of a finite Galois extensionE/F is an extension of topological groups

1→ E× →WE/F → ΓE/F → 1.

Pulling back along the natural surjection ΓF → ΓE/F and then pushing
out along the natural injection E× → F̄× provides a Galois gerbe

1→ Gm → EE/F → ΓF → 1.
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These are called Dieudonne gerbes in [LR87, §2] and are the ones that Kot-
twitz uses in [Kot97, §8] to provide an alternative description of the set
B(G∗). More precisely, Kottwitz shows that if T is an algebraic torus de-
fined over F and split over E, then there is a natural isomorphism

H1
alg(EE/F , T )→ B(T ),

whereH1
alg is the subgroup ofH1 consisting of the classes of those 1-cocycles

whose restriction to Gm is a homomorphism Gm → T of algebraic groups.
One could hope that using more sophisticated Galois gerbes might lead

to a cohomology theory that allows an analog of Conjecture E to be stated
that applies to all reductive algebraic groups. For this to work, the gerbe
needs to have the following properties.

1. It should be naturally associated to any local field F of characteristic
zero, so as to provide a uniform statement of the conjecture.

2. In order to have a well-defined cohomology group H1(W,G∗), the
gerbe W needs to be rigid, i.e. have no unnecessary automorphisms.
This amounts to the requirement H1(Γ, u) = 1.

3. In order to be able to capture all reductive groups, the gerbe W has
to have the property that H1(W,G∗) comes equipped with a natural
map H1(W,G∗)→ H1(Γ, G∗ad) which is surjective.

4. In order to be useful for endoscopy, there needs to exist a Tate-Nakayama
type isomorphism identifying H1(W,G∗) with an object definable in
terms of Ĝ∗.

There is of course no a priori reason or even a hint that a Galois gerbe satis-
fying these conditions should exist. In fact, some experimentation reveals
that conditions 2 and 3 seem to pull in opposite directions.

However, it turns out that if one slightly enlarges the scope of consider-
ation, a suitable gerbe does exist. Namely, one has to give up the require-
ment that u is an affine algebraic group and rather allow it to be a profinite
algebraic group, whose F̄ -points will then carry the natural profinite topol-
ogy. The pro-finite group u that we are going to consider is the following.

u = lim←−
n,E/F

(ResE/F µn)/µn.

This is a profinite algebraic group that encodes in a certain way the arith-
metic of F . One can show the following [Kal16, Theorem 3.1].

Proposition 5. We have the canonical identification

H2(Γ, u) =

{
Ẑ, F is non-arch.
Z/2Z, F = R

, H1(Γ, u) = 1.

Here the continuous cohomology groups are taken with respect to the
natural topology on u(F ) coming from the inverse limit.

Thus there exists a canonical isomorphism class of extensions of Γ by
u, and each extension in this isomorphism class has as its group of auto-
morphisms only the inner automorphisms coming from u. This means that
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if we take W to be any extension in the canonical isomorphism class and
consider the set H1(W,G), this set will be independent of the choice of W .

However, it turns out that this is not quite the right object to consider.
For example, it does not come equipped with a map to H1(Γ, Gad) when G
is a connected reductive group. The following slight modification is better
suited for our purposes: Define A to be the category of injections Z → G,
where G is an affine algebraic group and Z is a finite central subgroup.
For an object [Z → G] ∈ A, let H1(u → W,Z → G) be the subset of
H1(W,G) consisting of those classes whose restriction to u takes image
in Z. This provides a functor A → Sets and there is an obvious natural
transformation H1(u → W,Z → G) → H1(Γ, G/Z) between functors
A → Sets. Furthermore, when G is reductive, we have the obvious map
H1(Γ, G/Z)→ H1(Γ, Gad).

3.2 Properties of H1(u → W,Z → G)

The basic properties of the functor H1(u→W,Z → G) are summarized in
the following commutative diagram [Kal16, (3.6)]

1 // H1(Γ, Z)
Inf //

��

H1(u→W,Z → Z)
Res //

��

Hom(u, Z)Γ

1 // H1(Γ, G)
Inf // H1(u→W,Z → G)

Res //

a
��

Hom(u, Z)Γ

b��

// ∗

H1(Γ, G)

��

// H1(Γ, G/Z) //

��tt

H2(Γ, Z)

��

// ∗

H1(Γ, G/Z(G)) 1 1

where ∗ is to be taken as H2(Γ, G) if G is abelian and disregarded oth-
erwise. The three rows are exact, and so is the outer arc (after identify-
ing the two copies of Hom(u, Z)Γ). The middle column is exact, and the
map b is surjective. The middle exact sequence is an inflation-restriction-
type sequence. By itself it already gives some information about the set
H1(u → W,Z → G). First, it shows that H1(u → W,Z → G) contains as
a subset H1(Γ, G), thus it faithfully captures the set of equivalence classes
of pure inner forms. Second, it tells us that H1(u→W,Z → G) fibers over
Hom(u, Z)Γ. One easily sees that the latter is finite, which implies

• H1(u→W,Z → G) is finite.

Using the basic twisting argument in group cohomology, one sees that the
fibers of this fibration are of the form H1(Γ, G†), where G† runs over suit-
able inner forms ofG. In particular, we obtain the disjoint union decompo-
sition

• H1(u→W,Z → G) =
⊔
H1(Γ, G†).

This allows one to effectively compute H1(u → W,Z → G) using the
standard tools of Galois cohomology. One can moreover ask, what is the
meaning of Hom(u, Z)Γ. This question is answered by the map b. When Z
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is split (that is, whenX∗(Z) has trivial Γ-action), the map b in the above di-
agram is bijective. Thus, in a slightly vague sense, the group u represents
the functor Z 7→ H2(Γ, Z) restricted to the category of split finite multi-
plicative algebraic groups (the group u is itself of course not finite). Note
that any continuous homomorphism u → Z factors through a finite quo-
tient of u and is automatically algebraic, so we can write Hom(u, Z)Γ =
HomF (u, Z). On the larger category of general finite multiplicative alge-
braic groups, one sees easily that the functor Z 7→ H2(Γ, Z) is not rep-
resentable, even in the above more vague sense, as it is not left exact.
Nonetheless, the map b is surjective, so we can think of u as coming close
to representing that functor. In other words, H1(u → W,Z → G) inter-
polates between H1(Γ, G) and H2(Γ, Z). Moreover, the surjectivity of b
leads to the surjectivity of a. When G is reductive and Z is large enough,
the map H1(Γ, G/Z) → H1(Γ, Gad) is also surjective. For example, this
is true as soon as Z = Z(Gder). For some purposes it is thus sufficient
to fix Z = Z(Gder). In general, the flexibility afforded by allowing Z to
vary is quite useful. For example, fixing Z would not provide a functorial
assignment, and this would make basic operations like parabolic descent
unnecessarily complicated.

3.3 Tate-Nakayama-type isomorphism
We have thus seen that the Galois gerbe W satisfies the first three of the
four required properties listed in Section 3.1. The fourth property – the
Tate-Nakayama-type isomorphism, is the most crucial. Luckily, the gerbe
W satisfies that property too.

To give the precise statement, we letR ⊂ A be the subcategory consist-
ing of those [Z → G] for which G is connected and reductive. We have the
functor

R → Sets, [Z → G] 7→ H1(u→W,Z → G).

We now define a second functor. Given [Z → G] ∈ R, let Ḡ = G/Z. The
isogeny G → Ḡ provides an isogeny of Langlands dual groups ̂̄G → Ĝ.
Let Z( ̂̄G)+ denote the preimage in ̂̄G of Z(Ĝ)Γ. Then π0(Z( ̂̄G)+) is a finite
abelian group and one checks easily that

R→ Sets, [Z → G] 7→ Hom(π0(Z( ̂̄G)+),C×)

is a functor.
The following theorem, proved in [Kal16, §4], contains the precise state-

ment how the gerbe W satisfies the expected property 4 of Section 3.1.

Theorem 6. • There is a unique morphism between the two above functors
that extends the Tate-Nakayama isomorphism between the restrictions of
these functors to the subcategory consisting of objects [1 → T ], where T is
an algebraic torus, and that lifts a certain natural morphism Hom(π0(Z( ̂̄G)+),C×)→
HomF (u, Z).

• The morphism is an isomorphism between the restrictions of the above func-
tors to the subcategory consisting of objects [Z → T ], where T is an alge-
braic torus.
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• The morphism is an isomorphism between the above functors when F is
non-archimedean.

• The kernel and cokernel of the morphism can be explicitly described when F
is archimedean.

• The morphism restricts to Kottwitz’s map on the subcategory of objects [1→
G].

The fact that the morphism is not an isomorphism when F is archi-
medean is not surprising. If it were, it would endow each set H1(u →
W,Z → G), and in particular each set H1(Γ, G), with the structure of a
finite abelian group in a functorial way. However, it is generally not pos-
sible to endow H1(Γ, G) with a group structure in such a way that natural
maps, like H1(Γ, G)→ H1(Γ, Gad), are group homomorphisms.

When F is p-adic, this theorem does endow the setH1(u→W,Z → G)
with the structure of a finite abelian group in a functorial way. It further-
more gives a simple way to effectively compute the set H1(u → W,Z →
G). The most important consequences of the theorem for us will however
be to the theory of endoscopy. More precisely, the theorem will allow us
to construct a normalization of the geometric transfer factor and to state
a conjecture analogous to Conjecture E that encompasses all connected re-
ductive groups.

4 Local rigid inner forms and endoscopy
In this section we are going to see how the Galois gerbe W constructed in
the previous section leads to a generalization of Conjecture E that encom-
passes all connected reductive groups. Just like Conjecture E, its statement
will be uniform for all local fields of characteristic zero.

We begin with a few simple definitions, essentially modeling those for
pure inner forms. Let F be a local field of characteristic zero and let G∗ be
a quasi-split connected reductive group defined over F .

Definition 7. 1. A rigid inner twist (ξ, z) : G∗ → G is a pair consisting of
an inner twist ξ : G∗ → G and an element z ∈ Z1(u → W,Z → G∗),
for some finite central Z ⊂ G∗, such that ξ−1σ(ξ) = Ad(z̄(σ)), where
z̄ ∈ Z1(Γ, G∗ad) is the image of z.

2. Given two rigid inner twists (ξi, zi) : G∗ → Gi, i = 1, 2, an isomorphism
(f, δ) : (ξ1, z1) → (ξ2, z2) of rigid inner twists is a pair consisting of
an isomorphism f : G1 → G2 defined over F and an element δ ∈ G∗,
satisfying the identities ξ−1

2 fξ1 = Ad(δ) and z1(w) = δ−1z2(w)σw(δ).

Here σw is the image of w ∈ W in Γ, and z̄ is the image of z ∈ Z1(u→
W,Z → G) inZ1(Γ, G/Z). It is again straightforward to check that Aut(ξ, z) =
G(F ).

4.1 Refined endoscopic data and canonical transfer
factors
The fact that the Tate-Nakayama-type isomorphism pairs the cohomology
set H1(u → W,Z → G) not with elements of Ĝ, but rather of ̂̄G, leads to
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the necessity to modify the notion of endoscopic data. The notion of an
endoscopic datum was reviewed in Section 1.3. Let e = (Ge,Ge, se, ηe). A
refinement of e is a tuple ė = (Ge,Ge, sė, ηe). The only difference is the
element sė, which should be an element of ̂̄G that lifts se. This refinement
also suggests a modification of the notion of an isomorphism. Namely, an
isomorphism between ė1 and ė2 is now an element g ∈ Ĝ that satisfies
two conditions. The first is gηe1(Ge1)g−1 = ηe2(Ge2), which is the same
as before. To describe the second, let Hi = Gei . We use the canonical
embedding Z(G) → Z(Hi) to form H̄i = Hi/Z. Then Ad(g) provides an

isomorphism ̂̄H1 → ̂̄H2, which induces an isomorphism π0(Z(̂̄H1)+) →
π0(Z(̂̄H2)+). The element sėi provides an element s̄ėi ∈ π0(Z(̂̄Hi)+) and
we require that Ad(g)s̄ė1 = s̄ė2 .

One checks that every endoscopic datum can be refined, and there are
only finitely many isomorphism classes of refined endosocpic data that
lead to isomorphic unrefined endoscopic data. This allows one to refine
sums over isomorphism classes of endoscopic data by sums over isomor-
phism classes of refined endoscopic data.

One can analogously define the notion of a refined extended endoscopic
triple, but we leave this to the reader.

The notion of a refined endoscopic data can be used, together with The-
orem 6, to obtain a canonical normalization of the geometric transfer factor.
The construction of the factor is essentially the same as the one for pure in-
ner twists given by Equation (6). Given a rigid inner twist (ξ, z) : G∗ → G
and a refined extended endoscopic triple ė, let γ ∈ Ge(F ) and δ ∈ G(F )
be semi-simple strongly regular related elements, and let δ∗ ∈ G∗(F ) and
g ∈ G∗ be as in Equation (6). Then g−1 · z(w) · σw(g) is an element of
Z1(u→W,Z → S), whose class we call inv[z](δ∗, δ), and we set

∆[w, ė, z](γ, δ) = ∆[w, e](γ, δ∗) · 〈inv[z](δ∗, δ), sė〉, (8)

where now the pairing is between H1(u → W,Z → S) and π0([̂̄S]+) and
is given by the Tate-Nakayama-type isomorphism of Theorem 6.

One can then prove [Kal16, §5.3] the following.
Theorem 8. The function ∆[w, ė, z] is indeed a transfer factor. Moreover, it is
invariant under all automorphisms of ė.

We see that the notion of refined endoscopic data and their isomor-
phisms resolves the problem of non-invaraince of transfer factors under
isomorphism noted by Arthur in [Art06].

4.2 Conjectural structure of tempered L-packets
We are now ready to state the refined local Langlands conjecture for gen-
eral connected reductive groups. Again we take G∗ to be a quasi-split
connected reductive group defined over F and we fix a Whittaker da-
tum w for it. We fix a finite central subgroup Z ⊂ G∗ and set as before
Ḡ∗ = G∗/Z. Let φ ∈ Φtemp(G∗). We are of course interested in the L-
packet for φ on non-quasi-split groups G that occur as inner forms of G∗.
Recall Sφ = Cent(φ, Ĝ∗). Set

S+
φ = Sφ ×Ĝ∗

̂̄G∗,
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which is simply the preimage of Sφ under the isogeny ̂̄G∗ → Ĝ∗.

Conjecture G. For each rigid inner twist (ξ, z) : G∗ → G with z ∈ Z1(u →
W,Z → G∗) let Πφ((ξ, z)) denote the L-packet Πφ(G) whose existence is as-
serted by conjecture A. Then there exists a commutative diagram⊔

(ξ,z)

Πφ((ξ, z))
ιw //

��

Irr(π0(S+
φ ))

��
H1(u→W,Z → G∗) // π0(Z(̂̄G∗)+)∗

(9)

in which the top arrow is bijective. The image of the unique w-generic constituent
of Πφ((id, 1)) is the trivial representation of π0(S+

φ ).
Given a rigid inner twist (ξ, z) : G∗ → G and a refined endoscopic triple

ė for G∗, for any ∆[w, ė, z]-matching functions f ė ∈ C∞c (Ge(F )) and f ∈
C∞c (G(F )) the equality

Θ1
φe(f ė) = e(G)

∑
π∈Πφ((ξ,z))

〈π, sė〉Θπ(f)

holds, where φe ∈ Φtemp(Ge) is such that φ = Lηe◦φe, and 〈π,−〉 = tr(ιw(π)(−)).

If we are interested in a particular fixed non-quasi-split group G, then
we endow it with the datum of a rigid inner twist (ξ, z) : G∗ → G and con-
sider the fiber over the class of z of the diagram. On the left, this fiber is the
L-packet on G (or rather, the K-group of G when F is archimedean), and
on the right, this fiber consists of those irreducible representations which

transform under π0(Z(̂̄G∗)+) by the character determined by z.
Note that when G∗ is split and semi-simple, the group S+

φ coincides
with the group Ssc

φ suggested by Arthur in [Art06]. However, when G is a
general connected reductive group, in particular a torus, then S+

φ is quite
different, and in fact more closely related to the group used in [ABV92].

We emphasize also that the group π0(S+
φ ) is in general more compli-

cated than the groups π0(S̄φ) or π0(Sφ). Indeed, in the archimedean case
the latter two groups are elementary 2-groups, while the former need not
be a 2-group. It is still abelian, however. In the non-archimedean case it
is known that the latter two groups may be non-abelian, but the former is
non-abelian much more often. Indeed, already in the case of SL2 the oc-
tonian group occurs as the group π0(S+

φ ) for the parameter discussed in
Section 2.

We have formulated the endocsopic character identities in Conjecture
G only for refined extended endoscopic triples. For a formulation in the
slightly more general context of refined endoscopic data and z-pairs we
refer the reader to [Kal16, §5.4].

4.3 Results for real groups
So far we have not addressed the question of how the rigid inner forms we
have defined, when specialized to the case F = R, compare to the strong
rational forms defined in [ABV92]. A-priori the two constructions are very
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different and in fact the construction of rigid inner twists was initially moti-
vated by non-archimedean examples. Nonetheless, we have the following
result [Kal16, §5.2].

Theorem 9. There is an equivalence between the category of rigid inner twists of
a real reductive group and the category of strong rational forms of that group.

We will not discuss here the precise definition of these categories and
refer the reader to [Kal16, §5.2] for their straightforward definition.

Another natural question to ask is: What can be said about Conjecture G
when F = R? As we discussed in Section 2.1, the structure of tempered L-
packets and their endoscopic character identities are very well understood
for real groups by the work of Shelstad. A careful study of her arguments
leads to the following result [Kal16, §5.6].

Theorem 10. Conjecture G holds when F = R.

It is easy and instructive to explicitly compute the extension 1 → u →
W → Γ → 1 in the case of F = R. In that case, u(C) = u(R) is the trivial
Γ-module Ẑ and the class of this extension can be represented by the 2-
cocycle ξ determined by ξ(σ, σ) = 1, where σ ∈ Γ is the non-trivial element.
Recalling that the Weil group of R is an extension 1 → C× → WC/R →
Γ → 1 whose class can be represented by the 2-cocycle c determined by
c(σ, σ) = −1, we see that it can be recovered as the pushout ofW along the
map Ẑ→ Ẑ/2Ẑ ∼= {±1} ⊂ C×.

This computation shows that the extension 1 → u → W → Γ → 1 is
very closely related to the Weil group WC/R. While for any finite Galois
extension E/F of p-adic fields the relative Weil group WE/F has a similar
structure as WC/R, the absolute Weil group WF/F is not an extension of the
absolute Galois group Γ, but rather a dense subgroup of it. One can thus
think of the extension 1 → u → W → Γ → 1 as a closer analog for p-adic
fields of the absolute Weil group of R.

4.4 Dependence on the choice of z
In Conjecture G we defined Πφ((ξ, z)) to be the L-packet Πφ(G), where
(ξ, z) : G∗ → G is a rigid inner twist with z ∈ Z1(u → W,Z → G∗).
It is clear from this definition that the set Πφ((ξ, z)) does not depend on
z. What does depend on z is the representation of π0(S+

φ ) that ιw assigns
to π ∈ Πφ((ξ, z)), and hence the value 〈π, sė〉 that enters the endoscopic
character identity. This dependence can be quantified precisely.

Let ξ : G∗ → G be an inner twist and let z1, z2 ∈ Z1(u → W,Z → G∗)
be two elements such that (ξ, z1) and (ξ, z2) are rigid inner twists. Accord-
ing to Definiton 7 and the diagram in Subsection 3.2 we have z2 = xz1 with
x ∈ Z1(u→W,Z → Z) = Z1(W,Z).

Let Ẑ denote the kernel of the isogeny ̂̄G∗ → Ĝ∗. It is shown in [Kal18b,
§6] that the finite abelian groups H1(W,Z) and Z1(Γ, Ẑ) are in canoni-
cal duality. Moreover, this duality is compatible with the duality between
H1(u→W,Z → T ) and π0([̂̄T ]+) of Theorem 6.

Consider the map

(−d) : S+
φ → Z1(Γ, Ẑ), s 7→ φ(wσ)s−1φ(wσ)−1s,
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where wσ ∈ LF is any lift of σ ∈ Γ. The result is independent of the lift be-
cause the finiteness of Ẑ impliesZ1(LF , Ẑ) = Z1(Γ, Ẑ). One can show that

(−d) is a group homomorphism. Moreover, since [S+
φ ]◦ ⊂ Cent(φ, ̂̄G∗),

we see that (−d) factors through π0(S+
φ ). One can then show [Kal18b,

Lemma 6.2] that if π ∈ Πφ(G) and if 〈π, sė〉1 and 〈π, sė〉2 are the values
of tr(ιw(π)(sė)) obtained by considering π as an element of Πφ((ξ, z1)) and
Πφ((ξ, z2)) respectively, then the validity of Conjecture G implies

〈π, sė〉2 = 〈[x], (−d)sė〉〈π, sė〉1.

4.5 Comparison with isocrystals
Even though Conjecture F cannot be stated for arbitrary connected reduc-
tive groups, as we discussed at the end of Subsection 2.5, it is still a very
important part of the theory, due to the geometric significance of Kottwitz’s
theory of isocrystals with additional structure. For example, Conjecture F is
the basis of Kottwitz’s conjecture [Rap95, Conjecture 5.1] on the realization
of the local Langlands correspondence in the cohomology of Rapoport-
Zink spaces. Moreover, Fargues and Fontaine [FF18] have recently proved
thatG-bundles on the Fargues-Fontaine curve are parameterized by the set
B(G). Based on that, Fargues [Far16] has outlined a geometric approach
that would hopefully lead to a proof of Conjecture F. It it therefore de-
sirable to understand the relationship between conjectures F and G. This
relationship is examined in [Kal18b].

The simplest qualitative statement that can be made is the following:
The validity of Conjecture F for all connected reductive groups with con-
nected center is equivalent to the validity of G for all conneced reductive
groups.

Let us now be more specific. Let G be a connected reductive group.
Define

H1(u→W,Z(G)→ G) = lim−→H1(u→W,Z → G)

whereZ runs over the finite subgroups ofZ(G) defined over F . Then there
exists a canonical map [Kal18b, (3.14)]

B(G)bas → H1(u→W,Z(G)→ G). (10)

One can give an explicit formula for the dual of this map. For this, we
need some preparation. Let Zn ⊂ Z(G) be the preimage in Z(G) of the
group of n-torsion points of the torus Z(G)/Z(Gder). The Zn form an ex-
haustive tower of finite subgroups of Z(G) and we can use this tower to
form the above limit. Set Gn = G/Zn. Then Gn = Gad × Z(Gn) and
Z(Gn) = Z(G1)/Z(G1)[n], where Z(G1) = Z(G)/Z(Gder). Dually we
have Ĝn = Ĝsc × Ĉn, where Ĉn is the torus dual to Z(Gn). Since Z(G1) is
the maximal torus quotient of G, its dual Ĉ1 is the maximal normal torus
of Ĝ, i.e. Z(Ĝ)◦. It will be convenient to represent Ĉn as Ĉ1 = Z(Ĝ)◦, and
then the natural quotient map Ĉm → Ĉn for n|m becomes the m/n-power
map Ĉ1 → Ĉ1. Set Ĉ∞ = lim←− Ĉn.

Consider the groupZ(Ĝsc)×Ĉ∞. Elements of it are of the form (a, (bn)n),
where a ∈ Z(Ĝsc) and bn ∈ Ĉ1 is a sequence satisfying (bm)m/n = bn for
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all n|m. We have the obvious map

Z(Ĝsc)× Ĉ∞ → Z(Ĝ), (a, (bn)) 7→ ader · b1,

where ader is the image in Z(Ĝder) of a. Let (Z(Ĝsc) × Ĉ∞)+ be the sub-
group consising of those elements whose image in Z(Ĝ) is Γ-fixed. One
can show the the duality pairing of Theorem 6 is compatible with the limit
and becomes a pairing [Kal18b, (3.12)]

π0((Z(Ĝsc)× Ĉ∞)+)×H1(u→W,Z(G)→ G)→ C×.

Now consider the map

(Z(Ĝsc)× Ĉ∞)+ → Z(Ĝ), (a, (bn)) 7→ ader · b1
NE/F (b[E:F ])

, (11)

where E/F is any finite Galois extension so that ΓE acts trivially on Z(Ĝ).
The choice of E/F doesn’t matter and one can show that the above map
factors through π0((Z(Ĝsc)×Ĉ∞)+) and is the map dual to (10), see [Kal18b,
Proposition 3.3].

We now turn to the comparison of Conjectures F and G. Assume first
that G∗ is a quasi-split connected reductive group with connected center.
Let ξ : G∗ → G be an inner twist. There exists a representative b of an
element ofB(G∗)bas such that (ξ, b) is an extended pure inner twist. Via the
map (10) (which also works on the level of cocycles) we obtain from b an
element z ∈ Z1(u → W,Z(G∗) → G∗) so that (ξ, z) is a rigid inner twist.
Then one can show [Kal18b, §4] that conjecture F for (ξ, b) is equivalent
to Conjecture G for (ξ, z). Not only that, but one can explicitly relate the
internal parameterization of the L-packets Πφ((ξ, b)) and Πφ((ξ, z)). This
is realized by an explicit bijection

Irr(S\φ, b)→ Irr(π0(S+
φ ), z),

where Irr(S\φ, b) is the subset of those irreducible algebraic representations
of S\φ which transform under Z(Ĝ) via the character determined by b, and
Irr(π0(S+

φ ), z) is defined analogously. This bijection is given as the pull-
back of representations under a group homomorphism

π0(S+
φ )→ S\φ

that can be defined as follows. We may take as the finite central subgroup
Z ⊂ G∗ one of the groups Zn defined above. Moreover, we can take it so
that n is a multiple of the degree k = [E : F ] of some finite Galois extension
E/F as above. Then S+

φ ⊂ Ĝn = Ĝsc × Ĉn and we define the above map

to send (a, bn) ∈ S+
φ to [ader · bnn]NE/F (b

−n
k

n ). In other words, we use the
same formula as for (11).

We have thus compared Conjectures F and G for a fixed quasi-split
group G∗ with connected center. In order to obtain the above qualitative
statement, we must now reduce the proof of Conjecture G to the case of
groups with connected center. This is possible [Kal18b, §5] and involves
a construction, called a z-embedding, which embeds the connected reduc-
tive group G∗ into another connected reductive group G̃∗ whose center is
connected and whose endoscopy is comparable. One can then show that
Conjecture G forG∗ is equivalent to Conjecture G for G̃∗, see [Kal18b, §5.2].
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4.6 Relationship with Arthur’s formulation
The formulation of the refined local Langlands conjecture due to Arthur,
that we briefly discussed in Subsection 2.2, is quite different from Conjec-
ture G. For example, the group Ssc

φ that Arthur proposes is in general differ-
ent from π0(S+

φ ). Nonetheless, it turns out [Kal18a, §4.6] that Conjecture
G implies a strong form of Arthur’s formulation. Let G∗ be a quasi-split
connected reductive group and let ξ : G∗ → G be an inner twist. From ξ
one obtains the 1-cocycle σ → ξ−1σ(ξ), an element of Z1(Γ, G∗ad). Accord-
ing to Kottwitz’s theorem the class of this element provides a character
[ξ] : Z(Ĝ∗sc)

Γ → C×. Arthur suggests that one should choose an arbitrary
extension Ξ : Z(Ĝ∗sc)→ C×. Then, for any φ ∈ Φtemp(G∗) there should be a
non-canonical bijection between Irr(Ssc

φ ,Ξ) and the L-packet Πφ(G).
In order to relate Conjecture G to Arthur’s formulation, it is not enough

to choose z ∈ Z1(u → W,Z → G) so that (ξ, z) becomes a rigid inner
twist. Rather, we consider the inner twist ξ : G∗sc → Gsc on the level of
simply connected covers induced by ξ and fix an element zsc ∈ Z1(u →
W,Z(G∗sc) → G∗sc) so that (ξ, zsc) : G∗sc → Gsc becomes a rigid inner twist.
According to the duality of Theorem 6, the class of [zsc] provides a character
Z(Ĝ∗sc)→ C× that extends the character [ξ] : Z(Ĝ∗sc)

Γ → C×. Thus, we see
that from our current point of view the choice of extension Ξ of the charac-
ter [ξ] corresponds to the choice of zsc lifting the cocycle σ 7→ ξ−1σ(ξ). In
fact, when F is p-adic the class of [zsc] and the extension Ξ determine each
other. When F is real, however, the class [zsc] is the primary object, because
it determines Ξ, but is not determined by it.

The real strenght of the new point of view comes from the fact that
zsc provides not just the character Ξ, but at the same time a normalization
of the Langlands-Shelstad transfer factor ∆, namely ∆[w, ė, z], where z ∈
Z1(u → W,Z(G∗der) → G∗) is the image of zsc. In this way it specifies
the mediating function ρ(∆,−) and the spectral transfer factor ∆(φe, π).
Namely, ρ(∆[w, ė, z], sė) = 1 and ∆(φe, π) = 〈π, sė〉.

Let us now show that the internal parameterization of the L-packet
Πφ(G) given by Conjecture G implies the parameterization expected by
Arthur. Let Ḡ∗ = G∗/Z(G∗der) = G∗ad × Z(G∗)/Z(G∗der). Then duallŷ̄G∗ = Ĝ∗sc×Z(Ĝ∗)◦. We have Z(̂̄G∗) = Z(Ĝ∗sc)×Z(Ĝ∗)◦ and the subgroup

Z(̂̄G∗)+ can be described as the set of pairs (a, z) such that ader · z ∈ Z(Ĝ∗)

is Γ-fixed, where ader ∈ Z(Ĝ∗) is the image of a. Similarly, the subgroup

S+
φ ⊂ ̂̄G∗ can be described as the set of pairs (a, z) ∈ Ĝ∗sc×Z(Ĝ∗)◦ with the

property that ader · z ∈ Sφ, where ader ∈ Ĝ∗ is the image of a. One checks
that the map

S+
φ ⊕Z(̂̄G∗)+

Z(Ĝ∗sc)→ Ssc
φ , ((a, z), x) 7→ ax

is an isomorphism of groups. If ρ ∈ Irr(π0(S+
φ ), [z]), then the representa-

tion ρ ⊗ [zsc] of S+
φ × Z(Ĝ∗sc) descends to the quotient S+

φ ⊕Z(̂̄G∗)+
Z(Ĝ∗sc)

and via the above isomorphism becomes a representation of Ssc
φ . This gives

a bijection
Irr(π0(S+

φ ), [z])→ Irr(π0(Ssc
φ ),Ξ). (12)
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5 The automorphic multiplicity formula
In Section 1.5 we discussed that the internal structure of L-packets is a cen-
tral ingredient in the multiplicity formula for discrete automorphic repre-
sentations of quasi-split connected reductive groups defined over number
fields. In this section we shall formulate the multiplicity formula for gen-
eral (i.e. not necessarily quasi-split) connected reductive groups, using the
conjectural internal structure of tempered L-packets given by Conjecture
G. Since we are only considering tempered L-packets locally, the multi-
plicity formula will be limited to the everywhere tempered automorphic
representations. This restriction is just cosmetic – one can incorporate non-
tempered automorphic representations by replacing local L-packets with
local Arthur packets in the same way as is done in the quasi-split case.

When one attempts to use the local results of the previous sections to
study automorphic representations, one realizes that the local cohomolog-
ical constructions are by themselves not sufficient. They need to be supple-
mented by a parallel global cohomological construction that ensures that
the local cohomological data at the different places of the global field be-
have coherently. We shall thus begin this section with a short overview of
the necessary results. We will then state the multiplicity formula, begin-
ning first with the case of groups that satisfy the Hasse principle, for which
the notation simplifies and the key constructions become more transparent,
and treating the general case afterwards.

5.1 The global gerbe and its cohomology

Let F be a number field, F a fixed algebraic closure, and Γ = Gal(F/F ).
For each place v of F let Fv denote the completion, Fv a fixed algebraic
closure, and Γv = Gal(Fv/Fv). Fixing an embedding F → Fv over F
(which we think of as a place v̇ of F over v) provides a closed embedding
Γv → Γ, whose image we call Γv̇ .

It is shown in [Kal18a] that there exists a set of places V̇ of F lifting
the places of F , a pro-finite algebraic group P (depending on V̇ ), and an
extension

1→ P → E → Γ→ 1

with the following properties. For an affine algebraic group G and a finite
central subgroup Z ⊂ G, both defined over F , let H1(P → E , Z → G) ⊂
H1(E , G) be defined analogously to the local set H1(u → W,Z → G) of
Section 3.1. In fact, let us denote the local set now by H1(uv → Ev, Z → G)
to emphasize the local field Fv . Then for each v ∈ V there is a localization
map

locv : H1(P → E , Z → G)→ H1(uv → Ev, Z → G). (13)

This map is functorial in Z → G. Moreover, it is already well-defined on
the level of 1-cocycles, up to coboundaries of Γv valued in Z, that is there
is a well-defined map

locv : Z1(P → E , Z → G)→ Z1(uv → Ev, Z → G)/B1(Γv, Z), (14)

that induces (13).
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Let nowG be connected and reductive. For a fixed x ∈ H1(P → E , Z →
G), the class locv(x) is trivial for almost all v. Thus we have the total local-
ization map

H1(P → E , Z → G)→
∐
v

H1(uv → Ev, Z → G), (15)

where we have used the coproduct sign to denote the subset of the product
consisting of tuples almost all of whose entries are trivial. One can show
that the kernel of this map coincides with the kernel of the usual total lo-
calization map

H1(Γ, G)→
∐
v

H1(Γv, G).

One can also characterize the image of the total localization map (15). This
is based on the duality between H1(uv → Ev, Z → G) and π0(Z( ̂̄G)+v )
from Theorem 6, as well as an analogous global duality [Kal18a, §3.7]. Re-
call that Ḡ = G/Z and that Z( ̂̄G)+v is the subgroup of Z( ̂̄G) consisting
of those elements whose image in Z(Ĝ) is Γv-fixed. In the same way we
define Z( ̂̄G)+, where we now demand that the image in Z(Ĝ) is Γ-fixed.
The obvious inclusions Z( ̂̄G)+ → Z( ̂̄G)+v lead on the level of characters
to the summation map⊕

v

π0(Z( ̂̄G)+v )∗ → π0(Z( ̂̄G)+)∗.

Then the image of (15) is the kernel of the composition∐
v

H1(uv → Ev, Z → G)→
⊕
v

π0(Z( ̂̄G)+v )∗ → π0(Z( ̂̄G)+)∗. (16)

Finally, we remark that whenZ is sufficiently large (for example when it
contains Z(Gder)) then the natural map H1(P → E , Z → G)→ H1(Γ, Gad)
is surjective.

5.2 Global parameters
It is conjectured [Kot84, §12] that there exists a topological groupLF , called
the Langlands group of the global field F , which is an extension of the
Weil group WF by a compact group, such that the irreducible complex n-
dimensional representations of LF parameterize the cuspidal automorphic
representations of GLn/F . For each place v of F there should exist an
embedding LFv → LF , well-defined up to conjugation in LF . We shall
admit the existence of this group in order to have a clean formulation of
global parameters. In the case of classical groups the use of LF can be
avoided using Arthur’s formal parameters, see [Art13, §1.4].

Let G∗ be a quasi-split connected reductive group defined over F and
let ξ : G∗ → G be an inner twist. A discrete generic global parameter is a
continuous semi-simple L-homomorphism φ : LF → LG∗ with bounded
projection to Ĝ∗, whose image is not contained in a proper parabolic sub-
group of LG∗. Given such φ and a place v of F , let φv be the restriction of
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φ to LFv , a tempered (but usually not discrete) local parameter. Define the
adelic L-packet Πφ(G, ξ) as

Πφ(G, ξ) = {π = ⊗′vπv|πv ∈ Πφv (G), πv is unramified for a.a. v}

where the local L-packet Πφv (G) is the one from Conjecture A. Note that
we are using ξ to identify Ĝ∗ with Ĝ.

The question we want to answer in the following sections is this: Which
elements π ∈ Πφ(G, ξ) are discrete automorphic representations and what
is their multiplicity in the discrete spectrum? More precisely, letχ : Z(G)(A)→
C× denote the central character of π. The locally compact topological group
G(A) is unimodular. We endowG(A) with a Haar measure and the discrete
group G(F ) with the counting measure and obtain a G(A)-invariant mea-
sure on the quotient space G(F ) \ G(A). Denote by L2

χ(G(F ) \ G(A)) the
space of those square-integrable functions on the quotientG(F )\G(A) that
satisfy f(zg) = χ(z)f(g) for z ∈ Z(G)(A). The question we want to an-
swer is this: What is the multiplicity of π as a closed subrepresentation of
this space?

The answer to this question will be given in terms of objects that depend
on G, ξ, and π. However, the construction of these objects will use the
global cohomology set H1(P → E , Z → G∗). In preparation for this, we
define a global rigid inner twist (ξ, z) : G∗ → G to consist of an inner
twist ξ : G∗ → G and z ∈ Z1(P → E , Z → G∗), where Z ⊂ G∗ is a
finite central subgroup defined over F , so that the image of z in Z1(Γ, G∗ad)
equals zad(σ) = ξ−1σ(ξ).

5.3 Groups that satisfy the Hasse principle
Let G be a connected reductive group defined over F . Recall that G is said
to satisfy the Hasse principle if the total localization map

H1(Γ, G)→
∐
v

H1(Γv, G)

is injective. This is always true if G is semi-simple and either simply con-
nected or adjoint, see [PR94, Theorems 6.6, 6.22]. Other groups that are
known to satisfy the Hasse principle are unitary groups and special or-
thogonal groups. It was shown by Kottwitz [Kot84, §4] that G satisfies the
Hasse principle if and only if the restriction map

H1(Γ, Z(Ĝ))→
⊕
v

H1(Γv, Z(Ĝ))

is injective.
We assume now that G satisfies the Hasse principle. Let G∗ be the

unique quasi-split inner form of G and let ξ : G∗ → G be an inner twist.
Let zad(σ) ∈ Z1(Γ, G∗ad) be given by zad(σ) = ξ−1σ(ξ). Fix z ∈ Z1(P →
E , Z(G∗der)→ G∗) lifting zad. For every place v let zv ∈ Z1(uv → Ev, Z(G∗der)→
G∗) be the localization of z, well defined up to B1(Γv, Z(G∗der)). Then
(ξ, zv) : G∗ → G is a (local) rigid inner twist.

Let φ : LF → LG∗ be a discrete generic global parameter. For such φ,
the centralizer Sφ = Cent(φ, Ĝ∗) is finite modulo Z(Ĝ∗)Γ. For any place
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v of F we have the tempered local parameter φv = φ|LFv and Sφ ⊂ Sφv .
Let π ∈ Πφ(G, ξ) and let χ be its central character. We interpret πv as an
element of Πφv ((ξv, zv)) and obtain from Conjecture G the class function

〈πv,−〉 on π0(S+
φv

). Let S+
φ be the preimage in ̂̄G∗ of Sφ and let 〈π,−〉

be the product over all places v of the pull-back to π0(S+
φ ) of 〈πv,−〉. It

is a consequence [Kal18a, Proposition 4.2] of the description (16) of the
image of (15) that this class function descends to the quotient π0(S̄φ) :=

π0(S+
φ /Z(̂̄G∗)+) = π0(Sφ/Z(Ĝ∗)Γ) and is moreover independent of the

choice of z. It is the character of a finite-dimensional representation of
π0(S̄φ).

Conjecture H. The natural number∑
φ

|π0(S̄φ)|−1
∑

x∈π0(S̄φ)

〈π, x〉,

where φ runs over the Ĝ-conjugacy classes of discrete generic global parameters
satisfying πv ∈ Πφv (G), is the multiplicity of π in L2

χ(G(F ) \G(A)).

This conjecture is is essentially the one from [Kot84, §12]. The only
addition here is that we have explicitly realized the global pairing 〈π,−〉
as a product of normalized local pairings 〈πv,−〉 with the help of the local
and global Galois gerbes, and we have built in the simplifications implied
by the Hasse principle.

In order to apply the stable trace formula to the study of this conjecture
one needs to have a coherent local normalization of the geometric transfer
factors. Let e = (Ge, se, Lηe) be a global elliptic extended endoscopic triple.
Due to the validity of the Hasse principle for G we may and will assume
that se ∈ Z(Ĝe)Γ. To this triple, Kottwitz and Shelstad associate [KS99,
§7.3] a canonical adelic transfer factor

∆A : Ge
sr(A)×Gsr(A)→ C.

Note however that the original definition needs a correction, as explained
in [KS]. We assume henceforth that ∆A is the corrected global factor corre-
sponding to the local factors ∆′ of [KS, §5.4].

Choose a lift sė ∈ ̂̄Ge of se. For each place v of F , ėv = (Ge, sė, Lηe)
is a refined local extended endoscopic triple and we have the normalized
transfer factor ∆[w, ėv, ξv, zv].

Theorem 11 ([Kal18a, Proposition 4.1]). For δ ∈ Gsr(A) and γ ∈ Ge
sr(A) one

has
∆A(γ, δ) =

∏
v

∆[w, ėv, ξv, zv](γv, δv).

5.4 General groups
We shall now explain how to modify Conjecture H and Theorem 11 in the
case when G does not satisfy the Hasse principle. In order to handle this
case, it is not enough to choose z ∈ Z1(P → E , Z(G∗der) → G∗) lifting zad.
Instead, we consider the inner twist ξ : G∗sc → Gsc on the level of the simply
connected covers of the derived subgroups. Let zsc ∈ Z1(P → E , Z(G∗sc)→
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G∗sc) lift zad. Let zsc,v ∈ Z1(uv → Ev, Z(G∗sc)→ G∗sc) denote the localization
of zsc, well defined up to B1(Γv, Z(G∗sc)). Let zv ∈ Z1(uv → Ev, Z(G∗der)→
G∗) be the image of zsc,v .

Let φ : LF → LG∗ be a discrete generic global parameter. The group
S̄φ = Sφ/Z(Ĝ∗)Γ that we used whenG satisfied the Hasse principle is now
not adequate any more. The reason is that two global parameters φ1 and φ2

are considered equivalent not only when they are Ĝ∗-conjugate, but when
there exists a ∈ Z1(LF , Z(Ĝ∗)) whose class is everywhere locally trivial,
and g ∈ Ĝ∗, so that φ2(x) = a(x) · g−1φ1(x)g, see [Kot84, §10]. Then the
group of self-equivalences Sφ of a global parameter φ is defined to consist
of those g ∈ Ĝ∗ for which x 7→ g−1φ(x)gφ(x)−1 takes values in Z(Ĝ∗)
(then it is a 1-cocycle for formal reasons) and its class is everywhere locally
trivial. This group contains not just Z(Ĝ∗)Γ, but all of Z(Ĝ∗), and we set
S̄φ = Sφ/Z(Ĝ∗).

As before we have for each π ∈ Πφ(G, ξ) the local representation πv as
an element of Πφv ((ξv, zv)) and hence the class function 〈πv,−〉 on π0(S+

φv
).

We want to produce from these class functions a class function on π0(S̄φ).
Let x ∈ S̄φ. Choose a lift xsc ∈ Ĝ∗sc and let xder be its image in Ĝ∗der. For
each place v there exists yv ∈ Z(Ĝ∗) so that xderyv ∈ Sφv . Write yv = y′vy

′′
v

with y′v ∈ Z(Ĝ∗der) and y′′v ∈ Z(Ĝ∗)◦ and choose a lift ẏ′v ∈ Z(Ĝ∗sc). Since
Ḡ∗ = G∗/Z(G∗der) we have ̂̄G∗ = Ĝ∗sc × Z(Ĝ∗)◦. Then (xscẏ

′
v, y
′′
v ) ∈ S+

φv
.

The reason we had to choose zsc is that now the class [zsc,v] ∈ H1(uv →
Ev, Z(G∗sc) → G∗sc) becomes a character of Z(Ĝ∗sc), which we can eval-
uate on ẏ′v . It can be shown [Kal18a, Proposition 4.2] that the product
〈π, x〉 =

∏
v〈[zsc,v], ẏ′v〉−1〈πv, (xscẏ

′
v, y
′′
v )〉 is a class function on π0(S̄φ) that

is independent of the choices of zsc, xsc, ẏ′v , and y′′v , and is the character of
a finite-dimensional representation. We note here that each individual fac-
tor 〈[zsc,v], ẏ′v〉−1〈πv, (xscẏ

′
v, y
′′
v )〉, as a function of xsc, is the character of an

irreducible representation of the finite group π0(Ssc
φv ) discussed in Section

4.6. In fact, it is precisely the character of π0(Ssc
φv ) that is the image of the

character 〈πv,−〉 under the map (12).

Conjecture I. The natural number∑
φ

|π0(S̄φ)|−1
∑

x∈π0(S̄φ)

〈π, x〉,

where φ runs over the equivalence classes of discrete generic global parameters
satisfying πv ∈ Πφv (G), is the multiplicity of π in L2

χ(G(F ) \G(A)).

A similar procedure is necessary in order to decompose the canonical
adelic transfer factor ∆A into a product of normalized local transfer fac-
tors. Let e = (Ge, se, Lηe) be a global elliptic extended endoscopic triple.
Choose a lift ssc ∈ Ĝ∗sc of the image of se in Ĝ∗ad, and let sder ∈ Ĝ∗der be the
image of ssc. For each place v there is yv ∈ Z(Ĝ∗) so that sderyv ∈ Z(Ĝe)Γv .
Here we have identified Ĝe as a subgroup of Ĝ∗ via Lηe. Write yv = y′vy

′′
v

with y′v ∈ Z(Ĝ∗der) and y′′v ∈ Z(Ĝ∗)◦ and choose a lift ẏ′v ∈ Z(Ĝ∗sc). Then
(sscẏ

′
v, y
′′
v ) ∈ Z(̂̄Ge)+v , so ėv = (Ĝe, (sscẏ

′
v, y
′′
v ), Lηe) is a refined local ex-

tended endoscopic triple.
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Theorem 12 ([Kal18a, Proposition 4.1]). For δ ∈ Gsr(A) and γ ∈ Ge
sr(A) one

has
∆A(γ, δ) =

∏
v

〈[zsc,v], ẏ′v〉−1∆[w, ėv, ξv, zv](γv, δv).

5.5 Known cases
There are a few cases in which Conjecture H has been established. In
[KMSW14] this conjecture is verified for pure inner forms of unitary groups.
In [Taı̈19] this conjecture has been verified in the following setting. One
considers non-quasi-split symplectic and orthogonal groups G for which
there exists a finite set S of real places such that at v ∈ S the real group
G(Fv) has discrete series, and for v /∈ S the local groupG×Fv is quasi-split.
For those groups, Taı̈bi studies the subspace L2

disc(G(F ) \G(A))S−alg.reg. of
discrete automorphic representations whose infinitesimal character at each
place v ∈ S is regular algebraic and shows that Conjecture H is valid for
this subspace.
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[Bou94] Abderrazak Bouaziz, Intégrales orbitales sur les groupes de Lie
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Jussieu 5 (2006), no. 3, 423–525. MR 2241929 (2007h:22007)

[Wal09] Jean-Loup Waldspurger, Endoscopie et changement de car-
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