Algebraic Number Theory

9. Exercise sheet

Exercise 1 (4 Points):

Let p be an odd prime.

1. Prove that for any integer a with $1 \leq a \leq p-1$, there exists a unique $(p-1)$-th root of unity $u_{a} \in \mathbb{Z}_{p}$ such that $u_{a} \equiv a \bmod p$.
2. For any integer $n \geq 1$, let $n=a_{0}+a_{1} p+\ldots+a_{r} p^{r}$ be the p-adic expansion of n with $0 \leq a_{i} \leq p-1$. Put $s_{p}(n)=\sum_{i=0}^{r} a_{i}$. Prove that $v_{p}(n!)=\frac{n-s_{p}(n)}{p-1}$.
3. Prove that for any $x \in \mathbb{Z}_{p}$, the series

$$
(1+p)^{x}:=1+\sum_{n=1}^{\infty} \frac{x(x-1) \cdots(x-n+1)}{n!} p^{n}
$$

converges to an element in \mathbb{Z}_{p}, and we have $(1+p)^{x+y}=(1+p)^{x}(1+p)^{y}$.
4. Prove that $\phi: x \mapsto(1+p)^{x}$ defines an isomorphism of abelian groups $\left(\mathbb{Z}_{p},+\right) \cong\left(1+p \mathbb{Z}_{p}, \times\right)$, and conclude that $\mathbb{Z}_{p}^{\times}=\mathbb{Z} /(p-1) \mathbb{Z} \times \mathbb{Z}_{p}$.
Hint: To solve the equation $(1+p)^{x}=1+$ ap with $a \in \mathbb{Z}_{p}$, prove by induction on $n \geq 1$ that there exists $x_{n} \in \mathbb{Z}_{p}$ such that $(1+p)^{x_{n}} \equiv 1+\operatorname{pa} \bmod \left(1+p^{n} \mathbb{Z}_{p}\right)$, and that $\left(x_{n}\right)_{n \geq 1}$ is a Cauchy sequence in \mathbb{Z}_{p}.

Exercise 2 (4 Points):

Let K be a field complete with respect to a non-archimedean absolute value, $\mathcal{O} \subseteq K$ be its valuation ring. Let $f(X) \in \mathcal{O}[X]$ and $\alpha_{0} \in \mathcal{O}$ with $\left|f\left(\alpha_{0}\right)\right|<\left|f^{\prime}\left(\alpha_{0}\right)\right|^{2}$. Using the Newton iteration $\alpha_{n}=\alpha_{n-1}-\frac{\alpha_{n-1}}{f^{\prime}\left(\alpha_{n-1}\right)}$ prove that there exists a unique $\alpha \in \mathcal{O}$ with $f(\alpha)=0$ and

$$
\left|\alpha-\alpha_{0}\right| \leq \frac{\left|f\left(\alpha_{0}\right)\right|}{\left|f^{\prime}\left(\alpha_{0}\right)\right|}<\left|f^{\prime}\left(\alpha_{0}\right)\right| \leq 1
$$

Exercise 3 (4 Points):

1. Let p be a prime, and $n \geq 1$ be an integer with $p \nmid n$. Prove that for any $u \in \mathcal{O}_{K}^{\times}$, the equation $x^{n}=u$ has solutions in \mathbb{Z}_{p} if and only it has solutions in \mathbb{F}_{p}.
2. Let p be an odd prime. Prove that $\mathbb{Q}_{p}^{\times} /\left(\mathbb{Q}_{p}^{\times}\right)^{2} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
3. Prove that $\mathbb{Q}_{2}^{\times} /\left(\mathbb{Q}_{2}^{\times}\right)^{2} \cong(\mathbb{Z} / 2 \mathbb{Z})^{3}$.

Exercise 4 (4 Points):

Using Newton polygons prove that the following polynomial is irreducible in $\mathbb{Q}[X]$:

$$
f(x)=\sum_{n=0}^{10} \frac{x^{n}}{n!}
$$

To be handed in: Monday, 18. Dezember 2017.

