Algebraic Number Theory

4. Exercise sheet

Exercise 1 (4 Points):

Let K be a number field of degree $n=[K: \mathbb{Q}]$, and $\alpha \in \mathcal{O}_{K}$ such that $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$. Let $f(x) \in \mathbb{Z}[x]$ be the minimal polynomial of α, and $\alpha=\alpha_{1}, \cdots, \alpha_{n}$ be the roots of $f(x)$.

1) Verify the equality

$$
\frac{1}{f(x)}=\sum_{i=1}^{n} \frac{1}{f^{\prime}\left(\alpha_{i}\right)\left(x-\alpha_{i}\right)}
$$

Hint: Prove that the polynomial $f(x) \sum_{i=1}^{n} \frac{1}{f^{\prime}\left(\alpha_{i}\right)\left(x-\alpha_{i}\right)}-1$ is of degree $n-1$ and has n roots.
2) Prove that

$$
\operatorname{Tr}_{K / \mathbb{Q}}\left(\frac{\alpha^{i-1}}{f^{\prime}(\alpha)}\right)= \begin{cases}0 & \text { if } 1 \leq i \leq n-1 \\ 1 & \text { if } i=n-1\end{cases}
$$

Hint: Write the two sides of the equality in 1) into power series of $\frac{1}{x}$, and compare the coefficients of $\frac{1}{x^{i}}$ for $1 \leq i \leq n$.
3) Use 2) to show that $\delta_{K}^{-1}=\left(\frac{1}{f^{\prime}(\alpha)}\right)$.

Exercise 2 (4 Points):

Consider the fields $\mathbb{Q}\left(\zeta_{23}\right)$, and $K=\mathbb{Q}(\sqrt{-23}) \subseteq \mathbb{Q}\left(\zeta_{23}\right)$. Let \mathfrak{p} be the prime ideal $(2,(1+\sqrt{-23}) / 2)$ of \mathcal{O}_{K}. Show that there exists a unique prime ideal \mathcal{P} of $\mathbb{Q}\left(\zeta_{23}\right)$ above \mathfrak{p}, and that \mathcal{P} is not a prinicipal ideal.

Exercise 3 (4 Points):

Let $K=\mathbb{Q}\left(\zeta_{25}\right)$.

1) Prove that K has a unique subfield of degree 5 over \mathbb{Q}, and find an explicit $\alpha \in K$ such that $M=\mathbb{Q}(\alpha)$.
2) Find the decompositions of the primes $p=2,3,5$ in M / \mathbb{Q}, and their corresponding decomposition subfields.
3) Prove that p splits in M if and only if $p \equiv \pm 1, \pm 7 \bmod 25$.

Exercise 4 (4 Points):

1) Let $f(X) \in \mathbb{Z}[X]$ be a non-constant polynomial. Prove that there exist infinitely many primes p such that the image of $f(X)$ in $\mathbb{F}_{p}[X]$ has a root in \mathbb{F}_{p}.
Hint: Consider the prime factors of $f\left(n!a_{0}\right) / a_{0}$ for some large n, where $a_{0}=f(0)$.
2) Show that, given an integer N, there are infinitely many primes p with $p \equiv 1 \bmod N$. Hint: Apply 1) to the cyclotomic polynomial $f(X)=\Phi_{N}(X)$.

To be handed in: Monday, 13. November 2017.

