Algebraic Number Theory

6. Exercise sheet

Exercise 1 (4 Points):

Let $K \subseteq \mathbb{R}$ be a real quadratic field with discriminant d_{K}. Then the fundamental unit of K is defined to be the unique unit ε of K such that $\varepsilon>1$ and $U_{K}=\{ \pm 1\} \times \varepsilon^{\mathbb{Z}}$.

1) Let $u>1$ be a unit of K. Show that $u \geq\left(\sqrt{d_{K}}+\sqrt{d_{K}-4}\right) / 2$ if $N_{K / \mathbb{Q}}(u)=-1$ and $u \geq\left(\sqrt{d_{K}}+\sqrt{d_{K}+4}\right) / 2$ if $N_{K / \mathbb{Q}}(u)=1$.
Hint: Consider $\operatorname{Disc}_{K / \mathbb{Q}}(1, u)$ and use $\operatorname{Disc}_{K / \mathbb{Q}}(1, u) \geq d_{K}$.
2) Show that if d_{K} is divisible by a prime p with $p \equiv 3 \bmod 4$, then K does not contain any units u with $N_{K / \mathbb{Q}}(u)=-1$.
3) Find the fundamental unit of $K=\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{5})$.

Exercise 2 (4 Points):

Let $K=\mathbb{Q}\left(\zeta_{p}\right)$ be the p-the cyclotomic field, where p is odd, and set $K^{+}=K\left(\zeta_{p}+\zeta_{p}^{-1}\right)$. Denote by U_{K} and $U_{K^{+}}$the group of units in K and K^{+}.
$1)$ Let u be a unit of K. Show that u / \bar{u} is a root of unity.
Hint: Use that $\sigma(u / \bar{u})$ has absolute value 1 for every embedding $\sigma: K \rightarrow \mathbb{C}$.
2) Let u be a unit of K. Show that $u / \bar{u}=\zeta_{p}^{k}$ for some $k \in \mathbb{Z}$ (and not $u / \bar{u}=-\zeta_{p}^{k}$).
3) Show that $U_{K}=U_{K^{+}} \times\left\langle\zeta_{p}\right\rangle$.

Hint: Consider the map $U_{K} \rightarrow\left\langle\zeta_{p}\right\rangle, u \mapsto u / \bar{u}$.

Exercise 3 (4 Points):

Let $\zeta_{5}=e^{2 \pi i / 5}$, and $u=-\left(\zeta_{5}^{2}+\zeta_{5}^{3}\right)$.

1) Find a quadratic equation over \mathbb{Q} satisfied by u and prove that $u=(1+\sqrt{5}) / 2$.
2) Prove that all the units of $\mathbb{Q}\left(\zeta_{5}\right)$ are given by $\pm \zeta_{5}^{k}\left(1+\zeta_{5}\right)^{h}$ with $0 \leq k \leq 4$ and $h \in \mathbb{Z}$.
3) Find the regulator of $\mathbb{Q}\left(\zeta_{5}\right)$.

Exercise 4 (4 Points):

1) Let $a_{n}, b_{n} \in \mathbb{C}$ be two sequences of complex numbers and for $m \leq k, m \leq m^{\prime}$ put

$$
A_{m, k}=\sum_{n=m}^{k} a_{n} \text { and } S_{m, m^{\prime}}=\sum_{n=m}^{m^{\prime}} a_{n} b_{n} .
$$

Prove

$$
S_{m, m^{\prime}}=\sum_{n=m}^{n=m^{\prime}-1} A_{m, n}\left(b_{n}-b_{n+1}\right)+A_{m, m^{\prime}} b_{m^{\prime}}
$$

2) Let $0<\alpha<\beta$ real numbers and let $z=x+i y \in \mathbb{C}, x, y \in \mathbb{R}, x>0$. Then

$$
\left|e^{-\alpha z}-e^{-\beta z}\right| \leq\left|\frac{z}{x}\right|\left(e^{-\alpha x}-e^{-\beta x}\right)
$$

Hint: Write $e^{-\alpha z}-e^{-\beta z}=z \int_{\alpha}^{\beta} e^{-t z} d t$.
3) Let $f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}, a_{n} \in \mathbb{C}$, be a Dirichlet series. Prove that if f converges for some $s_{0} \in \mathbb{C}$, then f converges locally uniformly on $\left\{s \in \mathbb{C} \mid \operatorname{Re}(s)>\operatorname{Re}\left(s_{0}\right)\right\}$.

To be handed in: Monday, 27. November 2017.

