Algebraic Geometry I

1. Exercise sheet

Let k be an algebraically closed field.

Exercise 1 (4 points):

1) Classify all closed subsets of $\mathbb{A}_{k}^{1}(k)$.
2) Show that the Zariski topology on $\mathbb{A}_{k}^{2}(k)=\mathbb{A}_{k}^{1}(k) \times \mathbb{A}_{k}^{1}(k)$ is not the product topology.

Exercise 2 (4 points):

Let $n \geq 0$. We identify $V:=\mathbb{A}_{k}^{n^{2}}(k) \cong \operatorname{Mat}_{n}(k)$ with the set of $n \times n$-matrices with values in k, and we identify $W=\mathbb{A}_{k}^{n}(k)$ with the set of monic polynomials in the variable X, which are of degree n and coefficients in k.

1) Show that

$$
V \rightarrow W, A \mapsto \chi_{A}(X):=\operatorname{det}(X \cdot \operatorname{Id}-A)
$$

is a morphism of affine algebraic sets.
2) Let $\operatorname{Disc}(f)$ be the discriminant for $f \in W$. Show that

$$
W \rightarrow \mathbb{A}_{k}^{1}(k), f(X) \mapsto \operatorname{Disc}(f)
$$

is a morphism of affine algebraic sets.
3) Show that the set of regular semisimple elements, i.e., the set of diagonalizable matrices with pairwise different eigenvalues, is open in V.

Exercise 3 (4 points):

Let $f(x, y)=a_{1} x^{2}+a_{2} x y+a_{3} y^{2}+a_{4} x+a_{5} y+a_{6} \in k[x, y]$ be a non-zero polynomial of degree 2 with vanishing locus $V:=\{f(x, y)=0\}$. Show that V is isomorphic to

1. a parabola $\left\{y-x^{2}=0\right\}$,
2. the hyperbola $\{x y-1=0\}$,
3. the union of the coordinate axis $\{x y=0\}$,
4. the disjoint union of two lines $\{x(x-1)=0\}$,
5. or a single line $\{x=0\}=\left\{x^{2}=0\right\}$.

Hint: Using suitable coordinate transformations of x, y show first that wlog $a_{1} x^{2}+a_{2} x y+a_{3} y^{2} \in$ $\left\{x^{2}, x y\right\}$.

Exercise 4 (4 points):

Determine which of the 5 options in exercise 3 are isomorphic and which not.
Hint: Determine the respective coordinate rings.

To be handed in on: Thursday, 19.10.2023 (during the lecture, or via eCampus).

