Algebraic Number Theory

1. Exercise sheet

Exercise 1 (4 Points):

i) Let $n \geq 1$ and set $\varphi(n):=\sharp\{m \in \mathbb{Z} \mid 1 \leq m \leq n$ and $(n, m)=1\}$. Prove

$$
n=\sum_{d \mid n} \varphi(d)
$$

ii) Let $\zeta(s)$ be the Riemann ζ-function. For $\operatorname{Re}(s)>2$ prove

$$
\frac{\zeta(s-1)}{\zeta(s)}=\sum_{n \geq 1} \frac{\varphi(n)}{n^{s}} .
$$

Exercise 2 (4 Points):

Let p be an odd prime, let q be power of p and let \mathbb{F}_{q} be the finite field with q elements.
i) Prove that $x \in \mathbb{F}_{q}^{\times}$is a square if and only if $x^{(q-1) / 2}=1$.

Hint: Use that an element $y \in \overline{\mathbb{F}}_{q}$ lies in \mathbb{F}_{q} if and only if $y^{q}=y$.
ii) Prove that $x^{2}=2$ has a solution in \mathbb{F}_{p} if and only if $p \equiv \pm 1 \bmod 8$.

Hint: Let $\alpha \in \overline{\mathbb{F}}_{p}$ be a primitive 8 th root of unity. Show that $\left(\alpha+\alpha^{-1}\right)^{2}=2$.
iii) Prove that $x^{2}=-2$ has a solution in \mathbb{F}_{p} if and only if $p \equiv 1,3 \bmod 8$.

Exercise 3 (4 Points):

Show $\mathbb{Z}[\sqrt{-2}]^{\times}=\{1,-1\}$ and that $\mathbb{Z}[\sqrt{-2}]$ is a principal ideal domain. Prove that $\mathbb{Z}[\sqrt{-3}]$ and $\mathbb{Z}[\sqrt{-5}]$ are not principal ideal domains.

Exercise 4 (4 Points):

i) For $n \geq 1$ let $r(n):=\sharp\left\{(x, y) \in \mathbb{Z}^{2} \mid x^{2}+2 y^{2}=n\right\}$. Prove that

$$
r(n)=2 \sum_{d \mid n} \chi(d)
$$

where $\chi: \mathbb{Z}_{\geq 1} \rightarrow\{-1,0,1\}$ is the multiplicative extension of

$$
\chi(p)=\left\{\begin{array}{ll}
0 & \text { if } p=2 \\
1 & \text { if prime and } p \equiv 1,3 \bmod 8 \\
-1 & \text { if } p \text { prime and } p \equiv 5,7 \bmod 8
\end{array} .\right.
$$

ii) Deduce that a positive natural number n can be represented by $x^{2}+2 y^{2}$ if and only if in the prime factorization of n each prime p with $p \equiv 5,7 \bmod 8$ has an even exponent.

Hint: Mimick the case $R=\mathbb{Z}[i]$ which was treated in the lecture.
To be handed in: Monday, 23. October 2017.

