Algebraic Number Theory

13. Exercise sheet

Exercise 1 (4 Points):

Let K be a number field. Let $v_{1}, \ldots, v_{r_{2}}$ be the complex places of K and for $y \in \mathbb{R}$ let $\phi_{j}(y) \in \mathbb{I}_{K}$ be the idèle with component $\exp (2 \pi i y) \in K_{v_{j}} \cong \mathbb{C}$ at v_{j} and 1 at all others. Let $\varepsilon_{1}, \ldots, \varepsilon_{t}$ be a \mathbb{Z}-basis of the group of totally positive units of K where $t:=r_{1}+r_{2}-1$.

1) Prove that

$$
f:(\hat{\mathbb{Z}} \times \mathbb{R})^{t} \times \mathbb{R}^{r_{2}} \rightarrow \mathbb{I}_{K} / K^{\times},\left(\lambda_{1}, \ldots, \lambda_{t}, y_{1}, \ldots, y_{r_{2}}\right) \mapsto \varepsilon_{1}^{\lambda_{1}} \cdots \varepsilon_{t}^{\lambda_{t}} \phi_{1}\left(y_{1}\right) \cdots \phi_{r_{2}}\left(y_{r_{2}}\right)
$$

is a continuous group homomorphism with kernel $\mathbb{Z}^{t} \times \mathbb{Z}^{r_{2}}$ (here the exponentiation refers to Sheet 12 , exercise 3).
Hint: Prove that the finite parts of $\varepsilon_{1}, \ldots, \varepsilon_{t} \in \mathbb{I}_{K, f}$ are linear independent with respect to the exponentiation by elements in $\hat{\mathbb{Z}}$.
2) Let $C \subseteq \mathbb{I}_{K} / K^{\times}$be the image of f. Prove that

$$
C \cong((\hat{\mathbb{Z}} \times \mathbb{R}) / \mathbb{Z})^{t} \times(\mathbb{R} / \mathbb{Z})^{r_{2}}
$$

and that C is compact, connected and divisible.

Exercise 2 (4 Points):

Let $K=\mathbb{Q}(i) \subseteq \mathbb{C}$ and let $\mathfrak{q}:=(1+i) \subseteq \mathcal{O}_{K}$ be the unique prime ideal above (2).

1) Prove that for every non-zero ideal $\mathfrak{a} \subseteq \mathcal{O}_{K}$ there exists a unique generator $\psi(\mathfrak{a}) \in \mathcal{O}_{K}$ such that $\psi(\mathfrak{a})=1 \bmod \mathfrak{q}^{3}$. We extend ψ to a homomorphism from fractional ideals of K which are prime to \mathfrak{q} to K^{\times}.
2) For an idèle $x \in \mathbb{I}_{K}$ we denote by $\mathfrak{a}_{x} \subseteq K$ the fractional ideal defined by x. Prove that

$$
\chi: \mathbb{I}_{K} \rightarrow \mathbb{C}^{\times}, x \mapsto \psi\left(\mathfrak{a}_{x \xi}\right) x_{\infty}^{-1} \xi^{-1}
$$

with $\xi \in K^{\times}$satisfying $x_{\mathfrak{q}} \xi \equiv 1 \bmod \mathfrak{q}^{3}$ yields a well-defined character satisfying $\chi\left(K^{\times}\right)=1$ and $\chi\left(\mathcal{O}_{K_{\mathfrak{p}}}^{\times}\right)=1$ for every finite prime $\mathfrak{p} \neq \mathfrak{q}$.
3) Let $\chi_{\mathfrak{q}}: K_{\mathfrak{q}}^{\times} \rightarrow \mathbb{C}^{\times}$be the restriction of χ and set $U_{\mathfrak{q}}^{(n)}:=\left\{y \in \mathcal{O}_{K_{\mathfrak{q}}}^{\times} \mid y \equiv 1 \bmod \mathfrak{q}^{n}\right\}$. Prove $\chi_{\mathfrak{q}}\left(U_{\mathfrak{q}}^{(3)}\right)=1$ and $\chi_{\mathfrak{q}}\left(U_{\mathfrak{q}}^{(2)}\right) \neq 1$.
4) Compute the local ε-factor of $\chi_{\mathfrak{q}}$.

To be handed in: Monday, 29. January 2018.

