WS 2017/18

Prof. Dr. Y. Tian Dr. J. Anschütz

Algebraic Number Theory

13. Exercise sheet

Exercise 1 (4 Points):

Let K be a number field. Let v_1, \ldots, v_{r_2} be the complex places of K and for $y \in \mathbb{R}$ let $\phi_j(y) \in \mathbb{I}_K$ be the idèle with component $\exp(2\pi i y) \in K_{v_j} \cong \mathbb{C}$ at v_j and 1 at all others. Let $\varepsilon_1, \ldots, \varepsilon_t$ be a \mathbb{Z} -basis of the group of totally positive units of K where $t := r_1 + r_2 - 1$.

1) Prove that

$$f: (\hat{\mathbb{Z}} \times \mathbb{R})^t \times \mathbb{R}^{r_2} \to \mathbb{I}_K / K^{\times}, \ (\lambda_1, \dots, \lambda_t, y_1, \dots, y_{r_2}) \mapsto \varepsilon_1^{\lambda_1} \cdots \varepsilon_t^{\lambda_t} \phi_1(y_1) \cdots \phi_{r_2}(y_{r_2})$$

is a continuous group homomorphism with kernel $\mathbb{Z}^t \times \mathbb{Z}^{r_2}$ (here the exponentiation refers to Sheet 12, exercise 3).

Hint: Prove that the finite parts of $\varepsilon_1, \ldots, \varepsilon_t \in \mathbb{I}_{K,f}$ are linear independent with respect to the exponentiation by elements in $\hat{\mathbb{Z}}$.

2) Let $C \subseteq \mathbb{I}_K/K^{\times}$ be the image of f. Prove that

$$C \cong ((\hat{\mathbb{Z}} \times \mathbb{R})/\mathbb{Z})^t \times (\mathbb{R}/\mathbb{Z})^{r_2}$$

and that C is compact, connected and divisible.

Exercise 2 (4 Points):

Let $K = \mathbb{Q}(i) \subseteq \mathbb{C}$ and let $\mathfrak{q} := (1+i) \subseteq \mathcal{O}_K$ be the unique prime ideal above (2).

- 1) Prove that for every non-zero ideal $\mathfrak{a} \subseteq \mathcal{O}_K$ there exists a unique generator $\psi(\mathfrak{a}) \in \mathcal{O}_K$ such that $\psi(\mathfrak{a}) = 1 \mod \mathfrak{q}^3$. We extend ψ to a homomorphism from fractional ideals of K which are prime to \mathfrak{q} to K^{\times} .
- 2) For an idèle $x \in \mathbb{I}_K$ we denote by $\mathfrak{a}_x \subseteq K$ the fractional ideal defined by x. Prove that

$$\chi \colon \mathbb{I}_K \to \mathbb{C}^{\times}, \ x \mapsto \psi(\mathfrak{a}_{x\xi}) x_{\infty}^{-1} \xi^{-1}$$

with $\xi \in K^{\times}$ satisfying $x_{\mathfrak{q}}\xi \equiv 1 \mod \mathfrak{q}^3$ yields a well-defined character satisfying $\chi(K^{\times}) = 1$ and $\chi(\mathcal{O}_{K_{\mathfrak{p}}}^{\times}) = 1$ for every finite prime $\mathfrak{p} \neq \mathfrak{q}$.

- 3) Let $\chi_{\mathfrak{q}} \colon K_{\mathfrak{q}}^{\times} \to \mathbb{C}^{\times}$ be the restriction of χ and set $U_{\mathfrak{q}}^{(n)} := \{y \in \mathcal{O}_{K_{\mathfrak{q}}}^{\times} \mid y \equiv 1 \mod \mathfrak{q}^n\}$. Prove $\chi_{\mathfrak{q}}(U_{\mathfrak{q}}^{(3)}) = 1$ and $\chi_{\mathfrak{q}}(U_{\mathfrak{q}}^{(2)}) \neq 1$.
- 4) Compute the local ε -factor of χ_q .

To be handed in: Monday, 29. January 2018.