Prof. Dr. Y. Tian Dr. J. Anschütz

Algebraic Number Theory

6. Exercise sheet

Exercise 1 (4 Points):

Let $K \subseteq \mathbb{R}$ be a real quadratic field with discriminant d_K . Then the fundamental unit of K is defined to be the unique unit ε of K such that $\varepsilon > 1$ and $U_K = \{\pm 1\} \times \varepsilon^{\mathbb{Z}}$.

- 1) Let u > 1 be a unit of K. Show that $u \ge (\sqrt{d_K} + \sqrt{d_K 4})/2$ if $N_{K/\mathbb{Q}}(u) = -1$ and $u \ge (\sqrt{d_K} + \sqrt{d_K + 4})/2$ if $N_{K/\mathbb{Q}}(u) = 1$. Hint: Consider $\operatorname{Disc}_{K/\mathbb{Q}}(1, u)$ and use $\operatorname{Disc}_{K/\mathbb{Q}}(1, u) \ge d_K$.
- 2) Show that if d_K is divisible by a prime p with $p \equiv 3 \mod 4$, then K does not contain any units u with $N_{K/\mathbb{Q}}(u) = -1$.
- 3) Find the fundamental unit of $K = \mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{5}).$

Exercise 2 (4 Points):

Let $K = \mathbb{Q}(\zeta_p)$ be the *p*-the cyclotomic field, where *p* is odd, and set $K^+ = K(\zeta_p + \zeta_p^{-1})$. Denote by U_K and U_{K^+} the group of units in *K* and K^+ .

- 1) Let u be a unit of K. Show that u/\bar{u} is a root of unity. Hint: Use that $\sigma(u/\bar{u})$ has absolute value 1 for every embedding $\sigma: K \to \mathbb{C}$.
- 2) Let u be a unit of K. Show that $u/\bar{u} = \zeta_p^k$ for some $k \in \mathbb{Z}$ (and not $u/\bar{u} = -\zeta_p^k$).
- 3) Show that $U_K = U_{K^+} \times \langle \zeta_p \rangle$. Hint: Consider the map $U_K \to \langle \zeta_p \rangle$, $u \mapsto u/\bar{u}$.

Exercise 3 (4 Points):

Let $\zeta_5 = e^{2\pi i/5}$, and $u = -(\zeta_5^2 + \zeta_5^3)$.

- 1) Find a quadratic equation over \mathbb{Q} satisfied by u and prove that $u = (1 + \sqrt{5})/2$.
- 2) Prove that all the units of $\mathbb{Q}(\zeta_5)$ are given by $\pm \zeta_5^k (1+\zeta_5)^h$ with $0 \le k \le 4$ and $h \in \mathbb{Z}$.
- 3) Find the regulator of $\mathbb{Q}(\zeta_5)$.

Exercise 4 (4 Points):

1) Let $a_n, b_n \in \mathbb{C}$ be two sequences of complex numbers and for $m \leq k, m \leq m'$ put

$$A_{m,k} = \sum_{n=m}^{k} a_n$$
 and $S_{m,m'} = \sum_{n=m}^{m'} a_n b_n$.

Prove

$$S_{m,m'} = \sum_{n=m}^{n=m'-1} A_{m,n}(b_n - b_{n+1}) + A_{m,m'}b_{m'}$$

2) Let $0 < \alpha < \beta$ real numbers and let $z = x + iy \in \mathbb{C}, x, y \in \mathbb{R}, x > 0$. Then

$$|e^{-\alpha z} - e^{-\beta z}| \le |\frac{z}{x}|(e^{-\alpha x} - e^{-\beta x}).$$

Hint: Write $e^{-\alpha z} - e^{-\beta z} = z \int_{\alpha}^{\beta} e^{-tz} dt$.

3) Let $f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$, $a_n \in \mathbb{C}$, be a Dirichlet series. Prove that if f converges for some $s_0 \in \mathbb{C}$, then f converges locally uniformly on $\{ s \in \mathbb{C} \mid \operatorname{Re}(s) > \operatorname{Re}(s_0) \}$.

To be handed in: Monday, 27. November 2017.