Prof. Dr. Y. Tian Dr. J. Anschütz

Algebraic Number Theory

2. Exercise sheet

Exercise 1 (4 Points):

Prove that $\mathbb{Q}, \mathbb{Q}(i), \mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{-2}), \mathbb{Q}(\mu_8)$ are all the subfields of the 8-th cyclotomic field $\mathbb{Q}(\mu_8)$. For $L = \mathbb{Q}(i), \mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{-2})$ compute the character

 $(\mathbb{Z}/8\mathbb{Z})^{\times} \cong \operatorname{Gal}(\mathbb{Q}(\mu_8)/\mathbb{Q}) \twoheadrightarrow \operatorname{Gal}(L/\mathbb{Q}) \cong \{\pm 1\}.$

Exercise 2 (4 Points):

Let $A \subseteq B$ be an extension of rings and let $C \subseteq B$ be the integral closure of A in B. Let $S \subseteq A$ be a multiplicative subset. Prove that $S^{-1}C$ is the integral closure of $S^{-1}A$ in $S^{-1}B$.

Exercise 3 (4 Points):

Let $f(x) = x^3 + ax + b$ be an irreducible polynomial over \mathbb{Q} , and let $\alpha \in \mathbb{C}$ be a root of f(x). Set $K = \mathbb{Q}[\alpha]$, and \mathcal{O}_K to be the ring of integers of K.

- 1) Show that $f'(\alpha) = -(2a\alpha + 3b)/\alpha$ and find an irreducible polynomial for $2a\alpha + 3b$ over \mathbb{Q} .
- 2) Show that $\text{Disc}_{K/\mathbb{Q}}(1, \alpha, \alpha^2) = -(4a^3 + 27b^2).$
- 3) Prove that f(x) is irreducible when a = b = -1, and find an integral basis of K.

Exercise 4 (4 Points):

Consider the number field $K = \mathbb{Q}[\sqrt{7}, \sqrt{10}]$, and let \mathcal{O}_K be its ring of integers. The aim of this exercise is to show that there exists no algebraic integer such that $\mathcal{O}_K = \mathbb{Z}[\alpha]$.

1) Consider the elements:

$$\begin{aligned} \alpha_1 &= (1+\sqrt{7})(1+\sqrt{10})\\ \alpha_2 &= (1+\sqrt{7})(1-\sqrt{10})\\ \alpha_3 &= (1-\sqrt{7})(1+\sqrt{10})\\ \alpha_4 &= (1-\sqrt{7})(1-\sqrt{10}) \end{aligned}$$

Show that for any $i \neq j$, the product $\alpha_i \alpha_j$ is divisible by 3 in \mathcal{O}_K .

2) Let $i \in \{1, 2, 3, 4\}$ and $n \ge 0$ be an integer. Show that

$$\operatorname{Tr}_{K/\mathbb{Q}}(\alpha_i^n) = \alpha_1^n + \alpha_2^n + \alpha_3^n + \alpha_4^n \equiv (\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4)^n \mod 3.$$

Deduce that $\operatorname{Tr}_{K/\mathbb{Q}}(\alpha_i) \equiv 1 \mod 3$ and hence 3 does not divide $\alpha_i \in \mathcal{O}_K$.

- 3) Let α be an algebraic integer. Suppose that $\mathcal{O}_K = \mathbb{Z}[\alpha]$. Let $f \in \mathbb{Z}[X]$ be the minimal polynomial of α . For all polynomials $g \in \mathbb{Z}[X]$, we denote by $\overline{g} \in \mathbb{F}_3[X]$ its reduction modulo 3. Show that $g(\alpha)$ is divisible by 3 in \mathcal{O}_K if and only if \overline{g} is divisible by \overline{f} in $\mathbb{F}_3[X]$.
- 4) For $1 \leq i \leq 4$, let $g_i(X) \in \mathbb{Z}[X]$ be such that $\alpha_i = g_i(\alpha)$. Show that there exists an irreducible factor of \overline{f} that divides \overline{g}_i for any $j \neq i$ but does not divide \overline{g}_i .
- 5) Consider the number of irreducible factors of \overline{f} and deduce a contradiction.

To be handed in: Monday, 30. October 2017.