Algebraic Number Theory

8. Exercise sheet

Exercise 1 (4 Points):

Let p be a prime with $p \equiv 1 \bmod 3$, and let $\chi: \mathbb{F}_{p}^{\times} \rightarrow \mathbb{C}^{\times}$be a primitive cubic Dirichlet character, i.e., $\chi^{3}=1$. Set $\omega=e^{\frac{2 \pi i}{3}}$. Prove that

$$
\tau(\chi)^{2}=\tau(\bar{\chi}) J(\chi) \text { with } J(\chi)=\sum_{t=1}^{p-2} \chi(t(1+t)) \in \mathbb{Z}[\omega]
$$

In particular, if $J(\chi)=x+\omega y$ with $x, y \in \mathbb{Z}$, then $x^{2}-x y+y^{2}=p$.
Hint: For the last statement use $\tau(\chi) \tau(\bar{\chi})=\chi(-1) p$ and take the norm of $J(\chi)$.

Exercise 2 (4 Points):

Use the class number formula to compute the class number of $\mathbb{Q}(\sqrt{-23})$ and $\mathbb{Q}(\sqrt{-52})$.

Exercise 3 (4 Points):

Let p be an odd prime, $\zeta_{p}=e^{2 \pi i / p}$. Let $\chi(\cdot)=(\dot{\bar{p}}):\left(\mathbb{F}_{p}\right)^{\times} \rightarrow \mathbb{C}^{\times}$denote the Legendre symbol, and let $\tau(\chi)=\sum_{a=1}^{p-1} \chi(a) \zeta_{p}^{a}$ be the quadratic Gauss sum. The aim of this exercise is to prove

$$
\tau(\chi)=\left\{\begin{array}{l}
\sqrt{p} \text { if } p \equiv 1 \bmod 4 \\
i \sqrt{p} \text { if } p \equiv 3 \bmod 4
\end{array}\right.
$$

Let S be the $p \times p$ matrix whose (k, l)-th entry is $\zeta_{p}^{(k-1)(l-1)}$.

1. Prove that $\operatorname{det}(S)=i^{\frac{p(p-1)}{2}} p^{\frac{p}{2}}$.

Hint: $\operatorname{det}(S)$ is a Vandermonde determinant. Using the derivative of $X^{p}-1$ compute $\left|\operatorname{det}(S)^{2}\right|$. Then compute the argument of $\operatorname{det}(S)$.
2. Show that $\operatorname{Tr}(S)=\tau(\chi)$, and $\operatorname{Tr}\left(S^{2}\right)=p$.
3. Show that the possible eigenvalues of S are $\pm \sqrt{p}, \pm i \sqrt{p}$.

Hint: On the space of functions $f: \mathbb{F}_{p} \rightarrow \mathbb{C}$ the matrix S represents the "Fourier transform" $f \mapsto \hat{f}$ with $\hat{f}(x):=\sum_{y \in \mathbb{F}_{p}} f(y) \zeta_{p}^{x y}$. Prove that $S^{4}=p^{2} \mathrm{Id}$.
4. Prove that if $p \equiv 1 \bmod 4$, the eigenvalue \sqrt{p} has multiplicity $\frac{p+3}{4}$, and the multiplicity of $-\sqrt{p}, i \sqrt{p},-i \sqrt{p}$ are $\frac{p-1}{4}$; if $p \equiv 3 \bmod 4$, the eigenvalue $\sqrt{p},-\sqrt{p}$ and $i \sqrt{p}$ have multiplicity $\frac{p+1}{4}$, and $-i \sqrt{p}$ has multiplicity $\frac{p-3}{4}$. Conclude the proof.
Hint: Show that S^{2} has characteristic polynomial $(X-p)^{\frac{p+1}{2}}(X+p)^{\frac{p-1}{2}}$ and use that the eigenvalues of S^{2} are the squares of the eigenvalues of S and $\tau(\chi)^{2}=\chi(-1) p$.

Exercise 4 (4 Points):

1. Find the 7 -adic expansion of $2 / 5 \in \mathbb{Q}$ up to modulo 7^{3}.
2. Find the solutions to $x^{2}+2$ in \mathbb{Z}_{7} up to modulo 7^{3}.

To be handed in: Monday, 11. Dezember 2017.

