Algebraic Number Theory

5. Exercise sheet

Exercise 1 (4 Points):

Let K / \mathbb{Q}_{p} be a finite extension and let K^{Gal} be the Galois closure of K. Prove that a prime p is unramified in K if and only if it unramified in K^{Gal}.

Exercise 2 (4 Points):

1) Find the class number if $\mathbb{Q}(\sqrt{m})$ for $m=5,6,-5,-7,-13$.
2) Show that the ideal class group of $\mathbb{Q}(\sqrt{-23})$ is isomorphic to $\mathbb{Z} / 3 \mathbb{Z}$, and find explicitly an ideal that generates the ideal class group.

Exercise 3 (4 Points):

Let $K=\mathbb{Q}(\sqrt[3]{m})$.

1) Show that $\mathbb{Z}[\sqrt[3]{m}]$ is the ring of integers of K if m is square free and m is not congruent to ± 1 modulo 9 .
2) Prove that $\mathbb{Z}[\sqrt[3]{m}]$ is a principal ideal domain for $m=3,5,6$ and that the class number of $\mathbb{Q}(\sqrt[3]{7})$ is 3 .

Exercise 4 (4 Points):

The aim of this exercise is to prove that the pairs $(17, \pm 70)$ are the only solutions in \mathbb{Z}^{2} to the equation

$$
y^{2}+13=x^{3}
$$

We denote $A=\mathbb{Z}[\sqrt{-13}]$ and let $(x, y) \in \mathbb{Z}^{2}$ be a solution.

1) Show that no prime of A contains both $y+\sqrt{-13}$ and $y-\sqrt{-13}$.
2) Show that there exist $(a, b) \in \mathbb{Z}^{2}$ such that

$$
y+\sqrt{-13}=(a+b \sqrt{-13})^{3} .
$$

Conclude that $(x, y)=(17, \pm 70)$.
Hint: Use the fact that $\mathbb{Q}(\sqrt{-13})$ has class number 2, cf. Exercise 2.

To be handed in: Monday, 20. November 2017.

