Appendix A. Depth-zero supercuspidal L-packets on general inner forms

By Tasho Kaletha

Let F be a p-adic field with ring of integers O_F and residue field k_F of cardinality q and characteristic p. We fix an algebraic closure \overline{F} of F and let Γ be the absolute Galois group of \overline{F}/F and W the absolute Weil group. Let G be a connected reductive algebraic group defined over F and unramified, i.e. quasi-split and split over the maximal unramified extension F^u of F. Let (ξ, G') be an inner twist of G: That is, G' is a connected reductive algebraic group defined over F, and $\xi : G \times \overline{F} \to G' \times \overline{F}$ is an isomorphism with the property that for all $\sigma \in \Gamma$, the automorphism $\xi^{-1\sigma}\xi$ of $G \times \overline{F}$ is inner.

Let ${}^{L}G$ be the Weil-form of the Langlands dual group of G. Since we are identifying the dual groups of G and G' via ξ , ${}^{L}G$ is also the Langlands dual group of G'. Let $\phi : W \to {}^{L}G$ be a TRSELP parameter [DR09, §4.1]. If the inner twist (G', ξ) comes from a pure inner twist (G', ξ, z) (see [Kal11, §2] for the terminology), an L-packet Π^{z}_{ϕ} consisting of irreducible supercuspidal depth-zero representations of G'(F) was defined in [DR09]. This was later generalized to the cases when (G', ξ) comes from an extended pure inner twist in [Kal11b]. Moreover, the packets constructed in [DR09] and [Kal11b] were shown to have a natural parameterization in terms of the centralizer of ϕ in the dual group \hat{G} of G, and satisfy stability and endoscopic transfer.

In this appendix, we are going to repeat some of the arguments of [Kal11b] in order to obtain a special case of the results of that paper in a more general setting. Namely, we will first construct the *L*-packet $\Pi_{\phi}^{G'}$ on G' corresponding to ϕ without assuming any condition on (G', ξ) . In the cases where an *L*-packet on G' has already been constructed, we will obtain the same set of representations. What we lose in this more general setting is the ability to provide a natural parameterization of the set $\Pi_{\phi}^{G'}$ in terms of $S_{\phi} = \text{Cent}(\phi, \hat{G})$. Instead, the following much weaker statement is all we can show: Let $\zeta_{G'}$ be any character of $Z(\hat{G}_{sc})$ whose restriction to $Z(\hat{G}_{sc})^{\Gamma}$ corresponds to the class of (ξ, G) in $H^1(F, G_{ad})$ under the Kottwitz isomorphism. Let \mathcal{A}_{ϕ} be the inverse image in \hat{G}_{sc} of the image in G_{ad} of S_{ϕ} . Then we can show that there exists a *non-canonical* bijection between $\Pi_{\phi}^{G'}$ and the set $\text{Irr}(\mathcal{A}_{\phi}, \zeta_{G'})$ of irreducible representations of \mathcal{A}_{ϕ} which transform under $Z(\hat{G}_{sc})$ by $\zeta_{G'}$. Second, we will prove the following character identity: Let Π_{ϕ}^{G} be the *L*-packet

Second, we will prove the following character identity: Let Π_{ϕ}^{G} be the *L*-packet on *G*, and $\Pi_{\phi}^{G'}$ that on *G'*. Then for any strongly-regular semi-simple elements $\gamma \in G(F)$ and $\gamma' \in G'(F)$ whose stable classes correspond to each other, we have

$$\sum_{\pi \in \Pi_{\phi}^{G}} \Theta_{\pi}(\gamma) = e(G') \sum_{\pi' \in \Pi_{\phi}^{G'}} \Theta_{\pi'}(\gamma').$$

Recall that the stable classes of γ and γ' correspond to each other if there exists $g \in G(\bar{F})$ such that $\xi \circ Ad(g)\gamma = \gamma'$.

This character identity is a special case of the endoscopic character identities for depth-zero supercuspidal *L*-packets established in [Kal11] and [Kal11b], and the necessary argument – a slight generalization of the stability calculations of [DR09] – is very similar to the proof of [Kal11b, Thm. 4.3.1].

A.1. Construction of *L*-packets. Given a TRSELP parameter $\phi: W \to {}^{L}G$ (see [DR09, §4.1] or [Kal11b, §3.2]), we apply "Step 1" in [Kal11b, §3.3] and obtain a triple $(S_0, [a], [{}^{L}j])$ where S_0 is an elliptic unramified maximal torus of G whose unique fixed point in $\mathcal{B}^{\text{red}}(G, F)$ is a vertex, [a] is an equivalence class of Langlands parameters for S, and $[{}^{L}j]$ is a \hat{G} -conjugacy class of L-embeddings ${}^{L}S \to {}^{L}G$, with the property that ϕ belongs to the \hat{G} -conjugacy class $[{}^{L}j \circ a]$. The construction of this triple involves choices of χ -data and hyperspecial vertex $o \in \mathcal{B}^{\text{red}}(G, F)$. However, using [Kal11b, Lemma 3.4.1] we see that the $G_{\text{ad}}(F)$ -conjugacy class of this triple is independent of all choices. We let $\theta_0: S_0(F) \to \mathbb{C}^{\times}$ be the character corresponding to [a].

Next we consider admissible embeddings of S_0 into G'. We recall that an embedding $j: S_0 \to G'$ is called admissible if it is defined over F and is of the form $\xi \circ \operatorname{Ad}(g)$ for some $g \in G(\overline{F})$. The set of admissible embeddings forms a unique stable conjugacy class by definition. Given such an embedding j, we obtain the maximal torus $S_j := j(S_0)$ of G' and the character $\theta_j : S_j(F) \to \mathbb{C}^{\times}$ given by $\theta_j = j_* \theta_0 = \theta_0 \circ j^{-1}$. Thus, j gives rise to the representation π_{G',S_j,θ_j} discussed in [Kal11b, §3.1]. We set

$$\Pi_{\phi}^{G'} = \{\pi_j\},\$$

where j runs over the set of G'(F)-conjugacy classes inside the stable class of admissible embeddings $j: S_0 \to G'$.

Lemma A.1. The group \mathcal{A}_{ϕ} is abelian, and there exists a bijection between $\Pi_{\phi}^{G'}$ and $\operatorname{Irr}(\mathcal{A}_{\phi}, \zeta_{G'})$.

Proof. Choose arbitrarily one admissible embedding $j_a : S_0 \to G'$. Then set of G'(F)-conjugacy classes of admissible embeddings $S_0 \to G'$ is in canonical bijection with the kernel of the map

$$H^1(j_a): H^1(F, S_0) \to H^1(F, G').$$

Using [Kot86, Thm 1.2], this kernel is in bijection with the kernel of

$$\pi_0(S_0^{\Gamma})^D \to \pi_0(Z(\hat{G})^{\Gamma})^D$$

Since S_0 is elliptic, we know that $[\hat{S}_0^{\Gamma}]^{\circ} = [Z(\hat{G})^{\Gamma}]^{\circ}$, which implies that the kernel of the last displayed map is equal to $[\hat{S}_0^{\Gamma}/Z(\hat{G})^{\Gamma}]^D$.

On the other hand, the map ${}^{L}j$ provides an isomorphism $\hat{S}_{0}^{\Gamma} \to \operatorname{Cent}(\phi, \hat{G})$, from which we obtain an isomorphism between $\hat{S}_{0}^{\Gamma}/Z(\hat{G})^{\Gamma}$ and the image of $\operatorname{Cent}(\phi, \hat{G})$ in \hat{G}_{ad} . The pre-image \mathcal{A}_{ϕ} of $\hat{S}_{0}^{\Gamma}/Z(\hat{G})^{\Gamma}$ in \hat{G}_{sc} is certainly contained in $[\hat{S}_{0}]_{\mathrm{sc}}$, and is thus abelian. It follows that $\operatorname{Irr}(\mathcal{A}_{\phi}, \zeta_{G'})$ is a torsor under the abelian group $\operatorname{Irr}(\mathcal{A}_{\phi}, 1)$. The latter is by definition is equal to $[\hat{S}_{0}^{\Gamma}/Z(\hat{G})^{\Gamma}]^{D}$.

A.2. Stability and transfer to inner forms. Given that \mathcal{A}_{ϕ} is abelian, we define the stable character of the packet $\Pi_{\phi}^{G'}$ to be

$$S\Theta_{\phi}^{G'} = e(G') \sum_{\pi' \in \Pi_{\phi}^{G'}} \Theta_{\pi},$$

where e(G') is the Kottwitz sign of G' [Kot83]. We recall that

$$e(G') = (-1)^{\operatorname{rk}_F(G) - \operatorname{rk}_F(G')}.$$

More generally, we define for any two reductive groups G_1, G_2 the sign

$$e(G_1, G_2) = (-1)^{\operatorname{rk}_F(G_1) - \operatorname{rk}_F(G_2)}.$$

Clearly e(G') = e(G, G').

Before discussing stability, we need to give a formula for $S\Theta_{\phi}^{G'}$. For this, we will closely follow the proof of [Kal11b, Prop 4.2.2]. In order to obtain the result, we need to assume that the residual characteristic of F is large enough. More precisely, we assume that the cardinality of the residue field k_F of F at least as large as the number of positive roots of G, and that both G and G' have faithful rational representations of dimension not exceeding p/(2 + e), where $p = \operatorname{char}(k_F)$ and e is the ramification index of F/\mathbb{Q}_p .

Under these conditions, DeBacker and Reeder have shown [DR09, Lemma 12.4.1] that the following statements hold for any group H which is the connected component of the centralizer of a topologically semi-simple element of G(F) or G'(F):

- Let $x \in \mathcal{B}^{\text{red}}(H, F)$ be a point and H_x^{red} be the reductive quotient of the special fiber of the corresponding parahoric group scheme. Then the Liealgebra of any maximal torus of H_x^{red} defined over k_F contains a stronglyregular semi-simple element defined over k_F .
- There exists an H(F)-equivariant bijection log : $H(F)_{0+} \to \text{Lie}(H)(F)_{0+}$ which restricts, for each $x \in \mathcal{B}^{\text{red}}(H, F)$, to an $H_x^{\text{red}}(k_F)$ -equivariant bijection from the set of unipotent elements of $H_x^{\text{red}}(k_F)$ to the set of nilpotent elements of $\text{Lie}(H_x^{\text{red}})(k_F)$.

We fix a character $\psi: F \to \mathbb{C}^{\times}$ whose restriction to O_F factors through a nontrivial character of k_F . Furthermore, we fix a good bilinear form B [DR09, §A] on the Lie-algebra \mathfrak{h} of H. Reductive groups and their Lie-algebras will be endowed with the canonical Haar measures described in [DR09, §5.1]. Then, for any regular semi-simple element $X \in \text{Lie}(H)(F)$, the distribution on $\mathfrak{h}(F)$ defined by

$$f \mapsto \int_{H(F)/H_X(F)} \int_{\mathfrak{h}(F)} f(Y) \psi(B(\mathrm{Ad}(g)X, Y)) dY dg$$

is represented by a function, which we call $\hat{\mu}_X^H$. We also define

$$S\hat{\mu}_X^H = \sum_{X'} \hat{\mu}_{X'}^H$$

where the sum runs over a set of representatives for the H(F)-conjugacy classes inside the stable class of X.

We now let $Q_0 \in \text{Lie}(S_0)(O_F)$ be an element with strongly-regular reduction. This element exists due to the work of DeBacker and Reeder recalled above. Of course, Q_0 is automatically a regular semi-simple element of Lie(G)(F), and hence

$$j \leftrightarrow dj(Q_0)$$

is a bijection between the set of G'(F)-conjugacy classes of admissible embeddings $j : S_0 \to G'$ and the set of G'(F)-conjugacy classes inside the set of elements of Lie(G')(F) which are stably-conjugate to Q_0 . We will denote the inverse of $j \mapsto dj(Q_0)$ by $P \mapsto \phi_{Q_0,P}$.

The inner twist $\xi: G \to G'$ restricts to an isomorphism $Z_G \to Z_{G'}$ defined over F. We will identify these two groups from now on.

Lemma A.2. The function $S\Theta_{\phi}^{G'}$ is supported on the subset $G'_{sr}(F)_0 Z_G(F)$. Moreover, for any $\gamma' \in G'_{sr}(F)_0$ and $z \in Z_G(F)$, the value of $S\Theta_{\phi}^{G'}(z\gamma')$ is given by

$$e(G,H)\theta_0(z)\sum_{P'} [\phi_{Q_0,P'}]_*\theta_0(\gamma'_s)S\hat{\mu}^H_{P'}(\log(\gamma'_u))$$

where $\gamma' = \gamma'_s \gamma'_u$ is the topological Jordan decomposition of γ' , the sum over P' runs over a set of representatives for the $G'_{\gamma'_s}$ -stable classes of elements of $\text{Lie}(G'_{\gamma_s})(F)$ which are G'-stably conjugate to Q_0 , and H is equal to $[G'_{\gamma'_s}]^{\circ}$.

Proof. The vanishing result follows at once from [DR09, Lemma 9.3.1]. We turn to the formula. Let $j : S_0 \to G'$ be an admissible embedding, and $\pi_j \in \Pi_{\phi}^{G'}$ the corresponding representation. According to [Kal11b, Lemma 3.1.2] and [DR09, Lemma 12.4.3], we have

$$\Theta_{\pi_j} = e(G', A_G)\theta_j(z) \sum_Q [\phi_{dj(Q_0),Q}]_* \theta_j(\gamma'_s) e(H, A_H)\hat{\mu}_Q^H(\log(\gamma'_u))$$

where Q runs over a set of representatives for the H(F)-conjugacy classes inside the intersection of the G'(F)-conjugacy class of $dj(Q_0)$ with Lie(H)(F). We recall that A_G (resp A_H) is the maximal split torus in the center of G (resp. H).

Under the identification of Z(G) with Z(G') via ξ , the characters θ_0 and θ_j have the same restriction to Z(G)(F). Moreover, $\phi_{dj(Q_0),Q} \circ j = \phi_{Q_0,Q}$. Finally, we have $A_H = A_G$, since the centralizer of Q in H is a maximal torus of H which is also an elliptic maximal torus of G' (being stably-conjugate to the elliptic torus S_0). We conclude

$$\Theta_{\pi_j} = e(G', H)\theta_0(z) \sum_Q [\phi_{Q_0, Q}]_* \theta_0(\gamma'_s)\hat{\mu}_Q^H(\log(\gamma'_u)).$$

To obtain $S\Theta_{\phi}^{G'}$, we sum these formulas over the set of G'(F)-conjugacy classes of admissible embeddings $j: S_0 \to G'$. Using the bijection $j \leftrightarrow dj(Q_0)$ and its inverse $\phi_{Q_0,P} \leftrightarrow P$, we obtain

$$S\Theta_{\phi}^{G'} = e(G')e(G', H)\theta_0(z) \sum_P \sum_Q [\phi_{Q_0,Q}]_*\theta_0(\gamma'_s)\hat{\mu}_Q^H(\log(\gamma'_u)),$$

where now the sum over P runs over the set of G'(F)-conjugacy classes inside the set of elements of Lie(G')(F) which are stably conjugate to Q_0 , while Q runs over a set of representatives for the H(F)-conjugacy classes inside the intersection of the G'(F)-conjugacy class of P with Lie(H)(F). The double sum over P, Q can be replaced by a single sum running over the H(F)-conjugacy classes inside the set of elements of Lie(G')(F) which are stably-conjugate to Q_0 and belong to Lie(H)(F). This single sum can then be written again as a double sum, where we first sum over a set of representatives P' for the sets of H-stable classes in Lie(H)(F) of elements which are G'-stably-conjugate to Q_0 , and then sum over a set of representatives Q'for the sets of H(F)-conjugacy classes inside the H-stable class of P'. With this re-indexing, we obtain

$$S\Theta_{\phi}^{G'} = e(G')e(G',H)\theta_0(z)\sum_{P'}\sum_{Q'} [\phi_{Q_0,Q'}]_*\theta_0(\gamma'_s)\hat{\mu}_{Q'}^H(\log(\gamma'_u)).$$

Since P' and Q' are elements of Lie(H)(F) which are H-stably-conjugate, we have

$$[\phi_{Q_0,Q'}]_*\theta_0(\gamma'_s) = [\phi_{Q_0,P'}]_*\theta_0(\gamma'_s)$$

Combining this with e(G')e(G', H) = e(G, H) we obtain

$$S\Theta_{\phi}^{G'} = e(G, H)\theta_0(z) \sum_{P'} [\phi_{Q_0, P'}]_* \theta_0(\gamma'_s) \sum_{Q'} \hat{\mu}_{Q'}^H(\log(\gamma'_u)).$$

and the statement follows.

Proposition A.3. Let $\gamma \in G(F)$ and $\gamma' \in G(F)$ be strongly-regular semi-simple elements whose stable classes correspond. Then

$$S\Theta^G_\phi(\gamma) = S\Theta^{G'}_\phi(\gamma').$$

Proof. We apply Lemma A.2 to both groups G and G'. Since $\gamma \in G_{sr}(F)_0 Z_G(F)$ if and only if $\gamma' \in G'_{sr}(F)_0 Z_G(F)$, we see that we have to show

$$e(G,H)\sum_{P} [\phi_{Q_{0},P}]_{*}\theta_{0}(\gamma_{s})S\hat{\mu}_{P}^{H}(\log(\gamma_{u})) = e(G,H')\sum_{P'} [\phi_{Q_{0},P'}]_{*}\theta_{0}(\gamma_{s}')S\hat{\mu}_{P'}^{H'}(\log(\gamma_{u}')),$$

when $\gamma \in G_{\rm sr}(F)_0$ and $\gamma' \in G'_{\rm sr}(F)_0$. Applying [Kal11b, Lemma 4.2.3] to the trivial ep twist (G, 1, 1) and $\gamma \in G(F)$ we may assume that $\gamma_s \in S_0(F)$. According to [Kot86, Prop 7.1], the group H is then unramified. Choose $g \in G(\bar{F})$ such that $\xi \operatorname{Ad}(g)\gamma = \gamma'$. Then

$$\xi \circ \operatorname{Ad}(g) : H \to H'$$

is an inner twist. On the one hand, this implies via [Kal11b, Lemma 4.1.1] that

$$e(G, H)e(G, H') = e(H, H') = \gamma_{\psi}(B)\gamma_{\psi}(B')^{-1}$$

where B and B' are compatible good bilinear forms on $\mathfrak{h}(F)$ and $\mathfrak{h}'(F)$, and γ are the corresponding Weil constants [Wal95, VIII]. On the other hand, the inner twist $\xi \circ \operatorname{Ad}(g)$ provides a bijection between the stable classes of regular semi-simple elliptic elements in $\mathfrak{h}(F)$ and $\mathfrak{h}'(F)$. This bijection restricts to a bijection $P \leftrightarrow P'$ between the summation sets $\{P\}$ and $\{P'\}$ which has the property that whenever $P \leftrightarrow P'$, we have

$$[\phi_{Q_0,P}]_*\theta_0(\gamma_s) = [\phi_{Q_0,P'}]_*\theta_0(\gamma'_s).$$

In order to complete the proof, it will be enough to show

$$\gamma_{\psi}(B)S\hat{\mu}_{P}^{H}(\log(\gamma_{u})) = \gamma_{\psi}(B')S\hat{\mu}_{P'}^{H'}(\log(\gamma_{u}'))$$

whenever $P \leftrightarrow P'$. This is the main result of [Wal97], which is now unconditional thanks to [Ngo10] and [Wal06].

Corollary A.4. The function $S\Theta_{\phi}^{G'}$ is stable.

SCHOOL OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDY, EINSTEIN DRIVE, PRINCETON, NJ 08540, U.S.A. *E-mail*: tkaletha@math.ias.edu

51

1 1	

APPENDIX BY TASHO KALETHA

References for Appendix A

- [DR09] S. DeBacker, M. Reeder, Depth-zero supercuspidal L-packets and their stability. Ann. of Math. (2) 169 (2009), no. 3, 795–901
- [Kal11] T. Kaletha, Endoscopic character identities for depth-zero supercuspidal L-packets, Duke Math. J., 158 (2011), no. 2, 161-224.
- [Kal11b] T. Kaletha, Supercuspidal L-packets via isocrystals, arXiv:1004.2230, submitted.
- [Kot83] R. E. Kottwitz, Sign changes in harmonic analysis on reductive groups. Trans. Amer. Math. Soc. 278 (1983), no. 1, 289–297
- [Kot86] R. E. Kottwitz, Stable trace formula: Elliptic singular terms, Math. Ann. 275 (1986), 365–399
- [Ngo10] B. C. Ngo, Le lemme fondamental pour les algèbres de Lie, Publ. Math. IHES. No. 111 (2010), 1169.
- [Wal95] J.-L. Waldspurger, Une formule des traces locale pour les algèbres de Lie *p*-adiques, J. Reine Angew. Math. 465 (1995), 41–99.
- [Wal97] J.-L. Waldspurger, Le lemme fondamental implique le transfert, Compositio Math. 105 (1997), 153–236.
- [Wal06] J.-L. Waldspurger, Endoscopie et changement de caractéristique, J. Inst. Math. Jussieu 5 (2006), no. 3, 423–525.