Prof. Dr. Y. Tian Dr. J. Anschütz

Algebraic Number Theory

12. Exercise sheet

Exercise 1 (4 Points):

Let R be a topological ring and $n \ge 1$. We equip $GL_n(R)$ with the subspace topology coming from the embedding $GL_n(R) \to R^{n \times n} \times R$, $A \mapsto (A, \det(A)^{-1})$.

- 1) Prove that $GL_n(R)$ is a topological group.
- 2) If R is a local field, prove that $GL_n(R) \subseteq R^{n \times n}$ carries the subspace topology.
- 3) Show that the conclusion in 2) is false if $R = \mathbb{A}_{\mathbb{Q}}$ is the ring of adeles of \mathbb{Q} .

Exercise 2 (4 Points):

Let K be a number field. Let σ be the set of finite places of K. For a function $\mathfrak{m} \colon \sigma \to \mathbb{N}$ taking the value 0 for all but finitely many places we set

$$\mathbb{I}_K^{\mathfrak{m}} := \prod_{v \text{ real }} (K_v^{\times})_{>0} \times \prod_{v \text{ complex}} K_v^{\times} \times \prod_{v \in \sigma} U_v^{(\mathfrak{m}(v))}$$

where $U_v^{(n)}(v) := \{u \in \mathcal{O}_{K_v}^{\times} \mid u \equiv 1 \bmod \mathfrak{p}_v^n\}$. Prove that the closed subgroups $H \subseteq \mathbb{I}_K/K^{\times}$ of finite index of the idèle class group are precisely those subgroups containing the image of $\mathbb{I}_K^{\mathfrak{m}}$ in \mathbb{I}_K/K^{\times} for some \mathfrak{m} as above.

Exercise 3 (4 Points):

In the notations from Exercise 2 assume $\mathfrak{m}(v) = 0$ for every $v \in \sigma$ and decompose $\mathbb{I}_K^{\mathfrak{m}} = \mathbb{I}_{K,f}^{\mathfrak{m}} \times \mathbb{I}_{K,\infty}^{\mathfrak{m}}$ according to finite and infinite places.

- 1) Prove that for $\alpha \in \mathbb{I}_{K,f}^{\mathfrak{m}}$ the map $\mathbb{Z} \to \mathbb{I}_{K,f}^{\mathfrak{m}}$, $n \mapsto \alpha^{n}$ extends by continuity to $\hat{\mathbb{Z}}$.
- 2) Let $\varepsilon \in \mathcal{O}_K^{\times}$ be totally positive. Show that $\mathbb{Z} \to \mathbb{I}_K^{\mathfrak{m}}$, $n \mapsto \varepsilon^n$ extends by continuity to an exponentiation $\hat{\mathbb{Z}} \times \mathbb{R} \to \mathbb{I}_K^{\mathfrak{m}}$ such that $|\varepsilon^{\lambda}| = 1$ for every $\lambda \in \hat{\mathbb{Z}} \times \mathbb{R}$.

Exercise 4 (4 Points):

Let $B \subseteq GL_2(\mathbb{R})$ be the subgroup of upper triangular matrices.

- 1) Find a Haar measure μ_B of B, i.e. a (non-zero) measure on B which is invariant under left multiplication by elements in B.
- 2) Determine a character $\delta \colon B \to \mathbb{R}_{>0}$ such that

$$\mu_B(U \cdot b) = \delta(b)\mu_B(U)$$

for all $b \in B$ and $U \subseteq B$ open. Here $U \cdot b := \{ub \mid u \in U\}$.

To be handed in: Monday, 22. January 2018.