Prof. Dr. Y. Tian Dr. J. Anschütz

Algebraic Number Theory

4. Exercise sheet

Exercise 1 (4 Points):

Let K be a number field of degree $n = [K: \mathbb{Q}]$, and $\alpha \in \mathcal{O}_K$ such that $\mathcal{O}_K = \mathbb{Z}[\alpha]$. Let $f(x) \in \mathbb{Z}[x]$ be the minimal polynomial of α , and $\alpha = \alpha_1, \cdots, \alpha_n$ be the roots of f(x).

1) Verify the equality

$$\frac{1}{f(x)} = \sum_{i=1}^{n} \frac{1}{f'(\alpha_i)(x - \alpha_i)}$$

Hint: Prove that the polynomial $f(x) \sum_{i=1}^{n} \frac{1}{f'(\alpha_i)(x-\alpha_i)} - 1$ is of degree n-1 and has n roots.

2) Prove that

$$\operatorname{Tr}_{K/\mathbb{Q}}(\frac{\alpha^{i-1}}{f'(\alpha)}) = \begin{cases} 0 & \text{if } 1 \le i \le n-1\\ 1 & \text{if } i = n-1. \end{cases}$$

Hint: Write the two sides of the equality in 1) into power series of $\frac{1}{x}$, and compare the coefficients of $\frac{1}{x^i}$ for $1 \le i \le n$.

3) Use 2) to show that $\delta_K^{-1} = (\frac{1}{f'(\alpha)}).$

Exercise 2 (4 Points):

Consider the fields $\mathbb{Q}(\zeta_{23})$, and $K = \mathbb{Q}(\sqrt{-23}) \subseteq \mathbb{Q}(\zeta_{23})$. Let \mathfrak{p} be the prime ideal $(2, (1+\sqrt{-23})/2)$ of \mathcal{O}_K . Show that there exists a unique prime ideal \mathcal{P} of $\mathbb{Q}(\zeta_{23})$ above \mathfrak{p} , and that \mathcal{P} is not a principal ideal.

Exercise 3 (4 Points):

Let $K = \mathbb{Q}(\zeta_{25})$.

- 1) Prove that K has a unique subfield of degree 5 over \mathbb{Q} , and find an explicit $\alpha \in K$ such that $M = \mathbb{Q}(\alpha)$.
- 2) Find the decompositions of the primes p = 2, 3, 5 in M/\mathbb{Q} , and their corresponding decomposition subfields.
- 3) Prove that p splits in M if and only if $p \equiv \pm 1, \pm 7 \mod 25$.

Exercise 4 (4 Points):

- Let f(X) ∈ Z[X] be a non-constant polynomial. Prove that there exist infinitely many primes p such that the image of f(X) in F_p[X] has a root in F_p. Hint: Consider the prime factors of f(n!a₀)/a₀ for some large n, where a₀ = f(0).
- 2) Show that, given an integer N, there are infinitely many primes p with $p \equiv 1 \mod N$. Hint: Apply 1) to the cyclotomic polynomial $f(X) = \Phi_N(X)$.

To be handed in: Monday, 13. November 2017.

WS 2017/18