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Introduction

This course was taught in Bonn, Germany over the Wintersemester 2016/17, by Prof. Dr. Peter Scholze.

Our plan was to learn the basics of algebraic geometry, so about sheaves, schemes, OX -modules,
affine/separated/proper morphisms, and eventually to show that proper normal curves over k can be
naturally associated to a type of field extension of k, and separated curves are quasi-projective.

The author of these notes would like to thank Dr. Johannes Anschütz and Alice Campigotto for
reading through and editing these notes. The author also takes full responsibility for any and all inac-
curacies, mistakes and typos in this write up.

Peter had a lot more to say in lectures than what could be captured here.
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1 Affine Algebraic Varieties 18/10/2016

Algebraic geometry is the study about solution sets to systems of polynomial equations. The algebra
and the geometry play a sort of dual role to each other. To explore this, we’ll first revisit the (now
outdated) mathematical objects that are varieties.

For this lecture we fix an algebraically closed field k.

Definition 1.1. A subset V ⊆ kn is an affine algebraic set if it can be written as the set of common
zeros of a set of polynomials. In other words, if there is a set M ⊆ k[X1, . . . , Xn] of polynomials in
n-variables such that

V = V (M) := {(x1, . . . , xn) ∈ kn | ∀f ∈M : f(x1, . . . , xn) = 0} .

There are two simple (given Hilbert’s basis theorem) consequences of this definition.

Proposition 1.2. 1. For any subset M ⊆ k[X1, . . . , Xn], let a = a(M) = Mk[X1, . . . , Xn] be the
ideal generated by M , then

V (M) = V (a).

2. For any M ⊆ k[X1, . . . , Xn], there exists a finite subset {f1, . . . , fn} ⊆M such that V (f1, . . . , fn) =
V (M).

Proof. 1. The containment V (M) ⊇ V (a) is obvious. The conditions of the set V (a) are stronger
than the conditions of the set V (M), because M ⊆ a. For the converse, write f ∈ a as

∑m
i=1 figi

with fi ∈ M and gi ∈ k[X1, . . . , Xn], then for all x = (x1, . . . , xn) ∈ V (M) we have f(x) =∑
fi(x)gi(x) = 0, i.e. f = 0.

2. One translation of Hilbert’s basis theorem says that k[X1, . . . , Xn] is noetherian, since k is noethe-
rian (it is a field). Let M be some arbitrary subset of k[X1, . . . , Xn], and let a = a(M) be the ideal
it generates. Recall that a ring R is noetherian if every ideal is finitely generated, or equivalently,
if every non-empty set of ideals has a maximal element. Let f1, . . . , fm ∈M be a set of generating
elements of a, then

V (M) = V (a) = V (f1, . . . , fn)

follows from part 1 above.

Let us now consider a handful of examples of affine algebraic sets.

Example 1.3. Any finite subset of kn.1) Conversely, any affine algebraic set of k is either finite or all
of k. In fact, k[x] is a principal ideal domain and every f ∈ k[x] factors as f =

∏n
i=1(x− αi), so then

V (f) = {α1, . . . , αn}.

Example 1.4. For n = 2 and k = C, with x, y coordinates, we have a range of classical examples.
Keep in mind that we are really just looking at the purely real solutions. The reader is asked to graph
these solution sets by hand or using wolfram alpha etc.

1. The equation x+ y = 0 gives us a straight line through the origin of gradient −1.

2. The unit circle in R2 can be represented by x2 + y2 = 1.

3. For the equation x2 + y2 = −1, we of course have a non-empty solution set in C2, but there are
no real solutions.

1See exercise sheet 1 problem 1(i): Let Z ⊆ An(k)) be a finite set. Prove that Z is Zariski closed in An(k).
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4. When we consider curves of degree three (the degree of a curve now will be the degree of the
equation that defines it), we have non-singular elliptic curves such as y2 = x3 − x.

5. The elliptic curve y2 = x3−x2 is quite different, and has a singularity called a node at the origin.

6. Another elliptic curve with a singularity is y2 = x3, which has a cusp at the origin (somehow
even worse than a node).

7. The equation x2 = y2 can be factorised as (x+y)(x−y) = 0, so the solution set of this polynomial
are two lines through the origin of gradient −1 and 1. The intersection of the two lines is still
considered to be a singularity of this curve.

Let’s now jump into something that we should have been expecting all the lecture so far: the Zariski
topology on kn.

Proposition 1.5. There is a unique topology on kn for which the closed subsets are exactly the affine
algebraic sets.

Proof. Of course we can just claim we have a topology on kn by letting the closed sets be exactly the
affine algebraic sets, but now we have to check these sets contain ∅ and all of kn, that affine algebraic
sets are closed under arbitrary intersection and finite unions.

Firstly we note that V (∅) = kn and V (1) = ∅, so we’re done with that part.

We also have the equality ⋂
i∈I

V (Mi) = V

(⋃
i∈I

Mi

)
once we unjumble the set-theoretic definitions of objects above.

Finally we have to show that affine algebraic sets are closed under finite unions, but by induction
we need only worry about the union of two affine algebraic sets. It is clear that

V (M1) ∪ V (M2) ⊆ V (M1 ·M2), where M1 ·M2 = {f · g | f ∈M1, g ∈M2}.

To check the converse, take x ∈ V (M1 ·M2)\V (M1). Take f ∈ M1 such that f(x) 6= 0, then for all
g ∈M2 we have fg ∈M1 ·M2, so

0 = (fg)(x) = f(x)g(x).

Since f(x) 6= 0 and we’re in a field (which is necessarily an integral domain), we have g(x) = 0 for each
g ∈M2, so x ∈ V (M2).

Definition 1.6. When we write An(k), we mean the space kn with the Zariski topology. We call An(k)
an n-dimensional affine space.

Given a closed subset V of An(k) (so an affine algebraic subset), we have V = V (a) for some ideal
a ∈ k[X1, . . . , Xn]. There is a fundamental question we now want to ask ourselves about varieties.

How tight is the relationship between V and a?

The answer to this question is: quite tight. To be precise about this, let us remember a definition from
commutative algebra.

Definition 1.7. The radical of an ideal a contained in a (commutative unital) ring R is

rad(a) =
√
a := {x ∈ R | ∃m > 0 : xm ∈ a} .
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If we consider An(k) we have V (a) = V (rad(a)). The containment V (a) ⊇ V (rad(a)) is obvious, as
a ⊆ rad(a). For the converse note that fn(x) = 0 implies f(x) = 0 for each x ∈ An(k). The following
version of Hilbert’s Nullstellensatz (zero-position-theorem) will be proved by the end of the lecture.

Theorem 1.8 (Hilbert’s Nullstellensatz). The map

Φ : {ideals a ⊆ k[X1, . . . , Xn] with a = rad(a)} −→ {closed sets V ⊆ An(k)}

defined by a 7→ V (a) is a bijection, with inverse Φ−1 defined by

V 7−→ {f ∈ k[X1, . . . , Xn] | ∀x ∈ V : f(x) = 0} .

Before we prove this theorem, let’s see an easy corollary, which shows us that we can always find
non-empty affine algebraic sets for all proper ideals a ⊆ k[X1, . . . , Xn].

Corollary 1.9. Let a $ k[X1, . . . , Xn] be a proper ideal, then there exists x ∈ kn such that f(x) = 0
for all f ∈ a.

Proof. Since a is a proper ideal, 1 6∈ a, so clearly 1 6∈ rad(a), which also implies that rad(a) is a
proper ideal of k[X1, . . . , Xn]. By Hilbert’s Nullstellensatz, this implies that V (a) = V (rad(a)) 6=
V (k[X1, . . . , Xn]) = ∅, hence we have x ∈ kn with x ∈ V (a).

A consequence of this corollary tells us how a set of polynomials has to behave.

Given a finite collection of polynomials f1, . . . , fm ∈ k[X1, . . . , Xn], then exactly one of the follow-
ing two things happens:

1. There exists x ∈ kn such that f1(x) = . . . = fm(x) = 0.

2. There exists g1, . . . , gm ∈ k[X1, . . . , Xn] such that

f1g1 + · · ·+ fmgm = 1.

Part 2 is a clear obstruction to this collection of polynomials having a common zero.

Soon we will see a proof Hilbert’s Nullstellensatz. In the proof we will first make a claim, and fin-
ish the proof assuming this claim to be true. We will then prove this claim, which will require a small
Lemma that we will prove now.

Lemma 1.10. Let R be a non-zero, finitely generated k-algebra, then there is always a map R→ k of
k-algebras.

Proof. We know from commutative algebra that R has a non-zero maximal ideal m, so by replacing R
with R/m (which is also a non-zero finitely generated k-algebra) we can assume that R is a field. By
Noether normalisation2 we have a finite injective map k[X1, . . . , Xm] ↪→ R for some m ≥ 0. If m > 0,
then the image of the element X1 becomes invertible in R (it’s a field don’t forget), so X−1

1 ∈ R.
Since R is a finitely generated k[X1, . . . , Xm]-module, R is integral over k[X1, . . . , Xm] and amount the
X1, . . . , Xm we have some a1, . . . , an ∈ k[X1, . . . , Xm] such that(

X−1
1

)n
+ a1

(
X−1

1

)n−1
+ · · ·+ an = 0.

If we multiply the above equation by Xn
1 we obtain an algebraic relation amoung X1 and 1, which

contradicts the fact these elements are algebraically independent.

2Here is a reminder of Noether normalisation: Given a field k and a finitely generated k-algebra A, then there exists a
non-negative integer m and a set of algebraically independent elements X1, . . . , Xm ∈ A such that A is a finitely generated
module over the polynomial ring k[X1, . . . , Xm]. This can be rephrased as done in our first lecture by saying there exists
a finite (so that R is a finitely generated k[X1, . . . , Xm]-module) injective map k[X1, . . . , Xm] ↪→ R.

6



This means m = 0 and, by the finiteness of the map k → R, that R is a finite field extension of
k. Recall though from the very beginning of the lecture that k is algebraically closed, so there does
not exist a non-trivial finite field extension of k. Hence k ∼= R and we have our map R → k of
k-algebras.

Note that if k is not algebraically closed, then we fall flat right at the end of that proof, and we can
only conclude that R is some finite field extension of k. Now we are ready to prove the Nullstellensatz.

Proof of Hilbert’s Nullstellensatz. We claim the following formula holds for all ideals a ∈ k[X1, . . . , Xn],
and where V = V (a),

rad(a) = {f ∈ k[X1, . . . , Xn] | ∀x ∈ V (a) : f(x) = 0} = Φ−1(V (a)). (1.11)

If we know this, then it is clear that Φ−1 ◦ Φ is the identity,

Φ−1 ◦ Φ(V (a)) = Φ−1(V (a)) = rad(a) = a,

since a = rad(a) from our hypotheses, and Claim 1.11 says that Φ−1(a) = rad(a). The map Φ is also
clearly surjective by definition of the closed sets in An(k) and the fact that V (a) = V (rad(a)) for all
ideals a (not just with a = rad(a)). Hence, Φ is injective and surjective, i.e., bijective.

Now we have the task of showing Claim 1.11 holds. To show,

rad(a) ⊆ {f ∈ k[X1, . . . , Xn] | ∀x ∈ V (a) : f(x) = 0} ,

let f ∈ rad(a) and take x ∈ V := V (a). Since f ∈ rad(a) we have fm ∈ a for some m > 0, hence
0 = fm(x) = (f(x))m in a field k, and we’re done.

Conversely, let f 6∈ rad(a), then by contrapositive we need to find x ∈ V with f(x) 6= 0. Let R
be the following quotient ring,

R = k[X1, . . . , Xn, Y ]/(f(X1, . . . , Xn)Y − 1, a).

In other words, we’ve adjoined an inverse to f(X1, . . . , Xn) and killed a. Along these lines we can
rewrite R as

R = (k[X1, . . . , Xn]/a)
[
f
−1
]
,

where f is the image of f in the quotient ring k[X1, . . . , Xn]/a. If R = 0 we would have 1 = 0 , i.e. in
this localised ring there would exist an m > 0 such that

f
m

= f
m · 1 = f

m · 0 = 0.

This would imply that fm ∈ a inside k[X1, . . . , Xn], i.e. f ∈ rad(a), a contradiction. Hence R is a non-
zero ring. Also notice that if we had a map of k-algebras R→ k, then we would obtain x1, . . . , xn, y ∈ k
such that f(x1, . . . , xn)y = 1 which implies that f(x1, . . . , xn) 6= 0, but x = (x1, . . . , xn) ∈ V (a). These
facts are just formal consequences from the construction of R. However, we do have a map R → k
of k-algebras, since R is a non-zero finitely generated k-algebra and we can apply Lemma 1.10. This
concludes that Φ and Φ−1 are mutual inverses.

We can construct an even nicer correspondence however, and one that we will see again in scheme
theoretic language.

Definition 1.12. Let V ⊆ An(k) be closed. The algebra of functions on V is defined as

O(V ) := k[X1, . . . , Xn]/{f | ∀x ∈ V : f(x) = 0}.
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Recall that a ring R is called reduced if given x ∈ R with xm = 0 for some m > 0, then x = 0. Notice
that O(V ) is always reduced, because if fm = 0 in O(V ), then fm(x) = 0 for all x ∈ V , which implies
that f(x) = 0 for all x ∈ V (since k is a field), so f = 0 in O(V ). Note also that O(V ) is clearly finitely
generated as a k-algebra.

Definition 1.13. A map between affine algebraic sets V ⊆ An(k) and W ⊆ Am(k) is a map f : V →W
of sets of solutions, such that there exists a collection of polynomials f1, . . . , fm ∈ k[X1, . . . , Xn] with

f(x) = f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))

for all x = (x1, . . . , xn) in V .

This definition of a morphism clearly has the properties we demand a morphism in a category to have
(i.e. composition, associativity and unitial properties), so for each algebraically closed field k we obtain
a category AffVar(k) (the authors notation for now) of affine algebraic subsets in An(k) for all n ≥ 0.

Remark 1.14. The fi’s in the definition above are not determined by f , since they need only have
certain properties on V , and the closed subsets V ⊆ An(k) should be thought of as quite small in An(k).
The images of the fi’s are however well defined in O(V ), since the quotient in the definition of O(V )
identifies polynomials with the same value on V .

Also note that the map f : V → W determines a map f̃ : k[Y1, . . . , Ym]→ O(V ) which sends Yi 7→ f i,

the image of fi in the quotient algebra O(V ). Notice that this map f̃ factors through the quotient
O(W ). In other words, we have the following commutative diagram,

k[Y1, . . . , Ym] O(V )

O(W )

f̃

f∗
.

The pullback map f∗ is given by g 7→ g ◦ f , so simply pre-composition.

A corollary of Hilbert’s Nullstellensatz is the following equivalence of categories.

Corollary 1.15. There is an equivalence of categories between AffV ar(k) and the category of reduced
finitely generated k-algebras and k-algebra homomorphisms, defined by the (contravariant) functor F
which sends V 7→ O(V ) and f : V →W to f∗ : O(W )→ O(V ).

Proof. We will prove this equivalence of categories by showing that F is fully3 faithful4, and essentially
surjective5.

Fully Faithful Let V ⊆ An(k) and W ⊆ An(k), and consider,

FV,W : Hom(V,W )→ Hom(O(V ),O(W )).

To check this map is injective, we take f, f ′ : V → W , such that f∗ = (f ′)∗. In this case we have
for all g ∈ O(W ), x ∈ V , g(f(x)) = f∗g(x) = (f ′)∗g(x) = g(f ′(x)). Notice now that g = Y i implies
f(x) = (Y 1f(x), . . . , Y mf(x)) = f ′(x). To show FV,W is surjective, take a k-algebra homomorphism
G : O(W ) → O(V ), which we can specify by simply saying where that Yi → f i for all Yi ∈ O(W )
(which we remember is a quotient of k[Y1, . . . , Ym]). We lift these f i to fi ∈ k[X1, . . . , Xn], and obtain
a map,

(f1, . . . , fm) : kn → km,

which we restrict to a map f : V → W . It’s then a simple check that f∗ = G. Take some Yi ∈ O(W )
and any x = (x1, . . . , xn) ∈ V , then

f∗Yi(x) = Yi ◦ f(x) = Yi(f1(x), . . . , fm(x)) = f i(x) = G(Yi)(x).
3A functor F : C → D is full if the induced maps on morphism classes are always a surjection.
4Sort of dual, we call a functor F : C → D faithful if the induced map on morphism classes is always an injection.
5A functor F : C → D is essentially surjective if for each Y ∈ D there is an X ∈ C with F (X) ∼= Y in D.
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Essentially Surjective Let R be some reduced finitely generated k-algebra, so then R is simply

R ∼= k[X1, . . . , Xn]/a

where the ideal a has the property that a = rad(a), or else R would not be reduced. Then set
V = V (a) ⊆ kn, and we have O(V ) ∼= R as a consequence of Hilbert’s Nullstellensatz.
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2 Affine Schemes 20/10/2016

Recall from the last lecture that for a closed subset V ⊆ An(k) we have the algebra of functions on V
denoted as O(V ). Let Map(V, k) be the set of all maps of sets V → k, which we can turn into a ring
with point-wise addition and multiplication in k. Then O(V ) has the following equivalent description,

O(V ) = im (k[X1, . . . , Xn] −→ Map(V, k)) ,

where we include polynomials on An(k) into the ring of all set-theoretic functions V → k. We can also
re-write V (a) in a similar way, as

V (a) = Homk−alg.(A, k),

where A = k[X1, . . . , Xn]/a. We would like to extend Corollary 1.15 to involve general rings, which
is compatible with including the full subcategory of affine algebraic sets into our new, more general
category. In general rings do not have an underlying field k.

We could now start talking about general varieties, but since we want to work with schemes, it seems
more efficient to define an affine scheme and then we’ll get to general schemes.

Convention: All rings will now be commutative and unital, unless otherwise specified. All
maps will be ring homomorphisms.

Definition 2.1. Let A be a ring, then SpecA is defined as the collection of all ring homomorphisms
A → K, where K is some field, and where we identify two maps A → K and A → K ′ if there exists
the following commutative diagram.

K ′

A K

.

This is a rather categorical definition, and in fact we could rephrase it as

SpecA = colimK∈Fld HomRng(A,K),

where Fld is the category of fields, and Rng is the category of rings. There is a problem here though,
that SpecA might not necessarily be a set, but we shall rectify that now, with an alternative definition.

Proposition 2.2. The map SpecA → {prime ideals in A} defined by (f : A → K) 7→ ker(f) is a
well-defined bijection.

Proof. If f : A → K is a map, where K is a field, then ker(f) is a proper ideal in A, and if we have
xy in ker(f), then 0 = f(xy) = f(x)f(y) which imples x or y is in ker(f) since K is a field (and an
integral domain). Hence ker(f) is prime. If we have a diagram

K ′

A K
f

f ′

then the map K → K ′ is injective, so ker(f) = ker(f ′), which concludes our map is well-defined.

To check bijectivity, we shall construct an inverse map, which in the process will construct a dis-
tinguished representative from each equivalence class. If p ⊆ A is a prime ideal, then A/p is an integral
domain, so we have an inclusion

A/p ↪→ Frac(A/p) =: k(p),
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from A/p into a field6. Hence we have the composition

fp : A→ A/p ↪→ k(p),

which we define as fp, which is a map to a field with ker(fp) = p. This gives us surjectivity of the map
in question. In general, for any map f : A → K, then we can factor this map through the quotient of
ker(f) = p, and the map A/p ↪→ K can be factored again through Frac(A/p). In this way we have the
following commutative diagram.

K

A A/p

Frac(A/p)

f

fp

This diagram concludes that fp is equivalent to f . Hence, if we have two maps f : A → K and
f ′ : A→ K ′ with ker(f) = ker(f ′), then f f ′.

The canonical representative fp : A→ k(p) is our natural choice of map into a field given a prime ideal
in a ring A (i.e. a point in SpecA).

Definition 2.3. 1. We now define the set SpecA as the set of all prime ideals in A, called the
spectrum of the ring A.

2. For x ∈ SpecA, let px be the prime ideal which is x, then

k(x) := k(px) = Frac(A/px),

is called the residue field at x.

3. For x ∈ SpecA, we have a natural map A → k(x) which maps g 7→ g(x). In slightly different
terms, we want to consider any element g ∈ A as a function on SpecA, which value at x ∈ SpecA
is g(x) ∈ k(x). In some more words, for each g ∈ A, we can map x ∈ SpecA to g(x) ∈ k(x)
which is essentially just viewing g modulo px, inside the field of fractions of A/p.

Example 2.4. Let’s consider the simplest ring we know, Z, and look at the spectrum of Z. The
elements are all the non-zero prime ideals (2), (3), (5), (7), . . . and the ideal (0) which we think of as
a generic point, arbitrarily close to all others (we’ll see why it’s special once we have some topology).
The residue fields at these points are simply Z/2,Z/3,Z/5,Z/7, . . . and Q. Remember that elements
of Z act as functions on SpecZ, so if n ∈ Z, we have n(p) = n modulo p.

There is a relation between the spectrum of a ring and the affine algebraic subsets of kn, so long as k
is an algebraically closed field. First we need a quick definition.

Definition 2.5. Given a ring A, then SpecmaxA is defined as the subset of SpecA consisting of all
the maximal ideals of A.

Proposition 2.6. Let k be an algebraically closed field, and let A be a finitely generated k-algebra, so
A = k[X1, . . . , Xn]/a. Then

kn ⊇ V (a) = Homk−alg.(A, k) −→ SpecmaxA ⊆ SpecA

the map which sends f : A→ k to ker(f) is a bijection.

6Recall the fraction field (or field of fractions) Frac(A) of an integral domain A is the collection of elements a/b with
a, b ∈ A and b 6= 0 modulo the relation a/b ∼ a′/b′ if and only if ab′ = a′b. Addition and multiplication is defined the
same as how one adds and multiplies rational numbers.

11



Proof. Clearly given f : A→ k we have ker(f) is a maximal ideal, and for any maximum ideal m ⊆ A,
we’ve seen that k ∼= A/m (from the proof of Lemma 1.10). Hence for any maximal ideal m ⊆ A, we have
a map of k-algebras A→ A/m ∼= k. It is easy to check that these maps define inverse bijections.

Remark 2.7. It might seem natural to study SpecmaxA instead of SpecA, but SpecmaxA has a big
problem: it is not functorial. Consider the inclusion Z → Q, then we’ll see that the induced map on
SpecQ→ SpecZ simply identifies the generic point (0) ∈ SpecZ, since SpecQ = ∗ is just a point. We
have Specmax Q = SpecQ, but there is no map into Specmax Z since Specmax Z has no generic point,
i.e. no (0).

Let’s now at least state why Spec(−) is functorial.

Proposition 2.8. Given f : A→ B, then Spec f defined by q 7→ f−1(q) is a well-defined map.

Proof. If x, y ∈ A and xy ∈ f−1(q), then f(x)f(y) = f(xy) ∈ q, so f(x) or f(y) are in q, hence x or y
are in f−1(q). Therefore f−1(q) is a prime ideal in A.

Remark 2.9. For any ring A we have a unique map Z→ A, so we have a unique map SpecA→ SpecZ.
Somehow all of algebraic geometry lives over SpecZ, where we can start to perform number theory and
arithmetic algebraic geometry.

We would like to define a topology on SpecA such that if A is a finitely generated k-algebra, then
V (A) (which has the Zariski topology of an affine variety) has the subspace topology of SpecA (from
Proposition 2.6).

Definition 2.10. Let A be a ring, for any subset M ⊆ A, define

V (M) := {p ⊂ A | M ⊆ p} = {x ∈ SpecA | ∀g ∈M, g(x) = 0} ,

called the vanishing locus of M .

The equality above comes from the canonical representative we constructed in Proposition 2.2. It is
clear that if M ⊆ p, then g(x) = 0 for all x ∈M , since the value of g(x) takes place in a field where we
previously quotiented out p. Conversely, the fact that we are working in a field implies that if g(x) = 0
then g = 0 in A/p so g ∈ p.

Example 2.11. Take SpecZ and notice that V (12) = {(2), (3)}, V (64) = {(2)}, and V (210) =
{(2), (3), (5), (7)}.

Proposition 2.12 (Definition/Proposition). There is a unique topology on SpecA called the Zariski
topology, where the closed sets are V (M).

Proof. This proof is very similar to that of Proposition 1.5.

Remark 2.13. It is quite clear that Spec f is a continuous map, given f : A → B of rings. This is
because the preimage of a closed set V (M) in SpecA is simply V (f(M)) in Spec(B).

Remark 2.14. The topology of SpecA is different to what we are used to. For exampe there does not
exist a ring A such that SpecA contains [0, 1] with the subspace topology. In Example 2.4 we noted
that (0) was a generic point. What we mean by that is that all non-empty open subsets contain (0).
To see this, notice that given M and n ∈ M with n 6= 0, then V (M) 63 (0), so any non-empty open
subset does contain (0).

Similarly, if we consider A = k[X], with k algebraically closed. In this case we have countably many
points (so long as k is countable), and a generic point holding them all together, so in this case
SpecZ ∼= Spec k[X] topologically.

Proposition 2.15. Given a ring A, then SpecA is quasi-compact.
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Note that we don’t simply say compact, because we don’t want to trick people into thinking SpecA is
also Hausdorff, which is usually goes hand-in-hand with compactness.

Proof. This finiteness statement really just boils down to a finiteness statement in algebra, about poly-
nomials.

Let SpecA =
⋃
i∈I Ui be a cover of SpecA by open sets, and let Zi = SpecA\Ui = V (Mi), then

we have

∅ =
⋂
i∈I

V (Mi) = V

(⋃
i∈I

Mi

)
.

Let a ⊆ A be the ideal now generated by the union of all these Mi’s, so V (a) = V (
⋃
iMi). First let’s

assume that a 6= A, then there exists a maximal ideal m containing a, but then m is also a prime ideal
and m ∈ V (a) = ∅, a contradiction. Hence a = A, so 1 ∈ a. This means there exists f1, . . . , fm ∈

⋃
iMi

and g1, . . . , gm ∈ A such that
1 = f1g1 + · · ·+ fmgm. (2.16)

We can now choose a finite set J ⊂ I such that f1, . . . , fm ∈
⋃
j∈J Mj . Equation 2.16 then tells us

that the union of Mj ’s over J now generates the unit ideal, so

V

(⋃
i∈J

Mi

)
= V (A) = ∅.

Hence SpecA =
⋃
j∈J Uj .
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3 Topological Properties of SpecA 25/10/2016

We begin the lesson today with a proposition.

Proposition 3.1. Let M be a subset of a ring A, and let a be the ideal generated by M .

1. V (M) = V (a) = V (rad(a))

2. The map Spec(A/a) → SpecA induced by the quotient map is a homeomorphism onto V (a) ⊆
SpecA.

3. Closed subsets of SpecA are in one-to-one correspondence with radical ideals of A, by mapping

V 7−→ I(V ) :=
⋂
p∈V

p,

with inverse a→ V (a).

Proof. The proof of part 1 is similar to the first lecture. For part 2, we know that the ideals of A/a
correspond to the ideals of A containing a, and prime ideals in A/a correspond to prime ideals in A
containing A, which is the definition of V (a). Hence we have a continuous bijection, so for this map
to be a homeomorphism, it suffices to show that it is a closed map. Let Z ⊆ Spec(A/a) be closed, so
Z = V (b′) for some ideal b′ ⊆ A/a, so there is an ideal b ⊆ A containing a, and we now have Z = V (b)
inside SpecA.

The proof for part 3 is similar to the proof of Hilbert’s Nullstellensatz (Theorem 1.8). We have that
rad(a) ⊆ I(V (a)), and now let’s prove the other direction. Let f ∈ I(V (a)) with f 6∈ rad(a), and let

R = (A/a)
[
f
−1
]
, where f is the image of f inside A/a. It is clear that R 6= 0, since this would imply

that f
m

= 0 using 1 = 0, and then we’d have fm ∈ a which means that f ∈ rad(a), a contradiction. If
R 6= 0, then SpecR 6= ∅, because there exists a maximal ideal m ⊆ R as an element of SpecR. Now
look at x ∈ SpecR and y ∈ SpecA, then for all g ∈ a we have g(y) = 0, since we have the following
commutative diagram.

A R

k(y) k(x)=

This diagram implies that g(y) can be factored through R where a has been quotiented out, so g(y) = 0.
However, this contradicts the fact that f(y) = f(x) 6= 0 as f is invertible in R.

This proof gives us some ideas concerning when the spectrum of a ring is empty, and when the function
f(x) is zero for all x ∈ SpecA and a f ∈ A.

Lemma 3.2. Let A be a ring and let f ∈ A.

1. SpecA = ∅ if and only if A = 0.

2. f is invertible in A if and only if for all x ∈ SpecA we have f(x) 6= 0.

3. f is nilpotent in A if and only if for all x ∈ SpecA we have f(x) = 0.

Proof. Part 1 follows from the existence of maximal ideals. In part 2, let fg = 1, then for all
f(x)g(x) = 1 for all x ∈ SpecA hence f(x) 6= 0 for all x ∈ SpecA. Remember that these facts
are happening in the residue field k(x) which is in particular an integral domain. Conversely, if f is not
invertible, then A/(f) is not the zero ring, so then part 1 says that SpecA/(f) is non-empty. We also
have a non-trivial ring map Spec(A/(f))→ SpecA induced by the quotient, and for all x ∈ Spec(A/(f))
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we know that f(x) = 0, so f(x) is not always non-zero for each x ∈ SpecA.

For part 3, if f is nilpotent, then fm = 0 for some natural number m. This tells us that f(x)m =
fm(x) = 0 for all x ∈ SpecA, but we are working over a field k(x) so f(x) = 0 for all x ∈ SpecA. Now
assume that f(x) 6= 0 for all x ∈ SpecA, and that f is not nilpotent, such that A[f−1] 6= 0. We now
proceed similarly to the proof of part 3 of Proposition 3.1, which states that ∅ 6= SpecA[f−1]→ SpecA.
Since f is invertible in A[f−1] then f(x) 6= 0 for some x ∈ SpecA.

Since we have been working with some localisations, we would like a proposition corresponding to
Proposition 3.1 Part 2, this time relating a specific localisation of a ring with some subset of SpecA.

Proposition 3.3. Given a ring A and f ∈ A.

1. The map SpecA[f−1] → SpecA induced by the localisation is an open embedding, with image
D(f) = SpecA\V (f).

2. The A-algebra A[f−1] is initial amoung all A-algebras such that the induced action map SpecB →
SpecA factors over D(f).

Remark 3.4. We should remark about part 2. This implies that A[f−1] depends only on D(f), not
actually on f . So if we have f, g ∈ A with D(f) = D(g), then A[f−1] = A[g−1].

Proof. Recall from commutative algebra that the prime ideals of A[f−1] are in one-to-one correspon-
dence with the prime ideals of A such that f 6∈ p, by sending a prime ideal q ∈ A[f−1] to q ∩A (not a
literal intersection), and a prime ideal p ⊂ A to p[f−1]. By definition, this second set is the complement
of V (f), which we define as D(f). Again, we have a continuous bijection, so let’s show it is a closed
map too. Let Z ⊂ SpecA[f−1] be closed, then Z = V (M) for some M ⊆ A[f−1]. Let’s write this
generating set as

M =

{
gi
fni

∣∣∣∣ gi ∈ A,ni ∈ N
}
.

Let N = {gi} be the subset of A featuring only the numerators of the elements in M , then we consider
the closed set V (N) ⊆ SpecA.

V (N) ∩ SpecA[f−1] = V ({gi}) = V

({
gi
fni

})
= V (M) = Z

Hence our bijection map is also a homeomorphism.

Now let B be some A-algebra, with structure map φ : A → B, such that Specφ factors through
D(f), then φ(f) is non-zero everywhere on SpecB. In other words φ(f)(y) 6= 0 for all y ∈ SpecB.
From Lemma 3.2 we see that φ(f) must be invertible in B, so we have a unique map l in the following
diagram.

A A[f−1]

B B[φ(f)−1]

l

∼=

These open subsets of D(f) are an important feature of the topology on SpecA.

Definition 3.5. A principal open subset of SpecA is an open subset U ⊆ SpecA of the form U = D(f)
for some f ∈ A. If U = D(f) in SpecA, then we define the coordinate ring O(U) = A[f−1], which is
well defined up to unique isomorphism by Remark 3.4.
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In particular we have O(SpecA) = A with f = 1.

Currently we want to define affine schemes such that we have an equivalence of categories between
rings and affine schemes, but a topological space SpecA by itself doesn’t remember enough about the
ring A. For example, if φ is any map between fields, it will induce a homeomorphism. Also, consider
A→ Ared = A/rad(0), then the induced quotient map on Spec is again a homeomorphism. Next lesson
we’ll fix that problem, and the solution will be these coordinate rings O(U). For now, we have more
topology to do.

Proposition 3.6. Let A be a ring.

1. The principal open subsets of SpecA form a basis B for the topology.

2. If U, V ∈ B, then U ∩ V ∈ B.

3. All the principle open subsets of SpecA are quasicompact.

Proof. For part 1, an arbitrary open subset of SpecA is written as the complement of a closed set
V (M) =

⋂
f∈M V (f), so set theory tells us that U =

⋃
f∈M D(f). Part 2 comes straight from

the previous calculation that V (f) ∪ V (g) = V (fg) which one would do in the proof of Defini-
tion/Proposition 2.12, D(f) ∩D(g) = D(fg). Part 3 is also clear, because we identified the subspaces
D(f) of SpecA is SpecA[f−1].

We now come to some purely topological definitions, which will help us try to understand just how
strange the spaces SpecA are.

Definition 3.7. Let X be a topological space.

1. X is irreducible if all non-empty proper open subsets of X have non-trivial intersection. This is
equivalent to asking that no finite union of non-empty proper closed subsets is all of X.7

2. A point x ∈ X is a generic point if x is contained in each non-empty open set of X.

3. X is T0 separable if for all x, y ∈ X with x 6= y, there is an open set U of X which contains either
x or y, but not both.

4. X is Hausdorff if for all distinct points x, y ∈ X there are open sets U, V ⊂ X such that x ∈
U, y ∈ V and U ∩ V = ∅.

Remark 3.8. There are some obvious consequences of these definitions, which are really quick logic
exercises. If X is a Hausdorff space, and X is not a point or empty, then X is not irreducible. If X
has a generic point, then X is irreducible. If X is T0, then X has at most one generic point. A point
x ∈ X is generic if and only if {x} = X, in other words, if and only if the closure of {x} is equal to X.

Last time we saw that SpecZ and Spec k[X] have a generic point, so they are irreducible. We have a
more general statement to make about this.

Lemma 3.9. Let A be an integral domain, then (0) is an element of SpecA and is a generic point.

Proof. Let U be a non-empty open subset of SpecA, then U = V (M)c in SpecA with M 6= 0, since
U 6= ∅. Hence M 6⊆ (0), so (0) 6∈ V (M) and (0) ∈ U .

In what follows, if X is a topological space, and S ⊆ X some subset, then we say that S is irreducible
(or x ∈ S is a generic point in S) if this condition holds for S with the subspace topology.

Proposition 3.10. Let A be any ring.

7With this equivalent definnition, it is then clear why schemes such as Spec(C[x, y]/(xy)) are not irreducible, as it can
be seen as the union of the x and y axis.
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1. The irreducible closed subsets of SpecA are in one-to-one correspondence with the prime ideas of
A, by sending a prime ideal p ⊂ A to V (p).

2. For p ⊆ A a prime ideal, then V (p) = {p}, the closure of {p}. In other words, p ∈ V (p) is the
unique generic point of V (p).

Proof. Part 1 is similar to part 3 in Proposition 3.1. Let p ⊆ A be some prime ideal, then V (p) ∼=
SpecA/p is irreducible since A/p is an integral domain. Conversely, if V ⊆ SpecA is an irreducible
closed subset, then we let a = I(V ). We want to show that a is prime, so we let f, g ∈ A with
f, g 6∈ a, but with fg ∈ a. This implies that D(f) ∩ V (a) 6= ∅ and D(g) ∩ V (a) 6= ∅, but we have
D(f)∩D(g)∩ V (a) = D(fg)∩ V (a) = ∅, which is a contradiction, since it shows V (a) is be reducible.
The fact these two maps are inverses to each other is Proposition 3.1.

For part 2 If V ⊆ SpecA is closed, and p ∈ V , then a := I(V ) ⊆ p ⊆ A. This means that we
have V = V (a) ⊇ V (p), which implies that V (p) = {p}. It is simple to check that SpecA is T0 (using
the fact that for each point x ∈ SpecA then x ∈ V (px)) so any subspace is also T0, which gives us the
uniqueness of this generic point.

If we combine all of these topological properties of affine schemes together, we come to a theorem which
states when we can identify a space X as SpecA for some ring A.

Theorem 3.11 (Hochster). Let X be a topological space. Then the following are equivalent:

1. X ∼= SpecA for some ring A.

2. X is quasicompact, with a basis B consisting of quasicompact open sets stable under finite inter-
section, and X is sober, so every irreducible closed subset of X has a unique generic point.

3. X can be written as the inverse limit of finite T0-spaces.

The reference for this theorem is “Prime Ideal Structures in Commutative Rings” (1969), which is
Hochster’s PhD Thesis. The proof of this theorem involves building some strange ring A such that
SpecA is homeomorphic to X for a specific space X, and we will not see the proof here. In particular,
this theorem tells us about some strong finiteness properties of SpecA.

Definition 3.12. A topological space X is called spectral if it satisfies any of the three equivalent
conditions listed in Theorem 3.11.

Example 3.13. Let A = k[X,Y ]/(XY ), then SpecA constists of all the points of lying on the X and
Y axes inside k2, which represent the maximal ideals, and the whole axes themselves. Both the X
and Y axes are irreducible closed subsets of SpecA, so they contain a unique generic point ηX and ηY ,
which we can think of as the whole axis. In this case we have

SpecA = SpecmaxA ∪ {ηX , ηY }.

Of course we know that SpecmaxA is simply all the k-algebra homomorphisms from A→ k which are
just all the points (x, y) ∈ k2 such that xy = 0, which of couse is (x, 0) and (0, y) for all x, y ∈ k.

Example 3.14. Now let A = k[X,Y ] with k algebraically closed, then SpecA consists of all the points
of k2 as recognised by maximal ideals, all the irreducible curves C ⊆ SpecA, which are the irreducible
closed subsets of SpecA with unique generic point ηC of height 1, and the generic point (0) for the
whole space SpecA.
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4 SpecA has a Natural Sheaf 27/10/2016

Today we are going to study sheaves and presheaves in some generality, and then notice that we are
already working with a sheaf on SpecA, and this together with the space SpecA will define an affine
scheme.

Definition 4.1. Let X be some topological space.

1. The category Ouv is the category whose objects are the open subsets of X and the morphisms are
inclusions. This comes from the French ouvert’, which means open.

2. A presheaf of C (usually C is Sets, Rings, Groups, Algebras, Modules, . . . ) on X is a functor

F : Ouvop −→ C.

We call the elements in F(U) the sections of F over U , and the maps F(i) : F(U) → F(V )
restriction map resUV , given V ⊆ U in Ouv.

There are many basic examples of presheaves.

Example 4.2. Let F = C0 which maps an open set U 7→ C0(U,R) to the set of continuous maps from
U → R. We can give C0(U,R) the structure of a ring, and then C0 is a presheaf from Ouv(X) to the
category of rings, or even R-algebras. The restriction maps just take a continuous map f : U → R and
restrict this map to the open subspace V ⊆ U , f |V : V → R. If X were a smooth manifold, then we
could consider the presheaf which takes U to C∞(U,R), the ring of smooth maps U → R, again with
the same restriction maps.

Definition 4.3. Let F be a presheaf on X. Then F is a sheaf on X if for all U ∈ Ouv and all open
covers U =

⋃
α Uα, then F(U) is the limit of the following diagram (equaliser of the following two

maps),

∏
α∈I F(Uα)

∏
α,β∈I F (Uα ∩ Uβ)

resUαUβ

resUαUβ

.

Recall that in Set, the equaliser of two maps f, g : X → Y is all the x ∈ X such that f(x) = g(x). We
can rephrase this sheaf condition as follows. A presheaf F is a sheaf if given any open subset U ⊆ X
and an open cover U =

⋃
α Uα, then

1. if s, t ∈ F(U) are such that s|Uα = t|Uα for all α ∈ I, then s = t in F(U), and

2. if sα ∈ F(Uα) is a collection of sections which agree when restricted to their intersections Uα∩Uβ ,
then there exists s ∈ F(U) which restricts to each sα on each open subset Uα ⊆ U .

If a presheaf only satisfies part 1 above, then we call this a separated presheaf.

Example 4.4. Let F = C0 again, then we can prove that C0 is indeed a sheaf. Let s, t : U → R, then
if s and t agree on each open subset in a cover of U , then s and t necessarily agree on all of U . Take
x ∈ U , then there exists Uα 3 x and we have s(x) = s|Uα(x) = t|Uα(x) = t(x), so s = t in C0(U,R).
Hence C0 is at least a separated presheaf. Now let Uα be a open cover of U , and let sα be a collection
of continuous map sα : Uα → R which agree on the intersections, then we can define a continuous map
s : U → R by taking x ∈ U , some Uα which contains x, and setting s(x) = sα(x). This is independent
of Uα chosen, because all our sα’s agree on intersections, and it’s easy to prove it is continuous using
this property and the continuity of all the sα’s.

We see a quick proposition now, which makes us really think about some terminology.
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Proposition 4.5. If F is a sheaf, then F(∅) = ∗ is a single point (the one point set, trivial group,
trivial ring, . . . ).

Proof. Keep in mind, this proof is sort of dumb. Take U = ∅, then we can cover U by all the open sets
Ui, indexed over the set I = ∅. Now the sheaf condition says that

F(∅) = eq

( ∏
∅

∏
∅

)
.

It might seem silly, but the product over nothing is a single point, so we are simply taking the equaliser
of the unique map from a point to a point with itself, which is itself a point. Hence F(∅) = ∗.

The power of geometry is that we like to solve global problems, by first solving them locally, and then
using a sheaf or something similar to lift these to global solutions. This is what Grothendieck intro-
duced to algebraic geometry (he was originally an analyst/geometer) when he developed schemes.

Our problem right now, is that we have OSpecA, but it is only defined on principal open subsets
D(f) for some f ∈ A. We want this is be a sheaf, but at present this is not even a presheaf!

Definition 4.6. Let X be a topological space, and let B be a basis for X (stable under finite intersec-
tion), where we consider B as a full subcategory of Ouv(X).

1. A presheaf F on B is a functor from Bop → C.

2. A presheaf on B is a sheaf if it satisfies the sheaf condition(s) for all U ∈ B and any open cover
of U by elements in this same basis.

Lemma 4.7. Given a space X and a basis for this space B stable under intersections, then the functor
from sheaves on X to sheaves on B sending a sheaf on X simply to the restricted sheaf on B is an
equivalence of categories.

The inverse of this functor takes a sheaf on B, say G to the sheaf on X defined at U ∈ Ouv(X) as the
inverse limit of G(V ) for all V contained in U with V ∈ B,

G(U) = limV⊆U,V ∈B G(V ).

Proof. Exercise sheet 3 problem 2.

Theorem 4.8. Let A be a ring, and let the basis B of SpecA be the one made of principle open subsets,
then OSpecA is a sheaf on B.

Using Lemma 4.7, we have a sheaf of rings on SpecA, which on principal open subsets D(f) is simply

OSpecA(D(f)) = O(D(f)) = A[f−1].

Proof. Let U = D(f) =
⋃
i∈I Ui, with Ui = D(fi) all inside SpecA. We have to show that A[f−1] is

the equaliser of ∏
i∈I A[f−1

i ]
∏
i,j∈I A

[
(fifj)

−1
]
,

where one map localises A[f−1
i ] at fj and the other localises A[f−1

j ] at fi. This problem is now pure
commutative algebra. First we can make some reductions however.

1. We can assume that we can replace A[f−1] by A, and U by X, since U is the spectrum of a ring.

2. Since X is quasicompact, there exists J ⊂ I such that J is finite, so we can assume that I is
finite. This reduction actually requires a little more work to write out formally.
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So let’s assume that f = 1 and I is finite. To show that A →
∏
iA[f−1

i ] is injective we assume we
have a ∈ A which maps to zero in A[f−1

i ] for all i ∈ I, then there exists n ≥ 1 such that fni a = 0 by
the definition of equality in these localised rings. Our n can be chosen to be independent of i since I
is finite. Then we have

V ({fni }i∈I) =
⋂
i∈I

V (fi) = ∅,

since X =
⋃
iD(fi). Hence {fni }i∈I must generate the unit ideal in A, so we have gi ∈ A such that

1 =
∑
i∈I

gif
n
i .

By multiplying both sides by a, we obtain a =
∑
gif

n
i a = 0, so we have injectivity. Now we take

si ∈ A[f−1
i ] such that si = sj ∈ A[(fifj)

−1]. Let’s write si = ai
fni

, where again this n can be chosen

independent of i since I is finite. The fact that si = sj ∈ A[(fifj)
−1] gives us the equation

(fifj)
m(fnj ai − fni aj) = 0

in A. By making some rearrangements to this, by specifically replacing fmi ai by ai and n+m by n we
obtain

fnj ai = fni aj (4.9)

for all i, j ∈ I. From the same reasoning as above we know that the collection of fni ’s generates the
unit ideal, so we have (a ‘partition of unity’) gi ∈ A such that

1 =
∑
i∈I

gif
n
i .

Set s ∈ A to be
s =

∑
i∈I

giai,

then for any j ∈ I we have

fnj s =
∑
i∈I

gif
n
j ai =

∑
i∈I

gif
n
i aj =

(∑
i∈I

gif
n
i

)
aj = aj ,

where the second equality comes from Equation 4.9. This tells us that s 7→ aj
fnj

= sj in A[f−1
j ].

There was a discussion in a lecture now about whether or not OSpecA defined as we have now is different
to defining F(D(S)) = A[S−1] for some subset S ⊆ A. Clearly these definitions match up on principal
open subsets D(f) for an f ∈ A, but in general these are not the same.

Example 4.10. Let
A = k[X,Y, Z]

/
XZ, Y Z,Z2 .

Then we have the quotient map A→ Ared = k[X,Y ] where Ared is the reduced ring of A. We necessarily
have SpecA ∼= SpecAred (as a general fact). If we take U = SpecA− {p} where p = (0, 0) ∈ SpecA ∼=
SpecAred, then we have

OSpecA(U) = OSpecAred(U),

which we can see from decomposing U as U = D(X) ∪D(Y ). Note that D(X) and D(Y ) necessarily
tells us that Z = 0 here too from the XZ = 0 and Y Z = 0 in A. The only difference here is that
SpecA has a slightly ‘thicker’ origin (whatever that means for now). We also have

FSpecA(U) = A 6= Ared = FSpecAred(U).

This failure is reflected by the fact that FSpecA 6= OSpecA, but we do have FSpecAred = OSpecAred . Of
course we’ve skipped through lots of calculations in this example, but these things will come later.
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Example 4.11. Alternatively, we can take a ringA and f, g ∈ A, and considerD(f)∪D(g), which is just
D(S) if S = {f, g}. Assume that D(f) ∩ V (g) 6= ∅ then OX(D(S)) 6= A[S−1], because g ∈ OX(D(S))
is not invertible, since V (g) ∩D(S) 6= ∅, but g is invertible in A[S−1].
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5 General Sheaf Theory 03/11/2016

Definition 5.1. Let X be a topological space and let C be a category (of sets, abelian groups, rings, etc.)
and let F and G be presheaves on X. A morphism of presheaves φ : F → G is a family of morphisms
(in C) φU : F(U)→ G(U) for each U ∈ Ouv(X) such that given an inclusion of open sets U ⊆ V in X
we have the following commutative diagram.

F(V ) G(V )

F(U) G(U)

φV

resVU resVU

φU

If F and G are sheaves, then a morphism of sheaves is simply a morphism of the underlying presheaves.

Since we defined presheaves as functors Ouv(X) → C, then we could alternatively define a morphism
of presheaves as a natural transformation of functors. The category of sheaves on X embeds fully-
faithfully into the category of presheaves on X. Next we define a tool to study sheaves and presheaves
locally.

Definition 5.2. Let X be a topological space with a presheaf F , and let x ∈ X, then the stalk Fx of F
at x is defined to be

Fx := colimU3x,U∈Ouv(X) F(U).

Remark 5.3. The above colimit is taken over a filtered indexing set, so alternatively we have,

Fx ∼= {(U, s) | x ∈ U ∈ Ouv(X), s ∈ F(U)} /∼ ,

where (U, s) ∼ (U ′, s′) if and only if there exists V ∈ Ouv(X) contained in U ∩U ′ with x ∈ V such that
s|V = s′|V . Write (U, s) for the equivalence class of (U, s) in the stalk. This filteredness also allows us
to say the the functor defined by taking the stalk of a sheaf is exact, using a similar idea to that in
problem 4 on exercise sheet 28.

If φ : F → G is a morphism of presheaves, then for each x ∈ X we have a well-defined induced
map φx : Fx → Gx defined by (U, s) 7→ (U, φU (s)). The well-definedness of this map comes from the
naturality properties of morphisms of presheaves.

Definition 5.4. Given s ∈ F(U) and x ∈ U ⊆ X, then we define the germ of s at x to be sx = (U, s) ∈
Fx.

If B is a basis for our topology on X, then we can rewrite the stalk as

Fx ∼= colimU3x,U∈B F(U),

which comes from the fact that the set of all U ∈ B containing x is cofinal in the set of all open sets
containing x. This will come in handy when we want to look at the structure sheave of the spectrum
of a ring A, since this structure sheaf takes very nice values on the basis of principal open subsets.

Proposition 5.5. Let X be a space with presheaves F and G, and let φ, ψ : F → G be morphisms of
presheaves.

1. If F is a sheaf and U ⊆ X is open, then

ρU : F(U) −→
∏
x∈U
Fx

s 7−→ (sx)x∈U

is injective.

8Show that filtered colimits of abelian groups are exact.
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2. If F is a sheaf, then φU is injective for all open U ⊆ X if and only if φx : Fx → Gx is injective
for all x ∈ X, i.e. sections of sheaves are determined by their germs.

3. If F and G are sheaves, then φU is bijective for all open U ⊆ X if and only if φx : Fx → Gx is
bijective for all x ∈ X.

4. If G is a sheaf, then φ = ψ if and only if φx = ψx for all x ∈ X.

Proof. 1. We need to show ρU is injective, so let s, t ∈ F(U) be sections, with sx = tx for all x ∈ U ,
then for each x ∈ U we have Vx containing x open in U such that s|Vx = t|Vx , from the equivalent
definition of the stalk in Remark 5.3. Clearly U is covered by all these Vx’s, and the fact that F
is a sheaf tells us the map

F(U)→
∏
x∈U
F(Vx)

is injective. Under this map s, t 7→ (s|Vx)x∈U = (t|Vx)x∈U , so we have s = t.

2. First let’s suppose that x ∈ X, then φx is injective, since taking stalks is exact, which comes from
the fact that filtered colimits are exact from exercise sheet 2 problem 4.910 Conversely, let U be
an open subset of X, then we have the commutative diagram

F(U)
∏
x∈U Fx

G(U)
∏
x∈U Gx

φU
∏
φx .

The top morphism is injective by part 1 of this proposition, and the product of injective maps in
injective, so this implies that φU is injective.

3. If φU are all bijections then clearly φx, which is just the colimit of a whole suite of bijections,
is also a bijection. Suppose instead that φx are all bijective for all x ∈ X. We can conclude
that φU are all injective for all open subsets U ⊆ X, by part 2 of this proposition, so we are
left with surjectivity. Let t ∈ G(U) and x ∈ U . By assumption there is Vx 3 x open inside of
U and a section sx ∈ F(Vx) such that φx(sxx) = tx. This equality of germs extends to a small
neighbourhood, so there exists Wx contained in Vx also containing x such that φ(sx|Wx) = t|Wx

inside of G(Wx). Now we replace Vx with Wx. We have a whole bunch of s|Vx now, and we’d like
to glue them together, so we need to check they agree on intersections. Take x, x′ ∈ U , then

φVx∩Vx′
(
sx|Vx∩Vx′

)
= t|Vx∩Vx′ = φVx∩Vx′

(
sx
′
|Vx∩Vx′

)
.

Since these φVx∩Vx′ are injective maps, then we have sx|Vx∩Vx′ = sx
′ |Vx∩Vx′ . Applying the sheaf

property of F allows us to glue these together to obtain s ∈ F(U). This means that s|Vx = sx

so by the naturality of φ we have φ(s)|Vx = t|Vx . The fact that G is a sheaf then tells us that
φ(s) = t, and hence φU is surjective, and in fact bijective.

9Let I be a flitered partially ordered set. Show that for each inductive system of short exact sequences indexed over
I, the colimits also form a short exact sequence.

10One might hope that we can repeat this argument with the word surjective, and the answer so far is yes. However,
the converse of this statement is false if we replace the injective with surjective. The following is problem 4(ii) on exercise
sheet 3: For a holomorphisc function f : U → C let f ′ be its derivative. Show that f 7→ f ′ defines a surjective morphism
D : OX → OX (where OX sends an open subset U ⊆ X where X is an open subset of C to {f : U → C holomorphic})
of sheaves. Give an example of an open subset X ⊆ C such that D is not surjective on global sections.
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4. If φ = ψ then obviously φx = ψx. Conversely, take φx = ψx for all x ∈ X, then for an open set
U ⊆ X we have the following commutative diagram.

F(U)
∏
x∈U Fx

G(U)
∏
x∈U Gx

φUψU
∏
φx=

∏
ψx .

The bottom map is injective from part 1 of this proposition, which implies that φU = ψU for all
open subsets U ⊆ X.

We leave another warning for the reader here that surjectivity of the stalk function is a big deal. We can
describe the failure in an equivalence of surjectivity in terms of homological algebra, and this is where
we get sheaf cohomology from. We’ll spend most of next semester talking about sheaf cohomology.

Definition 5.6. Let X be a topological space, and let F and G be sheaves, and let φ : F → G be a
morphism of sheaves.

1. The map φ is called injective (resp. bijective) if for all x ∈ X φx : Fx → Gx is injective (resp.
bijective). This is equivalent to φU being injective (resp. bijective) for all open subsets U ⊆ X.

2. The map φ is called surjective if for all x ∈ X we have φx is surjective. This is not equivalent to
φU being surjective for all U ⊆ X (see problem 4(ii) on exercise sheet 3, and Footnote 10).

There is a way to construct a sheaf from a presheaf, through a process called ‘sheafification’. Now we
have the correct language to define this construction.

Proposition 5.7. Let X be a topological space and F be a presheaf on X, then there exists a sheaf
F̃ with a morphism of presheaves ιF̃ : F → F̃ such that for every morphism of presheaves φ : F → G
where G is a sheaf, there exists a unique morphism φ : F̃ → G such that φ = φ ◦ ιF̃ . The following also
holds.

1. The map ιF̃ induces bijections on stalks.

2. The pair (F̃ , ιF̃ ) is unique up to unique isomorphism.

3. The pair (F̃ , ιF̃ ) is natural in the presheaf variable F and morphisms of presheaves.

4. The assignment F 7→ F̃ and φ 7→ φ is a functor, left adjoint to the inclusion functor from the
category of sheaves into the category of presheaves.

Proof. For some open set U ⊆ X we define

F̃(U) =

{
(sx)x∈U ∈

∏
x∈U
Fx

∣∣∣∣∣∀x ∈ U,∃V ∈ Ouv(U) such that x ∈ V, t ∈ F(V ) : ∀y ∈ V, sy = ty

}
.

Heuristically, this definition is simply a collection of germs, with the condition that they don’t vary
too much in a small neighbourhood. Define ιF̃ to send the section s ∈ F(U) to its germ (sx)x∈U ∈ F̃ .

This map is what we were calling ρU in Proposition 5.5. It is easy to check that F̃ is a sheaf. The first
condition is obvious, so take an open set U ⊆ X and an open cover Ui of U with si = (six)x∈Ui that
agree on overlaps, then we can define s = (six)x∈U where i is chosen such that x ∈ Ui. It is also easy to
check that ιF̃ is a morphism of presheaves and induces bijections on stalks.
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We now show that the pair (F̃ , ιF̃ ) have the desired universal property. Let φ : F → G be a mor-
phism of presheaves, where G is a sheaf, then we obtain the following commutative diagram.

F F̃

G G̃

ιF̃

φ
∏
φx

φ

ιG̃

If G is a sheaf, then ιG̃ is a bijection. This follows from the observation that ιF̃ induces a bijection on
stalks for each presheaf F , and then we use the fact that G is a sheaf and part 3 of Proposition 5.5.

We construct φ to literally be
(
ιG̃
)−1 ◦

∏
φx. This morphism φ is unique because we showed that

morphisms agreeing on stalks of sheaves are equal. Part 2, 3 and 4 are purely formal category theory.
Since we have defined this sheafification functor with some universal property, then we obtain these
extra properties.

Notice that part 4 tells us that sheafification commutes with all colimits as a left adjoint functor. Now
let’s quickly mention the spectrum of a ring, or else we may as well be in a topology course right now.

Proposition 5.8. Let A be a ring, X = SpecA and x ∈ X, then

OX,x ∼= Apx .

Proof. Consider the basis for X of principal open subsets, so B = {D(f) ⊆ X|f ∈ A}. Then we can
rewrite the definition of the stalk of the structure sheaf at a point x ∈ X as

OX |x = colimx∈U,U=D(f)OX(U) = colimx∈U∈B A[f−1] =: B.

The above colimit is taken over the structure maps a
fn 7→

a
fn = agn

(fg)n . Maybe it already seems obvious

that B ∼= Apx , but we can show this explicitly too.

Let x ∈ D(f), so equivalently f 6∈ px, so in particular we have a map A[f−1] → Apx defined by
a
fn 7→

a
fn , where of course we are using the same notation for two different equivalence classes of ele-

ments in two different rings. These maps are compatible with the structure maps in the direct limit
defining B above, so we have a map α : B → Apx . We also have a map β : A 7→ B defined by sending

a 7→ a
1 . If f 6∈ px, then x ∈ D(f) and β(f) = f

1 in A[f−1], in particular β(f) ∈ B×, so we obtain a

map β : Apx → B defined by a
fn 7→

a
fn . Clearly β and α are mutual inverses to each other, so we have

B ∼= Apx .
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6 Locally Ringed Spaces and Schemes 08/11/2016

Let’s remind ourselves about local rings. (There will be lots of definitions to start us off today).

Definition 6.1. A ring A is a local ring if it has a unique maximal ideal mA.

In this case, note that all the elements of A\mA are invertible. Conversely, if A is a ring and I ( A is
an ideal such that all elements of A\I are invertible, then A is a local ring with mA = I.

Definition 6.2. A spectral space X is called local if it has a unique closed point.

The following lemma is an obvious consequence of the above two definitions, and motivation for the
naming conventions (or an extreme coincidence).

Lemma 6.3. A ring A is a local ring if and only if SpecA is a local spectral space.

Proof. The closed points of an affine scheme SpecA are exactly the maximal ideals.

Definition 6.4. A morphism φ : A → B of local rings is a local morphism if φ−1(mB) = mA (so it
preserves the local structure). A map f : X → Y of local spectral spaces is called local if it maps the
closed point of X to the closed point of Y .

We don’t need a proof for the next lemma.

Lemma 6.5. A morphism of local rings φ : A→ B is local if and only if aφ : SpecB → SpecA is local.

Definition 6.6. Given a ring A and a prime ideal p ⊆ A, then the localisation of A at p is

Ap = A[(A\p)−1].

Given a spectral space X and x ∈ X, then the localisation of X at x is

Xx =
⋂
U3x

U.

The following predictable proposition is actually worthy of a few lines of dialogue.

Proposition 6.7. Given a spectral space X, a point x ∈ X, a ring A and prime ideal p ⊆ A.

1. The ring Ap is a local ring with maximal ideal pAp.

2. The spectral space Xx is a local spectral space.

3. If X = SpecA, then we have a map A → Ap, and SpecAp
∼= Xx where x corresponds to p in

X = SpecA.

Proof. For part 3, we rewrite Ap as the following filtered colimit,

colimf 6∈pA[f−1].

This implies that SpecAp can be re-written as the following cofiltered limit.

SpecAp = limf 6∈p SpecA[f−1] = limf 6∈pD(f) =
⋂
f 6∈p

D(f) = Xx

For part 2, let x 6= y ∈ Xx be a closed point, then Xx\{y} is open, which implies the existence of
a U ⊆ X such that x ∈ U , and y 6∈ U . This implies that y 6∈

⋂
U3x U = Xx, a contradiction. In

partilcular, Xx has at most one closed point, but x ∈ Xx is easily seen to be closed as {x} ∩Xx = {x}.
Part 1 now follows from part 2 and 3.
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Now comes one of the most important definitions in the course, because it’s used in the definition of a
scheme, which is actually the most important definition in the course.

Definition 6.8. 1. A ringed space is a pair (X,OX) of a topological space X and a sheaf of rings
OX .

2. A locally ring space is a ring space (X,OX), such that for all x ∈ X, the stalk OX,x at x is a
local ring.

3. If A is a ring, then SpecA is the locally ringed space (SpecA,OSpecA).

Our dream is to have a fully faithful functor from the opposite category of rings to locally ringed spaces,
and for this we need to define what a morphism of ringed spaces are.

Definition 6.9. Let (X,OX) and (Y,OY ) be ringed spaces, then a map of ringed spaces is a continuous

map of underlying topological spaces f : X → Y plus a map f#
V→U : OY (V ) → OX(U) for all open

U ⊆ X, V ⊆ V and f(U) ⊆ V , such that for all open set containments U ′ ⊆ U ⊆ X and V ′ ⊆ V ⊆ Y ,
and f(U ′) ⊆ V ′ and f(U) ⊆ V , we have the following commutative diagram.

OY (V ) OX(U)

OY (V ′) OX(U ′)

f#
V→U

resV
V ′ resU

U′

f#

V ′→U′

The intuition here is the we take functions g on V to a function g ◦ f on U , where f : X → Y is our
continuous map. This map is simply precomposition if we start talking about manifolds and sheafs of
smooth functions.

Definition 6.10. Let f : X → Y be a continuous map of topological spaces, and let F be a preshead
on X and G be a presheaf on Y .

1. The pushforward f∗F is the presheaf on Y defined by (f∗F)(V ) = F(f−1(V )) for V ∈ Ouv(Y ).

2. The pullback f+G is the presheaf on X defined by

(f+G)(U) = colimf(U)⊆V,V ∈Ouv(Y ) G(V )

for an open set U ⊆ X.

Notice that the colimit in part 2 of the definition above is filtered, since given V, V ′ which both contain
f(U), then V ∩ V ′ still contains f(U) and obvious contained in both V and V ′.

Proposition 6.11. Given the situation of the previous definition, we have the following natural corre-
spondence

PreSh(X)(f+G,F) ∼= PreSh(Y )(G, f∗F).

We say that f+ is left adjoint to f∗, it’s right adjoint.

Proof. To prove this, we need to build an isomorphism Φ : PreSh(X)(f+G,F) → PreSh(Y )(G, f∗F)
for every F ∈ PreSh(X) and every G ∈ PreSh(Y ), which is natural in the variables F and G. This is
done in Görtz and Wedhorn, [2, Remark 2.26, p.53-4].

Recall that the fact we have an adjoint pair of functors tells us a lot of information, like left adjoint
preserve all colimits and right adjoints preserve all limits, and stuff like that.

Proposition 6.12. Let x ∈ X, then we have a natural identification (f+G)x = Gf(x).
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With natural identifications, we often denote equality, even though it is strictly naturally isomorphic
up to a unique natural isomoprhism.

Proof. This falls out almost straight from the definitions.

(f+G)x = colimU3x(f+G)(U) = colimU3x colimV⊇f(U) G(V ) ∼= colimV 3f(x) G(V ) = Gf(x)

We do need a little argument for the isomorphism above, but it is not hard to justify.

Proposition 6.13. Let f : X → Y be a continuous function of topological spaces, with a sheaf F of X
and a sheaf G on Y .

1. f∗F is a sheaf on Y .

2. f−1G is the sheafification of f+G.

3. We have the following adjunction

Sh(X)(f−1G,F) ∼= Sh(Y )(G, f∗F).

4. For all x ∈ X we have (f−1G)x = Gf(x).

Proof. Let V =
⋃
i∈I Vi be an open covering of V in Y , then we have

U = f−1(V ) =
⋃
i∈I

Ui,

where Ui = f−1(Vi). This means that we have

(f∗F)(V ) = F(f−1(V )) = F(U) (f∗F)(Vi) = F(f−1(Vi)) = F(Ui),

and the sheaf conditions for f∗F follow straight from the sheaf conditions for F . This show part 1, and
for part 2 is actually secretly a definitions, not part of our proposition. Part 3 follows the universal
property of sheafification, and our adjunctions.

Sh(X)(f−1G,F) ∼= PreSh(X)(f+G,F) ∼= PreSh(Y )(G, f∗F) ∼= Sh(Y )(G, f∗F)

Finally, part 4 come from the fact that the sheafification process preserves stalks, and then we basically
use Proposition 6.12.

Corollary 6.14. Let (X,OX) and (Y,OY ) be ringed spaces, then

Hom((X,OX), (Y,OY )) ∼= {f : X → Y and f# : f−1OY → OX} ∼= {f : X → Y and f [ : OY → f∗OX}

Proof. This follows straight from the formalism of the previous proposition.

Definition 6.15. Let φ : B → A be a map of rings, and let X = SpecA and Y = SpecB, then
aφ : (X,OX)→ (Y,OY ) is a morphism of ringed spaces given by aφ : X → Y on the level of topological
spaces, and (aφ)b : OY → (aφ)∗OX defined on a basis of principal opens by the natural map for all
s ∈ B

OY (D(s)) OX((aφ)−1(D(s)))

B[s−1] A[φ(s)−1]

= =

φ[s−1]

where we can identify OX((aφ)−1(D(s))) = OX(D(φ(s)).
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Remark 6.16 (Warning!). The functor from the category of rings to the category of ringed spaces
is not fully faithful yet, because there are maps between affine schemes (now consider only as ringed
spaces) that are not yet induced by maps of rings.

Example 6.17. Take p some prime, then there is a morphism of ringed spaces fp : (SpecQ,OSpecQ)→
(SpecZ,OSpecZ) which is defined by sending the point SpecQ = ∗ to p ∈ SpecZ. Indeed, take f# :
f−1
p OSpecZ → OSpecQ to be the natural map, then this does not come from a ring map Z→ Q.

We need to restrict the set of morphisms. We need some condition relating the geometry of X with
the algebra of OX .

Definition 6.18. A morphism of locally ringed spaces (X,OX) → (Y,OY ) is a collection of maps
f : X → Y and f# : f−1OY → OX of ringed spaces, such that for all x ∈ X, the map of local rings

f#
x : OY,f(x) = (f−1OY )x → OX,x

is a local map.

After almost 12 hours of lectures and 3 assignments, we come to the main definition we are going to
need in this course (and for the rest of our algebraic-geometric lifes).

Definition 6.19. An affine scheme is a locally ringed space (X,OX) such that (X,OX) ∼= (SpecA,OSpecA)
for some ring A. A morphism of affine schemes is exactly a morphism of locally ringed spaces. A scheme
is a locally ringed space (X,OX) such that there exists a covering X =

⋃
i∈I Ui of X by open subsets

such that each (Ui,OX|Ui ) is isomorphic to an affine scheme. A morphism of schemes is simply a
morphism of locally ringed spaces.

Remark 6.20. If φ : B → A is a map of rings, then aφ : (SpecA,OSpecA) → (SpecB,OSpecB) is
a morphism of locally ringed spaces. For all x ∈ SpecA, we have p ⊆ A, and φ−1(p) = q ⊆ B,
and we have (aφ)#

x : OY,f(x) = Bq → Ap = OX,x is a local map. On spectral spaces we have
x 7→ y = φ−1(p) ∈ SpecB, which on localised spectral spaces is a map SpecAp = Xx → Yy = SpecBq.

We now have everything we’ve been dreaming of since we first built Corollary 1.15.

Theorem 6.21. The contravariant functor which sends A 7→ (SpecA,OSpecA) is an equivalence of
categories between the category of rings and the category of affine schemes.
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7 Affine Schemes with Strucutre Sheaf are Rings 10/11/2016

Today we’ll provide the details behind the equivalence of the categories of rings and affine schemes, i.e.
we prove Theorem 6.21.

Theorem 7.1. Consider Spec as a contravariant functor from the category of rings and ring homo-
morphisms to the category of locally ringed spaces and morphisms of locally ringed spaces. Then Spec
is fully faithful onto its image, which we’ll call the category of affine schemes.

Once we have this theorem, we’ll know that the category of affine schemes in equivalent to the category
of rings. The inverse of Spec, now considered as a functor from the category of rings to the category of
affine schemes, is the global sections functor Γ. We will use both the notation Γ(X,F) and F(X) for
the global sections of a sheaf F over the topological space X.

Example 7.2. Let U = SpecA and V = SpecB be two affine schemes, and let f ∈ A, g ∈ B such
that we have a map of rings α : A[f−1] → B[g−1] which induces an isomorphism on spectra, so
aα : D(g) → D(f) is an isomorphism of spectra. Then we can form the scheme X = U ∪α V glued
along this induced map aα (very similar, in fact a special case of problem 4 on exercise sheet 411).
For an explicit example, take A = C[T ] and B = C[S], and α : A[T−1] → B[S−1] the map sending
T → S−1. Then U = V = SpecA = A1

C is the affine line over C (similar constructions exist for other
fields k), and the set of closed points of U and V are simply C. By gluing U and V along aα we obtain a
scheme X, we call X the projective line P1

C over C, and the set of closed points of X are homeomorphic
to the sphere S2 once we supply some type of analytic topology. This is a scheme that acts like the
Riemann sphere.

We are not actually going to prove Theorem 7.1 today, instead we are going to prove the following.

Theorem 7.3. Let (X,OX) be a locally ringed space and let (Y,OY ) be an affine scheme, say Y =
SpecB, then we have a natural bijection between

Hom ((X,OX), (Y,OY )) −→ Hom(B,Γ(X,OX)).

Proof of Theorem 7.3=⇒Theorem 7.1. When (X,OX) = SpecA for some ring A, then the isomorphism
of Theorem 7.3 shows us the functor Spec is fully faithful.

Proof of Theorem 7.3. Both of the following parts of this theorem rely on us building maps between
spaces by only knowing what these maps do on global sections. This requires the hypothesis for our
ringed spaces to be local quite heavily, as one will see in the proof.

(Injectivity) Given (f, f#) and some other (g, g#) : (X,OX)→ (Y,OY ) which induce the same map
φ : B = OY (Y ) → OX(X) on global sections. We first claim that f = g. To see this, let x ∈ X, then
we have the following commutative diagram,

OX(X) OX,x

OY (Y ) = B Bq = OY,f(x)

φ f#
x

, (7.4)

where q is the prime ideal of B corresponding to f(x) ∈ Y = SpecB, mx denote the maximal ideal of
OX,x, and f#

x is a local map12. The preimage of mx in B is q, which corresponds to f(x), by following

11In this exercise we show that the affine line over a ring A with double origin, and the projective line over A are
both not affine schemes. We constructed these schemes by gluing SpecA[T ] with SpecA[T ] along the isomorphism
SpecA[T±1]→ SpecA[T±1] sending T to T and T ′ respectively.

12The proceeding argument needs this map to be local, hence the importance of using our hypothesis that our ringed
spaces are in fact locally ringed spaces.
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the bottom right corner of the diagram, whilst on the other hand the top left corner of the diagram tells
us this only depends on φ. Repeating this argument but with g, we see that f(x) = g(x), since both
these arguments only depend on φ, hence f = g. Now we want to show that f# = g#, or equivalently
that f [ = g[. It suffices to check this on OY (U) for U = D(s) for all s ∈ B since these principal opens
form a basis of our topology on SpecB = Y . We have the following commutative diagram.

B = OY (Y ) OX(X) (f∗OX)(Y )

B[s−1] = OY (U) OX(f−1(U)) (f∗OX)(U)

φ

resYU

=

resY
f−1(U) resYU

f[(U),g[(U) =

We notice that OX(f−1(U)) obtains a B-algebra structure from the map of rings B → OX(f−1(U)). In
general, there is at most one map of B-algebras B[s−1]→ C, and it exists if and only if s is invertible
in C. This implies that f [(U) = g[(U) for all U in the basis of our topology, hence f [ = g[ ⇔ f# = g#.
This shows that our map of Theorem 7.3 is injective.

The fun part is surjectivity, which comes in three separates sections. Let φ : B → OX(X) be a
map of rings, then we need to produce a map (f, f#) : (X,OX)→ (SpecB,OSpecB).

(Definition of f : X → Y ) From the argument surrounding Diagram 7.4 we know what we have to
do with x ∈ X. We have

B
φ−→ OX(X) −→ OX,x ⊇ mx.

We then let q ∈ B be the preimage of mx and define f(x) = y, where y ∈ SpecB = Y corresponds to
q ⊆ B.

(Continuity) Given a general locally ringed space X, for t ∈ OX(X), we define

D(t) = {x ∈ X | tx 6∈ mx ⊆ OX,x } = {x ∈ X | tx 6= 0 ∈ k(x)} ,

which are analogous to our principal opens. When X is an affine scheme these are simply the principal
open subsets. We claim that D(t) ⊆ X is always open, and that the section t|D(t) is invertible inside
OX(D(t)). Both these properties can be checked locally around x ∈ D(t), since an inverse is unique
if it exists, so local inverses automatically glue. As tx 6∈ mx ⊆ OX,x, we notice that tx ∈ OX,x is
invertible13, so there exists some open subset U of X containing x such that we have v ∈ OX(U) with
txvx = 1 ∈ OX,x, and after taking U small enough, we have t|Uv|U = 1 in OX(U). Thus t|U is invert-
ible, which implies that U ⊆ D(t), soD(t) contains an open neighbourhood of U , and t is invertible on U .

To prove the continuity of our assignment, we need to check that for each s ∈ B, we have f−1(D(s)) is
open in X. However we find that,

f−1(D(s)) = {x ∈ X | φ(s)x 6∈ mx ⊆ OX,x } = D(φ(s)).

Hence this assignment is continuous.

(Definition of f [ : OY → f∗OX) To suffices to define compatible maps f [(D(s)) : OY (D(s)) →
(f∗OX)(D(s)) such that the following diagram commutes,

B[s−1] = OX(D(s)) (f∗OX)(D(s)) = OX(D(φ(s))

B OX(X) = (f∗OX)(Y )

f[|(D(s))

φ

.

13We really need locally ringed spaces here.
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Again, there is at most one f [(D(s)) with the above commutative diagram, which exists if and only
if φ(s)|D(φ(s)) ∈ OX(D(φ(s))) is invertible, but we proved this is true above. This gives us a map of

ringed spaces f [, but we need to check the adjoint map f# induces a local map on stalks.

(The Adjoint Map f# : (f−1OY )x → OX,x is Local) Recall that f(x) ∈ Y corresponds to q ∈ B
given by the preimage of mx under the composition B → OX(X) → OX,x. We now recall that
OY,f(x) = Bq, so we have the following diagram which determines f#

x uniquely.

B OX(X)

Bq = OY,f(x) OX,x

φ

f#
x

. (7.5)

We want to have (f#
x )−1(mx = mf(x) = qBq ⊆ Bq, and to see this we note that for affine spectra, the

canonical map SpecBq → SpecB is injective. This means we can check the equality in SpecB after
pulling this back to Bq. This is then trivial from Diagram 7.5. Hence our map is local, and we’re
done!

Now that we know why we want to study affine schemes (to utilise geometry, topology and homological
algebra for commutative algebras sake, and vice-versa), and general schemes, we can look at new ways
to build schemes.

Definition 7.6. A morphism of ringed spaces (f, f#) : (X,OX) → (Y,OY ) is an open immersion
if f : X → Y is an open embedding and f# : f−1OY → OX is an isomorphism, or equivalently,
there exists an open subset U ⊆ Y such that (X,OX) ∼= (U,OY |U ), and this isomorphism factors
(X,OX)→ (Y,OY ) through the inclusion (U,OY |U )→ (Y,OY ).

Proposition 7.7. Let (Y,OY ) be a scheme and (X,OX) → (Y,OY ) be an open immersion, then
(X,OX) is a scheme also.

Remark 7.8 (Caution). This is not as obvious as it looks! In fact if (X,OX) is a scheme such that it
admits an embedding into an affine scheme, then (X,OX) is called a quasi-affine scheme (see problem
2 on exercise sheet 1414), but is not necessarily affine. Consider the following example.

Example 7.9. Let (Y,OY ) = Spec k[T1, T2] = A2
k be the affine plan over k, for an algebraically closed

field k, then take U = Y − {(0, 0)} = D(T1) ∪D(T2), then (U,OY |U ) is a scheme that is not affine. If
it was affine then U ∼= SpecA and OY (U) = A, but we can calculate these global sections of U using
the covering U1 = D(T1) and U2 = D(T2) with intersection U1 ∩ U2 = D(T1T2). Hence OY (U) is the
equaliser of the pair of maps OY (U1)×OY (U2)→ OY (U1 ∩ U2), which is really a pair of maps

k[T±1
1 , T2]× k[T1, T

±1
2 ] −→ k[T±1

1 , T±1
2 ].

This means that the pair f =
∑
i,j ai,jT

i
1T

j
2 ∈ k[T±1

1 , T2] and g =
∑
i,j bi,jT

i
1T

j
2 ∈ k[T±1

1 , T2] agree
if and only if they are strictly polynomials, not Laurent polynomials. But this would imply that
OY (U) = A = k[T1, T2]. This would imply that (U,OY |U )→ SpecA = (Y,OY ) is an isomorphism, but
it is not, so U is not affine.

Proof of Proposition 7.7. Let (Y,OY ) be a scheme, and U be an open subset of Y , then we’ll show
(U,OY |U ) is a scheme. In the proposition, (U,OY |U ) is the image of (X,OX). Now let {Vi} be a
collection of open sets such that Y =

⋃
i Vi and Vi ∼= SpecBi, then for all x ∈ U we can choose i such

14These exercises classify affine schemes are those with an open immersion X → Spec Γ(X,OX), or equivalently where
OX is an ample line bundle.
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that x ∈ Vi, so Vi ∩ U ⊆ Vi is an open neighbourhood of x. This implies that these exists f ∈ Bi such
that x ∈ DVi(f) ⊆ Vi ∩ U , so call Ux = DVi(f) ⊆ Vi. Then we have

Γ(Ux,OY |Ux) = Γ(Ux, (OY |Vi) |Ux) = Bi[f
−1],

which is an affine scheme, hence as x varies, all the Ux cover U .
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8 Scheme Valued Points and Fibre Products 15/11/2016

Given a scheme X, then we want to actually figure out what this object X is. We would like
some intutition. For every field k, we can look at X(k) which is defined as the set of scheme ho-
momorphisms from Spec k → X, also known as the k-valued points of X. For example, if X =
SpecZ[X1, . . . , Xn]/(f1, . . . , fm), then

X(k) = {x = (x1, . . . , xn) ∈ kn|f1(x) = · · · = fm(x) = 0}.

If k = R or C, then we can literally draw pictures, but for arbitrary fields, we have to be content with
this conceptual picture (aren’t we mathematicians anyway?). This k-valued points construction does
lose quite a bit of information from the scheme X, for example if X = SpecZ[T ]/p for some prime
ideal p ⊆ Z[T ], then X(k) = ∅ unless p is zero in k. Knowing X(k) for all fields k is not nearly enough
information to retain.

Definition 8.1. A scheme X is called reduced if for all U ⊆ X open the ring OX(U) is a reduced ring
(so fm = 0 if and only if f = 0).

Proposition 8.2. 1. An affine scheme X = SpecA is reduced if and only if A is reduced.

2. A scheme X is reduced if and only if for all open affines U = SpecA ⊆ X, the ring A is reduced
if and only if X admits a cover by reduced affine schemes.

Proof. 1. If A is reduced then A[f−1] is reduced for all f ∈ A, and if U ⊆ X is an open subset, then
there exists fi ∈ A such that U =

⋃
iD(fi). We have an injection

OX(U) ↪→
∏
i

OX(D(fi)) =
∏
i

A[f−1
i ],

since OX is a sheaf, and since the product of reduced rings is reduced, we see that OX(U) is
reduced. Conversely, if X = SpecA is reduced then in particular OX(X) = A is reduced.

2. First assume that X is reduced, then OX(U) = A is reduced if U = SpecA. It is clear that all
OX(Uα) are reduced for an affine cover {Uα} of X if OX(U) is reduced for all affine opens U .
Finally, if U ⊆ Uα for some affine cover {Uα} of X where OX(Uα) is reduced, then clearly OX(U)
is reduced, but for any general U ⊆ X the injection,

OX(U) ↪→
∏
α

OX(U ∩ Uα),

again shows us that OX(U) is reduced.

Just as there is a canonical way to obtain a reduced ring from any commutative ring A (just take
Ared = A/N where N is the ideal of nilpotents of A), there is a canonical way to reduce a scheme.

Proposition 8.3. 1. Given a scheme X = (|X|,OX), then the scheme Xred = (|X|,OXred) is a
reduced scheme where OXred is defined as the sheafification of the presheaf O0

Xred
, which is defined

on some open subset U ⊆ X as O0
Xred

(U) = (OX(U))red.

2. If X = SpecA is an affine scheme, then

Xred = SpecAred.

3. For any reduced scheme Y , we have a bijection

Hom(Y,Xred) −→ Hom(Y,X).

This means that Xred has the same (although dual) universal property with respect to X, that
Ared does with respect to A.
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Proof. 2. We know that |SpecA| and |SpecAred| are homeomorphic as topological spaces, so for

any f ∈ A, we have (A[f−1])red = Ared[f
−1

]. This means that

O0
(SpecA)red

(D(f)) = OSpec(A)red(D(f)),

which implies (OSpecA)red = O(Spec(A)red).

1. If U = SpecA ⊆ X is an open affine then,

(|U |,OXred |U) = (|U |,OUred) = SpecAred,

where the last equality come from part 2. This implies that SpecAred is an open affine of Xred,
and choosing an open affine cover of X will give us a reduced open affine cover of Xred.

3. Let Y be a reduced scheme, then for all map f : Y → X, the map of sheaves f [ : OX → f∗OY
factors uniquely through OXred , so for all open subsets U of X we have the following diagram,

OX(U) (f∗OY )(U) = OY (f−1(U))

OX(U)red = O0
Xred

(U)

f[(U)

f̃(U)
.

These factorisations f̃(U)’s glue to a unique map Y → Xred, a map of schemes, using the universal
property of sheafification.

The above proposition tells us that we cannot tell the difference between a scheme and its associated
reduced scheme using k-valued points. We can rescue this intuition though, by allowing T -valued points
for arbitrary schemes T .

Example 8.4 (Construction). Recall that given a category C and an object S ∈ C, then the category
C/S is defined with objects the pairs A→ S, and morphisms f : A→ B with the following commutative
diagram.

A B

S

f

Fix a scheme S, and define for any T ∈ Sch (the category of schemes) the T -valued point of X/S as

XS(T ) = HomSch/S(T,X).

We are being a little vague above, we really mean XS(T ) to be all morphisms of schemes f : T → X
such that the following diagram commutes.

T X

S

f

Since SpecZ is final in the category of schemes, if we take S = SpecZ then we will write X(T ), since
the commutative diagram above becomes irrelevant. If Y = SpecB or S = SpecC we might also write

XS(Y ) = XC(Y ) = XC(B) = XS(B).

This explains our earlier notation for k-valued points as X(k). Given a base scheme S, and any
X ∈ Sch /S, we have a functor XS(−) : (Sch /S)op → Sets defined by T 7→ XS(T ). We can use the
Yoneda lemma to say something concrete about this.

Lemma 8.5. [Yoneda Lemma] Let C be a (locally small)15 then the functor C → Fun(Cop,Sets) which

15This means that all the hom sets in C are literally sets, not proper classes.
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sends X 7→ HomC(−, X) is fully faithful.

Proof. This is part (i) of problem 2 in exercise sheet 5.

Applying the Yoneda lemma to Sch /S we see that X/S is determined by its functor of T -points. We
actually have a strengthening of this which works in our specific case.

Proposition 8.6. Let Schaff /S be the full subcategory of Sch /S of affine schemes over S, then the

functor Sch /S → Fun
((

Schaff /S
)op

,Sets
)

is also fully faithful.

Proof. This is part (ii) of problem 2 in exercise sheet 5.

In particular, if we take S = SpecZ and use our equivalence of the category of affine schemes with the
category of rings, we find that a scheme is equivalent to giving a functor from the category of rings to
the category of sets, X 7→ (R 7→ X(R)). This can be a very useful, alternative way to look at schemes,
using only the Yoneda lemma and our equivalence of categories from Theorem 7.1.

There are some huge advantages to working with schemes in the relative sense rather than the ab-
solute sense. One reason is that if we consider X → S ∈ Sch /S and if S = SpecA, then all of the
sections Γ(U,OX) have the structure of A-algebras. This is just one of the many advantages we’ll come
across over time.

Recall now that in a category C with finite limits, we can take the pullback, or fibre product of two
maps X → S and Y → S to obtain an objects X ×S Y which is universal in some sense.

Definition 8.7. Given two schemes X and Y over a base scheme S, then X ×S Y is the scheme with
the universal property that if we have T → X and T → Y for another scheme T and the following
diagram commutes,

T X

Y S

,

then there exists a unique map T → X ×S Y which factorises the diagram above.

Recall that we have canonical projection maps pX : X×S Y → X and pY : X×S Y → Y . The universal
property above states that the T -valued points of X ×S Y are canonically in bijection with the fibre
product of the T -valued points of X and Y over S in the category of sets. In symbols this reads,

(X ×S Y )(T )
∼=−→ X(T )×S(T ) Y (T ),

where the canonical isomorphism has the prefered direction indicated.

Theorem 8.8. The category of schemes has all fibre products. If X = SpecA, Y = SpecB and
S = SpecR, then X ×S Y ∼= Spec(A⊗R B).

Proof. The affine case is a formal consequence of the universal properties of both the fibre product of
schemes, the tensor product of rings, the Yoneda Lemma (Lemma 8.5), and Theorem 7.1. The more
general existence of the fibre product of schemes can be found in Hartshorne, [3][p. 87, Theorem II.3.2].
The basic idea is to look at affine covers of X,Y and S, and then cover X ×S Y with Xi ×Sj Yk, which
we show are affine since we have already proved this case. These pieces all then glue together from
general gluing lemmas.

We see in exercise sheet 5 problem 3 that the fibre product of schemes is not the fibre product of spaces
with extra structure, as we see the canonical map |X×S Y | → |X|×|S| |Y | is surjective, and whose fibres
can even be infinite or disconnected. This means the forgetful functor from the category of schemes
to topological spaces, or even sets does not admit a left adjoint. In other words, there is no functorial
way, left adjoint to the forgetful functor, that will produce a scheme from a general set or topological
space.
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9 Examples, History, and Motivation 17/11/2016

Historically it was very hard to find a language for algebraic geometry which combines the study of
objects over Fp and objects over SpecQ.

Theorem 9.1 (Weil Conjectures). For a scheme X of finite type over Z, (locally SpecA where A is
a finitely generated Z-algebra), then the (analytic) topology on X(C) (the complex points of X) has a
strong influence on the number of Fp-valued points, X(Fp).

This was proved mostly by Grothendieck, working with Emil Artin and Jean-Louis Verdier, in a paper
published in 1965.

Example 9.2. Fix some a, b ∈ Z, such that ∆ = 4a3 + 27b3 6= 0. Then consider the equation
y2 = x3 + ax+ b, whose solutions are encoded in the ring

A = Z
[

1
∆

]
[x, y]

/
(y2 − x3 − ax− b) .

Let X = SpecA, then X(C) is the set of all ring homomorphisms A→ C, i.e.

X(C) = {(x, y) ∈ C2 | y2 = x3 + ax+ b}.

In fact X(C) is homeomorphic to S1 × S1\∗ where ∗ is a single point. This looks like a complex torus,
whose real points are our classic cubic curves in R2. We want now to embed X ↪→ X/Z[1/∆] by adding
a point at ∞. The space X will be glued from two affine open subsets X = X1 and X2. In this case we
take U1 = D(y) = SpecA[y−1] ⊆ X1 and U2 = D(v) = SpecB[v−1] ⊆ SpecB = X2, where B is simply
A but with variables u and v replacing x and y. This gives us

A[y−1] = Z
[

1
∆

]
[x, y±1]

/
(y2 − x3 − ax− b) , B[v−1] = Z

[
1
∆

]
[u, v±1]

/((
1
v

)2 − (uv )3 − auv − b) .
Now we define an isomorphism φ : A[y−1] → B[v−1], by (x, y) 7→

(
u
v ,

1
v

)
. When we glue X1 and X2

along U1 and U2, we obtain our scheme X over Spec
(
Z
[

1
∆

])
. Note that the complement of X in X is

equal to the complement of U2 in X2, which is simply V (v) ⊆ X2, which is just SpecB/v. Topologically,
the spaces Spec(B/v) and SpecZ[1/∆] are homeomorphic. For all fields k we have

X(k) = X(k) ∪ {∞}.

We notice that ∞ has coordinates (u, v) = (0, 0), so in our (x, y)-coordinates we would have xy = 0
and 1/y = 0, so y acts like ′∞. It’s a fact that X(C) ∼= S1 × S1, which one learns in a standard course
on Riemann surfaces.

For a scheme X, the object X(k) for a field k is in general just a set, but if k is a topological field, then
we can place a topology on X(k) “induced from the topology on k”.

Example 9.3. Let X(C) = {(x, y) ∈ C2 | y2 − x3 − ax − b = 0}, we can give X(C) the subspace
topology of C2 in a sensible way.

Example 9.4. Let’s rename E := X, and call it the elliptic curve over Spec
(
Z
[

1
∆

])
. What are the

fibres of Fp over F2
p? Our mental image is that |Fp| should look like a big generic point with (possibly

infintely many) closed points. In this case we have,

E(Fp) = {(x, y) ∈ Fp | y2 − x3 − ax− b = 0} ∪ {∞}

= {(x, y) ∈ x, y ∈ {0, 1, . . . , p− 1} | y2 − x3 − ax− b ≡ 0 mod p} ∪ {∞}.

What is the size of E(Fp)? The heuristics imply there are p2 possibilities for (x, y) that y2 = x3 +ax+b,
but module p we have p2/p = p. Including ∞, we have #E(Fp) = p+ 1.
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Theorem 9.5 (Hasse ∼ 1930). For all p 6 |∆, we have #E(Fp)− (p+ 1)| ≤ 2
√
p.

Theorem 9.6 (Tayler and Collab., 2006). Assume that E does not have complex multiplication16, then

#E(Fp)− (p+ 1)
√
p

is equidistributed with respect to the measure 1
π

√
4− x2 on [−2, 2] for varying p.

We can try to explicitly compute some #E(Fp), but there are many open conjectures above such E’s.
For example the Birch-Swinnerton-Dyer conjecture. Even Fermat’s last theorem was proved using some
of these ideas. In this last case, the solution was given by studying elliptic curves y2 = x(x−an)(x+bn),
where (a, b, c) is a solution of the Fermat equation xn + yn = zn. Let’s see another example.

Example 9.7. Let A = Z[x, y]
[

1
∆

]
/(y2−p(x)) where p(x) has no repreated roots over C, and consider

X = SpecA. Then we have X(C) = {(x, y) ∈ C2|y2 = p(x)} and this is homeomorphic to the surface
of genus g after we add a point at infinity, also called a hyperelliptic curve.

Theorem 9.8. Given X as above, we have∣∣#X(Fp)− (p+ 1)
∣∣ ≤ 2g

√
p,

which is sharp in some sense.

Weil’s observation was that 2g was exactly the rank of the first cohomology group H1(X(C),Z) of
X(C) with Z-coefficients (which we all know from topology anyway), and Weil gave a generalisation to
a general (proper and smooth) X. This related X(Fp) to the i-th cohomology (sheaf cohomology!) of
X(C).

16i.e. End(E) = Z.
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10 Projective Space - 22/11/2016

Today we are going to talk about a scheme Pn which severly generalises topological projective space
RPn and CPn.

Example 10.1. Define the nth complex projective space CPn as follows,

CPn = Cn+1 − 0
/

(x0, . . . , xn) ∼ λ(x0, . . . , xn),∀λ ∈ C× .

We denote points in CPn by homogenous coordinates, (x0 : · · · : xn) where xi ∈ C and not all xi are
zero. Notice that each xi is not well-defined, because we have this equivalence relation by a non-zero
complex number, however the ratios xi

xj
are well-defined whenever xj 6= 0. The standard cover for CPn

is by (n+ 1)-many copies of Cn (hence CPn is an n-dimensional complex manifold) defined by

Ui = {(x0 : · · · : xn) ∈ CPn | xi 6= 0} −→ Cn

(x0 : · · · : xn) 7−→
(
x0

xi
, · · · , xn

xi

)
.

For all i 6= j, we have Ui ∩ Uj ∼= Cn−1 × C× which we define as {(Xi,k)k=0,...,n,k 6=i |Xi,j 6= 0}. We
will use these types of sets when we start talking about projective space as schemes. Another way to
construct CPn would be to glue together all of these Ui along these Ui ∩ Uj = Ui,j .

Example 10.2. More generally, for any field k we can define

Pn(k) = kn+1 − {0} /k× .

Our goal now is to construct a scheme Pn such that the k-valued points of Pn are given exactly by
Pn(k). There are three ways to go about doing this. We are going to do this super explicitly. We could
also generalise the functor Spec to a functor called Proj17, and then define Pn = Proj(Z[x0, . . . , xn]).
Another thing we could do is the functor of points approach, i.e. write down R→ Pn(R) for all rings,
and show this is in the essential image of the fully faithful functor Sch→ Fun(Ring,Set). We are going
to do this explicitly, so don’t worry.

Caution! It will usually not be the case that Pn(R) = Rn+1 − 0 /R× , for a general ring R.

Example 10.3 (Construction of Pn). For any i = 0, . . . , n, let

Ui = SpecZ[(Xi,j)j=0,...,n,i6=j ] ∼= AnZ.

This of Xi,j as being the fraction “
Xj
Xi

”. For each i 6= j we have

Ui,j = D(Xi,j) ⊆ Ui,

so Ui,j ∼= SpecZ[(Xi,k)k 6=i,j , (Xi,j)
±1]. We have an isomorphism between Ui,j and Uj,i denoted as

αi,j : Ui,j → Uj,i

Xi,k, k 6= i 7→ Xj,k ·X−1
j,i

The inverse of this map is simply Xj,k, k 6= j 7→ Xi,k ·X−1
i,j .18 There is a lemma which we are yet to

prove, but which tells us we can glue schemes together, so long as the pieces slot together coherently.

17Which takes graded rings to schemes.
18Heuristically, we have the following,

Xk,i“ = ”
xi

xk
=
xj

xk

xi

xj
=
xj

xk

(
xj

xi

)−1

“ = ”Xk,jX
−1
i,j .

.
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Lemma 10.4. Let I be a set and Ui for all i ∈ I be schemes. For i, j we have Ui,j ⊆ Ui = Ui,i
is an open subscheme and the isomorphisms αi,j : Ui,j → Uj,i which satisfy the cocycle condition, so
αi,k = αj,k ◦ αi,j for all i, j, k ∈ I on Ui,j,k := Ui,j ∩ Uj,k. Then we have a scheme

X =
⋃
i∈I

Ui,

i.e. X admits an open covering X = ∪Vi with βi : Vi ∼= Ui such that βi : Vi ∩ Vj ∼= Ui,j and
βj : Vi ∩ Vj ∼= Uj,i, and αi,j = βj ◦ β−1

i .

Noticing that in our case we have αi,k = αj,k ◦αi,j , we apply this gluing lemma and obtain the scheme,

Pn =

n⋃
i0

Ui =

n⋃
i=0

SpecZ[(Xi,j)j=0,...,n,i6=j ] =

n⋃
i=0

AnZ.

In particular, for all fields k, we have

Pn(k) =

n⋃
i0

Ui(k) =

n⋃
i=0

kn = Pn(k).

Although this line seems tautological, the first Pn(k) is the k-valued points of a scheme, and the latter
is our old definition of projective space of a field.

Remark 10.5. There is a theorem of Chow from the 1950’s which states if a complex manifold
X admits a closed immersion X ↪→ CPn, then there exists a finite set of homogenous polynomials
F1, . . . , Fm ∈ C[X0, . . . , Xm], such that X ∼= V (F1, . . . , Fm) ⊆ CPn, where we define,

V (F1, . . . , Fm) := {(x0 : · · · : xn) ∈ CPn | Fi(x0, . . . , xn) = 0, 0 ≤ i ≤ n}.

Notice this condition makes sense as F is homogeneous. This implies there exists a closed subscheme
(we’ll talk about this later) Xalg ⊆ PnC := Pn ×SpecZ SpecC such that Xalg(C) = X. Note that all
compact Riemann surfaces admit an embedding into CP3, hence they are all algebraic.

Now we come to a theorem which will occupy the rest of this lecture, but first a quick definition.

Definition 10.6. An R-module M is invertible if the endofunctor L⊗R− on the category of R-modules
is an equivalence of categories.

This is equivalent to the existence of an R-module L′ such that L⊗RL′ ∼= R (this is simple to prove, one
should try it). From exercise sheet 6 problem 4(iii)19 we also know this is equivalent to the existence
of a cover of SpecR by D(fj) such that L[f−1

j ] ∼= R[f−1
j ] is locally free of rank 1.

Theorem 10.7. For all rings R, there is a natural (functorial in R) bijection from Pn(R) to the set

of all surjections Rn+1 p→ L where L is an invertible R-module, modulo the equivalence relation that
p : Rn+1 → L is equivalent to p′ : Rn+1 → L′ if and only if there exists an isomorphism α : L → L′

such that p′ = α ◦ p.

Example 10.8. If R = k is a field, then any invertible R-module L is isomorphic to k, and surjections
α : kn+1 � k are in bijection with (x0, . . . , xn) ∈ kn+1−{0} simply by sending α to (α(e0) : · · · : α(en)).
We then notice that p(x0, . . . , xn) ∼ p(x′0, . . . , x

′
n) in the theorem above if and only if there is an

isomorphism λ : k → k which is simply multiplication by λ ∈ k×. This is equivalent to the existence of
λ ∈ k× such that x′i = λxi for all i = 0, . . . , n. In other words, this theorem states what we would like
it to state about fields.

19Prove that a module M is invertible if and only if it is locally free of rank 1.
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Proof of Theorem 10.7. To prove we have a bijection, we will give maps in both directions. Let φ :
SpecR→ Pn be a map of schemes, and let φ−1(Ui) be covered by D(fi,k) for some fi,k ∈ R, where Ui
is a standard affine open of Pn. In particular, we now have maps φi,k : SpecR[f−1

i,k ] → Ui, which are
given by maps of rings,

Z[(Xi,j)i6=j ]→ R[f−1
i,k ],

where we now set xi,j,k = φi,k(Xi,j) ∈ R[f−1
i,k ]. Consider the sujection,

pi,k : R[f−1
i,k ]n+1 −→ R[f−1

i,k ],

which sends ej 7→ xi,j,k for i 6= j and ei to 1. Then we want to glue these pi,k’s together to obtain a
surjection p : Rn+1 � L. For simplicity of notation, let φ−1(Ui) = D(fi) for some fi ∈ R. The more
general case has the same proof, but needs messier notation. We have surjections,

pi : R[f−1
i ]n+1 −→ R[f−1

i ].

For i 6= i′ we then have φ−1(Ui ∩ Ui′) = D(fifi′ = SpecR[(fifi′)
−1] ⊆ SpecR. We also have the

following commutative diagram, where the vertical map is multiplication by X−1
i,i′ , and the other two

maps are pi and pi′ localised at pi, respecitively pi′ .

R[(fifi′)
−1]

R[(fifi′)
−1]n+1

R[(fifi′)
−1]

·x−1

i,i′

pi

pi′

. (10.9)

The coordinate transformation Xi′,j = Xi,j ·Xi′,i ensures that the above diagram commutes. We then
need the following lemma, which we will prove later as a corollary to a fundamental equivalence of
categories.

Lemma 10.10. The functor M 7→ Mi = M [f−1
i ] from the category of A-modules to the category of

collections of A[f−1]-modules Mi and isomorphisms αij : Mi[f
−1
j ]→Mj [f

−1
i ] which satisfy the cocycle

condition, is an equivalence of categories.

Proof. This will be proved as Corollary 11.10 later.

By applying this to Li = R[f−1
i ], with maps αi,i′ : Li[(fifi′)

−1] ∼= Li′ [(fifi′)
−1] given by multiplication

by X−1
i,i′ , just like Diagram 10.9, we have glued together an R-module L such that localising L is iso-

morphic to a localisation of R, i.e. L is an invertible R-module. Also the maps pi glue together to form
a surjective maps p : Rn+1 → L as desired. The equivalence relation stated in Theorem 10.7 comes
from Diagram 10.9.

Conversely, assume we have a surjection p : Rn+1 � L onto an invertible R-module L, then we want
a map φ : SpecR → Pn. It is enough to construct φ locally in a coherent way, and this is a condition
not a datum. Thus we can assume that L ∼= R so that p : Rn+1 → R is given by ei 7→ xi which by
surjectivity of p tells us this collection of xi’s generate R as an ideal. Hence SpecR =

⋃n
i=0D(xi). We

can assume that some xi is invertible, since we are working locally, so p : Rn+1 → R sending ej to xj
is equivalent to p′ : Rn+1 → R sending ej to xj/xi under our equivalence relation. Hence we define
φ : SpecR→ Pn as φ : SpecR→ Ui ⊆ Pn by,

Z[(Xi,j)i6=j ] −→ R,

which sends Xi,j 7→ xj/xi. Technically we should now check that these constructions are mutual
inverses, but this is left to the reader.
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11 Quasi-Coherant Sheaves and Closed Immersion 24/11/2016

We have already seen that schemes are geometrisations of rings, and today we’ll see that quasi-coherent
sheaves on schemes are geometrisations of modules.

Definition 11.1. Given a ring A and an A-module M . Then we define a presheaf M̃ on X = SpecA
defined on the basis of principal opens by

M̃(D(f)) = M [f−1], f ∈ A.

On exercise sheet 3 problem 3 we exactly showed this defines a sheaf on this basis of principal opens,
which we can extend uniquely to a sheaf M̃ on all of X by problem 2 of the same sheet. The expected
thing happens on stalks of M̃ too.

Proposition 11.2. Let x ∈ X = SpecA, and let p ⊆ A be the corresponding prime ideal in A, then
M̃x = Mp.

Proof.
M̃x = colimD(f)3xM [f−1] = colimf 6∈pM [f−1] = Mp.

This was easy. We now have to make the obvious definition to extend this idea to general schemes.

Definition 11.3. Let (X,OX) be a ringed space, then a sheaf of OX-modules is a sheaf of abelian
groups M together with a map OX ×M→M of sheaves such that M(U) is an OX(U)-module for all
open subsets U ⊆ X.

The fact that we ask the action map OX × M → M to be a map of sheaves assures us that our
restriction maps respect this module structure.

Proposition 11.4. Given an A-module M and X = SpecA, then M̃ is a sheaf of OX-modules.

Proof. Taken U = D(f) ⊆ X and f ∈ A we have to give an action map OX(U)× M̃(U)→ M̃(U), but
this can simply be the A[f−1]-module structure,

A[f−1]×M [f−1] −→M [f−1].

This clearly commutes with restrction maps etc.

We now have the techincal theorem which drives the types of results we desire.

Theorem 11.5. 1. The functor from A-modules to sheaves of OX-modules defined by M 7→ M̃ is
fully faithful.

2. Let M be a sheaf of OX-modules, and assume there exists a cover of X by open affines D(fi),

fi ∈ A such that M|D(fi)
∼= M̃i for some A[f−1

i ]-module Mi, then there exists an A-modules M

such that M∼= M̃ .

Necessarily we have M =M(X) as M = M̃(X), but we still don’t really know M exists yet. Assuming
this theorem is true just for a little bit, we make the following definition.

Definition 11.6. Let X be some scheme, then a quasi-coherent sheaf on X is a sheaf of OX-modules
M such that there exists a covering {Ui = SpecAi} of X by open affines, and Ai-modules Mi such that

M|Ui ∼= M̃i. A morphism of quasi-coherent sheaves is simply a morphism of OX-modules.

We then have the following corollary of Theorem 11.5.
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Corollary 11.7. Given an affine scheme X = SpecA, then we have an equivalence of categories
between A-modules and quasi-coherent sheaves on X, given by M 7→ M̃ with inverse M 7→M(X).

In particular, this implies that given a scheme X, an open affine SpecA = U ⊆ X, then any quasi-
coherent sheaf M over X restricts to M̃ on U , where M is an A-module.

Proof of Corollary. From the above definitions we have the following commuative diagram.

{A-modules} {Quasi-coherent sheaves on X}

{Sheaves of OX -modules}

F1

F2
full inc.

Theorem 11.5 part 1 says that F2 is fully faithful, and this implies that F1 is fully faithful since the
inclusion above is an inclusion of a full subcategory. Theorem 11.5 part 2 then says that F1 is essentially
surjective, and we have our equivalence of categories.

Proof of Theorem 11.5. First let’s deal with part 1. Similar to how Theorem 7.3 implies Theorem 7.1,
we are actually going to prove a more general version of Theorem 11.5, which will restrict to what we
want. In this case, let M be an A-module and N an sheaf of OX -modules, then we claim that

HomOX (M̃,N ) −→ HomA(M,N (X)), (11.8)

is a bijection. If we set N = Ñ for some A-module N , then we have our desired part 1 of our theorem
(using N (X) = Ñ(X) = N). Category theoretically, this implies an adjunction between the category

of A-modules and the category of sheaves of OX -modules, with left adjoint M 7→ M̃ and right adjoint
M 7→ M(X). First we’ll check the injectivity of the map in Equation 11.8. Let φ, φ′ : M̃ → N be
two maps of sheaves of OX -modules with ψ : φ(X) = φ′(X) : M → N (X), then for each open subset
U = D(f) ⊆ X, for some f ∈ A we have the following commutative diagram.

M M [f−1]

N (X) N (U)

resXU

ψ φ′(U)φ(U)

resXU

In general though, if M is an A-module and N is an A[f−1]-module (here N = N (U)), then a map
M → N factor in exactly one way over M [f−1] = M ⊗A A[f−1], hence we have φ(U) = φ′(U) for all
U ⊆ X open, so φ = φ′. Hence the map of Equation 11.8 is injective. This factorisation is part of a
much more general change of rings isomorphism, which we’ll leave below for the reader to digest.

Proposition 11.9. Given a map g : A → B of rings, an A-module M and a B-module N , then we
have the following adjunction,

HomA(M,N) ∼= HomB(M ⊗A B,N),

where N on the left hand side is given the A-module structure via g.

For the sujrectivity of the map in Equation 11.8, take some ψ : M → N (X), a map of A-modules. Now
take some U = D(f) for a f ∈ A, then we have the following commutative diagram.

M M [f−1]

N (X) N (U)

resXU

ψ ψU

resXU
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Notice that N (U) is an A[f−1]-module, so using the change of rings adjunction above we get a unique
dotted map ψU : M [f−1] → N (U) of A[f−1]-modules such that the above diagram commutes. These

maps ψU all assemble uniquely into a map of sheaves of OX -modules M̃ → N on a basis of principal
opens of X. This of course extends uniquely to a map of OX -modules on X. For part 2, let M =M(X),

then by the proof of part 1 we know that M 7→ M(X) has adjoint map φ : M̃ → M. It suffices to
show that for all g ∈ A, we have an isomorphism φ(D(g)) : M [g−1] → M(D(g)). Take the cover X
by the open affines Ui = D(fi), which gives us D(fi) ∩ D(g) = D(fig) as a cover of D(g). We only
need finitely many of them since X is quasi-compact. Using the fact thatM(D(fig)) = Mi[g

−1], which

comes from M|D(fi) = M̃i, we start to re-write M .

M = eq

( ⊕
iM(D(fi))

⊕
i,jM(D(fifj))

)
= eq

( ⊕
iMi

⊕
i,jMi,j

)
Localisation is exact, so we have

M [g−1] = eq

( ⊕
iM(D(fig))

⊕
i,jM(D(fifjg))

)
= eq

( ⊕
iMi

⊕
i,jMi,j

)
=M(D(g)).

For the last equality we used the fact that M is a sheaf.

We now have a corollary which is super useful. This corollary would have been so painful to prove
explicitly with modules too, but now it’s basically trivial.

Corollary 11.10. [Gluing Modules] The functor M 7→Mi = M [f−1
i ] from the category of A-modules

to the category of collections of A[f−1]-modules Mi and isomorphisms αij : Mi[f
−1
j ]→Mj [f

−1
i ] which

satisfy the cocycle condition, is an equivalence of categories.

Proof. We have equivalences of categories,

{A-modules} ∼= {quasi-coherent sheafs on SpecA}

∼= {quasi-coherent sheaves on D(fi) + gluing data} ∼= {collections (Mi, αi,j) as above}.

Now we can make some new definitions, and really get into some more scheme stuff.

Definition 11.11. A map f : Z → X of schemes is called a closed immersion if the induced map on
topological spaces is a closed immersion (a homeomophism onto a closed subset) and f [ : OX → f∗OZ
is a surjective map of sheaves.

Open and closed immersions are probably our favourite maps of schemes.

Proposition 11.12. Let f : Z → X be a map of schemes, then the following are equivalent.

1. f is a closed immersion.

2. For all open subsets U ⊆ X with U = SpecA, then f−1(U) = SpecB ⊆ Z is open affine, and
A→ B is surjective.

3. There exists an open cover of X by affine schemes which satisfy the property of part 2.

We willl prove this shortly, but let’s make a remark first.

Remark 11.13. In particular, for X = SpecA affine, then closed immersions are in bijection with
surjections A→ B.

For a morphism f : X → Y of scheme, the sheaf f∗OX is not always quasi-coherent, but it will be in
the case from a proposition we will see shortly, but first we need a quick definition.
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Definition 11.14. A space X is called quasi-compact if every open cover has a finite subcover, and
quasi-separated if given two quasi-compact open subsets U and V , then the intersection U ∩ V is also
a quasi-compact open subset. A map of schemes is called quasi-compact (resp. quasi-separated) if the
inverse images of quasi-compact (resp. quasi-separated) open subsets of X are quasi-compact (resp.
quasi-separated).

Notice that affine schemes are quasi-separated, since a basis of principal opens are quasi-compact, and
their intersection is too. In general, most schemes will be quasi-compact and quasi-separated, and many
maps too.

Proposition 11.15. Let f : Y → X be a map of schemes which is quasi-compact and quasi-separated,
and let M be a quasi-coherent sheaf on Y , then f∗M is a quasi-coherent sheaf on X with its natural
OX-structure.

Proof of Proposition 11.15. We may assume that X if affine, so X = SpecA is quasi-compact and
quasi-separated, and by assumption Y is also quasi-compact and quasi-separated so Y =

⋃
i SpecBi for

some finite collection of rings Bi. For all i and j we notice that SpecBi ∩ SpecBj ⊆ Y can be written
as a finite union, ⋃

k∈Jij

SpecBi,j,k.

Let M = (f∗N )(X) = N (Y ), from which we get a map φ : M̃ → f∗N , which we want to recognise as
an isomorphism. For all g ∈ A, we have,

φ(D(g)) : M [g−1] −→ (f∗N )(D(g)),

is an isomorphism. Then, similar to the proof of part 2 of Theorem 11.5, we have

M = N (Y ) = eq

( ∏
iN (SpecBi)

∏
i,j,k∈Jij N (SpecBi,j,k)

)
.

Since Jij is a finite set, these products are isomorphic to direct sums. Now localisation is exact, so we
obtain,

M [g−1] = eq

( ∏
iN (SpecBi)[g

−1]
∏
i,j,k∈Jij N (SpecBi,j,k)[g−1]

)
.

Then we use the fact that N is quasi-coherent and that N is a sheaf to obtain,

eq

( ∏
iN (SpecBi)[g

−1]
∏
i,j,k∈Jij N (SpecBi,j,k)[g−1]

)

= eq

( ∏
iN (SpecBi[g

−1])
∏
i,j,k∈Jij N (SpecBi,j,k[g−1])

)
= N (f−1(D(g))) = (f∗N )(D(g)).

Hence M̃ → f∗N is an isomorphism.

Proof of Proposition 11.12. Part 2 implies part 3 is clear, so we’ll show part 3 implies part 1. We can
check this locally, since check surjections of sheaves on stalks and closed maps of spaces can be checked
on a cover too, so assume X = SpecA and Z = SpecB, and let p : A � B surject onto B. Let I ⊆ A
be the kernel of this surjection p, then |SpecB| = V (I) ⊆ |SpecA| where V (I) is closed in SpecA.
Also, for all g ∈ A we have,

A[g−1] = OX(D(g))→ (f∗OZ)(D(g)) = OSpecB(D(p(g))) = B[p(g))−1].

Since localisation is exact, then the above map A[g−1]→ B[p−1] is a surjection. To show part 1 implies
part 2, we can again work locally, so let X = SpecA, then |Z| ⊆ |X| is closed which implies that Z
is also quasi-compact and quasi-separated (since X is). Proposition 11.15 now tells us that f∗OZ is
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quasi-coherent so f∗OZ ∼= B̃ for the A-module B = (f∗OZ)(X) = OZ(Z). Where B = OZ(Z) is an
A-algebra. We want to show that Z = SpecB. We have a surjection OX → f∗OZ , and exercise sheet 6
problem 3 tells us that a sequence of OX -modules is exact if and only if the sequence of global sections
is exact as A-modules, where X = SpecA. In our case this tells us that we have a surjection A→ B, so
the map B → OZ(Z) of A-algebras induces a map φ : Z → SpecB as schemes over SpecA. It remains
to see that φ is an isomorphism.

If x ∈ SpecB\Z, then 0 = (f∗OZ)x = B̃x 6= 0, so |Z| = |SpecB|. It remains to check on our
sheaves, but we know that if we evaluate,

OZ(D(g) ∩ Z) = (f∗OZ)(D(g)) = B̃(D(g)) = B[g−1] = OSpecB(D(g) ∩ Z).

Hence OZ = OSpecB .
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12 Vector Bundles and the Picard Group 29/11/2016

We begin today with a short remark.

Remark 12.1. Let X be a ringed space. Similar to OX -modules we can define OX -algebras. Namely
as a sheaf of commutative rings A with an OX -module structure, or equivalently the structure of a
sheaf of rings morphism OX → A.

Definition 12.2. Let M and N be OX-modules, then we define M⊗OX N as the sheafification of
U 7→ M(U)⊗OX(U) N (U).

If M = A is an OX -algebra, then the tensor product A ⊗OX N is an A-module and if N is also an

OX -algebra, then the tensor product is an A-algebra too. Notice that if X = SpecA and M = M̃ and

N = Ñ are quasi-coherent OX -modules, then M⊗OX N = M̃ ⊗A N . Indeed, for a V = D(f) ⊆ X
with f ∈ A we have

M(D(f))⊗OX(D(f)) N (D(f)) = M [f−1]⊗A[f−1] N [f−1] = (M ⊗A N)[f−1] = M̃ ⊗A N(D(f)).

This presheaf is a sheaf in this case, so no sheafification is necessary!

Corollary 12.3. If X is a scheme,M and N quasi-coherent sheaves, thenM⊗OXN is quasi-coherent.

Proof. We can check this locally on open affines, where this follows from the discussion above.

We’ve seen some of the next definition before, but we get to see the rest of it now! The reasons why
we only see this now will become obvious.

Definition 12.4. Let (f, f [) be a map of ringed spaces (Y,OY )→ (X,OX).

1. If N is an OY -module, then the pushforward f∗N is the OX-module with the structure morphism

OX × f∗N f∗OY × f∗N = f∗(OY ×N ) f∗N
f[×idf∗N f∗(−)

.

2. If M is an OX-module, then f−1M is a sheaf of f−1OX-modules via

f−1OX × f−1M = f−1(OX ×M) −→ f−1(M).

We now define the pullback f∗M as the OY -module

f∗M = f−1M⊗f−1OX OY .

See, we couldn’t have defined that before today. Notice that sometimes people write f∗ when they
really mean f−1, but that is usually just in the case when they are talking about ringed spaces in
general. In the language of schemes, and our algebraic geometry class, we really reserve the symbols
f∗ to mean the pullback of OX -modules we defined above.

Proposition 12.5. There is an adjunction with left adjoint f∗ and right adjoint f∗. In other words,
for each OX-module M, and each OY -module N , we have the following natural identification,

HomOY (f∗M,N ) ∼= HomOX (M, f∗N ).

Sketch of a Proof. We already have the adjunction

Hom(f−1M,N ) ∼= Hom(M, f∗N ) ⊇ HomOX (M, f∗N ),
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and a subset on the right hand side. There is a subset on the left hand side corresponding to the
OX -linear maps M → f∗N , and that is Homf−1OX (f−1M,N ), so we (have to check we) have an
adjunction between these subsets,

Homf−1OX (f−1M,N ) ∼= HomOX (M, f∗N ).

We can now use a change of rings isomorphism to change the left hand side to,

Homf−1OX (f−1M,N ) ∼= HomOY (f−1M⊗f−1OX OY ,N ) ∼= HomOY (f∗M,N ).

Last time we saw Proposition 11.15 which needed some hypothesis about a map f : X → Y to assure we
could pushforward our quasi-coherent module structures. Remember that we needed these hypotheses,
because Proposition 11.15 is not true in general20. Now we’ll see an analogous proof about the pullback,
but we don’t need any topological nicities at all!

Proposition 12.6. 1. Let f : Y → X be (any!) map of schemes, and M a quasi-coherent OX-
module, then f∗M is a quasi-coherent OY -module.

2. If Y = SpecB and X = SpecA, then M ∼= M̃ for some A-module M , and then we have

f∗M∼= M̃ ⊗A B.

Proof. For part 1, we notice that we can cover Y by open affines V = SpecB ⊆ Y mapping into an open
affine U = SpecA ⊆ X, then let g : V → U be the restriction of f to V , then (f∗M)|V = g∗(M|V ).
To check the quasi-coherentness of f∗M, it suffices to check the quasi-coherentness of g∗(M|V ). This
implies that we can replace Y by SpecB and X by SpecX, thus we only have to prove part 2. In that
case M = M̃ and for all OY -modules N we have the following series of isomorphisms.

HomOY (f∗M,N ) ∼= HomOX (M, f∗N ) ∼= HomA(M,f∗N (X)) = HomA(M,N (Y ))

∼= HomB(M ⊗A B,N (Y )) ∼= HomOY (M̃ ⊗A B,N ).

The Yoneda lemma now tells us that f∗M∼= M̃ ⊗A B.

Example 12.7. Recall our characterisation of PnZ(R) for all rings R from Theorem 10.7. We can now
extend that result to arbitrary schemes!

Definition 12.8. If X is a scheme, then an invertible OX-module L is a quasi-coherent OX-module
such that there exists a quasi-coherent OX-module N with L ⊗OX N ∼= OX .

Remark 12.9. 1. If X = SpecA then L ∼= L̃ for some A-module L, and L is invertible if and only
if L is invertible.

2. We can make the same definitions without the words quasi-coherent above at all, and then L
would still turn out to be a quasi-coherent sheaf. A sketch of this fact is to prove that any such
invertible OX -module is locally on X a direct summand of OnX , for some n, analogous to the case
of A-modules.

Corollary 12.10. For any scheme X,

PnZ(X) ∼= {On+1
X −→ L | surjection, with L an invertible OX -module} /∼ .

20It was stated however that these exceptions are a pathology, and indeed some algebraic geometry books assume
that all maps are quasi-compact and quasi-separated without losing our favourite examples. A counterexample can be
constructed using the morphism

∏
pprime SpecZ(p) → SpecZ.
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Proof. Given U ⊆ X an open subset, we make two definitions U 7→ Pn(U) and U 7→ {On+1
U → L}/ ∼.

Both of these sheaves agree on a cover of open affines, so they must be equal. In fact, these exists a
natural morphism between both which is an isomorphism when evaluated on affines.

In particular, if X = PnZ, then we have id ∈ PnZ(PnZ) and we get a canonical (“tautological”) surjection
On+1

PnZ
→ L where L is an invertible OPnZ -module.

Definition 12.11. We define OPnZ (1) := L. For m ≥ 1 we have OPnZ (m) := L⊗m, and for m < 0 we
have

OPnZ (m) := HomOPnZ
(OPnZ (−m),OPnZ ).

The definition of the sheaf Hom is coming in lecture 17.

Definition 12.12. For any scheme X, define the Picard group of X as

Pic(X) = {invertible OX-modules} /∼= .

This is an abelian group because if L and L′ are invertible OX -modules, then so is L⊗OX L′, and each
L has an inverse (since it is invertible!). This group is abelian since the tensor product is commutative
up to isomorphism (our equivalence relation on the Picard group). The following is a theorem that we
will see in exercise sheet 9 problem 2.

Theorem 12.13. For any field k, we can compute Z ∼= Pic(Pnk ) by sending m 7→ OPnk (m).

We have written something down in that theorem which we have yet to define though.

Definition 12.14. Given a ring R, we define PnR simply as

PnR = PnZ ×SpecZ SpecR.

Usually invertible OX -modules are simply called line bundles (Geradenbündel auf Deutsch), which is a
good name, justified by the following theorem.

Theorem 12.15. Let X be a scheme, L an invertible OX-module, then L defines a functor V(L) on
all schemes f : Y → X over X by

V(L)(Y ) := (f∗L)(Y ) = Γ(Y, f∗L).

This functor is representable by a schemes also denoted by V(L) over X, such that there is a cover
X =

⋃
i Ui such that

V(L)×X Ui = V(L)|Ui ∼= Ui × A1.

The scheme V(L) over X can then be thought of as a line bundle.

Proof. It’s enough to prove this result locally on X, by general gluing lemmas21. So assume that X
is affine, X = SpecA, so that L = L̃, then L is locally free on SpecA of rank 1. In this case we can
actually assume that L = A, then

V(L)(Y ) = f∗L(Y ) = f∗(OX)(Y ) ∼= OY ∼= HomRing(Z[T ],OY (Y )).

We then use the universal property of fibre products to obtain,

V(L)(Y ) = HomRing(Z[T ],OY (Y )) ∼= HomSch(Y,A1) ∼= HomSch /X(Y,A1 ×X).

In this way we can see that V(L) is represented by X × A1, locally.

More generally, we want to define what a vector bundle means to us.

21See [4][Tag 01JF, Lemma 25.15.4]
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Definition 12.16. Given a scheme X, then a vector bundle ξ is a sheaf of OX-modules that is locally
free of finite rank, i.e. there exists a cover X =

⋃
i Ui such that ξ|Ui ∼= O

ni
Ui

, for some ni ≥ 0. Note that
ni does not have to be constant for all i. If ni = n for all i, then ξ is called a vector bundle of rank n.

Remark 12.17. If ξ is a vector bundle, then it is in fact a quasi-coherent sheaf. If a vector bundle
has rank 1, then it is a line bundle and precisely an invertible OX -module.

Proposition 12.18. Let ξ be a vector bundle on X, then V(ξ)(Y ) = (f∗ξ)(Y ) is representable by a
scheme V(ξ) over X. There exists a cover X =

⋃
i Ui such that V(ξ)|Ui ∼= Ui × Ani .

Proof. The proof here is the same as the proof of Theorem 12.15, but we use

OY (Y )ni ∼= HomZ(Z[T1, . . . , Tni ],OY (Y )).

Although V(M) is defined for all quasi-coherent sheaves M (maybe even more general objects), it is
not in general representable like vector bundles. This makes the study of vector bundles somewhat
special. We need one more definition (so that we can do the exercises for this week).

Definition 12.19. A quasi-coherent sheaf OX-module M is of finite type if there exists an open cover
X =

⋃
i Ui with Ui = SpecAi such that M(Ui) is a finitely generated Ai-module.

Notice that any vector bundle is of finite type, obviously.

Proposition 12.20. If X = SpecA and M = M̃ , then M is of finite type if and only if M is finitely
generated.

Proof. If M is finitely generated thenM is clearly of finite type. Conversely, let X =
⋃
iD(fi) for some

finite collection fi ∈ A, then we have M(D(fi)) = M [f−1] are finitely generated as A[f−1]-modules.
For each i we choose a finite set of generators mij/f

ni
i with mij ∈ M and nj ≥ 0, and of course the

collection of all ij ‘s is finite. We then claim that these mij generate M . We can see this because the
map AN → M induced by mij (with N the sum of all i’s and j’s) is surjective after inverting fi, to
AN →M is surjective. Hence M is finitely generated.
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13 Finiteness Conditions and Dimension 01/12/2016

Today we start the goal for the rest of our course. We want to talk about projective curves over an
algebraically closed field. For this we need to define what a curve is (dimension), what projective
means (proper, separated), and what the adjective smooth means in an algebraic geometry context
(smoothness and normality are equivalent for curves). We do quickly need some more definitions
though, to help us with problem 4 in exercise sheet 7.

Definition 13.1. Let X be a scheme, M a quasi-coherent sheaf, then M is globally generated if it is
generated by global sections, i.e. if there exists sections si ∈ M(X) with i ∈ I some set, such that the
map ⊕

i∈I
OX →M,

sending ei 7→ si is surjective.

Definition 13.2. We defined the twisting sheaves on PnR last time, now for any quasi-coherent sheaf
M on PnR, we define M(m) :=M⊗OPn

R
O(m) for any m ∈ Z.

Back to today. We want to discuss finiteness conditions inside Sch, as well as a definition of dimension.

Definition 13.3. A scheme X is noetherian if it has a finite open cover by Ui = SpecAi where each
Ai is a noetherian ring.

Notice that we demand this cover to be finite.

Proposition 13.4. The following are equivalent for a scheme X.

1. X is a noetherian scheme.

2. X is quasi-compact and for all open affines U = SpecA ⊆ X the ring A is noetherian.

This proposition is a classic case of demanding some property on an open affine cover of a scheme X,
which then decends to a property on all affine open subschemes of X.

Proof. The fact that 2 implies 1 is clear. Assume now that X is noetherian, then X has a finite cover
by quasi-compact opens, so X itself is quasi-compact. Let’s write this cover of X as X =

⋃
i Ui with

Ui = SpecAi open affines and Ui noetherian. Let’s show that our candiate open set U = SpecA ⊆ X
is noetherian. Since it is an affine scheme it is quasi-compact, so we have

U ∩ Ui =
⋃
j∈Ji

DUi(fij), fij ∈ Ai.

Now DUi(fij) = SpecAi[f
−1
ij ], and we know that Ai is noetherian, which implies that any localisation

is as well. Hence U can be covered by affine opens which are noetherian, and the quasi-compactness
gives us finitely many of these. Hence U = SpecA is a noetherian scheme. Hence we may assume that
X = U = SpecA. By a similar argument, we may assume that Ui = D(fi) for some fi ∈ A. We need
to see that if A is a ring with cover X = SpecA =

⋃
iD(fi) with A[f−1

i ] noetherian for all i, then A

is noetherian. Let I ⊆ A be an ideal in A, then I = Ĩ ⊆ OX = Ã is a quasi-coherent sheaf in SpecA,
and I is of finite type, as I(D(fi) = I[f−1

i ] is a finitely generated A[f−1
i ]-module. Proposition 12.20

now tells us that I is finitely generated.

If X is a noetherian scheme, then the space |X| has some extra properties.

Definition 13.5. Let T be a topological space, then T is noetherian if every decreasing sequence of
closed subsets of T stabilises.
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Remark 13.6. If T is a noetherian space, then T is quasi-compact. Given T =
⋃
i Ui an open cover

without a finite subcover, then we can choose a sequence (xj)j of points in T such that for all j we have
xj /∈

⋃
j′<j Uj′ , but xj ∈ Uj . In this case we take Zj = T −

⋃
j′<j Uj′ and we find an nested chain of

closed subsets T % Z0 % Z1 % · · · which is strictly decreasing. Since T is noetherian, this stabilitses,
which implies that the Ui were indexed by finite set.

Remark 13.7. If T is a noetherian space, then any open subset U ⊆ T is also noetherian. If we have
some chain of nested closed subsets Zi in U , then we simply look at Z ′i = Zi ∪ (T −U), which is closed
in T and is a nested chain of subsets. In particular, any open subset of T is quasi-compact.

In fact, any subspace A of a noetherian space X is noetherian, since closed subsets Zi ⊆ A come
from closed subsets Zi ⊆ X, which stabilise by assumption.

Remark 13.8. If T is noetherian, this also implies that T is quasi-separated. Given U1, U2 ⊆ T which
are quasi-compact opens, then U1 ∩ U2 is also quasi-compact, since it is open in T . In partular, any
noetherian space T is quasi-compact and quasi-separated.

Proposition 13.9. Let X be a notherian scheme, then |X| is a noetherian space.

Proof. Let X =
⋃
i Ui be an open cover with Ui = SpecAi, where Ai are all noetherian. Let

|X| ⊇ Z0 ⊇ Z1 ⊇ · · ·

be a decreasing sequence of closed subsets. Since our cover is finite, it’s enough to check

Ui ⊇ Ui ∩ Z0 ⊇ Ui ∩ Z1 ⊇ · · ·

for all i. Hence we can assume that X = SpecA, where A is a noetherian ring. Then we have Zi = V (Ii)
for some radical ideal Ii ⊆ A, which gives us a chain of ideals

I0 ⊆ I1 ⊆ I2 ⊆ · · ·

Since A is noetherian, then there exists an N such that Ii = Ii+1 for all i > N .

The converse of this statement is false! Given a scheme X where |X| is a noetherian space, then X is
not necessarily a noetherian scheme. The problem in the above proof comes in when we consider only
radical ideals. Let’s see an example of this.

Example 13.10. Let R be a discrete valuation ring with quotient field K (for example R = k[[t]] for
some algebraically closed field k of characteristic zero, and K = k((t))). Let K be the algebraic closure
of K (which in our example is K = k((t))( n

√
t, n > 1)). Let R be the integral closure of R in K (for

us this is R = k[[t]][ n
√
t, n > 1] =

⋃
n≥1 k[[t]][ n

√
t] = k[[ n

√
t]]). Then R is not noetherian (for example

because (t) $ (
√
t) $ ( 4

√
t) $) but SpecR is. In our example, this is because SpecR = limn Spec k[[ n

√
t]],

and each k[[ n
√
t]] is a discrete valuation ring so it constists of exactly two points, corresponding to the

fraction field at the maximal ideal. All the transition maps are homeomorphisms too, so SpecR = ∗t∗.

This is somehow the ‘most natually occuring example’ of a non-noetherian ring. In practice, all classical
algebraic geometry is done over noetherian rings. We only really see slight variants of SpecA where A
is a finitely generated k-algebra, which is noetherian by Hilbert’s basis theorem.

Definition 13.11. Let X be a noetherian scheme, A a coherent OX-module is a quasi-coherent OX-
module of finite type.

There is a more general definition of a coherent OX -module on any scheme, but this definition is not
very useful. For example, OX itself may not be a coherent OX -module in this case. So we’ll only ever
talk about coherent OX -modules when X is a noetherian scheme.
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Theorem 13.12. Let X be a scheme. The category of quasi-coherent sheaves is abelian, and the
forgetful functor to OX-modules is exact.

Proof. This is problem 3 on exercise sheet 8.

Definition 13.13. A morphism f : Y → X of schemes is of finite type if f is quasi-compact, and
there is an open cover of Y by SpecBi, such that f |SpecBi factors over some SpecAi ⊆ X, and Bi is a
finitely generated Ai-algebra through the corresponding map of rings.

Proposition 13.14. If f : Y = SpecB → X = SpecA is a morphism of finite type, then B is a finitely
generated A-algebra.

Proof. The localisations A → A[f−1] are finitely generated, so we really have to prove that if Y =⋃
iD(gi) is a finite open cover of B for gi ∈ B, such that for each i we have B[g−1

i ] is a finitely

generated A-algebra, then B is a finitely generated A-algebra. Fix algebra generators
bij

g
nij
ij

∈ B[g−1
i ], of

which there are finitely many for each i. We want to check now that the collection {gi, bij} generate B
as an A-algebra. Let A[Gi, Bij ]→ B be the map sending Gi 7→ gi and Bij 7→ bij , then for all i we have
that A[Gi, Bij ][G

−1
i ]→ B[G−1

i ] = B[g−1
i ] is surjective by assumption. It is enough now to see that for

all x ∈ SpecA[Gi, Bij ] we have surjectivity on the localisations,

A[Gi, Bij ]px −→ Bpx .

If x ∈
⋃
iD(Gi), then this claim is obvious by our assumptions above. If x 6∈

⋃
iD(Gi) then Bpx = 0,

as SpecB =
⋃
D(gi), and we have surjectivity for free.

There are some obvious connections between noetherian-ness and morphisms of finite type, and they
both fall under our general theme today of finiteness. The next proposition solidifies this connection.

Proposition 13.15. If f : Y → X is a morphism of finite type and X is noetherian, then Y is
noetherian.

Proof. We know X is quasi-compact, and the fact that f is of finite type means f is quasi-compact,
so Y is quasi-compact. Given any V = SpecB ⊆ Y which maps to some U = SpecA ⊆ X, then
B is a finitely generated A-algebra. Now A is noetherian, so by Hilbert’s basis theorem B is also
noetherian.

Remark 13.16. If k is an algebraically closed field, then the classical notation of varieties over k is
essentially (up to being separated and irreducible as well) the same as a scheme of finite type over
Spec k (we’ll talk about this next lecture).

Next we are going to talk about dimension, and the classical commutative algebra notation of Krull
dimension.

Definition 13.17. Let T be a locally spectral space, then the (Krull) dimension of T is defined as the
supremum minus one of the length of all chains of specialisations of points in T , i.e.

dimT = sup
n
{x0 � x1 � x2 � · · · � xn | xi ∈ T, xi 6= xj ,∀i 6= j}

Let’s make some remarks about this definition. Firstly, we write x � y to mean x specialises to y,
which means that for all open sets U 3 y we have x ∈ U . We also say that y generalises x and we write
this as y ≺ x. Secondly, this definition can be made for any topological space X, but it really doesn’t
belong there. For example, we can easily check that any Hausdorff space is zero dimensional with this
definitions, which means all manifolds are zero dimensional, which is obviously not what we want. This
is a definition that belongs in algebraic geometry, since it comes from the Krull dimension of rings.

Definition 13.18. If X is a scheme, then dimX = dim |X|.
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Example 13.19. Let k be an algebraically closed field, and let X = A1
k then |X| looks like k but with

a generic point. The generic point specialises to all closed points. This gives us specialisations of length
1, which implies dimX = 1.

Example 13.20. If k is still algebraically closed and X = A2
k then the points of X are closed points,

irreducible curves, and the generic point. We then have a specialisation of length 2, so at least dimX ≥
2. We’ll make a re-interpretation of this dimension definition in the next lecture (see Remark 14.8),
and see that dimX = 2.

Lemma 13.21. If X =
⋃
i Ui is an open cover of a scheme X, then dimX = supi dimUi.

Proof. If we have a chain of specialisations in X, then this whole chain belongs in one fixed Ui for some
Ui, by the definition of a specialisation.

Next lecture we’ll see the real theorem we want to see with this definition of dimension. We’ll show that
the dimension of X can be measured using the Noether normalisation of a finitely generated k-algebra,
for a field k.
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14 Krull Dimension and (Pre)Varieties 06/12/2016

The theorem we want to prove first today is the following reality check about our current definition of
dimension.

Theorem 14.1. Let X = SpecA, where A is a finitely generated k-algebra for some field k, and given
a map

k[X1, . . . , Xn] ↪→ A,

from Noether normalisation, i.e. a finite injective map. Then dimX = n.

To prove this theorem, we’re going to make a few definitions, and prove some lemmas. In the end, the
proof of this theorem will be seemingly trivial commutative algebra.

Definition 14.2. A map φ : A→ B is integral if for all b ∈ B there exists an m ∈ N and a0, . . . , am−1 ∈
A such that bm + φ(am−1)bm−1 + · · ·+ φ(a0) = 0.

Lemma 14.3. Let φ : A→ B be an injective integral map of rings, then dim SpecA = dim SpecB.

Proof. The proof is by the so called “Going-Up theorem” from commutative algebra.

Theorem 14.4. [Going-Up] Let φ : A→ B be an integral map of rings.

1. If q ⊆ B is a prime ideal, and p = φ−1(q), then given p ⊆ p′ ⊆ A there exists a prime ideal q′ ⊇ q
of B such that p′ = φ−1(q′).

2. If q1, q2 are two prime ideals of B, and φ−1(q1) = φ−1(q2), then q1 6⊆ q2 and q2 6⊆ q1.

3. If φ is injective, then the induced map of spectra is surjective.

Proof. A proof can be found in Atiyah-Macdonald [1][Theorem 5.11 p.62].

We note that part 3 follows from: firstly we know that the induced map is dominant (all minimal prime
ideals of A are contractions from B), and part 1 tells us that all prime ideals are contractions from B.

Back to the proof, we are first going to show that dim SpecB ≤ dim SpecA. If q0 $ q1 $ · · · $ qn is
any chain in SpecB, then we simply let pi = φ−1qi, and we find a chain in SpecA,

p0 ⊆ p1 ⊆ · · · ⊆ pn.

This containment is in fact strict, since we have part 2 of Theorem 14.4 above, so dim SpecB ≤
dim SpecA. To show the converse direction, let p0 $ p1 $ · · · $ pn be a chain in SpecA, then part 3
of Theorem 14.4 tells us that there exists a q0 ∈ B with φ−1(q0) = p0. Part 1 of Theorem 14.4 gives
us a whole chain q0 $ q1 $ · · · $ qn in SpecB with φ−1(qi) = pi, and part 2 again gives us strict
containments.

Proof of Theorem 14.1. By the lemma we have just proved, we can assume that A = k[X1, . . . , Xn].
Applying the lemma one more time to the induced inclusion

k[X1, . . . , Xn] ↪→ k[X1, . . . , Xn],

into the algebraic closure of k means we can assume that k is also algebraically closed. It remains to
show now that dimAnk = n, which we have always hoped to be true. This, like much of the lecture
before now, will come as a consequence of the following definitions and theorems.

Definition 14.5. A ring A is called catenary if for all prime ideals p ⊆ q ⊆ A, then any maximal
chain p $ p1 $ · · · $ q has the same length.
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In practice, almost every noetherian ring is catenary. Counter-examples do exist, but it actually took
mathematicians quite a while to find a counter-example.

Theorem 14.6. If A is finitely generated over a field or a Dedekind domain, then A is catenary. All
localisations of catenary rings are catenary.

If A is a catenary ring, then dimA is the maximum over all such n = n(p, q) where p is a minimal
prime ideal and q is a maximal ideal. Applying this observation to A = k[X1, . . . , Xn] where k is
algebraically closed, then all the maximal ideals are of the form (X1 − a1, . . . , Xn − an), ai ∈ k by
Hilbert’s Nullstellensatz. Up to a change of coordinates, we may assume that all ai = 0, so we
construct the chain,

(0) $ (X1) $ · · · ,$ (X1, . . . , Xn).

To show this chain is maximal, assume we can add some prime ideal p ⊆ A into the chain, so

(X1, . . . , Xi−1) $ p $ (X1, . . . , Xi).

We can replace A by A/(X1, . . . , Xi−1) = k[Xi, . . . , Xn], so we may assume that i = 1 above. This
implies that p ⊆ k[X1, . . . , Xn] is a prime ideal contained in (X1). If f ∈ p then we can write f = Xn

1 g,
where g 6∈ (X1). Since X1 6∈ p and p is prime, we see that g ∈ p ⊆ (X1), which implies g = 0, a
contradiction.

We move on now to a more geometrically flavoured part of the material. Let k be an algebraically
closed field for the rest of the lecture.

Definition 14.7. A prevariety over k is a reduced (Definition 8.1), irreducible (Definition 3.7) scheme
of finite type over k. A variety is a prevariety that is also separated22.

Remark 14.8. Let’s make some preliminary remarks about these definitions.

1. This makes it sound like varieties are some very peculiar case of schemes, whose precise definitions
is artificial. This is true in a way, and we won’t focus on varieties anyway.

2. The category of irreducible affine algebraic sets over k embeds fully faithfully into the category
of (pre)varieties over k, by sending

V (I) ⊆ Ank 7→ Spec(k[X1, . . . , Xn]/I),

where I ⊆ k[X1, . . . , Xn] is a radical ideal.

3. Let X be a prevariety, then the dimension of X can be redefined as the maximum length of chains
of irreducible closed subsets {x} $ Z1 $ · · · ,$ Zn = X. We can reduce this to the case then
X = SpecA, then this follows from the fact that points of SpecA are prime ideals of A, which
are irreducible closed subsets of SpecA, which we proved in Proposition 3.10.

Definition 14.9. A scheme X is integral, if OX(U) is an integral domain for all U 6= ∅ open in X.

This is really just a new word for when a scheme is reduced and irreducible.

Proposition 14.10. A scheme X is reduced and irreducible if and only if X is integral.

Remark 14.11. This is not a local condition. Let A = k × k, then we see that A is not an integral
domain, but SpecA = Spec k t Spec k, and k is an integral domain.

22We’ll see the definition of separated next lecture in Definition 18.2.
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Proof. Assume first that for all nonempty U = SpecA ⊆ X we have A is an integral domain. Then
all such A are reduced, so A is a reduced domain. If X was not irreducible, then there would exist
U, V ⊆ X, a pair of non-empty open subsets with U ∩V = ∅. Without loss of generality we can take U
and V to be affine, but then U ∪V = U tV is affine, with OX(U tV ) = OX(U)×OX(V ). This has zero
divisors, which is a contradiction. Conversely, assume that X is reduced and irreducible, and consider
SpecA ⊆ X a non-empty open subset. These hypotheses tell us that SpecA is reduced and irreducible.
Without loss of generality (again), we may take X = SpecA, so then X being reduced implies that
A is a reduced ring. Now consider f, g ∈ A with fg = 0, then V (f) ∩ V (g) = V (fg) = SpecA, so
D(f) ∩D(g) = ∅. The fact that X is irreducible implies that D(f) = ∅ or D(g) = ∅. Hence either f
or g are nilpotent, but A is reduced, so f = 0 or g = 0.

What are the advantages of (pre)varieties vs. schemes?

Remark 14.12 (Advantages of (Pre)Varieties). Given a prevariety X over k (recall k is algebraically
closed), then X(k) ⊆ X is the subset of closed points, and the functor from prevarieties over k to Set
sending X 7→ X(k) is faithful. For affine prevarieties, we saw this in lecture 1, and this can fail for
schemes. For examples, let Y = Spec k[t]) and X = Spec k[ε]/ε2, then we have two morphisms X → Y
given by t 7→ ε and t 7→ 0 respectively. On k-valued points, X(k) = ∗ → Y (k) = k both maps send ∗ to
0 ∈ k. The first morphism somehow recalls the tangent direction of the points ∗, where as the second
map does not.

Remark 14.13 (Advantages of Schemes). Schemes have some better categorical properties though. For
example fibre products do not exist for prevarieties in general. Schemes are better than (pre)varieties
at tracking interesting information related to degenerate behaviour, such as the case when schemes are
not reduced. We will often come across properties of schemes that we can not talk about with varieties,
such as the valuation theorems of Lectures 18 and 19.

Example 14.14. Consider A1
k
∼= Spec k[x, t]/(x2 − t) → Spec k[t] ∼= A1

k where k is an algebraically
closed field with characteristic not equal to 2. The fibre over t 7→ a 6= 0 ∈ k is Spec k[x]/(x2 − a) =
Spec k t Spec k, which represent two points x = ±

√
a. The fibre over t 7→ 0 ∈ k is Spec k[x]/(x2),

which is a single point (recall a single point and a tangent direction), but notice that dimk k[x]/x2 = 2.
The fibre over t = 0 still remembers that generically there are two points in the fibre, it remembers
multiplicity.

This multiplicity statement is given in very nice terms with the following classical theorem.

Theorem 14.15 (Bézout’s Theorem). Let f, g ∈ k[x, y, z] be homogenous polynomials of degree d and
degree e with no common irreducible factors, then the intersection multiplicity of f and g is de.

In scheme theoretic terms we can say that f ∈ OP2
k
(d)(P2

k) and g ∈ OP2
k
(e)(P2

k), and we have closed

subschemes V (f) and V (g) ⊆ P2
k. Here we notice that V (f)(k) = {[x, y, z] ∈ P2

k|f(x, y, z) = 0}. Then
V (f), V (g) ∈ P2

k are both one dimensional, and V (f) ∩ V (g) is zero dimensional (in general).

Lemma 14.16. If a scheme X of finite type over k is 0-dimensional, then X = SpecA where A is a
finite-dimensional k-algebra.

We will see a proof of this lemma in lecture 20! Now let V (f) ∩ V (g) = SpecA. The scheme theoretic
version of Bézout’s theorem then says that dimk A = de.

Example 14.17. One should always consider some low dimensional examples here. For example two
lines will usually intersect each other only once (or once at ∞ if they are parallel), and a line and a
conic will have 2 generic intersections, up to multiplicity.
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15 Separated Schemes and Locally Closed Immersions 08/12/2016

This lecture was given by our tutor Isabell Große-Brauckmann. Let k be a field.

Definition 15.1. A scheme X over a field k is called projective if it is isomorphic to a closed subscheme
of Pnk for some n ≥ 0.

Notice that a projective scheme is always of finite type over k. Let X ⊆ Pnk =
⋃n
i=0 Ui, with the

standard open affines Ui, then X is covered by X ∩ Ui, which are each closed in Ui. Since Ui is affine,
then X∩Ui = V (a) where a ⊆ OUi(Ui), and this is of finite type. We proved in exercise sheet 7 problem
4(ii) that all closed subschemes of PnR are generated by homogeneous equations where R is noetherian.
Let’s review a shorter version of that proof when R = k is a field. Recall first the global sections of
Serre’s twisted sheaves,

O(d)(PnR) = k[X0, . . . , Xn]d := {f ∈ k[X0, . . . , Xn] | f homogeneous of degree d}.

Proposition 15.2. Let X ⊆ Pnk be a closed subscheme, then X ∼= V (f1, . . . , fn) ⊆ Pnk for some
homogenous polynomials f1, . . . , fm ∈ k[X0, . . . , Xn], where V (f1, . . . , fm). Given a scheme S, a vector
bundle E and a global section s ∈ Γ(S, E) we define V (s) to be the closed subscheme of S associated to
the ideal sheaf I23, which is the image of s∨, where s∨ : E∨ → O∨X ∼= OX is the dual map to our section
s : OX → E.

Proof. Let i : X → PnX be the closed immersion and set I = ker(i[ : OPnk → i∗OX), which is a coherant

sheaf from Propsoition 11.15. Now problem 4 on exercise sheet 724 (sometimes called a theorem of
Serre), says there exists d ∈ Z such that

I(d) := I ⊗OPn
k
OPnk (d),

is generated by finitely many global sections. Hence we obtain a surjection,

m⊕
i=1

OPnk
φ−→ I(d) ⊆ O(d).

Let fi = φ(ei), then I(d) is actually just the image of f1, . . . , fm in O(d). We claim that X = V (s)
where s = (f1, . . . , fm). It is enough to show that X ∩Ui = V (s)∩Ui for all i = 0, . . . , n. Without loss
of generality, let i = 0, such that we have U0 = Spec k[X1, . . . , Xn], then the restriction map on O(d)
simply sends fj to fj(1, X1, . . . , Xn). Hence,

V (f1, . . . , fm) ∩ Ui = V (f1(1, X1, . . . , Xn), . . . , fm(1, X1, . . . , Xm)) ⊆ Ui.

We also know that I(Ui) is generated by fj(1, X1, . . . , Xn) for j = 1, . . . ,m, which implies,

X ∩ Ui = Spec
(
OX(Ui)

/
I(Ui)

)
= Spec

(
k[X1, . . . , Xn]

/
(f1(1, x1, . . . , xn), . . . , fm(1, x1, . . . , xn))

)
.

This is simply V (f1, . . . , fm) ∩ Ui.

Example 15.3. Consider the following affine curve,

X0 = Spec
(
k[x, y]

/
(y2 − x3 − ax− b)

)
⊆ A2

k.

23Closed subschemes Z of a scheme X are in bijective correspondence with quasi-coherent ideal subsheaves of OX . We
send the closed subscheme i : Z → X to the kernel of i[ : OX → i∗OZ , and the ideal subsheaf I to the support of OX/I.
See Hartshorne [3, p.116, Proposition II.5.9] for a proof.

24Given a ring R and X = Pn
R, and M a quasi-coherant OX -module of finite type. Show that there exists an d ∈ Z

such that for every m ≥ d the OX -module M⊗OX OX(m) is globally generated.
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This can be “compactified” to

X = V
(
Y 2Z −X3 − aXZ2 − bZ3

)
⊆ P2

k.

Notice that X ∩U2 = X0, so we can recover our uncompactified guy. It is know that we cannot embed
a normal compactified hyperelliptic curve y2 = xn + an−1x

n−1 + · · ·+ a0 for n ≥ 4 inside P2
k, we need

at least P3
k.

What do we actually mean by “compactification” here? Because our schemes have a finite cover of
affines, they are quasi-compact as spaces, but we never want to impose Hausdorffness on our schemes
because this isn’t natural25. We want something like: a scheme X of finite type over C is compact (or
maybe we need a new word like “proper”) if X(C) is compact Hausdorff (with the analytic topology).
For example AnC is not compact as AnC(C) ∼= Cn, but PnC should be compact as PnC(C) = CPn, which is
compact. We are going to start with a weaker notion today, and work up from here.

Definition 15.4 ((Pre)Definition). A scheme X over C is called separated if X(C) is Hausdorff.

An example of a non-separated scheme would be the classical affine line with two origins. To generalise
this notation, recall what it means for a topological space to be Hausdorff.

Proposition 15.5. A space T is Hausdorff if and only if the diagonal ∆ ⊆ T × T is closed.

Proof. Given t 6= t′ ∈ T , a neightbourhood of (t, t′) in T × T is given by U × V with t ∈ U and t′ ∈ V .
In this case (U × V ) ∩∆ = U ∩ V ⊆ T . We can find an open neighbourhood of (t, t′) in T × T if and
only if t, t′ admit open neightbourhoods U and V respectively with U ∩ V 6= 0.

We now have an idea for a better definition of a separated scheme.

Definition 15.6. A morphism of schemes f : X → S is called separated if the diagonal ∆X/S : X →
X ×S X;x 7→ (x, x) is a closed immersion. A scheme X is called separated if X → SpecZ is separated.

Recall that we have previously seen that |X ×S X| 6= |X| ×|S| |X|, so a separated scheme is not
necessarily a Hausdorff space. This is nice, because if this were true, it would be a super restrictive
criteria. Recall that a closed immersion i : X → Y is a closed embedding of topological spaces such
that i[ : OY → i∗OX is surjective. When we check if the diagonal map is a closed immersion, the fact
that ∆[ is an epimorphism is automatic, so we need only check the topological condtion.

Definition 15.7. A morphism i : X → Y is called a locally closed immersion if

1. |i| : |X| → |Y | is a locally closed immersion, and |X| is open in its closure.

2. i# : i−1OY → OX is surjective.

This is only a slight change, but notice that i# is a morphism of sheaves over the ‘smaller’ space X, so
we expect this condition to be weaker to that of a closed immersion.

Proposition 15.8. Let i : X → Y be a morphism of schemes. Then i is a locally closed immersion if
and only if i can be written as a closed immersion followed by an open immersion.

Proof. Both open and closed immersions are locally closed immerions, and composites of locally closed
immersions are locally closed immersions, so we have one direction. Conversely, take i to be a locally
closed immersion, then |X| ⊆ |Y | is a locally closed map of spaces, as there exists an open set |V | ⊆ |Y |
such that |X| ⊆ |V | is closed. Then there exists a unique open subscheme V ⊆ Y with underlying
space |V |, and X → V is a closed immersion.

Proposition 15.9. Let f : X → S be an morphism of schemes, then the diagonal map ∆X/S : X →
X×SX is a locally closed immersion. If X and S are affine, then this is in fact just a closed immersion.

25A spectral space which is Hausdorff is automatically profinite and in particular 0-dimensional.
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Proof. First assume that X and S are affine, so let X = SpecA and S = SpecR, then we have,

X ×S X ∼= Spec (A⊗R A) ,

and the map ∆XS : X → X ×S X corresponds to the multiplication map A ⊗R A → A, which is
surjective. Hence ∆X/S is a closed immersion in this case. In general, for any x ∈ X, we choose some
open affine U with x ∈ U = SpecA ⊆ X mapping to SpecR ⊆ S. Then again we have,

W = SpecA×SpecR SpecA ∼= Spec (A⊗R A) ,

which is an open neighbourhood of ∆(U). Also, ∆(X)∩W = ∆(X)∩ (SpecA×SpecR SpecA) = SpecA
is closed in W by the affine case, hence ∆X/S is a locally closed immersion.

Note that the proof does not show that ∆ is closed. Indeed, the open sets U×SU ⊆ X×SX for U ⊆ X
affine open need not even cover X ×S X. There are some immediate corollaries of this proposition.

Corollary 15.10. If X is an affine scheme over an affine scheme S, X is separated inside of Sch /S.

The following corollary is what we have been wanted to prove this whole time.

Corollary 15.11. The scheme over S, f : X → S is separated if and only if |∆X/S |(|X|) ⊆ |X ×S X|
is a closed subspace.

Proof. The only condition which differs a locally closed immersion and a closed immersion is that closed
immersions also have |∆X/S |(|X|) ⊆ |X ×SX| is a closed subspace. Indeed, if |∆X/S |(|X|) ⊆ |X ×SX|
is closed, then we want the following map to be a surjection for all y ∈ X ×S X,

∆[
y : OX×SX,y −→ (i∗OX)y =

{
0 y 6∈ |∆|(|X|)

OX,y y ∈ |∆|(|X|) .

However, we always have ∆∗ : OX×SX,y → OX,x is surjective, since we have the following factorisation,

OX,x OX×SX,x

OX,x

pr∗i

id∗X
∆X/S .

We now have a quick proposition about some permanence properties of separated morphisms.

Proposition 15.12. Consider the following commutative diagram of schemes.

X Y

Z

f

h
g

1. If f and g are separated, then so is h.

2. If h is separated, then so is f .

Proof. For part 1, factor the diagonal map ∆X/Z using other diagonal maps as follows,

X X ×Y X ∼= (X ×Z X)×Y×ZY Y

X ×Z X ∼= (X ×Z X)×Y×ZY Y ×Z Y

∆X/Y

∆X/Z
(X×ZX)×Y×ZY ∆Y/Z

.
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Here ∆X/Y is a closed immersion, and the second map is simply the base change of a closed immersion,
hence a closed immersion. So ∆X/Z is a closed immersion. Part 2 comes from the following diagram.

|X ×Y X|

|X|

|X ×Z X|

i3

i1

i2

Now if i2(|X|) is closed, then i1(|X|) = i−1
3 (i2(|X|)) is closed, and we’re done.
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16 Proper Maps of Schemes 13/12/2016

Recall Defintion 15.1, which can be equivalently stated as: a scheme X is projective over k if there is a
closed immersion i : X → Pnk for some n ≥ 0. The Segre embedding that we explored in our problem 2
on exercise sheet 626 shows that the product of two projective spaces is projective. We now see a short
corollary of this.

Corollary 16.1. If X and Y are two projective schemes of k, then X ×k Y is projective.

Proof. We can choose closed immersions iX : X → Pnk and iy : Y → Pmk for some n,m ≥ 0, and then
the following composite is a closed immersion by Proposition 16.3,

X ×k Y Pnk ×k Pmk Pnm+n+m
k

iX×iY Segre
.

Definition 16.2. Let P be a property of maps of schemes (eg. of finite type, open/closed/locally closed
immersions, separated, . . . ), then we say P is

COMP compatible with composition if the composite of two maps in P is in P .

BC compatible with base change if for all f : X → S and g : S′ → S, then if f has P we have
f ×S S′ : X ×S S′ → S′ is in P .

PROD compatible with products if given f : X → Y and f ′ : X ′ → Y ′ in P , we have f × f ′ : X ×X ′ →
Y × Y ′ is in P , where the fibre product is taken over SpecZ.27

LOCT local on target if for all f : X → S if there is an open cover Ui of S such that f×SUi : X×SUi → Ui
is in P , then f is in P .

LOCS local on source if for all f : X → S, if there is an open cover Vi of X such that f |Vi is in P for
all i, then f is in P .

We will definitely not see the proof of the next proposition, but there is a proposition in Görtz and
Wedhorn [2, p.573-7] which gives proofs or at least directions of proofs. They are all relatively straight-
forward.

Proposition 16.3. Let P be the property of a closed immersion, open immersion, locally closed im-
mersion, or finite type, then P satisfies COMP, BC, PROD and LOCT.

It was suggested in lectures that locally closed immersions also satisfies LOCS, but a clear counter-
example of this fact is the map f : Spec k t Spec k → Spec k for some field k.

Example Proof. Consider whether or not closed immersions are closed under base change. Let the
following be a pullback square of schemes,

X ′ = X ×Y Y ′ Y ′

X Y

i′

i

.

Assuming that i is a closed immersion, we have to show now that i′ is a closed immersion. By the
definition of a closed immersion, we notice that P in this case is LOCT, so we can work locally on

26Here we constructed a morphism Pm
Z ×Z Pn → Pnm+n+m

Z (which turns out to be a closed immersion) using the fact
that we understand scheme valued points of projective space.

27PROD and BC together imply that product over arbitrary schemes S are in P .
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Y ′ and Y , so let Y ′ = SpecB′ and Y = SpecB. As i is a closed immersion then X = SpecA where
ĩ : B → A induced by i is a surjective ring homomorphism. Then we have X ′ ∼= Spec (B′ ⊗B A), and
a surjective map B′ → B′ ⊗B A, since base change of rings preserves surjections. Hence i′ is a closed
immersion.

Recall Definition 15.6 about separated morphisms.

Example 16.4. If a scheme X over C is separated, then X(C) with the complex topology is Hausdorff.
An example of a non-separated scheme is the affine line with doubled origin.

This now gives us all the adjectives we need to define varieties in scheme theoretic language.

Definition 16.5. A variety over an algebraic closed field k is an integral separated scheme of finite
type over k, i.e. a separated prevariety over k.

Historically, when Grothendieck first defined schemes, he called schemes preschemes, and separated
preschemes were schemes. To him, this separatedness was so important is was built into the definition
of a scheme.

Proposition 16.6. If X is separated and U, V ⊆ X are open affine subsets, then U ∩V is open affine.

Proof. We can re-write U ∩ V as,

U ∩ V = (U × V )×X×X X ⊆ U × V.

Since ∆X is closed, and using the base change property of closed immersions, we can conclude that
U ∩ V is closed inside the affine schemes U × V , hence it is also affine.

Remark 16.7. This fails for non-separated schemes. For example we have the affine place with doubled
origin, then A2

k − {0} is the intersection of two copies of A2
k, yet it is not affine (see Example 7.9).

The following displays why the adjective separated is a good word choice.

Corollary 16.8. If X is separated, then |X| is quasi-separated.

Proof. Given U, V ⊆ X which are quasi-compact opens, we want to see that U ∩ V is a quasi-compact
open. If cover U and V with finite open affine covers Ui and Vi, we then notice that U ∩ V is a finite
union of Ui ∩ Vj , which are open affines by Proposition 16.6, hence U ∩ V is quasi-compact.

Notice how the above fails to be an equivalence in logic, we only have an implication. Remark 16.7
explains this.

Proposition 16.9. Any affine scheme is separated.

Proof. If X = SpecA then the diagonal map is induced by the surjective map A⊗Z A→ A.

Proposition 16.10. Let f : X → S be a morphism of schemes, where S is separated, then f is
separated if and only if X is separated (over SpecZ).

Proof. This is just Proposition 15.12 from last time.

Proposition 16.11. When P is the class of separated morphisms, we have COMP, BC, PROD and
LOCT.

Separatedness is not LOCS, since all affine schemes are separated.

Proof. This reduces because diagonal maps behave well with respect to pullbacks, to similar properties
for closed immersions by definition.
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Definition 16.12. A map f : X → S of topological spaces is universally closed if for each map S′ → S
of topological spaces the map X ×S S′ → S′ is a closed map (the image of closed sets are closed). In
otherwords, a map f : X → S is universally closed if it is closed under arbitrary base change. A map
of schemes f : X → S is universally closed if for all maps S′ → S the map X ×S S′ → S′ is closed.

Notice in the scheme case we are not asking |X| ×|S| |S′| → |S′| to be closed. Some motivation for this
definition is the following statement in point-set topology: Given a compact Hausdorff space X, and T
any topological space, then the projection map X × T → T is always a closed map.

Definition 16.13. A morphism f : X → S is proper (eigentlich in Deutsch) if it is separated, of finite
type and universally closed. A scheme over S is proper if the structure map X → S is proper.

Example 16.14. Some intuition for this definition is the following: a scheme X over C is proper if
and only if X(C) is compact Hausdorff. For example notice that AnC is not proper, as AnC(C) ∼= Cn
which is not compact. On the other hand, PnC is proper, as PnC(C) ∼= CPn, which is compact Hausdorff.

A big theorem we will prove using the valuation criterion of properness in lecture 19 is the following.

Theorem 16.15. The map PnZ → SpecZ is proper.

This amounts to saying that if S is any scheme, and Z ⊆ |PnZ × S| is a Zariski closed subset, then the
image of |Z| in S is Zariski closed. Before we prove this, let’s see some corollaries.

Corollary 16.16. If k is a field and X is projective over k, then X is proper over k.

Proof. Choose a closed immersion i : X → Pnk . We now use the easy statement that the class of proper
maps satisfies COMP, BC, PROD and LOCT. This is obvious, since we only need to check these things
for universally closed maps (finite type and separated are mentioned in Proposition 16.3). For example
f : X → Y and g : Y → Z are proper maps, then g ◦ f : X → Z is separated and of finite type, and for
any Z ′ → Z, we have |X ×Z Z ′| → |Z ′| identifies with the composition,

|X ×Z Z ′| = |X ×Y (Y ×Z Z ′)| |Y ×Z Z ′|
g

|Z ′|f×(Y×ZZ′)
.

Since f and g are universally closed then we see that g ◦ f is also now universally closed, and hence
also proper. Then Theorem 16.15 we see that Pnk → Spec k is proper. Also all closed immersions are
proper (see Proposition 16.17), thus X → Pnk → Spec k is proper by COMP and BC.

Proposition 16.17. Let i : Z → X be a closed immersion, then i is proper.

Proof. Being proper is LOCT so we can assume that X = SpecA and Z = SpecA/I for some ideal
I ⊆ A. In particular Z is affine, so i is separated, and A/I is a finitely generated A-algebra, so i is
of finite type. Also, for any X ′ → X, we have i′ : Z ′ = Z ×X X ′ → X ′ is a closed immersion, using
that closed immersions are preserved by base change. Which implies that |i′| : |Z ′| → |X ′| is a closed
immersion, which in particular is closed.
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17 Internal Hom Sheaves and Affine Morphisms 15/12/2016

Proposition 17.1. Let X be a topological space and F and G be sheaves on X, then the assignment

U 7→ HomSh(U) (F|U ,G|U ) ,

is a presheaf, called Hom(F ,G).

Remark 17.2 (Caution). The simply and perhaps more ‘natural’ assignment one might think of is
simply

U 7→ Hom(F(U),G(U)),

but this is not even a presheaf. We have no way to define restriction maps.

Proof. If U is covered by opens Ui and we have morphisms φi : F|Ui → G|Ui which agree on overlaps,
then we need to find a unique map φ : F|U → G|U which restricts to these φi. For all V ⊆ U , we
can cover V by V ∩ Ui, and then F(V ) and G(V ) are simply the equalisers corresponding to this
covering. We have maps φi(V ∩ Ui) between both equaliser diagrams, so we obtain a unique induced
map φV : F(V )→ G(V ). These maps assemble to the desired maps of sheaves φ.

The above proposition specialises to the case of ringed spaces and OX -modules.

Proposition 17.3. Let (X,OX) is a ringed space, F ,G are sheaves of OX-modules, then the assignment

U 7→ HomOX (F|U ,G|U ) ,

defines a sheaf of OX-modules denoted by HomOX (F ,G).

Proof. The proof here is similar to the above proof, but just noticing at each step we have the additional
structure of an OX -module is respected.

Example 17.4. Let X be a scheme and F ,G two quasi-coherent sheaves, then for all open affines
U = SpecA ⊆ X we have

HomOX (F ,G)(U) ∼= HomA(F(U),G(U)),

despite the warning above. This happens precisely because quasi-coherent sheaves on affine schemes
are just A-modules. We really need quasi-coherent sheaves and affine schemes for this to work!.

Remark 17.5 (Caution). If X is a scheme, and F and G are quasi-coherent sheaves on X, then
in general the internal hom sheaf HomOX (F ,G) is not quasi-coherent. We do have the following
proposition though, which comes after a necessary definition.

Definition 17.6. A quasi-coherent sheaf F is finitely presented if there is a cover of X by affine opens
{Ui = SpecAi} such that F(Ui) is a finitely presented Ai-module.

Proposition 17.7. If F is a finitely presented quasi-coherent sheaf on X, then for all open affines
U = SpecA ⊆ X, F(U) is a finitely presented A-module.

Proof. This is the same argument as in the finitely generated case. The key step is the following: If
X = SpecA, then we already know that M = F(X) is a finitely generated A-module, so by choosing
a surjection An → M for some finite n we obtain a surjection OnX → F . If we let G = ker(OnX → F),
then G is still an OX -module of finite type, so G(X) is finitely generated and we have M = An/G(X)
is finitely presented.

Proposition 17.8. If X is a scheme, F and G are quasi-coherent sheaves with F being finitely pre-
sented, then HomOX (F ,G) is quasi-coherent.

Note that if X is noetherian, then an OX -module of finite type is necessary a finitely presented OX -
module, and vice-versa. Hence coherent sheaves pass this test.
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Proof. To show this, we need to show that given U = SpecA ⊆ X, and any f ∈ A, then the following
map,

HomOX |U (F|U ,G|U )
∼=−→ HomOX |D(f)

(F|D(f),G|D(f)),

is an isomorphism, where the left hand side is an A-module and the right is an A[f−1]-module. This

is a local problem, so for notation, let X = U = SpecA, then we have F = M̃ and G = Ñ for some
A-modules M,N . Whence we have the following equivalent problem, of showing that

HomA(M,N)[f−1]
∼=−→ HomA[f−1](M [f−1], N [f−1]),

is an isomorphism. Since F is finitely presented, we choose an exact sequence Am → An → M . Of
course localising is exact, so we also have,

Am[f−1] −→ An[f−1] −→M [f−1] −→ 0.

Taking HomA(−, N), and HomA[f−1](−, N [f−1]), and recalling these are left exact, we obtain three
more exact sequences, the last one from the first by localisation.

0 −→ HomA(M,N) −→ HomA(An, N) ∼= Nn −→ HomA(Am, N) ∼= Nm

0 −→ HomA[f−1](M [f−1], N [f−1]) −→ HomA[f−1](A
n[f−1], N [f−1]) −→ HomA[f−1](A

m[f−1], N [f−1])

0 −→ HomA(M,N)[f−1] −→ HomA(An, N)[f−1] −→ HomA(Am, N)[f−1]

We notice that the latter two of these exact sequences falls into the following commutative diagram
with exact rows.

0 HomA(M,N)[f−1] Nn[f−1] Nm[f−1]

0 HomA[f−1](M [f−1], N [f−1]) HomA[f−1](A
n[f−1], N [f−1]) HomA[f−1](M

′[f−1], N [f−1])

Since the localisation commutes with direct sums the middle map is an isomorphism, and the right
map is injective since M ′ is finitely generated. This implies the left horizontal map is an isomorphism,
and we’re done.

Example 17.9. If L is a line bundle on X, then L∨ (the dual line bundle) which gives us L⊗L∨ ∼= OX
is given by,

L∨ = HomOX (L,OX),

which is quasi-coherent since L is clearly finitely presented. More generally, given any vector bundle E
on X, then E is finitely presented and E∨ is the sensible definition.

We now move on a little to a new section, which comes with some new definitions.

Definition 17.10. A morphism f : X → S of schemes is affine if there exists a cover of S by open
affines Ui such that f−1(Ui) is an affine scheme in X for all i.

First we have to prove the expected proposition which comes after such a definition.

Proposition 17.11. If f : X → S is affine, then for all U ⊆ S open affine, the inverse image f−1(U)
is affine in X. Moreover, for a fixed S, the functor from the category of affine morphisms into S to the
opposite category of quasi-coherent OS-algebras, defined by (f : Y → S) 7→ f∗OY is an equivalence of
categories.

The inverse functor is denoted as A 7→ SpecOS
A, the relative spectrum of A. We proved in problem 1

on exercise sheet 7 that this scheme represents a functor (see Remark 17.14).
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Proof. First we let S = SpecA. We need to check that f is both quasi-compact and quasi-separated.
This is true since both properties are LOCT and affine schemes are quasi-compact and quasi-separated.
This implies that f∗OX is a quasi-coherent OS-algebra, and hence in this case f∗OX = B̃ for some
A-algebra B. We claim now that X = SpecB. Notice that,

B = Γ(S, f∗OX) = Γ(X,OX),

so we have maps of schemes,

X SpecB

SpecA

φ

.

To check that φ is an isomorphism, it suffices to work locally on S, but locally this is true by assumption.
Now, if S = SpecA is affine, then affine maps Y → S are mapped via an equivalence of categories to
the A-algebra Γ(Y,OY ), then we arrive at the chain of equivalences,

{affine maps f : X → S} ∼= {A-algebras } ∼= {quasi-coherent OS-algebras}.

From this we obtain ˜Γ(Y,OY ) = f∗OY , which comes from the fact that f∗OY is quasi-coherent. Hence
the composite functor is an equivalence of categories. In general, the equivalence from affine maps
Y → S to quasi-coherent OS-algebras via Y 7→ f∗OY comes by general gluing lemmas28.

Proposition 17.12. The class of affine morphisms satisfies COMP, BC, PROD and LOCT.

Proof. All of these proofs are straight forward, see Grötz and Wedhorn [2][Proposition 12.3, p.321] for
details.

Under base change, if φ : S′ → S is a morphism of schemes, then an affine map Y → S is mapped to
the affine map Y ×S S′ → S′. The corrosponding map of quasi-coherent OS-algebras sends A to φ∗A.

Proposition 17.13. Given an affine map f : X → S, then f is separated.

Proof. Both properties are LOCT so we can assume S is affine. In this case X is also affine and maps
of affine schemes are separated.

Remark 17.14. If S is a scheme and A is a quasi-coherent OS-algebra, then SpecOS
A (the relative

scheme to A) represents the functor of scheme over S,

(f : Y → S) 7→ HomOS−alg(A, f∗OY ).

We proved this is problem 1 on exercise sheet 729.

Example 17.15. If E is a vector bundle over S, then we have a total space vector bundle V(E), which
is a scheme over S, whose structure map is affine since locally V(E) is just An × S → S. In fact, we
can explicitly write V(E) as,

V(E) ∼= SpecOS
Sym•E∨.

The symmetric product of the freeA-moduleAn is a freeA-algebra overM , i.e. Sym•M ∼= A[X1, . . . , Xn].
In general we have the universal property,

HomA-mod(M,B) ∼= HomA-alg(Sym•M,B),

28See [4][Tag 01JF, Lemma 25.15.4]
29Given a scheme S and a quasi-coherent OX -algebra A, prove that the functor,

(f : Y → S) 7−→ HomOS−alg.(A, f∗OY ),

on the category of schemes over S is representable.
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for all A-algebras B. So Sym is the left adjoint free functor to the forgetful functor from A-algebras
to A-modules. The proof that V(E) ∼= SpecOS

Sym•E∨ can be given by manipulating the two functors

which either scheme represents, recalling that V(E) represents the functor (f : Y → S) 7→ Γ(Y, f∗E).

Γ(Y, f∗E) ∼= HomOY (f∗E∨,OY ) ∼= HomOS (E∨, f∗OY ) ∼= HomOS-alg(Sym•E∨, f∗OY )

This is going to seem a little off topic now, but we are going to slightly motivate the next lecture. In
the next lecture we are going to talk about the valuation crierion for properness. Recall a proper map
is separated, of finite type, and universally closed. For (non-)example, consider the following.

Example 17.16 (Non-Example). Let A1
k → Spec k be the canonical map, where k is a field. This

map is not universally closed, and hence it is not proper. To see this, let S′ = A1
k, then we have

X ×S S′ ∼= A2
k → A1

k = S′. If we let Z = V (xy − 1) ⊆ A2
k = Spec k[x, y], then the image of Z in A1

k is
not closed, it is exactly A1

k\{0}. To show that PnZ → SpecZ is closed we need to show that if A1\{0}
is in the image, then so is {0}, or something along these lines.

For this, we need the generic points of schemes. This approach would never work and totally fails
for varieties. In the case of schemes we can equivalently say something like, if the generic point of A1

k

is in the image, then so is zero. The advantage of this scheme theoretic case is that we only have to
talk about 2 points on our schemes, as opposed to many more. In fact, we can boil this theorem to a
statement about (A1

k)(0) = Spec k[t](t), which is a discrete valuation ring.
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18 Valuations and Valuation Rings 20/12/2016

We want to see the following theorem.

Theorem 18.1. The canonical map Pn → Z is proper.

To prove this map is of finite type is very doable, and even to prove this map is separated is doable
by hand. To show this canonical map is universally closed is tough though, we we’re going to use the
following two theorems to help us.

Theorem 18.2. [Valuation Criterion for Separatedness] A morphism f : X → S of schemes is sepa-
rated if and only if f is quasi-separated and for any valuation ring V with fraction field K, then any
diagram of the following form,

SpecK X

SpecV S

f

has at most one lift (the dotted arrow) such that the above diagram commutes.

Theorem 18.3. [Valuation Criterion for Properness] A morphism f : X → S of schemes is proper if
and only if f is of finite type (which implies quasi-compact) and quasi-separated, and for any valuation
ring V with fraction field K, then any diagram of the following form,

SpecK X

SpecV S

f

there exists exactly one lift such that the above diagram commutes.

Remark 18.4. If S is noetherian, and f is of finite type (which is often the case in practical circum-
stances), then quasi-separatedness is automatic, and we only need to test special kinds of valuation
rings (discrete valuation rings). If V is a valuation ring, then V is noetherian if and only if V is as
discrete valuation ring.

Example 18.5 (Intuition). Assume that S = SpecZ for simplicity, then X is separated if and only if
X is quasi-separated and for every valuation ring V with fraction field K, the map X(V ) → X(K) is
injective. It is a little exercise to translate Theorem 18.3 into this language.

Example 18.6 ((Non)-Example). If X is the affine line A1
k with doubled origin over some field k, then

we can consider V = k[t](t) with fraction field K = k(t), then we see that SpecV is simply a closed
point and a generic point, and SpecK is simply a generic point. Now we can map our generic point of
SpecK to the generic point of X, and then we have two different lifts of this, either sending the closed
point of SpecV to either one of the ‘origins’. This failiure is captured by different specialisations of
points.

Now we haven’t actually defined a discrete valuation ring, or a valuation ring, or even a valuation. We
are going to spend the rest of this lecture discussing these things. Our basic intuition should be that
fields are points on our schemes, and valuation rings are somehow chains of specialisations of points of
our schemes (this analogy is not 100% clean).

Remark 18.7 (Historic). Valuation rings were prominant in algebraic geometry in the times of Zariski,
Krull and Nagata. However Grothendieck didn’t like them. In fact EGA does not mention valuation
rings in an important way, and Grothendieck supposedly asking to remove the section in Bourbaki on
valuations rings. Recently, valuation rings have become much more prominant, for example in “p-adic
analytic geometry”. Also Nagata’s compactification theorem, which states that a separated morphism
of finite type can be factored as a proper morphism and an open immersion, is proved using valuation
rings.
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Definition 18.8. A totally order abelian group is an abelian group Γ with total order ≤ on Γ (so x ≤ y
and y ≤ x implies that x = y), such that if x ≤ y and x′ ≤ y′ we have x+ x′ ≤ y + y′.

Example 18.9. Examples include Z and R with the usual ordering, and R⊕R with the lexicographical
ordering30, which we will write as R⊕Rε, to imply that ε is some infinitesimal, i.e. ε < r for all r ∈ R>0.

Definition 18.10. Given a ring R, then a valuation on R is a map v : R→ Γ∪ {∞} for some totally
ordered abelian group Γ, such that

1. v(0) =∞ and v(1) = 0.

2. v(xy) = v(x) + v(y), with the convention that γ +∞ =∞+ γ =∞+∞ =∞.

3. v(x+ y) ≥ min(v(x), v(y)).

If Γ ∼= Z, then v is a discrete valuation.

Example 18.11. Valuations with Γ = {0} are in one-to-one correspondence with prime ideals in R.
The bijection is given by v 7→ v−1(∞). It’s a good exercise on the definitions to see that v−1(∞) ⊆ R
is always a prime ideal. In this sense valuations generalise prime ideals.

Example 18.12. If R = Z, then we can take vp to be the p-adic valuation, for some prime p. This is
defined as,

vp(n) = r, if n = prm, p 6 |m,

where we set vp(0) =∞ (naturally).

Example 18.13. For R = k[T ] we can take v = vT to be the vanishing order of T = 0. If f =∑n
i=0 aiT

i, then vT (f) = inf{i | ai 6= 0} ∪ {∞}.

Example 18.14. An example of a higher rank valuation (where the group Γ does not embed inside
R), is given by Γ = Z ⊕ Zε on the ring R = k[X,Y ], and v is simply taken to be the lexicographical
vanishing of a polynomial in R. So we look at the largest power of X to occur, followed by the largest
power of Y if X does not divide our polynomial, so

v
(∑

aijX
iY j
)

= inf{i+ εj|aij 6= 0}.

Definition 18.15. A valuation ring is an integral domain V with fraction field K such that for all
x ∈ K× one of either x or x−1 is in V .

The above definition seems so unmotivated, since it a priori has absolutely nothing to do with valuations,
but we have the next proposition to remedy this.

Proposition 18.16. Let V be a ring, then V is a valuation ring if and only if there exists a valuation
v : V → Γ ∪ {∞} such that for all x, y ∈ V , v(x) ≥ v(y) if and only if y|x in V .

In particular this last condition implies that all x ∈ V with v(x) = 0 are units in V .

Proof. Assume there exists such a valuation v, then V is an integral domain. This is because v(x) =∞
implies 0|x, i.e. x = 0. We then see {0} = v−1(∞) is a prime ideal, hence V is an integral domain.
Moreover, let K = Frac(V ) then there exists a unique valuation ṽ : K → Γ ∪ {∞} which extends v,
which is given by ṽ(x/y) = v(x) − v(y). We notice that y 6= 0 which implies that v(y) 6= ∞ so this is
well-defined. We claim now that V = {x ∈ K | ṽ(x) ≥ 0}. To prove this, suppse x = y/z for z 6= 0,
then ṽ(x) ≥ 0 if and only if v(y) ≥ v(z) which occurs if and only if z|y in V by our hypothesis on v, so
x ∈ V . Now for all x ∈ K×, we have 0 = ṽ(1) = ṽ(x) + ṽ(x−1) which implies that either x or x−1 are
in V .

30Concretely this means x+ x′ ≤ y+ y′ if and only if x ≤ y, or x = y and x′ ≤ y′, i.e. the first summand is in control.
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Conversely, assume that V is a valuation ring. Let Γ = K×/V ×, be our abelian group, and let x′

and y′ be the images of x, y ∈ K×. We define our total order on Γ to be x′ ≥ y′ if and only if x/y ∈ V .
One should prove this is independent of our choice of representatives x, y for x′ and y′, but multiplica-
tion by a unit in V doesn’t change this condition. This defines Γ as a totally ordered abelian group,
because for all x′, y′ ∈ Γ we have x′ ≥ y′ or y′ ≥ x′, as one of x/y or y/x lies in V . We can define a
valuation ṽ : K → Γ ∪ {∞} by setting x 7→ x and 0 7→ ∞. Now we take V = {x ∈ K | ṽ(x) ≥ 0} and
v : V → Γ∪{∞} to simply be the restriction of ṽ to V ⊆ K. This satisfies all our desired properties.

Corollary 18.17 (Of the above Proof). A ring V is a valuation ring if and only if there exists a
valuation ṽ : K → Γ ∪ {∞} for a field K such that V = {x ∈ K|ṽ(x) ≥ 0}.

Definition 18.18. A discrete valuation ring is a valuation ring V with K×/V × ∼= Z.

This if V is a discrete valuation ring and π ∈ V is a uniformiser31, then any f ∈ V −{0} is of the form
f = πng for g ∈ V × and n = v(f).

Lemma 18.19. Let R be a ring, v : R → Γ ∪ {∞} be a valuation such that for all x ∈ R, v(x) ≥ 0.
Then there exists a valuation ring V with fraction field K, a map R→ V and a commutative diagram,

R Γ ∪ {∞}

V ΓV ∪ {∞}

v

vcan

,

where vcan : V → ΓV ∪ {∞} and ΓV = K×/V × is a canonical valuation of V , and the inclusion of
totally order abelian groups is a map of totally ordered abelian groups.

Proof. Let p = v−1(∞) ⊆ R, then v factors as R → R/p
v→ Γ ∪ {∞} so replacing R with R/p, we

may assume that p = (0). In particular, R is an integral domain, so we pass to the fraction field
K = Frac(R) and define ṽ : K → Γ∪{∞} to send x/y to v(x)−v(y), as we’ve done before. This makes
sense because we checked that R in an integral domain. Let V = {x ∈ K | ṽ(x) ≥ 0}, then we have
R → K factoring through V , as v(x) ≥ 0 for all x ∈ R. We now set ΓV = K×/V × and we see that ṽ
induces an injection ΓV → Γ, so we have our commutative diagram.

Back to our favourite examples now.

Example 18.20. If R = Z and v = vp, then V = Z(p). If R = k[T ] with v = vT then V = k[T ](T ). If
R = k[X,Y ], then ΓV = Z⊕ Zε, and V is actually kind of hard to write down.

Lemma 18.21. Let V be a valuation ring, and let v = vcan : V → Γ∪{∞} be the associated valuation,
then

1. The ideals of V are in one-to-one correspondence with subsets S ⊂ Γ≥0 such that γ ∈ S and
γ′ ≥ γ, then γ′ ∈ S, through the map S 7→ v−1(S ∪ {∞}).

2. V is a local ring, with maximal ideal v−1(Γ>0 ∪ {∞}).

3. For all ideals I, I ′ ⊆ V we have I ⊆ I ′ or I ′ ⊆ I.

Proof. For part 1, let I ⊂ V be an ideal, S = v(I)− {∞} ⊆ Γ, then clearly I ⊆ v−1(S ∪ {∞}), and we
claim this is in fact an equality. Assume that x ∈ V, y ∈ I, with v(x) = v(y), and y|x, so x ∈ I. This
implies part 1. Part 3 follows by setting I = v−1(S ∪ {∞}) and I ′ = v−1(S′ ∪ {∞}) using part 1. For
a contradiction, take x ∈ S − S′ and y ∈ S′ − S, then if x ≥ y we have y ∈ S′ so x ∈ S′, but otherwise
we have y ≥ x and x ∈ S implies y ∈ S, a contradiction. Part 2 is obvious.

31This means that v(π) = 1 ∈ Z ∼= K×/V ×
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The previous proposition gives us a geometric understanding of valuation rings.

Corollary 18.22. If V is a valuation ring, the SpecV is a totally ordered chain of specialisations.

Proof. This is simply part 3 of Lemma 18.21.
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19 Separated and Properness Criterions 22/12/2016

Theorem 19.1. Let K be a field, and A ⊂ K with FracA = K such that A is a local ring. Then the
following are equivalent.

1. A is a valuation ring of K, so for all x ∈ K\{0} either x or x−1 lies in A.

2. There exists a valuation v : K → Γ ∪ {∞} such that A is {x ∈ K | v(x) ≥ 0}.

3. For all local rings A ⊆ B ⊆ K where A ↪→ B is a local map, A = B.

Proof. We proved that 1 was equivalent to 2 last lecture (Proposition 18.16). The fact that 1 is
equivalent to 3 can be found as Proposition B.66 in [2][p.562].

Corollary 19.2. If K is a field and A ⊆ K is a local subring, then there eixsts a valuation ring V such
that A ⊆ V ⊆ K with A→ V a local map.

Proof. This just uses Zorn’s lemma and characteristation 3 in Theorem 19.1 above.

Proof of Theorems 18.2 and 18.3. First we assume that f is separated, and consider the following di-
agram,

SpecK X

SpecV S

a

b
,

where V is a valuation ring, K is its fraction field, and a, b : SpecV → X are two maps. As the diagonal
map ∆f is a closed immersion, and closed immersions are stable under base change, then the maps
∆′a,∆

′
b : SpecV ×X×SX X → SpecV are closed immersions, as a map of schemes under SpecK. This

implies SpecV ×X×SX X = Spec(V/I) for some ideal I ⊆ V , from which we obtain the following little
diagram, since we are working with maps of schemes under SpecK.

V V/I

K

the above commutative diagram implies that V → V/I is an injection, so I = (0) is the zero ideal and

V/I = V . This implies that SpecV ×X×SXX = SpecV , so our maps ∆′a,∆
′
b : SpecV → X

∆f→ X×SX
are equal. Assuming now that f is proper, then we have to show the unique existence of our lift. Given
a diagram,

SpecK X

SpecV S

a

.

We can replace S by SpecV , and X by X ×S SpecV , so without loss of generality S = SpecV . Let
x ∈ X be the image of a, and let Z = {x} ⊆ X, then Z ⊆ X is closed. The fact that |f | is closed then
implies that the image of Z in SpecV is closed and non-empty. Thus, the closed point of SpecV lies
in the image of Z. Let z ∈ Z ⊆ X map to the closed point of SpecV . As z ∈ {x}, there is a natural
maps OX,z → OX,x, since all open subsets of z also contain x. Hence we obtain a chain of maps,

V → OX,z → OX,x → K,

whose composition is injective since V → K is simply the natural inclusion. Thus we have V ⊆ B ⊆ K,
where B is the image of OX,z inside K, and B is a local ring, as it is a quotient of a local ring, and
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V → B is a local map, as z maps to the closed point of SpecV . By part 3 of Theorem 19.1, we see
that B = V . Then the data (z,OX,z → B = V ) defines a V -point of X over S = SpecV , from exercise
sheet 5 problem 132.

We have now seen one full direction of Theorems 18.2 and 18.3. For the reverse implication, we
need to see |∆f | → |X ×S X| is closed, for which we need a few lemmata.

Lemma 19.3. Let g : Y ′ → Y be a quasi-compact morphism of schemes. Then the topological image
of g is closed if and only if it is stable under specialisations.

Proof. It is clear that if g(|Y ′|) is closed then it is also stable under specialisations. Conversely, closed
maps are local on the target so without loss of generality we can take Y = SpecB. In this case Y is
quasi-compact, so Y ′ has a finite affine cover by SpecBi’s, then by replacing Y ′ by,

∐
i

SpecBi = Spec

(∏
i

Bi

)
,

we may assume that Y ′ = SpecB is also affine. Say now we have x 6∈ g(|Y ′|), then the localisation
Yx does not meet the topological image of g, as this image is closed under specialisations. Then
∅Yx ×Y Y ′ = Spec(Bp ⊗B B′), so 0 = 1 inside the ring Bp ⊗B B′. If we write this as,

Bp ⊗B B′ = limf 6∈pB[f−1]⊗B B′,

we see there exists f 6∈ p such that B[f−1] ⊗B B′ = 0, which implies that D(f) ×Y Y ′ = ∅, which
implies that D(f) ∩ g(|Y ′|) = ∅. This implies that the complement of the topological image of g is
open, hence the image is closed.

Lemma 19.4. Let X be a scheme, and x � y a specialisation of points in X with K = k(x) the residue
field at x, then there exists a valuation subring V ⊆ K = Frac(V ) and a map SpecV → X mapping
the closed point of SpecV to y.

Remark that if X is notherian, then V can be chosen to be a discrete valuation ring.

Proof. We may replace X by the localisation Xy = SpecOX,y, so without loss of generality X = SpecA,
where A is a local ring and y is its unique closed point. Now x ∈ X corresponds to some prime
ideal p ⊆ A. We may further replace A by A/p, so in addition, our ring A can be assumed to
be an integral domain and x corresponds to the generic point, the zero ideal in A. In particular,
K = k(x) = FracA. We can now use Corollary 19.2 to obtain a valuation ring V , such that A ⊆ V ⊆ K
and SpecV → SpecA = X maps closed points to the closed point y.

Back to the proof of Theorems 18.2 and 18.3. Assume we have a map f : X → S which is quasi-
separated and satisfies the valuation criterion for separatedness. Then, because f is quasi-separated
we know that ∆f is quasi-compact by definition, so by Lemma 19.3 it is enough to show the image of
∆f is closed under specialisations. If x � y is a specialisation in X ×S X with x ∈ ∆f (|X|), then by
Lemma 19.4 we obtain a diagram of the form,

SpecK Spec k(x) X

SpecV X ×S X

=

∆f

,

32Let R be a local ring, S = SpecR and s ∈ S be the unique closed point. Prove that for every scheme X the map,

Hom(S,X) −→ {(x ∈ X,φ : OX,x → R)|φ is a local ring homomorphism},

sending a morphism f : S → X of schemes to the pair (f(s),OX,f(s)
f#

→ OS,s
∼= R) is a bijection.
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which maps the closed point of SpecV to y. This precisely corresponds to a diagram of the form,

SpecK X

SpecV S

.

The valuation criterion for separatedness now tells us that these two maps are equal. In other words,

SpecV → X
∆f−→ X ×S X implies that y ∈ ∆f (|Y |). Hence we now only need to worry about proper-

ness. Assume now that f : X → S is quasi-separated, of finite type and satisfies the valuation cirterion
for properness. Then f is separated by Theorem 18.2 which we have now proved, and of finite type
remains, so we only need to show universally closed now. Given some S′ → S, then we can replace
S by S′ and X by X ×S S′, so without loss of generality we can take S = S′, so we need to see that
|X| → |S| is closed. Let Z ⊆ |X| be a closed subset, then we can endow Z with the reduced subscheme
structure (see Proposition 19.5). Hence i : Z → X is a closed subscheme, hence i is proper so it satisfies
the valuation criterion for properness. Then, also the composite satisfies the valuation criterion for
properness, so without loss of generality we can take X = Z.

We need to see f(|X|) ⊆ |S| is closed, but f is of finite type, so it is quasi-compact, so by Lemma 19.3
implies it is enough to see this image is stable under specialisations. Let x � y be point of S with
x ∈ f(|X|). Lemma 19.4 gives us a valuation ring V with FracV = k(x), and a diagram,

Spec k(x) S

SpecV

,

mapping the closed point of SpecV to y. Now X ×S Spec k(x) is of finite type and non-empty over
k(x), so we now let K ′ = k(x). There exists a finite field extension K ′/K, such that,

SpecK ′ X ×S SpecK

SpecK

.

We can also find a valuation ring V ′ ⊆ K ′ such that SpecV ′ → SpecV is a local map. We now finally
have the following diagram,

SpecK ′ X

SpecV S

,

The valuation criterion gives us the dotted map, and as y is in the image of |SpecV ′| → |S′| we see
that y is in the image of |X| → |S|.

Let us just wrap things up with a little statement we have been able to prove and digest for a while
now.

Proposition 19.5. Given a scheme X, then there is a bijection between closed reduced subschemes of
X and closed subsets of |X|.

Proof. Assume that X = SpecA then reduced closed subschemes are simply SpecA/I where A/I is
reduced, which are the same as ideals I ⊆ A where I is a radical ideal, which by definition give us our
closed subsets V (I). In general we just simply glue. We do observe though that the localisation of a
reduced subscheme is still reduced.
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We can now easily prove the theorem we have been waiting for (recall Theorem 16.15).

Theorem 19.6. The morphism f : Pn → SpecZ is proper.

Proof. We know that our map f is quasi-separated and of finite type over SpecZ, so we need to see
that for all valuation rings V and K = Frac(V ), we have a unique lift of the following diagram,

SpecK Pn

SpecV SpecZ

l .

One way to show this would be that Pn(V ) → Pn(K) is a bijection, and we can explicitly do this
because we know both sides. Assume that (x0 : · · · : xn), (x′0 : · · · : x′n) ∈ Pn(V ) map to the same point
of Pn(K), then we have some λ ∈ K× such that xi = λx′i for all i. As sub-V -modules of K, we have,

V = V · x0 + · · ·+ V · xn = V · λx′0 + · · ·+ V · λx′n = λ(V · x′0 + · · ·+ V · x′n) = λ · V,

so λ ∈ V × and we have injectivity. Now if (x0 : · · · : xn) ∈ Pn(K) is any point, then we choose i such
that v(xi) ≤ v(xj) for all other j. Then we have,

(x0 : · · · : xn) =

(
x0

xi
: · · · : xn

xi

)
,

where xj/xi ∈ V since v(xj/xi) ≥ 0. Together they generate V since xi/xi = 1, so we have surjectivity
too.
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20 Normal Schemes and Curves 10/01/2017

We start this lecture by discussing the various definitions we have seen so far. We know what schemes
are, and we know some topological properties, global properties, local properties, and finiteness prop-
erties. This game of making more definitions is an endless story in algebraic geometry, but a problem
is that we need so many words to obtain the examples and objects that we really want to study. What
we want to define today is a normal scheme, which is equivalent to a smooth scheme if the dimension
of our scheme is less than or equal to 1.

Proposition 20.1. Let X be a scheme of finite type over a field k with dimension 0. Then X = SpecA
for some finite dimensional k-algebra. Conversely, if A is a finitely dimensional k-algebra, then X =
SpecA is a scheme of finite type over k with dimension 0.

To attack this proposition, we are going to use some more general facts one noetherian topological
spaces.

Lemma 20.2. If T is a noetherian topological space, then T is a finite union T =
⋃n
i=1 Ti where Ti ⊆ T

are irreducible closed subspaces of T .

Proof. Assume this is not the case, then we can define Φ to be the set of all closed subspaces Z ⊆ T
which violate the statement of the lemma. Then because T is noetherian Φ has a minimal element. If
not we have an infinite descending chain in Φ, which contradicts that T is noetherian. This means Z
is not irreducible, so Z = Z1 ∪ Z2 where Zi $ Z are proper non-empty closed subspaces of Z. Thus
Zi 6∈ Φ, since that would contradict the minimality of Z, so Zi =

⋃
i Zi,j some finite union of irreducible

closed subsets. This means we can write Z as the finite union
⋃
i,j Zi,j , which means that Z 6∈ Φ, a

contradiction.

Lemma 20.3. Let T be a noetherian spectral topological space with d = dimT <∞, then T =
⋃n
i=1 Ti

for Ti ⊆ T pointwise distinct closed irreducible subsets, which can be seen as Ti = {ηi} where η ∈ Ti is
the unique generic point of Ti. Moreover, if Ti 6= Tj, then dim(Ti ∩ Tj) < d.

Example 20.4. Let’s have a look at the case when d = 0, then T has no specialisations so Ti = {ηi} =
{ηi}, so T =

⋃n
i=1 Ti is a discrete finite space.

Example 20.5. For d = 1, then our T might be a finite collection of curves and points, and two curves
always intersect each other at finitely many point, one dimension lower than curves.

Proof of Lemma 20.3. The only thing we really have to prove is that dim(Ti ∩ Tj) < d. Let x0 ≺ · · · ≺
xm be a chain of generalisations in Ti ∩ Tj , then xm ∈ Ti ∩ Tj ⊆ Ti, Tj . We must have Ti ∩ Tj 6= Ti or
Tj , so without loss of generality take Ti ∩ Tj 6= Ti. Then we have ηi 6∈ Ti ∩ Tj , and xm ≺ ηi in Ti, thus
we have a new chain of generalisations x0 ≺ · · · ≺ xm ≺ ηi in T , which were not available in Ti ∩ Tj .
Hence m+ 1 ≤ d so m < d for all chains of generalisations of length m.

Let’s see a quick consequence of these two lemmas.

Corollary 20.6. Something like {sinx = y} ∩ {y = 0} can not appear in algebraic geometry.

This silly corollary just reminds us there are very strict finiteness conditions placed on algebraic ge-
ometry that are absent in real analysis and other areas of mathematics. We can now classify zero
dimensional schemes of finite type over a field k.

Proof of Proposition 20.1. Notice that the underlying space of our scheme X is a noetherian spectral
topological space of dimX = 0, so |X| is simply a finite set of points, X =

∐n
i=1Xi for some |Xi| = ∗ a

point. Then all Xi = SpecAi are affine, and
∐n
i=1Xi = Spec

∏n
i=1Ai, so X = SpecA is affine. Noether

normalisation gives us an injection k[x1, . . . , xn] ↪→ A which is finite, but we have seen in Theorem 14.1
this implies that 0 = dimX = dim SpecA = n. Hence we have an injection k → A which is finite,
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so A is a finite dimensional (as a k-vector space) k-algebra. Conversely, if A is any finite dimensional
k-algebra, then it is obviously a finitely generated k-algebra, and A =

∏n
i=1Ai where Ai is a local

Artinian ring, which implies that SpecA =
∐n
i=1 SpecAi, where SpecAi are a collection of points.

Corollary 20.7. If X is as in Proposition 20.1, and X is connected, reduced, then X = Spec k′ where
k′/k is a finite field extension.

Proof. X is connected implies that X = SpecA where A is a local Artinian ring, and X reduced implies
that A is reduced. But a reduced Artinian ring is a field.

Remark 20.8. Peter believes it is still not understood how to classify all possible non-reduced struc-
tures (such as in Proposition 20.1). If k is algebraically closed, A is a local Artinian finite dimensional
k-algebra, then dimk A = 2 implies that A ∼= k[x]/(x2), and dimk A = 3 implies that A ∼= k[x]/x3 or
k[x, y]/(x2, xy, y2), but these calculations get harder. When k is not algebraically closed this is a really
hard question to ask.

We will now assume that dimX = 1, and for the rest of this lecture it will always be of finite type over
a field k. We will also assume that X is reduced, since otherwise our classification problem becomes
an open one. In general we have Xred ⊆ X and often problems on X can be reduced to problems on
Xred, so this assumption doesn’t do too much harm.

We have seen that X =
⋃n
i=1Xi where Xi ⊆ X is an irreducible closed subset, which reduced closed

subscheme structures, and dimXi ≤ 1 and dim(Xi ∩ Xj) = 0 for all Xi 6= Xj . In this way we can
in some sense build a general X from irreducible and reduced 1-dimensional Xi’s and 0-dimensional
schemes. From now on, we are going to assume that X is also irreducible, thus X is also integral (recall
Definitions 8.1 and 14.9 and Proposition 14.10).

Definition 20.9. Let k be a field. A curve over k is a reduced and irreducible 1-dimensional scheme
C of finite type over k.

There are still lots of singular curves, such as the nodal and cuspidal cubics. Again, it is basically
impossible to classify curves if we consider these singularites, so we need another definition to get what
we want. This is where we would like to say smooth, but we are only working with “curves”, so it
suffices to define normal.

Definition 20.10. A scheme X is normal if for every x ∈ X, the local ring OX,x is a normal integral
domain.

Recall that an integral domain A is normal if A is integrally closed in K = Frac(A), i.e. if x ∈ K
satisfies xn + an−1x

n−1 + · · ·+ a0 = 0 for some ai ∈ A, then x ∈ A.

Example 20.11 (Non-example). Let A = k[x, y]/(y2 − x3), the cuspidal cubic. We claim that A is
not normal. To see this, embed A into k[t] by sending x 7→ t2 and y 7→ t3, then A is identified with
f =

∑n
i=0 rit

i with ri ∈ k and r1 = 0 inside k[t]. In particular, A is an integral domain, since it injects
into k[t], and t = y/x ∈ K = Frac(A) = Frac(k[t]), and t satisfies the equation t2 − x = 0. By t 6∈ A,
so A is not normal.

This normality condition does kill some examples we don’t like. Let’s see some properties of normal
schemes.

Proposition 20.12. If X is normal, then X is reduced. If X is integral, then X is normal if and only
if for all U = SpecA ⊆ X an open affine subset, A is a normal integral domain.

Recall that X is integral if it is reduced and irreducible, so by the first part of this proposition we
only need to assume that X is irreducible to imply that all open U = SpecA ⊆ X have A as a normal
integral domain.
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Remark 20.13. If X is normal, but not irreducible, it can be that for some U = SpecA ⊆ X we have
that A is not an integral domain, for example X = Spec k t Spec k = Spec(k× k) for some field k. The
definition of normality is designed to be a local property of X. One can show that if X is noetherian
and normal, then X =

∐n
i=1Xi with Xi irreducible, normal and noetherian.

Proof of Proposition 20.12. First, for all x ∈ X the fact that OX,x is reduced implies for all U =
SpecA ⊆ X open in X we have an injection A →

∏
x∈U OX,x. Since the right hand side of this injec-

tion is reduced, then so is A.33 Now let X be an integral normal scheme, then for all U = SpecA ⊆ X
open in X, A is an integral domain, so we let K = Frac(A). For all x ∈ U we then have OX,x = Apx

is integrally closed in Frac(Apx) = Frac(A) = K. Assume that f ∈ K is integral over A, then for all
x ∈ U , f is integral over Apx , so f ∈ Apx . This specifically says that there exists g 6∈ px such that
f ∈ A[g−1], since Apx is a direct limit of these localisations. Thus, f defines a section of OX locally on
U . These sections glue to a section of OX(U) = A, thus f ∈ A.

Conversely, it is enough to show that if A is a normal integral domain, p ⊆ A a prime ideal then
Ap is a normal domain. This follows from a general statement in commutative algebra, that localisa-
tion preserves normality (Lemma 20.14).

Lemma 20.14. Let A be a normal integral domain, K = Frac(A), S ⊆ A be a multiplicatively closed
subset of A, then A[S−1] is a normal integral domain.

Proof. We have an inclusion A[S−1] → K so A[S−1] is an integral domain. Assume then that f ∈ K
is integral over A[S−1], so

fn +
an−1

sn−1
fn−1 + · · ·+ a0

s0
= 0,

for ai ∈ A and si ∈ S. Let s =
∏
i si, and multiply the above equation by sn to obtain,

(fs)n + s
an−1

sn−1
(fs)n−1 + · · ·+ sn

a0

s0
= 0.

In this way all the coefficients san−1

sn−1
, . . . , sn a0s0 are in A. Since fs is integral over A and A is normal

then fs ∈ A which means that f = fs/s is in A[S−1].

33A scheme if reduced if and only if the stalks OX,x are reduced for all x ∈ X.
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21 Normalisations 12/01/2017

Recall Proposition 20.12, then notice also that if A is a normal integral domain, then SpecA is normal.
We will now begin the systematic process of taking an irreducible scheme, and producing a canonical
irreducible normal scheme.

Proposition 21.1. Let X be an irreducible scheme, then there exists a normal and irreducible scheme
X̃ and a dominant map34 f : X̃ → X which is universal in the sense that for all other normal and
irreducible schemes Y with a dominant map g : Y → X, then g factors through f . Moreover, the
morphism f is affine, and for all U = SpecA ⊆ X open in X, we have Ũ = f−1(U) = Spec Ã, where

Ã is the integral closure of Ared in K = Frac(Ared).

Notice that if X is reduced, then A is an integral domain, then Ã is simply the integral closure of A in
K = Frac(A).

Proof. We may assume that X is reduced. In general we have a closed reduced subscheme Xred ⊆ X and

X̃red = X̃ by the universal property of normalisation, since all normal schemes are reduced. Without
loss of generality we may then take X to be reduced, which means that X is integral. Let η ∈ X be the
unique generic point, and write K = k(η), the residue field at η. Concretely, for all U = SpecA ⊆ X

we have K = Frac(A). We claim that U 7→ ÕX(U) = Ã define a quasi-coherent sheaf of OX -algebras.
To see this we need to notice that for all a ∈ A, the following canonical map is an isomorphism,

Ã[a−1] −→ Ã[a−1].

The idea is that once we have this, we get a quasi-coherent sheaf on principal opens on SpecA, which
gives us a quasi-coherent sheaf on all of SpecA, and these all glue together to a quasi-coherent sheaf
on X for varying U = SpecA ⊆ X. We have the following commutative diagram.

A Ã Frac(A)

A[a−1] Ã[a−1] Frac(A[a−1]) = Frac(A)

id

We thus obtain an induced injection Ã[a−1] ↪→ Ã[a−1] by the universal property of localisation.

However Ã is normal, so Ã[a−1] is normal (Lemma 20.14), so Ã[a−1] ⊆ Ã[a−1] which implies that

Ã[a−1] = Ã[a−1].

Define X̃ = SpecOX
(ÕX), then f : X̃ → X is affine, and has the desired explicit description (from

the properties of the relative spectrum). To check the universal property, we have a dominant map

g : Y → X, where Y is normal and irreducible, then we can construct a unique factorisation over X̃, and
we can work this out locally on Y . As usual then, we let Y = SpecB and g : Y → U = SpecA ⊆ X. Let
L = Frac(B), then because g is dominant we obtain the following commutative diagram, by mapping
global sections to stalks at the unique generic point.

A B

K L

34Recall that a dominant map sends generic points to generic points.
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Note that B is integrally closed in L, which implies that φ : A→ B extends uniquely to φ̃ : Ã→ B.35

We then obtain the unique map g such that the following diagram commutes,

Y = Spec(B) Spec Ã = Ũ X̃

SpecA = U X

g̃

.

This is the desired universal property.

Example 21.2. Let X = SpecA with A = k[x, y]/(y2 − x3) be our cuspidal cubic, then we have

(y/x)2 = x inside Frac(A) = K. Let t = y/x, then we see that t ∈ Ã ⊆ K, such that x = t2 and

y = tx = t3, thus Ã ⊇ k[t], but k[t] is normal so Ã = k[t]. Let

X̃ = Spec Ã = A1
k → SpecA = V (y2 − x3) ⊆ A2

k,

be defined by t 7→ (t2, t3), then geometrically this map sends the vertical line A1
k homeomorphically

(not isomorphically as schemes) to the cuspidal cubic.

Example 21.3. Our second favourite example is when A = k[x, y]/(y2 − x3 − x2) be our nodal cubic.

Then similarly we have (y/x)2 = x + 1 inside Frac(A) = K, and we let t = y/x ∈ Ã ⊆ K. Then we

have x = t2 − 1 and y = tx = t(t2 − 1), so A $ k[t] ⊆ Ã ⊆ K, so again Ã = k[t]. Again, we have

a map Spec Ã → SpecA, which is a local scheme isomorphism away from the singularity. Notice this
map identifies t = −1 and t = 1, but at all other points we can recover t = t(t2 − 1)/(t2 − 1) = y/x.

Remark 21.4. Notice that in these examples X̃ is again of finite type over K, which actually happens
in arbitrary dimensions. Notice also that X̃ has no singularities, which unfortunately we can only
guarentee in this low-dimensional case (see problem 3(ii) on exercise sheet 1136).

Theorem 21.5. Assume A is a finitely generated k-algebra (where k is a field, but could also be a

Dedeking ring, like Z), and A is an integral domain. Then the normalisation Ã is a finitely generated

A-module and in particular Ã is a finitely generated k-algebra.

Proof. This is a difficult, but classical theorem from commutative algebra.

Remark 21.6. This is true even more generally if A is excellent. However most noetherian rings are
excellent. We have to try really hard to find a noetherian ring which is not excellent. Excellent rings
are a subtle part of commutative algebra. For example it was only proved in 2015-16 that completions
of excellent rings are (quasi)-excellent, which is well beyond the scope of this course.

Recall now that a discrete valuation ring is a valuation ring such that Γ ∼= Z.

Proposition 21.7. Given a discrete valuation ring A, then A is a local noetherian domain with
dim SpecA = 1.

Proof. To see this, notice that A is a valuation ring so A is local and an integral domain, and also recall
that ideals of A correspond to subsets S ⊆ Z≥0 such that s ∈ S and s ≤ s′ implies that s′ ∈ S. In
our case these subsets S correspond to Z≥0 ∪ {∞}, where ∞ corresponds to the empty set. A natural
number n is mapped to the ideal {x ∈ A|v(x) ≥ n}. This implies that A is noetherian, since descending
chains of non-negative integers stabilise.

35If x/y ∈ Ã with x, y ∈ A and y 6= 0, then φ(x)/φ(y) is integral over B, which implies it is in B and we define

φ̃(x/y) = φ(x)/φ(y).
36Let k be a field of characteristic 6= 2. Prove that the cone X := V (f) ⊆ A3

k with f = xy − z2 is a normal domain
and that the point (0, 0, 0) ∈ X(k) is not smooth.
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Let π ∈ A such that v(π) = 1, then v(x) ≥ n is equivalent to v(x) ≥ v(πn) which is equivalent to
πn|x. Thus {v(x) ≥ n} = (πn), so all ideals are principal. If n < ∞, then

√
(π)n = (π) so the only

radical ideals of A are (0) and (π). Moreover, (π) is really a prime ideal. If x, y ∈ A such that xy ∈ (π),
then v(x) + v(y) = v(xy) ≥ 1, so one of v(x), v(y) ≥ 1, in other words x or y are in (π). This implies
that SpecA = {(0), (π)} where (0) = η is the generic point and (π) = s is the unique closed point.

We now have a theorem which generalise the previous proposition.

Theorem 21.8. Let A be a local noetherian integral domain of dim SpecA = 1, then SpecA = {(0),m}.
More over A is normal if and only if m ⊆ A is a principal ideal if and only if A is a discrete valuation
ring.

Proof. The zero ideal is the unique generic point of SpecA since A is a domain, and m is the unique
closed point since A is local. Assume there exists x ∈ X with m ≺ x ≺ (0), but we know that
dim SpecA = 1, so x = m or (0).

(A is normal ⇒ m ⊆ A is a principal ideal) Let a 6= 0 be an element of A, and a 6∈ A×, then
V (a) = {m} ⊆ A. This implies that the radical of (a) is equal to m, so there exists n with (a) ⊇ mn.
Let n be the minimal such n, and let b ∈ mn−1\(a). Let x = a/b ∈ K = FracA, then x−1 6∈ A, as
b ∈ (a). As A is normal, then x−1 is not integral, so A[x−1] ⊆ K is not a finitely generated A-module,
since if it was then there would exist an m such that it is generated by 1, x−1, . . . , x−m+1, and

x−m = am−1x
−m+1 + · · ·+ a0, ai ∈ A,

contradicting the fact that x−1 is not integral. This implies x−1m $ m as otherwise A[x−1] ↪→ EndA(m),
the later of which is finitely generated over A. But x−1m ⊆ A as y ∈ m, and

x−1m =
bm

a
⊆ mn

a
⊆ A.

Thus, x−1m ⊆ A is a sub-A-module such that x−1m $ m, so x−1m = A, so m = Ax, hence x ∈ m ⊆ A
and m = (x), a principal ideal.

(m ⊆ A is a principal ideal ⇒ A is a discrete valuation ring) Let π ∈ m be a generator of m.
We claim that for all a 6= 0 in A is of the form a = πna0 where n ≥ 0 and a0 ∈ A×. Again we have
the radical of (a) is equal to m = (π), so there exists n such that πn ∈ (a). Then we choose a maximal
m ≤ n such that a ∈ (πm). Then a = πma0, and a0 ∈ A\(π) = A\m = A×. This shows existence, so
for uniqueness take πna0 = πmb0, for a0, b0 ∈ A×, and without loss of generality take n ≥ m. The fact
A is integral implies πn−ma0 = b0 ∈ A× but πn−ma0 ∈ m, a contradiction unless n = m, but in this
case we see a0 = b0 as well. We then define A→ Z≥n ∪ {∞} by mapping,

0 6= a0π
n = a 7→ n, 0 7→ ∞.

Easy to check this is indeed a valuation, and as v−1(∞) = {0}, it extends to v : K = Frac(A)→ Z∪{∞}
mapping,

0 6= xπn = a 7→ n ∈ Z, 0 7→ ∞.
Then we check that A = {x ∈ K | v(x) ≥ 0}.

(A is a valuation ring ⇒ A is a normal) We can actually show that any valuation ring is normal.
Assume v : K → Γ ∪ {∞} is a valuation with V = {x ∈ K | v(x) ≥ 0}, and x ∈ K with,

xn + an−1x
n−1 + · · ·+ a0 = 0,

all ai ∈ V . If x 6∈ V , then v(x) < 0 and v(x−1) > 0, x−1 ∈ V . We now obtain,

x = −an−1 − an−2x
−1 − · · · − a0x

1−n,

so x ∈ V , a contradiction. Hence V = A is normal.
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Corollary 21.9. Let C be a curve over a field k, then C is normal if and only if for each non-generic
point x ∈ C, OC,x is a discrete valuation ring.

Proof. Take a nongeneric point x ∈ C, then the local ring OC,x is a local noetherian integral domain
of Krull dimension 1, so by Theorem 21.8 we see OC,x is normal if and only if it is a discrete valuation
ring. The converse is simple, but we do have to notice OC,η = k(η) is a field which is normal.
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22 Function Fields 17/01/2017

We start todays lecture with the definition of a Dedekind domain.

Definition 22.1. A Dedekind domain is a normal, noetherian, integral domain such that dim SpecA =
1.

Notice this implies that SpecA has a generic point and a closed point, and for all x ∈ SpecA not the
generic point we have Ax is a discrete valuation ring.

Also, if C is a normal curve over a field k, then for all U = SpecA ⊆ C, the ring A is a Dedekind
domain.

Proposition 22.2. If K is a finite extension of Q and the integral closure of Z in K is OK , then OK
is a Dedekind domain.

Proof. This is classical commutative algebra, and we won’t really use this result also.

There is an important analogy in arithmetic geometry, between the number field case (SpecOK where
K is a number field), and the function field case (curves over a field). Using number theory like the
Langlands programs, we can take information from the number field case and make statements about
the function field case, and the same can be done the other way around.

Definition 22.3. Let X is a reduced and irreducible scheme with some generic point η ∈ X, then the
function field of X is K(X) = k(η) is the residue field of X at η.

Remark 22.4. If X is integral (the above case), then |X| has a unique generic point, so this is a good
definition. This is because |X| is T0, so any generic point is unique, and to construct a generic point,
we need only look at an affine open ∅ 6= V = SpecA ⊆ X open and affine, then A is an integral domain
with unique generic point ηV , which infact lifts over all of X to a unique generic point. The uniqueness
argument shows this construction is independent on the choice of V . The comment also implies that
K(X) = Frac(A) for any such ∅ 6= V = SpecA ⊆ X.

Proposition 22.5. Let X be an integral scheme of finite type over a field k, with function field K =
K(X). Then dim(X) is equal to the transcendence degree of K/k. In particular, for all non-empty
opens U ⊆ X, dimU = dimX, since η exists in all such opens.

Remark 22.6. Less of a remark, and more of a recall. Given any field extension k ⊆ K, one can find a
transcendence basis xi ∈ K, i ∈ I such that k[xi|i ∈ I] injects into K, and k(xi|i ∈ I) ↪→ K is a normal
field extension. Moreover, the cardinality of I is independent of our choice of transcedence basis, and
we then set,

trdeg(K/k) = |I|.

Proof of Proposition 22.5. Let U be a non-empty open affine of X, so U = SpecA. Using Noether nor-
malisation choose a finite injective map k[X1, . . . , Xn]→ A, then dim SpecA = n and k(X1, . . . , Xn)→
FracA = K, so the transcendence degree of K over k is equal to n = dim SpecA. Thus, dimX =
sup∅6=U⊆X(dimU) which is equal to the supremum of the transcendence degrees K/k for which we
have nomore U dependence, so dimX is the transcendence degree of K/k,

dimX = sup
∅ 6=U⊆X

dimU = sup
∅ 6=U⊆X

trdeg(K/k) = trdeg(K/k).

In in the converse direction we have the following result.
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Proposition 22.7. Given a finitely generated field extension k ⊆ K (so there exists a finite set in K
such that K is generated by k and this finite set as a field, so K is equal to the fraction field of k adjoint
these elements), then there exists an integral scheme of finite type over k such that K(X) = K.

Proof. We choose generators xi ∈ K and let A be the image of k[xi | i ∈ I] → K, then A is finitely
generated over k, an integral domain, and FracA = K, so we take X = SpecA.

Talking about curves again, we have the following immediate corollary.

Corollary 22.8. A field extension K/k is the function field of a curve if and only if K/k is finitely
generated and trdeg(K/k) = 1.

We want to describe the curve C through it’s function field K(C). We want to reduce the geometry of
C to the algebra of K(C)/k.

Proposition 22.9. Let C be a normal curve over a field k and K = K(C). There is a natural
map ν : |C| → Spa(K, k), where the latter is the set of all valuation rings V with k ⊆ V ⊆ K and
Frac(V ) = K (the adic spectrum), defined by x 7→ OC,x.

Proof. There is not really anything to prove here.

Notice that if x = η we have OC,η = K. Later we are going to topologise Spa(K, k) and prove some
interesting things about it, but for now we just need to map into it.

Example 22.10. Given an algebraically closed field k and C = P1
k ⊇ U0 = A1

k = Spec k[t], then
K(C) = k(t). What is ν in this case? Well |C| consists of a generic point η, a point at infinity ∞,
and A1

k(k) = k. The codomain, Spa(K, k) of valuation rings with certain properties is equivalent to
valuations v : K → Z ∪ {∞}, where v(k×) = 0. The map ν then sends η 7→ K, and x ∈ k to the
(discrete) valuation vx : k(t)→ Z ∪ {∞}. We define this valuation on f ∈ k[t] as the order of zeros of
f at t = x (here we use the fact that we can factorise f into linear factors over k). The natural map
ν then sends ∞ to −deg f . The intuition for this is that to evaluate f ∈ k[t] at ∞, we need to make
the substitution u = 1/t, and we then obtain f(u) = u−n + an−1u

−n+1 + · · ·+ a0, which has a pole of
order n at u = 0 which corresponds to t =∞. Hence v∞(f) = −n.

Proposition 22.11 (Product Formula). Let k be an algebraically closed field. For all 0 6= f ∈ K(X)
with X = P1

k, we have
∑
x 6=η∈X vx(f) = 0.

First note that this sum is finite since vx(f) is zero almost everywhere, since f only has finitely many
zeros. Why is this called the product formula? There are only sums involved? We’ll explain this in a
remark shortly after the proof.

Proof. If f = g/h with g, h ∈ k[t] and g, h 6= 0, then for all x ∈ X we have vx(f) = vx(g)− vx(h), so it
is enough to prove this for f ∈ k[t] ⊆ K. Write f as c(t− x1)n1 · · · (t− xk)nk . In this case we have two
contributions in the following sum, from x ∈ k and x =∞,

∑
x 6=η∈X

vx(f) =

k∑
i=1

ni − deg f = n− n = 0.

Definition 22.12. A multiplicative seminorm on a ring A is a map | − | : A→ R≥0 such that |1| = 1,
|0| = 0, |xy| = |x||y|, and |x+y| ≤ |x|+ |y|. This is called a norm if in addition we have |x| = 0 implies
that x = 0. A seminorm is nonarchimedean if the stronger triangle inequality |x + y| ≤ max(|x|, |y|)
holds.
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Remark 22.13. Given a ring A, and a discrete valuation v : A → Γ ∪ {∞}, then we have a map
Γ→ R>0 of abelian groups reversing the partial order. For example Z→ R>0 by the map n 7→ cn for
some c ∈ (0, 1), then the composition A → Γ ∪ {∞} → R≥0 is a nonarchimedean seminorm. In our
specific case, each vx gives rise to a nonarchimedean seminorm K → R≥0 defined by f 7→ e−vx(f). In
this way Proposition 22.11 becomes, ∏

x6=η∈X

|f |x = 1,

for all 0 6= f ∈ K.

There is an analogy between number fields and function fields, through a theorem by Ostrowski.

Theorem 22.14. The norms on Q are, up to equivalence given by:

1. The trivial norm, with |0| = 0 and |x| = 1 for all x ∈ Q×.

2. The real norm, |x|R = x if x ≥ 0 and |x|R = −x if x < 0.

3. The p-adic norm, so given a prime p we define |x|p = p−vp(x), where vp(x) is the number of times
p divides x.

Again we have a product formula, so for all 0 6= x ∈ Q we have,∏
p prime

|x|p · |x|R = 1.

A proof of this formula is simply to write x = ±
∏
p p

vp(x), then we see that∏
p prime

|x|p · |x|R =
∏
p

p−vp(x) ·
∏
p

pvp(x) = 1.

Okay, enough talk, now we have some more important mathematics to work through.

Proposition 22.15. A curve C is separated if and only if ν from Proposition 22.9 is injective. A
curve C is proper (over k) if and only if ν is bijective.

We will prove this next lecture, using the valuation criterion. A consequence of this is an analogue of
Ostrowski’s theorem for P1

k.

Corollary 22.16. For an algebraically closed field k, the valuations on k(t) such that v(k×) = 0 are,
up to equivalence given by,

1. v(0) =∞, v(f) = 0 for all f ∈ k(t).

2. v∞ described in Example 22.10.

3. vx for all x ∈ k described in Example 22.10.

Proof. The curve P1
k is proper, so the space of valuations Spa(k(t), k) is given by |P1

k| = {η,∞}∪ k, by
Proposition 22.15. The is discussed more in Example 22.10.
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23 Topology on the Adic Spectrum 19/01/2017

Our next goal in this course is to prove the theorem which states that the category of proper normal
curves over a field k, and dominant maps is equivalent to the category of finitely generated field
extensions K/k with transcendence degree 1. The functor from left to right takes a curve C and sends
it to its function field K(C). Today though, we are going to first prove Proposition 22.15, for which
we need a quick lemma.

Lemma 23.1. Let K/k be a finitely generated field extension of transcendence degree 1, and let k ⊆
V ⊆ K be a valuation ring with FracV = K, then either V = K or V is a discrete valuation ring.

Proof. Let A ⊆ V be a finitely generated k-algebra such that FracA = K, then V is normal implies
that without loss of generality we can take A to be normal. Hence dim SpecA = 1 since this is the
transcendence degree of our field extension, so SpecA is a normal curve over k. The inclusion A ⊆ V
gives us a map SpecV → SpecA, from which we let x ∈ SpecA be the image of the closed point
s ∈ SpecV . We then obtain a map Ax → V by factorising our localisation, and this is a local map.
We already know Ax is a discrete valuation ring. Recall then that if W ⊆ K is a local ring, then W is
a valuation ring if and only if for each W ⊆ W ′ ⊆ K with W ′ a local ring and W ⊆ W ′ a local map,
we have W = W ′ (part 3 of Theorem 19.1). This implies that V = Ax.

Proof of Proposition 22.15. Assume that x, x′ ∈ C with OC,x = OC,x′ =: V ⊆ K, then we obtain two
maps SpecV → C sending the closed point of SpecV to x and x′ respectively.37 Hence we obtain the
following commutative diagram.

SpecK C

SpecV Spec k

The valuation criterion of separatedness say that our two maps must be equal, so x = x′. If we
now assume that C is proper over k, then we already know that ν is injective, so for surjectivity, let
k ⊆ V ⊆ K be a valuation ring with Frac(V ) = K, then we have the following commutative diagram.

SpecK C

SpecV Spec k

l

The valuation criterion of properness gets us the unique lift l : SpecV → C, which corresponds to
x ∈ C and a local map OC,x → V within the fraction field K. Using the dominance theorem for valua-
tion rings, we see that this implies that V = OC,x, which implies that V is in the image of ν, as required.

Conversely, we’re again going to use the valuation criterion, so consider the diagrams of the form,

SpecK ′ C

SpecV ′ Spec k

l ,

and we want to know when we have a lift l, and how many such l’s exist. Let x ∈ |C| be the image
of |SpecK ′| → |C|. We claim that if x 6= η, then there is always a unique lift l. If x 6= η, then x
is a closed point (as the dimension of C = 1), so let Z ⊆ C be the reduced closed subscheme with

37Recall that if A is a local ring, and X is a scheme, then X(A) = {(x, α) | x ∈ X,OX,x →
A local ring homomorphism}.
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|Z| = {x} ⊆ |C|. Then Z is 0-dimensional, reduced, connected, so Z = Spec k′ where k′ is a finite field
extension of k. The map SpecK ′ → C factors through Spec k′ = Z set theoretically, so it does scheme
theoretically since K ′ is reduced. Also, any extension SpecV ′ → C must also factor over Z, this time
because SpecK ′ ⊆ SpecV ′ is dense and Z is closed, and V ′ is also reduced. Hence we need to check
there is a unique dotted arrow in the following diagram.

SpecK ′ Spec k′

SpecV ′ Spec k

Since we have affine schemes, this is equivalent to,

k′ K ′

k V ′

.

At most one map exists if and only if k′ ⊆ V ′, but k′/k is a finite extension so k′/k is algebraic, and
hence integral. Notice as V ′ is normal, k ⊆ V ′ so we have k′ ⊆ V ′ as desired.

We now consider the case when x = η, so k(x) = k(η) = K. We want to find f in the following
diagram.

SpecK ′ C

SpecV ′ Spec k

f

Any extension f is given by a map SpecV ′ → C, which is equivalent to give y ∈ C and a local map
OC,y → V ′. Let V = V ′ ∩K ⊆ K, then V is again a valuation ring with Frac(V ) = K. Indeed, for all
a ∈ K× ⊆ (K ′)×, one of a, a−1 ∈ V ′, which implies that one of a, a−1 ∈ V . This gives us a local map
OC,y → V of local rings, thus the set of all f ’s,

{f} = {y ∈ C | OC,y = V = V ′ ∩K ⊆ K ′}.

Thus, if ν is injective we have at most one f , which implies that C is separated. If ν is bijective, then
we have exactly one f , which means C is proper over k.

In particular, if C is a proper normal curve over k, we have |C| ∼= Spa(K, k). We could define the
topology on Spa(K, k) by simply taking the topology induced by ν, but there is a more independent
definition.

Definition 23.2. We give Spa(K, k) the topology generated by open sets of the form,

{V ⊆ K | x1, . . . , xn ∈ V },

for some varying collection of xi ∈ K.

This can be done for any field k, and it is called the Zariski-Riemann space. A non-trivial theorem states
that Spa(K, k) is homeomorphic to the inverse limit of |X| where X varies over all integral, projective
schemes over k with K(X) = K. If we look at this inverse limit in higher dimensions ( 6= 1) then this
inverse limit is crazy huge (c.f. blow ups). If n = 1, then the natural map ν is the homeomorphism
from Spa(K, k) to this inverse limit.
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Lemma 23.3. Assume K/k is a finitely generated field extension, and the transcendence degree is equal
to 1. Then Spa(K, k) is a spectral space38 of dimensional one with a unique generic point η, and all
other points closed. In fact, a non-empty open set of Spa(K, k) is equivalent to η ∈ U and Spa(K, k)\U
is finite.

Some of these facts hold in more generality, like the transcendence degree of K/k is equal to the
dimension of Spa(K, k).

Proof. We will begin by showing Spa(K, k) has a unique generic point.

(Unique Generic Point) Given U 6= ∅ open in Spa(K, k), then U is a union of generating

{V ⊆ K | x1, . . . , xn ∈ V },

and these open subsets all contain {K}, our generic point.

(All Other Points are Closed) Let W $ K be a valuation ring over k with FracW = K, then
consider,

Z = {V | ∀x ∈ K\W,x 6∈ V } ⊆ Spa(K, k),

which is closed. Assume V ∈ Z, then by the construction of Z, V ⊆ W . Moreover, V is a valuation
ring by Lemma 23.1. We have the nested inclusions V ⊆W ⊆ K and this gives us,

SpecK → SpecW → SpecV.

Since V ⊆ K is the canonical inclusion, we see that one of the above maps is an equality, i.e. a local
map. Thus either V = W or W = K, but we assumed W 6= K so W = V and Z = {W} (since clearly
{W} ⊆ Z).

(Characterisation of Open Sets) From the previous part, we see that if U ⊆ Spa(K, k) with
η ∈ U and Spa(K, k)\U finite, then U is open, as the complement of U is a finite union of closed points.
Conversely, we need to see that if U is a non-empty open subset of Spa(K, k), then the complement of
U is finite. We may assume,

U = {V | x1, . . . , xn ∈ V } =

n⋂
i=1

{V |xi ∈ V },

for some x1, . . . , xn ∈ K, so we may reduce to the case where U = {V |x ∈ V }, for some x ∈ K.
Then we set Z = Spa(K, k)\U . Then Z = {V |x−1 ∈ mV }, since x 6∈ V so vV (x) < 0, which implies

vV (x−1) > 0 so x−1 ∈ mV . Let A = k[x−1] ⊆ K, and let Ã be the normalisation of A in K. For

all V ∈ Z, A = k[x−1] ⊆ V which implies that Ã ⊆ V , since V is normal as all valuations rings are.

From this we obtain a map SpecV → Spec Ã into a normal curve over k. This is essentially given by
s ∈ Spec Ã, from which we obtain a local map Ãs → V . Since Ãs is a valuation ring, then V = Ãs,
which means that x−1 ∈ mV implies that s ∈ V (x−1), the vanishing locus of x−1 inside Spec Ã. This
discussion implies the map V (x−1) → Z is surjective, and the domain finite, hence Z is finite. This
finishes our characterisation of open subsets.

(Spectral Space) From the characterisation of open subsets, we see that Spa(K, k) is quasi-compact,
since each non-empty open subset has almost all the points of Spa(K, k). In fact, any open subset is
quasi-compact by this same argument. Recall that to be spectral means to be quasi-compact, have
a quasi-compact basis closed under intersections, and every irreducible closed subset has a unique
generic point. The only thing left to prove is this final piece. However, the irreducible closed subsets
of Spa(K, k) are itself, which has a generic point η, and points, which are their own generic points.

38Recall the definition of a spectral space from Definition 3.12
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Next is a lemma that we need to prove, otherwise all of our Spa(K, k) and ν would not be connected.

Lemma 23.4. If C is a normal curve over a field k with K = K(C), then ν is continuous and open.

In particular it is an open embedding if C is separable and a homeomorphism if C is proper.

Proof. These questions are all local, so we assume that C = SpecA.

(Continuity) For continuity, check the preimage of closed sets are closed. We’ve seen though that
a non-trivial closed subset of Spa(K, k) is a finite union of closed points, so without loss of generality
let Z = {V } with V 6= K. Then the preimage is at most one point of C = SpecA since C is separated
and ν is injective (recall Proposition 22.15), which is not the generic point, thus closed.

(Openness) Given x1, . . . , xn ∈ A which generate the k-algebra A, then the image of ν is

{V | x1, . . . , xn ∈ V }.

Indeed, if V is in the image of ν, then V = OC,s for some s ∈ C, so A 3 x1, . . . , xn. Conversely, if
x1, . . . , xn ∈ V we obtain a map A→ V which factors through As → V for some s ∈ C = SpecA. We
then get that V = As by the domination of valuation rings, so V is in the image of ν. Hence the image
of ν is open.
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24 Proper Normal Curves are Field Extensions 24/01/2017

Let k be a field, then we want to prove:

Theorem 24.1. The category of proper normal curves over k with dominant morphisms, and finitely
generated field extensions K of transcendence degree 1 are equivalent. The functor from left to right
sends a curve C to its function field K(C).

The following is a quick proposition to tell us that only considering dominant maps is not that restrictive.

Proposition 24.2. Given a map f : C1 → C2 of curves, then either f is dominant or there is some
x ∈ C2 such that f factors through Spec k(x) ⊆ C2.

Proof. Assume f is not dominant, so η2 is not in the image of f . Then the image of f is contained in
C2\{η2}, hence the image of f is a quasi-compact subscheme of dimension 0, so the image of f is just
a discrete set of points (by Lemma 24.3 below). However C1 is connected as curves are irreducible, so
the image of f is just a point x ∈ C2. Let Z = Spec k(x) ⊆ C2 be the corresponding reduced closed
subscheme, then C1 is reduced and f : C1 → C2 factors over {x} ⊆ C2 topologically. Lemma 24.4 then
tells us that f factors over Z as schemes.

Lemma 24.3. Let f : Y → X be a quasi-compact map of schemes, where X is irreducible, such that
η 6∈ im(f), where η is the generic point of X. Then there exists an open dense subset U of X such that
im(f) ∩ U = ∅.

Proof. We may assume X = SpecA is affine and reduced (for topological reasons). Then Y =⋃
i SpecBi for some finite collections of open affines, where Bi are A-algebras. Let

fi = f |SpecBi : SpecBi → SpecA,

then if we can find a dense open Ui ⊆ SpecA such that Ui∩im(fi) = ∅, then U = U1∩· · ·∩Un ⊆ SpecA
is still a dense open and U ∩ im(f) = ∅. Hence we may restrict to each fi, hence we may assume that
Y = SpecB, for some A-algebra B. Let K = FracA, then η 6∈ im(f) if and only if

Spec(B ⊗A K) = SpecB ×SpecA SpecK = ∅,

which is equivalent to B ⊗A K = 0, which is equivalent to 1 = 0 inside B ⊗A K = B[(A\{0})−1]. This
condition is the same as there exists a ∈ A and a 6= 0 with a = 0 in B, in other words 0 = B[a−1].
In this case, we obtain SpecB ×SpecA D(a) = ∅, where D(a) is a dense open subset of SpecA. This
implies im(f) ∩D(a) = ∅.

Lemma 24.4. Let X be any scheme, Z ⊆ X some reduced closed subscheme, then if Y is any reduced
scheme with a map f : Y → X, then f factors over Z if and only if |f | factors over |Z|.

Proof. This can be checked locally in Y , so we may assume Y = SpecB → U = SpecA ⊆ X, in which
case Z ∩ U = SpecA/I for some radical ideal I of A. It is clear that if f factors over Z, then we have
the topological statement. Conversely, if |f | factors over |Z|, then for all a ∈ I, a vanishes at all points
of im(f), so the image of a in B vanishes everywhere. Since B is reduced this implies that a is sent to
0 in B, so I 7→ 0 in B. Hence A→ B factors over A/I which is what we wanted to prove.

The following proof will require a few intermediate lemmas, which we will include in the body of the
proof.

Proof of Theorem 24.1. We want to construct an inverse functor, so given some K, we need to construct
a locally ringed topological space C = (|C|,OC) such that C is a proper normal 1-dimensional integral
scheme of finite type over k. We do that by letting |C| = Spa(K, k) which we defined last lecture. Last
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time we also showed this was a spectral space, it was 1-dimensional and irreducible (amoungst other
things). Now we have to define OC . For any non-empty open subset U ⊆ |C| = Spa(K, k), we define,

OC(U) = {a ∈ K | ∀x ∈ U, x = V ⊆ K, a ∈ V },

so V ∈ U .

Lemma 24.5. OC is a sheaf of k-algebras. For all x ∈ |C| (so V ⊆ K) we have OC,x = V .

Proof of Lemma 24.5. To show that OC is a sheaf, we take U = U1 ∪ · · · ∪ Un, and check the required
equaliser. ∏n

i=1OC(Ui)
∏n
i,j=1OC(Ui ∩ Uj)

There is an injection from
∏
i,j OC(Ui ∩ Uj) into

∏
i,j K, so the equaliser above is equal to,

{(a1, . . . , an) ∈ Kn | ∀x ∈ Ui, x = Vi ⊆ K, ai ∈ Vi, and ∀i, j, ai = aj},

where the last condition ai = aj for all i, j comes from our injection mentioned above. This is equal to,

{a ∈ K | ∀V ⊆ K, a ∈ V } = OC(U).

To check this property of the stalks, we take x ∈ |C| which corresponds to a V ⊆ K, then OC,x ⊆ V
from the definition. Conversely, let a ∈ V , then U = {W | a ∈ W} ⊆ |C| is an open subset and
contains x, and a ∈ OC(U) so we have a ∈ OC,x.

In particular, all OC,x are local rings, so C = (|C|,OC) is a locally ringed space.

Lemma 24.6. Let C ′ be a normal curve over k with K(C ′) = K, then there is a unique map of locally
ringed spaces f : C ′ → C such that the following diagram commutes.

C ′ C

Spec k

f

Proof of Lemma 24.6. We have a map ν : |C ′| → Spa(K, k) = |C| which is continuous. Any f needs
to topologically be ν. If x ∈ |C ′|, then f#

x : OC,f(x) → OC′,x is a local map over K, and OC,f(x)

is a valuation ring, so by our usual argument we have OC,f(x) = OC′,x, hence f(x) corresponds to

OC′,x ⊆ K. To define f# : f−1OC → OC′ , we need to define a map OC(U) → OC′(U ′) where U ′ is
the preimage of some open subset U ⊆ C under ν.

We may assume that U = SpecA and U ′ = SpecA′ are some affines. In this case we have FracA′ =
K(C ′) = K and A′ = {a ∈ K | ∀x ∈ SpecA′, a ∈ A′x}, which holds for any integral domain by the
sheaf property of OSpecA. Now we see,

A ⊇ {a ∈ K | ∀y ∈ U, x = V ⊆ K, a ∈ V } = OC(U),

which gives us our desired map.

Remark 24.7. Moreover, if the map U ′ → U from the proof of Lemma 24.6 is bijective, then A′ =
OC′(U ′) = OC(U), which immediately implies the following lemma.

Lemma 24.8. If in the situation of Lemma 24.6, the curve C ′ is also separated, then f : C ′ → C is
an open immersion.

Proof of Lemma 24.8. The map f is an open immersion if and only if it is topologically an open
immersion and f# : f−1OC → OC′ is an isomorphism. Since we know that f is ν, then we have this
first condition from Lemma 23.4, and the second part is from Remark 24.7.
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Lemma 24.9. The C we have defined is a proper, normal curve over k.

Proof of Lemma 24.9. Choose any normal finitely generated k-algebra A ⊆ K with Frac(A) = K, then
C ′ = SpecA is a separated normal curve over k with K(C ′) = K, so by Lemma 24.8 we obtain an open
immersion f : C ′ → C, with im(f) = {V |A ⊆ V } (we saw this last lecture). These open subsets C ′

actually cover C, as given x ∈ Spa(K, k), so some V ⊆ K, we can find an A such that A ⊆ V .39 This
implies that C is a scheme of finite type over k. It is 1-dimensional and irreducible as this is true for the
topological space |C|. It is reduced as all A are reduced. The object C is normal from Lemma 24.5 as
OC,x = V are all local valuations rings, hence normal. It is proper as by construction ν is a bijection,
so we then apply Proposition 22.15.

We thus have a functor K 7→ C(K) =
(
Spa(K, k),OSpa(K,k)

)
. This functor and C 7→ K(C) are

inverse equivalences, since K(C(K)) = K by construction, and C → C(K(C)) is an open immersion
by Lemma 24.8, so we only need to check it is an isomorphism of spaces. However C is proper so
ν : |C| → Spa(K(C), k) = |C(K(C))| is a homeomorphism.

Remark 24.10. We have constructed a scheme C(K) completely abstractly. We have only used
algebra to do this, rather than writing down local equations and then gluing.

This big theorem we have just proved says that any open normal curve knows how it wants to com-
pactitfy (embed into something proper), namely there is a unique proper normal curve containing it as
a dense open subset.

Theorem 24.11. Let C be a proper curve over a field k, then C is projective. In fact we have C ↪→ P3
k,

definitely when k is algebraically closed, but Peter also believes this holds for all fields k.

Example 24.12 (Elliptic Curves). Let k be algebraically closed and characteristic not equal to 2, and
consider f = y2 − x3 − ax− b for a, b ∈ k and ∆ = 4a3 + 27b2 6= 0.

Proposition 24.13. For the curve C = SpecA for A = k[x, y]/(f), then C is normal if and only if
∆ 6= 0.

Proof. We notice that A is normal is equivalent to C being smooth, so we apply the Jacobian criterion40

for smoothness and complete our proof.

In this case the normal compactification of C is given by V
(
Y 2Z −X3 − aXZ2 − bZ3

)
⊆ P2

k.

Example 24.14 (Hyperelliptic Curves). In the hyperelliptic case, x = x2n+1 + · · · + a1x + a0 for
n ≥ 2, then the normal compactification is not the homogenisation like we have done above, but
rather something else which we have constructed before by hand in Example 9.4 and refered to in
Example 15.3.

39To do this we take a1, . . . , an ∈ K we generate K as a field over k, and we may assume that ai ∈ V by replacing ai
by a−1

i . We then let A be the normalisation of k[a1, . . . , an] ⊆ K.
40Problem 4(ii) on exercise sheet 11 was the following: Assume X = V (f1, . . . , fr) ⊆ An

k and write x = (x1, . . . , xn) ∈
X(k). We define the Jacobi matrix Jx ∈ kr×n as we do in real analysis, where we take partial derivatives of f ∈
k[X1, . . . , Xn] in the obvious way. Let d be the Krull dimension of the local ring OX,x. Show that x is a smooth point
of X if and only if Jx has rank n− d.
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25 An Example and Ample Line Bundles 26/01/2017

Example 25.1. Let k = C and K = Frac(C[x, y]/(y2 − xn + 1)) where n ≥ 2. We can construct
C = C(K) as follows. Let A = C[x, y]/(y2 − xn + 1), which is a noetherian integral domain of Krull
dimension 1. In fact, A is normal. To show this, we check that all the C-valued points are smooth.
The non-smooth points satisfy f(x, y) = 0, ∂f

∂x (x, y) = nxn−1 = 0, and ∂f
∂y (x, y) = 2y = 0, where

f(x, y) = y2 − xn + 1, but we can easily check no such x, y ∈ C exist. This SpecA ↪→ C is an open
immersion. We will try now to compactify SpecA. First, we might try a compactification inside P2

C,
by looking at the scheme theoretic image of SpecA ⊆ A2

C ⊆ P2
C, and this is precisely,

C ′ := V
(
Y 2Zn−2 −Xn + Zn

)
⊆ P2

C.

Then SpecA = C ′ ∩ A2
C = C ′ ∩ UZ ⊆ C ′ ⊆ P2

C, with both P2
C and C ′ proper over SpecC. What is

C ′\ SpecA?

C ′(C) = {(X : Y : Z) ∈ C3\{(0, 0, 0)} | Y 2Zn−2 −Xn + Zn = 0}/C×,

then either Z 6= 0 or Z = 0 which would imply X = 0 and Y = 1 (up to scaling). Hence
(C ′\SpecA)(C) = {(0 : 1 : 0)}. This extra point lies in UY , so

C ′ ∩ UY = SpecC[x′, z′]/((z′)n−2 − (x′)n + (z′)n).

If C ′ was normal, then C ′ is proper and normal with K(C ′) = K, so necessarily C = C ′. However, in
general C ′ is not normal at (0 : 1 : 0), this extra point we have added. Hence we need to compute the
normalisation of B = C[x′, z′]/((z′)n−2 − (x′)n + (z′)n). We will now do this. If n = 2m + 2 is even,
then we have, (

x′m+1

z′m

)2

= (z′)2 + 1.

If we let u = x′m+1

z′m and v = z′

x′ . We now set u = x′
(
x′

z′

)m
= x′(v−1)m which implies that x′ = uvm

and z′ = vx′ = uvm+1. The defining equation of B now becomes,

(uvm+1)2m − (uvm)2m+2 + (uvm+1)2m+2 = 0.

This is still not normal, so we take out some u and v factors, and obtain the equation,

g(u, v) = 1− u2 + u2v2m+2 = 0.

This gives a normal curve, which we can again check by checking the conditions g(u, v) = 0, ∂g
∂u = 0

and ∂g
∂v = 0. Thus we have,

C = SpecA ∪ Spec B̃,

where B̃ is the normalisation of B we just calculated. What is interesting is,

C\ SpecA = VSpecB̃(v) = SpecC[u, v]/(v, 1− u2 − u2v2m+2) = SpecC t SpecC.

Hence this compactification has two points, corresponding to u = 1 and u = −1, which we will call
∞1 and ∞2. When we draw the real valued points of this we have two symmetric curves either side of
the y-axis, with ∞1 obtained in the top right corner, and ∞2 obtained in the bottom right corner. If
m if odd then ∞1 is obtained in the top left corver, otherwise ∞2 is obtained in the top left corner.
Conversely, if m is odd then ∞2 is obtained in the bottom left corner, otherwise ∞1 is obtained in the
bottom right corner. Hence the parity of m changes how our natural compactifcation tie up the loose
ends of our original curve.

When n = 2m + 1 is odd, then there is only one point at infinty, which was already discussed in
the hyperelliptic case. Both cases when n is even and n is odd are called hyper elliptic even though
their compactifications differ.
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Recall Theorem 10.7 and its extension to Corollary 12.10 which we’ve used in our exercise sheets a
number of times. This gives us an idea that perhaps we can classify closed embedding into projective
space (whether a scheme is projective or not) through the types of line bundles on a scheme.

Definition 25.2. Let X be a scheme of finite type over a field k, then X is quasi-projectve if there
exists a locally closed immersion into Pnk for some n ≥ 0.

Proposition 25.3. Let X be a scheme of finite type over a field k, then projective implies X is proper
and quasi-projective, proper implies separated, quasi-projective implies separated, and affine implies
quasi-projective. Moreover, X is projective if and only if X is proper and quasi-projective.

In general none of these implications are reversable.

Proof. We’ve seen before that projective implies proper implies separated, and projective implies quasi-
projective is also clear. Consider now that X is quasi-projective, then we have a map X → Pnk which is
a locally closed immersion. Since Pnk is proper, and hence separated, and the map X → Pnk is separated,
then the map X → Spec k is separated by composition. If X is affine, then X = SpecA and we have a
surjection k[X1, . . . , Xn] � A, so X is a closed subscheme of Ank ⊆ Pnk , so X ↪→ Pnk is a locally closed
immersion.

Proving the last statement now, we take X to be proper and quasi-projective, then f : X ↪→ Pnk
is a locally closed immersion. We claim that f is a closed immersion.41 To see this we can show that
f(X) is closed inside Pnk simply as a topological space. We will show that the image f(X) is stable
under specialisations, so take y � x inside Pnk such that x ∈ f(X). We then consider the following
diagram,

Spec k(x) Pnk

SpecV Spec k

x

g ,

such that the map x represents inclusion of the point x and the map g shows that y is a specialisation
of x in Pnk . We obtain the lift since Pnk is proper over Spec k. Now we consider the following diagram,

Spec k(x) X Pnk

SpecV Spec k

x f

h .

Since f and the structure map for Pnk are proper, then X → Spec k is proper, and we obtain a unique
lift h. Since g was the unique map in the previous diagram, then g = f ◦ h, hence y ∈ X.

Definition 25.4. Let X be a scheme, L a line bundle on X, then L is ample if X is quasi-compact
and for every x ∈ X there exists m ≥ 1 and s ∈ Γ(X,L⊗m) such that D(s) = X\V (s) is affine and
x ∈ D(s).

In other words, L is ample if and only if there exists an m > 0 and s1, . . . , sn ∈ Γ(X,L⊗m) such that
all D(si) are affine and X is covered by these D(si). We warn the reader to distinguish between D(s)
and D(f) when s is a section of a line bundle over X and f ∈ A where X = SpecA.

It is clear that this second interpretation implies the definition, using that X is a finite union of
quasi-compact opens implies that X is quasi-compact. Conversely, by quasi-compactness, we can find
integers m1, . . . ,mn and sections s1, . . . , sn ∈ Γ(X,L⊗mi) such that D(si) are all affine and X is covered

by these D(si)’s. We then take m = m1 · · ·mn and s′i = s
m/mi
i , such that all s′i ∈ Γ(X,L⊗m). Then

we also have D(s′i) = D(si) for all i = 1, . . . , n so all D(s′i) are affine with union X.

41The following argument can be easily generalised. If f : X → Y is a locally closed immersion where X is proper and
Y is separated, then f is a closed immersion.
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Example 25.5 (The Most Important Example). The line bundle O(1) over Pnk is ample. Indeed, O(1)
comes with canonical sections X0, . . . , Xn ∈ Γ(Pnk ,O(1)) with Ui = D(Xi) ∼= Ank , our standard open
subset of Pnk . Notice this implies that O(m) is ample for every m > 1 (from Remark 26.1 to come),
but O(m) is not ample for m < 0 since these sheaves have no global sections, even after taking higher
tensor powers.

We’ll also see that all line bundles over affine schemes are also ample (Lemma 26.2 to come).

Remark 25.6. On an affine scheme SpecA we have a basis of affine opens given by D(a) for a ∈ A.
Similarly, we will see that on a scheme X with ample line bundle L, we get a basis of open affines of X
given by D(s) for s ∈ Γ(X,L⊗m) with varying m.

The theorem we want to prove is the following:

Theorem 25.7. Let X be a scheme of finite type over a field k, then X is quasi-projective if and only
if X has an ample line bundle.

More precisely, if f : X → Pnk is a locally closed immersion then we obtain an ample line bundle
L = f∗O(1). Conversely, if L is ample, then there exists m ≥ 1 and a locally closed immersion
f : X → Pnk such that L⊗m ∼= f∗O(1).

Corollary 25.8. If X is proper over k, then X is projective if and only if X has an ample line bundle.

Proof. Using Theorem 25.7 and the fact that a projective is equivalence to properness and quasi-
projective by Proposition 25.3, we obtain this corollary.
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26 Ample Line Bundles and Quasi-Projectiveness 31/01/2017

Remark 26.1. By definition, L is ample if and only if L⊗m is ample for some m ≥ 1, if and only if
L⊗m is ample for all m ≥ 1.

Recall Theorem 25.7. We will prove this theorem by the end of today, but we will use four more general
lemmas to do so.

Lemma 26.2. Let X = SpecA and L = L̃ be a line bundle on X. Then L is ample. Moreover, for
any s ∈ Γ(X,L⊗m), the open set D(s) ⊆ X is affine (although not necessarily a principal open).

Proof. First we check that for each s ∈ Γ(X,L⊗m) = L⊗m, D(s) is affine. Equivalently, we can show
the inclusion j : D(s) ↪→ X is an affine map. Affine maps can be checked locally on X, hence we can
assume our line bundle because trivial, so we may assume L ∼= OX so L ∼= A. Then s ∈ L⊗m = A, and
s is simply a function f ∈ A, and D(s) = D(f), which is simply a principal open, and thus affine. To
see L is ample we need to show that we can cover X by D(s). This is clear as for x ∈ X a closed point
we can lift a generator of L ⊗ k(x) to A.

Remark 26.3. There is another way to prove the above lemma, which we will general even further
shortly. We can define a ring A[s−1], which isn’t strictly the localisation of A at s ∈ Γ(SpecA,L⊗m),
since this doesn’t make sense, but rather the colimit of the diagram,

A
·s−→ L

·s−→ L⊗2 ·s−→ · · · .

This ring as the obvious addition and multiplication induced by the maps L⊗i⊗L⊗j → L⊗(i+j). Then
D(s) = SpecA[s−1]. If L = A then we have seen a result like this already, since the above colimit just
specialises to the localisation of A at the element s ∈ A.

Lemma 26.4. Let X be a scheme with an ample line bundle L. Then X is quasi-compact and quasi-
separated.

In fact, we will prove in an exercise sheet42 that X is separated, using the valuation criterion for
separatedness.

Proof. The fact X is quasi-compact is in the definition of having an ample line bundle L, and quasi-
separated can be shown as follows. Take m ≥ 1 and s1, . . . , sn ∈ Γ(X,L⊗m) such that Ui = D(si) are
affine and cover X. Then it follows that,

Ui ∩ Uj = D(si) ∩D(sj) = X\(V (si) ∪ V (sj)) = X\(V (sisj)) = D(sisj).

Then D(sisj) ⊆ D(si) = SpecAi, so by Lemma 26.2 we see D(sisj) are affine and hence quasi-
compact.

Now we have the lemma which expands on Remark 26.3.

Lemma 26.5. Given a quasi-compact, quasi-separated scheme X, and a line bundle L on X, s ∈
Γ(X,L), and M a quasi-coherent sheaf on X. Then Γ(D(s),M) can be computed as the colimit of the
following diagram,

Γ(X,M)
·s−→ Γ(X,M⊗L)

·s−→ Γ(X,M⊗L⊗2)
·s−→ · · · .

Remark 26.6. Notice the map OD(s) → L|D(s) defined by multiplication by s is an isomorphism since

s is a unit on D(s). Also, if X = SpecA, L = OX , f ∈ A = Γ(X,L) and M ∼= M̃ , then Lemma 26.5
just tells us that Γ(D(f),M) = M [f−1] which we already know.

42Problem 4 on exercise sheet 14 asks us to show that a scheme with an ample line bundle is separated.
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Proof. The proof is essentially formal sheaf theory. First we cover X by finitely many open affines
Ui = SpecAi, with L|Ui ∼= OUi and Ui ∩ Uj =

⋃
Ui,j,k is a finite union. Then our equaliser diagram

can be replaced with direct sums, and we obtain,

Γ(D(s),M) = eq

( ⊕
i Γ(D(s) ∩ Ui,M)

⊕
i,j,k Γ(D(s) ∩ Ui,j,k,M)

)
.

We can substitute each Γ(D(s) ∩ V,M) with a colimit along multiplication by s as in Remark 26.6,
since we understand the affine case. We then use the fact that this sequential colimit is exact to obtain,

colimm,·s eq

( ⊕
i Γ(D(s) ∩ Ui,M⊗L⊗m)

⊕
i,j,k Γ(D(s) ∩ Ui,j,k,M⊗L⊗m)

)
.

By the sheaf property this is simpily the colimit of Γ(X,M ⊗ L⊗m) along multiplication by s, as
desired.

Lemma 26.7. Let X be a quasi-compact scheme and L a line bundle on X. Then L is ample if and
only if the open sets D(s) for varying s ∈ Γ(X,L⊗m) for varying m ≥ 1 form a basis of the topology
for X.

Proof. Let L be ample, and choose s1, . . . , sn ∈ Γ(X,L⊗m) such that Ui = D(si) = SpecAi are affine
opens covering X. For simplicity, and without loss of generality, take m = 1. Take any open U ⊆ X,
then U is covered by principal open subsets DUi(fi) for varying i, and varying fi ∈ Ai, so without loss
of generality U = DUi(fi) for some i and some fi ∈ Ai. Now,

fi ∈ Γ(D(si),OX) = colim·si Γ(X,L⊗m),

by Lemma 26.6, so there exists m ≥ 1 and f̃i ∈ Γ(X,L⊗m) such that,

fi =
f̃i|Ui
smi

.

Then we see that,
Ui = D(si) ⊇ D(sif̃i) = DUi(sif̃i|Ui) = DUi(fi) = U,

since si is invertible on Ui. This shows one direction. Conversely, we have to see that the open affine
subsets of the form D(s) still cover X. Let x ∈ X, then x ∈ U = SpecA ⊆ X. Our hypotheses imply
that there exists m ≥ 1 and s ∈ Γ(X,L⊗m) such that D(s) ⊆ U and x ∈ D(s). Then,

D(s) = DU (s|U ) ⊆ U,

which is affine by Lemma 26.2.

Corollary 26.8. If f : X → Y is a locally closed immersion, and L is ample on Y , then f∗L is ample
on X.

In particular this says that if f : X → PNk is quasi-projective, then f∗O(1) is ample on X, so we’re half
way to proving Theorem 25.7.

Proof. Let f be a composite of an open followed by a closed immersion, then we handle each case
separately. Let f be a closed immersion, then for some n ≥ 1 we have s1, . . . , sn ∈ Γ(Y,L⊗m) such that
D(si) are all affine and cover Y . Then ti = f∗si ∈ Γ(X, f∗L⊗m). We then have the following pullback
square of inclusions and f ,

D(ti) = D(si) ∩X X

D(si) Y

f .
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Since f is a closed immersion then f is affine, so D(ti) is affine, and clearly X is cover by D(ti) since
the D(si)’s cover X.

If f is an open immersion, then we simply apply Lemma 26.7.

We can now finally move in to proving that a scheme of finite type over a field k is quasi-projective if
and only if it admits an ample line bundle.

Proof of Theorem 25.7. If our scheme X is quasi-projective then the fact that we have an ample line
bundle O(1) on Pn for each n implies that X has an ample line bundle from Corollary 26.8.

Conversely, assume that L is an ample line bundle, then we have sections si ∈ Γ(X,L⊗m) such that
Ui = D(si) = SpecAi are affine opens which cover X. As per usual, we can without loss of generality
take m = 1. Our scheme is of finite type so all Ai are finitely generated k-algebras, so let xij ∈ Ai
generate Ai as a k-algebra. Lemma 26.6 gives us,

Ai = colim·si Γ(X,L⊗m),

so if m >> 0 we can choose m independent i and j, since both number range over some finite indexing
set. We can then find sections x̃ij ∈ Γ(X,L⊗m) such that,

xij =
x̃ij |Ui
smi

.

We claim the datum,
(L⊗m, sm1 , . . . , smn , (x̃ij)i,j), (26.9)

defines a map f : X → Pn+nN−1
k , where i ranges from 1, . . . , n and j from 1, . . . , N . To show this,

we need to see that sm1 , . . . , s
m
n , (x̃ij)i,j ∈ Γ(X,L⊗m) generate L⊗m. Actually, we already saw that

sm1 , . . . , s
m
n generate L⊗m as X is covered by D(si)’s and OX |Ui is isomorphic to L|Ui through multi-

plication by si. This implies the datum presented in 26.9 does in fact define f : X → Pn+nN−1
k , but it

remains to check that such an f is a locally closed immersion. More precisely, let Pn+nN−1
k =

⋃n+nN
α=1 Vα

be the standard open covering of projective space, then we claim f factors as,

X −→
n⋃
α=1

Vα −→ Pn+nN−1, (26.10)

where the first map is a closed immersion and the second an open immersion. Indeed, the preimage
of Vα in X for α = 1, . . . , n is D(smα ) = D(sα) ⊆ X and X is covered by these open affines, so
X surely maps into

⋃n
α=1 Vα ⊆ Pn+nN−1

k . To see this is a closed immersion, it remains to see that
SpecAα = D(sα) → Vα = Spec k[(Xi)i] is a closed immersion of affine schemes, in other words, that
k[(Xi)i]→ Aα is an epimorphism, as a map of k-algebras. Recall the Vα are the standard affine opens
of Pn+nN−1

k so we could write down the generators of k[(Xi)i] if required. Part of the generators of
k[(Xi)i] map to

xαb =
x̃αb|Uα
smα

,

but these generate Aα as a k-algebra. Clearly the second map of the composition 26.10 is an open
immersion, so we’re done.
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27 Separated Curves are Quasi-Projective 02/02/2017

Today we would like to show the following theorem, which uses Theorem 25.7 as a key ingredient in
the proof.

Theorem 27.1. Let X be a separated normal curve over a field k, then C is quasi-projective. Moreover,
if C is proper then C is projective.

Remark 27.2. This statement is true in more generality, but our proof won’t be. For example, any
separated, 1-dimensional scheme of finite type over a field k is quasi-projective. Recall also Proposi-
tion 25.3 which gives us the ‘moreover’ statement.

First we are going to use an alternative characterisation of ample.

Proposition 27.3. Let X be a noetherian scheme and L a line bundle on X, then the following are
equivalent.

1. L is ample on X.

2. For all coherent sheaves M on X there exists m > 0 such that M⊗L⊗m is globally generated.

3. For all coherent ideal sheaves I on X there exists m > 0 such that I ⊗L⊗m is globally generated.

4. For all coherent sheavesM on X there exists m0 > 0 such that for all m ≥ m0 the sheafM⊗L⊗m
is globally generated.

5. For all coherent ideal sheaves I on X there exists m0 > 0 such that for all m ≥ m0 the sheaf
I ⊗ L⊗m is globally generated.

Note that condition 4 is what Hartshorne[3, p.153] uses as the definition for ample (or highly-ample or
something), but we’ll see a lemma later on (Lemma 27.5) where our definition makes things amazingly
simple.

Proof. We obviously have 2⇒ 3, 4⇒ 5, 4⇒ 2, 5⇒ 3, so we will show 3⇒ 1, and then 1⇒ 2, finishing
with 2⇒ 4, at which time we’ll be done.

(3 ⇒ 1) We have to show that for all x ∈ X, there exists m ≥ 1 and s ∈ Γ(X,L⊗m) such that
D(s) is affine and x ∈ D(s). Here we’re using the fact that X is quasi-compact which comes in the
definition of noetherian. Let x ∈ X and U = SpecA ⊆ X be an affine open neighbourhood of x,
then Z = X\U ⊆ X, which is closed in X, so we endow it with the reduced closed subscheme struc-
ture such that i : Z → X is a closed immersion. Equivalently, we have IZ which is the ideal sheaf
corresponding to Z. Since X is noetherian we know that IZ is finitely generated. Our condition 3
now says that for some m ≥ 1 we have IZ ⊗ L⊗m is globally generated. Let s ∈ Γ(X, IZ ⊗ L⊗m) be
a section such that s is non-zero when evaluated at x, so non-zero in the fibre (stalk) over x. The
inclusion α : IZ ⊗ L⊗m → OX ⊗ L⊗m is an isomorphism over U , so now α(s) ∈ Γ(X,L⊗m). Actually,
by definition α(s) is in the kernel of the map,

Γ(X,L⊗m) −→ Γ(X, i∗OZ ⊗ L⊗m) = Γ(Z, i∗L⊗m).

Hence α(s) vanishes on Z, so Z ⊆ V (α(s)), so D(α(s)) ⊆ U . On the other hand, α(s) does not vanish
at x by choice of s (and the fact that α is an isomorphism at x). The fact D(α(s)) ⊆ U implies
that D(α(s)) = DU (α(s)|U ) ⊆ U which is affine by Lemma 26.2, and x ∈ D(α(s)), which finishes this
implication.

(1 ⇒ 2) If L is ample, then we want to show for all coherent sheaves M there exists m ≥ 1 such
that M⊗ L⊗m is globally generated. Take an m such that s1, . . . , sn ∈ Γ(X,L⊗) are sections with
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D(si) affine and covering X. We may assume m = 1 here since we can replace L by L⊗m if necessary.
Let Ui = D(si) = SpecAi, and Mi = Γ(Ui,M) a finitely generated Ai-module, since M is a coherent
sheaf. Choose mij ∈ Mi with i = 1, . . . , n and j = 1, . . . , N which generate Mi as an Ai-module.
Lemma 26.5 tells us that Mi = Γ(Ui,M) = colim·si Γ(X,M⊗L⊗m). We can choose an m quite large,
such that all mij are in the image of,

Γ(X,M⊗L⊗m) Γ(Ui,M) = Mi

Γ(Ui,M⊗L⊗m)

smi
.

The fact that (M⊗L⊗m)|Ui is generated by Γ(X,M⊗L⊗m) for all i implies thatM⊗L⊗m is globally
generated.

(2 ⇒ 4) Assume now that L is ample and M is a coherent sheaf and choose m ≥ 1 with s1, . . . , sn ∈
Γ(X,L⊗m) with the collection D(si) an affine covering of X, and for each j = 0, . . . ,m− 1 an mj such
that,

(M⊗L⊗j)⊗ L⊗mjm,

is globally generated. We claim that for all M greater than the maximum of j + mjm, M⊗L⊗M is
globally generated. To show this, choose j = {0, . . . ,m − 1} such that M − j is divisible by m, then
M = j +mmm+ lm for some l ≥ 0. Then,

M⊗L⊗M =
(
M⊗L⊗j ⊗ L⊗mjm

)
⊗ Ljm,

where the parenthesis on the right hand side of the equation above are globally generated by assumption.
But we know that L⊗m is globally generated (by s1, . . . , sn in fact), and if two coherent modules are
globally generated, then so is there tensor product. We can easily see this, as surjections OaX � M
and ObX � N clearly yield a surjection OabX �M⊗N . This finishes our proof.

Remark 27.4. If X is a scheme with an ample line bundle L, we see that all coherent sheavesM have
many sections after twisting with L. In fact, we can describe the category of coherent sheaves on X in
terms of graded modules over the graded ring,

S =
⊕
m≥0

Γ(X,L⊗m),

by the functorM 7→
⊕

m≥0 Γ(X,M⊗L⊗m), which is not quite an equivalence of categories, but nearly.
This is the theory of Proj. We can think of Proj as a generalisation of Spec, but Peter doesn’t like
Proj, so he’s actually avoided it this whole time. For example we proved that the closed subschemes
of Pnk are generated by V (f) where f is a homogeneous polynomial in Proposition 15.2 using one of
Serre’s theorems, rather than Proj and V+(I) and stuff like this.

Proof of Theorem 27.1. Let K = K(C) be the function field of our curve C, then there exists a proper
normal curve C over k with K(C) = K and there is an open embedding j : C ↪→ C. Hence it is
enough to prove that C is quasi-projective, or equivalently, projective. Choose an open dense affine
U = SpecA ⊆ C and a closed immersion i : U ↪→ Ank . Let U be the scheme theoretic image43

of U ↪→ Ank ↪→ Pnk which is equivalent to U ⊆ Pnk a reduced closed subscheme whose underlying
topological space |U | is the closure of |U | inside |Pnk |. Then U ↪→ U is an open immersion with dense
image,

U = U ∩ Ank ⊆ Pnk .
43The first part of problem 3(i) on exercise 10 is the following: Let f : X → S be a morphism of schemes. The schematic

image (scheme theoretic image) Im(f) of f is defined as the minimal closed subscheme Z ⊆ S such that f factors through
the inclusion Z ↪→ S. Prove that the schematic image Im(f) of f exists.
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In particular, U is a projective curve over k. We claim C is isomorphic to the normalisation of U . To
see this, the normalisation of U is a proper44 normal curve over k with function field K. Hence by our
classification of proper normal curves, we see that the normalisation of U is given by C, which shows
our claim. Hence we obtain a map f : C → U which is affine, since any normalisation map is affine. We
also have i : U ↪→ Pnk . The fact that O(1) is ample implies that f∗i

∗O(1) is ample from Lemma 27.5
that follows.

Lemma 27.5. If f : X ′ → X is an affine map of schemes, and L is an ample line bundle on X, then
f∗L is ample on X.

Proof. We take m ≥ 1 and some collection s1, . . . , sn ∈ Γ(X,L⊗m) such that Ui = D(si) is affine and
open in X, and X =

⋃
i Ui. Let ti = f∗(si) ∈ Γ(X ′, f∗L⊗m), then D(ti) = f−1(D(si)) ⊆ X ′, which

are all affine as f is affine and so is D(si). We then see,

n⋃
i=1

D(ti) = f−1

(
n⋃
i=1

D(si)

)
= f−1(X) = X ′,

and we’re done.

Next week we are going to talk about line bundles over curves, and we’ll see that we always have an
closed immersion C ↪→ P3

k for every proper normal curve over k.

44We know U is proper from problem 1 on exercise sheet 13, which asks: Let k be a field and let X be a curve over k
(in particular X is integral). Prove that X is proper if and only if its normalisation X̃ is proper over k.
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28 Divisors and the Picard Group of a Curve 07/02/2017

Our last two lectures will be focused on talking about line bundles on curves. The area of vector bun-
dles on curves is currently a very active area of research, which is related to the geometric Langlands
program.

For this lecture and the next, let C be a proper normal curve over a field k (which will be algebraically
closed).

Definition 28.1. 1. A divisor on a curve C is a formal sum

D =
∑

x∈Cclosed

ni[x],

where nx ∈ Z and almost all nx are equal to 0. In other words, the (abelian) group Div(C) of
divisors on C is the free abelian group on the set of closed points of C. We will often not say that
x ∈ C is closed to clean up some equations, but when we are talking about divisors in these last
two lectures, we always mean x ∈ C with x closed.

2. D ∈ Div(C) is an effective divisor if nx ≥ 0 for all x ∈ C closed. We call Div+(C) ⊆ Div(C) the
semi-group of effective divisors.

3. Let D ∈ Div(C), then we define the OC-module OC(D) by,

Γ(U,OC(D)) = {f ∈ K | ∀x ∈ U closed, vx(f) ≥ −nx},

where vx : K → Z is the discrete valuation corresponding to x, K = K(C) is the function field of
C and U ⊆ C is a non-empty open subset.

We can easily construct divisors, and in a few cases we can already realise OC(D).

Example 28.2. 1. If our divisor is the unique zero divisor, D = 0, then OC(D) = OC . Indeed, for
all U = SpecA ⊆ C we have,

Γ(U,OC) = A = {f ∈ K = FracA | ∀x ∈ SpecmaxA, f ∈ Ax}

= {f ∈ K | ∀x, vx(f) ≥ 0} = Γ(U,OC(D)),

as Ax is all f ∈ K with vx(f) ≥ 0.

2. If D = −[x] for some closed point x ∈ C, then OC(D) is the ideal sheaf of the reduced closed
subscheme {x} ⊆ C, which means,

Γ(U,OC(D)) = {f ∈ OC(U) | fx ∈ mx ⊆ OC,x}.

Indeed by definition we have,

Γ(U,OC(D)) = {f ∈ Γ(U,OC(0)) = Γ(U,OC), and vx(f) ≥ 1}.

3. If D = −n[x] for some n ≥ 0, then OC(D) ⊆ OC is the subsheaf of functions with zero of order
greater than n at x.

4. If D = n[x] and n ≥ 0 then OC(D) ⊆ OC is the subsheaf of functions with a pole of order at
most n at x.

We now come to the proposition which shows us the connection between Div(C) and Pic(C).

Proposition 28.3. For any divisor D ∈ Div(C), the OC-module OC(D) is a line bundle.
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Proof. Let D =
∑
nx[x]. Fix some x ∈ C a closed point, then we want to see there exists an open

neighbourhood U of x such that OC(D)|U ∼= OU . Pick some f ∈ K = FracOC,x such that vx(f) = −nx.
Assume for now that −nx ≥ 0, then f ∈ OC,x. We can find an open neighbourhood U of x with the
following three properties:

1. f ∈ Γ(U,OC),

2. for all y 6= x and y ∈ U with y closed, ny = 0,

3. for all y 6= x and y ∈ U with y closed, vy(f) = 0.

Indeed, we can find U as in property 1 by definition of the stalk. We can ensure property 2 by removing
all y ∈ U with ny 6= 0 and y 6= 0 from U . Since such y are also closed, the U remains open. To ensure
property 3, we note that V (f) $ U , so it is zero dimensional and of finite type, so it is a finite set of
points. Hence we can replace U by U\(V (f)\{x}), which gives us property 3, as then f is invertible on
U\{x}. We now claim to have the following commutative diagram,

OU OC(D)

K K

∼=

f

,

with the notated isomorphisms as above. To prove this claim, we notice that for all open subsets V ⊆ U
we have,

OU (V ) = {g ∈ K | ∀y ∈ V, vy(g) ≥ 0} {g ∈ K | ∀y ∈ V, vy(g) ≥ vy(f)}·f
∼= .

Now we use the fact that we have chosen U with the three properties given above to obtain,

{g ∈ K | ∀y ∈ V, vy(g) ≥ −ny} = Γ(V,OU (D)).

Thus OC(D)|U ∼= OU as desired. If −nx < 0, we make the same argument as above except with

f−1 ∈ OC,x and the isomorphism OU
f−1

−→ OC(D)|U .

If we recall the group structure on both Div(C) and Pic(C), then we might hope for the following
lemma.

Lemma 28.4. For two divisors D,D ∈ Div(C), there is a canonical isomorphism,

OC(D)⊗OC OC(D′) −→ OC(D +D′).

Proof. Let us first construct the correct map. We need compatible maps,

Γ(U,OC(D))⊗Γ(U,OC) Γ(U,OC(D′)) −→ Γ(U,OC(D +D′)).

If f ∈ Γ(U,OC(D)) = {f ∈ K | ∀x ∈ U, vx(f) ≥ −nx} and g ∈ Γ(U,OC(D′)), which has a similar
description, where D =

∑
nx[x] and D′ =

∑
n′x[x], then,

fg ∈ {h ∈ K | ∀x ∈ U, vx(h) ≥ −nx − n′x} = Γ(U,OC(D +D′)).

This isomorphism can be checked on the level of stalks, so let x ∈ C be a closed point, then OC(D)x =
ω−nx · OC,x, where ω ∈ OC,x is the uniformiser of this valuation ring, so vx(ω) = 1. Similarly,

OC(D′)x = ω−n
′
x · OC,x. The tensor product of stalks ignores potential sheafification so we have,

(OC(D)⊗OC OC(D′))x = OC(D)x ⊗OC,x OC(D′)x = ω−nx−n
′
x · OC,x = OC(D +D′)x.
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Corollary 28.5. There is a natural map of abelian groups Div(C)→ Pic(C) which sends D 7→ OC(D).

Proof. Direct consequence of Lemma 28.4.

Proposition 28.6. The map Div(C)→ Pic(C) is surjective.

Proof. Let L be a line bundle on C, η ∈ C be the generic point, and let K = K(C) = OC,η be the
function field of C. Then the stalk Lη is a 1-dimensional K-vector space. Choose some isomorphism
Lη ∼= K of K-vector spaces, which maps 1 ∈ K to s ∈ Lη. Take some U ⊆ C a non-empty open subset,
such that s ∈ Γ(U,L) ⊆ Lη. For all x ∈ C which are closed we have an injection,

Lx ↪→ Lη ∼= K = FracOC,x,

where Lx is free of rank 1 over OC,x. This implies there exists some nx ∈ Z such that Lx = {f ∈
K|vx(f) ≥ −nx}. Explicitly, take the generator fx ∈ Lx → Lη ∼= K and set −nx = vx(fx). We
claim that nx = 0 for almost all x. To see this, we take U as above such that s ∈ Γ(U,L), and
let U ′ = U\V (s) ⊆ U be a non-empty proper open subset. It is enough to show ∀x ∈ U ′ we have
nx = 0. However for x ∈ U ′, sx ∈ Lx is a generator as x 6∈ V (s), thus Lx ↪→ Lη ∼= K maps
sx 7→ s = sη corresponds to the unit of 1. Hence nx = vx(1) = 0. We construct our divisor then as
D =

∑
nx[x] ∈ Div(C). Let K be the constant sheaf with Γ(V,K) = K for all non-empty open subsets

of C. Both OC(D) and L then include into K, the latter through the map Lη ∼= K. We have two
sub-bundles of K with the same stalks, hence OC(D) = L.

Given any f ∈ K×, we can construct the divisor,

div(f) =
∑

x∈Cclosed

vx(f)[x].

Note that if there exists U,U ′ such that f ∈ Γ(U,OC) and f−1 ∈ Γ(U ′,OC), then we have vx(f) = 0
for all x ∈ U ∩ U ′.

We now come to the theorem which tells us how to calculate the Picard group of a curve C, if we
know about its function field and divisors.

Theorem 28.7. The follow sequence is exact:

0 −→ k× −→ K× −→ Div(C) −→ Pic(C) −→ 0.

Proof. First we will see all compositions of two adjacent maps in the above sequence are zero. Given
f ∈ k× ⊆ K×, then vx(f) = 0, for all x ∈ C, so we see that div(f) = 0.

For f ∈ K× and D = div(f), then we want to see OC(D) ∼= OC . However, for all U ⊆ C,

Γ(U,OC(D)) = {g ∈ K | ∀x ∈ U, vx(g) ≥ −vx(f)} {g ∈ K | ∀x ∈ U, vx(g) ≥ 0} = Γ(U,OC)
·f
∼= .

Hence OC(div(f)) ∼= OC as desired. Now for exactness.

It is clear that k× ↪→ K× is injective as it is a field extension.

We want to show now that if f ∈ K× with div(f) = 0, then f ∈ k×. If div(f) = 0, then vx(f) = 0 for
all closed points x ∈ C. Hence,

f ∈ Γ(C,OC) = {f ∈ K | ∀x ∈ C, vx(f) ≥ 0},

but as C is proper and integral, and k algebraically closed, then exercise sheet 12 problem 4(ii)45 tells
us Γ(C,OC) = k. Hence f ∈ k×.

45Let k be an algebraically closed field and X be a reduced and connected scheme over k. Deduce that Γ(X,OX) = k.
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Given D ∈ Div(C) with OC(D) ∼= OC , we would like to find f ∈ K× such that div(f) = D. Assume
OC(D) ∼= OC , then by localising at η, we have canonical isomorphisms OC(D)η ∼= K and OC,η ∼= K,
so we have an isomorphism OC(D)η ∼= OC,η of K-vector spaces given by multiplication by f ∈ K×.
We claim this is the f we are looking for, i.e. div(f) = D. To see this, as always, we have a look at
stalks for all closed points x ∈ C, where we find,

OC(D)x = {g ∈ K|vx(g) ≥ −nx} OC,x = {g ∈ K | vx(g) ≥ 0}·f
∼= .

Hence vx(f) = nx, so div(f) = D.

The final check of exactness, i.e. surjectivity at Pic(C) is simply Proposition 28.6.
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29 Towards Sheaf Cohomology and Next Semester 09/02/2017

Let us consider an example of the exact sequence from Theorem 28.7.

Example 29.1. Let C = P1
k for some algebraically closed field k. Then we claim the degree map

Div(C)→ Z which sends a divisor D =
∑
nx[x] 7→

∑
nx has the following properties.

1. For all f ∈ K× we have deg(div(f)) = 0.

2. Given D ∈ Div(C) such that deg(D) = 0 then there exists f ∈ K× such that D = div(f).

These two facts imply that Pic(P1
k) ∼= Z.46

Proof. For part 1 we notice that for all f ∈ K× we have
∑
vx(f) = 0, since this is simply the product

formula from Proposition 22.11. For part 2, we look at D =
∑
nx[x] such that

∑
nx = 0. For

Spec k[t] = A1
k ⊆ P1

k, so K = k(t). We then define,

f =
∏

x∈A1
k(k)=k

(t− x)nx ⊆ k(t).

By definition we have vx(f) = nx for all x ∈ A1
k(k) and v∞(f) = N∞ by the product formula again

and the assumption that
∑
nx = 0. Hence div(f) = D and Pic(P1

k) ∼= Z.

For other curves we notice that the Picard group is much harder to calculate, but we always have this
degree map.

Proposition 29.2. [Generalised Product Formula] For all f ∈ K× we have deg(div(f)) = 0.

For the rest of this lecture we will not prove anything properly, but almost everything we say we will
be able to prove by next semester.

Corollary 29.3. The degree map factors through a unique map deg : Pic(C)→ Z.

Proof. This is a direct consequence of Proposition 29.2 and our exact sequence.

Theorem 29.4. A line bundle L ∈ Pic(C) is ample if and only if deg(L) > 0.

Proof. We need the fact that there are many non-zero sections in Γ(C,L⊗) if m >> 0, but for this we
usually use the Riemann-Roch theorem.

To state the Riemann-Roch theorem, we need to define canonical bundles.

Definition 29.5 (Kähler Differentials). Recall, if A is a k-algebra (over any ring k), we have an A-
module of Kähler differentials Ω1

A/k, which by definition is the universal A-module M equipped with a
k-linear derivation d : A→M , so,

d(λa+ ηb) = λd(a) + ηd(b), d(ab) = ad(b) + bd(a), a, b ∈ A, λ, η ∈ k.

It is universal as an intial A-module with such a derivation d as above.

Example 29.6. For example if k is a field and A = k[t] then we have,

Ω1
k[t]/k = k[t] · dt,

is simply free of rank 1, and when d : k[t]→ Ω1
k[t]/k] is what one would expect,

d
(∑

λnt
n
)

=
∑

nλnt
n−1dt.

We note that d(t2) = d(t · t) = 2tdt, and by induction we obtain d(tn) = ntn−1dt.
46Recall in problem 2 on exercise sheet 9 we proved that Pic(Pn

k ) ∼= Z for all n ≥ 1.
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Example 29.7. Similarly we have,

Ω1
k[t1,...,tn]/k = ⊕ni=1k[t1, . . . , tn] · dti.

Where f ∈ k[t1, . . . , tn] is mapped to,

df =

n∑
i=1

∂f

∂ti
dti.

Remark 29.8. In characteristic p > 0, df = 0 does not imply that f is a constant, because clearly we
have things such as d(tp) = ptp−1 = 0.

Proposition 29.9. The map A→ Ω1
A/k commutes with localisation, i.e.

Ω1
A[S−1]/k = Ω1

A/k ⊗A A[S−1].

Once we have a result on localisations, then we can make a definition of a sheaf on a basis of principal
opens in the topology of an affine scheme, which we glue into the following corollary.

Corollary 29.10. If X is a scheme over k, then we obtain a quasi-coherent sheaf Ω1
X/k such that for

all open affine U = SpecA ⊆ X we have,

Γ(U,Ω1
X,k) = Ω1

A/k.

Proposition 29.11. If C is a proper normal curve over a field k, then Ω1
C/k is a line bundle. This

is called the canonical line bundle, or confusingly as the canonical divisor. This is confusing since no
canonical divisor gives us this line bundle for general curves.

Definition 29.12. Let C be a proper normal curve over an algebraically closed field k, then the genus
g (Geschlecht auf Deutsch) of C is defined as the dimension of Γ(C,Ω1

C/k) as a k-vector space. This is
necessarily finite.

We can now state one of the fundamental theorems in the theory of algebraic curves, one which we will
see and prove next semester. The usual proof uses the cohomology of coherent sheaves.

Theorem 29.13 (Riemann-Roch Theorem). For all line bundles L on a proper normal curve C over
an algebraically closed field k, we have,

dimk Γ(C,L)− dimk Γ(C,Ω1
C/k ⊗ L

∨) = degL+ 1− g.

An explanation of the genus of a curve is the usual topological notion. If k = C, then g is simply
the number of holes in C(C) which is a compact Riemann surface, for a proper normal curve C. If
g = 0 this implies C = P1

k, and g = 1 implies that C is an elliptic curve. Let us see the Riemann-Roch
Theorem in some examples.

Example 29.14. If L = OC then we have,

dimk Γ(C,OC)− dimk Γ(C,Ω1
C/k) = 1− g,

which is a tautology, since we can actually calculate the left hand side from the definition of the genus
and exercise sheet 12, problem 4(ii)47.

Example 29.15. Let L = Ω1
C/k, then we obtain,

dimk Γ(C,Ω1
C/k − dimk Γ(C,OC) = deg Ω1

C,k + 1− g.

Again, we can calculate the left hand side by hand, so this implies that the deg Ω1
C/k = 2g − 2.

47Let k be an algebraically closed field and X be a reduced and connected scheme over k. Deduce that Γ(X,OX) = k.
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A corollary of the Riemann-Roch Theorem tells us that,

dimk Γ(C,L) ≥ degL+ 1− g,

with equality if and only if Γ(C,Ω1
C/k ⊗ L

∨) = 0. This happens if degL > 2g − 2, as then,

deg(Ω1
C/k ⊗ L

∨) = deg(Ω1
C/k)− degL < 0,

and if L′ is a line bundle of degree less than zero, then L′ has no global sections. Indeed, if 0 6= s ∈
Γ(C,L′) then L′ ∼= OC(D) where D =

∑
vx(s)[x]. Using this, one can easily prove that any line bundle

of positive degree is ample, and the converse.

Sketch of a Proof. First assume L is ample, then for some line bundle L′ of degL′ < 0 we take some
m >> 0 such that L′ ⊗ L⊗m is globally generated. If degL ≤ 0, then the degree of L′ ⊗ L⊗m will be
less than zero which implies L′ ⊗ L⊗m has no global sections, a contradiction.

Now take a line bundle L with positive degree. Let I ⊆ OC be an ideal sheaf. To see there ex-
ists m >> 0 such that I ⊗ L⊗m is globally generated, it is enough that if L′ is a line bundle of degree
greater than or equal to 2g, then L′ is globally generated. To see this, fix x ∈ C a closed point, then
L′ ⊗OC(−[x]) ⊆ L′ is the subsheaf of sections that vanish at x. We calculate the degree of this as the
degree of L′ minus 1, which is greater than 2g− 2, and we then use the Riemann-Roch Theorem to see
that,

dimk Γ(C,L′) = degL+ 1− g,
which implies that,

dimk Γ(C,L′ ⊗O(−[x])) = degL′ − g.
This implies we have some section s ∈ Γ(C,L′) not in the image of Γ(C,L′ ⊗O(−[x])), i.e. the section
s does not vanish at x.

Example 29.16. Let E be an elliptic curve over a field k given by the compactifiation of the affine
equation x2 = x3 +ax+b with ∆ = 4a3 +27b2 6= 0 inside P2

k, so E = V (Y 2Z−X3−aXZ2−bZ3). This
curve has a point at∞ ∈ E(k) given by (0 : 1 : 0). A corollary of the Riemann-Roch Theorem says that

E(k)→ Pic1(E) which maps x 7→ O([x]), or equivalently, E(k)
∼=→ Pic0(E) mapping x 7→ O([x]− [∞])

is bijective, so PicE = E(k) × Z. In particular Pic0E admits the structure of a variety. There is in
fact an abelian group structure on E(k).

To prove this bijection above, let L ∈ Pic1E, and we have to see there exists a unique x ∈ E(k)
such that L = O([x]), but degL = 1 > 2g − 2 = 0. The Riemann-Roch Theorem then says,

dimk Γ(C,L) = degL+ 1− g = 1,

so up to a factor of k×, there exists a unique 0 6= s ∈ Γ(C,L), so L ∼= O(D) where D =
∑
vx(s)[x].

However
∑
vx(s) = deg(D) = degL = 1 so D = [x]. The uniqueness of x follows from the uniqueness

of s, and always we have an injection OC → OC([x]) = L.

Let’s think about this group structure on E(k). Take P,Q and R all in E(k) and colinear, and
i : E → P2

k. Then,
O([P ] + [Q] + [R]) = i∗OP2

k
(1),

which is independent of our chosen line. We then look at O([R] + [R] + [∞]), where R is colinear to R
and ∞, from which we see,

O([P ] + [Q]− 2[∞]) ∼= O([P ]− [∞]) ∼= O([R]− [∞]),

in other words P +Q−R is in E(k).
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