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Abstract

For a quasi-split connected reductive group G over a local field F we
define a compact abelian group π̃1(G) and an extension 1 → π̃1(G) →
G(F )∞ → G(F )→ 1 of topological groups equipped with a splitting over
Gsc(F ). Any character x : π̃1(G) → µn(C) leads to an n-fold cover G(F )x
of G(F ) via pushout. We define an L-group LGx for this cover that is gen-
erally a non-split extension of Gal(F s/F ) by Ĝ. We prove a refined local
Langlands correspondence for G(F )x, assuming it is known for connected
reductive groups with the same adjoint group as G.

Motivation for this construction comes from considerations of Lang-
lands’ functoriality conjecture, where subgroupsH ⊂ LG of theL-group of
G arise that need not be L-groups of other reductive groups. If such a sub-
group is full and intersects Ĝ in a connected reductive subgroup of maxi-
mal rank, we construct a natural triple (H,x, ξ) consisting of a quasi-split
connected reductive groupH , a double coverH(F )x, and anL-embedding
ξ : LHx → LG that is an isomorphism ontoH. We expect that genuine rep-
resentations of H(F )x transfer functorially to representations of G(F ).

In the special case of endoscopy, we show that the construction of trans-
fer factors simplifies when the natural double cover H(F )x of the endo-
scopic group is used. The transfer factor becomes the product of two nat-
ural invariants that do not depend on auxiliary choices. One of them is
closely related to Kottwitz’s work [Kot99] on transfer factors for Lie alge-
bras. The other one is not specific to the case of endoscopy, and will likely
play a role in general functoriality questions.

For F = R, analogues of π̃1(G) andG(F )∞ were constructed by Adams
and Vogan [AV92] and our work is motivated by their ideas.
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1 INTRODUCTION

Let F be a local field and letG be a connected reductive F -group. According to
the Langlands conjectures, the representation theory of the topological group
G(F ) should be governed by the L-group LG = Ĝo Γ, where Γ is the absolute
Galois group of F relative to a fixed separable closure F s, and Ĝ is the dual
group of G. The Langlands reciprocity conjecture predicts a correspondence
between L-homomorphisms LF → LG and representations of G(F ), where
LF is the local Langlands group of F , defined to be the Weil group WF when
F is archimedean, and the group WF × SL2(C) when F is non-archimedean.
The Langlands functoriality conjecture predicts a relationship between the rep-
resentations of two groups G1(F ) and G2(F ) if there is an L-homomorphism
LG1 → LG2.

While reflecting on these questions one often encounters groups G which,
like the group LG, are extensions of Γ by Ĝ, but may not possess all properties
of LG. For example, the extension G may not be split. Or it may be split, but
not equipped with a splitting. Or a splitting may be given, but the resulting
action of Γ on Ĝ may not preserve a pinning. The question then arises about
the meaning of such groups G with relation to Langlands’ conjectures.

The following are some examples of the occurrence of such groups.

1. Consider a discrete L-parameter ϕ : WF → LG. If F is non-archimedean,
assume that G splits over a tame extension of F and the residual char-
acteristic p does not divide the order of the Weyl group of G. Then ϕ
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determines a subgroup S ⊂ LG that contains the image of ϕ and is an ex-
tension 1 → Ŝ → S → Γ → 1, where Ŝ is the dual of an elliptic maximal
torus of G, cf. [She83, §3.4] and [Kal19c, §4.1].

When F = R, S is usually not the L-group of S. When F is non-archi-
medean, S is non-canonically isomorphic to LS, but the set of possible
isomorphisms is a torsor under the group of all characters of S(F ), so it
is not clear how to obtain from the factored parameter ϕ : WF → S a
character of S(F ) in a canonical way.

2. Consider an endoscopic datum (H, s,H, η) for G, as defined in [KS99,
§2.1]. The groupH is an extension of Γ by Ĥ that is split, but no splitting
is given, and it is not assumed that there exists a splitting that gives an
action of Γ on Ĥ preserving a pinning. In fact, there are situations where
such a splitting does not exist. Therefore, H need not be isomorphic to
LH .

3. In the study of functoriality and questions of “Beyond Endoscopy”, as
for example in [Lan04], subgroups of LG denoted by λHπ arise. These
groups can often be assumed to be extensions of Γ by a connected group
Ĥ , cf. [Lan04, §1.2, §1.4], at least upon replacing Γ by Gal(E/F ) for a suit-
able finite Galois extension E/F . Similar groups occur in the discussion
of [Art17, §2], where they are denoted by G′ and are part of a “beyond
endoscopic datum”.

The lack of an isomorphism G → LG can be resolved by a technical work-
around. When G is a torus, which is the setting 1. above (where now S plays
the role of G), using the Weil group to form LG in place of the Galois group
leads to an extension of WF by Ĝ, and such an extension is always split, cf.
Proposition C.4. However, there is no distinguished choice of splitting. When
G is a general connected reductive group, this procedure doesn’t always guar-
antee that G will become isomorphic to LG, and one needs to combine it with
a second procedure, that of replacing G by a central extension G1 → G whose
kernel is an induced torus. This is a so called z-extension, introduced by Lang-
lands. There is always an L-embedding G → LG1, and one can now use G1

in place of G in the study of functoriality. However, the problem remains that
there is no natural choice for a z-extension, nor for an L-embedding G → LG1.

In this paper we propose a solution to this problem. Given a quasi-split
connected reductive group G we define (Definition 2.1.1) a compact abelian
group π̃1(G), functorial inG, and an extension (cf. (2.1.1)) of topological groups

1→ π̃1(G)→ G(F )∞ → G(F )→ 1.

This extension is equipped with a splitting over Gsc(F ), i.e. a continuous ho-
momorphismGsc(F )→ G(F )∞ that lifts the natural homomorphismGsc(F )→
G(F ). The definition of π̃1(G) is based on Borovoi’s algebraic fundamental
group [Bor98]. The continuous characters of π̃1(G) are in bijection with the
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groupZ2(Γ, Z(Ĝ)). If x : π̃1(G)→ S1 is such a character, we obtain via pushout
an extension

1→ S1 → G(F )x → G(F )→ 1

as well as an extension (cf. (2.6.1))

1→ Ĝ→ LGx → Γ→ 1,

equipped with a set-theoretic splitting. The following is an imprecise version
of Theorem 2.6.2.

Theorem. Assume that the refined local Langlands correspondence is known for z-
extensions ofG. Then the analogous formulation is known for genuine representations
of the topological group G(F )x and L-parameters valued in LGx.

When the character x is of finite order, thus valued in µn(C) for some n,
then we have analogously the extension

1→ µn(C)→ G(F )x,n → G(F )→ 1.

Thus G(F )x,n is a finite cover of G(F ). The above theorem holds for G(F )x,n
as well.

The proof of this theorem relies on the fact that, when the derived sub-
group of G is simply connected, there exists a (non-canonical) L-isomorphism
LG → LGx between the Weil-forms of the L-groups of G and G(F )x, as well
as a (non-canonical) genuine character of G(F )x, and the fact that these two
objects can be chosen compatibly. Tensoring with the genuine character pro-
vides a bijection between the representations of G(F ) and the genuine repre-
sentations of G(F )x, and this bijection is the reflection of the L-isomorphism
LG → LGx. In hindsight, composing the natural section WF → LG with this
L-isomorphism provides the parameter for the genuine character. When the
derived subgroup of G is not simply connected there need not exist a genuine
character of G(F )x, or an L-isomorphism LG→ LGx. One reduces the general
case to the case when the derived subgroup of G is simply connected by using
a z-extension.

The application of this theorem to the problem we just sketched is the fol-
lowing result, proved in §3.

Theorem. Let G be a connected reductive group and let H ⊂ LG be a subgroup,
given up to conjugation by Ĝ, such that

1. The projection LG→ Γ remains surjective upon restriction toH.

2. The intersection Ĥ = H∩Ĝ is a connected reductive subgroup of maximal rank.

There exists a tuple (H,x, ξ) consisting of a quasi-split connected reductive group
H , a character x : π̄1(H) → {±1}, and an L-embedding LHx → LG that is an
isomorphism ontoH. This triple is unique up to isomorphism.
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Here π̄1(H) is a slight variation of π̃1(H) that is introduced in §2.1. The group
H(F )x is a double cover of H(F ), and is not the group of F -points of a con-
nected reductive group Hx.

This theorem answers the question as to which group is the partner toG(F )
in the conjectural functorial transfer that is embodied by the inclusionH → LG.
Examples of groups that satisfy the assumptions of the theorem are those in
cases 1. and 2. discussed above, as well as some of those in case 3.

Let us examine case 1. The double cover S(F )x of the elliptic maximal torus
S(F ) of G(F ) had already been constructed by different means in [Kal19a]. It
was discussed there ([Kal19a, §4.2]) that a discrete L-parameter for G, with
the proviso made in 1. when F is non-archimedean, provides canonically a
genuine character of the double cover S(F )x, and that the stable character of
the conjectural L-packet on G(F ) corresponding to that L-parameter can be
written down explicitly in terms of that genuine character ([Kal19a, §4.4]). The
construction of S(F )x in [Kal19a] is quite different from the one given here. It
has the virtue of being explicit, but only applies to tori and to very specific x.
The construction given here applies to general x, but is not explicit.

Let us now examine case 2. Since the above theorem reveals the double
cover H(F )x as the natural partner to G(F ) for endoscopic transfer, the ques-
tion arises if one can formulate the Langlands–Shelstad–Kottwitz transfer fac-
tors in terms of H(F )x and state appropriate geometric and spectral transfer
theorems or conjectures. Not only is that possible, but we find that the struc-
ture of the transfer factor becomes more transparent. In [LS87, §3], the transfer
factor is defined as a product of 5 terms

∆ = ∆I ·∆II ·∆III1 ·∆III2 ·∆IV .

The final term ∆IV is a quotient of Weyl discriminants, and is thus of a simple
nature, but the other terms are somewhat involved, and depend on auxiliary
choices, called a-data and χ-data. While each of these terms can be motivated
in a certain way, the true nature of ∆I and ∆II may appear mysterious. More-
over, while the product ∆ does not depend on a-data or χ-data, it does de-
pend on other auxiliary choices, namely that of a z-extension H1 → H and
L-embeddingH → LH1.

On the other hand, we define in this paper (cf. (4.3.3)) a transfer factor ∆x

that is just the product of three terms

〈inv(pin,−), s〉−1 · 〈invH,−〉 ·∆IV .

In fact, following Waldspurger, we drop ∆IV and agree to normalize orbital
integrals and characters accordingly. Each of the terms 〈inv(pin,−), s〉 and
〈invH,−〉 has transparent structure, and does not depend on auxiliary data
such as a-data or χ-data.

To explain the structure of 〈inv(pin,−), s〉we recall Kottwitz’s result [Kot99]
that, in the case of Lie algebras over a local field of characteristic zero, the trans-
fer factor has the following very simple description: ∆Lie(X

H , XG) = 1 if G is
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quasi-split and XG ∈ Lie(G)(F ) meets the Kostant section for the fixed pin-
ning of G, and in general is given by the usual κ-behavior in the variable XG.
Said slightly differently, there exists a cohomological invariant inv(pin, XG)
that measures the relative position of XG and the fixed pinning of G, and

∆Lie(X
H , XG) = 〈inv(pin, XG), s〉−1

is just the pairing of that cohomological invariant with the endoscopic element
s (one needs to transport s to the right place, and this depends on XH ; more-
over, the inverse we have placed here is not in [Kot99], but is dictated by the
conventions of [KS] that we follow, see §4.2).

It turns out that, in the group case, there is an analogous object. Namely,
there is a cohomological invariant (see §4.1) that measures the relative position
of a pinning of G and a strongly regular semi-simple element δ±± of a certain
cover S(F )±± of a maximal torus S ⊂ G, and the term 〈inv(pin, δ±±), s〉 is
again simply the pairing of this cohomological invariant with the endoscopic
element s. This invariant is a globalization (to the whole group) of the infinites-
imal invariant in Kottwitz’s work, in the sense that there is an open neighbor-
hood V ⊂ Lie(S)(F ) of 0 such that the exponential map exp : V → S(F )±±
converges and inv(pin, exp(XG)) = inv(pin, XG), where on the left we have
used the invariant for the group, and on the right the invariant for the Lie al-
gebra, cf. Lemma 4.1.4. Of course, not all elements in S(F )±± lie in the image
of the exponential map.

We point out that, unlike for Lie algebras, the definition of the invariant
inv(pin,−) in the group case requires the use of covers. We do not believe
that it is possible to define such an invariant without using covers. We further
point out that, by using rigid inner forms, this invariant can be defined for
arbitrary connected reductive G, not necessarily quasi-split, and we work in
this generality in §4.1.

The term 〈invH,−〉 also has transparent structure. There is a diagram of
L-embeddings

LSx,H // LHx

��
LSG // LG

each of which is canonical (up to conjugation). This diagram leads naturally
(cf. §3.3) to a genuine character of a cover of S(F ) that arises as a Baer sum
S(F )G/H⊕S(F )x, and invH is just this character. The product 〈inv(pin,−), s〉−1·
〈invH,−〉 becomes a function of H(F )x ×G(F ) that is genuine on H(F )x.

In order to obtain a balanced theory, this discussion needs to be performed
not just with the group G and its L-group LG, but also with any cover of G
and its associated L-group. This does not require much additional effort and is
done in §3.2 and §4.4.

It is clear from the construction that the transfer factor ∆x is compatible
with the Lie algebra transfer factor (the term invH, being a smooth character

6



of a cover of a torus, vanishes near the identity). The transfer factor ∆x is also
compatible with the original transfer factor of Langlands–Shelstad–Kottwitz,
as is verified in §4.5. Via this compatibility we are able to derive the following
two basic results from their classical analogs.

1. Every anti-genuine function fG ∈ C∞c (G(F )xG) has a matching anti-gen-
uine function fH ∈ C∞c (H(F )xH ), cf. Theorem 4.6.2.

2. Assume that endoscopic character identities hold for connected reduc-
tive groups with the same derived subgroup of G and their endoscopic
groups corresponding toH . Then they also hold forG(F )xG andH(F )xH .
More precisely,

Θs,w
ϕG (fG) = SΘϕH (fH),

for any tempered L-parameter ϕH valued in LHxH and its composition
ϕG with the canonical L-embedding LHxH → LGxG , cf. Theorem 4.6.4.

It may be worth pointing out how this discussion relates to Langlands’ result
[Lan79] that, when the derived subgroup of G is simply connected, there exists
an L-embedding LH → LG between the Weil forms of the L-groups. From
our current point of view this result may be interpreted as the existence of
an isomorphism LH → LHx between the Weil-forms of the L-groups. This
isomorphism, together with the canonical L-embedding LHx → LG, recovers
Langlands’ L-embedding.

In the more general setting of twisted endoscopy, an L-embedding LH →
LGmay fail to exist even when the derived subgroup ofG is simply connected.
This is why [KS99, §2.2] introduced the notion of a z-pair, which consists of a
z-extension H1 → H and an L-embedding LH → LH1, and phrased the con-
struction of the transfer factor in terms of that choice. But when the canonical
double cover H(F )x and the transfer factor ∆x is used, the need for such aux-
iliary choices disappears.

This ends our discussion of 2. We do not have anything serious to say about
3., but can offer some vague remarks. It is expected that there should be “be-
yond endoscopy transfer factors”, as for example discussed in [Lan13]. With
this in mind, one can ask if some parts of these may be related to parts of the
endoscopic transfer factors. A related question may be, which parts of the en-
doscopic transfer factors are of truly endoscopic nature, and which are more
general. The appearance of the term ∆abs

II in the character formula for super-
cuspidal representations in [Kal19b, §4] suggested that some parts of the endo-
scopic transfer factor are intrinsic to the group G, and thus not of endoscopic
nature. The construction of the transfer factor ∆x discussed above offers some
insight into this question. It is clear that the term invH is not of endoscopic na-
ture, and will likely play a role in more general considerations of functoriality.
The term 〈inv(pin,−), s〉 arises as the pairing of a cohomological invariant that
is again intrinsic to G with the endoscopic element s. Thus, while this term
itself is of endoscopic nature, the cohomological invariant might again play a
role in more general considerations of functoriality. For example, it is implicit
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in [Kal19b] that this invariant is closely related to the genericity of supercuspi-
dal representations of G(F ).

The idea that non-split extensions of Γ by Ĝ are to be viewed as L-groups
of covers of G(F ) is not new. Adams and Vogan proposed this approach in
[AV92] for real reductive groups, and our work is inspired by theirs. Given
such a group G/R they define a finitely generated abelian group π1(G)(R) and
an extension

1→ π1(G)(R)→ G(R)∼ → G(R)→ 1,

cf. [AV92, (5.3)(c),(7.11)(a,c)]. They also state a basic form of the local Lang-
lands correspondence for the resulting covers ([AV92, Theorem 10.7]).

The constructions of Adams and Vogan use the particularities of the real
numbers, most notably that the Galois group is finite of order 2, and in partic-
ular its cohomology is cyclic with period 2. They also use the fact that G(R)
is a real Lie group. This makes it unclear if these constructions can be carried
out for non-archimedean fields. Our construction is different, but we are able
to compare it with that of Adams and Vogan in §2.9. The rough result is the
following.

Theorem.

1. There exists a natural homomorphism π1(G)(R) → π̃1(G), which is injec-
tive and realizes the component group π0(π̃1(G)) as the profinite completion
of π1(G)(R).

2. The extensionG(R)∞ is the pushout ofG(R)∼ under the above homomorphism.

According to this theorem, there is a natural bijection between the finite-
order characters of π1(G)(R) and π̃1(G). The resulting covers ofG(R) are canon-
ically isomorphic. It is not clear if the covers obtained from infinite-order char-
acters can be compared.

We close this introduction with a brief remark about the relationship be-
tween this paper and other works on covering groups and their L-groups, such
as [Del96], [BD01], [Wei18a], [Wei18b], and [Zha22]. The purpose of those pa-
pers is to obtain a class of covers of reductive groups that is as large as possi-
ble. These constructions can be rather complicated, and establishing Langlands
reciprocity or endoscopic functoriality for them in any generality appears cur-
rently well out of reach. Indeed, already the experience with the special case
of the mateplectic group through the work of Wen-Wei Li [Li11], [Li19], [Li20]
has shown that this problem is deep. Even the case of covers of general tori is
complicated and not fully known; the case of covers of split tori is treated in
[Wei18b].

Our purpose here is rather orthogonal. Our focus is on linear reductive
groups, and the covers are brought in to clarify notions and constructions
involved in the study of functorliality for linear groups, such as endoscopic
groups and transfer factors, as well as more general cases of functoriality. For
this we have isolated a small class of covers that offers a natural setting for
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studying these phenomena while also keeping to a minimum the required tech-
nology and effort. We have established in §2.6 and §4 both reciprocity and
endoscopic functoriality for these covers, assuming that it holds for closely re-
lated linear groups. This allows these covers to be used effectively in the study
of linear groups, for example through the approach via induction on dimen-
sion due to Langlands and Arthur.

It would be fruitful to compare the constructions of covers given here with
these other works and to contemplate to what extent the discussions of §2.6
and §4 may be extended to a more general setting.
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2 THE PSEUDO-FUNDAMENTAL GROUP

Let F be a local field, F s a fixed separable closure, and Γ = Gal(F s/F ). Let G
be a quasi-split connected reductive group over a field F .

2.1 Definition of the pseudo-fundamental group

Let π1(G) be Borovoi’s algebraic fundamental group, cf. Appendix D.

Definition 2.1.1. Let π̃1(G) be the compact abelian group that is Pontryagin
dual to the discrete abelian group Z2(Γ,HomZ(π1(G),C×)). �

Fact 2.1.2. The assignment G 7→ π̃1(G) is a covariant functor from the cate-
gory of connected reductive F -groups to the category of compact topological
groups. If π1(G)→ π1(H) is surjective, then so is π̃1(G)→ π̃1(H). �

In terms of the dual group Ĝ, the compact group π̃1(G) is the Pontryagin
dual of the discrete abelian group Z2(Γ, Z(Ĝ)). In the following subsections
we will define a central extension of locally compact groups

1→ π̃1(G)→ G(F )∞ → G(F )→ 1 (2.1.1)

equipped with a splitting overGsc(F ), i.e. with a homomorphism s : Gsc(F )→
G(F )∞ that lifts the natural mapGsc(F )→ G(F ). We will call (2.1.1) the pseudo-
universal extension, and s a splitting over Gsc.

From any character t : π̃1(G) → S1 we obtain from (2.1.1) via pushout an
extension G(F )t of G(F ) by S1. If the character is of finite order n, thus valued
in µn(C), we obtain in the same way an extension G(F )t,n of G(F ) by µn(C).
We can push-out the latter under the inclusion µn(C) → µ∞(C) to obtain an
extension G(F )t,∞; here we are taking the discrete topology on µ∞(C).

Remark 2.1.3. As reviewed in Appendix A, we have the exact sequence

1→ π̃1(G)◦ → π̃1(G)→ π0(π̃1(G))→ 1,

and a character of π̃1(G) has finite order if and only if it factors through the
quotient π0(π̃1(G)), which is profinite. Throughout most of the paper we will
only be concerned with characters of π̃1(G) that are of finite order. A character
t : π̃1(G)→ S1 has finite order if and only if it takes values in µ∞(C), i.e. if and
only if each of its values has finite order, cf. Lemma A.1. �

Definition 2.1.4. Let X be a set with an action of C×. A function f : G(F )t,n →
X is called genuine if f(ε ·g) = ε ·f(g) for g ∈ G(F )t,n and ε ∈ µn(C). It is called
anti-genuine if instead f(ε · g) = ε−1 · f(g). �

The main cases we have in mind are X = C, X = C×, X = µn(C), X = S1,
or X = Aut(V ) for a complex vector space V .
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Remark 2.1.5. The identity automorphism of G(F )∞ induces an isomorphism
of topological groupsG(F )t,n → G(F )t−1,n whose restriction to µn(C) is the in-
version automorphism. In this way, anti-genuine functions of G(F )t,n become
identified with genuine functions of G(F )t−1,n. �

Remark 2.1.6. We recall the following two basic constructions of extensions.
Given t1, t2 : π̃1(G) → µn(C), the Baer sum G(F )t1,n ⊕ G(F )t2,n is defined as
the pushout along the multiplication map µn(C)× µn(C)→ µn(C) of the fiber
product G(F )t1,n ×G(F ) G(F )t2,n. Given t : π̃1(G) → µn(C) the Baer inverse of
G(F )t,n is the pushout of G(F )t,n under the inversion map µn(C)→ µn(C).

In our situation, these constructions behave as follows. The Baer inverse of
G(F )t,n is naturally identified with G(F )t−1,n. The homomorphism G(F )∞ →
G(F )t1,n ⊕G(F )t2,n induced by the diagonal embedding G(F )∞ → G(F )∞ ×
G(F )∞ factors through an isomorphism G(F )t1t2,n → G(F )t1,n ⊕G(F )t2,n. �

We now make some remarks about the dependence of the cover G(F )t,n on
n.

Remark 2.1.7. Consider a multiple m of n. Pushing out the central extension
G(F )t,n of G(F ) by µn(C) along the natural inclusion µn(C) → µm(C) we ob-
tain the central extension G(F )t,m. It is possible that for t, t′ : π̃1(G) → µn(C)
the extensions G(F )t,n and G(F )t′,n are not isomorphic, but the extensions
G(F )t,m and G(F )t′,m are isomorphic, cf. Remark 2.2.16. �

Remark 2.1.8. If π is a genuine representation of G(F )t,n, then the represen-
tation π � id of G(F )t,n × µm(C) transforms trivially under the antidiagonal
embedding of µn into this product, and hence descends to a genuine represen-
tation of G(F )t,m. This provides a functor between the categories of genuine
representations of G(F )t,n and G(F )t,m, and this functor is an equivalence, its
inverse being restriction along G(F )t,n → G(F )t,m. The same argument ap-
plies when G(F )t,n is replaced by G(F )t. �

We now introduce a variation that will be quite useful. Let T be the uni-
versal maximal torus of G and let T̂ be its dual. There is a natural embedding
Z(Ĝ) → T̂ and we set T̂ad = T̂ /Z(Ĝ). Consider the complex of tori [T̂ → T̂ad],
where T̂ is placed in degree 0 and T̂ad is placed in degree 1. We have the group
of hypercocycles Z2(Γ, T̂ → T̂ad). Our conventions are those of [KS99, Ap-
pendix A]. Thus this group consists of z ∈ Z2(Γ, T̂ ) and c ∈ C1(Γ, T̂ad) such
that ∂c = z̄, where z̄ ∈ Z2(Γ, T̂ad) is the image of z.

Definition 2.1.9. Let π̄1(G) be the compact abelian group that is Pontryagin
dual to the discrete abelian group Z2(Γ, T̂ → T̂ad). �

From the injection Z2(Γ, Z(Ĝ)) → Z2(Γ, T̂ → T̂ad) we obtain the natural
surjective map π̄1(G) → π̃1(G). The advantage of π̄1(G) is that the extension
(2.1.1) is obtained as a push-out of an analogous extension

1→ π̄1(G)→ G(F )∞ → G(F )→ 1. (2.1.2)
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Any character t : π̃1(G) → µn(C) pulls back to a character t : π̄1(G) → µn(C)
and the corresponding extension G(F )t,n obtained from (2.1.1) is also obtain-
able from (2.1.2). In that sense, π̄1(G) is the more primordial object. We will
see that the theory of endoscopy leads to covers of G(F ) that most naturally
present themselves via characters of π̄1(G).

The disadvantage of π̄1(G) is that its functoriality in G rather limited (it re-
spects isomorphisms, and embeddings of Levi subgroups, for example). There-
fore, for some purposes, π̃1(G) is better behaved. We will see however in §2.5
that in many important cases functorial properties involving π̄1(G) may be ob-
tained from those of π̃1(G).

We will further see in §2.5 that, while not every character t : π̄1(G)→ µn(C)
descends to π̃1(G), we can always find a character t′ : π̃1(G) → µm(C) such
that the extensions G(F )t,m and G(F )t′,m are isomorphic. The problem is that
m is usually not equal to n, but rather a multiple of n, and the isomorphism
between G(F )t,m and G(F )t′,m is not unique, so one must keep track of it.

2.2 Covers of tori

We begin the construction and study of (2.1.1) in the special case that G is an
F -torus, which we shall denote by S for emphasis. Then π̃1(S) = π̄1(S) is the
Pontryagin dual of Z2(Γ, Ŝ), where Ŝ is the complex dual torus of S. We write
C1
u(WF , Ŝ) for the group of continuous 1-cochains c : WF → Ŝ whose image is

bounded. Note that B1(WF , Ŝ) = B1(Γ, Ŝ) ⊂ C1(Γ, Ŝ) ⊂ C1
u(WF , Ŝ).

Lemma 2.2.1. Let t ∈ Z2(Γ, Ŝ). There exists c ∈ C1
u(WF , Ŝ) such that ∂c = t. �

Proof. If we only require that c lie in C1(WF , Ŝ), rather than the subgroup
C1
u(WF , Ŝ), then this is [Lan79, Lemma 4]. The proof given in loc. cit. rests on

the surjective homomorphism H1
c (WK/F , S1)→ H1

c (WK/F , S2) marked by (1),
where H1

c is the notation used for cohomology classes represented by continu-
ous cocycles; in this paper we are not using a subscript for this. If in this proof
we replace that homomorphism with the homomorphism H1

u(WK/F , S1) →
H1
u(WK/F , S2), which is still surjective by Pontryagin duality, we obtain the

desired result. �

Define

Z̃1(WF , X) = {c ∈ C1(WF , X) | ∂c ∈ Z2(Γ, X)}
Z̃1
u(WF , X) = Z̃1(WF , X) ∩ C1

u(WF , X)

H̃1(WF , X) = Z̃1(WF , X)/B1(WF , X)

H̃1
u(WF , X) = Z̃1

u(WF , X)/B1(WF , X)

H̃i(Γ, X) = Ci(Γ, X)/Bi(Γ, X),

whereX is any Γ-module in the first, third, and fifth lines, and a complex torus
in the second and fourth lines. The differential ∂ : Z̃1(WF , Ŝ) → Z2(Γ, Ŝ)
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descends to the group H̃1(WF , Ŝ) and induces a group homomorphism that is
surjective, in fact remains surjective even after restriction to H̃1

u(WF , Ŝ) accord-
ing to Lemma 2.2.1.

The Langlands correspondence (cf. Appendix B) for S identifies the abelian
group H1

u(WF , Ŝ) with the Pontryagin dual Homcts(S(F ),S1) of S(F ). The
latter has a natural topology, namely the compact-open topology. We endow
H1
u(WF , Ŝ) with the transport of that topology via the Langlands isomorphism.

We endow H̃1
u(WF , Ŝ) with the unique topology for which H1

u(WF , Ŝ) is an
open subgroup. Then the exact sequence

1→ H1
u(WF , Ŝ)→ H̃1

u(WF , Ŝ)
−∂−→ Z2(Γ, Ŝ)→ 1 (2.2.1)

of abstract groups becomes an exact sequence of locally compact topological
groups, with Z2(Γ, Ŝ) discrete. Note that we have used the negative of the
differential. Pontryagin duality turns this exact sequence into the desired exact
sequence (2.1.1) for G = S.

We will now discuss the Langlands duality statement for the cover S(F )∞,
as well as for covers obtained from it via characters of π̃1(S).

Proposition 2.2.2. (The local correspondence):

1. There is a natural isomorphism between the group H̃1(WF , Ŝ) and the
group of continuous characters S(F )∞ → C×, under which the subgroup
H̃1
u(WF , Ŝ) is identified with the subgroup of unitary characters.

2. If χ∞ : S(F )∞ → C× corresponds to [c] ∈ H̃1(WF , Ŝ), the restriction of
χ∞ to π̃1(S)→ C× equals the character −∂c ∈ Z2(Γ, Ŝ).

3. If χ : S(F ) → C× corresponds to [z] ∈ H1(WF , Ŝ), the inflation of χ to
S(F )∞ corresponds to [z] ∈ H̃1(WF , Ŝ).

�

Proof. All statements hold by construction if we replace H̃1 by H̃1
u. Lemma

2.2.1 implies that H̃1(WF , Ŝ) is the amalgamation of H̃1
u(WF , Ŝ) andH1(WF , Ŝ)

over H1
u(WF , Ŝ), and the proposition follows. �

Proposition 2.2.3. (Functoriality of pseudo-universal covers):

1. A homomorphism f : S → T of F -tori induces a continuous homomor-
phism f∞ : S(F )∞ → T (F )∞ lifting f : S(F ) → T (F ) and restricting to
π̃1(f) : π̃1(S)→ π̃1(T ).

2. The correspondence between continuous characters of S(F )∞ and ele-
ments of H̃1(WF , Ŝ) is functorial in S.

�
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Proof. The dual homomorphism f̂ : T̂ → Ŝ induces a homomorphism of
abstract groups H̃1

u(WF , T̂ ) → H̃1
u(WF , Ŝ). This homomorphism is continu-

ous, because it restricts to a homomorphism H1
u(WF , T̂ ) → H1

u(WF , Ŝ) that
is continuous, being the dual under Langlands duality of the continuous ho-
momorphism S(F ) → T (F ). Dualizing again we obtain the desired contin-
uous homomorphism S(F )∞ → T (F )∞, proving (1). To prove (2) we note
that by construction the homomorphism S(F )∞ → T (F )∞ respects the homo-
morphism H̃1

u(WF , T̂ ) → H̃1
u(WF , Ŝ). On the other hand, the homomorphism

S(F )→ T (F ) respects the homomorphism H1(WF , T̂ )→ H1(WF , Ŝ) by func-
toriality of Langlands duality. The argument of the proof of Proposition 2.2.2
completes (2). �

Every element t ∈ Z2(Γ, Ŝ) gives a continuous character t : π̃1(S)→ S1 and
we obtain the corresponding extension S(F )t. When t is of finite order n, we
also have the extensions S(F )t,n and S(F )t,∞.

We define the L-group
LSt = Ŝ �t Γ. (2.2.2)

Multiplication in this group is given by s� σ · s′ � σ′ = sσ(s′)t(σ, σ′)� σσ′.
Propositions 2.2.2 and 2.2.3 imply the following.

Corollary 2.2.4.

1. The group of continuous characters of S(F )t is identified with the fiber
product H̃1(WF , Ŝ)×Z2(Γ,Ŝ) Z, where the left map is the negative differ-
ential and the right map is k 7→ tk. When tn = 1, the analogous statement
holds for S(F )t,n, resp. S(F )t,∞ upon replacing Z by Z/nZ, resp. Ẑ.

2. Restriction along S(F )t,n → S(F )t resp. S(F )t,n → S(F )t,∞ is dual to the
projection induced by the natural projection Z→ Z/nZ resp Ẑ→ Z/nZ.

3. The coset of genuine characters is the fiber over 1 of the second projection,
i.e. H̃1(WF , Ŝ)t = {[c] ∈ H̃1(WF , Ŝ) | (−∂)c = t}.

4. The coset of genuine characters is also in bijection with the set of Ŝ-
conjugacy classes of L-homomorphisms WF → LSt.

5. Given a homomorphism f : T → S of F -tori the homomorphism f∞ :
T (F )∞ → S(F )∞ of Proposition 2.2.3(1) induces a continuous homomor-
phism ft,n : T (F )t◦f,n → S(F )t,n that covers f : T (F ) → S(F ) and re-
stricts to the identity on µn(C). This homomorphism identifies T (F )t◦f,n
as the pull-back of T (F ) → S(F ) ← S(F )t,n. The analogous statement
holds for the covers S(F )t and S(F )t,∞.

6. The correspondence of (3) relates the homomorphism ft,n of (5) with the
homomorphism

Lft : Ŝ �t Γ→ T̂ �f̂(t) Γ, s� σ 7→ f̂(s)� σ.
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�

Corollary 2.2.5. Let f : S → T be a homomorphism of F -tori whose kernel A
is connected, and hence a torus. Let t : π̃1(T ) → µn(C). In the commutative
diagram

1 // A(F ) // S(F )t,n

��

// T (F )t,n

��
1 // A(F ) // S(F ) // T (F )

that results from the pull-back property stated in Corollary 2.2.4(5), the natural
map A(F ) → S(F )t,n is dual to the map Ŝ �t Γ → Â �t Γ = Â o Γ where
we have denoted by t also the images of t in Z2(Γ, Ŝ) and Z2(Γ, T̂ ), and the
identification Â �t Γ = Â o Γ arises from the fact that t = 1 in Z2(Γ, Â). The
analogous statement holds for S(F )t and S(F )t,∞. �

Proof. An equivalent way to obtain the left square is the following. We form
the pull-back of A(F ) → S(F ) ← S(F )t,n. According to Corollary 2.2.4(5)
this pull-back is identified with the cover obtained from the character π̃1(A)→
C× that is the restriction of t. Since that character is trivial, this pull-back is
canonically split. Composing the splitting A(F ) → A(F )t,n with the pull-back
mapA(F )t,n → S(F )t,n leads to the mapA(F )→ S(F )t,n. The mapA(F )t,n →
S(F )t,n is dual to the map Ŝ �t Γ→ Â�t Γ according to Corollary 2.2.4(6).

On the other hand, the canonical splitting A(F ) → A(F )t,n can be inter-
preted as coming from the fact that A(F )t,n is the pushout of the trivial cover
A(F )t,1 of A(F ) by µ1(C) = {1} under the trivial embedding µ1(C) → µn(C).
According to Corollary 2.2.4(2) applied once for n and once for n = 1, this
splitting is therefore dual to the identification Ŝ �t Γ = Âo Γ. �

Fact 2.2.6. The L-group of the Baer sum S(F )t1,n ⊕ S(F )t2,n is naturally iden-
tified with the Baer sum of the L-groups LSt1 ⊕ LSt2 . �

Lemma 2.2.7. The following data are equivalent

1. A homomorphic section s : S(F )→ S(F )t,n.

2. A genuine character α : S(F )t,n → µn(C).

3. A 1-cochain c ∈ C1(WF , Ŝ) satisfying ∂c = t and cn ∈ B1(WF , Ŝ).

The same holds for the cover S(F )t, where we replace µn(C) by S1 and replace
the condition cn ∈ B1(WF , Ŝ) by c ∈ C1

u(WF , Ŝ). Finally, it also holds for the
cover S(F )t,∞, where we replace µn(C) by µ∞(C) and impose the existence of
n ∈ N such that cn ∈ B1(WF , Ŝ). �

Proof. In all three cases the equivalence of (1) and (2) is given by the formula
α(x)s(x̄) = x for all x ∈ S(F )t,n, where x̄ ∈ S(F ) is the image of x. For
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the equivalence of (2) and (3), the case of S(F )t is immediate from Proposi-
tion 2.2.2. The case of S(F )t,n follows from the multiplicativity of the local
correspondence for S(F )∞, which implies that the order of a genuine charac-
ter α : S(F )t,n → C× is equal to the order of its parameter c in the group
H̃1(WF , Ŝ). Finally, in the case of S(F )t,∞ we use that a character t : π̃1(S) →
µ∞(C) has finite order n due to Lemma A.1. Therefore S(F )t,∞ is the push-
out of S(F )t,n along the inclusion µn(C) → µ∞(C), hence genuine characters
S(F )t,∞ → µ∞(C) are in bijection with genuine characters S(F )t,n → µ∞(C).
The group S(F )t,n, being a finite cover of S(F ), satisfies the assumption of
Lemma A.2, so every genuine character S(F )t,n → µ∞(C) has finite order. �

We next turn to the analysis of the isomorphisms between the various cov-
ers S(F )t,n. We begin with automorphisms.

Lemma 2.2.8. Let i and n be positive integers.

1. The map H̃i(Γ, Ŝ[n])→ H̃i(Γ, Ŝ)[n] is surjective.

2. The map H̃1(Γ, Ŝ)[n]→ H̃1(WF , Ŝ)[n] is bijective.

3. If S is induced, then the map H̃1(Γ, Ŝ[n])→ H̃1(Γ, Ŝ)[n] is bijective.

�

Proof. (1) Since Ŝ is a divisible group there exists a set-theoretic section s : Ŝ →
Ŝ of the n-th power map. For the cohomology of Γ we are considering Ŝ with
the discrete topology, so this section is trivially continuous. Given x ∈ Ci(Γ, Ŝ)

with the property xn = ∂y for y ∈ Ci−1(Γ, Ŝ) we take z = s ◦ y ∈ Ci−1(Γ, Ŝ).
Then zn = y and x · ∂z−1 ∈ Ci(Γ, Ŝ[n]) represents the same class as x. This
proves (1).

(2) Consider x ∈ C1(WF , Ŝ) such that xn = ∂y for y ∈ B1(WF , Ŝ) =

B1(Γ, Ŝ) and ∂x ∈ Z2(Γ, Ŝ). Let E/F be a finite Galois extension that splits
S and such that ∂x and y are inflated from ΓE/F . The restriction of x to WE lies
in Z1(WE , Ŝ[n]) = Hom(E×, Ŝ[n]). Since Ŝ[n] is finite, the kernel of x|E× is a
closed subgroup of E× of finite index. If E = C the only possibility is C×. If
E is non-archimedean, this subgroup contains the norms from a larger Galois
extension of F that contains E. Enlarging E as necessary we may assume that
x|E× is trivial. But this means that x is inflated from ΓE/F , i.e. x ∈ H̃1(Γ, Ŝ)[n],
proving surjectivity.

To prove injectivity we note that the restriction map C1(Γ, Ŝ)→ C1(WF , Ŝ)

is injective due to WF being dense in Γ, while B1(WF , Ŝ) = B1(Γ, Ŝ).
(3) Surjectivity has already been proved in (1), so it remains to prove in-

jectivity. An element of H̃1(Γ, Ŝ[n]) with trivial image in H̃1(Γ, Ŝ)[n] lies in
H1(Γ, Ŝ[n]). Thus we need to prove the injectivity of H1(Γ, Ŝ[n]) → H1(Γ, Ŝ).
We consider the exact sequence 1 → Ŝ[n] → Ŝ → Ŝ → 1, where the second
map is the n-th power map. To this exact sequence we apply [Kot84, Corollary
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2.3] to obtain the exact sequence π0(ŜΓ) → H1(Γ, Ŝ[n]) → H1(Γ, Ŝ). Since S is
induced, ŜΓ is connected, and the claim follows. �

For a central extension of abelian topological groups 1→ A→ B → C → 1
write Aut(A→ B → C) for the group of continuous automorphisms of B that
preserve A and induce the identity automorphisms on A and C. The identity
on B is a distinguished element in this group, and the group of continuous
homomorphisms C → A acts simply transitively on Aut(A→ B → C) by mul-
tiplication. Taking the orbit of this action through the identity on B provides
an isomorphism Aut(A → B → C) = Homcts(C,A). From Lemmas 2.2.7 and
2.2.8 we obtain

Corollary 2.2.9.
1. Aut(µn(C)→ S(F )t,n → S(F )) = H1(Γ, Ŝ)[n].

2. Aut(µ∞(C)→ S(F )t,∞ → S(F )) = H1(Γ, Ŝ)[∞].

3. Aut(S1 → S(F )t → S(F )) = H1
u(WF , Ŝ).

�

To handle isomorphisms between different extensions, we define for t ∈
Z2(Γ, Ŝ)

C1(Γ, Ŝ)t = {c ∈ C1(Γ, Ŝ) | (−∂)c = t},
H̃1(Γ, Ŝ)t = C1(Γ, Ŝ)t/B

1(Γ, Ŝ),

C1
u(WF , Ŝ)t = {c ∈ C1

u(WF , Ŝ) | (−∂)c = t},
H̃1
u(WF , Ŝ)t = C1

u(WF , Ŝ)t/B
1(Γ, Ŝ).

Construction 2.2.10. Assume given t, t′ ∈ Z2(Γ, Ŝ) and c ∈ C1(Γ, Ŝ)t/t′ and
write h = [c]. We construct isomorphisms

ξh : S(F )t,∗ → S(F )t′,∗ (2.2.3)

of extensions of S(F ), functorial in S, and multiplicative in h. Here ∗ is either
void, or n, or ∞, and in the latter two cases we further assume given n ∈ N
with tn = 1, t′n = 1, hn = 1.

The construction in all cases is the same, so we describe only the S1 case.
Multiplication by hk on H̃1(WF , Ŝ)t′k for k ∈ Z and the identity on Z splice to
an isomorphism

H̃1
u(WF , Ŝ)×Z2(Γ,Ŝ),t′ Z→ H̃1

u(WF , Ŝ)×Z2(Γ,Ŝ),t Z.

Pontryagin duality induces the isomorphism ξh. Given a homomorphism f :

T → S we can map t and t′ to Z2(Γ, T̂ ) and h to H̃1(Γ, T̂ ) via f̂ . The compatibil-
ity of ξh with f is then immediate. The multiplicativity statement ξhh′ = ξh◦ξh′
is also immediate from the construction.
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The corresponding isomorphism on the level of L-groups is given by

Ŝ �t′ Γ→ Ŝ �t Γ, s� σ 7→ sc(σ)� σ. (2.2.4)

While the isomorphism ξh only depends on the class h of c, the isomor-
phism of L-groups depends on c itself. But multiplying c by a coboundary
conjugates the isomorphism by an element of Ŝ. Therefore the resulting bijec-
tions between the sets of conjugacy classes of L-parameters are the same.

Finally, we note that the same construction works with C1
u(WF , Ŝ)t/t′ in

place of C1(Γ, Ŝ)t/t′ , but one has to use the Weil-form of the L-groups to write
the corresponding dual isomorphism. �

Lemma 2.2.11.

1. The map sending h ∈ H̃1(Γ, Ŝ)t/t′ [n] to the isomorphism of covers ξh :

S(F )t,n → S(F )t′,n induces a bijection between the set H̃1(Γ, Ŝ)t/t′ [n]
and the set of such isomorphisms.

2. The map sending h ∈ H̃1(Γ, Ŝ)t/t′ to the isomorphism of covers ξh :

S(F )t,∞ → S(F )t′,∞ induces a bijection between the set H̃1(Γ, Ŝ)t/t′ and
the set of such isomorphisms.

3. The map sending h ∈ H̃1
u(WF , Ŝ)t/t′ to the isomorphism of covers ξh :

S(F )t → S(F )t′ induces a bijection between the set H̃1
u(WF , Ŝ)t/t′ and

the set of such isomorphisms.

�

Proof. We have already constructed a map from H̃1(Γ, Ŝ)t/t′ [n] to the set of
such isomorphisms. To show that it is bijective, note that the set of isomor-
phisms is a torsor under the group of automorphisms of S(F )t,n. This group
equals H1(Γ, Ŝ)[n] by Corollary 2.2.9. On the other hand, H̃1(Γ, Ŝ)t/t′ [n] is also
a torsor under H1(Γ, Ŝ)[n], and the two torsor structures agree by the multi-
plicativity of Construction 2.2.10. This proves (1). The arguments for (2) and
(3) are analogous. For (2) note that if there exists a positive integer n such that
tn = 1 = t′n, then for any c ∈ C1(Γ, Ŝ)t/t′ we have cn ∈ Z1(Γ, Ŝ), so the co-
homology class of cn is torsion, so the cohomology class of c is torsion (i.e. the
corresponding element of C1/B1). �

Corollary 2.2.12.

1. The set of isomorphism classes of covers of S(F ) by µn(C) that are ob-
tained from the extension S(F )∞ via continuous characters t : π̃1(S) →
µn(C) is in bijection with H2(Γ, Ŝ[n]).

2. The set of isomorphism classes of covers of S(F ) by µ∞(C) that are ob-
tained from the extension S(F )∞ via continuous characters t : π̃1(S) →
µ∞(C) is in bijection with H2(Γ, Ŝ).
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3. All covers of S(F ) by S1 that are obtained from the extension S(F )∞ via
continuous characters t : π̃1(S)→ S1 are isomorphic.

�

Proof. (1) According to Lemma 2.2.11(1), given t, t′ ∈ Z2(Γ, Ŝ[n]), the covers
S(F )t,n and S(F )t′,n are isomorphic if and only if there exists h ∈ H̃1(Γ, Ŝ)[n]
with ∂h = t/t′. According to Lemma 2.2.8(1) the class h is representable by an
element of C1(Γ, Ŝ[n]).

(2) is immediate from Lemma 2.2.11(2).
(3) is immediate from Lemmas 2.2.11(3) and 2.2.1. �

Lemma 2.2.13. Let S be an F -torus.

1. The natural map lim−→m
Hi(Γ, Ŝ[m])→ Hi(Γ, Ŝ) is an isomorphism for i >

1, and surjective for i = 1.

2. If S is induced, then this map is an isomorphism also for i = 1.

�

Proof. Let Ŝ[∞] denote the torsion subgroup of Ŝ, so that Ŝ[∞] = lim−→m
Ŝ[m].

Then lim−→m
Hi(Γ, Ŝ[m]) = Hi(Γ, lim−→m

Ŝ[m]) = Hi(Γ, Ŝ[∞]). Since Ŝ is divisible,

Ŝ/Ŝ[∞] is uniquely divisible, and hence cohomologically trivial. It follows
that the map Hi(Γ, Ŝ[∞])→ Hi(Γ, Ŝ) induced by the inclusion Ŝ[∞]→ Ŝ is an
isomorphism for i > 1 and surjective for i = 1.

Assume now that S is induced. Then Shapiro’s lemma reduces the claim
to the bijectivity of H1(Γ,C×[∞]) → H1(Γ,C×), where Γ acts trivially on C×.
Both of these groups are just the groups of continuous homomorphisms of Γ
into C×[∞] and C×, respectively, and the claim follows. �

The following will be used in the discussion of general reductive groups,
and follows at once from Lemma 2.2.13 and the 5-lemma.

Corollary 2.2.14. Let T → S be a complex of F -tori in degrees 0 and 1.

1. The natural map lim−→Hi(Γ, Ŝ[m] → T̂ [m]) → Hi(Γ, Ŝ → T̂ ) is an isomor-
phism for i > 2 and surjective for i = 2.

2. If T is induced, then this map is an isomorphism for i = 2.

�

Corollary 2.2.15. Let t, t′ : π̃1(S) → µn(C) be continuous characters. The fol-
lowing are equivalent.

1. There exists an integer multiple m of n such that the extensions S(F )t,m
and S(F )t′,m are isomorphic.

2. The extensions S(F )t,∞ and S(F )t′,∞ are isomorphic.
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3. t and t′ become cohomologous in H2(Γ, Ŝ).

�

Proof. According to Corollary 2.2.12, the extensions S(F )t,m and S(F )t′,m are
isomorphic if and only if t and t′ become cohomologous in H2(Γ, Ŝ[m]). Thus,
the existence of this m is equivalent to the equality of the classes of t and t′ in
lim−→m

H2(Γ, Ŝ[m]). The equivalence of (1) and (3) follows from Lemma 2.2.13.
The equivalence of (2) and (3) is Corollary 2.2.12(2). �

Remark 2.2.16. Let m be a multiple of n. Since the natural map H2(Γ, Ŝ[n])→
H2(Γ, Ŝ[m]) need not be injective, two extensions S(F )t,n and S(F )t′,n may be
non-isomorphic, but the extensions S(F )t,m and S(F )t′,m may become isomor-
phic.

When F is non-archimedean then the connecting homomorphism in the ex-
ponential sequence leads to the isomorphism H2(Γ, Ŝ) → H3(Γ, X∗(Ŝ)), and
the latter is trivial because F has strict cohomological dimension 2. Thus, any
two covers become (non-canonically) isomorphic after pushing out to some
µm. On the other hand, the group H2(Γ, Ŝ[n]) need not vanish. For exam-
ple, when S is a 1-dimensional anisotropic torus, then H2(Γ, Ŝ[2]) has two ele-
ments. Thus, there do exist non-isomorphic extensions S(F )t,n.

When F = R, the group H2(Γ, Ŝ) need not vanish, so there can be covers
S(F )t,n and S(F )t′,n that do not become isomorphic after any enlargement of
n. �

Remark 2.2.17. The automorphism group of the cover S(F )t,n does not de-
pend on t. Note further that it need not vanish. Therefore, the datum of an
isomorphism class of extensions of S(F ) by µn(C) coming from S(F )∞, i.e. the
corresponding element of H2(Γ, Ŝ[n]), usually contains less information than
an actual such extension, i.e. an element of Z2(Γ, Ŝ[n]) representing its coho-
mology class. �

2.3 Covers of quasi-split connected reductive groups

Let G be a quasi-split connected reductive F -group. In this subsection we will
construct the extension (2.1.2), and obtain (2.1.1) via push-out along π̄(G) →
π̃(G). All the construction in this subsection will depend only on the quo-
tient Z2(Γ, T̂ → T̂ad)/B1(Γ, T̂ad), so we can freely replace π̄1(G) with the corre-
sponding subgroup (the resulting extension can then be pushed out to the full
π̄1(G)).

Let T be the universal maximal torus of G. By functoriality we obtain a sur-
jective (automatically open) homomorphism π̃1(T )→ π̃1(G). It factors through
a not necessarily surjective homomorphism π̃1(T ) → π̄1(G). We denote the
push-out of the universal cover T (F )∞ along π̃1(T )→ π̄1(G) by T (F )G∞.
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Construction 2.3.1. We construct a splitting of T (F )G∞ over Tsc(F ), i.e. a homo-
morphism s : T (F )sc → T (F )G∞ that lifts the natural homomorphism Tsc(F )→
T (F ).

We do the construction on the dual side. The Pontryagin dual of T (F )G∞ is
the pull-back of H̃1

u(WF , T̂ ) → Z2(Γ, T̂ ) ← Z2(Γ, T̂ → T̂ad)/B1(Γ, T̂ad). This
pull-back is the subgroup of H̃1

u(WF , T̂ ) × C1(Γ, T̂ad)/B1(Γ, T̂ad) consisting of
those pairs ([c1], [c2]) with c1 ∈ C1

u(WF , T̂ ) and c2 ∈ C1(Γ, T̂ad) that satisfy the
properties ∂c1 ∈ Z2(Γ, T̂ ) and (−∂)c̄1 = ∂c2. We define a homomorphism ŝ

from this subgroup to H1
u(WF , T̂ad) to send ([c1], [c2]) to [c̄1 · c2]. The restriction

of ŝ to the subgroup H1
u(WF , T̂ ) is the natural homomorphism H1

u(WF , T̂ ) →
H1
u(WF , T̂ad). �

The choice of an F -Borel pair (T0, B0) of G provides an isomorphism T →
T0, hence an embedding T → G. Such an embedding will be called admissi-
ble. Since all F -Borel pairs are conjugate under Gsc(F ), the same is true for all
admissible embeddings T → G.

Lemma 2.3.2. Choose an admissible embedding j : T → G and let T operate
on Gsc by conjugation via this embedding. The sequence

1→ Tsc(F )→ Gsc(F ) o T (F )→ G(F )→ 1,

where the first map is tsc 7→ (j(tsc), t̄
−1
sc ) and the second is (gsc, t) 7→ ḡsc · j(t), is

exact. �

Proof. Exactness is immediate before taking F -points. The sequence remains
exact after taking F -points since Tsc is an induced torus. �

Construction 2.3.3. We now construct the extension (2.1.2) as follows. Choose
an admissible embedding T → G. Let T (F )G∞ act on Gsc(F ) through the map
T (F )G∞ → T (F ). Then we obtain the diagram with exact rows and columns

1

��

1

��
Tsc(F )

��

Tsc(F )

��
1 // π̄1(G) // Gsc(F ) o T (F )G∞ //

��

Gsc(F ) o T (F ) //

��

1

1 // π̄1(G) // G(F )∞ //

��

G(F ) //

��

1

1 1

21



Here the right column is Lemma 2.3.2. The map Tsc(F ) → Gsc(F ) o T (F )G∞ is
given by tsc 7→ (j(tsc), s(tsc)

−1) and G(F )∞ is defined as its cokernel.
The splitting s : Tsc(F ) → T (F )G∞ extends to a splitting Gsc(F ) → G(F )∞

in the evident way – by mapping gsc ∈ Gsc(F ) to (g, 1) ∈ Gsc(F ) o T (F )G∞ and
then projecting onto G(F )∞.

Since any two admissible embeddings j : T → G are conjugate under
Gsc(F ), the extension G(F )∞ → G(F ) is well-defined up to conjugation by
Gsc(F ). More precisely, if ji, i = 1, 2 are two admissible embeddings leading to
the two extensions G(F )∞,i → G(F ) there exists h ∈ Gsc(F ) such that

G(F )∞,1
Ad(h) //

��

G(F )∞,2

��
G(F )

Ad(h) // G(F )

�

Remark 2.3.4. An isomorphism of F -groups f : G1 → G2 induces an isomor-
phism f∞ : G1(F )∞ → G2(F )∞ that lifts the isomorphism f : G1(F )→ G2(F )
and restricts to the isomorphism π̄1(f) : π̄1(G1) → π̄2(G2). Indeed, f induces
an isomorphism f : T1 → T2 between the universal maximal tori, hence by
Proposition 2.2.3 an isomorphism f∞ : T1(F )∞ → T2(F )∞ of covers. This
isomorphism descends to an isomorphism T1(F )G1

∞ → T2(F )G2
∞ between the

pushouts along π̃1(Ti) → π̄1(Gi). The isomorphism f∞ : T1(F )G1
∞ → T2(F )G2

∞
is compatible with the isomorphism f : T1,sc(F ) → T2,sc(F ) and the split-
tings of Construction 2.3.1, therefore induces the desired isomorphism f∞ :
G1(F )∞ → G2(F )∞. �

Given t ∈ Z2(Γ, T̂ → T̂ad)/B1(Γ, T̂ad) we can form G(F )t via pushout of
of (2.1.2) along t : π̄1(G) → S1. If in addition tn = 1 for some and n ∈ N we
can form G(F )t,n and G(F )t,∞ via the push-out along t : π̄1(G) → µn(C) or
t : π̄1(G)→ µ∞(C).

Fact 2.3.5. Write t = (z, [c]) with z ∈ Z2(Γ, T̂ ) and [c] ∈ C1(Γ, T̂ad)/B1(Γ, T̂ad).
For ∗ being void, n, or∞, the following statements hold.

1. The inclusion T (F )G∞ → G(F )∞ composed with the projectionG(F )∞ →
G(F )t,∗ factors through T (F )z,∗ and provides an isomorphism between
T (F )z,∗ and the pull back of T (F )→ G(F )← G(F )t,∗.

2. The resulting map T (F )z,∗ → G(F )t,∗, together with the sectionGsc(F )→
G(F )t,∗, lead to the exact sequence

1→ Tsc(F )→ Gsc(F ) o T (F )z,∗ → G(F )t,∗ → 1.

�
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Remark 2.3.6. The section Tsc(F ) → T (F )z,∗ that is the second component
of the first map in Fact 2.3.5(2) equals the composition of the section Tsc(F ) →
T (F )G∞ of Construction 2.3.1 and the projection T (F )G∞ → T (F )z,∗. Unwinding
the definitions, we note that this section depends on the second component [c]
of t = (z, [c]). This helps clarify the roles of the two components of an element
of Z2(Γ, T̂ → T̂ad)/B1(Γ, T̂ad): the first component leads to a cover of T (F ),
and the second component leads to a section of that cover over Tsc(F ). �

We will now study the isomorphisms between the extensions G(F )t,∗. Let
t ∈ Z2(Γ, T̂ → T̂ad)/B1(Γ, T̂ad) and write t = (z, [c]). Define

H̃1(Γ, T̂ )t = {h ∈ H̃1(Γ, T̂ ) | ∂h = z−1, h̄ = [c]−1},
H̃1
u(WF , T̂ )t = {h ∈ H̃1

u(WF , T̂ ) | ∂h = z−1, h̄ = [c]−1},

Note that H̃1(Γ, T̂ )t ⊂ H̃1(Γ, T̂ )z , cf. Construction 2.2.10.

Construction 2.3.7. Let t, t′ ∈ Z2(Γ, T̂ → T̂ad)/B1(Γ, T̂ad) and write t = (z, [c])

and t′ = (z′, [c′]). For any h ∈ H̃1
u(WF , T̂ )t/t′ we construct an isomorphism

ξh : G(F )t,∗ → G(F )t′,∗ (2.3.1)

of extensions of G(F ), where again ∗ is void, n, or∞, and in the last two cases
we assume that n is given such that tn = 1, t′n = 1, and hn = 1.

The element h and the identity (−∂)h = z/z′ lead, via Construction 2.2.10,
to the isomorphism ξh : T (F )z,∗ → T (F )z′,∗. The identity h̄ = c′/c implies that
this isomorphism respects the sections of Tsc(F ) into these two covers, as one
sees by inspecting Constructions 2.2.10 and 2.3.1. According to Fact 2.3.5(2) the
extension G(F )t,∗ is equal to the cokernel of Tsc → Gsc(F ) o T (F )t,∗, and the
analogous statement holds for G(F )t′,∗. Therefore the identity on Gsc and ξh
glue to an isomorphism ξh : G(F )t,∗ → G(F )t′,∗ as required. �

Lemma 2.3.8. Any isomorphism ξ : G(F )t,∗ → G(F )t′,∗ of extensions automat-
ically respect the sections over Gsc(F ). �

Proof. Let s : Gsc(F ) → G(F )t,∗ and s′ : Gsc(F ) → G(F )t′,∗ be the two natural
sections. Then ξ ◦ s and s′ are two sections Gsc(F ) → G(F )t′,∗, therefore there
exists χ : Gsc(F ) → S1 such that ξ ◦ s = χ · s′. But χ must be trivial due to
the Kneser–Tits conjecture, which is obvious for F = C, proved by Cartan for
F = R and by Platonov for non-archimedean F , cf. [PR94, §7.2]. �

Lemma 2.3.9. Let t, t′ ∈ Z2(Γ, T̂ → T̂ad)/B1(Γ, T̂ad). Every isomorphism of
extensions G(F )t,∗ → G(F )t′,∗ arises from Construction 2.3.7 via a unique

h ∈


H̃1
u(WF , T̂ )t/t′ , ∗ = void

H̃1(Γ, T̂ )t/t′ [n], ∗ = n

H̃1(Γ, T̂ )t/t′ , ∗ =∞

In the latter two cases we are assuming tn = 1 = t′n. �
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Proof. Consider an isomorphism of extensions ξ : G(F )t,∗ → G(F )t′,∗. Ac-
cording to Fact 2.3.5(1), ξ restricts to an isomorphism ξT : T (F )z,∗ → T (F )z′,∗,
where we have again written t = (z, [c]) and t′ = (z′, [c′]). According to Lemma
2.2.11 there exists h so that ξT = ξh and h satisfies all required properties, ex-
cept possibly h̄ = [c′]/[c].

According to Lemma 2.3.8, ξ respects the sections overGsc(F ). This implies
two things. First, we obtain the commutative diagram

Gsc(F ) o T (F )z,∗
id×ξh //

��

Gsc(F ) o T (F )z′,∗

��
G(F )t,∗

ξ // G(F )t′,∗

Second, the isomorphism ξh respects the sections of T (F )z,∗ and T (F )z′,∗ over
Tsc(F ). This implies the desired equality h̄ = [c′]/[c]. We conclude that ξ indeed
comes from Construction 2.3.7. The uniqueness statement follows from the
uniqueness statement in Lemma 2.2.11. �

Lemma 2.3.10. The natural maps H1(Γ, Z(Ĝ)) → ker(H1(Γ, T̂ ) → H1(Γ, T̂ad))

and H̃1(Γ, Z(Ĝ))→ ker(H̃1(Γ, T̂ )→ H̃1(Γ, T̂ad)) are isomorphisms. �

Proof. (1) We have the exact sequence

π0((T̂ad)Γ)→ H1(Γ, Z(Ĝ))→ H1(Γ, T̂ )→ H1(Γ, T̂ad)

of [Kot84, Corollary 2.3]. Since T̂ad is an induced torus, (T̂ad)Γ is connected.
(2) Let c ∈ C1(Γ, T̂ ) become cohomologically trivial in C1(Γ, T̂ad). After

modification by a coboundary we have c ∈ C1(Γ, Z(Ĝ)). If c ∈ C1(Γ, Z(Ĝ))

is cohomologically trivial in C1(Γ, T̂ ), then it lies in Z1(Γ, T̂ ) ∩ C1(Γ, Z(Ĝ)) =

Z1(Γ, Z(Ĝ)) and (1) implies that it is in fact an element of B1(Γ, Z(Ĝ)). �

Corollary 2.3.11.

1. (Z2(Γ, T̂ → T̂ad)/B1(Γ, T̂ad))[n] = Z2(Γ, T̂ [n]→ T̂ad[n])/B1(Γ, T̂ad[n]).

2. The set of isomorphism classes of covers of G(F ) by µn(C) that are ob-
tained from G(F )∞ via continuous characters t : π̄1(G) → µn(C) is in
bijection with H2(Γ, T̂ [n]→ T̂ad[n]).

3. The group of automorphisms of such a cover is H1(Γ, Z(Ĝ))[n].

4. The set of isomorphism classes of covers of G(F ) by µ∞(C) that are ob-
tained from G(F )∞ via continuous characters t : π̄1(G) → µ∞(C) is in
bijection with H2(Γ, T̂ → T̂ad) = H2(Γ, Z(Ĝ)).

�
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Proof. (1) follows at once from Lemma 2.2.8(3).
(2) Let t = (z, [c]), t′ = (z′, [c′]) ∈ Z2(Γ, T̂ [n] → T̂ad[n])/B1(Γ, T̂ad[n]).

According to Lemma 2.3.9 the corresponding covers are isomorphic if and
only if there exists h ∈ H̃1(Γ, T̂ )t/t′ [n]. Lemma 2.2.8(1) implies that h can be
represented by an element x ∈ C1(Γ, T̂ [n]). This element has the properties
∂x = z′/z and [x̄] = [c′]/[c]. The latter equation holds in C1(Γ, T̂ad)/B1(Γ, T̂ad),
but all three elements x, c, c′ belong to C1(Γ, T̂ad[n]), therefore Lemma 2.2.8(3)
implies that this equation holds already in C1(Γ, T̂ad[n])/B1(Γ, T̂ad[n]).

(3) According to Lemma 2.3.9 the group of isomorphism of the cover associ-
ated to t = (z, [c]) is the group of h ∈ ker(H1(Γ, T̂ )[n] → H1(Γ, T̂ad)[n], which,
according to Lemma 2.3.10(1), equals H1(Γ, Z(Ĝ))[n].

(4) Follows at once from Lemma 2.3.9. �

Corollary 2.3.12. Let t, t′ : π̄1(G) → µn(C). The following statements are
equivalent.

1. There exists a multiple m of n such that the covers G(F )t,m and G(F )t′,m
become isomorphic.

2. The covers G(F )t,∞ and G(F )t′,∞ are isomorphic.

3. The classes of t and t′ in H2(Γ, T̂ → T̂ad) = H2(Γ, Z(Ĝ)) are equal.

�

Proof. According to Corollary 2.3.11(2), (1) holds if and only if the classes of
t and t′ in lim−→m

H2(Γ, T̂ [m] → T̂ad[m]) become equal. According to Corollary

2.2.14 the natural map from this group to H2(Γ, T̂ → T̂ad) is an isomorphism.
This shows the equivalence of (1) and (3). The equivalence of (2) and (3) is
Corollary 2.3.11(4). �

Remark 2.3.13. We may also be interested in covers of G(F ) obtained from
continuous characters t : π̃1(G) → µn(C). These are the elements of the sub-
group Z2(Γ, Z(Ĝ)[n]) of Z2(Γ, T̂ [n]→ T̂ad[n])/B1(Γ, T̂ad[n]). Lemmas 2.3.9 and
2.3.10 show that the covers for t, t′ ∈ Z2(Γ, Z(Ĝ)[n]) are isomorphic if and only
if there exists h ∈ H̃1(Γ, Z(Ĝ))[n] with ∂h = t′/t. Thus the set of equiva-
lence classes of such covers is a certain quotient of H2(Γ, Z(Ĝ)[n]) that maps
to H2(Γ, Z(Ĝ))[n]. Unfortunately, due to the possibly non-trivial n-torsion of
π0(Z(Ĝ)), the group Z(Ĝ) need not be n-divisible, so this quotient need not
equal H2(Γ, Z(Ĝ)[n]). �

Corollary 2.3.14. Let t : π̄1(G) → µn(C). There exists a multiple m of n and
t′ : π̃1(G)→ µm(C) such that the covers G(F )t,m and G(F )t′,m are isomorphic.
�

Proof. Immediate from Corollary 2.3.12 and the isomorphism H2(Γ, Z(Ĝ)) →
H2(Γ, T̂ → T̂ad) induced by the inclusion Z(Ĝ)→ T̂ . �
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2.4 Descent to the abelianization

In this subsection we will discuss the following question: Do the covers (2.1.1)
or (2.1.2) descend to a cover of cok(Gsc(F ) → G(F ))? The latter group is
abelian, and in fact closely related to the hypercohomology groupH1(F,Gsc →
G). This makes such a descent statement useful.

It will turn out that such a descent is not always possible. We will give a
criterion for when this happens, and use it to obtain the compatibility of the
covers (2.1.1) for G and its maximal tori.

Write K = ker(Gsc → G). Then K is a finite multiplicative group and the
section s : Gsc(F ) → G(F )∞ restricts to a group homomorphism s : K(F ) →
π̄1(G). More precisely:

Fact 2.4.1. The square
K(F ) //

��

Gsc(F )

��
π̄1(G) // G(F )∞

is Cartesian. �

Write C = cok(Gsc(F )→ G(F )).

Proposition 2.4.2. The following statements are equivalent.

1. The homomorphism s : K(F )→ π̄1(G) is trivial.

2. G(F )∞ is the pullback of an extension of C by π̄1(G).

3. There exists a genuine character G(F )t → C× for any t : π̄1(G)→ S1.

Moreover, when these statements hold, thenC ′ := cok(s : Gsc(F )→ G(F )∞) is
an extension of C by π̄1(G) and G(F )∞ is the pull-back of this extension along
the projection map G(F )∞ → C ′. �

Proof. (1) ⇒ (2): The composed map G(F )∞ → G(F ) → C descends to a sur-
jective map C ′ → C whose kernel is equal to the image of π̄1(G) → G(F )∞ →
C ′, hence to cok(s : K(F ) → π̄(G)) by Fact 2.4.1. Thus C ′ is an extension of C
by π̄1(G) if and only if s|K(F ) is trivial. In that case, it is clear that the natural
map G(F )∞ → C ′ realizes G(F )∞ as the pull-back of C ′ → C ← G(F ).

(2) ⇒ (1): Conversely assume that G(F )∞ is a pull-back of an extension
C ′′ of C by π̄1(G). Then the natural map Gsc(F ) → G(F ) together with the
trivial map Gsc(F ) → C ′′ provide a section s′ : Gsc(F ) → G(F )∞. It differs
from the section s by a homomorphism α : Gsc(F ) → π̄1(G). The composition
of this homomorphism with any character of π̄1(G) is a character of Gsc(F ),
hence trivial by the Kneser–Tits conjecture [PR94, §7.2]. Therefore s′ = s. But
by construction s′ kills K(F ).

(2) ⇒ (3): G(F )t is the pull-back of the pushout C ′t of C ′ under t. By
Pontryagin duality t extends to a character χ : C ′t → S1, which by construction
is genuine. The pull-back of χ to G(F )t is a genuine character.
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(3)⇒ (1). According to the Kneser–Tits conjecture, the composition of any
genuine character χ : G(F )t → C× with the section s : Gsc(F ) → G(F )t is
trivial. Therefore, the homomorphism s : K(F ) → π̄1(G) composes trivially
with any character of π̄1(G) and must therefore be trivial. �

Corollary 2.4.3. If the derived subgroup ofG is simply connected, thenG(F )∞
is the pull-back of the cover C ′ → C. �

Remark 2.4.4. According to Lemma 2.3.2 and Construction 2.3.3 we have the
identities

C ′ = cok(Gsc(F )→ G(F )∞) = cok(Tsc(F )→ T (F )G∞),

C = cok(Gsc(F )→ G(F )) = cok(Tsc(F )→ T (F )).

If we assume that the derived subgroup of G is simply connected and define
D = cok(Tsc → T ), then C = D(F ) and π̃1(D) = π̃1(G). Functoriality of
the pseudo-universal cover for a torus (Proposition 2.2.3) provides a homo-
morphism T (F )∞ → D(F )∞ that descends to a homomorphism T (F )G∞ →
D(F )∞, and in turn provides a homomorphism G(F )∞ → D(F )∞. These ho-
momorphisms identify the push-out of C ′ along π̄1(G) → π̃1(G) with D(F )∞,
and realize the extension (2.1.1) for G as the pull-back of the extension (2.1.1)
for the torus D along the natural map G(F )→ D(F ). �

Proposition 2.4.5. The Pontryagin dual of the finite abelian group K(F ) is
H2(WF , Z(Ĝ)) and the Pontryagin dual of s : K(F ) → π̄1(G) is the com-
position of the natural map Z2(Γ, T̂ → T̂ad)/B1(Γ, T̂ad) → H2(Γ, T̂ → T̂ad)

with the identification H2(Γ, T̂ → T̂ad) = H2(Γ, Z(Ĝ)) provided by the quasi-
isomorphism [Z(Ĝ)→ 1]→ [T̂ → T̂ad] and the restriction map H2(Γ, Z(Ĝ))→
H2(WF , Z(Ĝ)). �

Proof. We have K(F ) = H0(F, Tsc → T ), where the complex Tsc → T is placed
in degrees 0 and 1. According to [KS99, Lemma A.3.A] the Pontryagin dual
of this group is identified with H2(WF , T̂ → T̂ad), with T̂ → T̂ad again placed
in degrees 0 and 1. The latter complex id quasi-isomorphic to Z(Ĝ) placed in
degree 0, hence the first claim.

The map s : K(F ) → π̄1(G) can be obtained by first restricting s to Tsc,
where it equals the section s : Tsc(F ) → T (F )G∞ of Construction 2.3.1, and
then further restricting to K(F ). The claim follows by examining Construction
2.3.1. �

Remark 2.4.6. It follows from Proposition 2.4.5 and Lemma C.5 that the homo-
morphism s : K(F ) → π̄1(G) is injective when F is non-archimedean. There-
fore, when F is non-archimedean and of characteristic zero, the statement of
Corollary 2.4.3 can be strengthened to an if-and-only-if statement.

As discussed in Remark C.6, this need not be the case when F is archime-
dean. �
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The following result is obtained by the same analysis. We will give a brief
indication.

Proposition 2.4.7. Let t : π̄1(G)→ µn(C). The following statements are equiv-
alent.

1. The class of t in H2(WF , T̂ → T̂ad) = H2(WF , Z(Ĝ)) is trivial.

2. The extension G(F )t,n is a pull-back from cok(Gsc(F )→ G(F )).

3. There exists a genuine character G(F )t,n → C×.

�

Proof. (1) ⇒ (2): According to Proposition 2.4.5 the homomorphism t ◦ s :
K(F )→ µn(C) is trivial, hence cok(Tsc(F )→ T (F )z,n)→ cok(Tsc(F )→ T (F ))
is a cover with kernel µn(C), and G(F )t,n is the pull-back of this cover.

(2)⇒ (3): The character t : π̄1(G)→ µn(C) can be extended by Pontryagin
duality to a genuine character of the cover of cok(Gsc(F ) → G(F )) and then
pulled back to G(F )t,n.

(3) ⇒ (1): The composition of the genuine character with s : Gsc(F ) →
G(F )t,n is trivial, hence the character K(F ) → µn(C) obtained from t ◦ s is
trivial. Apply Proposition 2.4.5. �

Remark 2.4.8. An example where the class of t in H2(WF , Z(Ĝ)) vanishes is
when G is a twisted Levi subgroup of a connected reductive group and t is
the corresponding Tits cocycle: as shown in [Kal19a, Lemma 6.6], this cocycle
takes values in Z(Ĝ)◦, and Proposition C.4 implies that H2(WF , Z(Ĝ)◦) = 0.

On the other hand, when Z(Ĝ) is finite and F is non-archimedean then
Lemma C.5 implies that the natural map H2(Γ, Z(Ĝ)) → H2(WF , Z(Ĝ)) is an
isomorphism. Therefore, the class of t in H2(WF , Z(Ĝ)) is trivial if and only
if its class in H2(Γ, T̂ → T̂ad) = H2(Γ, Z(Ĝ)) is trivial. According to Corollary
2.3.12 this implies that the cover G(F )t,m is split for some multiple m of n. �

2.5 Elementary categorical observations

A number of statements involving π̃1(G) can be extended to π̄1(G) in a formal
way. Rather than performing the same construction multiple times, we formal-
ize it here in an abstract elementary language, so that it can be easily applied
when needed.

Let C be a category. For our purposes we may and will assume that C is a
small groupoid. Recall that a subcategory C′ ⊂ C is called full, if for any two
objects x, y of C′ we have HomC′(x, y) = HomC(x, y). Recall further that C′ is
called essentially wide if every object of C is isomorphic to an object of C′. Thus,
the inclusion functor C′ → C is an equivalence of categories. In this situation,
for any x ∈ C and y ∈ C′, the set IsomC(x, y) is a torsor under AutC′(y), and for
any x there exists y such that this torsor is non-empty.
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Given further a category D, any functor F ′ : C′ → D extends uniquely to a
functor F : C → D. In concise language, given x ∈ C we consider the comma
category (i.e. the fiber product) C′x of {x} → C ← C′, where {x} is the sub
category of C with one object x and identity morphism, and both functors are
the natural embeddings. Then F ′ provides an obvious functor F ′x : C′x → D
and we define F(x) = limF ′x. Note that the limit automatically exists, because
it is represented by F ′(x′) for any (x′, f) ∈ C′x.

Spelled out, for x ∈ C one considers the following compatible system of
objects in C′ and isomorphisms. The indexing set is the set of isomorphisms in
C with source x and target belonging to C′. The objects in the system are the
targets of those isomorphisms. Given two indices f1 : x→ y1 and f2 : x→ y2,
we declare the unique morphism y1 → y2 in the system to be f2 ◦f−1

1 . Then we
define F(x) = lim←−f F

′(yf ), where yf denotes the target of f . Any morphism
x1 → x2 in C induces an obvious morphism between the two inverse systems,
hence a morphism F(x1)→ F(x2).

The same procedure works for natural transformations. That is, given a
category D, two functors F ′1,F ′2 : C′ → D, and a natural transformation η′ :
F ′1 → F ′2, there exists a unique natural transformation η : F1 → F2 extending
η′. Indeed, for any x ∈ C we obtain from η′ a natural transformation F ′1,x →
F ′2,x and hence a morphism η′x : F1(x)→ F2(x) that is functorial in x.

Spelled out, the morphisms η′yf : F ′1(yf ) → F ′2(yf ), indexed by f : x → y,
are compatible in f and hence provide a morphism of compatible systems, thus
a morphism between their limits, which we define to be ηx : F1(x) → F2(x).
This morphism is functorial in x.

In our applications, the role of the category C will be played by the category
Z2(Γ, T̂ → T̂ad) whose objects are the elements of Z2(Γ, T̂ → T̂ad). For t1, t2 ∈
Z2(Γ, T̂ → T̂ad), the set of morphisms t1 → t2 will be the set

C1(Γ, T̂ )t1/t2 = {x ∈ C1(Γ, T̂ ) | ∂x = z2/z1, x̄ = c2/c1},

where we have written ti = (zi, ci).
The role of the category C′ will be played by the category Z2(Γ, Z(Ĝ))

whose objects are the set Z2(Γ, Z(Ĝ)) and whose morphisms z1 → z2 are the
set

C1(Γ, Z(Ĝ))z1/z2 = {x ∈ C1(Γ, Z(Ĝ)) | ∂x = z2/z1}.

Lemma 2.5.1. The category Z2(Γ, Z(Ĝ)) is a full essentially wide subcategory
of Z2(Γ, T̂ → T̂ad). The set of isomorphism classes of either is H2(Γ, Z(Ĝ)). �

Proof. Fullness is immediately checked from the definitions of the homomor-
phism sets. It is clear that the set of isomorphism classes in Z2(Γ, Z(Ĝ)) equals
H2(Γ, Z(Ĝ)). We claim that the set of isomorphism classes in Z2(Γ, T̂ → T̂ad)

equals H2(Γ, T̂ → T̂ad). Given t1, t2 ∈ Z2(Γ, T̂ → T̂ad) it is clear that elements
of C1(Γ, T̂ )t1/t2 are coboundaries between t1 and t2. Conversely, a general
coboundary is of the form (∂y1, ȳ1 · ∂y2) for y1 ∈ C1(Γ, T̂ ) and y2 ∈ C0(Γ, T̂ad).

29



Let ẏ2 ∈ T̂ be a lift of y2. If we define y = y1 · ∂ẏ2 , then this coboundary be-
comes (∂y, ȳ), but that is a morphism in Z2(Γ, T̂ → T̂ad). This proves the claim.
Essential wideness now follows from the fact that the morphism of complexes
[Z(Ĝ) → 1] → [T̂ → T̂ad] is a quasi-isomorphism, and hence induces an iso-
morphism H2(Γ, Z(Ĝ))→ H2(Γ, T̂ → T̂ad). �

Since we are often interested in finite order covers, we will now introduce
a variation of these constructions that works with torsion cocycles.

Consider the category Z2
∞(Γ, T̂ → T̂ad) whose objects are the elements of

Z2(Γ, T̂ [∞] → T̂ad[∞]). For t1, t2 ∈ Z2(Γ, T̂ [∞] → T̂ad[∞]), the set of mor-
phisms t1 → t2 will be the set

C1(Γ, T̂ [∞])t1/t2 := {x ∈ C1(Γ, T̂ [∞]) | ∂x = z2/z1, x̄ = c2/c1},

where we have written ti = (zi, ci). Consider also the category Z2
∞(Γ, Z(Ĝ))

whose objects are the set Z2(Γ, Z(Ĝ)[∞]) and whose morphisms z1 → z2 are
the set

C1(Γ, Z(Ĝ)[∞])z1/z2 = {x ∈ C1(Γ, Z(Ĝ)[∞]) | ∂x = z2/z1}.

The analog of Lemma 2.5.1 holds in this context as well, but needs some prepa-
ration.

Lemma 2.5.2.

1. The sequence 1→ Z(Ĝ)[∞]→ T̂ [∞]→ T̂ad[∞]→ 1 is exact.

2. Given t ∈ Z2(Γ, T̂ [∞]→ T̂ad[∞]), we have H̃1(Γ, T̂ [∞])t = H̃1(Γ, T̂ )t.

3. Given z ∈ Z2(Γ, Z(Ĝ)[∞]), we have H̃1(Γ, Z(Ĝ)[∞])z = H̃1(Γ, Z(Ĝ))z .

�

Proof. (1) To see surjectivity of T̂ [∞] → T̂ad[∞], pick x̄ ∈ T̂ad[∞]. Let n ∈ N be
such that x̄n = 1 and let m = |π0(Z(Ĝ))|. Let x ∈ T̂ be a lift of x̄. Then xnm lies
in the identity component Z(Ĝ)◦, which is a complex torus, hence divisible, so
there exists y ∈ Z(Ĝ)◦ with ynm = xnm. Then y−1x ∈ T̂ [∞] also lifts x̄.

(2) Let c ∈ C1(Γ, T̂ )t and let n ∈ N be such that tn = 1. Then cnm ∈
Z1(Γ, Z(Ĝ)◦). Since H1(Γ, Z(Ĝ)◦) is torsion and Z(Ĝ)◦ is divisible, after pos-
sibly enlarging m we find b ∈ Z(Ĝ)◦ such that b−nmσ(bnm) = cnm. Then
(b−1σ(b))−1c ∈ C1(Γ, T̂ [∞])t represents the same coset modulo B(Γ, T̂ ) as c.

Consider now b−1σ(b) ∈ B1(Γ, T̂ ) ∩ C1(Γ, T̂ [∞]). Let n ∈ N be such that
b−nσ(bn) = 1. Thus bn ∈ T̂Γ and upon enlarging n we find bn ∈ T̂Γ,0. The
divisibility of T̂Γ,0 provides t ∈ T̂Γ,0 such that tn = bn. Then t−1b ∈ T̂ [∞] and
(t−1b)−1σ(t−1b) = b−1σ(b).

(3) The proof is the same as for (2). �
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Lemma 2.5.3. The category Z2
∞(Γ, Z(Ĝ)) is a full essentially wide subcategory

of Z2
∞(Γ, T̂ → T̂ad). The set of isomorphism classes of either is H2(Γ, Z(Ĝ)). �

Proof. Fullness is again immediately checked from the definitions of the homo-
morphism sets. It is clear that the set of isomorphism classes of Z2

∞(Γ, Z(Ĝ))

is H2(Γ, Z(Ĝ)[∞]). That the set of isomorphism classes of Z2
∞(Γ, T̂ → T̂ad)

is H2(Γ, T̂ [∞] → T̂ad[∞]) follows from the same argument as in the proof of
Lemma 2.5.1, except that for the existence of a lift ẏ2 ∈ T̂ [∞] of y2 ∈ T̂ad[∞]
we need to appeal to Lemma 2.5.2(1). Applying Lemma 2.5.2(1) again we see
that those two sets of isomorphism classes are equal, and essential wideness
follows. Finally, Corollary 2.2.14 shows that those sets of isomorphism classes
equal H2(Γ, T̂ → T̂ad). �

Thus we now have the following diagram

Z2
∞(Γ, Z(Ĝ)) //

��

Z2(Γ, Z(Ĝ))

��
Z2
∞(Γ, T̂ → T̂ad) // Z2

∞(Γ, T̂ → T̂ad)

where the vertical maps are full essentially wide embeddings, while the hori-
zontal maps are essentially wide, but not full.

As further variations, we have the category Z̄2(Γ, T̂ → T̂ad) where the set
of objects is Z2(Γ, T̂ → T̂ad)/B1(Γ, T̂ad) and the set of morphisms z̄1 → z̄2 is the
quotient C1(Γ, T̂ )z1/z2/B

1(Γ, T̂ ). We also have the torsion analog Z̄2
∞(Γ, T̂ →

T̂ad) where the set of objects is Z2(Γ, T̂ [∞] → T̂ad[∞])/B1(Γ, T̂ad[∞]) and the
set of morphisms z̄1 → z̄2 is the quotient C1(Γ, T̂ [∞])z1/z2/B

1(Γ, T̂ [∞]).
We have the evident functors Z2(Γ, T̂ → T̂ad) → Z̄2(Γ, T̂ → T̂ad) and

Z2
∞(Γ, T̂ → T̂ad) → Z̄2

∞(Γ, T̂ → T̂ad), which are (essentially) surjective and
full, but not faithful, and induce bijections on the sets of isomorphism classes.
We also have the evident functor Z̄2

∞(Γ, T̂ → T̂ad)→ Z̄2(Γ, T̂ → T̂ad), which is
an equivalence of categories according to Lemma 2.5.2(2).

Analogously, we have the category Z̄2(Γ, Z(Ĝ)) where the set of objects
is Z2(Γ, Z(Ĝ)) and the set of morphisms z1 → z2 is given by the quotient
C1(Γ, Z(Ĝ))z1/z2/B

1(Γ, Z(Ĝ)). Its torsion analog is Z̄2
∞(Γ, Z(Ĝ)), where the

set of objects is Z2(Γ, Z(Ĝ)[∞]) and the set of morphisms z1 → z2 is given by
the quotient C1(Γ, Z(Ĝ)[∞])z1/z2/B

1(Γ, Z(Ĝ)[∞]). Again, the obvious functor
Z̄2
∞(Γ, Z(Ĝ))→ Z̄2(Γ, Z(Ĝ)) is an equivalence of categories.

Consider now the category C(G) of covers of G(F ) by S1 obtained from the
pseudo-universal extension (2.1.2), and equipped with a splitting over Gsc(F ).
Consider also the category C∞(G) of covers of G(F ) by µ∞(C) obtained in
the same way, but from characters of π̄1(G) of finite order, again equipped
with a splitting over Gsc(F ). Pushing out along µ∞(C) → S1 gives a functor
C∞(G)→ C(G).
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The objects of Z2(Γ, T̂ → T̂ad) are the continuous characters π̄1(G) → S1.
Constructions 2.3.3 and 2.3.7 provide a functor

Z2(Γ, T̂ → T̂ad)→ C(G), t 7→ G(F )t,

and this functor factors through Z̄2(Γ, T̂ → T̂ad).
The objects of Z2

∞(Γ, T̂ → T̂ad) are the continuous characters of π̄1(G) of
finite order, or equivalently (Lemma A.1) the continuous characters t : π̄1(G)→
µ∞(C). We obtain a functor

Z2
∞(Γ, T̂ → T̂ad)→ C∞(G), t 7→ G(F )t,∞,

and this functor factors through Z̄2
∞(Γ, T̂ → T̂ad). This results in a functor

Z̄2
∞(Γ, T̂ → T̂ad) → C∞(G) which is an equivalence of categories according

Lemma 2.3.9, Corollary 2.3.11, and Lemma 2.5.3.
Fix an element of H2(Γ, Z(Ĝ)) and let m be its order. The m-th power map

is surjective on the terms of the complex T̂ → T̂ad and the resulting long ex-
act sequence implies the surjectivity of H2(Γ, T̂ [m] → T̂ad[m]) → H2(Γ, T̂ →
T̂ad)[m] = H2(Γ, Z(Ĝ))[m]. This shows that there exists an object G(F )t,∞ in
the corresponding isomorphism class of C∞(G) with t : π̄1(G) → µm(C). At
the same time, there also exists an object of this form with t′ : π̃1(G)→ µm′(C).
However, in the latter case we may not have m′ = m. That is, the condition
that t′ : π̄1(G) → µm′(C) factor through π̃1(G) and the condition m′ = m may
not be simultaneously satisfiable.

2.6 The local correspondence for covers of connected reductive groups

The local correspondence for the cover S(F )∞ of an F -torus S was obtained
very quickly in Proposition 2.2.2, and the local correspondences for the various
covers S(F )t,∗ follows directly. The case of a connected reductive group is less
direct, and will be discussed now. We will only present a classification of the
genuine representations of a cover G(F )t,∗ for a character t : π̄1(G) → S1,
where ∗ can be void, n ∈ N, or∞.

We begin with the definition of the L-group ofG(F )t,∗. As in the case (2.2.2)
of tori, this L-group will only depend on t, but not on ∗. The case when t
factors through π̃1(G) is more immediate, and exactly analogous to that of tori.
Indeed, we have t ∈ Z2(Γ, Z(Ĝ)), which allows us to form the twisted product

LGt = Ĝ�t Γ. (2.6.1)

It is equal to the pushout of Z(Ĝ)�t Γ along the inclusion Z(Ĝ)→ Ĝ.
To extend the definition of LGt to t ∈ Z2(Γ, T̂ → T̂ad) we follow the formal

procedure of §2.5. We interpret (2.6.1) as a functor from Z2(Γ, Z(Ĝ)) to the
category of extensions of Γ by Z(Ĝ) equipped with a splitting. It sends the
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object z ∈ Z2(Γ, Z(Ĝ)) to Ĝ�z Γ and the morphism c ∈ C1(Γ, Z(Ĝ))z1/z2 to the
morphism

Lξc : Ĝ�z2 Γ→ Ĝ�z1 Γ, g � σ 7→ gc(σ)� σ.

The unique extension of this functor to Z2(Γ, T̂ → T̂ad) provides an L-group
LGt for any t ∈ Z2(Γ, T̂ → T̂ad). Explicitly, writing t = (z, c), LGt it is given by

LGt = lim←−
x

Ĝ�z·∂x−1 Γ. (2.6.2)

where the limit is taken over the set {x ∈ C1(Γ, T̂ ) | x̄ = c} and the morphisms
in the compatible system are

Ĝ�z·∂x−1 Γ→ Ĝ�z·∂x′−1 Γ, g � σ 7→ g · x−1(σ)x′(σ)� σ.

Given t1 = (z1, c1), t2 = (z2, c2) ∈ Z2(Γ, T̂ → T̂ad) and c ∈ C1(Γ, T̂ )t1/t2 we
have the isomorphism

Lξc : LGt2 → LGt1 (2.6.3)

obtained by splicing the isomorphisms Lξcx−1
2 x1

: LGz2·∂x−1
2
→ LGz1·∂x−1

1
for

each x1, x2 ∈ C1(Γ, T̂ ) with x̄i = ci.

Fact 2.6.1. The L-group of the Baer sum G(F )t1,n ⊕G(F )t2,n is naturally iden-
tified with the Baer sum of the L-groups LGt1 ⊕ LGt2 . �

A Langlands parameter valued in LGt is an L-homomorphism LF → LGt
that is continuous on WF , algebraic on SL2(C), and respects Jordan decompo-
sitions. Two such parameters are considered equivalent if they are conjugate
under Ĝ. The set of equivalence classes of such parameters will be denoted by
Φ(Gt).

For the next theorem we assume the refined local Langlands correspon-
dence for all connected reductive groups that are central extensions of G by
induced tori, i.e. of the form 1 → Z1 → G1 → G → 1 with Z1 a product of
restrictions of scalars of the multiplicative group. In fact, we will only need to
consider so called z-extensions, i.e. those for which the derived subgroup of
G1 is simply connected. Recall that a z-extension always exists [KP22, §12.4].

Theorem 2.6.2. Assume that the refined local Langlands correspondence is
valid for z-extensions of G. Then it is also valid for the covers G(F )t,∗. More
precisely, the following holds.

1. There is a natural surjective map Π(Gt,∗)→ Φ(Gt).

2. A Whittaker datum for G determines an injective (bijective when F is
non-archimedean) map from the fiber Πϕ(Gt,∗) of this map over ϕ to the
set Irr(π0(S+

ϕ )).
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3. For any c ∈ C1(Γ, T̂ )t/t′ , the above two points translate the isomorphism
ξ[c] of Construction 2.3.7 to the isomorphism Lξc of (2.6.3). If the Weil
forms of the L-groups are used, the same holds more generally for c ∈
Z̃1
u(WF , T̂ )t/t′ .

�

This correspondence also satisfies an appropriate formulation of endoscopic
transfer, cf. Theorem 4.6.4.

Proof. In this proof we are going to use the Weil forms of the L-groups rather
than their Galois forms, without changing notation. Since the Langlands pa-
rameters are insensitive to whether they are valued in the Galois form or Weil
form of the L-group, this change in notation will not affect the statement. We
will also assume that t ∈ Z2(Γ, Z(Ĝ)), deferring the case t ∈ Z2(Γ, T̂ →
T̂ad)/B1(Γ, T̂ad) to the very end of the proof, when it will follow formally. Thus,
from now on until explicitly stated otherwise, we have LGt = Ĝ�tWF .

Choose a z-extension 1→ Z1 → G1 → G→ 1. We have the exact sequence
of dual groups 1 → Ĝ → Ĝ1 → Ẑ1 → 1. We will denote again by t the pull-
back of t under π̃1(G1) → π̃1(G), i.e. the image of t under Z2(Γ, Z(Ĝ)) →
Z2(Γ, Z(Ĝ1)). We then have the coverG1(F )t,n and the L-group LG1,t = Ĝ1�t
Γ. Note that g � σ 7→ i(g) � σ is an L-embedding Li : LGt → LG1,t, where we
have written i for the inclusion Ĝ → Ĝ1. From now on we will often suppress
i from the notation.

The center Z(Ĝ1) is connected. According to Proposition C.4 there exists
r1 ∈ C1(WF , Z(Ĝ1)) whose differential equals (the inflation to WF of) the 2-
cocycle t. Therefore the map

LG1,t → LG1 = Ĝ1 oWF , g � σ 7→ gr1(σ) o σ

is an isomorphism. Composing with Li provides an L-embedding

LGt → LG1. (2.6.4)

This L-embedding induces a Ĝ-equivariant injection between the sets of L-
parameters valued in LGt and LG1, respectively. We claim that two parame-
ters in the image of this injection are Ĝ1-conjugate if and only if they are Ĝ-
conjugate. For this consider ϕ : LF → LGt and g1 ∈ Ĝ1 so that g1ϕ(σ)g−1

1 is
again valued in LGt. Writing g1 = z1g with z1 ∈ Z(Ĝ1) and g ∈ Ĝ we reduce to
the case g = 1. Then z1ϕ(σ)z−1

1 = z1 ·σ(z1)−1 ·ϕ(σ) and we see that z1 ·σ(z1)−1

represents an element of

ker(H1(WF , Z(Ĝ))→ H1(WF , Z(Ĝ1)))

= cok(H0(WF , Z(Ĝ1))→ H0(WF , Ẑ1)))

= cok(H0(Γ, Z(Ĝ1))→ H0(Γ, Ẑ1)))

= ker(H1(Γ, Z(Ĝ))→ H1(Γ, Z(Ĝ1))),
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but the latter is trivial due to [Kot84, Corollary 2.3] and the fact that Z1 is in-
duced. Therefore z1 ∈ Z(Ĝ) · Z(Ĝ1)Γ, and the claim has been proved.

We next describe which L-parameters valued in LG1 factor through (2.6.4).
The composition of (2.6.4) with Ĝ1 o WF → (Ĝ1/Ĝ) o WF kills Ĝ ⊂ LGt,
therefore factors through the projection LGt → WF and induces an L-homo-
morphism ϕλ1 : WF → (Ĝ1/Ĝ) oWF . An L-parameter valued in LG1 factors
through (2.6.4) if and only if its composition with the projection Ĝ1 oWF →
(Ĝ1/Ĝ) o WF equals ϕλ1

. It follows that any irreducible representation of
G1(F ) whose L-parameter factors through (2.6.4) will transform under the cen-
tral subgroup Z1(F ) by the character λ1 of Z1(F ) whose parameter is ϕλ1 .

Let T and T1 denote the universal maximal tori of G and G1, respectively.
Then T1(F )t,∗ is the pull back of T (F )t,∗ along T1(F ) → T (F ) according to
Corollary 2.2.4(5). Thus we have the commutative diagram with exact rows

1 // Z1(F ) // T1(F )t,∗

��

// T (F )t,∗ //

��

1

1 // Z1(F ) // T1(F ) // T (F ) // 1

The 1-cochain σ 7→ r1(σ)−1 is the parameter of a genuine character µ1 of
T1(F )t,∗ via Corollary 2.2.4(3).

We claim that the restriction of µ1 to Z1(F ) equals λ−1
1 , while the restric-

tion of µ1 via the splitting Tsc(F ) → T1(F )G1
t,∗ of Construction 2.3.1 is trivial.

Both of these claims follow from Corollary 2.2.5. For the restriction of µ1 to
Tsc(F ) we use the exact sequence 1 → Tsc → T1 → T1/Tsc → 1 and see that
this restriction has parameter given by the image of r−1

1 in C1(WF , T̂1/Z(Ĝ1)),
which is trivial. For the restriction of µ1 to Z1(F ) we use the exact sequence
1→ Z1 → T1 → T → 1 and see that the restriction of µ1 toZ1(F ) has parameter
equal to the image of r1(σ)−1 in Ẑ1 = Ĝ1/Ĝ. On the other hand, the parameter
of λ1 is obtained by composing (2.6.4) with the projection LG1 → (Ĝ1/Ĝ)oWF

and then factoring through the projection LGt →WF . The resulting homomor-
phism WF → (Z(Ĝ1)/Z(Ĝ)) oWF is given by σ 7→ r1(σ) o σ. The claim about
the restrictions of µ1 is now proved.

Since the restriction of µ1 to Tsc(F ) is trivial, µ1 descends to a genuine char-
acter of cok(Tsc(F ) → T1(F )t,∗). According to Fact 2.3.5 we have the natural
isomorphism cok(Tsc(F ) → T1(F )t,∗) = cok(Gsc(F ) → G1(F )t,∗). This allows
us to inflate µ1 to a genuine character of G1(F )t,∗, which we again denote by
µ1. As shown above, its restriction to Z1(F ) equals λ−1

1 .
Consider now an L-parameter ϕ : LF → LGt and let ϕ1 : LF → LG1 be

its composition with (2.6.4). Let Πϕ1
denote the L-packet of representations of

G1(F ) associated to ϕ1.
Given a representation π1 ∈ Πϕ1 we inflate π1 to a non-genuine representa-

tion of G1(F )t,∗ and consider π1 ⊗ µ1. From the above commutative diagram
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we have the exact sequence

1→ Z1(F )→ G1(F )t,∗ → G(F )t,∗ → 1.

The restriction of µ1 to Z1(F ) being λ−1
1 , we see that π1 ⊗ µ1 factors through a

genuine representation of G(F )t,∗. We define the L-packet Πϕ associated to ϕ
as

Πϕ = {π1 ⊗ µ1 |π1 ∈ Πϕ1}.

If a Whittaker datum forG has been fixed, it induces a Whittaker datum forG1,
hence an injection of Πϕ1 into Irr(π0(Sϕ1/Z(Ĝ1)Γ)). Combining this with the
identity Sϕ1

/Z(Ĝ1)Γ = Sϕ/Z(Ĝ)Γ we obtain the desired injection of Πϕ into
Irr(π0(Sϕ/Z(Ĝ)Γ)).

The construction of Πϕ and its injection into Irr(π0(Sϕ/Z(Ĝ)Γ)) involved
choosing the z-extension G1 and the 1-cochain r1. We want to argue that the
outcome of the construction is independent of these choices. KeepingG1 fixed,
we can replace r1 only by r2 := z1r1 for some z1 ∈ Z1(WF , Z(Ĝ1)). Let χ1 :
G1(F ) → C× be the character associated to z1. From r1 and r2 we obtain two
versions s1 and s2 of (2.6.4), hence two different L-embeddings LGt → LG1.
Let ϕ1, ϕ2 be the corresponding parameters for G1. Then ϕ2 = z1 · ϕ1, hence
Πϕ2 = χ1 ⊗Πϕ1 . At the same time the two versions µ1, µ2 of the genuine char-
acter of G1(F )t,∗ are related by µ2 = χ−1

1 µ1. Therefore Πϕ remains unchanged.
Since the bijection π2 7→ π1 = χ1 ⊗ π2 is compatible with the identification
Sϕ1

= Sϕ2
, the bijection between Πϕ and Irr(π0(Sϕ/Z(Ĝ)Γ)) is also unaffected

by passing from r1 to r2.
To see that the choice of G1 is also irrelevant, we use the fact that given

a second z-extension G2 there exists a third z-extension G3 that is simultane-
ously a z-extension of G1 and G2. It is enough to check that using G3 gives
the same result as using G1. Let Z3 = ker(G3 → G). We have the exact se-
quence 1 → Z ′3 → Z3 → Z1 → 1 where Z ′3 = ker(G3 → G1) is also an induced
torus. After choosing r1 ∈ C1(WF , Z(Ĝ1)) we can take r3 ∈ C1(WF , Z(Ĝ3)) to
be equal to r1. This makes the character λ3 of Z3(F ) equal the inflation of the
character λ1 of Z1(F ) under the surjective homomorphism Z3(F ) → Z1(F ),
and the genuine character µ3 of G3(F )t,∗ is the inflation of the genuine char-
acter µ1 of G1(F )t,∗. The L-embedding LGt → LG3 is the composition of the
L-embedding LGt → LG1 with the L-embedding LG1 → LG3 that is given
tautologically by g1 o σ 7→ g1 o σ, i.e. by the inclusion Ĝ1 → Ĝ3 dual to the
projectionG3 → G1. Suppressing this tautologicalL-embedding from the nota-
tion we have ϕ1 = ϕ3 and hence Πϕ1

= Πϕ3
, where we identify representations

of G3(F ) trivial on Z ′3(F ) with representations of G1(F ). This identification is
compatible with the identification Sϕ1

/Z(Ĝ1)Γ = Sϕ3
/Z(Ĝ3)Γ.

The proof of (1) and (2) under the assumption t ∈ Z2(Γ, Z(Ĝ)) is now com-
plete. We proceed to prove (3) under the same assumption. For this, we trace
how the construction given so far changes when we pass from t to t′ via ξc. We
made the choice of r1 ∈ C1(WF , Z(Ĝ1)) with ∂r1 = t. Setting r′1 = c · r1 we
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obtain ∂r′1 = t′. This leads to the commutative diagram

Ĝ�t Γ
·r1 // Ĝ1 o Γ

Ĝ�t′ Γ
·cr1 //

·c

OO

Ĝ1 o Γ

Therefore, if ϕ : LF → LGt and ϕ′ : LF → LGt′ correspond under the left
vertical map, they lead to the same ϕ1 : LF → LG1, hence to the same packet
Πϕ1

. Then we have Πϕ = Πϕ1
⊗ µ1 and Πϕ′ = Πϕ1

⊗ µ′1, where µ1 and µ′1 are
the genuine characters of G1(F )t,∞ and G1(F )t′,∞ with parameters r−1

1 and
c−1r−1

1 , respectively. The isomorphism ξc : G(F )t,∞ → G(F )t′,∞ is compatible
with the analogous isomorphism ξc : G1(F )t,∞ → G1(F )t′,∞ constructed the
same way, and the latter identifies the genuine characters µ1 and µ′1. The proof
of (3) is thus complete.

Finally, we drop the assumption t ∈ Z2(Γ, Z(Ĝ)). As discussed in Remark
2.1.8, the set Π(Gt,∗) is independent of ∗, so we can write Π(Gt) for it. We have
the two functors Z2(Γ, Z(Ĝ)) → Sets, one given by t 7→ Π(Gt) and sending
c ∈ C1(Γ, T̂ )t1/t2 to the map Π(Gt2)→ Π(Gt1) that is pull-back by ξ[c], and the
other given by t 7→ {(ϕ, ρ) |ϕ ∈ Φ(Gt), ρ ∈ Irr(Sϕ/Z(Ĝ)Γ)} and sending c to the
map obtained by composition with the isomorphism Lξc of (2.6.3). The content
of (1), (2), and (3) that have been proved under the assumption t ∈ Z2(Γ, Z(Ĝ))
is the construction of a natural transformation between these two functors. The
argument of §2.5 extends this natural transformation to Z2(Γ, T̂ → T̂ad). This
completes the proof of (1), (2), and (3), in the case of t ∈ Z2(Γ, T̂ → T̂ad). �

2.7 Maximal tori

In this subsection we will show how the extension G(F )∞, the various covers
G(F )t,∗, and their L-groups LGt, interact with maximal tori of G.

Construction 2.7.1. Let S ⊂ G be a maximal torus. We denote by S(F )G∞ the
pushout of S(F )∞ along π̃1(S)→ π̃1(G). We will now construct a lift S(F )G∞ →
G(F )∞ of the inclusion S(F ) → G(F ), where G(F )∞ denotes the extension
(2.1.1).

We first assume that G has a simply connected derived subgroup and write
D = G/Gder. According to Remark 2.4.4, it is enough to construct a pair of
homomorphisms S(F )G∞ → D(F )∞ and S(F )G∞ → G(F ) that equalize towards
D(F ). The homomorphism S(F )G∞ → G(F ) is the composition of S(F )G∞ →
S(F ) and the inclusion S(F ) → G(F ). The functoriality of pseudo-universal
covers of tori (Proposition 2.2.3) provides a homomorphism S(F )∞ → D(F )∞
that factors through S(F )G∞. This completes the construction.

Now drop the assumption that G has simply connected derived subgroup.
Let 1 → Z1 → G1 → G → 1 be a z-extension. Let S1 be the pull-back of
S → G ← G1, a maximal torus of G1. The previous paragraph provides a
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homomorphism S1(F )G1
∞ → G1(F )∞. We will now argue that this homomor-

phism descends to a homomorphism S(F )G∞ → G(F )∞.
Proposition 2.2.3 provides a homomorphism S1(F )∞ → S(F )∞which iden-

tifies the push-out S1(F )G∞ of S1(F )∞ along π̃1(S1)→ π̃1(G) with the pull-back
of S1(F ) → S(F ) ← S(F )G∞. This identification provides a homomorphism
Z1(F )→ S1(F )G∞ whose cokernel is the homomorphism S1(F )G∞ → S(F )G∞.

The same argument, applied to the universal maximal torus T1 of G1, pro-
vides a homomorphism Z1(F ) → T1(F )G∞ whose cokernel is the homomor-
phism T1(F )G∞ → T (F )G∞. Glancing at Construction 2.8.4 we see that the push-
out G1(F )G∞ of π̃1(G) ← π̃1(G1) → G1(F )∞ is identified with cok(Tsc(F ) →
Gsc(F )oT1(F )G∞), and therefore we obtain a homomorphismZ1(F )→ G1(F )G∞
whose cokernel is the homomorphism G1(F )G∞ → G(F )∞.

The homomorphism S1(F )G1
∞ → G1(F )∞ provides, via push-out along the

surjection π̃1(G1) → π̃1(G), a homomorphism S1(F )G∞ → G1(F )G∞ that re-
spects the homomorphisms of Z1(F ) into both, and hence descends to the de-
sired homomorphism S(F )G∞ → G(F )∞. The independence of that homomor-
phism from the choice of z-extension can be verified in a routine manner using
[Kot84, Lemma 2.4.4], and is left to the reader. �

Remark 2.7.2. For each t : π̃1(G) → S1, the homomorphism of Construction
2.7.1 induces a homomorphism S(F )t,∗ → G(F )t,∗. For computations it may
be useful to note that we can run this construction from the beginning with
G(F )t,∗ in place of G(F )∞. This has the benefit of allowing us to apply the
easy construction, that avoids z-extensions, in situations where the derived
subgroup of G may not be simply connected. Indeed, according to Proposition
2.4.7 it is enough to assume that the class of t in H2(WF , Z(Ĝ)) is trivial. �

Construction 2.7.3. We will now upgrade our construction S(F )t → G(F )t
from the case of character t of π̃1(G) to the case of characters t of π̄1(G). This
will require making sense of S(F )t in the first place.

This is a simple application of the arguments of §2.5. The assignment t 7→
S(F )t is a functor from Z2(Γ, Z(Ĝ)) to the category of topological groups.
Therefore, the argument of §2.5 gives an extension of this functor to Z2(Γ, T̂ →
T̂ad). In addition, the map S(F )t → G(F )t is a natural transformation between
functors on Z2(Γ, Z(Ĝ)), and the same arguments extend it to a natural trans-
formation between functors on Z2(Γ, T̂ → T̂ad).

The same arguments also make sense of S(F )t,∞ and construct S(F )t,∞ →
G(F )t,∞when t is a finite-order character of π̄1(G); one just replacedZ2(Γ, T̂ →
T̂ad) with Z2

∞(Γ, T̂ → T̂ad). �

Fact 2.7.4. Let S ⊂ G be a maximal torus.

1. The homomorphism S(F )G∞ → G(F )∞ of Construction 2.7.1 identifies
S(F )G∞ with the pull-back of S(F )→ G(F )← G(F )∞.

2. For any t ∈ Z2(Γ, Z(Ĝ)), the homomorphism S(F )t,∗ → G(F )t,∗ identi-
fies S(F )t,∗ with the pull-back of S(F )→ G(F )← G(F )t,∗.
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3. For any t ∈ Z2(Γ, T̂ → T̂ad), the homomorphism S(F )t,∞ → G(F )t,∞
identifies S(F )t,∞ with the pull-back of S(F )→ G(F )← G(F )t,∞.

�

We now turn to the dual side. Let S be an F -torus equipped with a Γ-
stable G(F̄ )-conjugacy class of embeddings S → G whose images are maximal
tori. As discussed in [Kal19b, §5.1] this provides further structures, such as a
Γ-invariant subset R(S,G) ⊂ X∗(S) and a Γ-stable Ĝ-conjugacy class of em-
beddings Ŝ → Ĝ. In particular, one has a natural Γ-equivariant embedding
Z(Ĝ)→ Ŝ.

Construction 2.7.5. Let t ∈ Z2(Γ, T̂ → T̂ad) and z′ ∈ Z2(Γ, Ŝ). We construct an
L-group LSz′t using the arguments of §2.5 as follows. When t ∈ Z2(Γ, Z(Ĝ)),
we use the natural inclusion Z(Ĝ) → Ŝ to form the product z′ · t and define
LSz′t = Ŝ �z′t Γ. This is a functor on Z2(Γ, Z(Ĝ)), which acts on morphisms
via (2.2.4). The arguments of §2.5 extend this functor to Z2(Γ, T̂ → T̂ad).

Explicitly, write t = (z, c). For every x ∈ C1(Γ, T̂ ) with x̄ = c we have
z∂x−1 ∈ Z2(Γ, Z(Ĝ)) and can form Ŝ�zz′∂x−1 Γ. Given another x′ we have the
isomorphism

Ŝ �z′z∂x−1 Γ→ Ŝ �z′z∂x′−1 Γ, s� σ 7→ sx′(σ)x−1(σ)� σ.

Define LStz′ as the limit of this system. �

Proposition 2.7.6. There is a natural correspondence between genuine charac-
ters of S(F )z′t and Ŝ-conjugacy classes of L-parameters valued in LSz′t. �

Proof. According to the arguments of §2.5 it is enough to treat the case t ∈
Z2(Γ, Z(Ĝ)), which is however just Corollary 2.2.4(3). �

Fact 2.7.7. Assume given z′ ∈ Z2(Γ, Ŝ) and t′ ∈ Z2(Γ, T̂ → T̂ad), and an L-
embedding LSz′t′ → LGt′ . Then, for any t ∈ Z2(Γ, T̂ → T̂ad) the same map
induces an L-embedding LSz′t′t → LGt′t. �

Proof. When t, t′ ∈ Z2(Γ, Z(Ĝ)) the claim is evident. The general case follows
from the arguments in §2.5. �

Proposition 2.7.8. Fix ̂ : Ŝ → Ĝ and let S = {γ ∈ LGt | γ̂(s)γ−1 = ̂(σγ(s))},
where σγ ∈ Γ denotes the image of γ under the projection LGt → Γ.

1. For any z′ ∈ Z2(Γ, Ŝ) and any L-embedding Lj : LSz′t → LGt extending
̂, the image of Lj equals S, and Lj is an isomorphism onto S.

2. Let z′1, z′2 ∈ Z2(Γ, Ŝ) and consider L-embeddings Lji : LSz′it →
LGt

extending ̂. Then Lj2 = Lj1 ◦ Lη for an L-isomorphism Lη : LS2 →

39



LS1 extending the identity on Ŝ. The resulting bijection between genuine
characters is given by

Π(Sz′2t,n)→ Π(Sz′1t,n), χ 7→ χ · η,

where η is a genuine character of S(F )z′1/z′2 depending only on the Ĝ-
conjugacy classes of Lji.

�

Proof. As in Construction 2.7.5 we write t = (z, c) and pick x ∈ C1(Γ, T̂ ) with
x̄ = c, which allows us to represent LSz′t = Ŝ�zz′∂x−1 Γ and LGt = Ĝ�z∂x−1 Γ.

(1) Let σ ∈ Γ and let γ = Lj(1�σ). The multiplicativity of Lj implies γ ∈ S.
It follows that the image of Lj is a full subgroup of S. But this image also
contains the kernel of the projection S → Γ, so it equals all of S. The second
statement follows from the open mapping theorem [HR79, Theorem 5.29].

(2) According to (1) we can form Lj−1
1 ◦ Lj2, which is an L-isomorphism

Lη : LSz′2t →
LSz′1t and restricts to the identity on Ŝ. This implies the existence

of c ∈ C1(Γ, Ŝ) such that Lη(s � σ) = sc(σ) � σ. This implies ∂c = z′2/z
′
1 and

thus c gives a genuine character η of S(F )z′1/z′2 .
If we conjugate ̂, Lj1 and Lj2, by the same element of Ĝ, then c remains

unchanged. If we keep ̂ fixed, the requirement that Lji both restrict to ̂ then
implies that each of Lji can be conjugated only by an element of the image of
̂. Such conjugation changes c by an element of B1(Γ, Ŝ). Therefore η depends
only on the Ĝ-conjugacy classes of Lji. �

2.8 Double covers via finite admissible sets

Let S be an F -torus equipped with a Σ-invariant map R → X∗(S), where
Σ = Γ × {±1} and R is a finite Σ-set on which {±1} ⊂ Σ has no fixed points.
In [Kal19a] we associated to this data a double cover S(F )R of S(F ). In this
subsection we will show that this construction fits in the general framework
developed in this paper. We will also generalize this construction to quasi-split
connected reductive groups.

For any gauge p : R → {±1} we have the Tits cocycles tp ∈ Z2(Γ, Ŝ[2]), cf.
[Kal19a, Definition 3.8]. Pushing out the extension (2.1.1) along tp : π̃1(S) →
{±1} we obtain the double cover S(F )tp,2. For two gauges p, q we have the
1-cochain sq/p ∈ C1(Γ, Ŝ[2]) with ∂sq/p = tq/tp, and hence the isomorphism
ξsq/p : S(F )tp,2 → S(F )tq,2. These isomorphisms form a compatible system.

Proposition 2.8.1. The limit of that system is naturally identified with the cover
S(F )R constructed in [Kal19a]. �

Proof. Fix a gauge p. It is enough to identify H̃1
u(WF , Ŝ)tp with the set of uni-

tary genuine characters of S(F )R as topological spaces that are torsors under
H1
u(WF , Ŝ). Pontryagin duality implies that unitary χ-data (χα)α∈R exist. The
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resulting genuine character χ of S(F )R is then unitary. On the other hand, its
parameter rp is by construction an element of H̃1

u(WF , Ŝ)tp . Any other uni-
tary genuine character of S(F )R is the product of χ with a unitary character
of S(F ). The correspondence for S(F )R established in [Kal19a, Theorem 3.15]
and its multiplicativity now establish a bijection between the set of unitary gen-
uine characters of S(F )R and the set H̃1

u(WF , Ŝ)tp . Both sets are topologized as
torsors under the topological groups Homcts(S(F ),S1) andH1

u(WF , Ŝ), respec-
tively. Since these topological groups are canonically isomorphic and the bijec-
tion we have established respects this isomorphism, the claim is proved. �

Remark 2.8.2. The above proposition provides an explicit description of the
double cover S(F )t,2 associated to a certain t ∈ Z2(Γ, Ŝ), namely the Tits cocy-
cle associated to a finite admissible Σ-set R → X∗(S) and a gauge p. It would
be desirable to obtain explicit description of other covers S(F )t,n. �

Construction 2.8.3. Let t ∈ Z2(Γ, T̂ → T̂ad). We define LSt± by presenting
LS± = LStp and using Construction 2.7.5 to form LSt·tp . The L-embedding
LS± → LG provides via Fact 2.7.7 an L-embedding LSt± → LGt. �

We now generalize this construction to a quasi-split connected reductive
group G. Let T be the universal maximal torus. Consider a finite admissible
Σ-set R → X∗(T ). We can compose it with the map X∗(T ) → X∗(Tsc). In this
way we obtain the double covers T (F )R and Tsc(F )R. Assume given a genuine
sign character α : Tsc(F )R → {±1}.

Construction 2.8.4. Given R and α we obtain a double cover G(F )R,α as fol-
lows. Let p : R → {±1} be a gauge and let zp ∈ Z2(Γ, T̂ [2]) be the Tits co-
cycle associated to R and p. Let z̄p ∈ Z2(Γ, T̂ad[2]) be its image. Let cp ∈
C1(WF , T̂ad) be the parameter of the genuine character α. Thus ∂cp = z̄p and
c2p ∈ B1(WF , T̂ad). According to Lemma 2.2.8(2)(3), the class of [cp] gives a
well-defined element, which we also denote by [cp], of H̃1(Γ, T̂ad[2]). Then
tp := (zp, [cp]) ∈ Z2(Γ, T̂ [2] → T̂ad[2])/B1(Γ, T̂ad[2]) depends only on R, α,
and p. We have the associated double cover G(F )tp .

Given another gauge q we have zq/zp = ∂sq/p and [cq] = [sq/p] · [cp]. Thus
[sq/p] ∈ H̃1(Γ, T̂ )tq/tp [2]. From Construction 2.3.7 we obtain the isomorphism
ξq,p : G(F )tp → G(F )tq . In this way we obtain a compatible system indexed by
the set of gauges on R. We define G(F )R,α to be the limit of that system.

Equivalently (cf. Construction 2.3.3, Fact 2.3.5(2)), we define G(F )R,α as

cok(Tsc(F )→ Gsc(F ) o T (F )R),

where T (F )R acts on Gsc(F ) through the projection T (F )R → T (F ) and the
conjugation action of T (F ) on Gsc(F ) via an arbitrary admissible embedding
j : T → G, and Tsc(F ) → T (F )R is the splitting obtained by composing nat-
ural map Tsc(F )R → T (F )R coming from Corollary 2.2.4(5) and the splitting
Tsc(F )→ Tsc(F )R coming α via Lemma 2.2.7. �
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Construction 2.8.5. Let θ be an F -automorphism of G. It induces an F -auto-
morphism of the universal maximal torus T , which we also denote by θ. Let
θR be an automorphism of the Σ-set R so that the map R → X∗(T ) is (θR, θ)-
equivariant. This induces an automorphism of the covers T (F )R and Tsc(F )R,
which we also denote by θ, cf. [Kal19a, Example 5.3]. Assume that α is fixed
by θ. Then the splitting Tsc(F ) → T (F )R is θ-equivariant, and the identifi-
cation G(F )R,α = cok(Tsc(F ) → Gsc(F ) o T (F )R) endows G(F )R,α with an
automorphism lifting θ. �

Remark 2.8.6. Consider a maximal torus S ⊂ G and let SR,α be the pull-back of
the cover G(F )R,α under S(F ) → G(F ). The character tp : π̄1(G) → {±1} that
appears in Construction 2.8.4 leads, via Construction 2.7.3, to a cover S(F )tp .
We know from Fact 2.7.4 that there is a natural isomorphism S(F )R,α → S(F )tp .
It would be desirable to have an explicit description of this double cover, in the
spirit of the construction of [Kal19a]. �

2.9 Comparison with the constructions of Adams-Vogan for F = R

Consider the case F = R. In [AV92, (7.11)(a)], Adams-Vogan define a finitely
generated discrete abelian group π1(G)(R) as π1(G(C))/(1 + θ)π1(G(C)). Here
π1(G(C)) is the topological fundamental group for the analytic topology on
G(C) based at the identity element. It is known that π1(G(C)) coincides with
Borovoi’s algebraic fundamental group π1(G). The automorphism θ is the Car-
tan involution, which coincides on π1(G(C)) with the action of complex con-
jugation. However, due to the conventions of [AV92], the action of complex
conjugation is not the same as the one on Borovoi’s fundamental group, but
instead differs from it by multiplication by −1. This is owed to the use of the
normalization 2πi, cf. [AV92, (5.1)(b)]. Therefore, in terms of Borovoi’s funda-
mental group, one has the identity π1(G)(R) = π1(G)Γ. In turn, this leads to
the identity

π1(G)(R) = X∗(Z(Ĝ)Γ). (2.9.1)

Proposition 2.9.1. There exists a natural injective group homomorphism

π1(G)(R)→ π̃1(G)

whose composition with the projection to π0(π̃1(G)) remains injective and iden-
tifies π0(π̃1(G)) with the profinite completion of the discrete group π1(G)(R).
�

Proof. We will use Lemma A.4 with the diagonalizable group D = Z(Ĝ)Γ. On
the one hand, we have the identity (2.9.1). On the other hand, for any Γ-module
M evaluation at (σ, σ) induces a group isomorphism Z2(Γ,M)→MΓ. Apply-
ing this to M = Z(Ĝ) leads to D = Z(Ĝ)Γ = Z2(Γ, Z(Ĝ)), and hence Ddisc =
π̃1(G)∗. Then Lemma A.4 provides the homomorphism π1(G)(R) → π̃1(G)
with the desired properties. Note that injectivity follows from the fact that
π1(G)(R) is residually finite, being finitely generated abelian. �
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It is worth recording the following statement, which follows formally from
the above proposition, and was also used in its proof.

Corollary 2.9.2. The map π1(G)(R) → π̃1(G) induces a bijection between the
groups of characters of finite order on both sides. �

In addition to π1(G)(R), in [AV92, (5.3)(c),(7.11)(c)] Adams and Vogan de-
fine an extension

1→ π1(G)(R)→ G(R)AV → G(R)→ 1,

where G(R)AV is denoted by G(R)∼ in loc. cit. We will now compare G(R)AV
with G(R)∞.

Consider first the case of a torus G = T . Choose a finite order character
t : π̃1(T ) → µn(C) and pull it back to a character of π1(T )(R). Pushing out
T (R)∞ we obtain the n-fold cover T (R)t,n, while pushing out T (R)AV we ob-
tain another n-fold cover, which we denote by T (R)AV,t,n.

Proposition 2.9.3. We have a natural isomorphism T (R)t,n → T (R)AV,t,n as ex-
tensions of T (R) by µn(C), as well as between the group LTt of (2.2.2) and the
E-group determined by t as in [AV92, Definition 5.9], and these two isomor-
phisms are compatible with the local correspondences. �

Proof. The identification between LTt and theE-group determined by t follows
at once from the definitions. We have used here the identification Z2(Γ, T̂ ) =

Z0(Γ, T̂ ) and hence identified t with t(σ, σ).
To identify T (R)t,n and T (R)AV,t,n it is enough to identify their groups of

unitary characters in a way compatible with the subgroups of unitary charac-
ters of T (R), and the quotients Z/nZ. For this it is enough to identify the two
cosets of genuine characters together with the action of the group of unitary
characters of T (R). According to Corollary 2.2.4(4), the coset of unitary char-
acters is identified with the set of bounded parameters WR → LSt, and the
action of the group of unitary characters of T (R) is translated to the action of
H1
u(WR, T̂ ) by multiplication. On the other hand, the same identification for

T (R)AV,t,n follows from [AV92, Theorem 5.11]. �

Corollary 2.9.4. There exists a natural embedding T (R)AV → T (R)∞ which
covers the identity of T (R) and induces the embedding π1(T )(R)→ π̃1(T ). �

Proof. Let T (R)1
AV denote the fiber product over T (R) of the covers T (R)AV,t,n

for all n ∈ N and all t ∈ π1(T )(R) → µn(C). Thus T (R)1
AV is an exten-

sion of T (R) by
∏
t,n µn(C) and equals the pushout of T (R)AV under the map

π1(T )(R)→
∏
t,n µn(C) that sends x ∈ π1(T )(R) to (t(x))t,n.

We perform the same construction with T (R)t,n for all n ∈ N and all t :
π̃1(T ) → µn(C) and call the result T (R)1

∞. According to Corollary 2.9.2 both
T (R)1

AV and T (R)1
∞ are extensions of T (R) by the same compact group K =∏

t,n µn(C), and according to Proposition 2.9.3 they are naturally isomorphic.
Thus, the pushout of T (R)AV under π1(T )(R) → K is naturally isomorphic to
the pushout of T (R)∞ under π̃1(T )→ K. This implies that T (R)∞ is naturally
isomorphic to the pushout of T (R)AV under π1(T )(R)→ π̃1(T ). �
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Consider now a quasi-split reductive R-group G.

Corollary 2.9.5. There is a natural embedding G(R)AV → G(R)∞ which covers
the identity of G(R) and induces the embedding π1(G)(R)→ π̃1(G). �

Proof. Let G̃ and T̃ be universal covers of the complex Lie groups G and T . We
have the following commutative diagram with exact rows and columns

1

��

1

��

1

��
1 // π1(Tsc)

��

// π1(T ) //

��

π1(G)

��

// 1

1 // T̃sc

��

// Gsc o T̃

��

// G̃

��

// 1

1 // Tsc

��

// Gsc o T

��

// G

��

// 1

1 1 1

For the exactness at the middle term, note that there a no non-trivial continuous
homomorphisms Tsc → π1(G), since Tsc is connected and π1(G) is discrete.

Write T̃sc(R), T̃ (R), and G̃(R), for the inverse images of Tsc(R), T (R), and
G(R), respectively. Since G is quasi-split, Gsc(R) o T (R) → G(R) is surjective,
and this implies the exactness of

1→ T̃sc(R)→ Gsc(R) o T̃ (R)→ G̃(R),

which in turn implies the exactness of

1→ Tsc(R)→ Gsc(R) o
T̃ (R)

π1(Tsc) + (1− σ)π1(T )
→ G̃(R)

(1− σ)π1(G)
→ 1.

The right term of the above sequence is by definition G(R)AV. The middle
term is the pushout of T (R)AV along π1(T )(R)→ π1(G)(R), which we shall de-
note by T (R)GAV. Corollary 2.9.4 gives a natural embedding T (R)GAV → T (R)G∞,
where we recall that T (R)G∞ is the pushout of T (R)∞ along π̃1(T ) → π̃1(G).
The embedding T (R)GAV → T (R)G∞ is compatible with the embeddings of Tsc(R)
into both sides. This provides the desired embedding G(R)AV → G(R)∞. �

Corollary 2.9.6. There is a natural isomorphism from G(R)∞ to the pushout of
G(R)AV along the inclusion π1(G)(R)→ π̃1(G). �
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3 COVERS ARISING FROM CERTAIN SUBGROUPS OF THE L-GROUP

Let G be a connected reductive F -group, Ĝ its dual group (taken over an arbi-
trary algebraically closed field). In this section we will show that a subgroup
H ⊂ LG with certain properties leads naturally to a double cover H(F )± of
H(F ) together with an isomorphism LH± → H. In order to obtain a closed
theory, we will also consider more generally a subgroup H ⊂ LGt, for any
t : π̄1(G) → µn and will show that this leads to a cover H(F )t± of H and an
isomorphism LHt± → H.

3.1 The double cover associated toH ⊂ LG

Let LG = Ĝ o Γ the Galois form of the L-group. We consider a subgroup
H ⊂ LG, given up to conjugation by Ĝ, satisfying the following.

Properties 3.1.1.

1. H is full, i.e. its image under LG→ Γ is all of Γ;

2. Ĥ = H ∩ Ĝ is a connected reductive subgroup of the same rank as Ĝ.

�

We choose a Γ-pinning (T̂ , B̂, {Xα̂}) of Ĝ and conjugateH by an element of
Ĝ to ensure T̂ ⊂ Ĥ . Then B̂H := (Ĥ ∩ B̂)◦ is a Borel subgroup of Ĥ containing
T̂ . For σ ∈ Γ, choose an arbitrary lift hσ ∈ H that normalizes the pair (T̂ , B̂H).
Then hσ is well-defied up to left multiplication by T̂ and therefore the auto-
morphism σH := Ad(hσ) of T̂ does not depend on the choice of hσ . We write
T̂H for the complex torus T̂ equipped with Γ-action given by σ 7→ σH .

We have σH = σH,G ◦ σG, where σG is the automorphism of T̂ induced by
Ad(1oσ) ∈ ĜoΓ, and σH,G ∈ Ω(T̂ , Ĝ). Let n(σH,G) ∈ N(T̂ , Ĝ) be the Tits lift of
σH,G with respect to the fixed pinning. Then n(σH,G)oσG ∈ ĜoΓ normalizes
T̂ and acts on it as σH . It follows that n(σH,G) o σG and hσ are elements of LG
that differ by left multiplication by an element of T̂ . Therefore

σ 7→ n(σH,G) o σG (3.1.1)

is a (usually non-homomorphic) section of the projectionH → Γ.
Recall [KP22, Proposition 2.7.11] that the pinning of Ĝ determines a weak

Chevalley system, i.e. in each root space Lie(Ĝ)α a pair of non-zero elements
that differ by a sign. We will say that a pinning of Ĥ is adapted to the pinning of
Ĝ if the associated Borel pair is (T̂ , B̂H) and the associated simple root vectors
belong to the weak Chevalley system. Thus, every two adapted pinnings of Ĥ
differ from each other by changing signs in the various simple root vectors.

Let T̂Had = T̂H/Z(Ĥ).
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Lemma 3.1.2. Fix an adapted pinning of Ĥ . There exists a unique element
c ∈ C1(Γ, T̂Had [2]) such that the action of Γ on Ĥ obtained from the section

c−1 · s : Γ→ H/Z(Ĥ), σ 7→ c(σ)−1n(σH,G) o σG (3.1.2)

preserves that pinning. The class of c modulo B1(Γ, T̂Had [2]) is independent of
the choice of adapted pinning. �

Proof. It is clear that (3.1.1) already preserves the Borel pair (T̂H , B̂H). There-
fore there exists a necessarily unique c ∈ C1(Γ, T̂Had ) so that (3.1.2) preserves
the chosen pinning of Ĥ . Write XH

α for the element of Lie(Ĥ)α that belongs to
the fixed adapted pinning. Since the Tits group preserves the weak Chevalley
system ([KP22, Definition 2.7.8]) of Ĝ, the element c is uniquely determined by
the rule

c(σ) =
∏
α

ω̌α(εα),

where the product runs over the simple roots α ∈ ∆(T̂ , B̂H), ω̌α is the cor-
responding fundamental coweight, and εα is the scalar by which the two el-
ements XH

α and n(σH,G) o σG · XH
σ−1
H α

of Lie(Ĥ) differ. Since both of these

elements belong to the weak Chevalley system, we have εα ∈ {±1}, and there-
fore c ∈ C1(Γ, T̂Had [2]).

Another choice of an adapted pinning differs from the fixed one by Ad(t),
where t ∈ THad [2] is of the form

t =
∏
α

ω̌α(εα)

for some εα ∈ {±1}. For this choice, the corresponding splitting (3.1.2) would
be given by t · c · s · t−1, which equals t · σH(t)−1 · c · s, and we see that c and
t · σH(t)−1 · c give the same class modulo B1(Γ, T̂Had [2]). �

Remark 3.1.3. The inverse in (3.1.2) is just cosmetic, because c−1 = c, but we
have kept it in order to have the formulas consistent. �

Remark 3.1.4. The value of c can be computed explicitly using work of Kot-
twitz, cf. [Cas20, §4]. �

The 2-cocycle of the Tits section (3.1.1) is an element z ∈ Z2(Γ, T̂H [2]). Since
the section (3.1.2) preserves a pinning, it is a group homomorphism. Therefore,
class [c] ∈ C1(Γ, T̂Had [2])/B1(Γ, T̂Had [2]) provided by Lemma 3.1.2 satisfies ∂c =
z̄. We thus obtain an element

t = xH,G = (z, [c]) ∈ Z2(Γ, T̂H [2]→ T̂Had [2])/B1(Γ, T̂Had [2]). (3.1.3)

Let H be the unique quasi-split F -group that is dual to Ĥ and whose rational
structure is given by the homomorphism Γ → Out(Ĥ) = Out(H) determined
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by the extension H. Then T̂H is identified with the dual of the universal torus
TH ofH in such a way that the positive chamber inX∗(TH) equals the positive
chamber in X∗(T̂H) specified by B̂H . Via this identification, Construction 2.3.3
provides a double cover H(F )± of H(F ).

The dual group of H is naturally identified with Ĥ , with Γ acting on Ĥ via
the splitting (3.1.2). The L-group of H(F )± is thus identified via (2.6.2) with
Ĥ �z·∂x−1 Γ for any x ∈ C1(Γ, T̂H) satisfying [x̄] = [c]. Then

LH± = Ĥ �z·∂x−1 Γ→ H, h� σ 7→ hx−1(σ)n(σH,G) o σG (3.1.4)

is an L-isomorphism, independent of the choice of x. Therefore, it induces an
L-embedding LH± → LG.

Remark 3.1.5. There is an equivalent way to describe the double cover ofH(F )

using §2.8. We have the admissible set R∨(T̂ , Ĝ) ⊂ X∗(T̂
H) = X∗(TH). It

gives rise to a double cover TH(F )±. Note that it is the same double cover as
for the admissible set R∨(T̂ , Ĝ) r R∨(T̂ , Ĥ), because all elements of R∨(T̂ , Ĥ)
are asymmetric.

The class [c] ∈ C1(Γ, T̂Had [2])/B1(Γ, T̂Had [2]) of Lemma 3.1.2 is the parameter
of a genuine sign character α : THsc (F )± → {±1}. Construction 2.8.4 provides a
double cover of H(F ). It is easily seen that this is the double cover H(F )±. �

The following lemma shows that the reductive group H , the double cover
H(F )±, and the L-embedding LH± → LG (3.1.4), depend only on the Ĝ-
conjugacy class ofH, but not on the individual representative of that conjugacy
class, or on the chosen pinning of Ĝ. Write temporarily Lξ for (3.1.4).

Lemma 3.1.6. Let (H, Lξ) and (H ′, Lξ′) be two data constructed by choosing
different representatives in the Ĝ-conjugacy class ofH and different Γ-pinnings
of Ĝ. There exists an F -isomorphism f : H → H ′ such that Lξ′ = Lξ◦Lf± up to
Ĝ-conjugation, where f± : H(F )± → H ′(F )± is the lift of f as in Construction
2.8.5. Moreover, f is unique in Out(H)(F ) = Out(Ĥ)(F ) up to conjugation by
an element of NĜ(Ĥ). �

Proof. It is clear that if we conjugate both H and the pinning by the same ele-
ment of Ĝ nothing will change. Since all Γ-pinnings of Ĝ are conjugate under
Ĝ, even under ĜΓ ([Kot84, Corollary 1.7]), it is enough to fix the pining of Ĝ
and consider two subgroups H and H′ of LG that are conjugate under Ĝ, and
that both contain T̂ .

Write Ĥ = H ∩ Ĝ and Ĥ ′ = H′ ∩ Ĝ. In the following paragraphs we are
going to specify n ∈ Ĝ and y ∈ C1(Γ, T̂ [2]) with the following properties.

1. Ad(n) conjugatesH toH′ in such a way that the isomorphism Ĥ → Ĥ ′ it
provides identifies a pinning of Ĥ with a pinning of Ĥ ′, both adapted to
the chosen pinning of Ĝ.

47



In particular, Ad(n) ◦ σH = σH′ . As before we write T̂H resp. T̂H
′

for T̂
equipped with the Γ-action given by σH resp. σH′ , as well as z ∈ Z2(Γ, T̂H [2])

resp. z′ ∈ Z2(Γ, T̂H
′
[2]) for 2-cocycle of the section (3.1.1) with respect to H

resp. H′.

2. The identity
Ad(n)(∂y · z) = z′ (3.1.5)

holds in Z2(Γ, T̂H
′
[2]).

3. We can choose x ∈ C1(Γ, T̂H) and x′ ∈ C1(Γ, T̂H
′
) such that [x̄] = [c],

[x̄′] = [c′], and the identities

n · x(σ)−1n(σH,G) o σG · n−1 = x′(σ)−1n(σH′,G) o σG (3.1.6)

in LG and
Ad(n)([y] · [x]) = [x′] (3.1.7)

in C1(Γ, T̂H
′
)/B1(Γ, T̂H

′
) hold.

For a moment, let us assume that this has been done and see how it completes
the proof of the lemma. First, the identification via Ad(n) of the pinned groups
Ĥ and Ĥ ′ leads to an identification of the quasi-split groupsH andH ′. Second,
identity (3.1.7) implies Ad(n)([y] · [c]) = [c′] in C1(Γ, T̂H

′

ad [2])/B1(Γ, T̂H
′

ad [2]),
which together with identity (3.1.5) means that the isomorphism

Z2(Γ, T̂H [2]→ T̂Had [2])/B1(Γ, T̂Had [2])→ Z2(Γ, T̂H
′
[2]→ T̂H

′

ad [2])/B1(Γ, T̂H
′

ad [2])

effected by Ad(n) identifies ∂y · twith t′, where t = (z, [c]) is computed relative
to H and t′ = (z′, [c′]) relative to H′. The identification of ∂y · t and t′ leads
to an identification of the double covers H(F )± and H ′(F )±, namely via the
isomorphism Ad(n) and the isomorphism ξ[y]. Finally, we argue that these
identifications are compatible with the L-embeddings (3.1.4), in the sense that
for suitable lifts x ∈ C1(Γ, T̂H) and x′ ∈ C1(Γ, T̂H

′
) of c and c′, respectively,

the diagram

Ĥ �z·∂x−1 Γ //

Ad(n)�id
��

H

Ad(n)

��
Ĥ ′ �z′·∂x′−1 Γ // H′

commutes. Indeed, identities (3.1.5) and (3.1.7) show that the left vertical map
is an isomorphism, while the commutativity of the diagram follows from the
formulas for the top and bottom map given by (3.1.4) and identity (3.1.6).

We now begin with the specification of n and y and the proof of the three
points above. To specify n, let g ∈ Ĝ be such thatH′ = gHg−1. Then (T̂ , B̂∩ Ĥ)

and (g−1T̂ g, g−1(B̂ ∩ Ĥ ′)g) are two Borel pairs in Ĥ , so there exists h ∈ Ĥ such
that (T̂ , B̂ ∩ Ĥ) = ((gh)−1T̂ (gh), (gh)−1(B̂ ∩ Ĥ ′)(gh)). The element n = gh
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lies in N(T̂ , Ĝ) and satisfies H′ = nHn−1. The isomorphism Ad(n) : Ĥ →
Ĥ ′ identifies the Borel pair (T̂ , B̂ ∩ Ĥ) with the Borel pair (T̂ , B̂ ∩ Ĥ ′), but
possibly does not yet identify adapted pinnings. To achieve this, we are going
to adjust nmodulo T̂ as follows. Let w denote the image of n in the Weyl group
N(T̂ , Ĝ)/T̂ . We demand that n = n(w) is the Tits lift of w with respect to the
pinning of Ĝ. This completes the specification of n. Since n belongs to the Tits
group relative to the chosen pinning of Ĝ, Ad(n) preserves the associated weak
Chevalley system ([KP22, Definition 2.7.8]). Therefore, the image under Ad(n)

of a pinning of Ĥ that is adapted to that of Ĝ is a pinning of Ĥ ′ that is again
adapted to that of Ĝ. We have thus proved point (1) above.

To specify y, we let p : R∨(T̂ , Ĝ)→ {±1} be the gauge corresponding to B̂,
and note that Ad(n) : T̂ → T̂ does not preserve p. Let q : R∨(T̂ , Ĝ) → {±1} be
defined by q(α) = p(nα). Then Ad(n) identifies the gauge q on its source with
the gauge p on its target. We define y = sq/p, cf. [Kal19a, §3.3].

Before we prove (2) and (3) we discuss the uniqueness of n and y, and hence
of the isomorphism f in the statement of the lemma. Both n and y depend only
on one single choice, namely that of w. In turn, w can be changed only by
multiplication on the left by an element u of N(T̂ , Ĝ)/T̂ that preserves the root
system of Ĥ and the chamber in it given by B̂ ∩ Ĥ . This implies that u is fixed
by σH

We now prove point (2) by establishing identity (3.1.5). The cocycle z is a
Tits cocycle relative to the gauge p. We emphasize this by writing zp. We have

zp(σ, τ) =
∏
α>0

σ−1
H α<0

(στ)−1
H α>0

α(−1),

where the product runs over all α ∈ R∨(T̂ , Ĝ) and α > 0 means p(α) = +1.
Recall that ∂sq/p = zq/zp. Therefore we want to check that Ad(n)zq = z′p,
where z′p is defined by the same formula, but with σH replaced by σH′ . The
verification of this identity is immediate.

We now come to the proof of (3). Recall that a representative c of [c] is fixed
by choosing a pinning of Ĥ that is adapted to the chosen pinning of Ĝ. To
specify a representative c′ of [c′] we need to do the same for Ĥ ′. Since Ad(n)

maps a pinning of Ĥ adapted to that of Ĝ to a pinning of Ĥ ′ adapted to that of
Ĝ, we arrange the pinnings of Ĥ and Ĥ ′ to be compatible with Ad(n).

By construction c ∈ C1(Γ, T̂Had [2]) is such that c(σ)−1n(σH,G)oσG preserves
the chosen pinning of Ĥ , and c′ ∈ C1(Γ, T̂H

′

ad [2]) is such that c′(σ)−1n(σH′,G) o
σG preserves the chosen pinning of Ĥ ′. Therefore both c(σ)−1n(σH,G) o σG
and n−1 · c′(σ)−1n(σH′,G) o σG · n preserve the pinning of Ĥ , and hence are
equal elements of H/Z(Ĥ). This allows us to choose x and x′ in such a way
that identity (3.1.6) holds.
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It remains to prove identity (3.1.7). This will require more work. We begin
with the equality

x(σ)−1n(σH,G) = n−1x′(σ)−1n(σH′,G)σG(n) (3.1.8)

in Ĥ that follows immediately from identity (3.1.6). Recalling that w ∈ Ω(T̂ , Ĝ)
is the image of n, we have

σH′,GσG = σH′ = wσHw
−1 = wσH,GσGw

−1 = wσH,GσG(w)−1σG,

thus

n(σH′,G) = zp(w, σH,GσG(w)−1)n(w)zp(σH,G, σG(w)−1)n(σH,G)n(σG(w)−1).

Recall that we have n = n(w). Since the Tits lifting is σG-equivariant, we have

n(σG(w)−1) = σG(n(w−1)) = σG(zp(w
−1, w)n(w)−1).

Substituting the last two displayed equations into (3.1.8) and using σH,GσG =
σH we obtain

x(σ)−1 = w−1x′(σ)−1zp(w, σH,GσG(w)−1)wzp(σH,G, σG(w)−1)σH(zp(w
−1, w)),

which implies that n−1x′(σ)n · x(σ)−1 equals

n−1zp(w, σH,GσG(w)−1)n · zp(σH,G, σG(w)−1) · σH(zp(w
−1, w)). (3.1.9)

Our goal is to show that this is cohomologous to sq/p. The latter being coho-
mologous to sp/q = s−1

p/q , we are free to use either one, and sp/q turns out more
convenient. We will show that the product of (3.1.9) with sp/q is cohomologi-
cally trivial.

The first of the three factors in (3.1.9) equals (−1) raised to the sum over the
set

w−1{α | p(α) = +1, p(w−1α) = −1, p((wσH,GσG(w)−1)−1α) = +1}.

This set equals

{α | p(wα) = +1, p(α) = −1, p((σH,GσG(w)−1)−1α) = +1}.

Note that p(wα) = q(α). Note further that, since σG preserves p, we have
p((σH,GσG(w)−1)−1α) = p(σG(w)σ−1

H,Gα) = p(σG(wσ−1
H α)) = p(wσ−1

H α) =

q(σ−1
H α). With this, the above set becomes

{α | q(α) = +1, p(α) = −1, q(σ−1
H α) = +1}.

Consider now the second factor in (3.1.9). It equals (−1) raised to the sum over
the set

{α | p(α) = +1, p(σ−1
H,Gα) = −1, p((σH,GσG(w)−1)−1α) = +1},
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which by an analogous argument equals

{α | p(α) = +1, p(σ−1
H α) = −1, q(σ−1

H α) = +1}.

Note that the corresponding sets in both the first and second factors of (3.1.9)
are sets of roots determined by conditions on p(α), p(σ−1

H α), q(α), and q(σ−1
H α).

This is also true for the sets of roots that enter the definition of sq/p. Moreover,
in all these sets we have the condition q(σ−1

H α) = +1. We list the contributions
to the first and second factor of (3.1.9), and to sq/p, in the following table.

p(α) q(α) p(σ−1
H α) (1) (2) sp/q

+ + +
+ + − X X
+ − + X
+ − − X
− + + X
− + − X
− − +
− − −

To compute the product of the first two factors of (3.1.9) and sp/q we must
compute the product of (−1) raised to the sum of roots in the various sets de-
termined by the above table. Note that any set can be replaced by its negative,
because that will not change the value of the image of (−1) under the sum of
its elements.

The set labelled with (+,+,−) appears both in the second factor and in sp/q ,
so its contribution vanishes. The conditions (+,−,+) and (−,+,−) are nega-
tives of each other. But remember that in both cases the condition q(σ−1

H α) =
+1 is also present. Therefore, replacing the set labelled by (−,+,−) by its neg-
ative and combining it with the set labelled by (+,−,+) we obtained the set

{α | p(α) = +1, q(α) = −1, p(σ−1
H α) = +1}

and there is now no condition on q(σ−1
H α). We do the same procedure to the

sets labelled with (+,−,−) and (−,+,+) and obtain the set

{(α | p(α) = +1, q(α) = −1, p(σ−1
H α) = −1}.

Finally, the last two displayed sets combine to the set

{(α | p(α) = +1, q(α) = −1}.

We conclude that the product of the first two factors of (3.1.9) with sp/q equals
zp(w

−1, w) = zp(w
−1, w)−1. Thus the product of (3.1.9) with sp/q equals

zp(w
−1, w)−1 · σH(zp(w

−1, w))

and is thus a coboundary. �
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3.2 The cover associated toH ⊂ LGxG

Here we consider a slight generalization of the preceding subsection. Instead
of the L-group Ĝo Γ of G we consider the L-group LGxG of the cover G(F )xG
associated to some xG : π̄1(G)→ µn(C).

Assume given a subgroupH ⊂ LGxG , up to Ĝ-conjugation, satisfying Prop-
erties 3.1.1. We want to associate a quasi-split connected reductive F -group H ,
a cover H(F )xH of H(F ), and an isomorphism LHxH → H.

The first basic observation is that giving H is equivalent to giving a sub-
group H̄ of L(Gsc) = LG/Z(Ĝ) satisfying Properties 3.1.1 with respect to Gsc.
Indeed, H̄ = H/Z(Ĝ) and H is the preimage of H̄ in LG. The equivalent state-
ment holds with LGxG in place of LG. However, we have the identification
LGxG/Z(Ĝ) = LG/Z(Ĝ). Therefore,H ⊂ LGxG determinesH′ ⊂ LG satisfying
Properties 3.1.1.

The construction of the previous subsection applies to H′ and produces a
quasi-split reductive group H , and a character xH,G : π̄1(H) → {±1}, hence a
double cover H(F )xH,G and an L-embedding LHxH,G → ĜoΓ whose image is
H′.

For a moment we assume that xG factors through π̃1(G). The inclusions
Z(Ĝ) → Z(Ĥ) → T̂H dualize to surjections π̄1(H) → π̃1(H) → π̃1(G) via
which we pull back xG : π̃1(G) → µn(C) and define xH : π̄1(H) → µm(C) to
be the product of xG and xH,G, where m is the least common multiple of n and
2. Then the L-embedding LHxH,G → LG, composed with the identifications of
sets LG = Ĝ�xG Γ and LHxH = Ĥ�xH,G Γ, becomes an isomorphism of groups
LHxH → H.

The arguments of §2.5 now extend this construction to the case of a general
xG : π̄1(G) → µn(C). More explicitly, these arguments, combined with (3.1.4),
give the following formula for the L-isomorphism LHxH → H

Ĥ�zH,G∂x−1·zG∂x−1
G

Γ→ Ĝ�zG∂x−1
G

Γ, h�σ 7→ hx(σ)−1n(σH,G)�σG (3.2.1)

where we have written xH,G = (zH,G, c), x ∈ C1(Γ, T̂H) is any lift of c ∈
C1(Γ, T̂Had ), xG = (zG, cG), and xG ∈ C1(Γ, T̂ ) is any lift of cG ∈ C1(Γ, T̂ad).
We are taking the limit over all xG and all x. On the right, this limit is LGxG
according to (2.6.2). On the left, we define the limit to be LHxH .

3.3 Relative position of embeddings H ← S → G

As in the previous subsection, we consider a (possibly trivial) character xG :

π̄1(G)→ µn and a Ĝ-conjugacy class of subgroups H ⊂ LGxG satisfying Prop-
erties 3.1.1. Let H be the associated quasi-split group, and LξH,G : LHxH →
LGxG the associated Ĝ-conjugacy class of L-embeddings, as in §3.2. We write
ξ̂H,G : Ĥ → Ĝ for the restriction of LξH,G to Ĥ , a Ĝ-conjugacy class of embed-
dings Ĥ → Ĝ.
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Consider in addition an F -torus S equipped with a Γ-invariant G(F̄ )-con-
jugacy class of embeddings ξS,G : S → G, and a Γ-invariant H(F̄ )-conjugacy
class of embeddings ξS,H : S → H . As discussed in [Kal19b, §5.1] these de-
termine a Γ-invariant Ĝ-conjugacy class of embeddings ξ̂S,G : Ŝ → Ĝ, and a
Γ-invariant Ĥ-conjugacy class of embeddings ξ̂S,H : Ŝ → Ĥ . We assume that
ξ̂S,G = ξ̂H,G ◦ ξ̂S,H , up to Ĝ-conjugacy.

Construction 3.3.1. We will associate to this data a cover

S(F )G ⊕ S(F )−H ⊕ S(F )xG ⊕ S(F )−xH

of S(F ) and a genuine character 〈inv(ξS,H , ξS,G),−〉 of that cover.
For any ξS,G within its G(F̄ )-conjugacy class let R(S,G) ⊂ X∗(S) be the

preimage of the absolute root system R(ξS,G(S), G). Let R(S,H) ⊂ X∗(S) be
the analogous set for H in place of G. The covers S(F )G and S(F )H of S(F )
are the double covers corresponding to these admissible sets as constructed in
[Kal19a] and reviewed in §2.8. We are denoting by S(F )−H the Baer inverse of
S(F )H , which however is canonically isomorphic to S(F )H since the degree of
this cover is 2.

For any ξS,G : S → G within the given G(F̄ )-conjugacy class that is de-
fined over F Construction 2.7.3 provides a cover S(F )xG and an embedding
S(F )xG → G(F )xG , which we will again denote by ξS,G. We note that the cover
S(F )xG does not depend on the chosen embedding within the given conjugacy
class, because all of these embeddings induce the same map Z(Ĝ)→ Ŝ. In the
same way, we obtain the cover S(F )xH and, for each ξS,H : S → H defined over
F withing the givenH(H̄)-conjugacy class, a lift S(F )xH → H(F )xH , which we
will again denote by ξS,H . We denote by S(F )−xH the Baer inverse of S(F )xH .

Note that S(F )G⊕S(F )−H is the double cover associated to the admissible
set R(S,G)rR(S,H) and S(F )xG ⊕ S(F )−xH is the Baer inverse of the double
cover associated to the character xH,G = xH/xG of (3.1.3).

We now construct the genuine character 〈inv(ξS,H , ξS,G),−〉. There is a
canonical Ĝ-conjugacy class of L-embeddings LξS,G : LSG → LG, and a canon-
ical Ĥ-conjugacy class of L-embeddings LξS,H : LSH → LH , cf. [Kal19a,
§4.1]. The genuine character will measure the difference between LξS,G and
LξH,G ◦ LξS,H . But we first have to make sense of this composition and of the
comparison.

Let us recall from Proposition 2.8.1 that S(F )G is given as a limit of a sys-
tem S(F )tS,Gp ,2 of double covers associated to Tits cocycles tS,Gp , the limit being
taken over the set of gauges p : R(S,G) → {±1}. The L-group LSG is also
obtained as the limit of LStS,Gp . The same is true for S(F )H , where we’ll use
the notation tS,Hp for the corresponding Tits cocycle. Since R(S,H) ⊂ R(S,G),
a gauge for R(S,G) restricts to a gauge for R(S,H), so we may take the limits
for both G and H over the set of gauges for R(S,G).

The homomorphism LξS,G : LStS,Gp → LG becomes, via Construction 2.8.3,
a homomorphism LSxG·tS,Gp → LGxG , which we still denote by LξS,G. In the
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same way, we obtain from LξS,H a homomorphism LSxH ·tS,Hp → LHxH , which
we again denote by LξS,H . The composition LξH,G ◦LξS,H is now an L-embed-
ding LSxH ·tS,Hp → LGxG .

To compare LξS,G : LSxG·tS,Gp → LGxG with LξH,G ◦ LξS,H : LSxH ·tS,Hp →
LGxG , both of which depend on p and are given up to conjugation by Ĝ, we first
arrange that we are using the same p for both, and arrange by Ĝ-conjugacy that
both restrict to the same embedding Ŝ → Ĝ. Then Proposition 2.7.8 provides
an L-isomorphism Lη :L SxH ·tS,Hp → LSxG·tS,Gp extending the identity on Ŝ

such that LξH,G ◦ LξS,H = LξS,G ◦ Lη, and dually a genuine character η of
S(F )G ⊕ S(F )−H ⊕ S(F )xG ⊕ S(F )−xH . �

4 ENDOSCOPIC DATA AND TRANSFER FACTORS

4.1 Relative position of cover element and pinning

A classical object of endoscopy is the cohomological invariant that measures
the relative position of two stably conjugate (strongly regular) semi-simple el-
ements of a given connected reductive group G; it is denoted by inv(γ, γ′) in
[Kot86, §5.6]. For transfer between different groups, a finer invariant becomes
necessary. Such a finer invariant appears implicitly in the construction of trans-
fer factors, [LS87, §2.3]. Using the double covers of tori introduced in [Kal19a],
we can make this invariant explicit. It takes the form of an invariant between
an element of a cover of a maximal torus, and a pinning of the quasi-split form.

Let G be a connected reductive F -group and let S ⊂ G be a maximal torus.
Recall that the double cover S(F )± was defined in [Kal19a, Definition 3.1] as
the quotient of the “big cover” S(F )±±, by pushing out under the multiplica-
tion map

∏
O{±1} → {±1}. Let us call elements δ̃ ∈ S(F )± “regular”, if their

image in S(F ) is regular. Given a regular element δ̃ ∈ S(F )±± and a pinning of
the quasi-split form of G, called pin, we will define in this section an element

inv(δ̃,pin) (4.1.1)

that lies in H1(F, S) when G is quasi-split, or a pure inner twist of its quasi-
split form, and more generally in H1(P → E , Z(G) → S). This construction
will be a reinterpretation of work of Langlands–Shelstad from [LS87].

Before we explain the construction of this invariant we will review its Lie
algebra version, which is more intuitive. Assume first that G is quasi-split and
fix an F -pinning pin = (T,B, {Xα}). Write s for the Lie algebra of S. For a
regular semi-simple Y we will define an element ofH1(F, S) (whenG is quasi-
split) and more generally H1(P → E , Z(G) → S) (when G is general), which
we will call

inv(Y,pin). (4.1.2)

This definition depends on the Kostant section, which we briefly review. For a
simple root α define X−α by [Xα, X−α] = Hα and X− =

∑
αX−α. Then X− is
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a regular nilpotent element in Lie(G)(F ). Write b and t for the Lie algebras ofB
and T , respectively, U for the unipotent radical ofB, and Ω for the Weyl group.
A result of Kostant [Kos63], summarized in [Kot99, §2.4], shows that b+X− →
t/Ω is a principal U -bundle that meets every regular G-conjugacy class in g
and admits sections. Passing to rational points and using H1(F,U) = {0},
we obtain the principal U(F )-bundle b(F ) +X− → (t/Ω)(F ) that meets every
stable conjugacy class in g(F ) and admits sections. Therefore, every stable
conjugacy class of regular semi-simple elements of g(F ) meets b(F ) +X− in a
set of elements that are all conjugate to each other under U(F ). Let s be the Lie
algebra of S. Given a regular semi-simple Y ∈ s(F ) there is Y ′ ∈ b(F ) + X−,
unique up to U(F )-conjugacy, that is stably conjugate to Y . Let g ∈ G(F s) be
such that Ad(g)Y = Y ′. Then σ 7→ g−1σ(g) is an element of Z1(F, S) whose
class in H1(F, S) is independent of the choices of Y ′ and g, and is the desired
invariant (4.1.2).

More generally, assume that G is given as a rigid inner twist (G, ξ, z) of a
quasi-split group G∗. Fix a pinning pin = (T,B, {Xα}) of G∗ as before. Given
a regular element Y ∈ s(F ), the G(F s)-conjugacy class of ξ−1(Y ) ∈ g(F s) is
defined over F , so some element Y ′ of it lies in b(F ) + X−. Let g ∈ G(F s) be
such that Ad(g)ξ−1(Y ) = Y ′. Then e 7→ g−1zeσe(g) is an element of Z1(P →
E , Z(G)→ S) whose class is independent of the choices of Y ′ and g, and is the
desired invariant (4.1.2).

This concludes the review of the invariant for Lie algebras. We now come
to the construction of the invariant (4.1.1) for groups. For this, we recall that
elements of S(F )±± were described explicitly in [Kal19a, Remark 3.3], accord-
ing to which some elements are given by tuples δ̃ = (δ, (δα)α∈R(S,G)) such that
δ ∈ S(F ), δα ∈ F×α , σ(δα) = δσα for all σ ∈ Γ, and δα/δ−α = α(δ). While such
tuples don’t describe all elements of S(F )±±, they describe sufficiently many,
in the following sense. For each asymmetric Σ-orbit O ⊂ R(S,G) the non-
trivial element εO of the kernel of JO(F )± → JO(F ) naturally lies in S(F )±±,
and any element of S(F )±± can be obtained from a tuple as above by multiply-
ing it by a product of εO for suitable asymmetricO. We will define our invariant
to be constant under multiplication by εO for asymmetric O, and will therefore
focus on elements of S(F )±± describable by tuples δ̃ = (δ, (δα)α∈R(S,G)).

Assume first that G is quasi-split and fix an F -pinning pin = (T,B, {Xα}).
Choose g ∈ G(F s) such that gTg−1 = S. Then σ 7→ g−1σ(g) is an element
of Z1(Γ, N(T,G)(F s)). Let ωσ ∈ Z1(Γ,Ω(T,G)(F s)) denote its image, where
Ω(T,G) = N(T,G)/T is the Weyl group. Write σT for the action of σ ∈ Γ
on T (F s) via the rational structure of T , and write σS = Ad(ωσ) ◦ σT . Then
Ad(g) : T → S translates the action of σS on T (F s) to action of σ on S(F s)
coming from the rational structure of S. For σ, let n(ωσ) ∈ N(T,G)(F s) denote
the Tits lift of ωσ with respect to the pinning. Then

xσ(δ̃) :=
∏
α>0

σ−1
S α<0

α∨(δgα − δ−gα)n(ωσ) (4.1.3)

also lies in Z1(Γ, N(T,G)(F s)) according to [LS87, Lemma 2.2.A]. It follows
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that
σ 7→ g · (xσ(δ̃) · (g−1σ(g))−1) · g−1 (4.1.4)

is an element of Z1(Γ, S(F s)). According to [LS87, (2.3.3)] the class of this
element is independent of the choice of g, and is the desired invariant (4.1.1).

We now drop the assumption that G is quasi-split. Instead, we consider a
rigid inner twist (ξ, z) : G∗ → G in the sense of [Kal16b, §5.1] or [Dil20, §7.1],
where G∗ is quasi-split. We fix a pinning pin = (T,B, {Xα}) of G∗. Let S ⊂ G
be a maximal torus. Then we obtain

inv((ξ, z, δ̃),pin) ∈ H1
bas(E , S) (4.1.5)

represented by

e 7→ ξ(g · (xσe(δ̃) · (g−1zeσe(g))−1) · g−1), (4.1.6)

where g ∈ G∗(F s) has the property that ξ(gTg−1) = S. Note that g−1zeσe(g)
is an element of Z1(E , N(T,G)(F s)) whose image in Z1(E ,Ω(T,G)(F s)) lies in
Z1(Γ,Ω(T,G)(F s)) and we denote by ωσ . The construction of xσ remains the
same. This completes the definition of the invariant (4.1.1).

Note that here we are using the notation g−1zeσe(g) for the characteristic-
zero case. In the case of local function fields, the notation should be changed
to p−1

1 (g)zp2(g), cf. [Dil20, §7.1]. Since the arguments we will be making in this
section remain the same, owing to the material developed in [Dil20], we will
avoid introducing the positive-characteristic notation, and give the arguments
in the characteristic-zero notation.

We now examine how the invariant depends on the choice of δ̃ with fixed δ.
Another choice is of the form ηδ̃ = (δ, (δαηα)α∈R(S,G)), where η = (ηα)α∈R(S,G)

is a collection of elements ηα ∈ F×±α such that σ(ηα) = ησα for all σ ∈ Γ and
η−α = ηα. Recall that for each Σ-orbit O ⊂ R(S,G) the F -torus JO is equipped
with homomorphisms JO → Ssc and Sad → JO. The subcollection (ηα)α∈O pro-
vides an element of H1(F, JO) = F×±α/NFα/F±α(F×α ). Note that this quotient is
isomorphic to Z/2Z when O is symmetric, and trivial when O is asymmetric.
We’ll write ηO for this element of H1(F, JO) as well as his images in H1(F, Ssc)
and H1(F, S).

Lemma 4.1.1.

inv((ξ, z, ηδ̃),pin) = inv((ξ, z, δ̃),pin) ·
∏

O∈R(S,G)sym/Γ

ηO.

�

Proof. According to [LS87, (2.3.2)], inv((ξ, z, ηδ̃),pin) = inv((ξ, z, δ̃),pin) · [bq],
where [bq] =

∏
O[bq,O] ∈ H1(F, S) and [bq,O] is the class of the following 1-

cocycle ∏
α>0

σ−1α<0
α∈O

α∨(ηα).
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Here O runs over the set of Σ-orbits in R(S,G) and α > 0 is taken with respect
to an arbitrary gauge q; the choice of q does not influence the cohomology class
of [bq,O]. But bq,O is simply an explicit description of the class ηO by means of
the formula for the Shapiro isomorphism on 1-cochains. �

Corollary 4.1.2. The element inv((ξ, z, δ̃),pin) does not change if δ̃ is replaced
by a different tuple that represents the same element of S(F )±±. �

Proof. When α is asymmetric then JO is an induced torus, hence H1(F, JO)
vanishes. When α is symmetric, then H1(F, JO) = {±1} via the sign character
κα : F×±α/NFα/F±α(F×α ) → {±1}. The tuples δ̃ and ηδ̃ represent the same ele-
ment of S(F )±± if and only if κα(ηα) = 1 for all symmetric α ∈ R(S,G). This
is exactly the case when the class ηO of H1(F, JO) is trivial for all O. �

This completes the definition of the invariant between a strongly regular
element of S(F )±± and a fixed pinning. It refines the usual invariant between
two stably conjugate strongly regular semi-simple elements in the following
sense.

Let (ξi, zi) : G∗ → Gi be two rigid inner twists. Let δi ∈ Gi(F ) be two
related strongly regular semi-simple elements and denote their centralizers by
Si. We have the admissible isomorphism ϕδ1,δ2 : S1 → S2 mapping δ1 to δ2.
It lifts canonically to an isomorphism S1(F )±± → S2(F )±± which we again
denote by ϕδ1,δ2 . For any lift δ̃1 ∈ S1(F )±± let δ̃2 = ϕδ1,δ2(δ̃1).

Lemma 4.1.3. For any F -pinning of G∗ we have

inv((ξ1, z1, δ1), (ξ2, z2, δ2)) = inv((ξ1, z1, δ̃1),pin)·ϕ−1
δ1,δ2

(inv((ξ2, z2, δ̃2),pin))−1.

�

Proof. Since δ1 and δ2 are related elements there exist g1, g2 ∈ G∗(F s) such that
g−1

1 ξ−1
1 (δ1)g1 = g−1

2 ξ−1
2 (δ2)g2 ∈ T . Then ξi(giTg−1

i ) = Si and inv((ξ, z, δ̃i),pin)

is represented by ξi(gi(xσe(δ̃i) · (g−1
i zi(e)σe(gi))

−1)g−1
i )). We have ϕδ1,δ2 =

ξ2 ◦Ad(g2g
−1
1 ) ◦ ξ−1

1 and the right hand side of the above equation becomes

ξ1(g1(xσe(δ̃1)(g−1
1 z1(e)σe(g1))−1(g−1

2 z2(e)σe(g2))xσe(δ̃2)−1)g−1
1 ).

On the other hand, the left hand side of the equation is

inv := ξ1(g1g
−1
2 z2(e)σe(g2g

−1
1 )z1(e)−1).

Combining this with xσ(δ̃1) = xσ(δ̃2) we see that the right hand side equals

ξ1(g1 · y · g−1
1 ) · inv · ξ1(g1 · y · g−1

1 )−1, y = xσe(δ̃1)(g−1
1 z1(e)σe(g1))−1.

Now both xσe(δ̃1) and g−1
1 z1(e)σe(g1) are elements of N(T,G)(F s) with the

same projection to Ω(T,G)(F s), hence y ∈ T (F s). Therefore ξ1(g1 · y · g−1
1 )

commutes with inv. �
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We will now establish a relationship between the invariant (4.1.1) and its
Lie algebra analog (4.1.2), under the assumption that F is of characteristic zero.
Recall from [Kal19a, §3.7] that the exponential map Lie(S)(U) → S(F ) factors
through a map Lie(S)(U) → S(F )±±. Here Lie(S)(U) is an open subgroup of
Lie(S)(F ) on which the exponential map converges.

Lemma 4.1.4. Assume that F has characteristic zero. There exists an open
neighborhood V ⊂ Lie(S)(U) of 0 such that for all regular Y ∈ V

inv(Y,pin) = inv(δ̃,pin),

with δ̃ = exp(Y ). �

Proof. Take a regular element Y ∈ V ⊂ Lie(S)(U), for some open neighbor-
hood V of 0 to be determined in the course of the proof. Let Y ′ ∈ Lie(G∗)(F )
be stably conjugate to Y and lie in the space b(F ) + X− used in the definition
of (4.1.2). Let S′ ⊂ G∗ be the centralizer of Y ′ and let δ̃′ = exp(Y ′) ∈ S′(F )±±.
Lemma 4.1.3 applied with (ξ, z, δ̃) and (1, 1, δ̃′) reduces the proof to showing
that inv(δ̃′,pin) ∈ H1(F, S′) is trivial.

Let aα = δα − δ−α. This is a set of a-data in the sense of [LS87, §2.2]. An-
other set of a-data is a′α = dα(Y ′). To each set of a-data a splitting invariant
λ(S′,−) ∈ H1(F, S′) is defined in [LS87, §2.3]. The invariant inv(δ̃′, spl) is
equal to λ(S′, (aα)). On the other hand, the main result of [Kot99], Theorem
5.1 (or, technically, it’s proof) shows that the splitting invariant λ(S′, (a′α)) van-
ishes. It is therefore enough to show that, for every symmetric α ∈ R(S′, G),
the element bα := aα/a

′
α, a-priori belonging to F×±α, actually lies in the smaller

subgroup NFα/F±α(F×α ).
Recall from [Kal19a, §3.7] that δα = exp(dα(Y ′)/2). The compatibility of the

exponential map with homomorphisms implies

aα = exp(dα(Y ′))/2)− exp(−dα(Y ′)/2) = exp(a′α/2)− exp(−a′α/2).

We thus find ourselves in the following abstract situation: Given a quadratic
extension E/F there exists an open neighborhood V in the set of trace-zero
elements of E, such that for 0 6= z ∈ V the element (exp(z/2)− exp(−z/2))/z ∈
F× is a norm from E×. When E/F = C/R, then z = ir for some r ∈ R and the
element under consideration equals sin(r/2)/(r/2), which is positive (hence a
norm from C×) when −2π < r < 2π. When E/F is non-archimedean with
residual characteristic p, we have

(exp(z/2)− exp(−z/2))/z =

∞∑
n=0

(z/2)2n

(2n+ 1)!
= 1 +

∞∑
n=1

(z/2)2n

(2n+ 1)!
.

It is clear that by placing a condition on the valuation of z we can ensure that
the valuation of each summand is larger than any fixed number. This in turn
implies that the whole expression lies in the open subgroup NE/F (E×) of F×.

�
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Remark 4.1.5. The proof of Lemma 4.1.4 quantifies the neighborhood V as the
intersection of the open subsets dα−1(Vα), where Vα ⊂ F 0

α is the open sub-
set of those z ∈ F 0

α for which exp(z/2) converges and moreover (exp(z/2) −
exp(−z/2))/z ∈ F×±α is a norm from F×α .

When F = R then F±α = R, Fα = C, and Vα = (−2iπ, 2iπ) ⊂ iR. When
F then Vα = {z ∈ F 0

α | ord(z/2) > r} for some positive real number r. Using
the normalization ω(p) = 1, note that r = 1/(p− 1) is already necessary for the
convergence of the exponential map. When p 6= 2, then r = 3/(2p − 2) would
be sufficient. When p = 2, then r = 1 is sufficient. �

The invariant inv(δ̃,pin) is by itself not an endoscopic quantity, but rather
an intrinsic object of the rigid inner twist (G, ξ, z). The relation to endoscopy
emerges when this invariant is paired with a character of the group H1(F, S)
in the quasi-split case, or more generally of the group H1

bas(E , S).
Consider the 0-th homology group H0(Γ, X∗(Ssc)). We can replace Γ by a

finite quotient ΓE/F through which it acts on X∗(Ssc) without changing this
homology group. Let κ : H0(ΓE/F , X∗(Ssc)) → C× be a character. Inflating
it to X∗(Ssc) and intersecting its kernel with R∨(S,G) we obtain a closed sub-
rootsystem R∨κ ⊂ R∨(S,G). The set Rκ := {α ∈ R(S,G) |α∨ ∈ R∨κ} is a (not
necessarily closed) subrootsystem of R(S,G). On the other hand, restricting
κ to H−1(ΓE/F , X∗(Ssc)) ⊂ H0(ΓE/F , X∗(Ssc)) and using the Tate-Nakayama
isomorphism H−1(ΓE/F , X∗(Ssc)) → H1(F, Ssc) we obtain from κ a character
of H1(F, Ssc), which we also denote by κ.

Lemma 4.1.6. Let κ̇ : H1
bas(E , S) → C× be a character whose pull back to

H1(F, Ssc) coincides with κ. Then the function 〈inv((ξ, z,−),pin), κ̇〉 descends
to a genuine function of the double cover S(F )± associated to R(S,G)rRκ. �

Proof. The kernel of S(F )±± → S(F )± equals the kernel of the product map∏
α∈R(S,G)/Σ

{±1} → {±1}, (εα)α 7→
∏

α∈(R(S,G)−Rκ)/Σ

εα.

We thus need to show that the function 〈inv((ξ, z,−),pin), κ̇〉 transforms under
the group

∏
α∈R(S,G)/Σ{±1} by the above sign character.

Let β ∈ R(S,G) and let εβ denote the corresponding element −1 of the
subgroup

∏
α{±1} ⊂ S(F )±±. Consider the action of εβ on S(F )±± by mul-

tiplication. If β is asymmetric then the function inv((ξ, z,−),pin) is invari-
ant under this action by construction. If β is symmetric, then the action of
εβ sends δ̃ to ηδ̃, where η =

∏
O ηO has exactly one non-trivial component,

namely for the Σ-orbit O of β. Lemma 4.1.1 shows that 〈inv(pin, ξ, z, εβ δ̃), κ̇〉 =

〈ηO, κ〉 · 〈inv(pin, ξ, z, δ̃), κ̇〉. Since ηO comes from H1(F, JO) we may com-
pute the pairing by pulling back κ to H1(F, JO). The functoriality of the Tate-
Nakayama isomorphism implies that this is the same as pulling back κ under
Z/2Z = H0(ΓFβ/F±β ,Z(−1)) = H0(Γ, X∗(JO)) → H0(Γ, X∗(Ssc)). The map
Z(−1) → X∗(Ssc) sends 1 to β∨, so the pull back of κ equals the image of
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〈β∨, κ〉 ∈ Z in Z/2Z. This image is trivial precisely when β ∈ Rκ. Therefore

〈ηO, κ〉 =

{
1, β ∈ Rκ
−1, β /∈ Rκ.

�

4.2 Review of endoscopic data and transfer factors

Let G∗ be a quasi-split connected reductive F -group and ξ : G∗ → G an inner
twist. There are various equivalent ways to package the information of an
endoscopic datum. For example, [LS87, §1.2] uses tuples (H, s,H, ξ), [Kot84,
§7.1] uses pairs (s, ρ), and [Kot84, §7.4] uses triples (H, s, η). Moreover, the
proper handling of inner twists requires a refinement, which is discussed in
[Kal16b, §5.3].

In this paper we find it most convenient to work with pairs (s,H). Here
s ∈ Ĝ is semi-simple andH is a full subgroup of LG that centralizes s and such
that Ĥ = H ∩ Ĝ is precisely the identity component of the centralizer of s in
Ĝ. An isomorphism between two such tuples (si,Hi) is an element g ∈ Ĝ such
that gH1g

−1 = H2 and gs1g
−1 = s2 modulo Z(Ĝ). The reason we find this

formulation most convenient is that the componentH of such a tuple is clearly
a special case of the groupH considered in §3.1.

Let us briefly indicate how this notion is equivalent to the other notions
listed above. Given (s,H) we obtain ρ : Γ → Out(Ĥ) by ρ(σ) = Ad(hσ),
where hσ ∈ H any lift of σ. Conversely, given (s, ρ) we can define H = {x ∈
N(Ĥ, LG) |Ad(x)|Ĥ = ρ(σx)}, where σx ∈ Γ is the image of x under LG →
Γ, and the identity is taken in Out(Ĥ). The passage between pairs (s, ρ) and
triples (H, s, η) is described in [Kot84, §7.6]. To obtain a tuple (H, s,H, ξ), we
let H be the unique quasi-split group with dual group Ĥ and such that the
homomorphism Γ → Out(HF s) given by its F -structure is translated to the
homomorphism ρ : Γ→ Out(Ĥ) under the identification Out(HF s) = Out(Ĥ),
and we let ξ be the tautological embeddingH ⊂ LG.

Again, the proper handling of inner twists requires a refinement of this no-
tion. It requires to record a preimage ṡ of s in the universal cover ̂̄G of the
complex Lie group Ĝ. It also requires an isomorphism between two result-
ing tuples (ṡi,Hi) to satisfy Ad(g)ṡ1 = ṡ2 modulo the identity component of
Z(̂̄H2)+, where Z(̂̄H2)+ is the preimage in ̂̄G of Z(Ĥ2)Γ, and the latter is the
subgroup of Ĥ2 that commutes with all ofH2.

Next we want to discuss various normalizations of transfer factors. There
are three meanings of the word “normalization”. One pertains to the fact that
for general connected reductive groups the transfer factor is defined only up to
a scalar constant multiple, and one needs a Whittaker datum and a rigid inner
twist datum to fix that constant. Another meaning is that there are two differ-
ent choices for the isomorphism of local class field theory (the Artin choice and
the Deligne choice), and these result in two different versions of the transfer
factor. Yet another meaning of the word normalization is that one can invert
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individual pieces of the transfer factor (or equivalently, invert the endoscopic
element s).

Let us belabor the second meaning. The basic question of normalization
concerns the isomorphism W ab

F → F× of local class field theory. An arith-
metic Frobenius element of WF is one that acts as x 7→ xq on the residue
field kF , while a geometric Frobenius element is the inverse of an arithmetic
Frobenius element. Under the classical (i.e. Artin) normalization of the iso-
morphism W ab

F → F×, arithmetic Frobenius elements map to uniformizing el-
ements. Under the Deligne normalization, geometric Frobenius elements map
to uniformizing elements.

The normalization of the isomorphismW ab
F → F× implies normalization of

the Tate-Nakayama duality pairing H1(F, T )×H1(F,X∗(T ))→ C× as well as
of the Langlands duality pairing H0(F, T )×H0

c (WF , T̂ )→ C× for an arbitrary
F -torus T .

In [LS87] is defined an absolute transfer factor (up to a scalar constant mul-
tiple)

∆ : H1(F )sr ×G(F )sr → C, ∆ = ∆I ·∆II ·∆III1 ·∆III2 ·∆IV .

In order to define it, one has to choose a z-extension H1 → H as well as an
L-embeddingH → LH1. The transfer factor depends on these choices.

The terms ∆I and ∆III1 involve Tate-Nakayama duality, while the term
∆III2 involves Langlands duality for tori. In [LS87] both are normalized with
respect to the classical normalization of W ab

F → F×. According to [LS87, §3.4]
this factor satisfies

∆(γ1, δ
′) = ∆(γ1, δ) · 〈inv(δ, δ)′, ϕ̂−1

γ,δ(s)〉
−1,

where γ1 ∈ H1(F )sr maps to γ ∈ H(F )sr, δ, δ′ ∈ G∗(F )sr, ϕ : Tγ → Tδ is the
unique admissible isomorphism between the centralizers of γ and δ that maps
γ to δ, and inv(δ, δ′) ∈ H1(F, Tδ) is the class of the element g−1σ(g) for any
g ∈ G(F̄ ) such that gδg−1 = δ′.

Following [KS, §5.1] one can also define

∆′ : H1(F )sr ×G∗(F )sr → C, ∆ = ∆−1
I ·∆II ·∆−1

III1
·∆III2 ·∆IV , (4.2.1)

which then has the property

∆′(γ1, δ
′) = ∆′(γ1, δ) · 〈inv(δ, δ′), ϕ̂−1

γ,δ(s)〉.

One reason to introduce ∆′ is that this factor generalizes to the twisted set-
ting, while ∆ does not. The problem is that, in the twisted setting, ∆III1 and
∆III2 must be glued to a single factor ∆III involving hypercohomology, and
this gluing necessitates the sign change. Another place where ∆′ appears is
the character identities for p-adic groups proved in [Kal19b] and [FKS21]. The
switch from ∆ to ∆′ can be effected by inverting the endoscopic element s,
since both ∆I and ∆III1 are formed by pairing cohomological invariants with
the element s.
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We mention another clash in notation that is visible in the unnumbered
identity

∆′(γ1, δ
′) = 〈inv(δ, δ′), κδ〉−1 ·∆′(γ1, δ)

which appears below [KS, (5.4.1)], and seems to contradict (4.2.1). The rea-
son for the discrepancy is that the notation inv(δ, δ′) used in [KS] is defined in
[KS99, §5.3] and is the inverse of the same notation used in (4.2.1).

Let us now briefly mention the first meaning of the word “normalization”,
which is, once a choice has been made regarding which version of the local
class field theory isomorphism will be used, and whether the endoscopic ele-
ment s should be inverted or not, how does one pin down the scalar constant
multiple. When G is quasi-split, one can either fix a pinning or a Whittaker da-
tum, and these choices lead to the normalizations of ∆′ denoted by ∆′0 and ∆′λ
in [KS, §5.5]. When G is not quasi-split, one fixes a pinning or Whittaker da-
tum for its quasi-split form, and in addition a rigid inner twist datum, thereby
obtaining the normalization of ∆′ defined in [Kal16b, (5.10)].

Finally, we mention that in this paper we will follow Waldspurger’s prefer-
ence of normalizing orbital integrals and characters by the Weyl discriminant,
and hence omit the factor ∆IV from the transfer factor.

4.3 Transfer factors as genuine functions on H(F )sr
x ×G(F )sr

Let G∗ be a quasi-split connected reductive F -group and let (ξ, z) : G∗ → G
be a rigid inner twist. Let (ṡ,H) be a refined endoscopic pair as in §4.2. Recall
that the refinement is only necessary when working with general rigid inner
twists. If on the other hand G is quasi split, ξ = id, and z = 1, we can take a
usual endoscopic pair (s,H).

Let H(F )x be the double cover of H(F ) determined by H as in §3.1. We
write G(F )sr and H(F )sr for the subsets of strongly regular semi-simple ele-
ments, and H(F )sr

x for the preimage of H(F )sr in H(F )x. We will now define a
transfer factor

∆′x : H(F )sr
x ×G(F )sr → C.

Unlike the definitions of [LS87] or [KS], it will not depend on a choice of a z-
extension H1 → H or L-embedding H → LG. Instead, it uses the canonical
double cover H(F )x and canonical L-embedding LHx → LG.

As with [LS87] and [KS], there will be two ways to normalize it – by fix-
ing either a pinning or a Whittaker datum of G∗. We will furthermore follow
Waldspurger’s preference of normalizing orbital integrals and characters by
the Weyl discriminant, and hence omit the factor ∆IV from the transfer factor.

Let γx ∈ H(F )x and let γ ∈ H(F ) be its image. Let δ ∈ G(F ). We assume
that γ and δ are strongly regular. If they are not related we set ∆x(γx, δ) =
0. Otherwise there exists a unique admissible isomorphism ϕγ,δ between the
centralizer of γ inH and the centralizer of δ inG. We identify these centralizers
viaϕγ,δ and denote them both by S. Then we haveR(S,H) ⊂ R(S,G) ⊂ X∗(S)
and we have the natural embeddings ξS,H : S → H and ξS,G : S → G.

62



Let S(F )G and S(F )H be the double covers of S(F ) associated to the ad-
missible setsR(S,G) andR(S,H). Then S(F )H is canonically isomorphic to its
Baer inverse S(F )−H and S(F )G/H = S(F )G ⊕ S(F )−H is the double cover of
S(F ) associated to the admissible setR(S,G)rR(S,H). Fix a lift δ± ∈ S(F )G/H
of δ.

Let S(F )xH = S(F )xH,G be the double cover associated to the character
xH,G of (3.1.3). Again this cover is canonically isomorphic to its Baer inverse
S(F )−xH , since xH is of order 2. The map S(F )→ H(F ) extends canonically to
a map S(F )xH → H(F )x by Construction 2.7.3. Thus γx is naturally an element
of S(F )xH .

The embeddings ξH : S → H and ξG : S → G form a relatively admissible
pair and Construction 3.3.1 provides a genuine character 〈inv(ξS,H , ξS,G),−〉
of S(F )G/H ⊕ S(F )xH . The absence of the factor S(F )xG is due to xG = 1.
Since the embeddings ξH and ξG depend only on the elements γx and δ±, we
abbreviate this character as

invH(γx, δ±) = 〈inv(ξS,H , ξS,G), (δ±, γx)〉, (4.3.1)

and note that its value depends only on the stable classes of γx and δ±.
Consider given a pinning pin = (T,B, {Xα}) of G∗. According to Lemma

4.1.6, the term
〈inv((ξ, z, δ±),pin), ϕγ,δ(ṡ)〉 (4.3.2)

is well-defined. Since both (4.3.1) and (4.3.2) are genuine functions in the vari-
able δ±, their ratio descends to a function of δ, which allows us to define

∆′x[pin](γx, (ξ, z, δ)) = 〈inv((ξ, z, δ±),pin), ϕγ,δ(ṡ)〉−1 · invH(γx, δ±), (4.3.3)

by choosing an arbitrary lift δ± ∈ S(F )G/H of δ.
If instead of a pinning we fix a Whittaker datum w, then we can choose a

pinning pin as above and a character Λ : F → C× which together give rise to
w. Following [KS99, §5.3] we set

∆′x[w](γx, (ξ, z, δ)) = ε(1/2, X∗(T )C −X∗(TH)C,Λ) ·∆x[pin](γx, (ξ, z, δ)).
(4.3.4)

Lemma 4.3.1. Let (ξi, zi, δi) for i = 1, 2 be stably conjugate. Then

∆′x[pin](γx, (ξ2, z2, δ2))

= ∆′x[pin](γx, (ξ1, z1, δ1)) · 〈inv(ξ1, z1, δ1), (ξ2, z2, δ2)), ϕγ,δ1(ṡ)〉.

The same holds for ∆′x[w]. �

Proof. By definition (4.3.3) and the fact that (4.3.1) depends only on the stable
class of δ± we see that it is enough to consider (4.3.2). Using the functoriality
of the Tate-Nakayama pairing and Lemma 4.1.3, we obtain

〈inv((ξ2, z2, δ2,±)−1,pin), ϕγ,δ2(ṡ)〉
= 〈ϕ−1

γ,δ1
(inv((ξ2, z2, δ2,±),pin))−1, ϕγ,δ1(ṡ)〉

= 〈inv((ξ1, z1, δ1,±),pin)−1 · inv((ξ1, z1, δ1), (ξ2, z2, δ2)), ϕγ,δ1(ṡ)〉 �
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The next lemma uses the notion of stable conjugacy of elements of H(F )sr
x .

Two such elements γi,± are called stably conjugate if there exists g ∈ H(F s)
such that Ad(g) is an F -isomorphism between their centralizers S1 → S2 and
such that the induced isomorphism Ad(g) : S1(F )H → S2(F )H maps γ1,± to
γ2,±.

Lemma 4.3.2. In the variable γx the functions ∆′x[pin] and ∆′x[w] are genuine
and stably invariant. �

Proof. The term (4.3.2) depends only on γ and not on γx, and the term (4.3.1) is
genuine in γx by construction.

The term (4.3.1) depends only on the stable class of γx by construction.
Changing γ by a stable conjugate also does not affect (4.3.2), because the change
in ϕγ,δ is by anH-admissible isomorphism of maximal tori ofH , while ṡ is cen-
tral in ̂̄H , and hence fixed by such isomorphisms. �

4.4 Transfer factors as genuine functions on H(F )sr
xH ×G(F )sr

xG

Let G be a quasi-split connected reductive group, xG ∈ Z2(Γ, T̂ → T̂ad), and
(s,H) an endoscopic pair as in §4.2 (since G is assumed quasi-split we do not
need a refinement). Let H(F )xH be the double cover determined by H as in
§3.2. A slight modification of the discussion of §4.3 produces a transfer factor

∆′x : H(F )sr
xH ×G(F )sr

xG → C.

But we need to be mindful when working with Baer inverses and distinguish
genuine from anti-genuine behavior, since the characters xG and xH need not
be of order 2 any more.

Consider γH ∈ H(F )xH and δG ∈ G(F )xG with strongly regular semi-
simple images γ ∈ H(F ) and δ ∈ G(F ). As before we identify via ϕγ,δ the
centralizer of γ in H with the centralizer of δ in G, and denote both by S.
Let S(F )xH and S(F )xG be the covers of S(F ) associated to xH and xG by
Construction 2.7.3. This construction provides natural embeddings S(F )xH →
H(F )xH and S(F )xG → G(F )xG lifting the embeddings S(F ) → H(F ) and
S(F )→ G(F ). We thus have the element (γH , δG) ∈ S(F )xH ⊕ S(F )xG .

On the other hand, fix an arbitrary lift δG/H ∈ S(F )G/H of δ, where S(F )G/H
is the double cover of S(F ) associated to the admissible set R(S,G) rR(S,H).
We remind ourselves that S(F )G/H = S(F )G ⊕ S(F )H , where S(F )G and
S(F )H are the double covers of S(F ) associated to the admissible sets R(S,G)
and R(S,H). We now have the element (δG/H , γH , δG) ∈ S(F )G/H ⊕S(F )xH ⊕
S(F )xG . The genuine character 〈inv(ξS,H , ξS,G),−〉 of S(F )G/H ⊕ S(F )−xH ⊕
S(F )xG can be interpreted via Remark 2.1.5 as a function that is genuine in the
first and third variable, and anti-genuine in the second. We again write invH
for this character. For a fixed F -pinning of G we define ∆′x[pin](γH , δG) as

〈inv((ξ, z, δG/H),pin), ϕγ,δ(s)〉−1 · invH(δG/H , γH , δG). (4.4.1)
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The genuine behavior of both factors in the variable δG/H cancels out and the
result is independent of the choice of δG/H .

For a Whittaker datum w of G we define ∆′x[w](γH , δG) by (4.3.4) but using
(4.4.1) in place of (4.3.3).

For the next two lemmas let ∆x denote either of ∆x[pin] or ∆x[w].

Lemma 4.4.1. In the variable δG, the functions ∆x is genuine. If δi ∈ G(F )xG
for i = 1, 2 are stably conjugate, then

∆x(γH , δ2) = ∆x(γH , δ1) · 〈inv(δ1, δ2), ϕγ,δ1(s)〉.

�

Proof. The proof is the same as for Lemma 4.3.1. �

Lemma 4.4.2. In the variable γH , the function ∆x(γH , δG) is anti-genuine and
stably-invariant. �

Proof. The proof is the same as for Lemma 4.3.2. �

4.5 Comparison with the transfer factors of Langlands–Shelstad–Kottwitz

Let G∗ be a quasi-split connected reductive group and let (ξ, z) : G∗ → G be a
rigid inner twist as in [Kal16b, §5.1] or [Dil20, §7.1]. Let pin be an F -pinning of
G∗. We have defined in (4.3.3) a transfer factor

∆′x[pin] : H(F )sr
x ×G(F )sr → C.

On the other hand, after fixing a z-extension 1 → Z1 → H1 → H → 1 and
an L-embedding H → LH1, there one has the Langlands–Shelstad–Kottwitz
transfer factor

∆′[pin] : H1(F )sr ×G(F )sr → C
that was reviewed in §4.2.

In order to compare these two transfer factors we form the intermediary
group H1(F )x that is the pull back of H1(F ) → H(F ) ← H(F )x. As in the
proof of Theorem 2.6.2, we have the genuine character µ1 : H1(F )x → C×
whose restriction to Z1(F ) equals λ−1

1 .

Proposition 4.5.1. Let γ1 ∈ H1(F ) and γx ∈ H(F )x be lifts of γ ∈ H(F ). Let
γ1,± ∈ H1(F )x be the element determined by (γ1, γx).

∆′[pin](γ1, δ) = ∆′x[pin](γx, δ) · µ1(γ1,±).

�

Remark 4.5.2. We note first that this identity is consistent in the following
sense. According to Lemma 4.3.2 the right hand side descends to a non-genuine
function of H1(F ). On the other hand, the left-hand side transforms under
Z1(F ) by the character λ−1

1 – this is [LS90, Lemma 3.5.A], except that the char-
acter λ1 we are using here matches the one constructed in [KS99, §2.2] and is
the inverse of the character λ of [LS90, Lemma 3.5.A]. �
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Proof. As a first step, we reduce to the case that G is quasi-split. To do this,
choose δ∗ ∈ G∗(F ) that is stably conjugate to δ. As discussed in [Kal16b, §5.1],
a theorem of Steinberg guarantees the existence of δ∗. Then [Kal16b, (5.1)]
and Lemma 4.3.1 show that both ∆′[pin] and ∆′x[pin] have the same behavior
when δ is replaced by δ∗. This allows us to assume that G = G∗, ξ = id,
z = 1. We now proceed by examining how the different pieces of ∆′[pin] and
showing how they compare to the pieces of ∆x[pin]. The pieces of ∆′[pin]
depend on further choices: a-data, χ-data, and element admissible embedding
Cent(γ,H) → G. We will choose the latter to be the admissible isomorphism
ϕγ,δ . With that choice, ∆III1 = 1.

∆I : We choose a lift δ± ∈ S(F )G/H of δ. Then aα = δα − δ−α is a set
of a-data for R(S,G/H)sym, which we extend arbitrarily to a set of a-data for
R(S,G). Then

∆I(γ, δ) = 〈inv((ξ, z, δ±),pin), ϕγ,δ(ṡ)〉.
∆II : Choose χ-data for R(S,G). Let χ : S(F )G/H → C× be the genuine

character relative to the part of the χ-data for R(S,G/H). Then

∆II(γ, δ) =
∏

α∈R(S,G/H)/Σ

χα

(
α(δ)− 1

aα

)

=
∏

α∈R(S,G/H)/Σ

χα

(
δα − δ−α
δ−αaα

)
=

∏
α∈R(S,G/H)/Σ

χα(δα)

= χ(δ±),

where χ : S(F )G/H → C× is the genuine character associated to this χ-data as
in [Kal19a, §3.2], and we have used aα = δα − δ−α.

∆III2 : We now compare ∆III2 with invH. More previsely, we will show
that

∆II(γ, δ) ·∆III2(γ1, δ) · µ1(γ1,±)−1 = invH(γx, δ±).

We begin by recalling that the construction of ∆III2 involves the L-embedding

Ŝ oWF → ĜoWF , so σ 7→ s · rGp (σ)nGp (σS,G) o σ

constructed in [LS87, §2.6]. We have chosen a pinning (T̂ , B̂, {Xα̂}) of Ĝ and
nGp (σS,G) ∈ N(T̂ , Ĝ) denotes the corresponding Tits lift of the Weyl element
σS,G ∈ Ω(T̂ , Ĝ), and rGp : WF → T̂ is the 1-cochain determined by this pin-
ning and the χ-data for R(S,G). The Ĝ-conjugacy class of this L-embedding
depends only on the χ-data, but not on the choice of pinning. Analogously we
have

Ŝ oWF → Ĥ oWF , so σ 7→ s · rHq (σ)nHq (σS,H) o σ,

where again this particular presentation depends on a chosen pinning of Ĥ .
To relate these two embeddings we conjugate H within Ĝ so that T̂ ⊂ Ĥ , and
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we arrange that the Borel subgroup B̂ ∩ Ĥ is part of the chosen pinning for
Ĥ . Then q = p and moreover T̂ is naturally identified with the dual of the
universal torus of G, as well as that of H . These identifications induce the
two usually distinct Galois actions σG and σH on T̂ . We have σH = σH,GσG
with σH,G ∈ Ω(T̂ , Ĝ). Recall the non-homomorphic section (3.1.1) of the nat-
ural projection H → WF , as well as its modification (3.1.2) that involved a
choice of x ∈ C1(Γ, T̂ ). The latter was given by σ 7→ x(σ)−1nGp (σH,G) o σG

and had the property that it preserves the chosen pinning of Ĥ . There is
r1 ∈ C1(WF , Z(Ĥ1)) such that σ 7→ r1(σ)−1x(σ)−1nGp (σH,G) o σG is a ho-
momorphic section of the projection H1 → WF , where H1 is the pushout of
Z(Ĥ1)← Z(Ĥ)→ H. There are of course many choices for r1, but one of them
is such that

H → Ĥ1 oWF , hx(σ)−1nGp (σH,G) o σ 7→ r1(σ)ho σ

is the chosen L-embeddingH → LH1.
By definition, ∆III2(γ1, δ) is the value at γ1 of a certain character of the

centralizer S1 of γ1. The character in question has the L-parameter given by
comparing the threeL-embeddings above. Using the explicit formulas we have
presented, the parameter equals

rHp (σ)nHp (σS,H)r1(σ)−1x(σ)−1nGp (σH,G)nGp (σS,G)−1rGp (σ)−1.

We have σS,G = σS,HσH,G, and therefore the above can be rewritten as

rGp (σ)−1rHp (σ)r1(σ)−1 · nHp (σS,H)x(σ)−1nGp (σH,G)nGp (σS,G)−1.

The 1-cochain rGp (σ)rHp (σ)−1 is by construction the parameter (relative to the
gauge p) of the genuine character χ of S(F )G/H . If we denote by S1(F )G/H the
pull-back of S1(F )→ S(F )← S(F )G/H , then the product ∆II(γ, δ)∆III2(γ1, δ)
is the value at (γ1, δ±) of the genuine character of S1(F )G/H with parameter

r1(σ)−1 · nHp (σS,H)x(σ)−1nGp (σH,G)nGp (σS,G)−1.

The parameter of the genuine character µ1 of H1(F )x is r1(σ)−1 � σ. Let
S1(F )xH be the pull back of S1(F ) → H1(F ) ← H1(F )x. It’s L-group is
Ŝ1 �∂x−1tG,Hp

Γ according to Fact 2.7.4 and Construction 2.7.5. The restriction
to S1(F )xH of µ1 has parameter equal to r1(σ)−1 � σ. Therefore the prod-
uct ∆II(γ, δ)∆III2(γ1, δ)µ1(γ1,±)−1 is the genuine character of the Baer sum
S1(F )−xH ⊕ S1(F )G/H with parameter

nHp (σS,H)x(σ)−1nGp (σH,G)nGp (σS,G)−1. (4.5.1)

We claim that this equals invH(γx, δ±). The construction of the latter in-
volves the L-embeddings

LSH ⊕ LSxH = Ŝ �tS,Hp ∂x−1tH,Gp
Γ→ Ĥ∂x−1tH,Gp

Γ, s� σ 7→ snHp (σS,H)� σ,
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LHx = Ĥ �∂x−1tH,Gp
Γ→ Ĝo Γ, h� σ 7→ hx(σ)−1nGp (σH,G) o σ,

and
LSG = Ŝ �tS,Gp Γ→ Ĝo Γ, s� σ 7→ snGp (σS,G) o σ.

Comparing the composition of the first two with the third we see that the pa-
rameter of invH is given precisely by (4.5.1). �

4.6 Transfer of orbital integrals and characters betweenG(F )xG andH(F )xH

Let G∗ be a quasi-split connected reductive group and let (ξ, z) : G∗ → G be a
rigid inner twist. Let xG ∈ Z2(Γ, T̂ → T̂ad). If xG 6= 1 we set assume G = G∗,
ξ = id, z = 1. Fix a Whittaker datum w for G∗.

For any g ∈ G(F ) the automorphism Ad(g) of G(F ) lifts naturally to the
cover G(F )xG , namely as conjugation by an arbitrary lift of g in G(F )xG . In
this way, we obtain an action of G(F ) on G(F )xG by conjugation.

Let δG ∈ G(F )xG be an element whose image δ ∈ G(F ) is strongly regular
semi-simple, and let S ⊂ G be its centralizer. For any f ∈ C∞c (G(F )xG) we can
consider the orbital integral

OδG(f) =

∫
G(F )/S(F )

f(gδGg
−1)dg.

Assume now that f is anti-genuine, i.e. f(εg̃) = ε−1f(g̃). Then OεδG(f) =
ε−1OδG(f).

Definition 4.6.1. We say that an anti-genuine fH ∈ C∞c (H(F )xH ) matches f if
for all strongly regular γH ∈ H(F )xH we have

SOγH (fH) =
∑
δ

∆(γH , δG)OδG(f),

where the sum runs over the G(F )-conjugacy classes of strongly regular semi-
simple elements δ ∈ G(F ) and δG ∈ G(F )xG is an arbitrary lift of δ. �

Theorem 4.6.2. For every anti-genuine function f ∈ C∞c (G(F )xG) there exists
a matching anti-genuine function fH ∈ C∞c (H(F )xH ). �

We continue with an anti-genuine f ∈ C∞c (G(F )xG). Given an admissible
genuine representation πG of G(F )xG we can form the operator

π(f) =

∫
G(F )

f(g̃)π(g̃)vdg,

where g̃ ∈ G(F )xG is an arbitrary lift of g. This operator is of trace class and we
define

Θπ(f) = trπ(f).
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Given a tempered L-parameter ϕG : LF → LGxG let

SΘϕG =
∑

π∈ΠϕG

dim(ρπ) ·Θπ,

where ρπ ∈ Irr(π0(S+
ϕ )) correspond to π via the refined local Langlands corre-

spondence, i.e. [Kal16b, §5.4] when xG = 1, or Theorem 2.6.2 when xG 6= 1.
More generally, for ṡ ∈ S+

ϕ , let

Θṡ,w
ϕG =

∑
π∈ΠϕG

tr (ρπ(ṡ)) ·Θπ.

Let H = Cent(s, Ĝ) · ϕ(WF ). Then (ṡ,H) is a refined endoscopic datum for G.
Let H(F )xH be the cover of H(F ) constructed in §3.2 and let LξH,G : LHxH →
LGxG be the L-embedding (3.2.1). Then ϕG = LξH,H ◦ ϕH for a tempered L-
parameter ϕH : LF → LHxH .

Conjecture 4.6.3. If f ∈ C∞c (G(F )xG) and fH ∈ C∞c (H(F )xH ) are matching
anti-genuine functions, then

Θs,w
ϕG (f) = SΘϕH (fH).

Equivalently,
Θs,w
ϕG (δG) =

∑
γ

∆′x[w](γH , δG)SΘϕH (γH),

where the sum runs over the strongly regular semi-simple elements γ of H(F )
up to stable conjugacy, and γH ∈ H(F )xH is an arbitrary lift of γ. �

Theorem 4.6.4. Assume that [Kal16a, Conjecture G] holds for all z-extensions
of G. Then Conjecture 4.6.3 holds. �

4.7 Proofs of Theorems 4.6.2 and 4.6.4

The arguments follow the line of the proofs of Theorem 2.6.2 and Proposition
4.5.1.

Choose a z-extension 1 → A1 → G1 → G → 1 and form the fiber product
G1(F )xG of G1(F ) → G(F ) ← G(F )xG . According to Proposition 2.4.2 and
Corollary 2.4.3 there exists a genuine character µG : G1(F )xG → S1. If fG is
a complex valued anti-genuine function on G(F )xG , then after pulling back to
G1(F )xG and multiplying with µG we obtain the function fG1 = fG · µG of
G1(F )xG that descends to G1(F ). It is λG-antigenuine, where λG is the restric-
tion of µ−1

G to A1(F ).
This provides a bijection between xG-antigenuine functions onG(F )xG and

λG-antigenuine functions on G1(F ). In the same way, but using µ−1
G , one

obtains a bijection between xG-genuine representations of G(F )xG and λG-
genuine representations of G1(F ).
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Dually, let r1 : WF → Z(Ĝ1) be the parameter of the anti-genuine character
µ−1
G . Then

LGxG → LG1, g � σ 7→ gr1(σ) o σ

is an L-embedding via which the L-parameters valued in LGxG correspond
to those L-parameters valued in LG1 whose composition with the projection
Ĝ1 oWF → (Ĝ1/Ĝ) oWF equals ϕλG .

Let (ṡ,H) be a refined endoscopic pair for G. Setting H1 = H · Z(Ĝ1) we
obtain a refined endoscopic pair (ṡ,H1) for G1. The group H1 comes equipped
with a surjective homomorphism H1 → H whose kernel is A1. Its derived sub-
group need not be simply connected, so H1 → H need not be a z-extension.
Choose a z-extension 1 → A2 → H2 → H1 → 1. Then H2 → H is a surjection
whose kernel A is a torus that is an extension of A1 by A2, and thus cohomo-
logically trivial. In particular, H2(F )→ H(F ) is surjective.

LetH2(F )xH be the fiber product ofH2(F )→ H(F )→ H(F )xH . According
to Proposition 2.4.2 and Corollary 2.4.3 there exists a genuine character µH :
H2(F )xH → S1. As for G, the map fH 7→ fH · µH =: fH2 induces a bijection
between xH -antigenuine functions on H(F )xH and λH -antigenuine functions
on H2(F ), where λ−1

H is the restriction of µH to A(F ). The same holds for
representations.

Dually, let r2 : WF → Z(Ĥ2) be the parameter of the anti-genuine character
µ−1
H . Then

LHxH → LH2, h� σ 7→ hr2(σ) o σ

is an L-embedding via which the L-parameters valued in LHxH correspond
to those L-parameters valued in LH2 whose composition with the projection
Ĥ2 oWF → (Ĥ2/Ĥ) oWF equals ϕλH .

Lemma 4.7.1. Let H → LH2 be the composition of above L-embedding with
the inverse of (3.2.1). The Langlands–Shelstad–Kottwitz transfer factor cor-
responding to that L-embedding and the transfer factor (4.3.3) are related as
follows.

Let γ2 ∈ H2(F ) and γH ∈ H(F )xH be lifts of γ ∈ H(F ) and let γ2,xH ∈
H2(F )xH be the element determined by (γ2, γH). Let δ1 ∈ G1(F ) and δG ∈
G(F )xG be lifts of δ ∈ G(F ) and let δ1,xG ∈ G1(F )xG be the element determined
by (δ1, δG). Then

∆′(γ2, δ1) = ∆′x(γH , δG) · µH(γ2,xH )µG(δ1,xG)−1,

where each factor is normalized either by a pinning of by a Whittaker datum.
�

Proof. Similar to Proposition 4.5.1 and left to the reader. �

Let fH2 ∈ C∞c (H2(F )) be the transfer of fG1 with respect to the transfer
factor ∆′[pin]. Then fH2 is λH -antigenuine and fH = fH2 ·µ−1

H is a xH -genuine
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function on H(F )xH . We have

SOγH (fH) = µ−1
H (γ2,xH )SOγ2(fH2)

= µ−1
H (γ2,xH )

∑
δ1

∆′(γ2, δ1)Oδ1(fG1)

=
∑
δ1

∆′(γ2, δ1)µ−1
H (γ2,xH )µG(δ1,xG)OδG(fG)

=
∑
δG

∆′x(γH , δG)OδG(fG),

proving Theorem 4.6.2.
Assuming the character identity for the group G1 and its endoscopic group

H2 we have

Θs,w
ϕG (δG) = µ−1

G (δ1,xG)Θs,w
ϕG1

(δ1)

= µG(δ1,xG)
∑
γ2

∆′[w](γ2, δ1)SΘϕH2
(γ2)

=
∑
γ2

∆′[w](γ2, δ1)µG(δ1,xG)µ−1
H (γ2,xH )SΘϕH (γH)

=
∑
γH

∆′x[w](γH , δG)SΘϕH (γH),

proving Theorem 4.6.4.

Appendix

A Review of some bits of Pontryagin duality

Let A be a compact abelian group (assumed Hausdorff) and let A◦ ⊂ A be
the connected component of the identity. Then A◦ is a closed connected sub-
group, and π0(A) = A/A◦ is a topological group that is Hausdorff, compact,
and totally disconnected, hence profinite. It is finite if and only if A◦ is open.
The group A◦ is divisible ([HR79, Theorem 24.25]), in fact the largest divisible
subgroup of A.

Let X = Homcts(A,S1) be Pontryagin dual of A, endowed with the usual
compact open topology. Then X is a discrete subgroup, and X[∞] and A◦ are
mutual annihilators ([HR79, Corollary 24.20]), whereX[∞] denotes the torsion
subgroup of X . Thus X[∞] is naturally identified with the Pontryagin dual of
π0(A) and X/X[∞] with the Pontryagin dual of A◦.

Lemma A.1. A continuous character χ : A→ S1 is either surjective, or of finite
order. The latter is the case precisely when χ kills A◦. �
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Proof. The image of the restriction of χ to A◦ is a closed connected subgroup of
S1. Thus it either equals S1, or {1}. In the latter case, χ descends to a continuous
character of the profinite group π0(A), and is thus a torsion element of X . �

The rank X/X[∞] of the torsion-free group (whether it be a finite natural
number, or infinity) is equal to the Lebesgue covering dimension of A◦, cf.
[HR79, Theorem 24.28]. For the definition of Lebesgue covering dimension, cf.
[HR79, §3.11].

Lemma A.2. Let B be locally compact abelian group that satisfies one of the
following conditions:

1. B has a compact open subgroup K such that B/K is finitely generated.

2. B has finitely many connected components.

Then any continuous character χ : B → µ∞(C) has finite order. �

An example of such a group B is provided by B = S(F ) where F is a local
field and S is an F -torus.

Proof. Let B′ ⊂ B be the open subgroup that equals K in the first case, and B◦

in the second case. According to Lemma A.1 in the first case, and preservation
of connectedness under continuous maps in the second case, χ|B′ has finite
order, say n. Then χn : B/B′ → µ∞(C) also has finite order, since B/B′ is
finitely generated. �

Recall the following two basic constructions. IfA is a discrete abelian group,
its profinite completion is a homomorphism f : A → B with B profinite such
that any other homomorphism g : A → C with C profinite factors uniquely
through f . The pair (f,B) is unique up to unique isomorphism, and B can
be constructed as lim←−A/N where N runs over all finite index subgroups. The
homomorphism f has dense image. It is is injective if and only ifA is residually
finite. A finitely generated abelian group is residually finite.

If A is a locally compact abelian group, its Bohr compactification is a ho-
momorphism f : A → B with B compact (assumed Hausdorff), such that
any other homomorphism g : A → C with C compact (and Hausdorff) factors
uniquely though f . The pair (f,B) is unique up to unique isomorphism, and
B can be constructed as the closure of the image of the homomorphism

A→
∏
A∗

S1, a 7→ (χ(a))χ.

The homomorphism f has dense image. Note that the Bohr compactification
commutes with finite products.

It follows directly from the universal properties that when A is discrete the
component group of the Bohr completion of A is the profinite completion of A.

Fact A.3. Let f : A → B be continuous homomorphism of locally compact
abelian groups and let f∗ : B∗ → A∗ be its Pontryagin dual. Then
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1. f is a closed injection if and only if f∗ is an open surjection.

2. f is injective if and only if f∗ has dense image.

3. f is the discretization of the compact groupB if and only if f∗ is the Bohr
compactification of the discrete group B∗.

4. f is the profinite completion of the discrete group A if and only if f∗ is
the inclusion of the torsion subgroup (taken with discrete topology) of
the compact group A∗.

�

References. (1) and (2) [HR79, Theorem 23.25]. (3) [HR79, Theorem 26.12]. (4)
from (3) and the preceding remark. �

Consider a complex diagonalizable group D. We have the decomposition
D = Dc × Dv , where Dc is the maximal compact subgroup, and Dv is the
maximal real vector space. More precisely, D = HomZ(X∗(D),C×) and Dc =
HomZ(X∗(D),S1), Dv = HomZ(X∗(D),R>0).

Lemma A.4. Let Ddisc by the abstract group D equipped with the discrete
topology. Consider the homomorphism Ddisc → D → Dc. The composition
of its Pontryagin dual with the projection (Ddisc)

∗ → π0((Ddisc)
∗) is the profi-

nite completion of X∗(D). �

Proof. The Pontryagin dual of Dc is X∗(D). The homomorphism Ddisc → Dc

induces the identity on torsion subgroups and π0((Ddisc)
∗)∗ is the torsion sub-

group of Ddisc, so the claim follows from Fact A.3. �

Example A.5. Consider D = C×. Then Dc = S1 and Dv = R>0
∼= R, and

X∗(D) = Z. Now (Ddisc)
∗ = (S1

disc)
∗ × (Rdisc)

∗. The second factor is connected
by Fact A.3. We have the exact sequence

0→ Q/Z→ S1
disc → R/Q→ 0,

whose dual realizes the connected group (R/Q)∗ as the identity component of
(S1

disc)
∗ and the profinite group (Q/Z)∗ = Ẑ as its component group. The latter

is the profinite completion of X∗(D) = Z. �

B Review of Langlands duality for tori over local fields

Let S be an F -torus and Ŝ = Hom(X∗(S),C×) its complex dual. Let K/F
be the splitting extension of S. Equip Ŝ with its analytic topology and let X
be a topological group acting continuously on Ŝ. A 1-cocycle of X → Ŝ is
continuous if and only if it is continuous at 1 ∈ X . IfX is locally profinite, then
the set of continuous 1-cocycles X → Ŝ is the same whether we equip Ŝ with
its analytic topology or its discrete topology, since the analytic topology on Ŝ
does not admit small subgroups. This is the case with X = Γ or X = ΓK/F .
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When F is non-archimedean, this is also the case with WF or X = WK/F . But
when F is archimedean, WF and WK/F are not locally profinite. We will write
Z1(X, Ŝ) for the set of continuous 1-cocycles X → Ŝ, and H1(X, Ŝ) for the
group of cohomology classes of continuous 1-cocycles.

Restriction provides an inclusion Z1(Γ, Ŝ)→ Z1(WF , Ŝ), and inflation pro-
vides an isomorphism Z1(WK/F , Ŝ) → Z1(WF , Ŝ). The groups of cobound-
aries B1(Γ, Ŝ) = B1(WF , Ŝ) = B1(WK/F , Ŝ) are all the same, and we obtain
the inclusion H1(Γ, Ŝ) → H1(WF , Ŝ) and the isomorphism H1(WK/F , Ŝ) →
H1(WF , Ŝ).

Langlands duality is the isomorphism H1(WF , Ŝ) → Homcts(S(F ),C×),
functorial in S, cf. [Lan97], [Lab85, §6]. If E/F is a finite Galois extension, then
restriction along WE ⊂ WF is identified with composition with the norm map
S(E) → S(F ), and corestriction along WE → WF is identified with restriction
along S(F ) ⊂ S(E). The subgroup H1(Γ, Ŝ) is identified with the group of
characters of S(F ) that are trivial on the image of the norm map S(E)→ S(F )
for some finite Galois extension E/F .

The abelian Lie group Ŝ has a unique maximal compact subgroup Ŝc. In
fact, we have the canonical Γ-stable decomposition Ŝ = Ŝc × Ŝv , where Ŝv is
a finite-dimensional R-vector space. This decomposition is obtained from the
decomposition C× = S1 × R>0 and the isomorphism exp : R→ R>0 as

Ŝ = Hom(X∗(S),C×) = Hom(X∗(S),S1)×Hom(X∗(S),R),

thus

Ŝc = Hom(X∗(S),S1), Ŝv = Hom(X∗(S),R) = X∗(S)⊗Z R.

On the other hand, the decomposition C× = S1×R>0 also induces a decom-
position Homcts(S(F ),C×) = Homcts(S(F ),S1) × Homcts(S(F ),R>0). Lang-
lands duality is compatible with these decompositions, as the following lemma
shows.

Lemma B.1. The following are equal.

1. The group of unitary characters of S(F ).

2. The subgroup H1
u(WF , Ŝ) of H1(WF , Ŝ) of cohomology classes repre-

sentable by a 1-cocycle whose image in Ŝ is bounded in the analytic topol-
ogy.

3. The subgroup of H1(WF , Ŝ) of cohomology classes all of whose repre-
senting 1-cocycles have image in Ŝ that is bounded in the analytic topol-
ogy.

4. The subgroup H1(WF , Ŝ
c) of H1(WF , Ŝ).

�
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Proof. The equality of (1) and (2) is well-known from [Lan97]. The equality
of (2) and (3) follows from the identity B1(WF , Ŝ) = B1(ΓK/F , Ŝ). For the
equality of (3) and (4) we consider z ∈ Z1(WF , Ŝ). Its image is bounded if
and only if z(WK) ⊂ Ŝ is bounded. Since z(WK) is a subgroup of Ŝ, it must
lie in Ŝc. Composing z with the projection Ŝ → Ŝv we obtain an element of
Z1(ΓK/F , Ŝ

v). Such an element is cohomologically trivial, since Ŝv is a finite-
dimensional R-vector space. Therefore z can be modified by a coboundary to
have trivial projection to Ŝv . �

C Some remarks on the cohomology of the Weil group

We collect here some facts and observations about the cohomology of the Weil
group WF with coefficients in a topological WF -module M . This is an appli-
cation of the following general situation: G is a topological group, M is an
abelian topological group, and there is a continuous action of G on M given
by a continuous map G ×M → M that satisfies the usual axioms of an action
map.

There are in fact multiple different kinds of cohomology that can be con-
sidered in this situation. One class of such cohomology theories is obtained
by considering the cohomology of a complex of cochains of G valued in M ,
equipped with the usual differential, but where the cochains are demanded to
be measurable, or continuous, or differentiable (provided both G and M have
differentiable structure). The continuous or differentiable case was introduced
and studied by Hochschild and Mostow [HM62]. Our primary interest will
be the continuous case, and we will denote the corresponding cohomology
groups by Hi

c(G,M). Our interest in Hi
c(G,M) is due to Langlands’ duality

theorem in the case that G = WF is the Weil group of a local or global field and
M = T̂ is the complex dual of an F -torus, cf. Appendix B.

The measurable case was introduced and studied by Moore [Moo76], where
it is assumed that G is locally compact second countable and M is polonais, cf.
[Moo76, §2]. In fact, Moore introduces two definitions – one where cochains are
measurable functions, and one where cochains are equivalence classes where
two measurable functions are considered equivalent if they are equal almost
everywhere. Moore shows that the two definitions lead to the same coho-
mology group [Moo76, Theorem 5], but the second version has the advan-
tage of endowing the cohomology groups with a natural topology [Moo76,
§4,§5]. We will denote these cohomology groups by Hi

m(G,M). The advan-
tage of Hi

m(G,M) is that, given a closed normal subgroup H ⊂ G there is
a Hochschild–Serre spectral sequence Ep,qr that converges to H∗m(G,M), and
such that Ep,q2 = Hp

m(G/H,Hq
m(H,M)) for those q for which Hq

m(H,M) is
Hausdorff [Moo76, Theorem 9]. The latter condition is automatic when q =
0, 1, but may also hold for other q, in particular when Hq

m(H,M) = 0.
For this reason it is useful to know when Hi

m(G,M) = Hi
c(G,M). This

question was studied by Wigner in his thesis [Wig73]. From his work one can
extract the following.
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Lemma C.1. Let M be one of the following:

1. A discrete abelian group

2. a finite-dimensional real or complex vector space

3. a complex diagonalizable group.

Then Hi
m(G,M) = Hi

c(G,M) for any closed subgroup G of WF . �

Proof. We apply [Wig73, Theorem 2] and [Wig73, Proposition 3]. It is clear that
in all three casesM is a locally connected complete metric topological group. It
is enough to show that G is locally compact, σ-compact, and of finite Lebesgue
covering dimension. Local compactness and σ-compactness are immediate.
When F = C or F = R, then WF is a complex Lie group, and the same holds
for G, so its Lebesgue covering dimension is equal to its dimension as a (real)
Lie group, which is 2. When F is non-archimedean, then WF is topologically
the countable disjoint union of profinite topological spaces, and the same holds
for G. According to [HR79, Chap. 3, Theorem 3.5], the Lebesgue covering
dimension of G is zero. �

Lemma C.2. Let H ⊂ G be a closed normal subgroup. Then the inflation-
restriction sequence

1→H1
m(G/H,MH)→ H1

m(G,M)→ H1
m(H,M)G/H

→H2
m(G/H,MH)→ H2

m(G,M)

is exact. If in addition H2(H,M) is Hausdorff (in particular, if it is trivial), then
the longer inflation-restriction sequence

1→H1
m(G/H,H0

m(H,M))→ H1
m(G,M)→ H0

m(G/H,H1
m(H,M))

→H2
m(G/H,H0

m(H,M))→ H2
m(G,M)1 → H1

m(G/H,H1
m(H,M))

→H3
m(G/H,H0

m(H,M))

is exact, where H2
m(G,M)1 is the kernel of the restriction map H2

m(G,M) →
H2
m(H,M). �

Proof. This is the 5-term, respectively 7-term, exact sequence associated to the
spectral sequence [Moo76, Theorem 9], together with the identification of the
corresponding terms Ep,q2 . �

Lemma C.3. Let V be a finite-dimensional real or complex vector space on
which WF acts through the map WF → Γ by linear automorphisms. Then
H2
c (WF , V ) = 0. �

Proof. Using Lemma C.1 we will identify Hc(G,V ) with Hm(G,V ) for G being
WF or any closed subgroup of it, and simply write H(G,V ).

We first note that if K is a compact topological group acting continuously
on V , then Hi(K,V ) = 0. This is [BW00, Proposition IX.1.12] in the case that
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V is complex (cf. the convention on p. 169 of loc. cit.). When V is real, we
have Hi(K,VC) = 0 where VC = V ⊗R C is the complexification of V . But
VC = V ⊕ V as a K-module, hence Hi(K,V ) is a direct summand of Hi(K,VC)
and therefore also zero.

We now takeK to be a closed normal compact subgroup ofWF that satisfies
H1(K,V ) = 0 and H2(K,V ) = 0. From Lemma C.2 we obtain the surjective
homomorphism H2(WF /K, V

K) → H2(WF , V ). But [Moo76, Theorem 10]
identifies H2(WF /K, V

K) with the group of topological extensions of WF /K
by V K . So it is enough to find K for which any topological extension of WF /K
by V K splits (as an extension of topological groups).

When F is non-archimedean and take K to be the inertia subgroup of WF .
Since it is compact, we have H1(K,V ) = H2(K,V ) = 0 by the above para-
graph. Moreover WF /K = Z and the splitting claim is clear.

When F = C we take K = S1. Again by the above paragraph H1(K,V ) =
H2(K,V ) = 0. Moreover WF /K = R>0

∼= R acting trivially on V K = V , and
the splitting claim is again clear.

When F = R, we take again K = S1 and the previous argument reduces to
showing H2(WF /K, V ) = 0. But WF /K = R>0 × Γ = R × Γ. We now take
K = Γ. SinceK = Z/2Z, the groupsHi(K,V ) are the usual Galois cohomology
groups, and their vanishing for i > 0 is immediate from the unique divisibility
of V . Therefore we again reduce to the obvious vanishing of H2(R, V K). �

Proposition C.4 (Rajan, Karpuk). Let T be an F -torus. Then H2
c (WF , T̂ ) = 0.

�

Proof. This is [Raj04, Theorem 2], who proves it forH2
m, but it holds equally for

H2
c by Lemma C.1. A different proof in the non-archimedean case was given

in [Kar13, Theorem 3.2.2]. �

Lemma C.5. Let F be non-archimedean and D be a complex diagonalizable
group with algebraic Γ-action. Then

H2
c (Γ, D◦)→ H2

c (Γ, D)→ H2
c (WF , D)→ 0

is exact and H2
c (WF , D)→ H2

c (WF , π0(D)) is an isomorphism. �

Proof. We consider the commutative diagram with exact rows

H2
c (Γ, D◦) //

��

H2
c (Γ, D) //

��

H2
c (Γ, π0(D)) //

��

H3
c (Γ, D◦)

��
H2
c (WF , D

◦) // H2
c (WF , D) // H2

c (WF , π0(D)) // H3
c (WF , D

◦)

We haveH2
c (WF , D

◦) = 0 by Proposition C.4 andH3
c (Γ, D◦) = 0 since scd(Γ) =

2. The map H2
c (Γ, π0(D)) → H2

c (WF , π0(D)) is bijective due to [Kar13, Theo-
rem 3.1.2]. The claim follows. �
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Remark C.6. The analogous claim in the archimedean case is false. When F is
complex, then H2

c (Γ, D) = 0. On the other hand, if we take D = µn(C), then
H2
c (WF , D) = H2

c (C×, µn(C)) 6= 0 by [Moo76, Theorem 10].
When F is real, we takeD = Z/3Z with trivial Γ-action. ThenH1

c (C×, D) =
0, so Lemmas C.1 and C.2 give the exact sequence H2

c (Γ, D) → H2
c (WF , D) →

H2
c (C×, D)Γ → H3

c (Γ, D). But all Hi
c(Γ,−) are 2-torsion groups, while D is 2-

divisible, hence all these groups vanish, and we are left with the isomorphism
H2
c (WF , D)→ H2

c (C×, D)Γ. Again H2
c (C×, D) 6= 0. �

Lemma C.7. Let S → T be a homomorphism of F -tori with finite kernel K.
Then

1. The dual homomorphism T̂ → Ŝ is surjective.

2. Write Ẑ = ker(T̂ → Ŝ) and C = cok(S → T ). Then

X∗(Ẑ◦) = X∗(C), X∗(π0(Ẑ)) = HomZ(X∗(K),Q/Z).

3. The Pontryagin dual of the finite abelian group K(F ) is naturally identi-
fied with H2(WF , Ẑ).

�

Proof. Statements (1) and (2) follow by applying HomZ(−,Z) to the exact se-
quence 0 → X∗(C) → X∗(T ) → X∗(S) → X∗(K) → 0 and using the identifi-
cation HomZ(X∗(K),Q/Z)→ Ext1Z(X∗(K),Z).

(3) By Pontryagin duality it is enough to show that in the piece of the long
exact cohomology sequence H1

u(WF , T̂ ) → H1
u(WF , Ŝ) → H2(WF , Ẑ) the sec-

ond map, given by the connecting homomorphism, is surjective.
The preimage of Ŝc in T̂ equals T̂ c and this leads to the exact sequence

1 → Ẑ → T̂ c → Ŝc → 1. Lemma B.1 reduces the problem to the vanishing
of H2(WF , T̂

c). But this group is a direct factor of H2(WF , T̂ ), which vanishes
according to Proposition C.4. �

D Review of the algebraic fundamental group

Let F be a field, F s a fixed separable closure, and Γ the Galois group of F s/F .
Let G be a connected reductive F -group.

We briefly recall the concept of the universal maximal torus T of G. Given
any two Borel pair (Ti, Bi) of GF s , for i = 1, 2, every g ∈ G(F s) such that
Ad(g)(T1, B1) = (T2, B2) induces the same isomorphism T1 → T2. We turn the
set of Borel pairs of GF s into a small category, in which there is a unique arrow
between any two Borel pairs, and we have the functor from this small cate-
gory into the category of tori which sends (T1, B1) to T1 and the unique arrow
(T1, B1)→ (T2, B2) to the isomorphism T1 → T2. The limit of this functor is the
universal maximal torus T . It comes equipped with the following additional
structures:
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1. A root system R(T,G) ⊂ X∗(T ) equipped with a basis ∆ ⊂ R(T,G).

2. A root system R∨(T,G) ⊂ X∗(T ) equipped with a basis ∆∨ ⊂ R∨(T,G).

3. An F -structure for which the Γ-action leaves ∆ and ∆∨ stable. In this
way, (X∗(T ),∆, X∗(T ),∆∨) becomes a based root datum with Γ-action.

4. An action of the Weyl group Ω(T,G) of the above root datum on T .

Write Tsc for the torus determined by X∗(Tsc) = Q∨, where Q∨ ⊂ X∗(T ) is
the span of R∨(T,G). Write further Tad for the torus determined by X∗(Tad) =
Q, whereQ ⊂ X∗(T ) is the span ofR(T,G). Then Tsc and Tad are F -tori and we
have the homomorphisms Tsc → T → Tad, whose composition is an isogeny.

The Langlands dual group Ĝ ofG is the connected reductive group, defined
over some fixed algebraically closed field, whose universal maximal torus T̂ is
equipped with the based root datum dual to that of G. Choosing a pinning of
Ĝ the Γ-action on the based root datum lifts to a Γ-action on Ĝ by algebraic
automorphisms.

The algebraic fundamental group π1(G) defined by Borovoi, cf. [Bor98,
§1] is the finitely generated (discrete) abelian group with Γ-action defined as
X∗(T )/Q∨. The assignment G 7→ π1(G) is a covariant functor from the cate-
gory of connected reductive F -groups to the category of Γ-modules. There is a
natural identification π1(G) = X∗(Z(Ĝ)).
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nexes et cohomologie galoisienne, Inst. Hautes Études Sci. Publ. Math.
(1996), no. 84, 35–89 (1997). MR 1441006

[Dil20] Peter Dillery, Rigid inner forms over local function fields, 2020, preprint,
arXiv:2008.04472.

[FKS21] Jessica Fintzen, Tasho Kaletha, and Loren Spice, A twisted Yu con-
struction, Harish-Chandra characters, and endoscopy, arXiv:2106.09120
(2021).

[HM62] G. Hochschild and G. D. Mostow, Cohomology of Lie groups, Illinois J.
Math. 6 (1962), 367–401. MR 147577

[HR79] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol.
I, second ed., Grundlehren der Mathematischen Wissenschaften, vol.
115, Springer-Verlag, Berlin-New York, 1979, Structure of topological
groups, integration theory, group representations. MR 551496

[Kal16a] Tasho Kaletha, The local Langlands conjectures for non-quasi-split groups,
Families of automorphic forms and the trace formula, Simons Symp.,
Springer, 2016, pp. 217–257. MR 3675168

[Kal16b] , Rigid inner forms of real and p-adic groups, Ann. of Math. (2)
184 (2016), no. 2, 559–632. MR 3548533

[Kal19a] , On L-embeddings and double covers of tori over local fields,
arXiv:1907.05173 (2019).

[Kal19b] , Regular supercuspidal representations, J. Amer. Math. Soc. 32
(2019), no. 4, 1071–1170. MR 4013740

[Kal19c] , Supercuspidal L-packets, arXiv:1912.03274 (2019).

[Kar13] David A. Karpuk, Cohomology of the Weil group of a p-adic field, J. Num-
ber Theory 133 (2013), no. 4, 1270–1288. MR 3003999

[Kos63] Bertram Kostant, Lie group representations on polynomial rings, Amer.
J. Math. 85 (1963), 327–404. MR 158024

[Kot84] Robert E. Kottwitz, Stable trace formula: cuspidal tempered terms, Duke
Math. J. 51 (1984), no. 3, 611–650. MR 757954 (85m:11080)

[Kot86] , Stable trace formula: elliptic singular terms, Math. Ann. 275
(1986), no. 3, 365–399. MR 858284 (88d:22027)

[Kot99] , Transfer factors for Lie algebras, Represent. Theory 3 (1999),
127–138 (electronic). MR 1703328 (2000g:22028)

[KP22] Tasho Kaletha and Gopal Prasad, Bruhat–Tits theory: a new approach,
New Mathematical Monographs, vol. 44, Cambridge University
Press, 743pp., 2022.

80



[KS] Robert E. Kottwitz and Diana Shelstad, On splitting invariants and
sign conventions in endoscopic transfer, arXiv:1201.5658.

[KS99] , Foundations of twisted endoscopy, Astérisque (1999), no. 255,
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